"In this work, we study the electronic and geometrical properties of the ground state of the Retinal Minimal Model C(5) H(6) NH(2) (+) using the variational Monte Carlo (VMC) method by means of the Jastrow antisymmetrized geminal power (JAGP) wavefunction. A full optimization of all wavefunction parameters, including coefficients, and exponents of the atomic basis, has been achieved, giving converged geometries with a compact and correlated wavefunction. The relaxed geometries of the cis and trans isomers present a pronounced bond length alternation pattern characterized by a CC central double bond slightly shorter than that reported by the CASPT2 structures. The comparison between different basis sets indicates converged values of geometrical parameters, energy differences, and dipole moments even when the smallest wavefunction is used. The compactness of the wavefunction as well as the scalability of VMC optimization algorithms on massively parallel computers opens the way to perform full structural optimizations of conjugated biomolecules of hundreds of electrons by correlated methods like Quantum Monte Carlo."

Quantum Monte Carlo study of the Retinal Minimal Model C5H6NH+2

COCCIA, EMANUELE;GUIDONI, Leonardo
2012-01-01

Abstract

"In this work, we study the electronic and geometrical properties of the ground state of the Retinal Minimal Model C(5) H(6) NH(2) (+) using the variational Monte Carlo (VMC) method by means of the Jastrow antisymmetrized geminal power (JAGP) wavefunction. A full optimization of all wavefunction parameters, including coefficients, and exponents of the atomic basis, has been achieved, giving converged geometries with a compact and correlated wavefunction. The relaxed geometries of the cis and trans isomers present a pronounced bond length alternation pattern characterized by a CC central double bond slightly shorter than that reported by the CASPT2 structures. The comparison between different basis sets indicates converged values of geometrical parameters, energy differences, and dipole moments even when the smallest wavefunction is used. The compactness of the wavefunction as well as the scalability of VMC optimization algorithms on massively parallel computers opens the way to perform full structural optimizations of conjugated biomolecules of hundreds of electrons by correlated methods like Quantum Monte Carlo."
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/89412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact