We study the low Mach number limit for the compressible Navier-Stokes system supplemented with Navier's boundary condition on an unbounded domain with compact boundary. Our main result asserts that the velocities converge pointwise to a solenoidal vector field - a weak solution of the incompressible Navier-Stokes system - while the fluid density becomes constant. The proof is based on a variant of local energy decay property for the underlying acoustic equation established by Kato.
On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions
DONATELLI, DONATELLA;
2010-01-01
Abstract
We study the low Mach number limit for the compressible Navier-Stokes system supplemented with Navier's boundary condition on an unbounded domain with compact boundary. Our main result asserts that the velocities converge pointwise to a solenoidal vector field - a weak solution of the incompressible Navier-Stokes system - while the fluid density becomes constant. The proof is based on a variant of local energy decay property for the underlying acoustic equation established by Kato.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.