Let N^{ n+1} be a Riemannian manifold with sectional curvatures uniformly bounded from below. When n = 3,4, we prove that there are no complete (strongly) stable H- hypersurfaces, without boundary, provided |H| is large enough. In particular we prove that there are no complete strongly stable H-hypersurfaces in R^{n+1} without boundary, H different from 0.

Stable Constant Mean Curvature Hypersurfaces

NELLI, BARBARA;
2007

Abstract

Let N^{ n+1} be a Riemannian manifold with sectional curvatures uniformly bounded from below. When n = 3,4, we prove that there are no complete (strongly) stable H- hypersurfaces, without boundary, provided |H| is large enough. In particular we prove that there are no complete strongly stable H-hypersurfaces in R^{n+1} without boundary, H different from 0.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/7944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact