Nowadays, fat tissue transplantation is widely used in regenerative and reconstructive surgery. However, a shared method of lipoaspirate handling for ensuring a good quality fat transplant has not yet been established. The study was to identify a method to recover from the lipoaspirate samples the highest number of human viable adipose tissue-derived stem cells (hADSCs) included in stromal vascular fraction (SVF) cells and of adipocytes suitable for transplantation, avoiding an extreme handling. We compared the lipoaspirate spontaneous stratification (10-20-30 min) with the centrifugation technique at different speeds (90-400-1500xg). After each procedure, lipoaspirate was separated into top oily lipid layer, liquid fraction, "middle layer" and bottom layer. We assessed the number of both adipocytes in the middle layer and SVF cells in all layers. The histology of middle layer and the surface phenotype of SVF cells by stemness markers (CD105 + , CD90 + , CD45-) were analyzed as well. The results showed a normal architecture in all conditions except for samples centrifuged at 1500xg. In both methods, the flow cytometry analysis showed that greater number of ADSCs was in middle layer; in the fluid portion and in bottom layer was not revealed significant expression levels of stemness markers. Our findings indicate that spontaneous stratification at 20 min and centrifugation at 400xg are efficient approaches to obtain highly viable ADSCs cells and adipocytes, ensuring a good thickness of lipoaspirate for autologous fat transfer. Since an important aspect of surgery practice consists of gain time, the 400xg centrifugation could be the recommended method when the necessary instrumentation is available. This article is protected by copyright. All rights reserved.

In vitro evaluation of different methods of handling human liposuction aspirate and their effect on adipocytes and adipose derived stem cells

Palumbo, P;CINQUE, BENEDETTA;Lombardi, F;LEOCATA, Pietro;GIULIANI, Maurizio;CIFONE, MARIA GRAZIA
2015-01-01

Abstract

Nowadays, fat tissue transplantation is widely used in regenerative and reconstructive surgery. However, a shared method of lipoaspirate handling for ensuring a good quality fat transplant has not yet been established. The study was to identify a method to recover from the lipoaspirate samples the highest number of human viable adipose tissue-derived stem cells (hADSCs) included in stromal vascular fraction (SVF) cells and of adipocytes suitable for transplantation, avoiding an extreme handling. We compared the lipoaspirate spontaneous stratification (10-20-30 min) with the centrifugation technique at different speeds (90-400-1500xg). After each procedure, lipoaspirate was separated into top oily lipid layer, liquid fraction, "middle layer" and bottom layer. We assessed the number of both adipocytes in the middle layer and SVF cells in all layers. The histology of middle layer and the surface phenotype of SVF cells by stemness markers (CD105 + , CD90 + , CD45-) were analyzed as well. The results showed a normal architecture in all conditions except for samples centrifuged at 1500xg. In both methods, the flow cytometry analysis showed that greater number of ADSCs was in middle layer; in the fluid portion and in bottom layer was not revealed significant expression levels of stemness markers. Our findings indicate that spontaneous stratification at 20 min and centrifugation at 400xg are efficient approaches to obtain highly viable ADSCs cells and adipocytes, ensuring a good thickness of lipoaspirate for autologous fat transfer. Since an important aspect of surgery practice consists of gain time, the 400xg centrifugation could be the recommended method when the necessary instrumentation is available. This article is protected by copyright. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
jcp.24965.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Dominio pubblico
Dimensione 5.89 MB
Formato Adobe PDF
5.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/9678
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 29
social impact