We develop an ab initio computational approach to calculate the magneto-optical Kerr effect spectra of layered and nanogranular compounds as a function of several structural and geometrical parameters: (i) composition, (ii) film thickness, and (iii) position, thickness, and number of the nonmagnetic interlayers. The case of nanoparticles in a matrix is treated within the effective-medium approximation and compared to a model (alternating composition layers approximation) that considers different compounds in a thin-film multilayered structure. The magneto-optical filter-amplifier effect of a nonmagnetic overlayer or interlayer and the dependence of the Kerr response on the specific sample composition suggest that our computational approach is a good starting point to build up structures with the desired magneto-optical characteristics and can be used to interpret experimental spectra to single out the microscopic structure and composition of the sample. The model is applied to the Mn-Ge binary system, considering both Mn(5)Ge(3) as a film or in a nanoparticle arrangement and Mn(x)Ge(1-x) diluted semiconductor as possible phases in pure form or intermixed with Ge.

First-principles modeling of the magneto-optical response in inhomogeneous systems

D'ORAZIO, FRANCO;CONTINENZA, Alessandra;
2008-01-01

Abstract

We develop an ab initio computational approach to calculate the magneto-optical Kerr effect spectra of layered and nanogranular compounds as a function of several structural and geometrical parameters: (i) composition, (ii) film thickness, and (iii) position, thickness, and number of the nonmagnetic interlayers. The case of nanoparticles in a matrix is treated within the effective-medium approximation and compared to a model (alternating composition layers approximation) that considers different compounds in a thin-film multilayered structure. The magneto-optical filter-amplifier effect of a nonmagnetic overlayer or interlayer and the dependence of the Kerr response on the specific sample composition suggest that our computational approach is a good starting point to build up structures with the desired magneto-optical characteristics and can be used to interpret experimental spectra to single out the microscopic structure and composition of the sample. The model is applied to the Mn-Ge binary system, considering both Mn(5)Ge(3) as a film or in a nanoparticle arrangement and Mn(x)Ge(1-x) diluted semiconductor as possible phases in pure form or intermixed with Ge.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/7902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact