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Abstract

Events in recent years have shown how important it is to monitor the struc-

tural health of existing civil works. Structural Health Monitoring systems

are a useful tool to provide an objective and automatic evaluation of the

state of health of a structure, in order to detect the emergence of anoma-

lies in its behavior. They are also an auxiliary tool in the decision-making

phase for maintenance work or after extraordinary events. The Thesis work

explores the topic of damage detection based on the analysis of subspaces

of dynamical systems matrices.

The aim of the research was to investigate a method for the development

of levels in the damage diagnosis scale, ranging from the identification of

the anomaly to the localization and subsequent assessment of the entity of

the damage occurred.

The study is carried out following two approaches: in the first, damage in-

dices present in the literature are considered, and a newly developed one is

presented. In the second approach, the identification issue is addressed by

introducing the most recent Machine Learning tools: the goals are achieved

through the supervised training of a classifier, with the task of localizing

and quantifying the damage.

In both cases, the methods used are model-driven type, based on simula-

tions of the damage scenarios through Finite Element modeling. The thesis

work therefore aimed to evaluate the effectiveness of the same subspace-

based indices as objective functions in the optimization process related to

the model updating process of the FE model, such that the simulated re-

sponse in subsequent analyses would be as close as possible to the real one.

The findings of the tests, both numerical and experimental, confirm the ef-

fectiveness of both proposed methods, highlighting their shortcomings and

strengths.

The concepts developed were subsequently applied to a case study, repre-

sented by the Basilica of Santa Maria di Collemaggio, in L’Aquila.

In the first stage, the dynamic behavior of the Basilica was investigated,

over the years of monitoring. Subsequently, traditional and Machine Learn-

ing algorithms have been implemented for the purpose of anomaly detec-

tion: the procedure has been performed considering as damaged a case, one

produced after a structural intervention subsequent to the installation of

the monitoring system. The studies on the Basilica showed a complex dy-

namic behavior, strongly influenced by environmental factors: nevertheless,

the implemented algorithms proved to be effective for the defined purpose.
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Sommario

Gli eventi accaduti negli ultimi anni hanno mostrato quanto sia impor-

tante monitorare la salute strutturale delle opere civili esistenti. Un sis-

tema adibito allo Structural Health Monitoring è uno strumento utile per

avere un giudizio obiettivo ed automatico sullo stato di salute di una strut-

tura, al fine di rilevare l’insorgere di anomalie nel suo comportamento. Esso

rappresenta anche uno strumento ausiliare nella fase di decision-making di

interventi di manutenzione o a seguito di eventi straordinari. Il lavoro di

tesi approfondisce il tema dell’identificazione del danno basata sull’analisi

dei sottospazi delle matrici dei sistemi dinamici.

Lo scopo della ricerca è stato quello di analizzare un metodo per lo sviluppo

dei livelli nella scala della diagnosi del danno, che vanno dall’identificazione

dell’anomalia fino alla localizzazione e successiva valutazione dell’entità del

danno verificatosi.

Lo studio è stato svolto seguendo due approcci: nel primo, sono stati con-

siderati indici di danno presenti in letteratura, ed uno di nuova concezione

è stato presentato. Nel secondo approccio, il tema dell’identificazione viene

affrontato introducendo i più recenti strumenti del Machine Learning: gli

scopi vengono raggiunti tramite l’addestarmento supervisionato di un clas-

sificatore, con il compito di localizzare e quantificare il danno.

In entrambi i casi, i metodi utilizzati sono di tipo model-driven, basati

su simulazioni degli scenari di danno tramite modellazione agli Elementi

Finiti. Il lavoro di tesi ha dunque voluto valutare l’efficacia degli stessi in-

dici subspace-based come funzioni obiettivo nel processo di ottimizzazione

legato al processo di model updating del modello FE, in modo che la risposta

simulata nelle successive analisi fosse il più possibile attinente a quella reale.

Quanto emerso dai test, sia numerici che sperimentali, conferma l’efficacia

di entrambi i metodi proposti, evidenziandone carenze e punti di forza.

I concetti sviluppati sono stati successivamente applicati ad un caso di stu-

dio, la Basilica di Santa Maria di Collemaggio, a L’Aquila.

In prima fase, si è determinato il comportamento dinamico della Basilica

nel corso degli anni in cui è stata oggetto di monitoraggio. Successivamente,

sono stati implementati algoritmi tradizionali e di Machine Learning per

scopi di anomaly detection: la procedura è stata eseguita considerando

come danneggiato un caso, prodotto a seguito di un intervento strutturale

successivo all’installazione del sistema di monitoraggio.

Gli studi sulla Basilica hanno evidenziato un comportamento dinamico

complesso, influenzato fortemente dai fattori ambientali: ciononostante,

gli algoritmi implementati si sono dimostrati efficaci allo scopo definito.
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Introduction

Chapter abstract

This chapter is an introduction of the context in which the re-

search activity has been developed.

In this chapter, the reasons that lead to the application of a mon-

itoring system on civil structures are explained, as well as all the

problems related to the procedure.

The role of Damage Detection within the structural monitoring

process is investigated and its fundamental characters are de-

scribed. Field-specific terminology is introduced.

Finally, the motivations that led to the development of the thesis

topic are described and its structure is presented.
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1.1 Introduction

Civil structure are designed to maintain their efficiency in a service life

which is often of 50 or 100 years, depending on the importance of the

structure itself. During this time, they are expected to preserve structural

integrity, if no extreme event occurs.

It has been noticed that, after the period of service or even during their

service life, structures inevitably begin to experience drops in performance,

for example due to:

� degradation phenomena related to exposure to atmospheric agents;

� long-term effects like creep, shrinkage or fatigue;

� unexpected local damages caused by accidents

These hazards may be the causes of structural damages or even collapse.

The collapse of a structure can have catastrophic effects, not only in terms

of economic or human lives losses, but also for the related social and psy-

chological consequences.

In particular, civil structures like bridges are of strategic importance for

the transport network, allowing the distribution of goods and people even

in more remote areas. Structures like these are exposed to excitation of

both environmental and anthropological nature, as well as to phenomena

of degradation.

Nowadays, situation sees a growing traffic demand, while on the other hand,

the infrastructures are becoming dated, increasing their risk of failure. The

consequences of failure phenomena have repercussions on the urban, social,

and economic network of the area and, depending on the importance of the

work, also on the economy of the neighbouring areas. Inconveniences affect

both the community that directly inhabit the area, and those who use the

network for the transit of goods and services.

In February 2019, in a study conducted by the Italian ”Osservatorio statis-

tico dei consulenti del lavoro” entitled ”Gli effetti del crollo del ponte Morandi

su economia, occupazione e integrazione sociale” reporting the results of the

main surveys published in the previous months, it was highlighted that in

the two months after the collapse of the Ponte Morandi in Genova, the
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economic damage to the transport in transit for the Genoa hub exceeded

116 million euros (the study is available at the site

https://www.consulentidellavoro.it/index.php/component/k2/item/10864).

The lack of a direct connection between eastern and western areas of the

city led to an extension of over 100 km to cross the city, increasing average

travel times of about an hour due to traffic congestion, and creating delays

for heavy vehicles entering and leaving the port of the city (estimated about

2 million euros per day). In the same period, there was an overall value of

the losses reported by the companies of 422 million euros, with about 85%

concerning indirect damages related to the interruption of activities.

From a social point of view, the study instead pointed out that the collapse

of the bridge had led, within the municipal area of Genova, to a contraction

in the demand for labour of 22,5% in the period August-December 2018,

with a clear change in the trend compared to the months preceding the

event, which had instead recorded an increase.

In a more general discourse, the consequences of an event such as the col-

lapse of a bridge on an economic network is related to direct or indirect

losses, including:

� costs of repair or demolition/reconstruction of a bridge, with cost of

material, cost of labour;

� costs due to the taking of temporary measures for emergency man-

agement;

� loss of equipment;

� losses incurred by the users, linked to the inevitable delays that are

created, combined with additional costs due to maintenance, travel

times or accidents

A structural monitoring system therefore represents an auxiliary tool in as-

sessing the health of structure, helping to detect damage in its early state

and avoiding economic losses far more serious than the cost of installing

the system itself.

Furthermore, the information coming from a system is helpful in the decision-

making and prioritization phase of any structural interventions.
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For this reason, Structural Health Monitoring (SHM) and damage detection

received considerable attention as research topic in the last decades.

1.2 Damage detection methods

In the most general terms, damage can be defined as a change introduced

into a system that adversely affects its current or future performance (Far-

rar and Worden (2007)).

Damage is something that initially appears at a microscopic level and then

branches out in the surrounding area, until can be visible to sight. If no

measure is taken in this early state, damage accumulate and a local collapse

can be reached.

The time interval in which the performance decays depends on the type

of phenomena encountered: for example, fatigue or corrosion have conse-

quences that take place in a long time-frame (years), while extraordinary

events can cause a sudden collapse. Considering only degradation phenom-

ena, it is clear that these are sometimes not visually identifiable, if not when

they are in an advanced form. Furthermore, some areas of the structure

subject to damage could not be accessible to visual inspections.

In addition to the difficulty of identifying the area in which the damage

occurs, visual inspections defect is that often they are subjective tools: the

assessments of the structural health are at the discretion of the technician

who carries them out.

In general, it would therefore be preferable to identify the damage com-

bining an automatic tool with visual inspections, in order to require less

manpower and more easiness in carrying out tests in risky or difficult to

access environments. This, combined with the need of having an objective

evaluation tool, has therefore pushed research towards the development of

monitoring systems and fault detection techniques.

Structural Health Monitoring (SHM) is an interdisciplinary subject that

incorporates knowledge and experience coming from civil, mechanical, con-

trol and computer engineering. The aim of SHM is the monitoring of the

health of a structure, in order to be able to highlight any deficiencies formed

over time or to report sudden changes in structural behavior after an un-

usual event (i.e. post-earthquake damage assessment).
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A system installed in a structure gives information on the state of the same

after an event, helping in the decision-making phase: it could be able to

guarantee a prompt reoccupation of a building or an immediate use of an

infrastructure, which would mitigate the enormous losses caused by the

event.

A monitoring system is able to give both information relating to particular

areas of the structure and on its overall behavior.

Two types can be distinguished: static and dynamic monitoring. Static

monitoring is concerned with quantities mainly related to static, such as

tensions or deformations, which give information limited to the area of

application of the single sensor; dynamic monitoring, also called vibration-

based monitoring, provides information on the dynamic response of the

structure.

This response is generally transmitted by series of connected sensors, through

which it is possible to have an estimate of the response at a global level.

The quantities analyzed can be the modal parameters obtained from the

time histories or the time series themselves.

Although only techniques of the first type actually foresee modal identifi-

cation, the techniques and processes mentioned are all associated with the

field of Operational Modal Analysis (OMA), indicating the approach of ex-

perimental knowledge towards the existing building.

A damage identification system consists of a hardware part and a software

part. The hardware part is represented by the sensors and the acquisition

control unit. Sensors are transducers, they transform physical quantity

into electrical quantity (typically a voltage); they can include accelerome-

ters, velocimeters, stain-gauges or optical fibres. An accurate choice of the

position of the sensors along the structure is essential to determine with

precision the behavior of the structure itself.

The acquisition control unit is an analog-to-digital converter: the voltage

signal coming from the transducers is transformed into a digital sequence

of numbers to be subsequently read by the machine.

Once generated and digitalised, the signal is read by the software compo-

nent of the system, which can be divided into two parts. The first is the

acquisition software, in which the signal acquisition and possible data pre-
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processing actions are carried out, the second is the part strictly linked to

data processing.

One of the SHM axioms states that the identification of the damage must

be extrapolated from the comparison between two different states of the

system, in which the first represents the initial state in which the structure

is concerned, generally considered undamaged.

The quantities through which the comparison between two states is made

are called features. The features must be chosen among the quantities ca-

pable of discriminating system changes: for civil applications, generally the

most examined are the modal parameters (natural pulsations, modal forms

or damping) or indicators extracted from the time series.

Within the field of SHM, a large part of the literature has focused on the

study of features and the development of statistical models for damage de-

tection.

Depending on the chosen features, techniques can be divided in applied in

the frequency domain, in the time domain, or mixed frequency-time.

In recent decades, technological advancement and the relative increase

in computational power have led to the development of a new science: com-

puter science, linked to Artificial Intelligence (AI). Within the vast area of

AI, the Machine Learning (ML) is the science of developing intelligent al-

gorithms capable of acquiring knowledge automatically from the available

data (Alpaydin (2020)).

Artificial intelligence is a generic term and refers to systems or machines

that mimic human intelligence: ML is a subset of AI, that is concerned with

creating systems that learn or improve performance based on the data they

use.

Over time different ML tools have been utilized to develop a wide array

of parametric and non-parametric vibration-based damage detection al-

gorithm for civil structures, including Artificial Neural Networks (ANN),

Convolutional Neural Networks (CNN) and more (Avci et al. (2021)).

As previously said, the purpose of ML is to make the AI learn the possible

relationships between the features extracted from the data and the state of

the structure.
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If such a relationship exists, but is unknown, the learning problem is to

estimate the function that describes this relationship using data acquired

from the test structure, called training data. (Farrar and Worden (2012)).

These algorithms are therefore divided on the basis of the data given as

input during the learning process: if the data are already associated with a

certain state - each state represents a class with its own label - we speak of

supervised learning. If the data has no label, the purpose of learning can

be to try identifying intrinsic relationships between them: in this case the

learning is unsupervised. Usually, through unsupervised learning it is not

possible to discriminate between classes, but it is possible to build a model

representing a single class and then test if new data belongs to it. Algo-

rithms of this type operate the novelty - or anomaly - detection:through

them it is possible to detect the occurrence of a damage.

1.3 Aims and motivations

The thesis aims to deepen the theme relating to damage detection. After

examining the techniques described in the literature, the work focuses in

particular on the use of subspace-based damage indicators as damage fea-

tures.

These types of indicators are extracted directly from the acquired time

history - time domain techniques - and have been used as features for the

identification, localization and quantification of damage in numerous works.

The choice of non-parametric indicators is dictated by the need to go be-

yond the step of modal identification, creating a link as direct as possible

between the acquired data and the purpose of monitoring. Although the

transition to the frequency domain allows a considerable reduction in the

size of the data to be stored, modal identification is very often a step that is

difficult to implement automatically, especially when interpreting the pro-

cessed data.

The choice of non-parametric techniques therefore allows an easier imple-

mentation of the process, especially if applied to structures of a certain

complexity.

Using damage indices often means estimating the state of a structure re-

ferring to a scalar quantity: one of the purposes of the thesis work is to
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introduce a multidimensional damage indicator - a matrix or array - which

can more accurately describe the state of a structure and better distinguish

different damaged states.

Damage indices represent an efficient tool for identifying damage; however,

from the bibliographic research it has been noted that, to date, the research

has not yet pushed itself towards the implementation of ML algorithms that

foresee them as discriminating features.

The aim of the work was therefore to use them in the development of ML

algorithms, with applications that concern both unsupervised and super-

vised learning.

The thesis work is structured as follows:

� Chapter 2 provides an overview of the state of the art, useful for

placing the work within the vast theme of damage detection;

� Chapter 3 and 4 present the results of the activities carried out for

testing the assumed damage indices and the developed ML algo-

rithms. The tests were carried out with a model-driven approach,

and a steel beam was used as test-structure.

The purpose of Ch.3 was that of calibrate the parameters of the FE

model used for simulation, in order to simulate the dynamic behavior

of the real test-structure in the best possible way.

In Ch.4, numerical and experimental tests were performed to assess

the performance of the selected subspace-based indices as damage

features to be used in damage localization and quantification;

� Ch.5 and Ch.6 show the application of the developed methods to a

monitoring system installed in the Basilica of Santa Maria di Collemag-

gio in L’Aquila, Italy.

In Ch.5, results from the three-years monitoring data from 2018 to

2021 are discussed in terms of long-term monitoring.

Ch.6 introduces an anomaly detection technique, based on the use of

the subspace matrices as damage feature. Anomaly detection tests

are carried out following traditional methods and a Auto-associative

neural network algorithm;

� The concluding Chapter summarizes in a critical way what is reported
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in the work and opens to future developments.
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State of the art

Chapter abstract

Several methodologies have been developed for structural mon-

itoring and damage detection tasks in the last decades. The aim

has been to identify the onset of degradation or damage phenom-

ena in civil works. Among the studied approaches, the vibration-

based ones have attracted much interest: these approaches allow

to understand the global behavior of the structure, and identify

any unexpected changes, in a non-invasive way.

Literature approaches allowed the study of different levels of

deepening of damage detection process, from the anomaly detec-

tion up to the estimation of the residual life of a structure: from

these studies, several damage sensitive parameters have emerged.

Meanwhile, the field of Artificial Intelligence has been increas-

ingly growing, also in the field of civil engineering. Machine

Learning algorithms seem to represent a useful tool to deal with

typical Structural Health Monitoring problems, for all stages of

damage detection.

In this chapter, the state of the art regarding the issues explored

in the thesis work is presented: the highlights of traditional meth-

ods are described and those related to Machine Learning are pro-

vided. Particular attention is given to vibration-based methods.
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2.1 Introduction

The theme of Damage Detection (DD) has fascinated research in recent

decades. The need that has pushed in this direction is due to the awareness

that the structures, during their life, are subject to aging or degradation

phenomena. These phenomena could be the cause of the loss of structural

performance, and lead to the inadequacy of the structure itself to perform

the required service functions.

Over time, structural health diagnosis has been increasingly carried out by

preferring non-destructive tests, in order not to compromise the integrity

of the work.

The first attempts to diagnose structural health can be labeled as local

methods, because they were in search of anomalies focusing just on re-

stricted areas of the entire structure under analysis. An example of this

techniques are X-Rays tests, Ultrasonic tests, Laser testing methods, In-

frared termography, ground penetrating radar, acoustic emissions and other

numerous methods ( Rens et al. (1997), McCann and Forde (2001) and

Dwivedi et al. (2018)).

In any case, non-destructive local techniques require that the damaged area

is known or that the possible damage area can be assumed a priori, which

is a condition that hardly occurs if you are analyzing particularly large or

complex structures.

Moreover, another discriminating factor is represented by the difficulty that

sometimes occurs in reaching the point of the test: this, together with the

aforementioned problems, makes non-destructive tests unsuitable for char-

acterizing the behavior of the entire structure, but only of a limited portion

of it.

The need to have a tool for controlling the global behavior of the system

has pushed research towards so-called vibration-based (VB) methods.

Through a network of sensors suitably arranged throughout the structure,

it is possible to establish its behavior by analyzing parameters considered

significant, related to the physical characteristics of the structure, such as

stiffness, mass and damping. When damage occurs, the structural param-

eters change, and the response of the structure with them.
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Based on this assumption, VB damage recognition techniques can be ar-

ticulated according to the levels of damage diagnosis process introduced in

Rytter (1993) and consolidated over time:

1. Detection: the method gives a qualitative indication that damage

might be present in the structure;

2. Localization: the method gives information about the probable loca-

tion of the damage too;

3. Assessment: the method gives information about the size of the dam-

age;

4. Prognosis: the method gives information about the actual safety of

the structure given a certain damage state. In other works, this phase

is also called prognosis.

Modern times and technologies led to the addition of another level (Park

et al. (2001)):

5. Healing: smart structures, able of self-monitoring and self-healing.

Following these levels, many VB techniques have been developed over time.

For them, the literature presents interesting reviews: in Doebling et al.

(1998) a list of works up to the 2000s is presented. Sohn et al. (2003) and

Carden and Fanning (2004) have updated the list for subsequent years,

while in Yan et al. (2007) we find an introduction to works that use mod-

ern signal processing techniques, with application to artificial intelligence.

There are also two more recent review works, Kong et al. (2017) and Avci

et al. (2021): in these, different aspects are analyzed in depth with respect

to the previous works.

In particular Kong et al. (2017), after examining the techniques that iden-

tify the levels from one to three of the Rytter’s scale, focuses more on the

techniques that have studied level 4, the one linked to the estimate of the

remaining service life of the structures and on decision making for mainte-

nance, that is the ultimate goal of a SHM system.

The second work, by Avci et al. (2021), represents instead a useful tool

for those who approach the DD problem, since, in addition to investigat-

ing traditional techniques, it focuses on those involving the use of Machine
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Learning.

This Chapter shows some VB techniques, from the well-established ones to

the more recent ML algorithms.

2.2 Vibration-based damage detection methods

Vibration-based methods (VB) represent the techniques through which the

global behavior of the structure is estimated.

As already mentioned in the introduction, these methods are preferred to

local ones when focusing on the knowledge of the structural behavior at the

global level., with the aim of investigating the cause of a possible change

in structural behavior.

If some variation sare recorded, the causes can be investigated both by local

methods and by applying techniques that deepen levels 2 and 3 of Rytter’s

scale.

Based on the information extracted from the monitoring system and pro-

cessed in the post-processing phase, the VB methods can be divided into

parametric and non-parametric: it is considered appropriate to deepen this

difference in order to illustrate the positioning of the thesis work in the

literature sector.

2.2.1 Parametric methods

Parametric techniques are those in which the damage features are extracted

from the analysis of the parameters of the structure. These parameters are

essentially the mass, stiffness and modal parameters - frequencies, shapes

and modal damping - whose changes are associated to the change in the

state of the structure.

In this perspective, and according to what is supported by one of the fun-

damental axioms of the SHM - for further information, see Worden et al.

(2007) - the changes found between two states, the reference and the cur-

rent one, can be interpreted as indicators of a possible structural damage.

In this section, only output-only techinques has been investigated, due to

the difficulties of carrying out input-output tests on large structures such

as those usually monitored.
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The literature is rich in output-only techniques used for damage detection:

from pick-piking of natural frequencies to auto and cross-spectral densities,

up to the Stochastic Subspace Identification (SSI) technique (Deraemaeker

et al. (2008)) or the NExT-ERA algorithm, Eigensystem Realization Algo-

rithm (ERA), when applied with the natural excitation technique (NExT).

The extracted modal parameters are subsequently used for the DD. While

the first studies focused directly on these parameters, subsequent researches

looked for features deriving from them, demonstrating of having more sen-

sitivity with respect to changes due to damage.

An example is the analysis of possible changes in the modal shape curva-

ture, proposed by Pandey et al. (1991), particularly suitable for structures

that exhibit a flexural behavior, as shown in Wahab and De Roeck (1999)

and in Dilena and Morassi (2011).

Modal shapes, togheter with natural frequencies, have been used in Toksoy

and Aktan (1994) and Catbas et al. (2006) to reconstruct the flexibility

matrix of a bridge.

The Interpolation Damage Detection Method (IDDM) for damage localiza-

tion proposed by Limongelli (2010), has the quality of being able to exploit

the information coming from the entire frequency range considered, for the

purpose of damage location.

In the end, mention is made of the study of Modal Strain Energy as a dis-

criminating feature of damage (Stubbs et al. (1995)), or the possibility of

using Operational Modal Shapes (Schwarz and Richardson (1999)).

2.2.2 Non-parametric methods

Although in some cases the features derived from parametric techniques

have been widely used, their effectiveness is often limited to particular ap-

plications.

For this reason, after initially focusing on modal features, over time the

research has shifted its attention to methods defined as non-parametric.

Unlike the previous ones, they directly analyze time data to extract fea-

tures not strictly related to physical properties of the structure.

In time series-based methods typically data recorded are fitted using re-

gression models, through which parameters sensitive to behavioral changes
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due to damage (and preferably insensitive to environmental or operational

variations) are subsequently extracted.

Approaches of this type generally make use of Autoregressive (AR) models

or their variants, e.g. ARX and ARMA models. Usually, these types of

models take into account the uncertainties by considering an error variable

within the model equations, assumed to have a zero-mean normal distribu-

tion.

As reported in Hou and Xia (2021) - to which refer for an in-depth analysis

of the non-parametric techniques developed in the last decade - statistical

time series methods are therefore characterized by three steps: random ex-

citation and/or response signals, statistical time series model building and

statistical decision making for damage diagnosis.

The decision making is performed by comparing the variation of the chosen

damage features with respect to a threshold value representing the reference

- undamaged - state. Often, this comparison is made with the use of tools

typical of the statistic science: for example, in many works Mahalanobis

squared distance has been applied (Mahalanobis (1936)).

Since the beginning of the 2000s, some scholars have studied the damage

detection problem by formulating indices based on the analysis of subspaces

matrices of the dynamic system.

In Basseville et al. (2000) the authors showed how suspace-based methods

used for modal identification in SSI techniques could also be used as dam-

age detection methods, introducing the so called Local approach (Le Cam

(1956).

Other scholars have developed subspace-based damage indices (Yan and

Golinval (2006)) and investigated the variability of these with varying en-

vironmental effects (Döhler et al. (2014)). In this last approach, a χ2-test

is performed on a residual function addressed as robust to environmental

effect.

In a recent work by Gres et al. (2017a), the Squared Mahalanobis distance

calculated between the indices derived from the subspace analysis is used

to preform anomaly detection on a real infrastructure.

The SSI technique and the subspace-based damage detection will be ex-

plored in Ch.3, since the topics covered in this thesis work is based on them.
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2.3 Machine learning applications for vibration-

based damage detection

Structural damage identification can be treated as a Pattern Recognition

problem (Farrar and Worden (2012)).

The idea behind Pattern Recognition is the development of algorithms ca-

pable of recognizing between the different states of a system.

In PR problems, attributable to classification, the data within a set are

sorted according to a scheme Class-Label; the objective is to learn a law

that predicts the label once assigned the values present in the class.

In particular, the class represents a group of information, commonly called

attributes (in our case in particular, they could be the type, location or ex-

tent of damage) that characterize a data set. The label is a value, usually

numeric, which identifies the class, distinguishing it from the others and

allowing the classification.

When a damage occurs, the validity of a technique based on PR lies in its

capacity to recognize the correct class label to which that damage belongs.

Focusing on this process, it appears clear that the algorithm must have a

priori knowledge of which data come from one state rather than another, in

order to be able to associate them in a correct and univocal way: in other

words, systems of this type need a diagnostic training phase before being

tested.

The training phase is the first step of developing an ML algorithm, and is

critical to the success of the process. The modalities by which the training

phase is carried out lead to a distinction between the two great training

classes typical of ML: supervised learning and unsupervised learning.

In supervised learning a neural network (NN) is allowed to learn through

examples. During the training phase, the network is supplied with already-

classified data, in such a quantity as to allow the recognition of the classes

in the subsequent testing and operative phases: algorithms of this type

allow to approach all levels of damage detection scale.

On the other hand, when DD is pursued according to this method, there is
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the need for a considerable amount of data and, most of all, of an a priori

knowledge of all possible damage scenarios.

Data relating to the damaged states can be obtained through experimental

activities or from numerical simulations. The latter case is certainly the

representative one of civil engineering applications, since it is impossible

to standard reproduction of a structure in order to perform experimental

tests procuring damage.

Civil structures are characterized by a strong uniqueness, complexity and

extension: if performing supervised learning, damage scenarios must be

simulated from numerical models. In this case, the approach to model de-

tection is said to be model-driven.

In the case of supervised learning based on simulated data, the numerical

model must necessarily be as pertinent as possible to the behavior of the

real structure.

For complex structures, it is difficult to achieve this goal, and it is even

more difficult to be able to simulate the damage adequately: this fact is

reflected in the difficulty of characterizing the damaged states for Pattern

Recognition.

Algorithms that are part of unsupervised learning do not require the in-

troduction of already-labeled classes in the training phase, but they are

able to independently establish relationships between data: it makes them

more inclined to the study of complex structures through data-driven ap-

proaches.

On the other hand, they only allow to reach the first levels of damage detec-

tion - identification and, sometimes, localization - just because the trained

network is not given useful information about the classification itself. For

this reason, the techniques are often referred to as novelty or anomaly de-

tection techniques (Bishop (1994)).

It is worth noticing that both supervised and unsupervised learning al-

gorithms can be applied to both parametric and non-parametric damage

detection methods.
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2.3.1 Supervised learning alghoritms

The concept of supervised learning developed at the same time as the birth

of the neural networks themselves, around the 1980s (Adeli and Yeh (1989)).

The purpose was to create a model that would interpret input and output

data, managing to grasp relationships and dependencies, even of a non-

linear nature and difficult to estimate otherwise.

Over time, many algorithms have spread, each developed to perform dif-

ferent functions. These functions can be summarized in two broad fields:

classification and regression.

In the classification problem, the network processes the input data and out-

puts a discrete number of class labels. Essentially, classification algorithms

address the Pattern Recognition problem, and are the most common in

damage detection: they can be useful to give a probability of belonging to

a given class, and allow to reach up to level 3 of the damage classification

scale by Rytter.

In regression algorithms, the model outputs are continuous variables. Al-

gorithms are trained to understand the relationship between independent

variables and an outcome or dependent variable. The model can then be

leveraged to predict the outcome of new and unseen input data, or to fill a

gap in missing data.

The use of regression algorithms becomes fundamental when analyzing level

4 of the damage detection scale, the one referred to prognosis. Although

the aforementioned autoregressive models and variants are also used for the

regression, it must be noticed that they perform a linear regression on the

vibrational data, while very often data comes from systems characterized

by non-linearity. The architectures of a neural network are by their na-

ture built on non-linear bonds, and this makes them particularly suitable

for approaching regression problems, which are also generally non-linear in

nature.

In the thesis work, it has been preferred to investigate only the techniques

belonging to the first category, since the prognosis phase was not addressed.

For classification purpose, the most common algorithms are Artificial Neu-

ral Networks (ANNs), Support Vector Machine (SVM) and Random Forest

(RF) based algorithms.
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Research in the field of SHM has placed a great attention on ANNs, due

to their ability in creating models that represent the relationships between

the features extracted from the vibrational data and the parameters of the

structural system.

Algorithms such as Multilayer Perceptron (MLP), FeedForward, Recurrent

or Cellular Networks extract parametric or non-parametric features and

estimate structural integrity. Examples of the use of ANNs for damage

detection can be found in Pawar et al. (2007), Mehrjoo et al. (2008), Dack-

ermann et al. (2013), while examples of ANN applied to nonparametric

methods are in de Lautour and Omenzetter (2010) or in Figueiredo et al.

(2011).

It is worth underlining that on the basis of ANN algorithms, more recently

Deep Learning algorithms have been developed, such as Convolutional Neu-

ral Networks (CNNs): they are applied to automatically process any type

of data, but particularly preferred for working with images.

These networks were used, for example, in Abdeljaber et al. (2017), in

which they are trained to learn directly from accelerometric data produced

by random excitations. In Bao et al. (2019), the recorded time series are

transformed into images and anomalies in the data series from different

sensors positioned on a bridge are investigated.

Pathirage et al. (2018) have studied the use of Autoencoders in order to

identify structural damage from vibrations.

An interesting review work, which deepens the application of Deep Learn-

ing alghorithms to damage detection problem, can be found in Ye et al.

(2019).

2.3.2 Unsupervised learning alghoritms

As mentioned in the introduction, unsupervised learning techniques require

the networks to be trained just from the reference state of the structure,

without providing the class labels for the diagnosis of damage; for this rea-

son they are particularly used for the first level of damage detection, the

novelty - or anomaly - detection.

The trained predictive model is used to evaluate the structural conditions

when a new registration is made. If the difference between the features
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extracted from the current data and those predicted by the model exceed

a threshold, the state is considered as a deviation from the distribution of

the usual condition of the structure; an anomaly that could be symptom of

damage.

Among the most used unsupervised learning techniques are the Self Orga-

nizing Map, Restricted and Deep Boltzmann machine, and deep convolu-

tional neural networks.

Avci and Abdeljaber (2016) proposed an unsupervised damage detection al-

gorithm based on self-organizing maps (SOM) for global structural damage

detection. In the proposed algorithm, SOMs are used to extract damage

indices from the random acceleration response of the monitored structure

in the time domain.

Rafiei and Adeli (2018) used an unsupervised deep Boltzmann machine to

extract features from the frequency domain of the ambient vibration sig-

nals. A probability density function is used to create a structural health

index (SHI) to verify the insurgence of damage both globally and locally.

In Cha et al. (2017), a CNN Deep Learning network for detecting cracks

in concrete in one artifact was used. By providing the network with a

sample of about 40k images without calculating the defect features, the

vision-based algorithm is able to discriminate the injured states.

2.4 Conclusions

This Chapter briefed on the techniques developed for the vibration-based

damage detection problem.

Always taking into account the definition of the four levels of the damage

characterization process introduced by Rytter, first of all parametric and

non-parametric techniques have been distinguished. In parametric tech-

niques, the damage features are extracted from quantities attributable to

the physical characteristics of the structure, such as modal parameters.

First approaches to the problem attempted to correlate the damage directly

to the variation of the modal parameters themselves, while over time, fea-

tures more complex and more sensitive to damage have been derived from

them.

The features extraction process in the case of non-parametric techniques,
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on the other hand, requires the acquired time series to be directly inter-

preted: this is generally done by implementing autoregressive models, and

evaluating the change in the coefficients as a function of the damage caused.

With the technological advancement of the last decades, Machine Learning

algorithms have become accessible to all users, promoting their development

even in areas not directly involved in the field of information technology,

such as SHM. Algorithms based on Machine Learning before, and on Deep

Learning for about ten years, allow to achieve good results in damage de-

tection and characterization. This is due to the fact that through a neural

network it is possible to create models with non-linear relationships, which

is well suited to the trends over time of the typical parameters of structural

problems.

The most common algorithms were therefore introduced, ranging from the

field of Supervised Learning, in which the model is trained with data already

classified in classes, to that of Unsupervised Learning, in which unlabeled

data are delivered to the network.
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System identification with

subspace-based indicators

Chapter abstract

Damage detection methods present in literature can be distin-

guished in two categories: data-driven methods and model-driven

methods. The latter are based on the implementation of a nu-

merical model through which damage scenarios are simulated: in

this way, they allow to study damage detection levels 2 and 3

in Rytter’s scale, related to the localization and quantification of

the damage, respectively.

However, it is necessary for the numerical model to simulate a

response as much pertinent as possible to that produced from the

real structure: this is the reason why the methods that use this

type of approach often involve the calibration of the parameters

of the numerical model as a preliminary phase of the process.

This procedure is also called model updating, or system identifi-

cation procedure.

In this chapter, indices based on the analysis of subspaces of a

dynamical system are presented. They are tested as objective

functions in a model updating process aimed at determining the

physical parameters to associate to an FE model of a laboratory

test structure. Both simulated and measured vibration data are

used to validate the effectiveness and the accuracy of the ap-

proach.

The tests showed that the selected damage indices are well suited

to be used as objective functions for the model updating task.

They also showed higher sensitivity than other parameters, such

as modal parameters.

22



3.1 Introduction

The objective of this thesis work is to develop a damage detection method

for diagnosis of the health status of a structure, identifying, locating and

giving an estimate of the extent of damage.

As said before, data-driven approaches often allow to perform only the

novelty detection level; for this reason, many methods are based on the

model-driven approach.

Developing a numerical model it is possible to simulate the damage scenar-

ios that may occur in a structure, which is impossible to do experimentally,

given the non-reproducibility of civil structures.

In this work, numerical analyses have been carried out on an Finite Ele-

ments model, to simulate the damage scenarios to be compared with the

one subsequently produced at experimental level.

The comparison between simulated and experimental data, in terms of sub-

space indicators, has led to assess the effectiveness of the proposed method.

Reasoning with a model-driven method, a preliminary step to the real dam-

age detection phase is necessary: that of model updating.

The FE model must be calibrated, so that the simulated response is as

close as possible to the real one with which it will be compared.

The model updating generally is based on the definition of an objective

function to be minimized. It is therefore a process of optimization, in which

the cost function varies depending on the parameters - generally physical

quantities - related to the structural behavior.

In the thesis work, the effectiveness of damage indicators as cost functions

to be minimized has been evaluated. In this case, the damage is fictitious,

it is coinceved as the difference between the dynamic behavior of the real

structure an the one simulated numerically. Therefore, the index tends to

zero if there is resemblance between the two behaviors.

The parameters for which the minimal value of the function is reached, is

considered to represent the real ones: this type of problem is also referred

as a system identification problem.
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3.2 Sub-spaced based methods theoretical back-

ground

Under the main assumption that a structure can be studied as a linear

time-invariant dynamical system, it is possible to write the equations that

govern its behavior:

Mz̈(t) + Cż(t) +Kz(t) = v(t) (3.1)

with M,C,K ∈ Rmxm being the mass, damping and stiffness matrices,

respectively; z(t) ∈ Rm is the vector representing the displacement of each

DOFs, and v(t) ∈ Rm is the vector of the external excitation, with m being

the number of degrees of freedom of the system.

Taking into account that experimental tests are carried out with sensors

acquiring at discrete time instants t = kτ (1/τ is the sampling rate), the

dynamics of the system can be written also by its discrete-time state-space:

xk+1 = Axk +Buk + vk

yk = Cxk +Duk + wk
(3.2)

with the states xk = [z(kτ) ż(kτ)] ∈ Rm, the observed inputs uk ∈ Rm,

the outputs yk ∈ Rr, and the unobserved input and output disturbances vk

and wk.

Matrix

A = exp

 0 I

−M−1K −M−1C

 τ
 ∈ Rnxn (3.3)

is the state transition matrix, and

C =
[
Ld − LaM−1K Lv −M−1C

]
∈ Rrxn

is the observability matrix. In the equations, r represents the number of

DOFs acquired by sensors, n = 2m is the system order, matrices Ld, Lv,

La ∈ [0, 1]rxm are the output location matrices for displacements, velocities

and accelerations, respectively.

Often, in the context of Operational Modal Analysis, the input excitation
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is unknown. For this reason, the assumption is made that the response of

the structure is due only to the two stochastic processes vk and wk. Eq.3.2

is simplified:

xk+1 = Axk + vk

yk = Cxk + wk
(3.4)

Both the noises are immeasurable, but they are assumed to be zero mean,

stationary white noises, with constant covariance matrix Q = E(vkv
T
k )

def
=

Qδ(k− k′), where E (·) denotes the expectation operator. The assumption

of white noise is a fundamental base for the SSI process (Van Overschee

and De Moor (1996)).

Most of all the Stochastic subspace-based identification algorithms - see

for example Peeters and De Roeck (1999) - deals with the identification

of matrices A and C after processing a matrix H, called subspace matrix,

built from the output data: from matrix A the modal parameters are then

obtained.

The two most applied algorithms for evaluating subspace matrix H are

known as Covariance-Driven SSI (SSI-Cov) and Data-Driven SSI (SSI-

Data).

In the first method, the subspace matrix is built evaluating the output cor-

relations matrices Λi
def
= E(yky

T
k−i) between the output data (the notation

is taken from Yan and Golinval (2006))

Hp,q
def
=


Λ1 Λ2 . . . Λq

Λ2 Λ3 . . . Λq+1

...
...

. . .
...

Λp+1 Λp+2 . . . Λp+q


def
= Hank(Λi) (3.5)

with q ≥ p user-defined parameters. Using measured data (yk)k=1,....,n a

consistent estimate of Ĥp,q is obtained from empirical output covariances

estimated from a set of N outputs samples

Λi = E(yky
T
k−i) =

1

N − i

N∑
k=i+1

yky
T
k−i
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In the SSI-Data algorithm the Hankel matrix is constructed directly from

the measured data.

Y1,2i
def
=



y1 y2 . . . yj

. . . . . . . . . . . .

yi yi+1 . . . yi+j−1

yi+1 yi+2 . . . yi+j

. . . . . . . . . . . .

y2i y2i+1 . . . y2i+j−1


=

Yp
Yf

 (3.6)

where 2i is a user-defined number of rows, i is often called time lag and j

the number of column, which in practice is taken equal to j = N − 2i+ 1.

The Hankel matrix is split into a ”past” and a ”future” matrix, each one

having i rows.

Then, it is possible to obtain the subspace matrix Ĥ1,2i from the product

(Benveniste and Mevel (2007))

Ĥ1,2i =
1

j
YfY

T
p (3.7)

Once defined Ĥp,q,the state matrix A can be traced following various ap-

proaches: the one described here is the one implemented in the analyses

presented in Ch.5. It involves solving the problem by exploiting the shift

invariance property of the observability matrix.

Given Hp,q, factorization can be made

Hp,q = WOpZq (3.8)

allowing to extrapolate the observability matrix

Op
def
=


C

CA
...

CAp

 ∈ Rpr×n (3.9)

The matrixW is the weight matrix, which depends on the chosen algorithm:

it is usually taken equal to the identity matrix.

The observation matrix C is therefore computed from the first block-row
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of the observability matrix, while the matrix A is estimated by exploiting

the shift structure of the observability matrix.

O↑pA = O↓p (3.10)

where the terms

O↑p
def
=


C

CA
...

CAp

 , O↓p
def
=


CA

CA2

...

CAp+1


are obtained from Op by removing the last and first block-row, respectively.

Inverting Eq.3.10, matrix A is obtained:

A = O↑p
+
O↓p (3.11)

Usually, is practice to reach an estimate of the observability matrix by first

doing a truncation at the model order n, performing a Singular Values De-

composition of the subspace matrix.

Ĥp,q =
[
Û1 U0

]∆̂1 0

0 ∆̂0

V̂ T
1

V̂ T
0

 (3.12)

Comparing also with Eq.3.8, considering the first non-zero singular values

contained in ∆̂1 an estimate of the observability matrix can be obtained

Ôp = Ŵ−1Û1∆̂
1/2
1 (3.13)

progressively tracing back to A and C.

3.3 Damage detection

It has been described how to find the observation and state matrices imple-

menting SSI algorithms. Instead, the damage detection techniques studies

take place directly from the definition of the subspace matrix, and this is

why they are called subspace-based damage detection methods.

The concept behind damage detection is that any damage corresponds to
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a change in the matrices that govern the dynamic behavior of Eq. 3.1.

All the matrices described in the previous paragraph implicitly depend,

among other things, also on the above mentioned matrices: therefore the

change of behaviour following damage can be studied through the elabora-

tion of the data acquired by the sensors.

Thus, the methods investigated involve a comparison between data acquired

from a state considered undamaged - called reference - and data recorded

in the current state, or actual.

Any damage diagnosis method requires the extraction of damage-sensitive

features from measured data of the monitored system (Döhler and Mevel

(2012)): the comparison between the features of the reference and of the

actual state leads to residuals, which are usually evaluated with statistical

methods (Allahdadian et al. (2019)).

Many residuals have been used in the literature: the subspace residual, the

transfer matrix-based residual (Bhuyan et al. (2017)), residuals built on

a null-space based comparison of data Hankel matrices (Yan and Golin-

val (2006)), on the difference of output covariance Hankel matrices (Gres

et al. (2017b)) or directly on the modal parameter differences (Parloo et al.

(2003)).

In the thesis work, an indicator coming from the comparison between out-

put covariance matrices is tested, even if tests using the subspace residual

proposed by Yan and Golinval (2006) is also reported.

3.4 Tested and proposed damage indicators

In this section, a theoretical background is made to the subspace-based

indices already found in literature and used in the tests. The new proposed

index is also introduced.

3.4.1 Derivation of the matrix of residuals

In Basseville et al. (2000, 2004) a residual function was proposed to detect

changes in the eigenstructure of the system from measurements yk without

actually identifying the eigenstructure in the possibly damaged state. The

considered residual is associated with a covariance-driven output-only sub-
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space identification algorithm. The residual function originally proposed

compares the undamaged system state with the current one. The consid-

ered residual can be written as

Rc = ŜT0 Ĥp+1,q (3.14)

where ŜT0 is the left null space of the block Hankel matrix Ĥref
p,q in the ref-

erence state, while Ĥp+1,q is the subspace-based matrix of the actual state.

In practice, the excitation covariance Q may change between different mea-

surement sessions of the system due to different environmental factors,

while the excitation is still assumed to be stationary during one measure-

ment. A change in the excitation covariance Q leads to a change in the

cross-covariance between states and outputs G and thus in the Hankel ma-

trix.

This is the reason why other metrics tends to be preferred to conventional

residuals: for example, some researchers (Döhler et al. (2014); Yan and

Golinval (2006)) proposed new residuals, which are robust, less sensitive to

changing excitation. Let Û1 be the estimated matrix of the left singular

vectors obtained from an SVD of Ĥp,q, as in Eq.3.12. U1 is a matrix with

orthonormal columns and can be regarded as independent from the excita-

tion covariance.

This property qualifies its use to build a residual function that is robust to

changes in the excitation covariance: the robust residual can be written as

Rr = ŜT0 Û1 (3.15)

A subspace-based damage indicator may be defined as an arbitrary scalar

function of the residual matrix.

Id = f(R) (3.16)

where Id is a damage indicator, f(.) an arbitrary scalar function and R the

residual matrix.

The first indicator, Iy is the one present by Yan and Golinval (2006) and
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built on the robust residuals.

Iy,r = norm(Rr) (3.17)

where norm picks the maximum singular value of a matrix; subscript r

stays for robust.

3.4.2 Proposed damage index

The second damage indicator tested in this work is the one proposed: it

derives from a direct comparison of the subspace matrices of the reference

and the actual states.

Given two matrices A,B ∈ Rm×n, the 2D-correlation coefficient between

the two matrices is defined as:

r = corr(A,B) =

∑
m

∑
n

(
Ann − Ā

) (
Bnn − B̄

)
√(∑

m

∑
n

(
Amn − Ā

)2)(∑
m

∑
n

(
Bmn − B̄

)2) (3.18)

where the apex (̄·) indicates the mean between all the elements of the ma-

trix

This index was initially introduced to measure the similarity between im-

ages: one of the most employed applications in image processing is the

recognition of a specified object in pictures containing several different ob-

jects (template matching). The subspace matrices can be treated as images:

the assumption is made that the numerical values within the them are dis-

tributed in a similar way, if the compared data belong to two realizations of

the same state. If comparing different states, the distribution of the values

in the matrices also changes, and the correlation index decrease. In this

work, the coefficient is used to evaluate how similar the actual state matrix

is to the reference state matrix.

The value of the index varies from 0 (total dissimilarity) to unity (full cor-

relation between the two matrices).

When any form of damage occurs, a decrease in the 2D-correlation index

is expected. In order to introduce a damage index as a value of dissimi-

larity between two states, the proposed damage index is conceived as the
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difference between the unity and the 2D-correlation index.

DIcorr = 1− r = 1− corr(Ĥref
p,q , Ĥp,q) (3.19)

Thus, when two sets both belonging to the reference state are compared,

the index is close to zero, while it increase in other cases.

This index, like the others, can be used in data-driven approaches for

anomaly detection (level 1 in Rytter’s scale), but it can also be used as

a damage feature in a model-driven approach for localization or quantifi-

cation purposes, as it will be discussed in next chapters.

3.5 System identification

A system is considered to be an object in which different variables interact

at all kinds of time and space scales and that produces observable signals

(Keesman (2011)).

According to Ljung (1986), system identification deals with the problem

of building mathematical models of dynamical systems based on data ob-

served from the systems themselves.

System identification consists of three elements: the acquired data, the

mathematical model of the system, and a loss function, which expresses

the discrepancy between measured data, revealing the actual structural be-

haviour, and the simulated response from the numerical model.

Identification problems are optimization problems, in which the minimiza-

tion of the objective function leads to the identification of the system pa-

rameters.

The parametric identification stands on the following hypothesis: the set of

parameters x̄ that minimizes a given objective function C(x) : D ⊂ Rz → R

in a domain D, which spans the expected ranges of variations of the esti-

mand z parameters, coincides with the actual estimand of interest x̂. Then,

the parametric identification can be expressed by the following optimization

problem

x̄ ≡ x̂ = arg min
x∈Rz

C(x) (3.20)

31



Ph.D. Thesis of Riccardo Cirella, University of L’Aquila

The choice of the objective function is conditioned by the measured data:

when performing vibration tests on large structures such as civil engineer-

ing structures, data collection is subjected to important constraints since it

is often unpractical and expensive to use artificial excitation such as shak-

ers or drop weights because of their size, mass and/or power consumption

Reynders et al. (2008). This is the reason why output-only methods, that

were possible since the introduction of stochastic system identification (SSI)

methods, became very popular for testing large structures.

As they are defined, damage indicators are well suited to be used as objec-

tive function in an identification procedure.

3.5.1 Introduction to tests

In the previous sections, the role of the damage indicators as possible ob-

jective function in the identification of structural parameters has been dis-

cussed. With the aim of validating the method and illustrating the perfor-

mance of these indicators in guessing the actual values of the parameters

involved, the following tests are performed:

� A numerical application of the identification method is presented in

Section 3.6. Both indicators in Eq.3.17 and Eq.3.19 are used as ob-

jective function, and their reliability is tested.

� The procedure is then applied to an experimental steel beam used as

test-structure: results are presented in Section 3.7.

In all the tests, the optimization procedure is applied for the identifica-

tion of the Young modulus E and the mass density ρ of the beam.

Both parameters have been discretly varied within a range of feasible val-

ues: this allows to graphically represent the trend of the various objective

functions and verify the possible presence of local minima.

3.5.2 Experimental setup

The structure considered in both numerical and experimental tests is a 2.5m

long steel IPE120 beam, with welded rectangular end plates of 200 mm

x 100 mm x 5 mm. The beam is held up by two steel supports using

springs. The structure corresponds to an actual experimental setup at the
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Dynamic Laboratory of the DICEAA, Università degli Studi dell’Aquila,

Italy (Fig.3.1).

The data acquisition system is composed of seven vertical velocimeters,

Figure 3.1. Experimental setup.

placed over the beam at equidistant positions and aligned along its longitu-

dinal axis. The input signal is a white noise in the frequency band 0-1000

Hz applied by means of an electrodynamic shaker at the left end of the

beam.

3.5.3 Numerical model

In order to perform the analyses required for the identification process, an

in-plane FE model of the beam described above has been considered (Fig.

3.2).

The beam has been divided in 8 beam finite elements (Bathe and Wilson

(1976)), basing on the disposition of the velocimeters on the real structure.

The input signal is simulated with a white noise vertical displacement,

assigned to node 1. The output signals obtained from the model are the 7

vertical velocities registered in the nodes in positions corresponding to that

of the velocimeters placed over the experimental beam. Damping factors

adopted in the numerical model are that obtained in a preliminary modal

identification (see Section 3.7.1).

3.6 Numerical tests

In this paragraph, the proposed algorithm is verified through numerical

simulations. In order to carry out the analysis, the FE model presented in
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(a) (b)

Figure 3.2. Schematic representation of the setup (a) and finite element model

of the steel beam (b).

Par.3.5.3 has been considered: after assigning to the model a chosen value

Ē to the Young modulus and ρ̄ to the mass density as the target values to

be identified, its dynamic response has been simulated. This response is

considered as the reference state in the identification procedure. The actual

states are produced by varying E and ρ in a discrete range of values; the

different objective functions are then estimated comparing each damaged

state to the reference.

Referring to Eq.3.17 and Eq.3.18, the two matrices A and B used are there-

fore the one relating to the chosen target case and that from the actual ones,

respectively. They were used to compute both of the considered indices.

The test was repeated for N=2000 times varying the white noise and its

amplitude, in order to produce a significant statistical population.

Fig.3.3 shows that both robust indicators present a trend in which min-

(a) Iy,r indicator. (b) DIcorr indicator.

Figure 3.3. Variation of the objective function over the selected range of values

for parameters E and ρ: numerical tests. The white cross indicates the absolute

minimum identified.

ima are arranged along a straight line, whose direction is that given by

constant ratio between E and ρ. The sections of the surface along this
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(a) Iy,r optimal point. (b) DIcorr optimal point.

Figure 3.4. Mean values of the objective functions along the direction of lower

values.

direction (Fig.3.4) highlight the presence of an absolute minimum, right in

correspondence of the chosen pair (ρ̄, Ē): in the best point, the mean value

of indicators is close to zero. Furthermore, the objective function Iy,r seems

to be more sensitive to changes in the system parameters than indicator

DIcorr, since its trend around the point of minimum has a higher slope.

Tab.3.1 shows the values of the mean indexes and the variance obtained

from repeating the identification procedure N times. What can be noticed

Table 3.1. Numerical test: mean values µIi and variances σ2
Ii

of the indexes,

evaluated repeating the identification procedure for N times.

µIi σ2
Ii

Iy,r 0.0084 2.02 · 10−5

DIcorr 1.01 · 10−4 8.65 · 10−7

is that the numerical studies demonstrate the efficiency of assuming the

damage index as loss function to minimize, and demonstrate the robust-

ness of the latter tho changing in noise excitation.

3.7 Experimental validation

The same data processing methodology tested in the numerical case of

Sec.3.6 has been applied to identify the Modulus E and the mass density

ρ of the experimental steel beam described in Section 3.5.2.

In the optimization process, experimental data is used as reference state,

while simulated data refers to the actual states produced using attempt

parameters.
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The identified parameters Ê and ρ̂ are then compared with the pair Eexp =

210000 MPa and ρexp = 7.95 · 10−5 N/mm3, which are respectively the

declared value of the Young modulus adopted for the steel, and the assumed

mass density of the beam.

3.7.1 Modal identification results

Vibration data acquired during the experimental tests has been processed

according to the SSI algorithm, in order to detect the natural frequencies,

the damping factors, and the mode shapes of the steel beam.

An automatic modal identification algorithm was implemented, following

what presented in Cabboi et al. (2017).

Fig.3.5 shows the stabilization diagram resulting from the application of

the SSI algorithm. In the frequency band 0-1000 Hz, the first three modes

are rigid body ones (with frequencies lower than 12 Hz) followed by four

flexural in-plane modes, described in Table 3.2 and Fig.3.6.

0 250 500 750 1000

0

15

30

45

60

75

Figure 3.5. Stabilization diagram of the SSI-COV driven algorithm (Peeters

and De Roeck (1999)). Filled black dots represent the poles considered as stable

by the automated identification algorithm.

Table 3.2. Beam parameters, frequencies and damping ratios of the first four

flexural modes from modal identification, with their uncertainty bounds.

fexp,1 fexp,2 fexp,3 fexp,4 ξexp,1 ξexp,2 ξexp,3 ξexp,4
(Hz) (%) (Hz) (Hz) (Hz) (%) (%) (%)

127.4±0.27 337.5±0.149 625.5±0.312 969.1±2.0013 2.06±0.29 1.10±0.069 0.553±0.022 0.211±0.076
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(a) 1st mode 127.3Hz
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0 0.5 1 1.5 2 2.5

-1

0

1

(c) 3rd mode 625.7Hz

0 0.5 1 1.5 2 2.5

-1

0

1
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Figure 3.6. First four flexural in-plane mode shapes of the steel beam in the

frequency range (0-1000 Hz). Full line: mean mode shapes, dashed line:

estimated standard deviations.

Results coming from experimental modal identification will be com-

pared with that from numerical simulation of the optimum model, in order

to have an opinion on the effectiveness of the presented method.

3.7.2 Parametric identification results

Fig.3.7 shows the trend of the mean value for both the indicators: both the

objective functions have trends similar to that obtained in numerical tests.

Table 3.3 presents the pair of minimum (Ê, ρ̂) obtained from the identifi-

cation procedure for both the indicators adopted and makes a comparison

with the nominal one. From results in Table 3.3 it can be noted that there

Table 3.3. Experimental case: identified parameters and discrepancies with

measured/declared values.

Ind Ê ρ̂ Îd Eexp ρexp ·10−5 ∆E ∆ρ
(MPa) (N/mm3) (MPa) (N/mm3) (%) (%)

Iy,r 2.21·105 7.70·10−5 0.0745 2.10 ·105 7.925 ·10−5 5.24 -2.84

DIcorr 2.30·105 8.02·10−5 0.0185 2.10 ·105 7.925 ·10−5 9.52 1.19

are differences between the couple (Eexp,ρexp) and identified (Ê,ρ̂) param-
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(a) Iy,r indicator. (b) DIcorr indicator.

Figure 3.7. Variation of the objective function over the selected range of values

for parameters E and ρ: experimental tests. Figures (a) and (b) show results

obtained with the indicators Iy,r and DIcorr, respectively. The white cross

indicates the absolute minimum identified.

Figure 3.8. Experimental tests: mean values of the robust indicators along the

direction of lower values and their σ bounds.

eters less than 10%: unlike the numerical case, the value of the objective

functions in the minimum point are not so close to zero (Fig. 3.8).

This discrepancy can be justified by thinking about the uncertainties that

characterize the whole process, mainly related to:

� Bias of the model;

� Computational uncertainty due to the chosen discretization of the

parameters state D;

� Uncertainty due to experimental measures, i.e. number of sensors

used in vibrational data acquisition, sample frequency, noise presence.

The value of indicators in the optimal point can be seen as a measure of

the general inaccuracy.
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Table 3.4. Numerical frequencies obtained after the identification procedure

and comparison with the experimental ones - part 1.

Ind f1 fexp,1 ∆f1 f2 fexp,2 ∆f2
(Hz) (Hz) (%) (Hz) (Hz) (%)

Iy,r 127.0 127.4 -0.31 337.04 337.5 -0.14

DIcorr 127.1 127.4 -0.24 336.9 337.5 -0.18

Table 3.5. Numerical frequencies obtained after the identification procedure

and comparison with the experimental ones - part 2.

Ind f3 fexp,3 ∆f3 f4 fexp,4 ∆f4
(Hz) (Hz) (%) (Hz) (Hz) (%)

Iy,r 627.07 625.5 0.25 964.7 969.1 -0.45

DIcorr 626.34 625.5 0.13 962.96 969.1 -0.63
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0 0.5 1 1.5 2 2.5

-1

0

1

(c) 3rd mode 627.1Hz

0 0.5 1 1.5 2 2.5

-1

0

1
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Figure 3.9. Mode shapes obtained from the finite element model updated using

Iy,r as objective function. The dotted line indicates the experimental shape.

Table 3.6. MAC matrix, calculated between numerical and experimental

modes: Iy,r indicator.

MAC Inum IInum IIInum IVnum

Iexp 0.9971 4.051e-04 0.2858 1.108 e-04
IIexp 0.005 0.9894 0.03 0.1156
IIIexp 0.2997 0.0037 0.9882 0.0019
IVexp 6.76e-06 0.0957 1.298e-04 0.9910
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Figure 3.10. Mode shapes obtained from the finite element model updated

using DIcorr as objective function. The dotted line indicates the experimental

shape.

Table 3.7. MAC matrix, calculated between numerical and experimental

modes: DIcorr indicator.

MAC Inum IInum IIInum IVnum

Iexp 0.9970 4.084e-04 0.2844 1.094 e-04
IIexp 0.005 0.9899 0.003 0.1152
IIIexp 0.3028 0.0037 0.9883 0.0019
IVexp 6.2629e-06 0.0977 1.325e-04 0.9911

Tab.3.4-3.6, Fig.3.9-3.10 compare experimental modal parameters and

that obtained from numerical model with identified parameters: despite the

discrepancy between identified and measured physical parameters, a very

small difference between the numerical and experimental frequencies and

modal shapes can be observed.

It’s worth noticing that, while modal shapes and frequencies are almost

perfectly matching, the index could be further minimized, working on the

inaccuracies: this suggests that objective function based on indicators could

contain more information about the system dynamics than ones based only

on modal properties.
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Table 3.8. Experimental test: values and variances of the indexes, evaluated

repeating the identification procedure for N times (left) and from a single test

(right). µIi and σ2
Ii

: mean values and variances over N times simulations. Ii and

σ̂2
Ii

: indicators and their variances estimated from a single test.

Empirical evaluation
µIi σ2

Ii

Iy,r 0.0746 2.89 · 10−6

DIcorr 1.85 · 10−2 5.77 · 10−7

3.8 Conclusions

This chapter presented a novel technique for the identification of the param-

eters of a dynamical system, assuming two residual indicators as objective

function in a optimization algorithm.

In the first step, the proposed method has been assessed with numeri-

cal tests on a FE beam model. Secondly, the method has been validated

through an experimental test, carried out to identify the mass density and

the elastic modulus of a real steel beam.

The proposed method gives promising results and seems to be more sensi-

tive to the variation of dynamic system properties than techniques which

uses objective functions based only on modal parameters.

The results of the model updating led to the definition of a calibrated

model: this FE model has been subsequently used for damage detection

tests.
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Damage Detection tests

Chapter abstract

Damage localization and quantification represent level 2 and 3 of

Rytter’s scale in the damage detection procedure. Algorithms of

this type allow to estimate the presence of a damage, the position

in which it occurs and the extent of the damage. This is done

by comparing the actual recorded state with data coming from

a reference state, considered undamaged, by means of damage-

sensitive features. The presence of damage is assumed when there

is a noticeable change in features.

In this chapter, subspace matrices are proposed as features for

damage detection. The proposed method approaches the localiza-

tion and quantification problem first with a traditional approach:

a damage index is proposed based on the calculation of the 2D-

correlation coefficient between the two matrices of the undam-

aged and actual states.

Subsequently, the effectiveness of the subspace matrices taken as

damage features is tested by training an artificial neural network,

with the aim of correctly classifying the produced damage scenar-

ios.

Both methods are tested numerically and experimentally on a

laboratory steel beam: the damage is produced by adding a point

mass on the beam. The results, evaluated with the variation of

the position of the mass along the beam and of its entity, show

that the proposed indices and the analyzed algorithms are promis-

ing for the damage detection task.
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4.1 Introduction

In the previous chapter, the features of the proposed damage detection

method have been presented. In this chapter, the proposed method is as-

sessed with tests performed in the laboratory. As already mentioned, the

2D-correlation coefficient is very often used to search for the similarity

between two images, in the field of Image Processing. Given the close re-

semblance of matrices to images (the latter are basically matrices, where

each pixel represents a component), it seems logical to relate the process

of calculating the index as a difference between matrices, to the process of

Pattern Recognition typical of Image Processing.

This evidence led to the development of an algorithm for damage detection

based on the use of an artificial neural network for classification. The fol-

lowing chapter shows the results of the laboratory tests. The aim of the

tests is to assess the performance of both the 2D-correlation index and the

neural network, in covering the two steps of localization and quantification

of damage. A steel beam has benen cosidered as test-structure, and the

damage has been produced placing a punctual mass along the beam: the

unknown variables of the investigated problem have been therefore the po-

sition of the mass (that can be traced back to the localization problem)

and its entity (that can be associated to a problem of identification of the

gravity of the damage).

Machine Learning is one of the most used tools in Artificial Intelligence, al-

though it represents only a branch of it. Over years, the application of ML

has led to significant advances in areas such as speech recognition, outlier

detection, image recognition and many other numerous fields.

The role of AI, and Machine Learning in particular, in damage detection

has already been discussed in Ch.2 , in which some works that applied these

concepts were presented. However, many works have focused on the use

of modal parameters or coefficients from autoregressive models as features;

in none of them the ML approach has been applied to subspace-based fea-

tures.

Before reporting the results of the damage detection test, it is necessary

to make a brief introduction to neural networks, in order to clarify some
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concepts that will recur within the chapter.

4.2 Introduction to Artificial Neural Networks

An artificial neural network (ANN) can be thought exactly like the network

of neurons present in the human brain: in this system, each neuron receives

one or more signals - of electrical nature - from the outside, synthesizes its

content and transmits it to other neurons. In this way, the human body

succeeds in the basic functions of perception coming from the senses, of

transmitting orders for motor skills and many more functions.

Man is able to recognize a certain object since the image of the observed

object is already classified in his brain: we recognize objects that we al-

ready know in our memory from experience.

Our brain is able to classify what comes from sensory experience basing on

the electrical impulses transmitted by neurons. When we are faced with

a new object, we are unable to classify it, but we compare it to what is

known to our memory (we try to give it a classification based on what we

know): we recognize it as a new thing - an anomaly - with respect to the

baggage of our experience.

This latter is a typical case of anomaly detection, recurrent in unsupervised

learning.

ANNs have been designed with the same architecture of human brain: they

acquire data from an input layer (in this case they are features, not sen-

sorial stimuli transformed into electrical impulses), process them through

specific activation functions and give a response in terms of output layer.

4.2.1 A Neural Network

Exactly as in the human case, ANN need to be trained in order to carry

out the functions of recognition and classification: if in the training phase

they are furnished also of the class labels, the learning is said supervised,

in contrary case, unsupervised.

In order to fully understand the architecture of a neural network, consider

first a supervised learning problem.
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In this type of problem, training examples (x(i), y(i)) are provided: x and y

denote the input vectors and the output class label by which performing the

training of the network. Neural networks address the problem by producing

in output a function hW,b(x).

The neuron - also called perceptron - represents therefore a computational

Figure 4.1. Scheme of a simple neuron.

unit that extract outputs from a series of input xi.

hW,b(x) = f(W Tx) = f

(
N∑
i=1

Wixi + b

)
(4.1)

where f : R → R is called activation function: it is represented by the

weighted sum of N inputs xi, with weights Wi ; the term b is a bias.

A neuron is said to be activated - it is ”firing” - when the sum of the

terms in brackets exceeds a certain threshold, called threshold of activa-

tion. In early neural network models, the proposed activation function was

a hard threshold function (the first studies date back to McCulloch and

Pitts (1943)); over time, it was noted that the training of neural networks

would perform better if less rigid activation functions and thresholds were

adopted.

Currently, the most used activation functions are the sigmoid function:

f(z) =
1

1 + e−z
(4.2)

or the hyperbolic tangent function:

f(z) = tanh(z) =
ez − e−z

ez + e−z
(4.3)

with z =
∑N

i=1Wixi + b. The peculiarity of these functions is that their

valus lie within an interval ([0;1] the sigmoid, [-1;1] the hyperbolic tangent):

in this way, they are therefore well suited to describe the binary condition
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- on/off - of the neuron.

ANNs are obtained simply by putting several neurons together, so that the

output of one neuron becomes the input for another.

Within the network, neurons are organized in layers: for this reason, it also

takes the name of multilayer perceptron (MLP).

Every j-th node of a layer is connected to the node i-th of the successive

Figure 4.2. Neural network composed by one hidden layer. In this example, the

input layer has three nodes, excluding the bias.

layer for means of weights Wij , via the weighted sum of Eq.4.1.

Thus, the signal is transferred from an input layer, is processed in hidden

layers and the result emerges from the output layer. In this setting, to

calculate the output of the network, all the activations in the second layer,

third and so on are calculated in succession. This is an example of a

feedforward neural network, since its architecture does not present any

loops or cycles.

4.2.2 Backpropagation algorithm

The first step to make a neural network operative is to train it. Training

a network consists in calibrating the weights Wij in order for the net to

correctly classify the target outputs, given the input.

At each step of the training, an input set is passed to the network and the

final outputs are evaluated, comparing them with the target outputs: if the

error between the two is acceptable, the weights are not adjusted. If the

opposite happens, the weights are adjusted according to the error.

Thus, in the next iterations the error is minimized. The procedure is re-

peated until the error is small enough to be considered acceptable: the

procedure represents an optimization procedure, in which the error is the
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objective function to minimize.

Generally, the objective function for a training example (x, y) is is based

on the squared-error function:

J(W, b;x, y) =
1

2

N∑
i=1

(hW,b(x)− y)2 (4.4)

Given a training set of k examples, the cost function is given by the mean

of the Sum of the Squared Error (SSE). Usually, another term is added,

according to the equation:

J(W, b) =

(
1

k

k∑
i=1

J(W, b;xi, yi)

)
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ij

)2

=

(
1

k

k∑
i=1

(
hW,b(x

(i))− y(i)
)2
)

+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ij

)2

(4.5)

in which nl and sl are the number of layers in the network and the number

of nodes in the l-th layer, respectively.

The first term of the sum in Eq.4.5 is the mean of those in Eq.4.4 calculated

among all training sets. In situations in which there is a number of weights

approximately similar to that of the data points, it can happen that the

weights reach high values: in this case, the predictions of the training set

are the result of cancellations between large positive and large negative

weights (Farrar and Worden (2012)).

The second term, called Regularization (somewhere L2 regularization term),

helps avoiding the over-fitting problem and get a better generalization by

controlling the value of the weights. The addition of this term is called

weight decay regularization, and the term λ is the weight decay parameter.

It has been seen that smaller weights result in a smoother network.

The goal is thus to minimize the cost function J(W, b) as a function of the

parameters W
(l)
ij and b

(l)
i : in the first iteration of the optimization algo-

rithm, the values of these parameters are generally taken from a normal

distribution N(0, ε2) with zero mean and very small variance.

A typical minimization algorithm is based on the computation of the gra-

dient, even if techniques based on global optimization have been developed

over time (see, for example, Tran-Ngoc et al. (2019)). The partial deriva-
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tives of the function J(W, b) are calculated and then the weights and biases

are updated:

W
(l)
ij = W

(l)
ij − η

∂

∂W
(l)
ij

J(W, b)

b
(l)
j = b

(l)
i − η

∂

∂b
(l)
i

J(W, b)

(4.6)

the parameter η is called learning coefficient, and indicates the amplitude

of the shift of the parameter value in the direction of the gradient.

One way to compute the partial derivatives of Eq.4.6 is given by the back-

propagation algorithm (Haykin and Lippmann (1994)).

Essentially, the idea behind the backpropagation algorithm is as follows:

given a training set (x, y), in the first iteration, where the parameters are

fixed by normal distributions, we compute all network activations, up to

the attempt values of the outputs. Next, for each node i in layer l an error

term δ
(l)
i is computed. This term measures the error in the output of each

node. For the output nodes, the error δ
(nl)
i is directly measurable as the

difference between the attempt value and the true value: given these differ-

ences, the error values for the nodes in the previous layers are computed by

making weighted averages of the errors from the output nodes, and so on

until the first layer is reached. Hence the term backpropagation: weights

are adjusted layer by layer, moving backwards from the output layer.

4.3 Intoduction to tests

With the aim of validating the method and illustrating the performance of

both the correlation index and of the ANN, a series of experimental tests

were performed. In these tests, the structural damage was caused by adding

a point mass on the beam-system illustrated in Ch.3 (Fig.3.1). The addition

of a mass changes the modal characteristics of the system: when structural

damage occurs, the variation in the mechanical or geometric characteristics

of the structural elements generates a variation in the modal parameters,

more or less marked according to the extent of the damage.

For this reason, the change in behavior produced by the addition of the

mass is assumed to be related to that produced by a structural damage.
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Various tests were performed, by varying both the entity of the mass and

its position, with the aim of evaluating the effectiveness of the method in

guessing these latter. In particular, the following tests have been performed:

� A numerical application is performed, in which the algorithm is tested

to change in the noise excitation;

� The procedure is then applied to the real test-structure. In particular,

known masses are placed over the actual steel beam and virtual ones

are placed over the finite element beam model.

The scope is then finding the correct position of the mass (damage

localization) and its value (damage quantification) by comparing the

real dynamic behavior with that simulated with the FE model.

In both the tests, the procedure is applied for the following scopes:

� Identification of the position of the mass: the alghorithm is tested

with a fixed mass, varying its positsion along the beam;

� Identification of the entity of the mass: fixed a position, the value of

the mass placed on the beam is varied.

Both the tests are used to assess the sensitivity of the method to changes

in the two parameters.

In tests using the correlation index, the goal is to find the minimum index

value among all those coming from the comparison between a damaged

state chosen as reference state and all others. The problem translates,

as in the case of model updating described in the previous chapter, to

an optimization process, in which the loss function is the index DIcorr

itself. Unlike the model updating procedure, for which the attempt values

of elastic modulus and mass density could be varied in a continuous manner,

in this case well defined damage scenarios are produced (referable to those

that are assumed to occur in a structure). The optimization in this case

would be more of a discrete type, or mixed: the position is varied in a

discrete range, while the magnitude of the mass could vary in a continuous

range. In any case, it has been chosen to discretize both ranges, focusing

more on the study of assessing the indices as features, rather than on the

optimization techniques, which certainly deserve a discourse apart.
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The effectiveness of the algorithm is evaluated by looking at the percentage

that it correctly identifies the produced damage scenario - the position or

the mass - compared to the times when it falls in missclassification.

Tests based on the neural network instead require the training of a classifier

capable of recognizing the damage class of a current state according to

the data provided in the training set, following the procedure described in

Par.4.2.1.

In both numerical and experimental tests, training is performed based on

simulations from the FE model calibrated in the model updating phase, in

order to get the maximum match with the real behavior.

In particular, damage scenarios corresponding to all assumed positions and

mass entities are simulated, and then the effectiveness of the training is

evaluated by feeding a test set to the network, with the goal of recognize it

with the right label.

The validity of the algorithm is then assessed by evaluating the confusion

matrix, through which it is established with which percentages a given

damage state is recognized by the network, compared to the total number

of the simulated cases.

The experimental tests simulate the circumstances of what happens in real

damage detection cases. The data acquired from the experimental damaged

state are compared with the numerical data simulated with the FE model:

in the case of the correlation index, an optimization algorithm is carried

out, in the case of the network, the classifier itself directly gives the outcome

of the prediction.

In any case, a situation arises where there is a large availability of data

related to simulated cases, but a small number of data related to the actual

experimental damaged state.

4.3.1 Selected damage scenarios

The experimental structure has already been presented in Ch.3.5.2: it is a

steel beam of profile IPE120, of length 2.5 m: according to the results of

the parametric identification of Ch.3, it is estimated to have a mass density

ρ = 8.02 · 10−5 N/mm3 (corresponding to a total weight of about 27 Kg)

and a young’s modulus E = 2.30 · 105MPa. The damage scenarios involve
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varying the position of the mass and its magnitude: the beam was therefore

discretized into 25 positions (graphically shown in Fig.4.3).

p1 p5 p10 p15 p20 p25

Figure 4.3. Selected mass positions. For numerical values, see Tab.4.1.

Table 4.1. Numerical values of the selected position of the mass along the beam.

POS. x(mm) POS. x(mm) POS. x(mm) POS. x(mm) POS. x(mm)
p1 0 p6 500 p11 1041.7 p16 1562.5 p21 2083.3
p2 104.2 p7 625 p12 1145.8 p17 1666.7 p22 2187.5
p3 208.3 p8 729.2 p13 1250 p18 1770.8 p23 2291.7
p4 312.5 p9 833.3 p14 1354.2 p19 1875 p24 2395.8
p5 416.7 p10 937.5 p15 1458.3 p20 1979.2 p25 2500

The mass varies within the discrete interval presented in Tab.4.2. Con-

sidering that the total weight of the beam is about 27 Kg, the range of

variation of the mass ranges goes from 1.5% to about 11% of the weight of

the beam.

Table 4.2. Numerical values of the selected mass range.

MASS Kg MASS Kg MASS Kg MASS Kg MASS Kg
m1 0.400 m6 0.930 m11 1.46 m16 1.99 m21 2.52
m2 0.506 m7 1.03 m12 1.56 m17 2.09 m22 2.62
m3 0.612 m8 1.14 m13 1.67 m18 2.20 m23 2.67
m4 0.718 m9 1.24 m14 1.78 m19 2.31 m24 2.84
m5 0.824 m10 1.33 m15 1.88 m20 2.41 m25 2.94

4.4 Numerical damage localization tests

In this paragraph, numerical results related to damage localization are pre-

sented: in these tests, the mass is kept fixed, and its position varies accord-

ing to values reported in Tab.4.1. The FE model used for simulations is

the one presented in Ch.3.5.3, discretized this time into a number of nodes

equal to that of the considered positions.

Following the aforementioned levels of damage diagnosis promoted by Ryt-

ter, the initial phase involves evaluating the change in the index DIcorr as

mass is added to the system and its position is varied, with relation to a

statistical population built on the reference state alone. This initial phase

can be traced back to that of anomaly detection (level 1).
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In order to perform the tests, N=200 simulations were conducted for both

the undamaged state and the 25 damaged states shown in Tab.4.1, as the

excitation noise varied.

As can be seen from Fig.4.4, the insertion of the mass, albeit of low mag-

nitude (0.4 kg compared to about 27 kg of the beam), causes an increase

in the damage index.

The index assumes greater values when the mass is placed near the edges of

the beam and in its centerline. The figure shows also a marked dependence

of the index values on the symmetry of the beam.

What emerges is that the index function is not injective with respect to the

position-variable: it is not possible to uniquely relate a precise value of the

index function to a given position. This suggests that it is indeed impossi-

ble to proceed in level 2 of Rytter’s scale, by just performing a data-driven

method, justifying the need to proceed via model-driven approach.

It appears from the figure that the damage index, despite the presence of

mass, is close to zero in some positions. Nevertheless, still occurs a varia-

tion with respect to the population of values relative to the reference state.

Figure 4.4. Variation of the damage index DIcorr, calculated for anomaly

detection purposes with respect to the undamaged case, as the position of the

fixed mass m10 changes.

4.4.1 Damage localization with the subspace-based index

The damage localization phase is carried out with a model-based approach.

Once all plausible damage scenarios are simulated with the FE model, the

algorithm is tested by selecting one state from those produced, to be treated
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as the target one to be identified. For each state, Ntrain=200 samples were

considered for this reference state and Ntest=80 samples for the actual

states to be tested.

For the i-th damaged state to be identified (i = 1, . . . , 25), the test is

performed according to the following steps:

� the H
(i)
k subspace matrices related to the reference state are com-

puted, for k = 1, . . . , Ntrain. Matrices are evaluated considering a

time delay i = 60;

� the H
(j)
u subspace matrices related to the j-th simulated position,

including the selected one, j = 1, . . . , 25 and u = 1, . . . , Ntest are

computed. Matrices are evaluated considering a time delay i = 60;

� damage indices (DIcorr)
(i)
j = 1−corr(H(i)

k , H
(j)
u ) between the matrices

of the state to be identified and the current ones are computed. In

this way, each set identifying the j-th attempt position consists of

Ntrain ×Ntest samples;

� for each of the Ntest sets of indices obtained as the position varies,

the minimum is computed;

� the confusion matrix is produced, indicating how many of the sim-

ulated cases have been correctly guessed, giving the measure of the

accuracy of the method to variation of the noise.

The results of the procedure are summarized in the Tab.4.3 and 4.4.

As can be seen from the tables, producing simulations by varying the ex-

citation noise has generated some uncertainty in the results. However, in

the case of localization, this remains limited to small percentages of the

samples: almost all of the selected damaged states are correctly identified.

What is remarkable is the arrangement of the misclassified cases: in ad-

dition to the positions close to the diagonal of the confusion matrix, as

could be expected, they are also arranged along its antidiagonal. The main

cause of this presence can be addressed to the geometric symmetry of the

structure, boundary conditions, and sensor arrangement, as already noted

in the anomaly detection phase of Fig.4.4.

The symmetry is probably the cause of the fact that, moving the mass
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towards the middle of the beam, the percentage of true positives decreases

significantly, while the percentage of surrounding misclassified cases in-

creases. In the position near the midpoint, a percentage of misclassified

cases of about 70% is recorded.

The problem concerning the number of misclassified samples is solved by

Table 4.3. Confusion matrix obtained from numerical localization tests - part 1.

The columns represent the Target class, the rows contain the predicted output

class.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13
p1 100 0 0 0 0 0 0 0 0 0 0 0 0
p2 0 99.94 0.06 0 0 0 0 0 0 0 0 0 0
p3 0 0 98.89 1.11 0 0 0 0 0 0 0 0 0
p4 0 0 0.38 92.31 7.31 0 0 0 0 0 0 0 0
p5 0 0 0 4.31 71.94 23.74 0 0 0 0 0 0 0
p6 0 0 0 0.18 13.62 84.58 0.06 0.06 0 0 0 0 0
p7 0 0 0 0 0 1.99 76.27 7.98 0 0 0 0 0
p8 0 0 0 0 0 0 13.56 81.93 4.42 0 0 0 0
p9 0 0 0 0 0 0 0 7.63 88.67 3.68 0 0 0
p10 0 0 0 0 0 0 0 0 7.11 87.33 5.57 0 0
p11 0 0 0 0 0 0 0 0 0.01 10.3 71.41 6.05 0.4
p12 0 0 0 0 0 0 0 0 0 0.13 14.74 40.96 29.46
p13 0 0 0 0 0 0 0 0 0 0.01 3.49 22.06 61.02
p14 0 0 0 0 0 0 0 0 0 0.11 8.68 4.41 28.43
p15 0 0 0 0 0 0 0 0 0 0.89 24.74 0.22 5.77
p16 0 0 0 0 0 0 0 0 0.64 0.74 3.13 0 0
p17 0 0 0 0 0 0 0 0.31 0.52 0 0 0 0
p18 0 0 0 0 0 0 0.55 0.78 0 0 0 0 0
p19 0 0 0 0 0 0.04 2.28 0 0 0 0 0 0
p20 0 0 0 0.02 0.64 12.17 0.25 0 0 0 0 0 0
p21 0 0 0 0.77 0 14.93 0 0 0 0 0 0 0
p22 0 0 0 0 0 0 0 0 0.01 0 0 0 0
p23 0 0 0 0 0 0 0 0 0 0 0 0 0
p24 0 0 0 0 0 0 0 0 0 0 0 0 0
p25 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.4. Confusion matrix obtained from numerical localization tests - part 2.

The columns represent the Target class, the rows contain the predicted output

class.

p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25
p1 0 0 0 0 0 0 0 0 0 0 0 0
p2 0 0 0 0 0 0 0 0 0 0 0 0
p3 0 0 0 0 0 0 0 0 0 0 0 0
p4 0 0 0 0 0 0 0 0 0 0 0 0
p5 0 0 0 0 0 0 0.01 0 0 0 0 0
p6 0 0 0 0 0.06 0.23 1.13 0.09 0 0 0 0
p7 0 0 0 0 0.24 0.31 13.21 0 0 0 0 0
p8 0 0 0 0.06 0.03 0 0 0 0 0 0 0
p9 0 0 0.02 0 0 0 0 0 0 0 0 0
p10 0 0 0 0 0 0 0 0 0 0 0 0
p11 0.03 11.81 0 0 0 0 0 0 0 0 0 0
p12 1.98 12.73 0 0 0 0 0 0 0 0 0 0
p13 6.82 6.6 0 0 0 0 0 0 0 0 0 0
p14 31.5 26.88 0 0 0 0 0 0 0 0 0 0
p15 21.91 46.40 0.08 0 0 0 0 0 0 0 0 0
p16 0 0.06 89.31 6.14 0 0 0 0 0 0 0 0
p17 0 0 3.37 88.43 7.38 0 0 0 0 0 0 0
p18 0 0 0 4.49 80.77 13.41 0.01 0 0 0 0 0
p19 0 0 0 0 8.46 66.24 22.98 0 0 0 0 0
p20 0 0 0 0 0.56 12.83 73.36 0.18 0 0 0 0
p21 0 0 0 0 0 0 4.36 76.97 2.98 0 0 0
p22 0 0 0 0 0 0 0 6.23 93.53 0.24 0 0
p23 0 0 0 0 0 0 0 0 0.85 99.15 0 0
p24 0 0 0 0 0 0 0 0 0 0.04 99.96 0
p25 0 0 0 0 0 0 0 0 0 0 0 100

averaging the results obtained for each attempt to localize the i-th state:

by computing the means of the Ntot = Ntrain × Ntest indices DI
(i)
corr, and

finding the minimum among the mean values, the target position is found
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for every damaged state.

DIcorr = [ 0.13253 0.02335 0.03556 0.09726 0.15141

0.16945 0.14875 0.10291 0.05467 0.02054

0.00492 0.00187 0.00227 0.00160 0.00207

0.02023 0.05412 0.10170 0.14677 0.16748

0.14901 0.09474 0.03418 0.02609 0.14396 ]

(4.7)

As noted in Eq.4.7, when applying the described procedure a correct iden-

tification of the target position is achieved, even for the p14 case, which

was the case with most misclassified samples.

4.4.2 Damage localization tests using the ANN

What emerged in Par.4.4.1 drives further in the direction of using an ANN

network. In fact, for its nature, the network tends to mediate the differences

due to the noise variationin its training phase. In this phase, calibrating the

weights in the neurons connections, it becomes aware of the relationships

intercurring between the input data, making the results of the classifica-

tion as independent as possible from the way in which the data have been

produced.

The training, validation and testing phases of the neural network were

conducted considering the same number of samples used in the validation

of the DIcorr index. In particular, the samples used in the training were

Ntrain = 200, of whom 75% for the actual training and the remaining 25%

for the validation set, while in the testing phase Ntest = 80 samples were

considered.

Recall that training a classifier falls under supervised learning: during its

training, the network is provided not only with the input features, but also

with the class labels to which they belong.

The network training and classification algorithm for the purpose of damage

localization consists of the following steps:

� Production of input data for network training: for each of the hypoth-

esized damage scenarios, Ntrain subspace matrices H are produced.

� Definition of the network architecture and subsequent training phase:

55



Ph.D. Thesis of Riccardo Cirella, University of L’Aquila

in order for a network to be trained, it is necessary to define both the

parameters directly related to the architecture, i.e. the number of

layers constituting it and the number of nodes for each layer, and the

nature of the functions that establish the relationships between the

nodes. The network used for damage localization is a perceptron that

needs one hidden layer, with a number of inner nodes equal to 20.

The used activation function is the sigmoid - see Par.4.2.1. The loss

function considered during the training is the cross-entropy loss func-

tion. Given the targets vector t and output vector y, the cross-entropy

for each pair of output-target elements is calculated as:

(cross)i = −ti · log(yi)

to which is added the regularization term as in the case of the SSE

defined in Eq.4.5.

The function has been preferred to SSE because it returns a value

that heavily penalizes outputs that are extremely inaccurate (y near

1-t), with very little penalty for fairly correct classifications (y near

t).

The overall performance of the network is evaluated from the mean

of the individual value;

� Classification of current data coming from the test set: after the

training, classification tests are performed. Ntest samples for each

i-th damaged state are tested to be recognized by the network. The

confusion matrix is constructed.

The training and classification results are shown in the following figures.

Fig.4.5 shows the trend of the objective function during the training phase:

an acceptable optimum value for the loss function is reached after about 300

epochs. Fig.4.6 shows the gradient calculated in the various iterations: the

low value of the function symbolize the correct occurrence of the training.

Classification outcomes are read from the confusion matrix in Fig.4.7. As

happened with Tab.4.3, the terms on the diagonal indicate how many cases,

among those tested, were correctly identified by the network.

As can be seen, all the tested cases fall within the diagonal, whichever
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Figure 4.5. Crossentropy parameter evaluated as performance index in the

training of network for localization.

Figure 4.6. Trend of the gradient of the loss function during the training phase

of the ANN used for localization.
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state has been chosen as damaged: the network, as a result of the training,

contains within it all the information needed to correctly discriminate the

various damage scenarios. Despite the noise, in this case, the percentage

of misclassified cases (elements outside the diagonal) is even zero, in the

position near the midpoint.

Figure 4.7. Confusion matrix evaluated for the damage localization problem.

4.5 Numerical Damage quantification tests

What described previously for the localization tests is also carried out for

the damage quantification tests: therefore, anomaly detection is performed

first. For the novelty detection test, the mass position is kept fixed in p15

(about 1.5 m from the left edge of the beam), and N=200 simulations are

conducted for the reference state and for the 25 damaged states shown in

Tab. 4.2, as the excitation noise varied.

As can be seen from Fig.4.8, the addition of the mass generates an increase

in the value of the index DIcorr.

4 Differing from what happened in the localization case, the index takes

on larger values as the magnitude of the mass increases. In this case,
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Figure 4.8. Variation of the damage index DIcorr, calculated for anomaly

detection purposes with respect to the undamaged case, as the magnitude of the

mass changes, while position remains fixed in p15.

therefore, given the location of the mass, the increase in the damage index

can be correlated with the increase of damage in the structure, allowing

to investigate level 3 of the Rytter scale exclusively through data-driven

methods. Simulations by means of the FE model are necessary, however,

where a specified damage magnitude is actually to be classified in relation

to others.

4.5.1 Damage Quantification using the subspace-based in-

dex

Once all damage scenarios were simulated, the algorithm was tested by es-

sentially replicating the procedure described for damage localization.

For each state, Ntrain=200 samples were considered for the reference state

and Ntest=80 samples were considered for the states to be checked.

As can be seen from Tab.4.5 and Tab.4.6 ,the production of simulations by

varying the excitation noise generated some uncertainty in the classification

process.

Compared to the damage localization case, there are basically two differ-

ences:

� the misclassification extends among the cases in the surroundings of

the elements of the diagonal of the table. There is a certain percentage

of misclassified cases exclusively in a band adjacent to the diagonal,

in contrast to the localization case, in which the symmetry of the

structure caused some misclassified cases to be present even along
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the antidiagonal;

� The percentages by which the selected damage state is correctly clas-

sified is significantly lower than that in the localization case. Such

values, ranging from a maximum of 68% to a minimum of 27%, with

an average of about 38%, prove a lower sensitivity of the damage in-

dex DIcorr to variation in mass - magnitude of damage - rather than

in the position in which it is located.

Table 4.5. Confusion matrix obtained from numerical damage quantification

tests - part 1. The columns represent the Target class, the rows contain the

predicted output class.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13
m1 65.29 27.2 6.94 0.56 0.01 0 0 0 0 0 0 0 0
m2 26.67 39.08 26.91 6.72 0.61 0.01 0 0 0 0 0 0 0
m3 5.12 22.17 39.29 26.26 6.49 0.65 0.01 0 0 0 0 0 0
m4 0.38 4.98 22.66 39.33 25.41 6.56 0.67 0.02 0 0 0 0 0
m5 0 0.38 5.21 23.18 39.39 24.66 6.48 0.69 0.02 0 0 0 0
m6 0 0 0.4 5.46 23.86 38.88 24.31 6.39 0.69 0.03 0 0 0
m7 0 0 0 0.4 5.71 24.41 38.68 23.66 6.21 0.92 0.02 0 0
m8 0 0 0 0 0.34 6.07 24.93 38.31 22.14 7.24 0.95 0.01 0
m9 0 0 0 0 0 0.38 6.29 25.39 35.21 24.55 7.44 0.74 0.01
m10 0 0 0 0 0 0.01 0.84 8.99 26.14 37.14 21.93 4.54 0.41
m11 0 0 0 0 0 0 0 0.51 5.54 24.43 40.42 22.39 6.06
m12 0 0 0 0 0 0 0 0 0.42 5.95 27.38 37.11 22.69
m13 0 0 0 0 0 0 0 0 0 0.51 7.14 26.24 37.57
m14 0 0 0 0 0 0 0 0 0 0.02 0.74 6.75 26
m15 0 0 0 0 0 0 0 0 0 0 0.02 0.87 7.33
m16 0 0 0 0 0 0 0 0 0 0 0 0.03 0.95
m17 0 0 0 0 0 0 0 0 0 0 0 0 0.04
m18 0 0 0 0 0 0 0 0 0 0 0 0 0
m19 0 0 0 0 0 0 0 0 0 0 0 0 0
m20 0 0 0 0 0 0 0 0 0 0 0 0 0
m21 0 0 0 0 0 0 0 0 0 0 0 0 0
m22 0 0 0 0 0 0 0 0 0 0 0 0 0
m23 0 0 0 0 0 0 0 0 0 0 0 0 0
m24 0 0 0 0 0 0 0 0 0 0 0 0 0
m25 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.6. Confusion matrix obtained from numerical damage quantification

tests - part 2. The columns represent the Target class, the rows contain the

predicted output class.

m14 m15 m16 m17 m18 m19 m20 m21 m22 m23 m24 m25
m1 0 0 0 0 0 0 0 0 0 0 0 0
m2 0 0 0 0 0 0 0 0 0 0 0 0
m3 0 0 0 0 0 0 0 0 0 0 0 0
m4 0 0 0 0 0 0 0 0 0 0 0 0
m5 0 0 0 0 0 0 0 0 0 0 0 0
m6 0 0 0 0 0 0 0 0 0 0 0 0
m7 0 0 0 0 0 0 0 0 0 0 0 0
m8 0 0 0 0 0 0 0 0 0 0 0 0
m9 0 0 0 0 0 0 0 0 0 0 0 0
m10 0 0 0 0 0 0 0 0 0 0 0 0
m11 0.65 0.01 0 0 0 0 0 0 0 0 0 0
m12 5.87 0.57 0.01 0 0 0 0 0 0 0 0 0
m13 22.22 5.79 0.54 0.01 0 0 0 0 0 0 0 0
m14 37.26 22.61 6.02 0.58 0.03 0 0 0 0 0 0 0
m15 26.11 36.80 22.59 5.68 0.59 0.03 0 0 0 0 0 0
m16 7.44 25.48 37.36 22.39 5.69 0.63 0.03 0 0 0 0 0
m17 1.07 7.13 25.36 37.59 22.51 5.58 0.69 0.03 0 0 0 0
m18 0.07 0.99 7.23 25 37.7 22.65 5.61 0.73 0.02 0 0 0
m19 0 0.07 1.04 7.19 24.59 37.95 22.68 5.69 0.66 0.12 0 0
m20 0 0 0.09 1.05 7.19 24.17 38.10 22.84 5.00 1.44 0.13 0
m21 0 0 0 0.09 1.06 7.19 23.96 37.89 18.63 9.59 1.56 0.04
m22 0 0 0 0 0.09 1.03 7.23 23.66 27.33 29.18 10.65 0.83
m23 0 0 0 0 0.01 0.43 3.48 15.18 23.21 36.09 19.29 2.32
m24 0 0 0 0 0 0 0.08 1 3.94 17.74 46.02 31.23
m25 0 0 0 0 0 0 0 0.07 0.47 4.59 26.23 68.64
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The problem concerning the number of misclassified samples is solved by

averaging the results obtained for each attempt to identify the i-th state:

by computing the means of the Ntot = Ntrain × Ntest indices DI
(i)
corr, and

finding the minimum among the mean values, the quantification turns out

to be correct in all cases.

DIcorr = [ 0.33634 0.30488 0.27477 0.24609 0.21891

0.19328 0.16923 0.14680 0.12600 0.11001

0.08936 0.07351 0.05930 0.04645 0.03575

0.02637 0.01855 0.01225 0.00743 0.00406

0.00208 0.00146 0.00160 0.00411 0.00730 ]

(4.8)

As noted in Eq.4.8, when applying the described procedure a correct iden-

tification of the target mass is achieved even for the m22 case, which was

previously confused.

4.5.2 Damage quantification tests using the ANN

In the following section, numerical tests are conducted exactly as reported

in Par.4.4.2. The training, validation and testing phases of the neural net-

work were conducted considering a total of 347 samples for each simulated

state. of samples . Specifically, the number of samples used in the training

were Ntrain = 200, the same as used in the validation of the DIcorr index.

Of these samples, 75% was used for the actual training and the remaining

25% for the validation phase. The remaining Ntest = 147 samples were

used in the testing phase.

Fig.4.9 and Fig.4.10 show the trend of the objective function and the

gradient calculated during training, respectively.

From the confusion matrix of Fig.4.11 the effectiveness of the method

based on the neural network compared to the one based on the correlation

coefficient can be appreciated. As can be seen, in fact, each sample of the

test set is correctly associated to the damage label to which it belongs: the

percentage of the elements in the diagonal of the confusion matrix is total,

as symbol that the variation of noise has been smoothed, even in this case

in which the index DIcorr was found to be less sensitive to the variation of

the parameter.
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Figure 4.9. Crossentropy parameter evaluated as performance index in the

training of network for quantification.

Figure 4.10. Trend of the gradient of the loss function during the training

phase of the ANN used for quantification.
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Figure 4.11. Confusion matrix evaluated for the damage quantification

problem.

4.6 Experimental tests

The tests performed in the numerical case are repeated by processing the

experimental data. In this case, the damage index DIcorr is calculated from

the comparison between the subspace matrices of the damaged states sim-

ulated with the FE model and those of the experimentally produced case.

The objective remains to locate the mass position and its magnitude.

Within the spirit of approaching the problem as on real structures, in this

case only some of the simulated states have been experimentally produced,

and for them the test set is composed of a limited amount of samples.

In particular, the cases reproduced for experimental validation of the

Table 4.7. Selected cases for experimental tests.

EXP. CASE position Mass

LOC1 p15 m10

LOC2 p17 m10

QNT1 p15 m10

QNT2 p15 m23
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method are those listed in Tab.4.7, for the study of localization and quan-

tification, respectively.

4.7 Experimental tests for damage localization

In this paragraph the results of the described procedure are shown. The

cases selected for the experimental tests are the LOC1 case and the LOC2

case from Tab.4.7: the subspace matrices produced by the time-series data

for these cases are compared with those obtained from the simulations with

the calibrated FE model. For each of the 25 simulated scenarios, a popu-

lation of Ntest = 200 samples was considered, for a total of 5000 samples.

Experimental data were acquired at a sampling frequency of 2000 Hz: an

high-pass filter with a cutoff frequency of 70 Hz was applied during pre-

processing, in order to clear low-frequency noises. The numerical data

underwent the same treatment, in order to have uniformity between the

data obtained with the two different procedures.

4.7.1 Damage localization using the subspace-based index

In the first test, the samples were compared with the experimentally recorded

data using the 2D-correlation index between the subspace matrices.

Fig.4.12 shows the results of the application of the method for the LOC1

case to be identified. As can be seen, the trend of the index value resembles

that obtained from the numerical tests reported in Fig.4.4: the influence of

the symmetry perform an important role even in the experimental case.

The process of localization involves the steps of defining the mean values

of the indices obtained for each of the attempt states, and then finding the

minimum. As can be seen from Fig.4.13, performing this procedure the

algorithm is able to recognize the correct position of the mass.

What interesting is that, in the correct position, the value of the index

does not go to zero, but deviates from zero to a greater extent than in the

numerical tests: the reason for this difference is to be found in the not-

perfect correspondence between the real behavior and that simulated by

the FE model. This difference was already highlighted in Ch.3 relative to

the model updating, and it is present also in this case. Despite this, the
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Figure 4.12. LOC1 case. Index trends for all simulated cases compared with

the experimental damaged case with mass at position p15.

Figure 4.13. LOC1 case. Damage index trend as the position of the mass along

the beam varies: average computed for the samples of each simulated case.
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method manages to identify with precision the right position of the mass.

Differently happens instead in the LOC2 test, in which the mass is moved

Figure 4.14. LOC2 case. Index trends for all simulated cases compared to the

experimental damaged case with mass at position p17.

to the p17 position: following what reported in Fig.4.14, the index trend

returns to reflect some symmetry with respect to the middle of the beam,

making localization more difficult.

Looking at the trend of the mean values in Fig.4.15, it can be seen that this

Figure 4.15. LOC2 case (mass in position p17). Damage index trend as the

position of the mass along the beam varies: average calculated for the samples of

each simulated case. The average values are represented with the respective

standard deviations.

causes the identified position to deviate slightly from the target position.

Despite this the right side with respect to the midpoint is recognized.
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4.7.2 Damage localization tests using the ANN

The training and validation phases of the neural network were conducted

considering a number of samples Ntrain = 280, of whom 75% for the actual

training and the remaining 25% for the validation set. The testing phase

was carried out with the experimental data.

The network training and classification algorithm for the purpose of damage

localization consists of the following steps, similar to that described in

Ch.4.4.2:

� Production of input data for the training: for each of the hypothesized

damage scenarios, Ntrain subspace matrices H are produced from the

FE model, varying the noise. Data are preprocessed before starting

the training phase;

� Definition of the network architecture and subsequent training phase:

in order for a network to be trained, it is necessary to define both the

parameters directly related to the architecture, i.e. the number of

layers constituting it and the number of nodes for each layer, and the

nature of the functions that establish the relationships between the

nodes. The network used for damage localization is a perceptron that

needs one hidden layer, with a number of inner nodes equal to 20.

The used activation function is the sigmoid - see Par.4.2.1. The loss

function considered during the training is the cross-entropy loss func-

tion. Given the targets vector t and output vector y, the cross-entropy

for each pair of output-target elements is calculated as:

(cross)i = −ti · log(yi)

to which is added the regularization term as in the case of the SSE

defined in Eq.4.5. The function has been preferred to SSE because

it returns a value that heavily penalizes outputs that are extremely

inaccurate (y near 1-t), with very little penalty for fairly correct clas-

sifications (y near t). The overall performance of the network is eval-

uated from the mean of the individual value;

� Classification of experimental data, coming from the test set: Ntest
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data coming from the experimental acquisition are preprocessed, then

tested to be recognized by the network. The output layer of the

network shows the values of the activation functions for each of the

simulated attempt classes: the one with the higher value is the one

predicted by the classifier. A check is made to find out if the predicted

class coincides with the target one.

The training and classification results are shown in the following figures.

Fig.4.16 shows the trend of the objective function during the training phase,

while in Fig.4.17 is represented the gradient calculated in the various iter-

ations: the low values of both functions symbolize the correct occurrence

of the training.

As an outcome of the training of the network and subsequent classification

Figure 4.16. Crossentropy parameter evaluated as performance index in the

training ofthe network for experimental damage localization.

Figure 4.17. Trend of the gradient of the loss function during the training

phase of the ANN used for experimental damage localization.
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of the LOC1 and LOC2 damage states, the vector representing the values of

the activation functions of the output layer is reported. Among the values

contained in each of the vectors, the greatest value is the one related to the

class predicted by the network.

hm10p15 = [ 1.59 · 10−06 1.52 · 10−07 0.00216 0.0640 2.644 · 10−06

1.37 · 10−07 1.69 · 10−11 1.013 · 10−08 9.27 · 10−09 2.25 · 10−06

2.01 · 10−07 1.10 · 10−06 1.12 · 10−04 4.04 · 10−04 0.931

1.13 · 10−05 1.34 · 10−06 2.36 · 10−05 9.39 · 10−08 4.33 · 10−06

4.71 · 10−06 1.27 · 10−06 0.00198 2.29 · 10−07 2.55 · 10−08 ]

(4.9)

hm10p17 = [ 6.63 · 10−06 2.36 · 10−05 2.93 · 10−06 1.10 · 10−07 6.53 · 10−10

1.49 · 10−05 0.00922 1.80 · 10−05 2.69 · 10−04 1.14 · 10−04

1.57 · 10−07 7.39 · 10−09 2.64 · 10−06 0.00199 1.42 · 10−07

3.14 · 10−05 0.981 0.00651 1.74 · 10−06 1.15 · 10−04

3.41 · 10−05 2.02 · 10−08 6.93 · 10−07 1.73 · 10−07 5.92 · 10−07 ]

(4.10)

As can be seen from Eq.4.9 and Eq.4.10, in LOC1 case, the largest compo-

nent of the vector of activations is the one at position 15, corresponding to

the target label p15. In the other case, the largest value is recorded for p17:

in both cases, therefore, the network correctly classifies the experimentally

produced damage states.

Note that the values contained in the two vectors are always in the range

(0,1), since the sigmoid (Eq.4.2) was chosen as the activation function. On

the other hand, the range of values would be (-1,1) if the hyperbolic tangent

had been chosen, ref. Eq.4.3. The values contained in the output vectors

are such that their sum is equal to unity: this characteristic makes them

in a sense synonymous with the probability that the network classifies a

certain class, either correct or wrong. Taking as an example the value of

0.931 of the first vector, the network classifies with almost absolute cer-

tainty that the class is the one corresponding to the component number 15

of the vector of labels, that is the class p15, precisely.

69



Ph.D. Thesis of Riccardo Cirella, University of L’Aquila

4.8 Experimental tests for damage quantification

What has been already described for the localization tests is also carried

out for the damage quantification tests.

The cases selected for the experimental tests are the QNT1 case and the

QNT2 case from Tab.4.7: the subspace matrices produced by the time-

series data related to them are compared with those obtained from the

simulations with the calibrated FE model. For each of the simulated sce-

narios, a population of Ntest = 200 samples was considered, for a total of

5000 samples.

Experimental data were acquired at a sampling frequency of 2000 Hz and

a low-pass filter with a cutoff frequency of 70 Hz was applied during pre-

processing. The numerical data underwent the same treatment, in order

to have uniformity between the data obtained with the two different pro-

cedures.

4.8.1 Damage quantification using the subspace-based in-

dex

In the first test, the samples were compared with the experimentally recorded

data using the 2D-correlation index between the subspace matrices.

Fig.4.18 shows the results of applying the method having selected case

QNT1 as the case to be identified. As can be seen from the figure, the

Figure 4.18. QNT1 case. Index trends for all simulated cases compared to the

experimental damaged case with mass of magnitude m10.

uncertainty related to the process is more pronounced than that related
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to the localization of the damage: within the different simulated cases, the

index values oscillate much more. This is clearer if look at Fig.4.19 in which

the mean values of the calculated indices are reported: as can be seen, the

standard deviations produce much wider confidence intervals than in the

localization case. Despite this, the proposed method manages to identify

Figure 4.19. QNT1 case (target mass value to identify: m10). Damage index

trend at the variation of the magnitude of the mass: mean calculated for the

samples of each simulated case. The mean values are represented with the

respective standard deviations.

the mass entity with a margin of error considered acceptable: referring to

the values of Tab.4.2 the predicted class is m11 corresponding to a mass of

1.46 Kg, compared to 1.33 Kg of the target class, m10, with a difference

of 9.7%.

The same results are obtained by analyzing the QNT2 case. Looking

Figure 4.20. QNT1 case. Index trends for all simulated cases compared to the

experimental damaged case with mass of magnitude m23.

directly at the trend of the average values of the index, it can be seen that,
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also in this case, the value of the mass identified by the algorithm differs

from the one actually applied on the beam. In this case, the value to be

Figure 4.21. QNT1 case (target mass value to identify: m23). Damage index

trend at the variation of the magnitude of the mass: mean calculated for the

samples of each simulated case. The mean values are represented with the

respective standard deviations.

identified is m23, corresponding to a mass of 2.67 Kg, while the identified

one is 2.84 Kg, belonging to the class m24, with a difference of 6.4%.

4.8.2 Damage quantification tests using the ANN

The training and validation phases of the neural network were conducted

considering a number of samples Ntrain = 340, of whom 75% for the actual

training and the remaining 25% for the validation set. The testing phase

was carried out with the experimental data.

The network training and classification algorithm for the purpose of damage

quantification follow the steps described in ch.4.7.2.

Fig.4.22 shows the trend of the objective function during the training

phase, while in Fig.4.23 is represented the gradient calculated in the various

iterations: the low values of both functions symbolize the correct occurrence

of the training.

As a result of the network training and subsequent classification of damage

states QNT1 and QNT2, the vector representing the values of the output

layer activation functions is reported. Among the values contained within

each vector, the largest value is the one related to the class predicted by
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Figure 4.22. Crossentropy parameter evaluated as performance index in the

training ofthe network for experimental damage localization.

Figure 4.23. Trend of the gradient of the loss function during the training

phase of the ANN used for experimental damage localization.
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the network.

hp15m10 =

= [ 5.01·10−03 1.08 · 10−08 0.000724 9.24 · 10−08 1.72 · 10−06

6.00 · 10−04 9.53 · 10−04 1.98 · 10−04 0.0018 0.0012

0.938 1.14 · 10−06 6.21 · 10−04 0.022 0.02279

1.20 · 10−03 3.105 · 10−04 1.68e− 06 0.00054 0.0024

8.00 · 10−04 0.0003 7.34 · 10−04 4.90 · 10−06 1.15 · 10−08 ]

(4.11)

hp15m23 =

= [ 5.43·10−11 3.12 · 10−07 2.50 · 10−04 4.25 · 10−03 2.12 · 10−03

3.51 · 10−05 6.73 · 10−05 1.07 · 10−05 5.01 · 10−04 5.51 · 10−11

3.31 · 10−07 4.96 · 10−04 8.53 · 10−04 5.37 · 10−06 2.86 · 10−06

9.93 · 10−07 2.48 · 10−04 2.76 · 10−11 1.75 · 10−05 1.35 · 10−04

1.09 · 10−10 5.73 · 10−06 6.25 · 10−07 0.991 1.66 · 10−07 ]

(4.12)

As can be seen from the representations of each vector in Eq.4.11 and

Eq.4.12, the activation functions with the largest value are those of the

node 11 (m11, instead of the target value m10) and 24 (p24, instead of the

target value m23), for the QNT1 and QNT2 test respectively. Tests per-

formed by neural network training also suffer from a slight misclassification

error.

It is estimated that this error can be therefore due to the not perfect cali-

bration of the model regarding the real behavior: this difference, evidenced

also from a value of the index not perfectly equal to zero, influences less in

the problem of the localization of the damage than that of quantification,

due to the lower sensitivity of the index to mass entity variations.

4.9 Experimental damage localization and quan-

tification procedure

In the previous paragraphs, the localization and quantification cases were

studied separately, with the aim of analyzing the peculiarities of each prob-

lem .
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The purpose of the activities described in this section is to evaluate the

effectiveness of the method in simultaneously identifying the location and

magnitude of the applied mass.

Because of the amount of data necessary to the training of a neural net

that includes all the cases to consider, inside the section only the method

based on the calculation of the index DIcorr is applied.

Following what emerged in the previous paragraphs, the point of optimum

is evaluated by calculating the mean value between the indices obtained

for each attempted state, and then verifying if the minimum between them

corresponds to the target state.

The tests performed are exclusively of experimental nature, and refer to

the damage states already described in Tab.4.7: in this case, the number of

simulated scenarios was increased by dividing the position and mass value

ranges into 50 steps, for a total of 2500 simulated damage scenarios.

The results obtained are summarized in Fig.4.24 - 4.26. For every case
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Figure 4.24. Case LOC1: variation of the objective function related to

variations in the entity of the mass and of its position along the steel beam. The

white cross indicates the identified minimum, the vertical cross the target point.

analyzed, the objective function is symmetrical with respect to the middle

of the beam, whatever the mass value considered. Despite the symmetry

problem, the value of the mean index is smaller in the side where the mass

is actually situated, allowing its localization.

As can be seen from the figures and from Tab. 4.8, the minimum point

identified by the algorithm is slightly different from the real values. It is

noted that the algorithm succeeds in identifying the position of the mass
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Figure 4.25. Case LOC2: variation of the objective function related to

variations in the entity of the mass and of its position along the steel beam. The

white cross indicates the identified minimum, the vertical cross the target point.

with a good precision, but shows more uncertainties in defining its magni-

tude.

Thus, what emerged confirms the evidence that the method is less sensi-
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Figure 4.26. Case QNT2: variation of the objective function related to

variations in the entity of the mass and of its position along the steel beam. The

white cross indicates the identified minimum, the vertical cross the target point.

tive to variations in mass magnitude than to variations in mass position.
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Table 4.8. Experimental damage detection tests: identified and target cases.

Identified Target delta
EXP. CASE pos. (mm) mass (kg) pos. (mm) mass (kg) ∆p (%) ∆m (%)

LOC1 p27 1355 m13 1.03 p28 1406 m19 1.33 -3.6% -22.6%

LOC2 p34 1720 m13 1.03 p34 1720 m19 1.33 0.00% -22.6%

QNT2 p27 1354 m38 2.36 p28 1406 m44 2.67 -3.6% -11.6%

4.10 Conclusions

In this chapter, a damage localization and quantification algorithm based

on subspace matrices was applied. Two methods have been adopted: the

first is based on the use of a subspace based index as an objective function

to be minimized in a discrete optimization algorithm, in order to find the

maximum similarity between the produced damaged case and the attempt

ones. In the second method, subspace matrices were directly adopted as

features, and an artificial neural network was trained to classify the dam-

age. Both methods were tested numerically and experimentally on a simple

beam structure, producing damage by applying a point mass to the beam.

The tests therefore investigated the effects of varying the position of the

mass along the beam and varying the magnitude of the mass itself, leading

back to the aforementioned problems of mass location and quantification.

Due to the impossibility of damaging a real structure to reproduce all dam-

aged scenarios, in all tests these latter have been simulated by means of

an FE model. The FE model used is the one whose updating has been

described in the previous chapter, in order to have the best possible match

between the simulations and the behavior of the real structure.

In each test, several simulations have been done, varying the excitatory

noise, in order to test the proposed methods in the best possible way.

A first data-driven approach has been carried out to study the value of

the index as the position of the mass varies, comparing it with those from

the undamaged state (with no applied mass): from this comparison, it ap-

pears that the only data-driven method is not sufficient to go beyond the

anomaly detection (level 1 of Rytter’s damage detection scale), confirming

what already emerged in the literature: the index-function is not injective

with respect to the variable-position.
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The data-driven approach applied by varying the entity of the mass, fixed

in the same position, has led to an interesting observation: the index, cal-

culated as in the previous case, grows as the applied mass increases, in a

monotonic way in the range considered. In order to estimate the extent

of the damage (level 3 of Rytter’s scale) it would be possible to do some

data-driven reasoning evaluating the relative variation of the index from a

initial state to the current one, to monitor the development of the damage.

Applications to real problems could be, for example, the evaluation of the

progress of degradation in an already localized area of a structure, or the

fatigue damage in metal joints.

Simulations by means of the FE model are necessary, however, where a

specified damage magnitude or position is actually to be classified in rela-

tion to others.

Numerical tests based on the calculation of the damage index DIcorr showed

that this one is more sensitive to variation in the position of the mass, rather

than to variation in its magnitude.

The mass localization problem on the structure-test has also highlighted the

dependence of the results on the symmetry of the system: the confusion

matrix related to the localization problem has in fact shown the presence

of misclassified cases not only near the position to be identified (as is one

would expect), but also in positions symmetrical with respect to the latter.

The problem of identifying the mass entity is instead related to a lower

sensitivity of the index itself towards the mass variation. In fact, the re-

sults have shown that the percentage of misclassified samples is higher than

that found in the localization problem, and in some cases even exceeds that

of true positives. The low accuracy problem was solved by averaging the

indices obtained for each of the simulated cases, and then comparing them

to estimate the minimum. The expectation is that the minimum of the av-

eraged function-index would identify precisely the correct location or mass.

Application of this method resulted in the correct classification of the to-

tality of the hypothesized cases, for both location and quantification cases.

The choice to delve into a method based on training a neural network stems

in part from the desire to resolve any errors due to noise.

The neural network, through the training phase, stores information on the
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inputs which results to be mainly independent from the generating noise.

The network for the localization and quantification of the damage is a clas-

sifier, trained according to the methods of supervised learning: the param-

eters considered as input features are directly the subspace matrices, which

during the training phase have been provided to the network, specifying

the class label to which they belonged. Subsequently, the validity of the

network in correctly classifying the various damage scenarios was assessed

with a test set. The efficiency of the algorithm was assessed evaluating the

confusion matrix. In each case, the network correctly recognizes the target

cases to be identified.

The experimental tests followed what was done in the numerical ones: even

in this case, the classification results were positive. However, both in the

case of localization and identification of the mass entity, the proposed meth-

ods classified the damage class with a slight inaccuracy, which is however

considered acceptable. It is believed that this inaccuracy is due to the fact

that the FE model, although calibrated in the preliminary phase, does not

perfectly match the behavior of the real structure.

The last test was carried out to simultaneously identify the magnitude of

the mass and its position.

Tests confirmed the particularities already noted in previous cases: the

damage index is less sensitive to the variation of the mass entity than of

its position.

It is believed that this inaccuracy is due to the fact that the FE model,

although calibrated in the preliminary phase, does not perfectly match the

behavior of the real structure.

The proposed methods seem therefore to be promising in their application

to damage detection problems: in the next chapters, the same methods will

be applied to the anomaly detection of a real structure.
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Santa Maria di Collemaggio

in L’Aquila: introduction to

the case study

Chapter abstract

The monitoring of real structures represents a challenge for the

research, because it approaches structures having their own his-

tory and peculiarities. Among all kinds of structure, historical

buildings take on even greater interest, given their cultural value.

Often, the complexity of the monitored structure makes it diffi-

cult to reproduce its behavior through a numerical model. For

this reason, the literature of recent years treated cases of mon-

itoring and damage detection based on data-driven approaches.

In this chapter the case study, the Basilica of Santa Maria di

Collemaggio, in L’Aquila, is presented. Following the restoration

interventions after the 2009 earthquake, a static and dynamic

monitoring system has been installed in the Basilica: the chapter

reports the results of the monitoring for a period of three years,

from the date of its installation until 2020, with the aim of better

understand the dynamic behavior of the structure. It has been

noted that the dynamic behavior of the structure is strongly in-

fluenced by environmental effects, and there is the presence of a

slow process of decay of natural frequencies.

This chapter represents a preliminary knowledge phase of the ar-

tifact: it introduces information on the dynamic behavior of the

Basilica which is necessary for the anomaly detection procedure,

described in the next chapter.
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5.1 Introduction

Monitoring of historical structures has been the subject of research interest

in the last decade. In this period, the study of these structures has brought

out and tackles problems with substantial differences based on the case

study structure.

Examples of such monitoring are the work by Ramos et al. (2010), which

focuses on monitoring a cathedral, the works of Azzara et al. (2018); Saisi

et al. (2015); Ubertini et al. (2017) who have studied the behavior of ma-

sonry towers; in Kita et al. (2019), the results of a monitoring campaign on

a historic palace are reported, with the study of the influence of environ-

mental parameters on the structural response. Focusing on churches, a few

research groups, mainly concentrated in the Mediterranean area, dedicated

their research efforts to this topic: Ramos et al. (2010) and Masciotta et al.

(2017, 2016) monitored the Church of Monastery of Jeronimos. Elyamani

et al. (2017) monitored the Mallorca cathedral (Mallorca Island, Spain) un-

der ambient sources of vibration and seismic events. Gentile et al. (2019)

reported on the long-term monitoring of the Milan cathedral.

Research activity by the University of L’Aquila regarding the Basilica of

Santa Maria di Collemaggio began in the early nineties. From that period,

numerous studies have been conducted, regarding phenomena affecting the

Basilica in different disciplines, from historical (Lopardi (2002)), archaeo-

logical (Redi (2006)), architectural (Baiocchi et al. (2017); Brumana et al.

(2018); Moretti (1972); Oreni et al. (2014)), structural (Aloisio et al. (2019a,

2020b, 2019b); Antonacci et al. (2020, 2001b, 2010); Crespi et al. (2016);

Ranalli et al. (2004); Sfarra et al. (2015); Zucca et al. (2018)), geotechnical

(Amoroso et al. (2018); Totani et al. (2016)) and even energetic (Aste et al.

(2016)) perspectives. First studies on the dynamics of the Basilica appear

in works by (Aloisio et al. (2020a); Antonacci and Beolchini (2005); An-

tonacci et al. (2001a); Galeota et al. (2019, 2015); Potenza et al. (2015)).

Although the literature has therefore investigated the Basilica from every

point of view, it should be noted that so far no study had addressed the

issue of long-term monitoring.

After the 2009 earthquake in L’Aquila, the University of L’Aquila, the Uni-
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versity La Sapienza in Rome and the Politecnico in Milan supported the

design phase of the restoration, supervised by the Soprintendenza ai Beni

Architettonici e Paesaggistici per l’Abruzzo.

The University of L’Aquila was further commissioned to conceive a moni-

toring system, which could operate during and after the rehabilitation. In

the first working phase, the monitoring system provided the construction

manager with a survey tool about structural interventions.

The significant number of accelerometers allows a refined resolution of the

mode shapes and may give enough information to reliably estimate the

evolution of the structural condition of the Basilica, especially after seis-

mic events. Since its permanent installation in 2017, data coming from the

monitoring system have been acquired with a frequency that has varied

over the years, from the initial weekly acquisitions up to the daily cadence

since 2020: from this amount of data were occasionally extracted and pro-

cessed dates, in order to perform a sort of manual modal tracking.

In this chapter, the results deriving from the automatic processing of the

acquisition data of the system installed in the Basilica are presented. The

results for the period 2018/2019 are reported, in order to provide a knowl-

edge base of the dynamic behavior of the structure, which was preparatory

to the activities carried out subsequently and reported in the next chapter.

Results evaluated from the static minitoring system are described in Alag-

gio et al. (2021).

5.2 Description of the Basilica

The Basilica of Santa Maria di Collemaggio is a large medieval church in

L’Aquila, central Italy. The Basilica, built at the end of the 13th century,

is linked to the history of San Pietro da Morrone and his election as Pope

Celestino V (Giardini et al. (2006)), is one of the most important churches

in L’Aquila. Placed on the top of a hill in the city, it has its main axis

oriented in an east-west direction, with the apse in a dominant position

with respect to the underlying Aterno valley. On the southern side of the

church is the monastery, with a cloister and numerous additional bodies.

The elegant Romanesque façade has the appearance of a wall, with a cen-

tral door, embellished in the 15th century, and two smaller flanking doors.
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The Basilica consists of three naves, one central and two side. The central

(a) (b) (c)

Figure 5.1. (a) Facade, (b) interior, (c) Holy Door

nave has dimensions of 61 meters in length by 11.30 meters in width, with

a maximum height of 20.40 meters. The two side ones, on the other hand,

are about eight meters wide, with a maximum height of 15 meters.

The three naves are marked by 14 octagonal pillars that support pointed

arches. The hall is separated from the transept by a triumphal arch grafted

onto two large pillars, with a poly-lobed section with a diameter of 2.9 me-

ters. Exposed wooden trusses cover both the hall and the transept.

Adjacent to the Basilica is the monastery with the cloister. A mighty

octagonal tower is next to the facade. The church has been remodeled sev-

Figure 5.2. Collapse of the roof in the transept area following the 2009

earthquake.

eral times over the centuries mainly due to the damage caused by frequent

earthquakes and presents a mixture of different architectural styles.

After the 2009 earthquake, the structure was seriously damaged: the sub-

sequent consolidation and restoration works ended in 2017 and won the

European Union cultural heritage award in 2020.
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5.3 The Monitoring systems

The permanent monitoring system consists of nine crack measurement de-

vices, 78 Force-balance accelerometers(FBA): 2 triaxial, 12 biaxial, and 48

monoaxial, and five temperature/humidity sensors.

The crack measurement devices are high precision triangulation lasers with

a 25mm measuring range, 0.03mm linearity and 2.5µm reproducibility.

FBA accelerometers are characterized by a 2.5V/g sensitivity.

Fig.5.3 illustrates the distribution of sensors within the Basilica. The

(a)

(b)

Figure 5.3. (a) Plan of the monitoring system; (b) layout of the facade FBA

accelerometers.

accelerometers are connected to five control units devoted to the signals

acquisition and digitalization. Each control unit gathers several accelerom-
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(a)

(b)

(c)

Figure 5.4. Prospect view of the layout of the FBA accelerometers on the Holy

Door wall (a) and the adjacent nave walls (b)-(c).

eters sorted by installation areas, in order to minimize the length of the

cables. Each control unit communicates via LAN to the data collection

and processing computer (workstation) which is inside the sacristy. Each

control unit interfaces with a GPS master clock which transmits every sec-

ond a synchronization signal in the NMEA format via the RS422 interface;

the string contains the absolute time data used to reference each record-

ing. The data loggers autonomously ensure the synchronization with an

accuracy higher than 40 parts per million (40 p.p.m.) in case of a tran-

sient interruption of the GPS signal. The system can record and report

any interruptions in the GPS signal, which may last longer than a given

threshold. The software Dymasoft drives the communication with the ac-

celerometer acquisition units. The monitoring system, which acquires the

signals streaming from the accelerometers, is set in the so-called event ac-

quisition mode. In this mode, the system launches the acquisition when

the signal triggers the alarm threshold and sends reports to users.
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(a) (b) (c)

Figure 5.5. Position of the accelerometers on the facade (a), the nave walls (b)

and the apse (c).

The current value of the alarm threshold is 0.05g. The threshold does not

derive from a rigorous assessment regarding the relationship between the

exceeding of given thresholds and the corresponding exceeding of safety

levels. The installer initially set the low value of the threshold with the

scope of gathering as many valuable recordings as possible. There are five

leading software: (1) Solgeo Dymasoft for the management and configu-

ration of the acquisitions, the setting of the recording thresholds, type of

trigger, e.g.; (2) Solgeo Vibrosoft for the sole processing of the accelero-

metric signals; (3) the Vista Data Vision for the management and display

of the data recorded by the alarm monitoring and management system;

(4) Cyclops and (5) BeanScape for the acquisition of laser measurements

and data from the thermo-hygrometers respectively. Hereafter follows a

few technical details about the data loggers (Fig.5.6(e)): 24-bit digitaliza-

tion per each channel, integrated digital antialiasing filter up to 48 channels,

sampling rate selectable in the range 10Hz to 8kHz, bandwidth DC – 4 kHz,

dynamic range higher than 134 dB, programmable gain filter antialiasing,

cut-off frequency 0.4 of the sample rate.

Crack monitoring devices are placed over historically relevant cracks, by

the apse, the chapel vaults and the nave arches. The crack monitoring de-

vices are connected to the workstation directly via cable.

The thermo-hygrometers communicate directly with the workstation via

Wi-Fi routers, which collect data from the sensors.
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(a)

(b) (c)

(d) (e)

Figure 5.6. (a) Layout of the crack monitoring devices and (b) a crack

monitoring device placed on a significant crack; (c) an FBA accelerometer, (d) a

thermo-hygrometer, (e) data logger.
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5.4 Dynamic monitoring

The following paragraph presents the results coming from the dynamic

monitoring system, in the observation period. The data come from ac-

celerometric chains arranged throughout the Basilica. Acquired data from

the sensors placed in the apse were not considered: the apsidal body, being

much more rigid than the remaining portion of the structure, seems insen-

sitive to accelerations due only to environmental excitations.

The first part introduces the results of dynamic identification in terms of

modal parameters. The following parts collect the natural frequencies and

MAC (Modal Assurance Criterion) values identified from all time-series

and relate them to the outdoor environmental parameters: temperature

and relative humidity.

5.4.1 Modal identification

The implemented modal identification process involves the search for modal

parameters based on the SSI method, already introducedin Ch.3.

The monitoring system acquires data at a sampling frequency of 250 Hz:

following some preliminary tests, it was decided in the preprocessing phase

to decimate the signal by a factor Nd=20. In this way, a higher quality of

the signal was noticed in the frequency range of interest.

SSI identification technique needs some parameters to be defined: in par-

ticular, the time lag i and the model order n.

To clearly define the order of the system, it is good practice to build the sta-

bilization diagram, which shows the poles identified as n increases: within

the graph, physical modes appear stable as order increases. The built of

the diagram requires the selection of a minimum and maximum order, nmin

and nmax respectively.

Generally, the minimum order descends from a preliminary manual identi-

fication, roughly estimated as the double of the number of modes expected

in the considered frequency interval.

The effort in identifying the weekly excited modes, which appear at higher

orders, guides the choice of the maximum order. Still, higher orders could

lead to the generation of spurious modes and other phenomena, i.e. modal
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splitting: therefore, it must be kept as low as possible.

For the application presented, the value of the parameters has been chosen

after some test to be pair to i = 30, nmin = 40, and nmax = 150.

The implemented modal identification algorithm is based on the one pro-

posed by Cabboi et al. (2017), and extracts the parameters autonomously,

allowing to quickly process the data of all the available dates.

The algorithm is a useful tool to evaluate the results of the stabilization dia-

gram automatically: it selects the stable poles according to predetermined

and self-calibrated criteria, and then generates clusters by collecting the

poles with similar frequencies and mode shapes, as the order n increases.

The clustering leads to the identification of the most stable modes.

The algorithm is set to discard damping ratios higher than 10% - which

hardly occur in masonry buildings - in order to increase the efficiency of

the identification. It verifies the stability of the poles as the order of the

system increases. There is a cross-checking between each pole of the i-th

model order and the previous one, according to the following criteria:

∣∣∣∣fi − fi−1

fi−1

∣∣∣∣ ≤ δf (5.1)

∣∣∣∣ξi − ξi−1

ξi−1

∣∣∣∣ ≤ δξ (5.2)

1−MAC (φi, φi−1) ≤ MACthr. (5.3)

where fi, ξi and φi are the natural frequency, damping and mode shape

registered for each pole of the i-th order, i = nmin + 1, ..., nmax from the

i-th iteration; MACthr = 0.02 is the threshold MAC value; δf = 0.01

and δξ = 0.01 are the adopted tolerances for the natural frequencies and

damping ratios.

Fig.5.7 shows the stabilization diagram obtained for a selected date, before

and after the clustering.

Before proceedings with the identification for all the available dates, a

date was selected: for it, the modal parameters identified by the algorithm

were compared with those obtained from the ARTeMIS software. Results of

the comparison presented in Tab.5.1 prove the validity of the implemented

algorithm.
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(a)

(b)

Figure 5.7. Example of stabilization diagrams obtained before (a) and after (b)

the application of the identification and selection algorithm.

Table 5.1. Comparison between modal parameters identified with the

automatic alghoritm and modal analysis.

Automated procedure Manual analysis

Mode Fmean ξmedian Fmean ξmedian

1st 2.11 1.16 2.10 1.10
2nd 3.11 0.75 3.11 0.83
3rd 3.26 1.04 3.27 1.07
4th 3.83 0.94 3.80 0.68
5th 4.55 0.95 4.49 1.5
6th 4.95 0.87 4.97 0.9
7th 5.40 0.91 5.39 0.9
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5.4.2 Modal tracking

Modal tracking phase is crucial for knowing the trend of modal parameters

over time.

The tracking algorithm, also automatic, must take into account the varia-

tions to which the modal parameters may be subjected during the seasonal

cycle, in such a way as to be able to discriminate physiological behaviors

from anomalous ones.

The selection of the representative modes of the structure heads the assess-

ment of their evolution over the year.

The following hypothesis is the basis of the implemented algorithm: if any

anomaly occurs, the natural frequencies oscillate in a limited range around

the reference frequency. In this tolerance range, the implemented algorithm

selects the mode with the highest MAC among all.

Often, the tracking process generally requires a set of modal parameters to

be chosen as reference for the subsequent iterations.

In most cases, there is a fixed reference compared to the modal parameters

identified from the other recordings: as will be seen in the next paragraphs,

it was possible to follow this approach in the case of the first four modes,

which mainly affect the deformation of nave walls, by choosing the first

available data of January 2018 as a fixed reference.

The upper modes were tracked applying a shifting reference: once com-

pleted the tracking procedure in the i-th iteration, the process updates

the reference data set with the last one identified. This determination de-

pends on the fact that fifth and seventh modes, mainly localized in the

facade, show substantial variation over time both in frequency and shape.

Consequently, the setting of a fixed reference data would not have allowed

grasping these changes.

5.5 The dynamics of the nave walls

5.5.1 Modal identification

The first four identified modes can be reconducted to the dynamic of the

nave walls.
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The first mode at 2.09Hz (Fig.5.8(a)) interests the displacement of all mea-

surement points in the same direction. The displacement is consistently

low in the apse comparing to the nave walls motion: the apse is very rigid

compared to other parts of the Basilica. The particular mode shape possi-

bly originates from the Cross Laminated Timber (CLT) ceiling, behaving

like a rigid diagram which imposes the same displacement to the nave walls

summits. The higher modes affect the bending of the nave walls. The sec-

(a) 1st m. 2.1Hz ξ ≈ 1.25% (b) 2nd m. 3.1Hz ξ ≈ 1.19%

(c) 3rd m. 3.3Hz ξ ≈ 1.10% (d) 4th m. 3.8Hz ξ ≈ 1.27%

Figure 5.8. Illustration of the mode shapes of the nave walls, where m. stands

for mode and ξ is the average modal damping.

ond mode at 3.11 Hz (Fig.5.8(b)) mainly regards the change of direction

along the vertical: the measurement points by the top of the columns move

oppositely to those by the CLT ceiling. Moreover, the phases of the two

nave walls are opposite. The third mode at 3.27 Hz (Fig.5.8(c)) mainly

concerns the change of direction of the measurement points along the lon-

gitudinal direction, like a second bending mode. The fourth mode at 3.82

Hz (Fig.5.8(d)) is quite twisted: it is a sort of third bending mode shape.

92



Tab.5.2 reports the cross MAC between the identified modes in Fig.5.8.

The terms out of the main diagonal are shallow: the mode shapes are dis-

similar between each other and distinctly identifiable.

The apse is quite massive, and participate to the identified mode shapes

Table 5.2. Cross MAC between the identified mode shapes.

2.09 3.11 3.27 3.82

2.09 1 0.04 0.009 0.004
3.11 0.04 1 0.006 0.004
3.27 0.009 0.006 1 0.151
3.82 0.004 0.004 0.151 1

with much lower deformation than the other structural members due to

its significant stiffness. The investigation of the apse dynamics requires

dedicated efforts and will be the object of future studies. The dynamic

Table 5.3. Evolution of the natural frequencies, before and after the 2009

earthquake and, after the restoration.

Before 2009 Antonacci et al. (2001a) Since 2017

1st mode [Hz] 1.25 2.09
2nd mode [Hz] 1.72 3.11
3rd mode [Hz] 2.35 3.27
4th mode [Hz] 2.44 3.82

identification carried out before the restoration by Antonacci et al. (2001a)

evidenced four modes (see Tab.5.3), resembling the ones in Fig.5.8 with the

following natural frequencies: 1.25, 1.72, 2.35 and 2.44 Hz. The structural

interventions following the 2009 earthquake produced meaningful differ-

ences on the corresponding natural frequencies, which have increased of

66.80%, 80.99%, 39.15% and 59.35% respectively; the average increment of

the current four natural frequencies is approximately 60.82%, compared to

the structural behaviour before the 2009 earthquake. The identification in

operational condition, based on the current measurement set-up, marks a

significant localization in the mode shapes, i.e. many mode shapes show

significantly higher displacement in some parts rather than in others. As

illustrated in Fig.5.8, the modes between the 1st and the 4th (2.1 – 3.8 Hz)

affect almost exclusively nave walls. Although the Basilica can be consid-

ered as an elastic continuum, the localization of deformation produce the

potential uncoupling of the macroelements responses, which are the facade

and the nave walls.
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5.5.2 Long-term monitoring

The natural frequencies identified from each set of time-series are concate-

nated and reported in Fig.5.9. Tab.5.4 evidences two concurring trends:

the natural frequency oscillates between seasons; the natural frequencies

are lightly decreasing in the entire period. The first observation is in full

line with the findings by Azzara et al. (2018); Gentile and Saisi (2007);

Masciotta et al. (2017); Ramos et al. (2010): the environmental parame-

ters sensibly affect the natural frequencies. The second aspect does not

occur in any case study, it is peculiar of the Basilica. Tab.5.5 shows the

Figure 5.9. Variation of the natural frequencies and MAC of the detected

modes during the investigated period. Red dashed line represents the moving

mean of the samples, reflecting frequencies seasonal variation, blue straight

interpolating line indicates its general decrease over time. The MAC values refer

to a fixed set of modes corresponding to the recordings of 01/01/18.

maximum and minimum values of the linear correlation reported as a solid

line in Fig.5.9. The natural frequencies of the nave walls exhibited a 0.1

Table 5.4. Statistical description of the frequency and MAC values.

Mode
Frequency [Hz] MAC

Mean Variance Mean Variance

1st 2.07 0.002 0.99 5.793×10−4

2nd 3.08 0.002 0.99 4.408×10−4

3rd 3.22 0.002 0.99 1.502×10−4

4th 3.77 0.002 0.99 1.046×10−4

Hz decrement. There are no detectable variations of the mode shapes: the

MAC values, estimated to a reference set of mode shapes, stand approx-

imately constant and close to 1, see Fig.5.9. The nave walls, which are

bound together by the top CLT roof, are anchored to the nave walls and
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Table 5.5. Decrease of the natural frequency according to the linear regressions

in Fig.5.9.

Mode fin[Hz] ffin [Hz] ∆f

1st 2.12 2.02 -0.10
2nd 3.14 3.01 -0.13
3rd 3.29 3.15 -0.14
4th 3.84 3.69 -0.15

the facade by threaded steel bars.

The reason of this decrement may derive from the behaviour exhibited by

the constituent materials over time. a more detailed description of this

hypothesis can be found in Alaggio et al. (2021).

The natural frequencies are correlated to the outdoor temperature and the

relative humidity, even if the latter does not yield significant correlations,

see Fig.5.11. Conversely, the temperature values return good correlations,

evidenced by the linear fitting in Fig.5.10. This negative dependence of the

Figure 5.10. Correlation between the natural frequencies of the identified

modes and the outdoor temperature (from 1/01/2018 to 31/12/2019).

natural frequencies to the outdoor temperature was observed in few cases:

the Milan cathedral (Gentile et al. (2019)) and the Consoli Palace in Gub-

bio (Kita et al. (2019)). According to Gentile et al. (2019), the negative

frequency-temperature correlation in the Milan Cathedral originates from

the structural arrangement, consisting of double vault system constrained

by an extended net of metallic tie-rods.

Kita et al. (2019) attributed the trend of the natural frequencies to an in-

crease in global structural stiffness due to strengthening effects of metallic
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reinforcements (tie rods shortening at lower temperatures) and the pres-

ence of a moderate structural damage state in the Palace.

In the current case, the trand may be due to the presence of the Cros-

Laminated Timber roof and of its thermal properties.

(a)

Figure 5.11. Correlation between the natural frequencies of the identified

modes and the outdoor Relative Humidity (from 1/01/2018 to 31/12/2019).

5.6 The dynamics of the façade

5.6.1 Modal identification

The fifth, sixth and seventh modes mainly involve the façade, rather than

the nave walls (Fig.5.12). They are all characterized by out-of-plane dis-

placements most visible in the upper part, free, at their rear, from the nave

walls constraints.

The fifth mode, at 4.5 Hz (Fig.5.12(a)), shows the bending of the façade

by the rose window, while the modal components given by the sensors at

the top edges have the same directions.

The sixth mode at 4.8Hz highlights the phase opposition of the displace-

ment of the two upper edges of the façade and a deflection above the portal

(Fig.5.12(b)).

The last identified mode is similar to the fifth. The main difference lies in

a shallow deflection occurring by the middle of the façade.
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(a) 5th mode 4.5Hz ξ ≈
1.5%

(b) 6th mode 4.8Hz ξ ≈
0.9%

(c) 7th mode 5.2Hz ξ ≈
0.9%

Figure 5.12. Illustration of the façade mode shapes, ξ is the averaged modal

damping.

5.6.2 Long-term monitoring

Fig.5.13 presents the results of the modal tracking of the modes associated

with the façade. The same trends of the previous modes cn be found: the

seasonal fluctuations of frequencies and their slight decreasing over time.

However, the seasonal fluctuations are more marked than those in the pre-

vious modes.

Tab.5.7 shows the maximum and minimum values of the linear correlation

(a) 5th m. 4.5Hz ξ ≈ 1.5% (b) 6th m. 4.8Hz ξ ≈ 0.9%

(c) 7th m. 5.2Hz ξ ≈ 0.9%

Figure 5.13. Variation of the natural frequencies during the year. The red

dashed line represents the moving mean of the samples, the blue straight

interpolating line indicates its general decrease over time.
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Table 5.6. Statistical description of the frequency and MAC values.

Mode
Frequency [Hz] MAC

Mean Variance Mean Variance

5th 4.38 0.016 0.92 6.30×10−3

6th 4.78 0.018 0.94 2.63×10−3

7th 5.14 0.036 0.89 0.031

reported as a solid line in Fig.5.13.

An impressive phenomenon affects the fifth and seventh modes: not solely

Table 5.7. Decrease of the natural frequency according to the linear regressions

in Fig.5.13.

Mode fin[Hz] ffin [Hz] ∆f

5th 4.44 4.32 -0.12
6th 3.14 3.01 -0.13
7th 3.29 3.15 -0.18

their natural frequencies decrease during the hot season, but their shape

and the mutual distance between the frequencies do change during the year,

almost cyclically in both the years under investigation.

In order to better understand what happens, dates belonging to two differ-

ent seasons have been compared: as evidenced by Tab.5.8, the frequencies

vary between 3% and 8% among January and September.

The MAC between modal shapes proves a similarity between the 5th mode

Table 5.8. The identified frequencies in January and September, 2019.

Mode Jan Sept ∆f (%)

5th 4.43 4.28 -3.3
6th 4.82 4.43 -8.0
7th 5.14 4.85 -5.6

of September and the 7th mode of January and vice versa (Tab.5.9). The

sixth mode does not seem to be affected by changes in shape.

Fig.5.14 shows the one-year variations of the 5th and 7th natural frequen-

cies, adimensionalized to the fifth mode, compared to the temperature val-

ues. The increase in temperature, typical of the summer season, leads the

frequencies to approach each other.

The mode shapes change during the year: the two mode shapes mutate

until reaching the maximum similarity in June, and then they exhibit the

complete shape inversion between August and September, in which tem-

perature attains the highest values.
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Table 5.9. MAC evaluated between the modes of the façade identified in

January and in September, 2019.

Mode 5thJan 6thJan 7thJan

5thSept 0.685 0.002 0.901
6thSept 0.130 0.905 0.150
7thSept 0.689 0.266 0.567

Figure 5.14. Evolution of the fifth and seventh natural frequency,

adimensionalized to the fifth. The dash-dot line interpolates the data associated

with the seventh mode. The pictures of the mode shapes correspond to the

indicated dates. Below, the trend of temperatures in the same period. Data

correspond to acquisitions recorded at the same hour (2 pm) between January

and September, when temperature progressively rises.

Subsequently, the arrival of the cold season determines the reversed pro-

cess: both the mode shapes return to their starting states.

The phenomenon is strongly related to temperature: the variation of the

two mode shapes is synthetically described by introducing the R parameter,

defined as

R =
dF9

dF5
(5.4)

Referring to Fig.5.3, the parameter represents the ratio between the out-

of-plane mode components in points F9, on the left top of the façade, and

F5 on the opposite side. Fig.5.15 shows the value of the R parameter

associated with the 5th and the 7th modes, which have opposite tempera-

ture correlations. The intersection of the two interpolating lines identifies

a value of R approximately equal to one, meaning that the modal displace-

ments of the two upper edges of the façade coincide, for both modes. The

abscissa of the intersection point marks a temperature of about 20 degrees,

attributable to that recorded in June.

The trend of frequencies of the 7th mode evidences a slight increase at the
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Figure 5.15. R Ratio evaluated for both the 5th mode (blue) and the 7th (red).

end of August, while the temperature still increases.

Although samples recorded in this month are too scarce to yield a sound

validation, the overall phenomenon partially resembles that of mode in-

teraction typical of frequency veering, well known in structural dynamics

Benedettini et al. (2009).

This particular behaviour could be due to local effects related to the influ-

ence of temperature on the elastic parameters of the structure.

5.7 Conclusions

In this chapter, the case study was presented: the data of the monitor-

ing system, both static and dynamic, highlight a complex behavior of the

Basilica.

It has been noted that the behavior of the entire building can be essentially

divided into that of three main macroelements: longitudinal and nave walls,

rigidly connected by a CLT roof, the orthogonal façade and the apse area,

which is extremely more rigid, if compared to the other two bodies.

This division will be examined in more detail in the following chapter,

in which data belonging to a psudo-damaged state will be analyzed and

threaten according to the the techniques of anomaly detection.

The apse, given its excessive rigidity, is almost insensitive to environmental

excitement: it has therefore been neglected for the purposes of the analy-

sis.

Both the nave walls and the façade, on the other hand, register a phe-

nomenon that has already been verified in other investigated structures in
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literature, namely the variation of the modal parameters as a function of

seasonal temperature variations.

While for the naves the phenomenon translates only as a cyclic variation of

the natural frequencies of the system, in the façade there is a phenomenon

of cyclic inversion occurring between the fifth and seventh modal shapes,

similar to a veering one.

The complexity of modal behavior emerged from the knowledge of the struc-

ture leads to reflect on the effectiveness of a parametric method for damage

detection based on the modal parameters themselves. This method should

in fact take into account not only the cyclical variations of the frequen-

cies, but those of the modal forms. Although the former can be mitigated

through the use of autoregressive models, among other things, the approach

to solving the modal inversion problem represents an interesting challenge

for future studies.

In the thesis work, the occurrence of this problem has made it preferable

to approach anomaly detection through a non-parametric method, using

damage indices already presented in the previous chapters.
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Auto-associative neural net-

works for an anomaly de-

tection procedure

Chapter abstract

Data-driven approaches become necessary when studying the

problem of damage detection on particularly intricate structures.

In fact, in some cases it is difficult to create a calibrated numeri-

cal model that allows to accurately simulate damage scenarios. In

addition to this, there is the difficulty to estimate a priori which

damage states may occur in the structure.

On the other side, data-driven approach only allows to reach the

level of anomaly detection: in most cases, it is not possible to

locate or quantify the damage.

In this chapter, the index proposed in the previous chapters is

applied as a feature for the anomaly detection on the case study.

In the spirit that accompanies the thesis work, for the same pur-

pose a machine learning method is developed, which involves the

training of an Auto-Associative Neural Network.

As seen in the previous chapter, the dynamic behavior of the

Basilica is characterized by a marked seasonality and stabiliza-

tion phenomena in progress: in light of this evidence, merits and

demerits of the two methods are analyzed.

The analysis highlighted a greater potential for the method based

on the Autoencoder, which succeeds in the attempt to mediate

the effects caused by seasonality.
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6.1 Introduction

In the previous paragraphs, it has been shown how the structural behavior

of the Basilica is influenced by a seasonal variability, as well as by slow

evolving phenomena.

The seasonal variations cause the modal parameters to oscillate cyclically

during the year. This phenomenon concern all the macroelements investi-

gated, but the façade above all. In this latter not only the natural frequen-

cies, but also the modal shapes related to them vary seasonally.

From this observation it follows that parametric damage detection methods

based on modal parameters could not be suitable for addressing the dam-

age detection problem for the investigated structure, because they could

lead to untruthful reporting of a damage (increasing the percentage of false

positives).

In this chapter, a case classifiable as damage is introduced. This case de-

rives from acceleration data recorded by the system on dates prior to an

intervention made in the first month of 2018.

The intervention involved the insertion of connections between the façade

and the remaining body of the church, through the use of metal anchoring

bars. This choice was made to remedy the lack of clamping between the

macro-element in question, the nave walls and the timber roof, lack evi-

denced by the relief of the crack pattern following the 2009 earthquake.

The objective of the chapter is therefore to compare the state of the Basil-

ica before and after the intervention, operating in the spirit of anomaly

detection.

The overall behavior of the structure was well described in the previous

chapter: its complexities, already highlighted, lead to the choice in the di-

rection of non-parametric methods: in the thesis work the parameters cho-

sen as damage features are those derived from the subspace-based methods,

as explained in the previous chapters.

The indices tested in laboratory and the implemented techniques are there-

fore applied for an anomaly detection problem on a real structure.

Contrary to what happened in Ch.3, in this case, given the complexity of

the work, it is not possible to a priori suppose with certainty the dam-
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age scenarios occurring in the structure: it seems very hard to predict and

define the class labels necessary for the training of a classifier. Thus, the

choice has benen that of operating with unsupervised learning methods.

Inside the chapter, the concept of AANN (Autoencoder) is first introduced,

marking its particular features. Subsequently, the case study and the results

of the application of the indices and of the anomaly detection techniques

addressed are presented.

6.2 Auto-associative neural networks

In the introduction of the ANNs, it has always made reference to networks

in which the training was supervised: during the training phase, both the

data and the class labels to which these data belonged were provided.

An Auto-associative neural network (AANN), more commonly called au-

toencoder, is a network to which labels are not supplied (typical of the

unsupervised learning). The objective of the training of a network of this

type is to make it able to reconstruct the data that are provided in input.

Given a training set x(i) consisting of i samples, x(i) ∈ Rn, target outputs

y(i) = x(i) are set to be equal to the input: the network in this case tries to

learn a function hW,b(x) ≈ x.

The training process is still based on the optimization of a cost function.

The cost function measures the error between the input x and its recon-

struction at the output y. It has been shown (Olshausen and Field (1997))

and it is now affirmed that a network of this type works better when spar-

sity constraints are given.

To clarify the concept of sparsity, one must think about the way in which

the transfer of information from one neuron to another in the various layers

occurs: a neuron is considered to be ”firing”, if its output activation value

is high. A low output activation value (i.e. zero, if the activation function

is the sigmoid of Eq.4.2) means that the neuron in the hidden layer fires in

response to a small number of the training examples. Define

ρ̂j =
1

m

m∑
i=1

(
zhj x

(i)
)

(6.1)
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as the average activation of hidden unit j (averaged over the trainig set);

apex (·)h stays for ”hidden”.

To apply sparsity means to impose the constraint that

ρ̂j = ρ

where ρ is called sparsity parameter, generally a value close to zero.

Adding a term to the cost function that constrains the values of ρ̂ to be low

encourages the autoencoder to learn a representation, where each neuron in

the hidden layer fires to a small number of training examples. That is, each

neuron specializes by responding to some feature that is only present in a

small subset of the training examples. Sparsity is encouraged by inserting

within the cost function another regularization term, which generally is the

Kullback-Leibler divergence

sh∑
j=1

KL(ρ||ρ̂j) =

sh∑
j=1

(
ρ log

ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

)
(6.2)

KL-divergence gives a measure of how different two distributions are: the

term is zero if ρ̂j = ρ, otherwise it blows up to infinity if ρ̂j tends to 0 or 1.

By adding this term to the expression of the cost function given in Eq.4.5,

which also takes into account the L2 regularization term, the cost function

to be minimized is defined:

J(W, b) =

(
1

k

k∑
i=1

J(W, b;xi, yi)

)
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
w

(l)
ij

)2
+

+ β

sh∑
j=1

KL(ρ||ρ̂j)

(6.3)

The term β is the sparsity regularization term.

The training of the autoencoder follows what described in Ch.4.2.2.

6.2.1 Damage indicator based on Autoencoders

The approach for anomaly detection sets up to train the AANN with the

undamaged condition features. Train proceeds by presenting the network

with many version of the features corresponding to the reference condition,

corrupted by noise or other source of variability with the same features
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prescribed as the output.

The damage index IDAE is evaluated by calculating the Euclidean distance

between the original vector v and the result of presenting it to the network,

v̂:

IDAE = ‖v − v̂‖ (6.4)

If learning has been successful, then the difference of the previous equation

is around zero if the feature vector v is representative of the reference state.

In this way, the assumption is that the prediction error of the network will

grow when the feature vector coming from a damaged condition is fed to

the network itself.

As highlighted in Farrar and Worden (2012), there is no guarantee that the

index will increase monotonically with the level of damage, this is why this

form of novelty detection gives only a level 1 diagnostic in Rytter’s term.

It is noted also that the universal approximation property of the neural

network (for which it is referred to Bishop (1994)) means that the novelty

detector can learn the properties of any normal condition distribution, it

does not have to be Gaussian.

6.3 Application of anomaly detection procedure

on the case study

In the following section, the damage indices proposed in Ch.3 and the de-

veloped techniques are applied to an anomaly detection problem.

The results obtained from the elaboration of these indices are compared

with those obtained from the training of an AANN network (AutoEncoder),

according to what reported in Par.6.2. The aim is to highlight strengths

and weaknesses of one over the other.

As documented in Aloisio et al. (2021), during the end of the year 2017,

the Basilica underwent a minor structural intervention: in particular, metal

profiles were wall embedded to the masonry, to anchor the façade of the

church to the remaining structure, as shown in Fig.6.1. In the work, it was

seen how this type of intervention changed the dynamic behavior of the

structure evaluating some subspace-based indicators.

The occurrence of this intervention has generated a case thanks to which
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it is possible to test the indices and techniques developed for anomaly de-

tection on a real case.

In order to implement the procedure, the accelerometric data of two con-

ditions are compared: the first one, recorded before the CLT roof was

connected to the façade, is assumed as damaged or actual state (although,

chronologically, it happened before). The second data set, recorded after

that the roof was connected to the façade, is assumed as reference or un-

damaged state.

The choice of assuming as damaged a state which occurred chronologically

before the one assumed as reference, is dictated by the fact that much more

data is available for the latter (from 2018 to 2021, date of writing). For this

reason, it seems more logical in terms of anomaly detection to take this as

reference, and highlight any changes in the other state, of which we have

fewer samples.

For each of the two data sets, data from three different cases are processed:

Figure 6.1. Detail of the connection between the façade and the CLT roof:

schetch of the roof-façade interaction before and after the connection and a

picture of the intervention.

the first case includes accelerometer data from all acquisition points, ex-

cluding the apsidal zone: in this way, an overview of the change in the

global behavior of the structure pre and post-intervention is provided.

The other two cases focus on the two macro-elements most affected by the

intervention, namely the façade and the nave walls: in a sort of attempt

to localize the damage, it is highlighted which elements have been most

affected by the change.

The following indices are evaluated for every case:

� IDcorr generated by evaluating the correlation between the covariance

matrices, as in Ch.3.2. The evaluation of this index requires the

choice of a reference date which to compare the others. Considering
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the seasonal changes of the modal parameters, it has been considered

explanatory to take as reference three particular dates, following what

done in Ch.5.6;

� IDAE : index evaluated from the results of the training of the autoen-

coder network, according to the procedure described in Par.6.2.

For each case, anomaly detection is done by setting a threshold at the 95%

percentile of the samples relative to the reference state. The algorithm

evaluate a case as belonging to the population of the reference state or as

an anomaly on the basis of the exceeding of the threshold.

6.4 Anomaly detection performed with damage

index IDcorr

As described in Ch.5.3, the permanent monitoring system consists of 78

Force-balance accelerometers (2 triaxial, 12 biaxial, and 48 monoaxial).

Following what was done in the modal identification phase, the accelero-

metric data, acquired with a sampling rate of 250 Hz, were decimated by

a factor Nd = 20 before being processed. Subsequently, the covariance

matrices were calculated considering a time delay i = 30.

6.4.1 Results from global setup

The indices IDcorr are evaluated by calculating the correlation coefficient

between the matrix of the reference state and that of the current state to

be evaluated. The first step is therefore to choose a date, among those

acquired, to be used as a reference: as mentioned, given the seasonal vari-

ability of the phenomenon, we choose the three significant dates of 2019

corresponding to the maximum changes of the modal forms related to the

fifth and seventh identified frequency (see Ch.5.6): 3rd of January, 5th of

June, and 8th of August.

Once the reference dates are chosen, the index values are calculated for

each available date in the period between the end of 2017 and the first half

of 2021.

As can be seen from Fig.6.2-6.3-6.4, the trend of the index in the period
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Figure 6.2. Variation of the damage index over time, considering the

01/01/2019 as reference date. The threshold value of the index is set at the 95%

percentile of those obtained in the 2019/2020 period, considered as the

undamaged state.

Figure 6.3. Variation of the damage index over time, considering the

05/06/2019 as reference date. The threshold value of the index is set at the 95%

percentile of those obtained in the 2019/2020 period, considered as the

undamaged state.

Figure 6.4. Variation of the damage index over time, considering the

08/08/2019 as reference date. The threshold value of the index is set at the 95%

percentile of those obtained in the 2019/2020 period, considered as the

undamaged state.
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2019/2021 follows the periodic trend already seen in the modal tracking of

frequencies in the previous chapter. Therefore, the index is not completely

exempt from the environmental variations to which the structure is subject

during the course of the year: although beeing in the undamaged state, the

index tends to rise moving towards a season with a temperature which is

different from that of the selected reference date.

From this observation derives the difference between the curves recorded

in the three figures. Considering Fig.6.2, in which the reference date is

January, it can be noticed that the index tends to be lower in the dates be-

longing to the cold seasons, to then rise in the warmer ones. The contrary

happens instead if considering the reference in August, Fig.6.4.

Note also that the index tends to rise over time, as testimonial of the second

phenomenon found in the modal tracking phase, related to frequency decay.

All the index values exceeding the set threshold belong to the late 2020/2021:

from this it can be seen that the phenomenon of frequency decay in this

time span is still marked, making the reference state still unstable (it can

be considered as a slow phenomenon).

What is most impressive, readable from all three figures, is what happens

around the end of 2017/beginning of 2018, the period after the intervention

described above: for these dates, whatever the date chosen as a reference,

the index takes on a much higher value.

Drawing a threshold line encompassing 95% of the samples for the 2019/2021

reference state, we see that the 2017/early 2018 indices far exceed this

threshold: the monitoring system, calibrated to this threshold, would there-

fore flag the anomaly.

What is also interesting, however, are the dates related to the hot season

of 2018: although these dates are intended to belong to the reference state,

being posterior to the connection intervention, the index is still high com-

pared to later dates.

It is assumed that this difference can be due to two possibilities: another

settling of the structure, or it can also be related to the decay of the fre-

quencies, more pronounced in that year, the first after the intervention.

From the analysis of the dynamics of the structure made over the years, it

results that is possible to split the behavior of the structure into that of its
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main macroelements.

In a similar way to how the modal traking was carried out, the results of

the analysis of the single macroelements, façade and nave walls, are now

reported.

6.4.2 Results from sensor placed on the nave walls

The procedure for calculating damage indices is the same as that described

in the previous paragraph.

Looking at Fig.6.5-6.6-6.7, results are different from those obtained consid-

ering all the sensors.

The first that strikes is the value of the index: it remains very low com-

pared to that of the previous cases, indicating that the dynamic behavior

of the naves has not changed too much after the intervention. In fact, the

values of the damage index remain below the set threshold, even for the

dates prior to the intervention of connection with the façade.

Attempting to localize the damage, we could say that the macroelement

Figure 6.5. Variation of the damage index over time, considering the

01/01/2019 as reference date. The threshold value of the index is set at the 95%

percentile of those obtained in the 2019/2020 period, considered as the

undamaged state. Data coming from sensors placed on the nave walls.

in question does not seem to be affected by the phenomenon.

This could be linked to the extension of the naves in plan: in fact the vari-

ation of the dynamic behavior following the intervention, occurred in the

part of the roof in contact with the façade, could not have been perceived

by the sensors placed in the most distant points (for example, near the

apse, see the building plan Fig.5.3). According to another hypothesis, the

connection with the rigid roof represented a constrain more for the façade

111



Ph.D. Thesis of Riccardo Cirella, University of L’Aquila

Figure 6.6. Variation of the damage index over time, considering the

05/06/2019 as reference date. The threshold value of the index is set at the 95%

percentile of those obtained in the 2019/2020 period, considered as the

undamaged state. Data coming from sensors placed on the nave walls.

Figure 6.7. Variation of the damage index over time, considering the

08/08/2019 as reference date. The threshold value of the index is set at the 95%

percentile of those obtained in the 2019/2020 period, considered as the

undamaged state. Data coming from sensors placed on the nave walls.

than on the nave walls, which have already been made in solidarity with

the roof by interventions prior to the one in question.

From the trend of the index in time, both the seasonal variability of the

global dynamic behavior and the phenomenon related to the decay of the

frequencies are recognizable.

6.4.3 Results from sensor placed on the façade

Data regarding the façade is taken from its 8 accelerometers ( Fig. 5.3b).

As can be noted in Fig.6.8-6.9-6.10, the trend of the index DIcorr in time is

very jagged: however, it follows the trend found in the generic case. Unlike

the latter, the value of the index in the 2017/18 dates is higher, and the

difference with the period since 2019 is more pronounced (up to 15 times
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Figure 6.8. Variation of the damage index over time, considering the

01/01/2019 as reference date. The threshold value of the index is set at the 95%

percentile of those obtained in the 2019/2020 period, considered as the

undamaged state. Data coming from sensors placed on the façade.

Figure 6.9. Variation of the damage index over time, considering the

05/06/2019 as reference date. The threshold value of the index is set at the 95%

percentile of those obtained in the 2019/2020 period, considered as the

undamaged state. Data coming from sensors placed on the façade.

Figure 6.10. Variation of the damage index over time, considering the

08/08/2019 as reference date. The threshold value of the index is set at the 95%

percentile of those obtained in the 2019/2020 period, considered as the

undamaged state. Data coming from sensors placed on the façade.

113



Ph.D. Thesis of Riccardo Cirella, University of L’Aquila

higher than the threshold that includes 95% of cases from 2019 onward).

From the reading of these values, it is easy to deduce how much the inter-

vention has changed the behavior of the façade more than that of the walls

of the nave.

6.5 Anomaly detection performed with Autoen-

coder

In the following paragraph, the process of anomaly detection is performed

by means of the training of an Auto Associative Neural Network - or Au-

toencoder - as described in paragraph 6.2.

The choice of neural networks depends on the observation of the strong

variability of the result depending on the date chosen as reference, that

affects the evaluation of the system about the state of the structure. As

can be seen from the Fig.6.8-6.10, monitoring system assessment outcomes

for the 2020 date would change if we took the January date as the base-

line (dates fall under the threshold) or the August 2019 (dates exceed the

threshold).

Through the use of the autoencoder, the objective is to minimize as much

as possible the influence of environmental effects, further demarcating the

two phenomena attributable to the damage: post-intervention change and

change related to the decay of frequencies over time.

As in the previous section, data from all sensors are first evaluated and

then the contribution of individual macroelements is analyzed. For each

case, training was conducted assuming as input the subspace matrices used

to compute IDcorr, with dimensions varying for each case based on the

number of sensors and the time lag, which was set to i = 30.

The Autoencoder was trained using one hidden layer, composed of Nn = 10

nodes.

The size of the hidden layer, smaller than the size of the input vectors,

means that the network is forced to capture the information from reduced

data sets: in the Encoding phase, it is said that the network creates a ”bot-

tleneck”, through which the essential information for the description of the

problem is captured.
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In the next step, Decoding, the reduced matrix containing the weights Wij

associated with each node is used to reconstruct the original matrix.

The practical procedure therefore involves:

1. Choice of the range of dates to be used as the training set for the

network: a two-year period, 2019/2020, was chosen in order for the

net to recognize the presence of the seasonal trend in the training

phase;

2. Matrix manipulation: before training, the input matricesMi ∈ RNe×Ne ,

i = 1, ..., Nc must be rearranged into column vectors vi ∈ RN2
e×1.

Next, the vectors are aligned to form the input matrix M ∈ RNe×Nc ,

where Nc is the number of samples considered in the training set;

3. Network Training Phase: the training is carried out following what

described in Sec.6.2;

4. The result of the training is a network able to reconstruct any matrix

given in input (of the same number of elements Ne) on the basis of the

relationships that it has managed to capture in the training phase.

According to what reported in Par.6.2, the damage index IDAE is

evaluated by calculating the Euclidean distance between the original

vector v and the predicted vector v̂:

IDAE = ‖v − v̂‖

6.5.1 Results from global setup

The following section shows the results obtained by training an autoencoder

with data from all available sensors. The number of channels is therefore

78, the time lag i = 30: each covariance matrix used for training has size

840× 840. The available dates for 2019-2020 result in about 400 samples.

Fig.6.11 reports the outcomes of the training: low values of the objective

function and the gradient are synonymous that the training can be consid-

ered successful.

Fig.6.12 shows the trend of the damage index IDAE over time: as for the

index calculated from correlations, the difference between the values of the

2019/2020 reference state and those of 2017 is visible: the value recorded on
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Figure 6.11. Trend of the loss function during the training of the netwoork.

the latter dates, IDAE = 0.75, is about 4 times higher than the threshold

value, again set at 95% of the values of the samples belonging to the 2019-

2021 dates. Looking at the results, we still find a plateau in the summer

Figure 6.12. Variation of the damage index over time, considering the period

2019/2020 as training set for the AANN. The threshold value of the index is set

at the 95% percentile of the samples regarding the reference period.

season of 2018: there is confidence that it cannot be due solely to seasonal

variations.

The differences between the trends of DIAE and DIcorr are the following:

� The DIAE indices are all very close to the threshold line: this means

that the autoencoder, trained over a two-year period, manages to

mitigate the effects of cyclical phenomena even for dates in 2021;

� The indices never reach zero: it is assumed that this fact is due

to the complexity of the variation of the dynamic behavior of the

structure, remembering once again that it is subject to both seasonal

phenomena and those of settling natural frequencies. This makes each

sample different from the other: although the autoencoder manages
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to mitigate in some ways the effects of temperature, it may not do so

well with the latter.

6.5.2 Results from sensor placed on the nave walls and on

the façade

Processing the nave wall data leads to substantially different results from

those found with the DIcorr index. In fact, comparing Fig.6.13 with Fig.6.6,

it can be seen that the values for 2017 and the first period of 2018 exceed

the set threshold (the indices for 2107 are about twice the value of the

same). In other words, with this metric, damage is also found in the nave

wall data.

The index values relative to the remaining period show however a cyclic

Figure 6.13. Variation of the damage index over time, considering the period

2019/2020 as training set for the AANN. The threshold value of the index is set

at the 95% percentile of the samples regarding the reference period. Data coming

from sensors placed on the nave walls.

trend, but with peaks different from the seasonal ones: this phenomenon is

dictated by the training modality of the network which, trying to mediate

between very different cases, obtains averaged results between the various

seasons

Results from Fig.6.14, referred to the façade, confirm what was observed

earlier: the index value for the 2017/2018 dates is more pronounced than

those of the reference dates. In addition, although the index trend from

2019 seems more jagged, the seasonal trend seems to be lost, a symbol

that the network has been more successful in its goal of mitigating thermal

effects.
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Figure 6.14. Variation of the damage index over time, considering the period

2019/2020 as training set for the AANN. The threshold value of the index is set

at the 95% percentile of the samples regarding the reference period. Data coming

from sensors placed on the façade.

6.6 Conclusions

In this chapter, the application of some anomaly detection techniques was

presented. Both the presented techniques use the subspace matrices of the

data as damage feature. The anomaly analysis is studied starting from the

current state of the Basilica of Santa Maria di Collemaggio. This state,

considered as undamaged, is compared with that recorded prior to a roof-

ing intervention completed in early 2018. The intervention involved the

connection of the façade to the Cross Laminated Timber roof behind it.

The anomaly detection phase is made by calculating two indices: the first

one is based on the correlation index between the matrix of the reference

state and that of the current state. The second one is based on the train-

ing of an Autoencoder network. From both indices, it was noted that the

intervention had modified the dynamic behavior: the two indices evaluated

for the dates in question exceeded a fixed threshold value.

It is possible to study the global behavior of the Basilica by dividing it into

that of the macro-elements that compose it: analyzing them separately, it

has been noticed that the index calculated for the nave walls tends to be

lower than that calculated for the façade. This suggests that the façade wall

has been more interested in the intervention than the naves (as it would be

thought, given the type of intervention).

Testing the two indices, it was noted that, as it is formulated, the correlation-

based index depends strongly on the date chosen as reference, while the
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autoencoder-based index seems to succeed in mitigating environmental ef-

fects.

Despite this, the difficulty of determining the reference state remains, due

to the presence of the phenomenon that causes the decrease in frequen-

cies. The phenomenon is well highlighted using both indices proposed, and

certainly deserves further study in the future.
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Concluding remarks

Chapter abstract

In the thesis work, damage detection methods have been an-

alyzed, based on the evaluation of the subspaces of dynamical

systems.

Two approaches have been followed: in the first, a damage index

derived from subspace matrices has been proposed. The second

approach has been carried out considering the subspace matrices

as damage features, and inserting the as input in the training of

artificial neural networks.

Laboratory tests and the application to a case study have showed

the effectiveness of the proposed methods for the damage de-

tection procedure. The methods proved to be valid in both the

anomaly detection phase, carried out through data-driven ap-

proach, and in the subsequent steps of the structural damage

diagnosis, deepened following a model-driven approach.

This chapter contains the conclusions of the thesis work: therein,

all the results obtained in the tests described in the previous

chapters are critically analyzed.
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Vibration-based damage testing has been increasingly successful in the

Structural Health Monitoring field, as it allows to investigate the global

behavior of a structure avoiding invasive and local testing.

Vibration-based damage detection studies are based on the observation that

that the occurrence of structural damage leads to changes in the matrices

that characterize the dynamic system. The occurrence of damage is inves-

tigated by evaluating the variation of some damage-sensitive parameters,

called features, comparing the reference state of a structure with that of

the current recording.

Parametric methods were the first approach to the problem, attempting to

correlate the damage directly to the variation of the modal parameters.

Non-parametric techniques, developed later, process time series formulat-

ing features not directly correlated to physical quantities.

With the development of Artificial Intelligence algorithms, damage detec-

tion research has been influenced by methods from Machine Learning or,

more recently, Deep Learning. This is due to the fact that through a neural

network it is possible to create models in which relationships are estab-

lished, even of a non-linear type. They seem to be well suited to interpret

the often irregular trends over time of the damage features.

In the thesis work, the theme of damage detection was addressed, in par-

ticular the damage localization and quantification. These two problems

are classified at level 2 and 3 in the scale of diagnostic levels proposed by

Rytter and considered a reference in the literature. The features examined

for damage detection have been the subspace-based damage indicators ob-

tained from the analysis of the subspaces of the dynamics matrices: indices

already present in the literature and of new conception were tested.

The process was initially conducted on a test structure represented by a

suspended steel beam; damage was generated by introducing a point mass

onto the system. During the tests, the magnitude of the mass and its loca-

tion were varied in order to evaluate the effectiveness of the method.

The approach followed in the work has been of model-driven type, which

means that numerical analyses have been carried out on an FE model, to

simulate the damage scenarios to be compared with the one subsequently
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produced experimentally.

The use of a model-driven procedure necessitated a preliminary calibration

phase of the model itself. For this purpose, it has been evaluated the ef-

fectiveness of damage indicators as objective functions to be minimized in

the optimization problem related to the model updating.

The proposed method gives promising results: the indicators seem to be

more sensitive to the variation of dynamic system properties than tech-

niques which uses objective functions based only on modal parameters

After calibrating the model, the damage detection has been performed

following and comparing two methods:

� The first method is based on the calculation of an index derived from

the 2D-correlation coefficient between two matrices, initially devel-

oped in the field of Image Processing. It involves the use of this

proposed index as an objective function to be minimized in a discrete

optimization algorithm, in order to find the maximum similarity be-

tween the produced damaged case and the attempt ones;

� The second method concern with the adoption of subspace matrices

as features, and the training of an artificial neural network to classify

the damage.

Both methods were tested numerically and experimentally on the steel

beam structure. The tests therefore investigated the effects of varying the

position of the mass along the beam and varying the magnitude of the mass

itself.

A first data-driven test has been carried out, comparing vibrational data

between the undamaged state (with no mass) and the damaged ones. From

this comparison, it was confirmed that the only data-driven method is not

sufficient to go beyond the level of anomaly detection. The attempts made

for damage localization have shown that the selected features are not in-

jective functions with respect to the variable-position: different positions

lead to very similar function values.

Anomaly detection tests carried out varying the magnitude of the mass,

fixed in the same position, have led to an interesting observation: the
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subspace-based index grows as the applied mass increases, in a monotonic

way within the range considered. It suggests that some data-driven rea-

soning could be done, in order to estimate the extent of the damage, after

that the location of damage occurrence has been identified. Applications

to real problems could be, for example, the evaluation of the progress of

the degradation in a localized area of a structure, or the fatigue damage in

metal joints.

Model-driven tests based on the calculation of the damage index DIcorr

showed that it is more sensitive to variation in the position of the mass,

rather than to variation in its magnitude.

The mass localization problem on the structure-test has also highlighted the

dependence of the results on the symmetry of the system: the confusion

matrix related to the localization problem has in fact shown the presence

of misclassified cases not only near the position to be identified, but also in

positions symmetrical with respect to the latter.

The problem of identifying the mass entity highlighted a lower sensitivity of

the feature itself towards the mass variation. In fact, the results have shown

that the percentage of misclassified samples is higher than that found in the

localization problem, and in some cases even exceeds that of true positives.

The network used for the localization and quantification of the damage was

a classifier: during the training phase, features have been provided to the

network, specifying the class label to which they belonged. Subsequently,

the validity of the network in correctly classifying the various damage sce-

narios was evaluated by giving it a test set and assessing the quality through

the confusion matrix. In each case, the network correctly recognizes the

target cases to be identified.

The choice of a method based on training a neural network stems in part

from the desire to resolve any errors due to noise.

The neural network, through the training phase, stores information on the

inputs which results to be mainly independent from the noise with which

these are generated.

The numerical tests have shown how the training of the network leads to

more accurate results than the method based on the index, being able to

build relationships between the inputs and the labels associated to them.
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However, it should be remembered that training an ANN can involve a

greater computational burden, due to the number of samples to be sup-

plied to the network during the training phase.

In the experimental tests, the classification results were also positive. How-

ever, both in the case of localization and identification of the mass entity,

the proposed methods classify the damage type with a slight inaccuracy,

which is however considered acceptable. It is believed that this inaccuracy

is due to the fact that the FE model, although calibrated in the preliminary

phase, does not perfectly match the behavior of the real structure.

The proposed methods seem therefore to be promising for application to

damage detection problems in more complex structures.

The algorithms experimented in laboratory have been applied to study

the behavior of a real structure. The case study, the Basilica of Santa

Maria di Collemaggio in L’Aquila, represents the heart of the city, with its

historical and cultural value.

The restoration work following the 2009 earthquake included the instal-

lation of a static and dynamic monitoring system. The system has been

acquiring vibrational data for years, with sampling frequency ranging from

weekly to daily. A preliminary phase of knowledge of the dynamic behavior

of the structure has provided for the processing of data from the monitoring

system, in the approximately four years since the system has been in oper-

ation. This study was only possible by implementing an automatic modal

identification procedure, based on Stochastic Subspaced-based Identifica-

tion technique, and subsequent tracking of the parameters in time. Through

the processing of data from sensors, it was highlighted a highly intricate

behavior, essentially due to the geometric complexity and heterogeneity of

the present materials. From the analyzes it arose that the behavior of the

Basilica is driven by two phenomena:

� The first phenomenon, already known in the literature, is the cyclic

variation of the natural frequencies of the structure in the investigated

range. This variation sees the frequencies increasing in cold seasons

and vice versa in warm seasons. The correlation with temperature

is even more marked if we examine separately the macro-elements
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in which it is possible to divide the Basilica: analyzing the cyclic

behavior of the façade, it can be seen that not only the frequencies

change in time, but also an inversion of the modal forms of the fifth

and seventh mode of vibration occurs.

� The second phenomenon in act is peculiar of the structure under ex-

amination, and sees a slight decay of the frequencies over the years:

this phenomenon acts independently from the seasonal cyclicity. Some

studies conducted have suggested that this decay may be due to the

slow stabilization phenomena of the Cross-Laminated Timber roof.

It is more pronounced in the period around the time of installation

of the system, and is stabilizing over time.

These two phenomena make a precise definition of a reference state of the

structure hard to perform: further studies have to be carried out in order

to control these effects.

The complexity of the modal behavior emerged from the modal track-

ing led to reflect on the effectiveness of a parametric method based on the

modal parameters themselves.

In the thesis work, the occurrence of this problem has made it preferable

to approach anomaly detection through a non-parametric method, using

damage indices already presented in the previous chapters.

The anomaly analysis has been carried out starting from the current state

of the Basilica. This state, considered as undamaged, was compared with

that of accelerometer data recorded prior to a roofing intervention com-

pleted in early 2018. The intervention in question regarded the connection,

by means of steel bars, of the façade to the CLT roof behind it.

The anomaly detection phase has made by calculating two indices: the first

one is based on the 2D-correlation index between the matrix of the refer-

ence state and that of the current state. The second one is based on the

training of an Auto-associative neural network.

Evaluating both indices, it was noted that the intervention had significantly

modified the structural behavior, with the result that the two indices cal-

culated for the dates in question exceeded a set threshold value considered

to be representative of the undamaged state.
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It is possible to study the global behavior of the Basilica by dividing it into

that of the macro-elements that compose it: analyzing the latter separately,

it has been noticed that the index calculated for the nave walls tends to

be lower than that calculated for the façade. This suggests that the façade

wall has been more interested in the intervention than the nave walls.

Testing the two indices, it was noted that, as it is formulated, the correlation-

based index depends strongly on the date chosen as reference, while the

autoencoder-based index seems to succeed in mitigating environmental ef-

fects.

Despite this, the difficulty of determining the reference state remains, due

to the presence of the phenomenon that causes the decrease of the natural

frequencies.
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