INTRODUCTION: High altitude environment represents a fine model to study physiological and pathophysiological effects of oxygen availability on sleep-related erections (SREs). AIM: To describe altitude-dependent effects on quality of SREs in order to estimate the role of hypoxia in erection physiology. METHODS: A healthy 37-year-old male mountain climber underwent a chronic high altitude-related hypoxia experience during the 43 days of the Manaslu expedition (Nepal). SREs were recorded by RigiScan (Timm Medical Technologies, Inc., Eden Prairie, MN, USA) at altitudes ranging from 0 to 5,800 m above sea level. The erection-related parameters assessed were: number, duration, event duration (% of session), event rigidity %, time rigidity %, tumescence and rigidity activated unit, and event tum % > bline (%). MAIN OUTCOMES MEASURES: SREs were recorded by RigiScan at altitudes ranging from 0 to 5,800 m above sea level. RESULTS: Erectile parameters showed an altitude-related reduction during the hypoxic exposure, although all functional alterations were reverted by the return to sea level. CONCLUSIONS: Our case report supports the hypothesis that oxygen availability and delivery could play an important role in the regulation of local penile erection-related mechanisms and that low oxygen levels might be considered an etiological cofactor in erectile dysfunction.

Effects of Hypoxia on Nocturnal Erection Quality: A Case Report from the Manaslu Expedition

FALONE, Stefano;
2011-01-01

Abstract

INTRODUCTION: High altitude environment represents a fine model to study physiological and pathophysiological effects of oxygen availability on sleep-related erections (SREs). AIM: To describe altitude-dependent effects on quality of SREs in order to estimate the role of hypoxia in erection physiology. METHODS: A healthy 37-year-old male mountain climber underwent a chronic high altitude-related hypoxia experience during the 43 days of the Manaslu expedition (Nepal). SREs were recorded by RigiScan (Timm Medical Technologies, Inc., Eden Prairie, MN, USA) at altitudes ranging from 0 to 5,800 m above sea level. The erection-related parameters assessed were: number, duration, event duration (% of session), event rigidity %, time rigidity %, tumescence and rigidity activated unit, and event tum % > bline (%). MAIN OUTCOMES MEASURES: SREs were recorded by RigiScan at altitudes ranging from 0 to 5,800 m above sea level. RESULTS: Erectile parameters showed an altitude-related reduction during the hypoxic exposure, although all functional alterations were reverted by the return to sea level. CONCLUSIONS: Our case report supports the hypothesis that oxygen availability and delivery could play an important role in the regulation of local penile erection-related mechanisms and that low oxygen levels might be considered an etiological cofactor in erectile dysfunction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/9190
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact