A compactness framework and a convergence theorem for the Lax-Friedrichs scheme and the Godunov scheme applied to the Cauchy problem for a 2 x 2 nonstrictly hyperbolic system of conservation laws are established. The existence of weak solutions is proved using the theory of compensated compactness of Tartar, Murat, DiPerna, and Serre.

COMPACTNESS FRAMEWORK AND CONVERGENCE OF LAX-FRIEDRICHS AND GODUNOV SCHEMES FOR A 2X2 NONSTRICTLY HYERBOLIC SYSTEM OF CONSERVATION-LAWS

RUBINO, BRUNO
1995

Abstract

A compactness framework and a convergence theorem for the Lax-Friedrichs scheme and the Godunov scheme applied to the Cauchy problem for a 2 x 2 nonstrictly hyperbolic system of conservation laws are established. The existence of weak solutions is proved using the theory of compensated compactness of Tartar, Murat, DiPerna, and Serre.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/8889
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact