"We report on a new photodetector fabricated using carbon nanostructures grown on a silicon substrate. This device exhibits low noise, a good conversion efficiency of photons into electrical current and a good signal linearity in a wide range of radiation wavelengths ranging from ultraviolet to infrared at room temperature. The maximum quantum efficiency of 37% at 880 nm has been measured without signal amplification. Such innovative devices can be easily produced on large scales by Chemical Vapour Deposition (CVD) through a relatively inexpensive chemical process, which allows large sensitive areas from a few mm(2) up to hundreds of cm(2) to be covered."

Innovative carbon nanotube-silicon large area photodetector

PASSACANTANDO, MAURIZIO;
2012-01-01

Abstract

"We report on a new photodetector fabricated using carbon nanostructures grown on a silicon substrate. This device exhibits low noise, a good conversion efficiency of photons into electrical current and a good signal linearity in a wide range of radiation wavelengths ranging from ultraviolet to infrared at room temperature. The maximum quantum efficiency of 37% at 880 nm has been measured without signal amplification. Such innovative devices can be easily produced on large scales by Chemical Vapour Deposition (CVD) through a relatively inexpensive chemical process, which allows large sensitive areas from a few mm(2) up to hundreds of cm(2) to be covered."
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/89445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact