This paper presents a new technique for the transient analysis of multiconductor transmission lines (MTLs). The proposed model is derived from the analytical characterization of half-T ladder networks (HTLNs), which approximate the MTLs. Using closed-form polynomials (named D'Amico-Faccio-Ferri (DFF) and DFFz), poles and residues of the two-port representation of MTLs are extracted analytically, thus leading to a time-domain macromodel, which can be incorporated in a circuit simulator. Furthermore, the knowledge of poles allows one to develop an efficient model order reduction technique by selecting only the dominant poles of the system within a fixed bandwidth. Stability and passivity properties of the proposed model are intrinsically enforced as a consequence of stability and passivity of HTLNs and rational approximation procedure.
A new methodology for the transient analysis of lossy and dispersive multiconductor transmission lines
ANTONINI, GIULIO
2004-01-01
Abstract
This paper presents a new technique for the transient analysis of multiconductor transmission lines (MTLs). The proposed model is derived from the analytical characterization of half-T ladder networks (HTLNs), which approximate the MTLs. Using closed-form polynomials (named D'Amico-Faccio-Ferri (DFF) and DFFz), poles and residues of the two-port representation of MTLs are extracted analytically, thus leading to a time-domain macromodel, which can be incorporated in a circuit simulator. Furthermore, the knowledge of poles allows one to develop an efficient model order reduction technique by selecting only the dominant poles of the system within a fixed bandwidth. Stability and passivity properties of the proposed model are intrinsically enforced as a consequence of stability and passivity of HTLNs and rational approximation procedure.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.