A compactness framework and a convergence theorem for the Lax-Friedrichs scheme and the Godunov scheme applied to the Cauchy problem for a 2 x 2 nonstrictly hyperbolic system of conservation laws are established. The existence of weak solutions is proved using the theory of compensated compactness of Tartar, Murat, DiPerna, and Serre.
Titolo: | COMPACTNESS FRAMEWORK AND CONVERGENCE OF LAX-FRIEDRICHS AND GODUNOV SCHEMES FOR A 2X2 NONSTRICTLY HYERBOLIC SYSTEM OF CONSERVATION-LAWS |
Autori: | |
Data di pubblicazione: | 1995 |
Rivista: | |
Abstract: | A compactness framework and a convergence theorem for the Lax-Friedrichs scheme and the Godunov scheme applied to the Cauchy problem for a 2 x 2 nonstrictly hyperbolic system of conservation laws are established. The existence of weak solutions is proved using the theory of compensated compactness of Tartar, Murat, DiPerna, and Serre. |
Handle: | http://hdl.handle.net/11697/8889 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.