WeconsidertheFredrickson-Andersenonespinfacilitatedmodel (FA1f) on an infinite connected graph with polynomial growth. Each site with rate one refreshes its occupation variable to a filled or to an empty state with probability p ∈ [0, 1] or q = 1 − p respectively, provided that at least one of its nearest neighbours is empty. We study what happens when the evolution does not start from the equilibrium p-Bernoulli mea- sure μ and prove convergence to equilibrium when the vacancy density q is above a proper threshold q ̄ < 1. The convergence is exponential or stretched exponential, depending on the growth of the graph. In particu- lar it is exponential on Zd for d = 1 and stretched exponential for d > 1. The above result holds when the starting measure ν is such that the mean distance between two nearest empty sites is uniformly bounded. Our re- sult can be generalized to other non cooperative models.

FREDRICKSON-ANDERSEN ONE SPIN FACILITATED MODEL OUT OF EQUILIBRIUM

CANCRINI, NICOLETTA;
2013-01-01

Abstract

WeconsidertheFredrickson-Andersenonespinfacilitatedmodel (FA1f) on an infinite connected graph with polynomial growth. Each site with rate one refreshes its occupation variable to a filled or to an empty state with probability p ∈ [0, 1] or q = 1 − p respectively, provided that at least one of its nearest neighbours is empty. We study what happens when the evolution does not start from the equilibrium p-Bernoulli mea- sure μ and prove convergence to equilibrium when the vacancy density q is above a proper threshold q ̄ < 1. The convergence is exponential or stretched exponential, depending on the growth of the graph. In particu- lar it is exponential on Zd for d = 1 and stretched exponential for d > 1. The above result holds when the starting measure ν is such that the mean distance between two nearest empty sites is uniformly bounded. Our re- sult can be generalized to other non cooperative models.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/8881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact