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VANISHING VISCOSITY IN MEAN-FIELD OPTIMAL CONTROL

Gennaro Ciampa1,* and Francesco Rossi2

Abstract. We show the existence of Lipschitz-in-space optimal controls for a class of mean-field
control problems with dynamics given by a non-local continuity equation. The proof relies on a vanishing
viscosity method: we prove the convergence of the same problem where a diffusion term is added, with
a small viscosity parameter.

By using stochastic optimal control, we first show the existence of a sequence of optimal controls for
the problem with diffusion. We then build the optimizer of the original problem by letting the viscosity
parameter go to zero.
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1. Introduction

In recent years, the study of systems describing crowds of interacting agents has drawn a huge interest from
the mathematical and control community. A better understanding of such interaction phenomena can have a
strong impact in several key applications, such as road traffic and egress problems for pedestrians. For a few
reviews about this topic, see e.g. [4, 6, 17, 30, 38, 39, 51].

Mean-field equations are the natural limit of such systems, composed of a large number N of interacting
particles, when N tends to infinity. The state of the system is then a density or, more in general, a measure.
Mathematically speaking, the system is often transformed from a large-dimensional ordinary differential equation
to a partial differential equation, via the so-called mean-field limit, see e.g. [45, 52].

The finite-dimensional models for interacting agents can either be deterministic (in which the position of each
agent is clearly identified), or probabilistic (in which the position of each agent is a probability measure). While
deterministic models are based on a (supposedly) perfect knowledge of the dynamics, probabilistic models
naturally arise when either individual dynamics or interactions are subjected to some form of noise. As a
consequence, mean-field equations have deeply different natures in the two cases: the limit of deterministic
models is often a continuity equation, while for probabilistic models it is a diffusion equation. See [22, 23, 45]
for a comprehensive introduction.

Beside the dynamics of mean-field equations, it is now relevant to study control problems for them, that are
known as mean-field control problems. In the mean-field limit for deterministic models, a few articles have been
dealing with controllability results [31, 32] or explicit syntheses of control laws [18, 49]. Most of the literature
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focused on optimal control problems, with contributions ranging from existence results [15, 33–35] to first-order
optimality conditions [7, 11–14, 24, 25, 50], to numerical methods [1, 16]. The linear-quadratic case is studied
in [29] for the deterministic setting and in [7, 8] for the probabilistic one.

Our aim in this article is to develop one more technique to solve mean-field optimal control problems. Indeed,
it is natural to expect that, in finite dimension, (uncontrolled) probabilistic models converge (in some sense)
to deterministic ones as the noise decreases to zero. See e.g. [46]. The same holds for (uncontrolled) partial
differential equations, when solutions to advection-diffusion equations converge to solutions of the continuity
equation as the noise parameter (also known as viscosity) goes to zero. This is the basic idea of the vanishing
viscosity method, see [9, 40]. Observe that, in general, for the partial differential equation with diffusion term,
stronger regularity of solution is ensured and better computational methods are available. Moreover, standard
numerical methods for non-local transport equations (like for example Lax-Friedrichs scheme, see [42]) introduce
the so-called numerical viscosity, which represents the numerical counterpart of adding the viscous term to the
equation. It is then very desirable to be able to use methods for diffusive equations and then pass to the
continuity equation by a vanishing viscosity method.

Our aim is exactly to provide a vanishing viscosity result for mean-field control problems. In our article, we
deal with two optimal control problems, corresponding to the deterministic and probabilistic settings. On one
side, the deterministic optimal control problem is

Problem (P)

Find

min
u∈A

J(µ, u),

where the cost J is

J(µ, u) :=

∫ T

0

∫
Rd

(f(t, x, µt) + ψ(u(t, x)))µt( dx) dt+

∫
Rd
g(x, µT )µT ( dx), (1.1)

and µ ∈ C([0, T ]; P2(Rd)) is a solution of{
∂tµt + div [(b(t, x, µt) + u(t, x))µt] = 0,

µ|t=0 = µ0

(1.2)

with initial state µ0 ∈P2(Rd) with compact support.
The set of admissible controls is

A := L∞((0, T );L1(Rd, U ; dµt)),

where U ⊂ Rd.

We now add a viscosity term on the right hand side of equation (1.2), with ε > 0 being the diffusion parameter,
connected to the viscosity of the system. Then, we consider the following problem:
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Problem (Pε)

Take (P) and replace µ solution of equation (1.2) with µε solution of

{
∂tµ

ε
t + div [(b(t, x, µεt ) + u(t, x))µεt ] = ε∆µεt ,

µε|t=0 = µ0.
(1.3)

Replace the set of admissible controls A with

Aε := L∞((0, T );L1(Rd, U ; dµεt )).

Under natural hypotheses, both solutions (µ, u) of the deterministic problem (P) and solutions (µε, uε) of
the probabilistic problem (Pε) exist. In this framework, the natural questions about vanishing viscosity are the
following:

� Do we have convergence of optimal controls uε → u?
� Do we have convergence of optimal trajectories µε → µ?
� Do we have convergence of costs J(µε, uε)→ J(µ, u)?

Such questions do not have a general answer. Our main result states that, under quite natural hypotheses,
all answers are positive.

Theorem 1.1. Assume the following:

� the set of admissible control values U ⊂ Rd is convex and compact;
� the vector field b is C1,1 regular, i.e. Assumption (B) in Section 2.3 below holds;
� the functions f, ψ, g in J are C1,1 regular, i.e. Assumption (J) in Section 3.1 below holds;
� the function ψ is λ-convex, for some λ > 0, i.e. Assumption (C) in Section 3.1 below holds.

Then, there exists Λ > 0, which depends only on the final time T and the Lipschitz constant of the functions
b, f, g, such that if λ > Λ there exist:

� a unique solution (µε, uε) ∈ C([0, T ]; P2(Rd))× L∞((0, T ); Lip(Rd, U)) of (Pε), for each ε > 0,
� a solution (µ, u) ∈ C([0, T ]; P2(Rd))× L∞((0, T ); Lip(Rd, U)) of (P),

such that, up to a sub-sequence which we do not relabel, the following convergences hold:

(i) uε ⇀ u in L2((0, T );W 1,p
loc (Rd, U)) for every 1 ≤ p <∞;

(ii) µε → µ in C([0, T ],P2(Rd));
(iii) J(µ, u) ≤ lim infε→0 J(µε, uε).

Remark 1.2. We will see that Λ = O(T ) and in particular is small for T small. This implies that, at least for
small times, the condition λ > Λ is always satisfied, see Remark 3.7 below.

Remark 1.3. The hypothesis of the theorem are certainly not minimal and they can be relaxed with technical-
ities. For example, compactness of the support of µ0 or growth conditions of f and g can be relax, yet we keep
them to make the presentation easier. Moreover, beside standard regularity hypotheses, the most interesting and
crucial requirement is certainly the strict convexity of the control cost ψ. It is worth to note that if a convexity
assumption on f and g holds, then the value of Λ decreases; we will provide further comments in Remark 3.8
below.
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We introduce in Section 3, a Stochastic Optimal Control problem, called (SOC), as the counterpart of the
problem (Pε). The assumption on the constant λ guarantees that the contribution of ψ for (SOC) is strongly
convex, providing a sufficient condition for optimality for (SOC). The latter allows us to construct the optimal
control for (Pε). However, one might also ask under which assumptions we can prove the convergence of the
vanishing viscosity method if an optimal control of (Pε) is a-priori assigned. We have the following result.

Corollary 1.4. Assume that there exists an optimal pair (µε, uε) for (Pε) and that the following assumptions
hold:

� the set of admissible control values U ⊂ Rd is convex and compact;
� the vector field b is C1,1 regular, i.e. Assumption (B) in Section 2.3 below holds;
� the functions f, ψ, g in J are C1,1 regular, i.e. Assumption (J) in Section 3.1 below holds;
� the function ψ is λ-convex, i.e. Assumption (C) in Section 3.1 below holds.

Then, (µε, uε) is the unique optimal pair for (Pε). Moreover, there exists 0 < Λ′ < Λ, with Λ provided by
Theorem 1.1, which depends only on the final time T and the Lipschitz constant of the functions b, f, g, such
that if λ > Λ′ then there exists a solution (µ, u) ∈ C([0, T ]; P2(Rd))×L∞((0, T ); Lip(Rd, U)) of (P) and, up to
a sub-sequence which we do not relabel, the following convergence reusults hold:

(i) uε ⇀ u in L2((0, T );W 1,p
loc (Rd, U)) for every 1 ≤ p <∞;

(ii) µε → µ in C([0, T ],P2(Rd));
(iii) J(µ, u) ≤ lim infn→∞ J(µε, uε).

Remark 1.5. Our proof of existence of an optimal pair (µ, u) for of (P) and the convergence (i) in the
statements of the Theorem 1.1 and Corollary 1.4 are consequence of a compactness argument applied to the
sequence uε, namely Lemma 4.2 below. We cannot rule out the following phenomenon: one might have several
minimizers for (P), and some among them might be the limits of sub-sequences of uε.

A central aspect of our proof is to show the uniform-in-ε Lipschitz-continuity of the optimal control uε,
with respect to the space variable. The proof exploits in a crucial way the relation between uε and the adjoint
solution of the mean-field forward-backward stochastic differential equation arising from (SOC). Typically,
optimality conditions for minimizers can take the form of a system of partial differential equations coupling a
Hamilton-Jacobi equation and the optimal control is given by a function of the derivative of the solution to
the Hamilton-Jacobi equation. The difficulty is that, in general, the solution of a first order Hamilton-Jacobi
equation is at most Lipschitz continuous: shocks of the gradient develop in finite time. Therefore, the optimal
control can present discontinuities.

In order to analyze (SOC), we will use the techniques developed in [21]. It is worth to note that this kind
of approach was also used in [26], where the authors prove the small time existence of smooth solutions of the
master equation. In particular, they study the differentiability with respect to the initial condition of the flow
generated by a forward-backward stochastic system of McKean-Vlasov type and they prove that the decoupling
field generated by the forward-backward system is a classical solution of the corresponding master equation.
The small time existence of a strong solution of the master equation, originating from the theory of Mean Field
Games, has been proved also in [37], providing also a more rigorous connection between the master equation and
the Mean Field Games equations. More recently, global in time solutions to the master equations for potential
Mean Field Games are constructed in [36] for a class of Lagrangians and initial data which are displacement
convex. Under sufficient regularity assumptions, solutions of mean-field control problems coincide with the
equilibria of an associated the mean-field game. These equilibria are in turn given by solutions of the master
equation. Then one might ask whether the results of [36] can directly guarantee the existence of solutions to
the Problem (P). This is indeed a very delicate problem which is not yet covered in literature (to the best of
our knowledge).

Finally, in the context of mean-field games, problems of a similar nature are addressed in [19]: the authors
consider a class of mean-field games with local coupling and provide a stability analysis with respect to the
diffusion term, which covers the case of vanishing viscosity. However, the system analyzed in [19] does not derive
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from a mean-field optimal control problem, see [7], and therefore does not cover our result. We think that it
is an interesting problem to understand whether it is possible to generalize the results of [19] for the systems
derived in [7], thus providing a different approach to the vanishing viscosity method.

The structure of the article is the following. In Section 2, we introduce some standard tools from analysis
in the space of probability measures. Moreover, we recall existence and uniqueness results for the non-local
continuity equation (1.2) and advection-diffusion equation (1.3) equations. In Section 3, we define and solve a
class of mean-field stochastic optimal control problems, which is closely related to our original problems (P) and
(Pε). Indeed, the results of Section 3 will provide the main building blocks for the proof of our main theorem,
which will be given in Section 4. Finally, in Section 5 we will also show an example in which the vanishing
viscosity limit does not hold if we drop the strict convexity assumption on the control cost ψ.

2. Notations and preliminaries

In this section, we fix notations and recall some notions of analysis in the space of probability measures,
Wasserstein spaces, and non-local continuity equations.

2.1. The Wasserstein distance

We denote byM(Rd) the set of measures on Rd and by P(Rd) the subset of probability measures. The set of
probability measures with compact support is denoted by Pc(Rd), while Pac(Rd) denotes the set of probability
measures which are absolutely continuous with respect to the d-dimensional Lebesgue measure L d. We also
define Pac

c (Rd) := Pac ∩Pc(Rd).
We say that a sequence {µn}n∈N ⊂P(Rd) converges in the sense of measures towards µ ∈P(Rd), denoted

by µn
∗
⇀ µ, provided that

lim
n

∫
Rd
φ(x)µn( dx) =

∫
Rd
φ(x)µ( dx), for all φ ∈ C∞c (Rd). (2.1)

The space P(Rd) is equipped with the topology of the convergence of measures. For a given p ≥ 1, we denote
by Pp(Rd) the set of probability measures with finite p-th moment Mp, which is defined as

Mp(µ) :=

∫
Rd
|x|pµ( dx). (2.2)

Definition 2.1. Let µ, ν ∈ Pp(Rd). We say that γ ∈ P(R2d) is a transport plan between µ and ν provided
that γ(A × Rd) = µ(A) and γ(Rd × B) = ν(B) for any pair of Borel sets A,B ⊂ Rd. We denote with Π(µ, ν)
the set of such transference plans.

With these notations, we now introduce the Wasserstein distance in the space Pp(Rd).

Definition 2.2. Given p ≥ 1 and two measures µ, ν ∈Pp(Rd), the p -Wasserstein distance between µ and ν is

Wp(µ, ν) := inf
γ∈Π(µ,ν)

{∫
Rd×Rd

|x− y|p γ( dx, dy)

}1/p

. (2.3)

We recall that the Wasserstein distance metrizes the weak-∗ topology of probability measures; in particular
the following holds, see [54, 55].

Proposition 2.3. The Wasserstein space (Pp(Rd),Wp) is a complete and separable metric space. Moreover,
for a given µ ∈Pp(Rd) and a sequence of measures in µn ∈Pp(Rd), the following conditions are equivalent:

� Wp(µ, µ
n)→ 0, as n→∞,
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� µn
∗
⇀ µ and

∫
Rd
|x|pµn( dx)→

∫
Rd
|x|pµ( dx),

� µn
∗
⇀ µ and

∫
BcR

|x|pµn( dx)→ 0 as R→∞ uniformly in n.

We recall that Wasserstein distances are ordered, in the sense that, given µ, ν ∈Pc(Rd), then

Wp1(µ, ν) ≤Wp2(µ, ν), whenever p1 ≤ p2. (2.4)

We also denote with Lip(φ) a Lipschitz constant for a function φ and with Lip(X,Y ) the space of Lipschitz
functions from X to Y , as well as Lip(X) := Lip(X,R). We now recall the Kantorovich-Rubinstein duality
formula which characterizes the distance W1, see [55].

Lemma 2.4. Let µ, ν ∈P1(Rd). Then

W1(µ, ν) = sup
φ∈Lip(Rd)

{∫
Rd
φ(x)(µ− ν)( dx) : Lip(φ) ≤ 1

}
. (2.5)

2.2. The L-derivative

We now recall some results of differential calculus in the space of probability measures. Unless otherwise
specified, all definitions and the results are taken from [22]. In particular, we choose a notion of derivative of a
functional with respect to a measure, that suits our purposes. We recall that there are several different definitions
of derivatives with respect to measures, see e.g. [22]. For our purpose, we need the so-called L-derivative. Let
(Ω,F ,P) be an atomless probability space, where atomless means that for any A ∈ F with P(A) > 0 there exists
B ∈ F such that 0 < P(B) < P(A).

Definition 2.5. Let X : Ω → Rd be a random variable. We define the law of X the measure defined as
L(X)(B) := P(X−1(B)), for any Borel set B ⊂ Rd.

The following proposition holds, see [10, Proposition 9.1.11].

Proposition 2.6. Let µ ∈ P2(Rd), then there exists a Rd-valued random variable X ∈ L2(Ω;Rd) with law
L(X) = µ. Moreover, if µ, µ′ ∈P2(Rd), then

W2(µ, µ′)2 = inf
(X,X′)

E
[
|X −X ′|2

]
,

where the infimum is taken over the pairs of Rd-random variables (X,X ′) such that L(X) = µ and L(X ′) = µ′.

Given a map h : P2(Rd)→ R we define the lift h̃ : L2(Ω;Rd)→ R in the following way

h̃(X) = h(L(X)), ∀X ∈ L2(Ω;Rd).

Note that L(X) ∈P2(Rd), since X ∈ L2(Ω;Rd). We point out that L2(Ω,F ,P) is an Hilbert space, in which
the notion of Fréchet differentiability makes sense. We thus have the following definition.

Definition 2.7. A function h : P2(Rd) → R is said to be L-differentiable at µ0 ∈ P2(Rd) if there exists a
random variable X0 with law µ0 such that the lifted function h̃ is Fréchet differentiable at X0.

The Fréchet derivative of h̃ at X can be viewed as an element of L2(Ω;Rd); we denote it by Dh̃(X). It is
important to recall that L-differentiability of h does not depend upon the particular choice of X, as explained
in the following propositions, see [22].



VANISHING VISCOSITY IN MEAN-FIELD OPTIMAL CONTROL 7

Proposition 2.8. Let h : P2(Rd)→ R and h̃ its lift. Let X,X ′ ∈ L2(Ω;Rd) with the same law. If h̃ is Fréchet
differentiable at X, then h̃ is Fréchet differentiable at X ′ and (X,Dh̃(X)) has the same law as (X ′, Dh̃(X ′)).

Proposition 2.9. Let h : P2(Rd)→ Rd be an L-differentiable function. Then, for any µ0 ∈P2(Rd) there exists
a measurable function ξ : Rd → Rd such that for all X ∈ L2(Ω;Rd) with law µ0, it holds that Dh̃(X) = ξ(X)
µ0-almost surely.

We say that h is continuously L-differentiable if Dh̃ is a continuous function from the space L2(Ω,F ,P) into
itself. Moreover, by Proposition 2.9, the equivalence class of ξ ∈ L2(Rd, µ0;Rd) is uniquely defined; we denote
it by ∂µh(µ0). We call L-derivative of h at µ0 the function

∂µh(µ0)(·) : x ∈ Rd 7→ ∂µh(µ0)(x).

From the above construction, it is clear that ∂µh(µ0)(·) is uniquely defined only µ0-a.e.. However, if Dh̃ is a
Lipschitz function from L2(Ω,F ,P) into itself, we can define a Lipschitz continuous version of ∂µh(µ0)(·). This
is the content of the following proposition, see [22].

Proposition 2.10. Assume that (v(µ)(·))µ∈P2(Rd) is a family of Borel-measurable mappings from Rd into itself
for which there exists a constant C > 0 such that, for any pair of identically distributed square integrable random
variables ξ1, ξ2 ∈ L2(Ω,F ,P;Rd) over an atomless probability space (Ω,F ,P), it holds:

E
[
|v(L(ξ1))(ξ1))− v(L(ξ2))(ξ2)|2

]
≤ C2E

[
|ξ1 − ξ2|2

]
.

Then, for each µ ∈P2(Rd), one can redefine v(µ)(·) on a µ-negligible set in such a way that:

∀x, x′ ∈ Rd, it holds |v(µ)(x)− v(µ)(x′)| ≤ C|x− x′|, (2.6)

for the same C as above.

To the above definition of differentiability we associate the following definition of convexity.

Definition 2.11. We say that a function h : P2(Rd)→ Rd is L-convex if it is L-differentiable and satisfies

h(µ′) ≥ h(µ) + E[∂µh(µ)(X) · (X ′ −X)],

whenever X,X ′ ∈ L2(Ω;Rd) have law µ, µ′, respectively.

Finally, it is natural to extend the above definitions to functions depending on a d-dimensional variable x
and on a probability measure µ, i.e. of the type h : (x, µ) ∈ Rd×P2(Rd)→ R. With these notations, a function
h is jointly differentiable if its lift h̃ : Rd ×L2(Ω;Rd) is jointly differentiable. In particular, we can define partial
derivatives ∂xh(x, µ) and ∂µh(x, µ)(x′). We remark that joint continuous differentiability in the two arguments is
equivalent to partial differentiability in each of the two arguments and joint continuity of the partial derivatives.
Thus, the definitions and the results of this section can be easily generalized to this setting. In particular, if the
derivatives of h are Lipschitz, thanks to Proposition 2.10 we can find a Lipschitz continuous version of ∂µh(x, µ)
as a function x′ ∈ Rd 7→ ∂µh(x, µ)(x′).

2.3. Non-local continuity and diffusion equations

We now provide a summary of the theory for the equations (1.2) and (1.3), based on [43, 44, 48]. We start
by considering the Cauchy problem for the non-local continuity equation:{

∂tµt + div[b(t, x, µt)µt] = 0,

µ|t=0 = µ0,
(2.7)
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where the data of the problem are a fixed time horizon T > 0, a vector field b : (0, T ) × Rd ×P(Rd) → Rd
and the initial probability measure µ0 ∈ P2(Rd). The above equation has to be understood in the sense of
distributions, yielding to the following definition.

Definition 2.12. Let µ0 ∈ P2(Rd). A weak solution of equation (2.7) is a probability measure µ ∈
C([0, T ]; P2(Rd)) such that

∫ T

0

∫
Rd

(∂tϕ(t, x) + b(t, x, µt) · ∇ϕ(t, x))µt( dx) dt =

∫
Rd
ϕ(0, x)µ0( dx),

for all test functions ϕ ∈ C∞c ([0, T )× Rd).

We remark that µ ∈ C([0, T ]; P2(Rd)) means that the map t ∈ [0, T ] 7→ µt ∈ P2(Rd) is continuous with
respect to the weak convergence of measures, i.e. the map

t ∈ [0, T ]→
∫
Rd
ϕ(x)µt( dx),

is continuous for every ϕ ∈ C∞c ([0, T )× Rd). Moreover, Definition 2.12 makes sense if

b(t, x, µt) ∈ L1((0, T );L1
loc(Rd; dµt)).

We will always work with vector fields satisfying the following assumptions.

Assumptions (B)

(B1) The non-local velocity field (t, x, µ) 7→ b(t, x, µ) is measurable with respect to t ∈ [0, T ] and it is continuous
in the | · | ×W2-topology with respect to (x, µ) ∈ Rd ×P2(Rd).

(B2) There exists M > 0 such that

|b(t, x, µ)| ≤M
(

1 + |x|+
∫
Rd
|y|µ( dy)

)
, (2.8)

for all times t ∈ [0, T ] and any (x, µ) ∈ Rd ×P2(Rd).
(B3) There exists a constant L > 0 such that

|b(t, x, µ)− b(t, y, ν)| ≤ L (|x− y|+W2(µ, ν)) , (2.9)

for all times t ∈ [0, T ] and for any x, y ∈ Rd and µ, ν ∈P2(Rd).
(B4) The vector field b is L-Lipschitz regular, i.e.

|∇xb(t, x, µ)−∇xb(t, x′, µ′)| ≤ L (|x− x′|+W2(µ, µ′)) ,

E
[
|∂µb(t, x′, µ′)(X ′)− ∂µb(t, x, µ)(X)|2

]
≤ L2

(
|x− x′|2 + E

[
|X −X ′|2

])
,

for all t ∈ [0, T ], x, x′ ∈ Rd and X,X ′ ∈ L2(Ω;Rd) with law, respectively, µ, µ′.

Remark 2.13. Both in Assumptions (B), and in the following Assumptions (J) below, we denote by M a
constant related to boundedness, and by L a constant related to Lipschitz continuity. In particular, the Lipschitz
constant L plays a crucial role in Theorem 1.1, since we require λ > Λ(T, L).
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Note that from (B3) we also have that

|∇b(t, x, µ)|+ |∂µb(t, x, µ)(x′)| ≤ L.

By assuming the above hypotheses, the continuity equation (1.2) admits a unique solution. We resume this
well-posedness result in the following theorem, see [48].

Theorem 2.14. Let b : (t, x, µ) ∈ [0, T ] × Rd ×P2(Rd) → Rd be a vector field satisfying (B1), (B2), (B3).
Then, for each µ0 ∈P2(Rd) there exists a unique solution µ ∈ C([0, T ]; P2(Rd)) of equation (2.7). Moreover,
if suppµ0 is compact, there exists a constant r > 0 such that

suppµt ⊂ Br, for all t, s ∈ [0, T ].

We now study the diffusion equation.{
∂tµ

ε
t + div [b(t, x, µεt )µ

ε
t ] = ε∆µεt ,

µε|t=0 = µ0.
(2.10)

First of all, a solution is a family of measures which satisfies the following.

Definition 2.15. Let µ0 ∈ P2(Rd). A weak solution of equation (2.10) is a probability measure µε ∈
C([0, T ]; P2(Rd)) such that∫ T

0

∫
Rd

(∂tϕ(t, x) + b(t, x, µεt ) · ∇ϕ(t, x) + ε∆ϕ(t, x))µεt ( dx) dt =

∫
Rd
ϕ(0, x)µ0( dx),

for all test functions ϕ ∈ C∞c ([0, T )× Rd).

By assuming the same regularity on the vector field, we have the following existence and uniqueness theorem
for equation (2.10), see [43, 44].

Theorem 2.16. Let b : (t, x, µ) ∈ [0, T ]×Rd ×P2(Rd)→ Rd be a vector field which satisfies (B1), (B2), (B3).
Then, for each µ0 ∈P2(Rd) there exists a unique solution µ ∈ C([0, T ]; P2(Rd)) of equation (1.3).

We conclude this section with two technical lemmas.

Lemma 2.17. Let F be a scalar function or a vector field satisfying the regularity assumptions as in ((B3))
and ((B4)). Then,

|F (t, x′, µ′)− F (t, x, µ)−∇F (t, x, µ) · (x′ − x)− E [∂µF (t, x, µ)(X) · (X ′ −X)] |
≤ L

(
|x′ − x|2 +W2(µ, µ′)2

)
, (2.11)

for a.e. t ∈ [0, T ], for any x, x′ ∈ Rd, µ, µ′ ∈ P2(Rd) and Xt, X
′
t ∈ L2((0, T );L2(Ω;Rd)) with law µ, µ′

respectively. In particular, we have that

E

[∫ T

0

|F (t,X ′t,L(X ′t))− F (t,Xt,L(Xt))−∇F (t,Xt,L(Xt)) · (X ′t −Xt)

−Ẽ
[
∂µF (t,Xt,L(Xt))(X̃t) · (X̃ ′t − X̃t)

]∣∣∣ dt

]
≤ 2LE

[∫ T

0

|X ′t −Xt|2 dt

]
, (2.12)

for any square integrable process Xt, X
′
t ∈ L2((0, T );L2(Ω;Rd)).
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Proof. We assume that F is a scalar, the proof for the vectorial case follows in the same way. We add and
subtract the quantity F (t, x, µ′) in the absolute value on the left hand side. From the identity

F (t, x′, µ′)− F (t, x, µ′) =

∫ 1

0

∇F (t, sx′ + (1− s)x, µ′) · (x′ − x) ds,

it easily follows that

|F (t, x′, µ′)− F (t, x, µ′)−∇F (t, x, µ) · (x′ − x)|

=

∣∣∣∣∫ 1

0

∇F (t, sx′ + (1− s)x, µ′) · (x′ − x) ds−∇F (t, x, µ) · (x′ − x)

∣∣∣∣
≤
∫ 1

0

|∇F (t, sx′ + (1− s)x, µ′)−∇F (t, x, µ)||x′ − x|ds

≤ L|x′ − x|2
∫ 1

0

sds+
L

2
|x′ − x|2 +

L

2
W2(µ, µ′)2

≤ L|x′ − x|2 +
L

2
W2(µ, µ′)2,

where in the third line we used Young’s inequality. On the other hand, from the identity

F (t, x, µ′)− F (t, x, µ) = E
[∫ 1

0

∂µF (t, x,L(sX ′ + (1− s)X)(sX ′ + (1− s)X) · (X ′ −X) ds

]
,

it follows that

E

[∫ 1

0

(
∂µF (t, x,L(sX ′ + (1− s)X)(sX ′ + (1− s)X)− ∂µF (t, x,L(X))(X)

)
· (X ′ −X) ds

]

≤ E
∫ 1

0

∣∣∂µF (t, x,L(sX ′ + (1− s)X)(sX ′ + (1− s)X)− ∂µF (t, x,L(X))(X)
∣∣|X ′ −X|ds

≤ L

2
E[|X ′ −X|2].

Then, the conclusion follows from the triangle inequality, the two estimates above, and Proposition 2.6. Finally,
(2.12) follows from (2.11).

We now recall the Osgood’s lemma, see [27, 28].

Lemma 2.18. Let ρ be a positive Borel function, γ a locally integrable positive function, ψ a continuous
increasing strictly positive function, and η > 0. Assume that the function ρ satisfies one between

ρ(t) ≤ η +

∫ t

t0

γ(s)ψ(ρ(s)) ds, or ρ(t) ≤ η +

∫ t0

t

γ(s)ψ(ρ(s)) ds. (2.13)

Define the function M as

M(x) =

∫ 1

x

1

ψ(s)
ds.
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Then, in the first case it holds that

−M(ρ(t)) + M(η) ≤
∫ t

t0

γ(s) ds,

while in the second case

−M(ρ(t)) + M(η) ≤
∫ t0

t

γ(s) ds.

Proof. A proof of the lemma when ρ satisfies the first inequality in (2.13) can be found in [27]. We prove the
lemma in the case ρ satisfies the second inequality in (2.13), which is stated but not proved in [28]. Define

the function Rη(t) := η +

∫ t0

t

γ(s)ψ(ρ(s)) ds. That implies Rη(t) ≥ ρ(t) by assumption. Since R is absolutely

continuous, then it holds

Ṙη(t) = −γ(t)ψ(ρ(t)) ≥ −γ(t)ψ(Rη(t)) for a.e. t,

and integrating the above expression in time∫ t0

t

Ṙη(s)

ψ(Rη(s))
ds ≥ −

∫ t0

t

γ(s) ds.

Then, by the change of variables s→ Rη(s) in the left hand side, we get that∫ η

Rη(t)

ds

ψ(s)
≥ −

∫ t0

t

γ(s) ds.

By the definition of M, the left hand side coincides with M(η)−M(Rη(t)). Then, by using that M is decreasing
we obtain that

−M(ρ(t)) + M(η) ≤ −M(Rη(t)) + M(η) ≤
∫ t0

t

γ(s) ds

and this concludes the proof.

3. Stochastic mean-field optimal control

In this section, we provide a short overview of stochastic control theory. After introducing the notations,
we will give an appropriate version of the Pontryagin Maximum Principle based on the tools introduced in
Section 2. Most of the results are taken from [21, 22] and slightly modified to fit our context.

3.1. The stochastic set-up

Let (Ω,Ft,P) be a complete filtered probability space, equipped with an adapted Brownian motion Wt.
Without any loss of generality, we can assume that (Ω,F0,P) is an atomless probability space and the filtration
Ft is the one generated by F0 and Wt.

We denote by Xε
t a stochastic process solving the following stochastic differential equation:{

dXε
t = (b(t,Xε

t ,L(Xε
t )) + αt) dt+

√
2ε dWt,

Xε
0 = ξ,

(3.1)
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where ξ ∈ L2(Ω,F0,P;Rd) is a given random variable with L(ξ) = µ0, and the admissible control αt satisfies:

Assumption (A)

(A1) αt is a measurable process with values in U . Define R := max(1,maxx∈U |x|).

In particular, since U is compact, the following bound is trivial

E
∫ T

0

|αt|2 dt <∞. (3.2)

We now state a classical well-posedness result for equation (3.1), see [22].

Theorem 3.1. If b satisfies Assumptions (B) and αt satisfies (3.2), then there exists a unique solution Xε
t

of equation (3.1) such that

E

[
sup

t∈(0,T )

|Xε
t |2
]
<∞.

Moreover, if Xε,′

t is a solution of equation (3.1) with control α′t and initial condition ξ′, then the following
stability estimate holds

E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]
≤ C2(T, L)

(
E
[
|ξ′ − ξ|2

]
+ E

[∫ T

0

|α′t − αt|2 dt

])
, (3.3)

where L is the Lipschitz constant of b in (B3).

It is worth to remark that in Theorem 3.1 the existence is understood in the strong sense, i.e. one can find
a solution to equation (3.1) on any given filtered probability space equipped with any given adapted Brownian
motion. Moreover, pathwise uniqueness holds: it means that, on any given filtered probability space equipped
with any given Brownian motion, any two solutions to equation (3.1) with the same initial condition ξ coincide.
Since it will be crucial for the following, we compute the constants appearing in Theorem 3.1 under our specific
assumptions. We recall that M2(µ0) is the second moment defined in (2.2).

Lemma 3.2. Under the hypothesis of Theorem 3.1, for ε ≤ 1, we have that

E

[
sup

t∈(0,T )

|Xε
t |2
]
≤ C1(T, µ0,M,R),

with

C1(T, µ0,M,R) :=

(
M +R

M + 1
+
√
M2(µ0) + T

)2

e(M+1)T , (3.4)

where M is the constant in (B2) and R as in (A1). Moreover, the constant C2 in (3.3) is

C2(T, L) := exp{(4L+ 1)T}. (3.5)
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Moreover, we also have the estimate

E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]
≤ C̃2(T, L)

(
E
[
|ξ′ − ξ|2

]
+ T

∫ T

0

E
[
|α′t − αs|2

]
ds

)
, (3.6)

where C̃(T, L) = CeCL
2T , for some positive constant C.

Proof. We divide the proof in two steps.

Step 1 Uniform bound on the forward component. Let Xε
t be the solution of equation (3.1) with

control αt and initial datum ξ0. By an easy application of Ito’s Lemma, we get that

E[|Xε
t |2] = E[|ξ|2] + E

[∫ T

0

(b(t,Xε
t ,L(Xε

t )) + αt) ·Xε
t dt

]
+ εt.

Notice that |αt| ≤ R for all t ∈ [0, T ], since it takes values in the compact set U . Then, by using the growth
assumptions (B2) on b, L∞ bound on αt, Lemma 2.18, and Doob’s inequality [41] we get

E

[
sup

t∈(0,T )

|Xε
t |2
]
≤
(
M +R

M + 1
+
√
M2(µ0) + T

)2

e(M+1)T . (3.7)

Step 2 Stability estimate for the forward component. Let Xε
t , X

ε,′

t be, respectively, the solutions of

equation (3.1) with control αt, α
′
t and initial condition ξ, ξ′. Then, the difference Xε,′

t −Xε
t satisfies the ordinary

differential equation {
d
dt (X

ε,′

t −Xε
t ) = b(t,Xε,′

t ,L(Xε,′

t )) + α′t − b(t,Xε
t ,L(Xε

t ))− αt,
Xε,′

0 −Xε
0 = ξ′ − ξ,

(3.8)

and by using the Lipschitz property (B3) and standard estimates we get that

E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]
≤ exp{(4L+ 1)T}

(
E

[
|ξ′ − ξ|2 +

∫ T

0

|α′t − αt|2 dt

])
. (3.9)

Step 3 Further estimate on the stability constant. We now provide a different estimate on the difference.
From equation (3.8) and the assumption (B3) we obtain that

|Xε,′

t −Xε
t | ≤ |ξ′ − ξ|+ L

∫ t

0

|Xε,′

s −Xε
s |ds+ L

∫ t

0

√
E|Xε,′

s −Xε
s |2 ds

+

∫ t

0

|α′s − αs|ds.

Taking the square of both sides and using the Cauchy-Schwarz inequality we get

|Xε,′

t −Xε
t |2 ≤ C|ξ′ − ξ|2 + CL2

(∫ t

0

|Xε,′

s −Xε
s |ds

)2
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+ CL2

(∫ t

0

√
E|Xε,′

s −Xε
s |2 ds

)2

+ C

(∫ t

0

|α′s − αs|ds
)2

≤ C|ξ′ − ξ|2 + CL2t

∫ t

0

|Xε,′

s −Xε
s |2 ds

+ CL2t

∫ t

0

√
E|Xε,′

s −Xε
s |2 ds+ Ct

∫ t

0

|α′s − αs|2 ds.

Then, taking the expectation, with standard arguments we obtain that

E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]
≤ CeCL

2T

(
E
[
|ξ′ − ξ|2

]
+ T

∫ T

0

E
[
|α′s − αs|2

]
ds

)
, (3.10)

and this concludes the proof.

We now proceed by defining the following stochastic optimal control problem.

Stochastic optimal control problem (SOC)

Denote by α := (αt)0≤t≤T the control on the whole time interval, and consider the cost
functional

JS(α) = E

[
g(Xε

T ,L(Xε
T )) +

∫ T

0

(f(t,Xε
t ,L(Xε

t )) + ψ(αt)) dt

]
. (3.11)

Find

min
α
JS(α),

such that Xε
t is a solution of equation (3.1) and the control satisfies Assumption (A).

From now on, we assume the following hypothesis on the cost J .

Assumptions (J)

(J1) The control cost α ∈ U → ψ(α) ∈ R is C1.
(J2) The functions f and g are C1 and L-Lipschitz: for all t ∈ [0, T ], x, x′ ∈ Rd, µ, µ′ ∈P2(Rd) it holds

|f(t, x, µ)− f(t, x′, µ′)| ≤ L (|x− x′|+W2(µ, µ′)) ,

|g(x, µ)− g(x′, µ′)| ≤ L (|x− x′|+W2(µ, µ′)) .

(J3) The derivatives of f and g with respect to x are L-Lipschitz continuous with respect to (x, µ), i.e. for
every t ∈ [0, T ], x, x′ ∈ Rd, and µ, µ′ ∈P2(Rd) it holds

|∇xf(t, x, µ)−∇xf(t, x′, µ′)| ≤ L (|x− x′|+W2(µ, µ′)) ,

|∇xg(x, µ)−∇xg(x′, µ′)| ≤ L (|x− x′|+W2(µ, µ′)) ,
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and for all X,X ′ ∈ L2(Ω;Rd) with law, respectively, µ, µ′ it holds

E
[
|∂µf(t, x′, µ′)(X ′)− ∂µf(t, x, µ)(X)|2

]
≤ L2

(
|x− x′|2 + E

[
|X −X ′|2

])
,

E
[
|∂µg(x′, µ′)(X ′)− ∂µg(x, µ)(X)|2

]
≤ L2

(
|x− x′|2 + E

[
|X −X ′|2

])
.

Note that from (J2) we also have that the derivatives of f and g are bounded, i.e for every t ∈ [0, T ], x, x′ ∈ Rd,
and µ ∈P2(Rd) it holds

|∇xf(t, x, µ)|, |∇xg(x, µ)| ≤ L, |∂µf(t, x, µ)(x′)|, |∂µg(x, µ)(x′)| ≤ L. (3.12)

Moreover, under the assumptions (J2) and (J3), we can apply Lemma 2.17 to f and g. We associate to (SOC)
the Hamiltonian:

H(t, x, µ, y, α) = (b(t, x, µ) + α) · y + f(t, x, µ) + ψ(α), (3.13)

for (t, x, µ, y, α) ∈ [0, T ]×Rd×P2(Rd)×Rd×U . It is worth to note that under Assumptions (A), (B), (J),
the Hamiltonian H is C1,1

loc -regular.
In full analogy with the Pontryagin Maximum Principle for finite-dimensional control problems, we introduce

an adjoint process as the solution of a backward equation involving partial derivatives of the Hamiltonian with
respect to the measure argument. Then, for a given admissible control αt and the corresponding controlled state
Xε
t , we give the following definition.

Definition 3.3. We call adjoint processes of Xε
t any couple (Y εt , Z

ε
t ) satisfying the backward stochastic equationdY εt = −

[
∇xH(t,Xε

t ,L(Xε
t ), Y εt , αt) + Ẽ[∂µH(t, X̃ε

t ,L(X̃ε
t ), Ỹ εt , α̃t)(X

ε
t )]
]

dt+ Zεt dWt,

Y εT = ∇g(Xε
T ,L(Xε

T )) + Ẽ
[
∂µg(X̃ε

T ,L(X̃ε
T ))(Xε

T )
]
,

(3.14)

where (X̃ε
t , Ỹ

ε
t , α̃t) is an independent copy of (Xε

t , Y
ε
t , αt) defined on the space (Ω̃, F̃t, P̃) and Ẽ denotes the

expectation on (Ω̃, F̃t, P̃). In particular, it holds L(X̃ε
t ) = L(Xε

t ).

A solution of equation (3.14) is a couple (Y εt , Z
ε
t ), where the introduction of the process Zεt is necessary to

ensure that the process Y εt is adapted with respect to the forward filtration Ft.
It is worth to note that the functions ∇xH and ∂µH do not depend on α, due to the particular form of the

Hamiltonian (3.13). As a consequence, the system can be rewritten as


dY εt = − [∇xb(t,Xε

t ,L(Xε
t ))Y εt +∇xf(t,Xε

t ,L(Xε
t ))] dt

−
[
Ẽ[∂µb(t, X̃

ε
t ,L(X̃ε

t ))(Xε
t )Ỹ εt + ∂µf(t, X̃ε

t ,L(X̃ε
t )(Xε

t )]
]

dt+ Zεt dWt,

Y εT = ∇g(Xε
T ,L(Xε

T )) + Ẽ
[
∂µg(X̃ε

T ,L(X̃ε
T ))(Xε

T )
]
,

(3.15)

The equation (3.14) is a backward stochastic differential equation (BSDE) of mean-field type, since the law of
Y εt appears in the term which involves the L-derivative of H. This kind of BSDE admits a unique solution, if we
assume enough regularity on the coefficients and we consider Xε

t , αt as given data of the problem. In particular,
the following theorem holds, see [22].
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Theorem 3.4. Let αt be an admissible control and Xε
t the corresponding trajectory. Under Assumptions (A),

(B), (J), there exists a unique solution (Y εt , Z
ε
t ) such that

E

[
sup

t∈(0,T )

|Y εt |2 +

∫ T

0

|Zεt |2 dt

]
<∞. (3.16)

Moreover, if (Y ε,
′

t , Zε,
′

t ) is a solution corresponding to a control α′t and a stochastic process Xε,′

t , it holds that

E

[
sup

t∈(0,T )

|Y ε,
′

t − Y εt |2 +

∫ T

0

|Zε,
′

t − Zεt |2 dt

]
≤ C(T, L)E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]
, (3.17)

where L is the Lipschitz constant appearing in Assumptions (B), (J).

Similarly to what we have done for the forward component, we explicitly compute the constants ensuring
boundedness of Y εt and well-posedness of solutions of equation (3.15).

Lemma 3.5. Let αt be an admissible control and Xε
t the corresponding trajectory. Under the assumptions of

Theorem 3.4, for every p ≥ 1 it holds

E

[
sup

t∈(0,T )

|Y εt |p
]
≤ C3(T, L)p, (3.18)

where

C3(T, L) := (1 + 2L)e2LT . (3.19)

Finally, given another trajectory Xε,′

t , we have that

E

[
sup

t∈(0,T )

|Y ε,
′

t − Y εt |2
]
≤ C4(T, L)E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]

(3.20)

and the constant C4(T, L) is given by

C4(T, L) := 4L2(2 + T + TC3(T, L)2)e(6+2L2)T . (3.21)

Proof. We divide the proof in two steps.

Step 1 Uniform bounds on Y εt . Let p ≥ 2, an application of Ito’s lemma gives that

E [|Y εt |p] +p(p− 1)E

[∫ T

t

|Zεs |2|Y εs |p−2 ds

]
= E [|Y εT |p]

+ pE

[∫ T

t

(∇xb(s,Xε
s ,L(Xε

s ))Y εs +∇xf(s,Xε
s ,L(Xε

s ))) · Y εs |Y εs |p−2 ds

]

+ pE

[∫ T

t

(
Ẽ[∂µb(s, X̃

ε
s ,L(X̃ε

s ))(Xε
s )Ỹ εs + ∂µf(s, X̃ε

s ,L(X̃ε
s )(Xε

s )]
)
· Y εs |Y εs |p−2 ds

]
.
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We estimate the terms on the right hand side separately. First, by (3.12) we have that

E [|Y εT |p] ≤ (2L)p. (3.22)

We now consider the term involving ∇xb: by using assumption (B3) we easily obtain that

E

[∫ T

t

∇xb(s,Xε
s ,L(Xε

s ))Y εs · Y εs |Y εs |p−2 ds

]
≤ L

∫ T

t

E [|Y εs |p ds] . (3.23)

On the other hand, for the part involving ∂µb we use assumption (B4) and Holder’s inequality, obtaining

E

[∫ T

t

Ẽ
[
∂µb(s, X̃

ε
s ,L(X̃ε

s ))(Xε
s )Ỹ εs

]
· Y εs |Y εs |p−2 ds

]
≤ L

∫ T

t

Ẽ[|Y εs |]E[|Y εs |p−1] ds

≤ L
∫ T

t

E[|Y εs |p]
1
pE[|Y εs |p]

p−1
p ds = L

∫ T

t

E[|Y εs |p] ds. (3.24)

Finally, for the terms involving f we use (3.12) to get

E

[∫ T

t

∇xf(s,Xε
s ,L(Xε

s )) · Y εs |Y εs |p−2 ds

]
≤ L

∫ T

t

E [|Y εs |p]
p−1
p ds, (3.25)

E

[∫ T

t

Ẽ
[
∂µf(s, X̃ε

s ,L(X̃ε
s )(Xε

s )
]
· Y εs |Y εs |p−2 ds

]
≤ L

∫ T

t

E [|Y εs |p]
p−1
p ds. (3.26)

Putting together the previous estimates, we obtain

E [|Y εt |p] ≤ (2L)p + 2Lp

∫ T

t

E[|Y εs |p] + E [|Y εs |p]
p−1
p ds. (3.27)

By defining y(t) := E [|Y εt |p], the above inequality can be rewritten as

y(t) ≤ (2L)p + 2Lp

∫ T

t

y(s) + y(s)
p−1
p ds, (3.28)

and an application of Lemma 2.18 provides the following estimate

y(t)1/p ≤ (1 + 2L)e2LT . (3.29)

In other words, we get that

‖Y εt ‖Lp(Ω) ≤ (1 + 2L)e2LT . (3.30)

The same bound trivially holds for 1 ≤ p < 2 since we are working on a probability space. Moreover, it is a
classical fact that, since the right hand side of (3.30) is uniformly bounded in p, then Y εt ∈ L∞(Ω) (see [53],
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Exercise 1.3.5) and moreover

sup
t∈(0,T )

sup
ω∈Ω
|Y εt | ≤ (1 + 2L)e2LT . (3.31)

Step 2 Stability estimate on the backward component Y εt . Let Xε
t , X

ε,′

t be, respectively, the solutions

of equation (3.1) with control αt, α
′
t and initial condition ξ, ξ′. We denote with Y εt , Y

ε,′

t the associate adjoint

processes. Applying Ito’s lemma to |Y ε,
′

t − Y εt |2 we get that

E
[
|Y ε,

′

t − Y εt |2
]

+ E

[∫ T

t

|Zε,
′

s − Zεs |2 ds

]
= E

[
|Y ε,

′

T − Y
ε
T |2
]

+2E

[∫ T

t

(
∇xb(s,Xε,′

s ,L(Xε,′

s ))Y ε,
′

s −∇xb(t,Xε
s ,L(Xε

s ))Y εs

)
· (Y ε,

′

s − Y εs ) ds
]

+2E

[∫ T

t

(
∇xf(s,Xε,′

s ,L(Xε,′

s ))−∇xf(s,Xε
s ,L(Xε

s ))
)
· (Y ε,

′

s − Y εs ) ds
]

+2E

[∫ T

t

(
Ẽ
[
∂µb(s, X̃

ε,′

s ,L(X̃ε,′

s ))(Xε,′

s )Ỹ ε,
′

s − ∂µb(s, X̃ε
s ,L(X̃ε

s ))(Xε
s )Ỹ εs

])
· (Y ε,

′

s − Y εs ) ds
]

+2E

[∫ T

t

(
Ẽ
[
∂µf(s, X̃ε,′

s ,L(X̃ε,′

s ))(Xε,′

s )− ∂µf(s, X̃ε
s ,L(X̃ε

s ))(Xε
s )
])
· (Y ε,

′

s − Y εs ) ds
]
.

We estimate the terms in the above inequality separately. First, by using (J3), for the part involving the final
datum we have that

E
[
|Y ε,

′

T − Y
ε
T |2
]
≤2E

[
|∇g(Xε,′

T ,L(Xε,′

T ))−∇g(Xε
T ,L(Xε

T ))|2
]

+ 2E
[∣∣∣Ẽ [∂µg(X̃ε,′

T ,L(X̃ε,′

T ))(Xε,′

T )− ∂µg(X̃ε
T ,L(X̃ε

T ))(Xε
T )
]∣∣∣2]

≤8L2E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]
.

Second, for the part involving the running cost f , by using Young’s inequality and (J3) we obtain

2E

[∫ T

t

(
∇xf(s,Xε,′

s ,L(Xε,′

s ))−∇xf(s,Xε
s ,L(Xε

s ))
)
· (Y ε,

′

s − Y εs ) ds

]

≤ E

[∫ T

t

|Y ε,
′

s − Y εs |2 dt

]
+ 2L2TE

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]
, (3.32)

and

2E

[∫ T

t

(
Ẽ
[
∂µf(s, X̃ε,′

s ,L(X̃ε,′

s ))(Xε,′

s )− ∂µf(s, X̃ε
s ,L(X̃ε

s ))(Xε
s )
])
· (Y ε,

′

s − Y εs ) ds

]

≤ E

[∫ T

t

|Y ε,
′

s − Y εs |2 dt

]
+ 2L2TE

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]
. (3.33)
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Lastly, we consider the part involving ∇xb (the one which involves ∂µb works similar). We add and subtract the

quantity ∇xb(s,Xε,′

s ,L(Xε,′

s ))Y εs , then write

2E

[∫ T

t

(∇xb(s,Xε,′

s , L(Xε,′

s ))Y ε,
′

s −∇xb(t,Xε
s ,L(Xε

s ))Y εs ) · (Y ε,
′

s − Y εs ) ds
]

= 2E

[∫ T

t

(∇xb(s,Xε,′

s ,L(Xε,′

s ))−∇xb(t,Xε
s ,L(Xε

s )))Y εs · (Y ε,
′

s − Y εs ) ds
]

+2E
[∫ T

t

∇xb(s,Xε,′

s ,L(Xε,′

s ))(Y ε,
′

s − Y εs ) · (Y ε,
′

s − Y εs ) ds

]
and by using Young’s inequality we simply estimate as follows

2E

[∫ T

t

(∇xb(s,Xε,′

s , L(Xε,′

s ))Y ε,
′

s −∇xb(t,Xε
s ,L(Xε

s ))Y εs ) · (Y ε,
′

s − Y εs ) ds
]

≤ 2E

[∫ T

t

|Y ε,
′

s − Y εs |2 dt

]
+ E

[∫ T

t

|∇xb(s,Xε,′

s ,L(Xε,′

s ))|2|Y ε,
′

s − Y εs |2 ds

]

+ E

[∫ T

t

|∇xb(s,Xε,′

s ,L(Xε,′

s ))−∇xb(t,Xε
s ,L(Xε

s ))|2|Y εs |2 ds

]

≤ (2 + L2)E

[∫ T

t

|Y ε,
′

s − Y εs |2 dt

]
+ 2TL2C3(T, L)2E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]
,

where we used (B4) and (3.31). By a Gronwall’s type argument we get that

E
[
|Y ε,

′

t − Y εt |2
]
≤ C4(T, L)E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]

for the constant C4(T, L) given in (3.21).

We now provide the last set of assumptions, that are convexity hypotheses on the cost J .

Assumptions (C)

(C1) The control cost α 7→ ψ(α) ∈ R is λ-convex over U , with convexity constant λ > 0, i.e. for all α, α′ ∈ U it
holds

ψ(α′) ≥ ψ(α) + ∂αψ(α) · (α′ − α) + λ|α′ − α|2.

With the assumptions above, we can now prove the following sufficient condition on the control for optimality.
The following theorem is a slight generalization of [21, Theorem 4.7].

Theorem 3.6. Let ξ ∈ L2(Ω,F0,P;Rd), α̂t be an admissible control, Xε
t the corresponding controlled state

process, and (Y εt , Z
ε
t ) the corresponding adjoint processes, and assume that Assumptions (A), (B), (C), (J)

hold. There exists Λ := Λ(T, L) > 0 such that if λ > Λ and it holds L1 ⊗ P-a.e. that

H(t,Xε
t ,L(Xε

t ), Y εt , α̂t) = inf
α∈U

H(t,Xε
t ,L(Xε

t ), Y εt , α),
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then α̂t is the unique optimal control, i.e. JS(α̂) = minα′ J
S(α′) where the minimum is computed among the

admissible controls.

Proof. We drop the ε superscript for simplicity of notations. Let α′t be an admissible control and X ′ the
associated controlled state. By computing the cost functional and using the definition of H in (3.13), we have
that

JS(α̂)− JS(α′) =E [g(XT ,L(XT ))− g(X ′T ,L(X ′T ))]

+ E

[∫ T

0

(f(t,Xt,L(Xt))− f(t,X ′t,L(X ′t)) + (ψ(α̂t)− ψ(α′t)) dt

]
=E [g(XT ,L(XT ))− g(X ′T ,L(X ′T ))] (3.34)

+ E

[∫ T

0

(H(t,Xt,L(Xt), Yt, α̂t)−H(t,X ′t,L(X ′t), Yt, α
′
t)) dt

]

− E

[∫ T

0

((b(t,Xt,L(Xt))− b(t,X ′t,L(X ′t)) + α̂t − α′t) · Yt) dt

]
.

We estimate the terms involving the final cost: we add and subtract the term

∇xg(XT ,L(XT )) · (XT −X ′T ) + Ẽ
[
∂µg(XT ,L(XT ))(X̃T ) · (X̃T − X̃ ′T )

]
,

and then by using Fubini’s Theorem, the fact that the tilde random variables are independent copies of the
non-tilde variables, the definition of YT , and Lemma 2.17 we have

E [g(XT ,L(XT ))− g(X ′T ,L(X ′T ))] ≤ E [YT · (XT −X ′T )] + 2LE
[
|XT −X ′T |2

]
. (3.35)

We now use the adjoint equation to compute

E [YT · (XT −X ′T )] =E

[∫ T

0

(Xt −X ′t) · dYt +

∫ T

0

Yt · d(Xt −X ′t)

]

=− E

[∫ T

0

∇xH(t,Xt,L(Xt), Yt, α̂t) · (Xt −X ′t) dt

]

− E

[∫ T

0

Ẽ
[
∂µH(t, X̃t,L(X̃t), Ỹt, ˜̂αt)(Xt)

]
· (Xt −X ′t) dt

]
(3.36)

+ E

[∫ T

0

(b(t,Xt,L(Xt))− b(t,X ′t,L(X ′t)) + α̂t − α′t)) · Yt dt

]
.

Again by Fubini’s theorem, it holds

E

[∫ T

0

Ẽ
[
∂µH(t, X̃t,L(X̃t), Ỹt, ˜̂αt)(Xt)

]
· (Xt −X ′t) dt

]
(3.37)

= EẼ

[∫ T

0

∂µH(t,Xt,L(Xt), Yt, α̂t)(X̃t) · (X̃t − X̃ ′t) dt

]
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= E

[∫ T

0

Ẽ
[
∂µH(t,Xt,L(Xt), Yt, α̂t)(X̃t)

]
· (X̃t − X̃ ′t) dt

]
. (3.38)

Then, by using equation (3.34), (3.35), equation (3.36), and equation (3.37) we have

JS(α̂)− JS(α′) ≤E

[∫ T

0

(H(t,Xt,L(Xt), Yt, α̂t)−H(t,X ′t,L(X ′t), Yt, α
′
t)) dt

]

− E

[∫ T

0

∇xH(t,Xt,L(Xt), Yt, α̂t) · (Xt −X ′t) dt

]

− E

[∫ T

0

Ẽ
[
∂µH(t,Xt,L(Xt), Yt, α̂t))(X̃t) · (X̃t − X̃ ′t)

]
dt

]
+ 2LE

[
|XT −X ′T |2

]
. (3.39)

We estimate the right hand side of (3.39) as follows: for the part involving the running cost we use Lemma 2.17
in order to obtain that

E
[ ∫ T

0

(f(t,Xt,L(Xt))− f(t,X ′t,L(X ′t)))−∇f(t,Xt,L(Xt)) · (Xt −X ′t) dt
]

− E

[∫ T

0

Ẽ
[
∂µf(t,Xt,L(Xt))(X̃t) · (X̃t − X̃ ′t)

]
dt

]
≤ 2LE

[∫ T

0

|Xt −X ′t|2 dt

]
. (3.40)

Then, we estimate the part involving the vector field b: we apply Lemma 2.17, Lemma 3.2 and Lemma 3.5
to obtain

E

[∫ T

0

Yt ·

(
b(t,Xt,L(Xt))− b(t,X ′t,L(X ′t))−∇b(t,Xt,L(Xt))(Xt −X ′t)

)
dt

]

− E

[∫ T

0

Yt ·

(
Ẽ

[
∂µb(t,Xt,L(Xt))(X̃t)(X̃t − X̃ ′t)

])
dt

]

≤ Λ1(T, L)

(
E

[∫ T

0

|α̂t − α′t|2 dt

])
,

where

Λ1(T, L) := 2LTC2(T, L)C3(T, L). (3.41)

Finally, for the part involving the control cost, thanks to minimality of α̂t and convexity of ψ, it holds

E

[∫ T

0

ψ(α̂t)− ψ(α′t) + (α̂t − α′t) · Yt dt

]
≤ −λE

∫ T

0

|α̂t − α′t|2 dt. (3.42)

In conclusion, we use Lemma 3.2 and define

Λ := Λ1(T, L) + 2LC2(T, L)T + 2LC̃2(L, T )T, (3.43)
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where we used equation (3.6) to estimate the contribution of the final cost. Finally, we have that

JS(α̂) + (λ− Λ)E

[∫ T

0

|α̂t − α′t|2 dt

]
≤ JS(α′), (3.44)

which in turn gives that α̂ is the unique optimal control if λ > Λ.

Remark 3.7. Note that the constant Λ = O(T ) in (3.43) can be made as small as desired for T small enough.
This implies that, at least for small times, the condition λ > Λ is always satisfied. A similar condition also
ensures Lipschitz regularity of mean-field optimal control (see [15]) and uniqueness of a minimizer in mean-field
games (see [5]). Note that another possible choice for the lower bound on the convexity constant is

Λ̃ := Λ1(T, L) + 2LC2(T, L)(1 + T ),

which is smaller than Λ for very large T .

Remark 3.8. It is clear that a convexity assumption on f and g simplifies the proof of Theorem 3.6: in this
case the bounds (3.40) and (3.35) hold without the terms

E

[∫ T

0

|Xt −X ′t|2 dt

]
, E

[
|XT −X ′T |2

]
,

respectively. In this case the theorem holds if we assume λ > Λ1(T, L), which turns out to be a constant smaller
than Λ. At this point, as one could expect, it is worth to note that a strict convexity assumption on f and g
would allow to consider a larger class of control costs ψ with a smaller convexity constant, with a condition of
the type

λ+ λg + λf − Λ > 0.

However, we cannot avoid to consider λ > 0: it will be clear from the Lemma 3.11 below and the counterexample
of Section 5.

Remark 3.9. Note that, if f, g are convex and b is affine (eventually depending on the barycenter of µ too),
i.e. of the form

b(t, x, µ) = b0(t) + b1(t)x+ b2(t)

∫
Rd
xµ( dx),

then Assumption (C) implies that the function (x, µ, α) 7→ H(t, x, µ, y, α) is convex. The proof of Theorem 3.6
then follows in a simpler way, without resorting to Lemma 2.17, see [22]. In particular, under these hypotheses
we can eventually set Λ = 0.

We recall here the necessary condition for optimality for the stochastic problem, see [22, Theorem 6.14]. We
will use this theorem in the proof of the corollary.

Theorem 3.10. Assume b, f, ψ, g satisfy Assumptions (B), (C), (J). Then, if we assume that Ft is generated
by F0 and Wt, that the Hamiltonian H is convex in α ∈ U that the admissible control α is optimal, that X is
the associated (optimally) controlled state, and that (Y, Z) are the associated adjoint processes solving equation
(3.14), then we have:

∀α ∈ U, H(t,Xt,L(Xt), Yt, Zt, αt) ≤ H(t,Xt,L(Xt), Yt, Zt, α), (3.45)
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L 1 ⊗ P almost everywhere.

We now show that the optimal control is Lipschitz continuous when the Hamiltonian is strictly convex with
respect to the control.

Lemma 3.11. Under Assumptions (A), (B), (C), (J), there exists a unique minimizer α̂ of H. Moreover,
the function α̂ : y ∈ Rd → α̂(y) ∈ U is measurable and Lipschitz continuous, with a Lipschitz constant depending
on λ only.

Proof. Observe that, for any (t, x, µ, y), the function α 7→ H(t, x, µ, y, α) is continuously differentiable and
strictly convex, so that α̂(y) appears as the unique solution of the variational inequality:

∀β ∈ U, it holds (α̂(y)− β) · (y +∇ψ(α̂)) ≤ 0. (3.46)

Moreover, by strict convexity, measurability of α̂(y) is a consequence of the gradient descent algorithm with
convex constraint, see [22]. We now prove Lipschitz continuity: for any y, y′ ∈ Rd and (t, x, µ) ∈ [0, T ] × Rd ×
P2(Rd), the criticality of α̂ provides the following inequalities

(α̂(y)− α̂(y′)) · ∂αH(t, x, µ, y′, α̂(y′)) ≥ 0, (3.47)

(α̂(y′)− α̂(y)) · ∂αH(t, x, µ, y, α̂(y)) ≥ 0. (3.48)

They in turn imply

(α̂(y′)− α̂(y)) · (∂αH(t, x, µ, y′, α̂(y′))− ∂αH(t, x, µ, y, α̂(y))) ≤ 0. (3.49)

On the other hand, by using λ-convexity of ψ, we also have

(α′ − α) · (∂αψ(α′)− ∂αψ(α)) ≥ 2λ|α′ − α|2.

Since ∂αH = y + ∂αψ, we also have

2λ|α̂(y′)− α̂(y)|2 ≤(α̂(y′)− α̂(y)) · (∂αψ(α̂(y′))− ∂αψ(α̂(y)))

≤ (α̂(y′)− α̂(y)) · (∂αH(t, x, µ, y′, α̂(y′))− ∂αH(t, x, µ, y, α̂(y)))

+ (α̂(y′)− α̂(y)) · (y′ − y) ≤ |α̂(y′)− α̂(y)||y′ − y|.

In the last inequality we have used (3.49). It then follows

|α̂(y′)− α̂(y)| ≤ 1
2λ |y

′ − y|. (3.50)

This concludes the proof.

Remark 3.12. From the Lemma above we deduce that the minimum α̂ of the Hamiltonian H does not depend
on ε. On the other hand, the optimal control depends on ε, via the adjoint process: it can be written as follows

α̂εt := α̂(Y εt ). (3.51)
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Given the optimal control α̂εt , we can write a forward backward system of stochastic differential equations
(FB-SDE) of McKean-Vlasov type, that is


dXε

t = (b(t,Xε
t ,L(Xε

t )) + α̂(Y εt )) dt+
√

2ε dWt,

dY εt = −(∇xH(t,Xε
t ,L(Xε

t ), Y εt , α̂(Y εt )) + Ẽ[∂µH(t, X̃ε
t ,L(X̃ε

t ), Ỹ εt , α̂(Ỹ εt ))(Xε
t )]) dt

+Zεt dWt,

Xε
0 = ξ, Y εT = ∇xg(Xε

T ,L(Xε
T )) + Ẽ[∂µg(X̃ε

T ,L(X̃ε
T ))(XT )],

(FB-SDE)

where we recall again that the notation (X̃ε
t , Ỹ

ε
t ) denotes an independent copy of (Xε

t , Y
ε
t ) defined on the space

(Ω̃, F̃t, P̃) and Ẽ denotes the expectation on (Ω̃, F̃t, P̃). If the coefficients are smooth and no further assumptions
are required, systems of FB-SDE are not always solvable, see [3]. For a fixed ε > 0, existence of a solution of
equation (FB-SDE) is provided in [20]. In the next subsection, we show that convexity of the Hamiltonian ensures
well-posedness of equation (FB-SDE), even when the viscosity coefficient is zero. Thus, stability estimates on
the solutions of equation (FB-SDE) will turn into an ε-uniform bound on the Lipschitz constant of the optimal
control of (Pε), as we will show in Section 4.

3.2. Well-posedness of (FB-SDE)

The goal of this subsection is to prove well-posedness of the system (FB-SDE) associated to an optimal
control, and then to build the associated decoupling field. Note that Theorem 3.6 ensures that solving (SOC)
is equivalent to solve the system (FB-SDE). We drop the ε superscript in the whole subsection, for simplicity
of notations.

We adopt the strategy known as continuation method for FB-SDEs, see [47]. We denote by Θt :=
(Xt,L(Xt), Yt, α̂t), where α̂t = α̂(Yt), and S is the space of the processes Θt such that

‖Θ‖S := E

[
sup

t∈(0,T )

(
|Xt|2 + |Yt|2

)
+

∫ T

0

(
|Zt|2 + |α̂t|2

)
dt

]1/2

< +∞, (3.52)

where Zt is the process associated to Yt as in equation (FB-SDE). Similarly, we define θt := (Xt,L(Xt)).

Moreover, an input I = (Ibt , I
σ
t , I

f
t , I

g
T ) will be a four-tuple where the first three entries are square-integrable

progressively measurable processes and the last one is an FT square-integrable random variable. We denote by
I the space of inputs endowed with the norm

‖I‖I := E

[
|IgT |

2 +

∫ T

0

(
|Ibt |2 + |Iσt |2 + |Ift |2

)
dt

]1/2

< +∞. (3.53)

Definition 3.13. For each γ ∈ [0, 1], ξ ∈ L2(Ω,F0,P;Rd) and I ∈ I, define E(γ, ξ, I) as the FB-SDE:


dXt =

(
γ[b(t, θt) + α̂t] + Ibt

)
dt+

(
γ
√

2ε+ Iσt
)

dWt,

dYt = −
(
γ
{
∇xH(t,Θt) + Ẽ

[
∂µH(t, Θ̃t)(Xt)

]}
+ Ift

)
dt+ Zt dWt,

X0 = ξ,

YT = γ
{
∇g(XT ,L(XT )) + Ẽ

[
∂µg(X̃T ,L(X̃T ))(XT )

]}
+ IgT .

(3.54)

For any γ ∈ [0, 1], we say that the property (Sγ) holds if, for any ξ ∈ L2(Ω,F0,P;Rd) and I ∈ I, the FB-SDE
E(γ, ξ, I) has a unique solution in S .
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We now provide a stability lemma for solutions of equation (3.54). It is very similar to the one of [21, Lemma
5.5] and generalizes it to non affine vector-fields.

Lemma 3.14. Let γ ∈ [0, 1] such that (Sγ) holds. Then, there exists a constant C, which depends on T, L, λ
and it is independent on γ and ε, such that for any ξ, ξ′ ∈ L2(Ω,F0,P;Rd) and I, I ′ ∈ I, the solutions Θ,Θ′ of
E(γ, ξ, I), E(γ, ξ′, I ′) satisfy:

‖Θ−Θ′‖2S ≤ C
(
E
[
|ξ − ξ′|2

]
+ ‖I − I ′‖2I

)
. (3.55)

Proof. The proof strongly relies on the estimates (and the strategies) proved in Lemma 3.2 and Lemma 3.5. For
the forward component Xt we have

E

[
sup

t∈(0,T )

|Xt −X ′t|2
]
≤ E

[
|ξ − ξ′|2

]
+ CγE

[∫ T

0

|α̂(Yt)− α̂(Y ′t )|2 dt

]
+ C‖I − I ′‖2I , (3.56)

while for the backward component Yt, Zt it holds

E

[
sup

t∈(0,T )

|Yt − Y ′t |2 +

∫ T

0

|Zt − Z ′t|2 dt

]

≤ CγE

[
sup

t∈(0,T )

|Xt −X ′t|2 +

∫ T

0

|α̂(Yt)− α̂(Y ′t )|2 dt

]
+ C‖I − I ′‖2I . (3.57)

In order to close the estimates, we follow the computations of Theorem 3.6 to obtain a bound on the terms
involving the optimal control. First of all, by using the estimate in (3.35) we have that

E [(X ′T −XT ) · YT ] ≤ γE [g(X ′T ,L(X ′T )− g(XT ,L(XT ))] + 2γLE
[
|XT −X ′T |2

]
+ E [(X ′T −XT ) · IgT ]

On the other hand, by using the equations we have that

E [(X ′T −XT ) · YT ] = E [(ξ′ − ξ) · Y0]− γE

[∫ T

0

∇xH(t,Xt,L(Xt), Yt, α̂t) · (X ′t −Xt) dt

]

− γE

[∫ T

0

Ẽ
[
∂µH(t,Xt,L(Xt), Yt, α̂t)(X̃t)

]
· (X̃ ′t − X̃t) dt

]

+ γE

[∫ T

0

(b(t,X ′t,L(X ′t))− b(t,Xt,L(Xt)) + α̂′t − αt)) · Yt dt

]

− E
∫ T

0

[
(X ′t −Xt) · Ift + (Ibt − I

b,′

t ) · Yt + (Iσt − I
σ,′

t ) · Zt
]

dt = T0 − γT1 − T2.

where we used Fubini’s theorem to switch the integrals in the second line. Then, by repeating the proof of
Theorem 3.6 we obtain that

γJS(α̂′)− γJS(α̂) ≥ γ(λ− Λ(T, L))E

[∫ T

0

|α̂t − α̂′t|2
]

dt+ T0 − T2 + E [(XT −X ′T ) · IgT ] , (3.58)
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where Λ(T, L) is the constant defined in (3.43). We now reverse the role of α̂t and α̂′t in equation (3.58), and
by denoting with T ′0 and T ′2 the corresponding terms in the inequality, we obtain that

2γ(λ− Λ(T, L))E
[
|α̂t − α̂′t|2

]
dt+ T0 + T ′0 − T2 − T ′2 + E

[
(IgT − I

g,′

T ) · (XT −X ′T )
]
≤ 0. (3.59)

We remark that the condition above follows from the convexity assumptions and not from the optimality of α̂′t
or α̂t, indeed the corresponding trajectories start from a different initial condition thus they are respectively
not admissible. Then, since

T0 + T ′0 = E [(ξ′ − ξ) · (Y0 − Y ′0)] ,

and similarly

T2 + T ′2 = E
∫ T

0

[
−(Xt −X ′t) · (I

f
t − I

f,′

t ) + (Ibt − I
b,′

t ) · (Yt − Y ′t )
]

dt

+ E
∫ T

0

[
(Iσt − I

σ,′

t ) · (Zt − Z ′t)
]

dt,

by using Young inequality we have that

γ(λ− Λ(T, L))E
[
|α̂t − α̂′t|2

]
dt ≤ η‖Θ−Θ′‖2S +

C

η

(
E
[
|ξ − ξ′|2

]
+ ‖I − I ′‖2I

)
. (3.60)

Finally, by using that λ > Λ(T, L) and by plugging (3.60) in (3.56) and (3.57) we obtain that

E

[
sup

t∈(0,T )

|Xt −X ′t|2 + sup
t∈(0,T )

|Yt − Y ′t |2 +

∫ T

0

|Zt − Z ′t|2 dt

]

≤ Cη‖Θ−Θ′‖2S +
C

η

(
E
[
|ξ − ξ′|2

]
+ ‖I − I ′‖2I

)
, (3.61)

where it is worth to note that the constant C blows up as λ→ Λ(T, L). Then, the result follows by using the
Lipschitz continuity of α̂ and choosing η small enough.

Remark 3.15. Note that the proof of Lemma 3.14 is similar to the proof of Theorem 3.6. Thus, the Remark 3.8
also holds for it.

We now give an induction lemma for the system (3.54).

Lemma 3.16. There exists a δ0 > 0, which depends on T, L, λ only, such that, if (Sγ) holds for some γ ∈ [0, 1),
then (Sγ+η) holds for all η ∈ (0, δ0] satisfying γ + η ≤ 1.

Proof. The proof follows a standard Picard’s contraction argument. Indeed, if γ is such that (Sγ) holds, for
η > 0, ξ ∈ L2(Ω,F0,P;Rd) and I ∈ I, we define the map Φ : S → S whose fixed points coincide with the
solution of E(γ + η, ξ, I). We now give the definition of Φ. Given a process Θ ∈ S , we denote with Θ′ the
solution of E(γ, ξ, I ′) with

Ib,
′

t = ηb(t, θt) + ηα̂(Yt) + Ibt

If,
′

t = η∇H(t,Θt) + ηẼ
[
∂µH(t, Θ̃t)(Xt)

]
+ Ift

Iσ,
′

t = η
√

2ε+ Iσt
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Ig,
′

T = η∇g(XT ,L(XT )) + ηẼ
[
∂µg(X̃T ,L(X̃T ))(XT )

]
+ IgT .

By assumptions, it is uniquely defined and it belongs to S , so the mapping Φ : Θ→ Θ′ maps S into itself. It
is clear that a process Θ is a fixed point for Φ if and only if Θ is a solution of E(γ, ξ, I ′). We now only need to
prove that Φ is a contraction when η is small enough. Given Θ1,Θ2 ∈ S , by Lemma 3.14 we get that

‖Φ(Θ1)− Φ(Θ2)‖S ≤ Cη‖Θ1 −Θ2‖S , (3.62)

which is enough to conclude the proof, since the constant C does not depend on γ.

We are now able to prove well-posedness of equation (FB-SDE).

Theorem 3.17. Assume that Assumptions (A), (B), (C), (J) hold. Then, for any initial ξ ∈
L2(Ω,F0,P;Rd), the system (FB-SDE) is uniquely solvable.

Proof. First, note that for γ = 0, the right hand side of the system (3.54) is made up of square-integrable
progressively measurable processes, and it does not depends on the solution itself. So (S0) obviously holds.
Then, the proof is a straightforward induction argument based on Lemma 3.16.

As already stressed above, by Theorem 3.17 we know that the solution of equation (FB-SDE) is the unique
optimal path of the stochastic control problem (SOC). To conclude this section, we show the existence of a
decoupling field related to the system (FB-SDE), which will allow to write the optimal control α̂εt in feedback
form.

Lemma 3.18. For any t ∈ [0, T ] and ξ ∈ L2(Ω,Ft,P;Rd), there exists a unique solution

(Xξ,ε
t,s , Y

ξ,ε
t,s , Z

ξ,ε
t,s )t≤s≤T

of the system (FB-SDE) on [t, T ] with Xξ,ε
t,t = ξ. Moreover, for any µ ∈ P2(Rd), there exists a measurable

mapping Uε(t, ·, µ) : x ∈ Rd 7→ Uε(t, x, µ) such that:

P
[
Y ξ,εt,t = Uε(t, ξ,L(ξ))

]
= 1. (3.63)

Moreover, there exists a constant C, depending only on the parameters in Assumptions (A), (B), (C), (J),
such that, for any t ∈ [0, T ] and any ξ1, ξ2 ∈ L2(Ω,F0,P;Rd),

E
[
|U(t, ξ1,L(ξ1))− U(t, ξ2,L(ξ2))|2

]
≤ CE

[
|ξ1 − ξ2|2

]
. (3.64)

Proof. Given t ∈ [0, T ) and ξ ∈ L2(Ω,Ft,P;Rd), existence and uniqueness of a solution of equation (FB-SDE) on
[t, T ] with initial condition ξ is a direct consequence of Theorem 3.17. We now proceed to define the decoupling

field. First of all, note that Y ξ,εt,t coincide a.s. with a σ{ξ}-measurable Rd-valued random variable. In particular,

there exists uεξ(t, ·) : Rd → Rd such that P
[
Y ξ,εt,t = uεξ(t, ξ)

]
= 1. Moreover, the law of (ξ, Y ξ,εt,t ) only depends on

the law of ξ, as a consequence of Yamada-Watanabe Theorem, see [23, Theorem 1.33]. Since uniqueness holds
pathwise, it also holds in law, so given two initial conditions with the same law, the solution has the same
law. Therefore, given another Rd-valued random vector ξ′ with the same law of ξ, it holds that (ξ, uεξ(t, ξ))

has the same law of (ξ′, uεξ′(t, ξ
′)). In particular, for any measurable vector field v : Rd → Rd, the random

variables uεξ(t, ξ) − v(ξ) and uεξ′(t, ξ
′) − v(ξ′) have the same law. Choosing v = uεξ(t, ·) we deduce that uεξ(t, ·)

and uεξ′(t, ·) are equal a.e. under the same law L(ξ). This means that, by denoting L(ξ) = µ, there exists an

element Uε(t, ·, µ) ∈ L2(Rd;µ) such that both uεξ(t, ·) and uεξ′(t, ·) coincide with Uε(t, ·, µ). Identifying Uε(t, ·, µ)
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with one of its versions, we have that P
[
Y ξ,εt,t = Uε(t, ξ, µ)

]
= 1. When t > 0, for any µ ∈P2(Rd) there exists

a Ft-measurable random variable ξ with law µ. As a consequence, this procedure allows to define Uε(t, ·, µ) for
any µ ∈P2(Rd). Note that, when t = 0, F0 is not trivial, i.e. it does not reduce to events of measure zero or
one, since we assume that (Ω,F0,P) is atomless; thus it supports Rd-valued random variables with arbitrary
distributions, see discussion at the beginning of Section 3.1.

The fact that Uε is independent from the probabilistic set-up (Ω,Ft,P) directly follows from the uniqueness
in law.

Finally, the Lipschitz property of Uε(0, ·, ·) is a consequence of Lemma 3.14 with γ = 1. Shifting time if
necessary, the same argument applies to Uε(t, ·, ·).

Remark 3.19. It is worth to notice that the decoupling fields are different if the laws of the initial conditions
are different.

4. The vanishing viscosity method

In this section, we prove our main result. We first build the optimal control for (Pε) using the theory developed
in Section 3. Then, we will provide some convergence lemma, which will be the core of the proof of Theorem 1.1.
To make the presentation smoother, we will always assume that Assumptions (A), (B), (C), (J) hold,
without recalling them.

4.1. The viscous optimal control

Let Uε be the decoupling field given by Lemma 3.18. Thanks to Proposition 2.10, for any µ ∈P2(Rd), we
can consider a version of x 7→ Uε(t, x, µ) in L2(Rd, µ) that is Lipschitz continuous with respect to x, for the
same Lipschitz constant C as in (3.64). This is crucial for what follows.

Lemma 4.1. Let α̂ be the minimizer of the Hamiltonian (3.13) in U , and Uε the decoupling field defined in
Lemma 3.18. Then, the map uε : [0, T ]× Rd → Rd defined by

uε(t, x) = α̂(Uε(t, x, µεt )), (4.1)

is the unique optimal control for (Pε). Moreover, the control uε is Lipschitz continuous, uniformly with respect
to time and viscosity coefficient: i.e., there exists a constant Lλ > 0 independent on t and ε such that

|uε(t, x)− uε(t, x′)| ≤ Lλ|x− x′|. (4.2)

Proof. First remark that Lipschitz continuity follows from Lemma 3.11, Lemma 3.18 and Proposition 2.10 it
holds

|uε(t, x)− uε(t, x′)| = |α̂(Uε(t, x, µεt ))− α̂(Uε(t, x′, µεt ))| ≤ Lλ|x− x′|, (4.3)

for some constant Lλ which only depends on the norms of b, f, g and on λ. We now prove optimality. Let
w : [0, T ]× Rd → U be an admissible control for (Pε). Then, the vector field αt defined as

αt = w(t,Xw,ε
t )

is an admissible control for (SOC) where Xw,ε
t is the associated trajectory. With this particular choice, the

associated cost functional can be rewritten as

JS(α) =

∫ T

0

∫
Rd

(f(t, x, µw,εt ) + ψ(w(t, x)))µw,εt ( dx) dt+

∫
Rd
g(x, µw,εT )µw,εT ( dx) = J(µw,ε, w),
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where µw,εt is the law L(Xw,ε
t ) of the controlled trajectory Xw,ε

t . Then, by the strict minimality property of α̂εt
for (SOC), it holds

J(µε, uε) =

∫ T

0

∫
Rd

(f(t, x, µεt ) + ψ(uε(t, x)))µεt ( dx) dt+

∫
Rd
g(x, µεT )µεT ( dx)

=E

[
g(Xε

T ,L(Xε
T )) +

∫ T

0

(f(t,Xε
t ,L(Xε

t )) + ψ(α̂εt )) dt

]

<E

[
g(Xw,ε

T ,L(Xw,ε
T )) +

∫ T

0

(f(t,Xw,ε
t ,L(Xw,ε

t )) + ψ(αt)) dt

]

=

∫ T

0

∫
Rd

(f(t, x, µw,εt ) + ψ(w(t, x)))µw,εt ( dx) dt+

∫
Rd
g(x, µw,εT )µw,εT ( dx),

for any admissible control w. This proves the optimality of uε and concludes the proof.

4.2. Convergence lemmas

In this section, we prove a series of useful convergence estimates that will be the key tools to prove our main
theorem.

Lemma 4.2. Let K ⊂ Rd be a bounded set and CK > 0 a fixed constant. Define

AK := {u ∈ L2((0, T );W 1,∞(K,U)) : sup
t∈(0,T )

‖u(t, ·)‖W 1,∞(K,U) ≤ CK}. (4.4)

Then, AK is compact in the weak L2((0, T );W 1,p(K,U))-topology for any p ∈ (1,∞).

Proof. See e.g. [35], Theorem 2.5.

We have the following convergence result for the sequence uε defined in (4.1).

Corollary 4.3 (Convergence of the controls). Let uε be the sequence of optimal controls given by (4.1). Then,
there exist a sub-sequence, which we do not relabel, and a map u ∈ L∞((0, T );W 1,∞(Rd, U)) such that, for every
1 < p <∞, the following convergence holds

uε ⇀ u in L2((0, T );W 1,p
loc (Rd, U)), as ε→ 0. (4.5)

Proof. The result is a direct application of Lemma 4.2 together with Lemma 4.1. The constant CK appearing
in Lemma 4.2 is chosen as max{Lλ, R} where Lλ is the constant in (4.2) and R is defined in (A1). In particular,
the constant CK does not depend on ε.

We now show the convergence of the optimal trajectories.

Lemma 4.4 (Convergence of the trajectories). Let u, uε be given by Corollary 4.3 and let µ, µε be the unique
solution of the deterministic equation (1.2) and the viscous equation (1.3) with vector field b, and control u, uε

respectively. It then holds

lim
ε→0

sup
t∈(0,T )

W2(µεt , µt) = 0. (4.6)

Proof. We divide the proof in two steps.

Step 1 Compactness of the sequence µε. We start by proving compactness of {µε}ε>0 in C([0, T ]; P2(Rd))
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as a consequence of Ascoli-Arzelà’s Theorem. First of all, we exploit a uniform bound on the second moment of
µεt : since µεt ∈P2(Rd), one can use |x|2 as a test function in the equation, obtaining∫

Rd
|x|2µεt ( dx) =

∫
Rd
|x|2µ0( dx) + 2

∫ t

0

∫
Rd
uε(s, x) · xµεs( dx) ds

+ 2

∫ t

0

∫
Rd
b(s, x, µεs) · xµεs( dx) ds+ 2εt.

For the term involving the control, from (A1) we easily get

2

∣∣∣∣∫ t

0

∫
Rd
uε(s, x) · xµεs( dx) ds

∣∣∣∣ ≤ 2R

∫ t

0

∫
Rd
|x|µεs( dx) ds

≤ 2RT + 2R

∫ t

0

∫
Rd
|x|2µεs( dx) ds.

On the other hand, from (B2) and Young inequality we get

2

∣∣∣∣∫ t

0

∫
Rd
b(s, x, µεs) · xµεs( dx) ds

∣∣∣∣ ≤ 2M

∫ t

0

∫
Rd
|x|µεs( dx) ds+ 2M

∫ t

0

∫
Rd
|x|2µεs( dx) ds

+

∫ t

0

(∫
Rd
|x|µεs( dx)

)2

ds

≤ 2MT + 5M

∫ t

0

∫
Rd
|x|2µεs( dx) ds.

Thus, being 0 < ε < 1, we obtain∫
Rd
|x|2µεt ( dx) ≤

∫
Rd
|x|2µ0( dx) + 2(1 +M +R)T

+ (2R+ 5M)

∫ t

0

∫
Rd
|x|2µεs( dx) ds,

and then Gronwall’s lemma gives that

sup
t∈(0,T )

∫
Rd
|x|2 µεt ( dx) ≤ [M2(µ0) + 2(1 +M +R)T ] e(2R+5M)T , (4.7)

providing a uniform bound on M2(µεt ). This means that the sequence {µε}ε>0 takes values in a relatively
compact set in P2(Rd) (endowed with W2). Next, we show that the family {µε}ε>0 is equi-continuous in
C([0, T ]; P2(Rd)). Let Xε

t be a solution of equation (3.1) with law µεt , then by Proposition 2.6 we have that

W2(µεt , µ
ε
s)

2 ≤ E
[
|Xε

t −Xε
s |2
]
.

By using equation (3.1) we compute

W2(µεt , µ
ε
s)

2 ≤ E
[
|Xε

t −Xε
s |2
]

≤ 4T

∫ t

s

E
[
|b(τ,Xε

τ , µ
ε
τ )|2 + |αετ |2

]
dτ + 4εE

[
|Wt −Ws|2

]
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≤ 4T

(
M2

∫ t

s

[1 + |Xε
τ |2 +M2(µετ )2] dτ +R2|t− s|+ c(d)|t− s|

)
≤ C(µ0, T,M,R)|t− s|,

which implies equi-continuity of the sequence {µε}ε>0 in C([0, T ]; P2(Rd)). Since P2(Rd) is a complete metric
space [55], by Ascoli-Arzelà’s Theorem (see [2, Prop. 3.3.1]) the sequence {µε}ε>0 is relatively compact in
C([0, T ]; P2(Rd)) for every T > 0. Then, up to a sub-sequence that we do not relabel, there exists a probability
measure ρ ∈ C([0, T ]; P2(Rd)) such that

µε → ρ in C([0, T ]; P2(Rd)), (4.8)

which means that

lim
ε→0

sup
t∈(0,T )

W2(µεt , ρt) = 0. (4.9)

Step 2 Identification of the limit. In this step we show that ρ is a solution of equation (1.2). This will

imply that, by uniqueness, it holds ρ = µ and the whole sequence µε converges to µ. Let ϕ ∈ C∞c ([0, T )× Rd):
by Definition 2.15 we have that∫ T

0

∫
Rd

(
∂tϕ(t, x) + (b(t, x, µεt ) + uε(t, x)) · ∇ϕ(t, x) + ε∆ϕ(t, x)

)
µεt ( dx) dt =

∫
Rd
ϕ(0, x)µ0( dx).

Notice that by Proposition 2.3 we know that (4.8) implies weak convergence, thus it holds

lim
ε→0

∫ T

0

∫
Rd

(
∂tϕ(t, x) + ε∆ϕ(t, x)

)
µεt ( dx) dt =

∫ T

0

∫
Rd
∂tϕ(t, x)ρt( dx) dt.

We now consider the term involving the control. Denote by K := supp(ϕ) and
CK := ‖uε‖L∞((0,T );L∞(K)). It then holds

Lip(ϕ(t, ·)uε(t, ·)) ≤ L‖ϕ‖L∞ + CK‖∇ϕ‖L∞ := Cϕ.

Then, by Lemma 2.4, it holds

lim sup
ε

∣∣∣∣∣
∫ T

0

∫
Rd
ϕ(t, x)uε(t, x)

(
µεt ( dx)− ρt( dx)

)
dt

∣∣∣∣∣ ≤ Cϕ lim sup
ε

∫ T

0

W1(µεt , ρt) dt, (4.10)

which converges to 0 as ε→ 0, by using (4.9) and (2.4). On the other hand, it holds

lim
ε→0

∫ T

0

∫
Rd
ϕ(t, x)uε(t, x)ρt( dx) dt =

∫ T

0

ϕ(t, x)u(t, x)ρt( dx) dt,

due to convergence in (4.5) and the fact that ϕρ belongs to L∞((0, T );W−1,p′(Rd,Rd)) and has compact support.
Then, we have shown

lim
ε→0

∫ T

0

∫
Rd
uε(t, x) · ∇ϕ(t, x)µεt ( dx) dt =

∫
Rd
u(t, x) · ∇ϕ(t, x)ρt( dx) dt.
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We are left to prove convergence in the non-linear term: on one hand the convergence (4.8) implies that

lim
ε→0

∫ T

0

∫
Rd
b(t, x, ρt) · ∇ϕ(t, x)µεt ( dx) dt =

∫ T

0

∫
Rd
b(t, x, ρt) · ∇ϕ(t, x)ρt( dx) dt. (4.11)

On the other hand, the uniform Lipschitz assumption (B3) on b implies that∣∣∣∣∣
∫ T

0

∫
Rd

(b(t, x, µεt )− b(t, x, ρt)) · ∇ϕ(t, x)µεt ( dx) dt

∣∣∣∣∣ ≤ L‖∇ϕ‖L∞ sup
t∈(0,T )

W2(µεt , ρt), (4.12)

which converges to 0 when ε→ 0 thanks to the convergence in (4.9). Hence, ρt is a solution of equation (1.2)
and this concludes the proof.

Lemma 4.5 (Convergence of the cost). Let u, uε be given by Lemma 4.3 and let µ, µε be the corresponding
unique solution of the deterministic equation (1.2) and the viscous equation equation (1.3) with vector field b,
and control u, uε respectively. Let w be an admissible control for (Pε): then we have

lim
ε→0

J(µε, w) = J(µ,w). (4.13)

Moreover, if uε is the sequence of optimal controls as in (4.3), we have that

J(µ, u) ≤ lim inf
ε→0

J(µε, uε). (4.14)

Proof. We divide the proof in two steps.

Step 1 Convergence for a fixed control. First, convergence of the control cost immediately follows from
Lemma 4.4. We now analyze the running cost, the same argument also applies to the final cost. By (J2), we
have ∣∣∣∣∣

∫ T

0

∫
Rd

(f(t, x, µεt )− f(t, x, µt))µ
ε
t ( dx) dt

∣∣∣∣∣ ≤ LT sup
t∈(0,T )

W2(µεt , µt), (4.15)

and the conclusion follows from Lemma 4.4.
Step 2 Semi-continuity. It follows from [35, Theorem 2.12]: arguing as in Step 1, we can show convergence

of both running and final costs. Then, we must show that the control cost is lower semi-continuous with respect
to the weak convergence (4.5). First of all, by Theorem 2.14 we can fix r > 0 such that suppµt ⊂ Br for all
t ∈ [0, T ]. Let p > d and define the functional Sµ : L2((0, T );W 1,p(Br))→ [0,+∞] as

Sµ(g) :=


∫ T

0

∫
Rd
ψ(g(t, x))µt( dx) dt, if Lip(g(t, ·)) ∈ L∞(0, T ),

+∞ otherwise.

(4.16)

By convexity of ψ, it is immediate to check that Sµ is convex: thus, it is sufficient to show that it is lower
semi-continuous in the strong topology L2((0, T );W 1,p(Br)) to obtain weak lower semi-continuity. Let gk be a
sequence in L2((0, T );W 1,p(Br)) strongly converging to some g. By using (J1), we have∣∣∣∣∣

∫ T

0

∫
Rd

(ψ(gk(t, x))− ψ(g(t, x))) µt( dx) dt| ≤
∫ T

0

∫
Rd
|ψ(gk(t, x))− ψ(g(t, x))|µt( dx) dt
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≤ L
∫ T

0

∫
Rd

(|gk(t, x)|+ |g(t, x)|) |gk(t, x)− g(t, x)|µt( dx) dt

≤ CL
∫ T

0

∫
Rd
|gk(t, x)− g(t, x)|2 µt( dx) dt ≤ CL

∫ T

0

‖gk(t, ·)− g(t, ·)‖2L∞

≤ CL
∫ T

0

‖gk(t, ·)− g(t, ·)‖2W 1,p ,

where the constant C depends on Sobolev embeddings and the L2W 1,p norm of gk, g. Therefore, it holds

|Sµ(gk)− Sµ(g)| ≤ CL‖gk − g‖2L2W 1,p , (4.17)

which gives continuity with respect to the strong topology. Thus, Sµ is weakly lower semi-continuous and by
using Corollary 4.3 we obtain that∫ T

0

∫
Rd
ψ(u(t, x))µt( dx) dt ≤ lim inf

ε→0

∫ T

0

∫
Rd
ψ(uε(t, x))µt( dx) dt. (4.18)

Finally, observe that ψ is Lipschitz, since it is C1 on the compact set U . We denote by Lψ,U its Lipschitz
constant on U . Moreover, uε is Lipschitz, with a Lipschitz constant Lλ independent on ε, as shown in (4.2).
Then, it holds: ∣∣∣∣∣

∫ T

0

∫
Rd
ψ(uε(t, x)) (µεt ( dx)− µt( dx)) dt

∣∣∣∣∣ ≤ Lψ,ULλ
∫ T

0

W1(µεt , µt) dt

≤ Lψ,ULλ
∫ T

0

W2(µεt , µt) dt ≤ C sup
t∈(0,T )

W2(µεt , µt).

Merging it with (4.18) and recalling (4.9), we have

∫ T

0

∫
Rd
ψ(u(t, x))µt( dx) dt ≤ lim inf

ε→0

∫ T

0

∫
Rd
ψ(uε(t, x))µεt ( dx) dt. (4.19)

4.3. Proof of the main Theorem

We are now ready to prove our main result.

Proof of Theorem 1.1. Let Λ(T, L) be the constant defined in (3.43). Then, by Lemma 4.1 we know that
there exists a unique (µε, uε) optimal pair for (Pε). By Lemma 4.3, we know that there exists a function
u ∈ L∞((0, T ); Lip(Rd, U)) such that

uε ⇀ u in L2((0, T );W 1,p
loc (Rd, U)),

for every 1 ≤ p <∞. This proves point (i) of the theorem. Moreover, there exists a unique µ ∈ C([0, T ]; P2(Rd))
which solves equation (2.7) with control u; thus, by Lemma 4.4 we have

µε → µ in C([0, T ],P2(Rd)).
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This is point (ii) of the theorem. The convergence of the cost is a consequence of Lemma 4.5. We only need to
show optimality of (µ, u) for (P). Let w ∈ A \ {u} be an admissible control for (P) and µw the corresponding
trajectory. We define µw,ε to be the unique solution of equation (1.3) with control w; since (µw,ε, w) is an
admissible pair for (Pε) and (µε, uε) is the unique optimal pair, we have that

J(µε, uε) < J(µw,ε, w). (4.20)

Now, by Lemma 4.4 we know that µw,ε converges to the unique solution µw of equation (2.7) with control w
and the associated cost converges:

lim
ε→0

J(µw,ε, w) = J(µw, w).

Then, combining Lemma 4.5, equation (4.20), and the convergence above, it holds

J(µ, u) ≤ lim inf
ε→0

J(µε, uε) ≤ J(µw, w),

for any admissible pair (µw, w). Then, (µ, u) is an optimal pair for (P) and the proof is complete.

4.4. A different approach

It will be clear now that the lower bound on λ provides a sufficient condition for optimality in Theorem 3.6.
Thus, it is reasonable to ask whether this is necessary or not for convergence of the vanishing viscosity method
when an optimal control of (Pε) is prescribed. We now prove the Corollary 1.4.

Proof of Corollary 1.4. Let (µε, uε) be an optimal pair for (Pε), our goal is to show that the Lispchitz constant
of uε is independent on ε. We associate to (µε, uε) an optimal control of the problem (SOC) in the following
way. First of all, note that an optimal control for (SOC) must be in closed loop feedback form. This means
that αt = φ(t, ·) for some deterministic function φ. To prove this claim, we consider an admissible control αt
for (SOC) and we define Xα

t the corresponding controlled state. Denote by σ{Xα
t } the σ-field generated by Xα

t

and define

α̃t := E[αt|Xα
t ], (4.21)

the conditional expectation of αt given σ{Xα
t }. Note that α̃t is square integrable, thus admissible for (SOC).

By the Doob-Dynkin lemma, there exists a function eα : Rd → Rd such that

α̃t = eαt(Xt), (4.22)

implying that α̃t is in closed loop feedback form. Let X̃α
t be the controlled process corresponding to α̃t and

denote by µα̃t = L(X̃α
t ): since any controlled process, corresponding to a square-integrable control in closed loop

feedback form, induces a solution to the advection-diffusion equation (1.3), µα̃t solves it. Thus, if we compute
the cost of α̃t, using the convexity of ψ and Jensen inequality we obtain that

J(µα̃, α̃) = JS(α̃) ≤ JS(α).

The above inequality shows that, for any given admissible control α we can always define an admissible control
in closed loop feedback form with a smaller cost. Thus, u is an optimal control also for the stochastic problem
(we recall that strong existence holds for equation (3.1)). Then, by Theorem 3.10 and Lemma 3.11, we obtain
that uε must be of the form 4.1 and therefore unique. Here we used the assumption that λ > 0 but we did not
require a lower bound on it. We now provide a stability estimate for the solution of equation (FB-SDE) with
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constants which are independent on ε, which will ensure that the constant in (3.64) is also ε-independent. From
(3.3), (3.11) and (3.17) we obtain

E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]
≤ C2(T, L)

(
E
[
|ξ′ − ξ|2

]
+ E

[∫ T

0

|α̂(Y ε,
′

t )− α̂(Y εt )|2 dt

])

≤ C2(T, L)E
[
|ξ′ − ξ|2

]
+
C2(T, L)

λ2
E

[∫ T

0

|Y ε,
′

t − Y εt |2 dt

]

≤ C2(T, L)E
[
|ξ′ − ξ|2

]
+
TC2(T, L)

λ2
E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]

Thus, if we define Λ′ :=
√
TC2(T, L), we have that

TC2(T, L)

λ2
≤ 1,

and consequently

E

[
sup

t∈(0,T )

|Xε,′

t −Xε
t |2
]
≤ λ2C2(T, L)

λ2 − C2(T, L)T
E
[
|ξ′ − ξ|2

]
. (4.23)

Finally, we use again (3.17) to compute

E

[
sup

t∈(0,T )

|Y ε,
′

t − Y εt |2
]
≤ C4(T, L)

λ2C2(T, L)

λ2 − C2(T, L)T
E
[
|ξ′ − ξ|2

]
. (4.24)

The conclusion now follows by using Lemma 3.18 and the Lemmata of Sections 4.1 and 4.2 as we did for the
proof of Theorem 1.1.

5. The role of convexity hypotheses

The aim of this section is to discuss the role of the convexity hypotheses (C) for the validity of Theorem 1.1. In
particular, we show that, by relaxing the strict convexity assumption on the control cost ψ, then convergence of
optimal controls uε for (Pε) to an optimal control u of (P) is not ensured. This is the core of the counterexample
that we describe in the following.

We consider the minimization problem of the functional

J(µ, u) =

∫ T

0

∫
R
ψ(u(t, x))µt( dx) dt (5.1)

where the control cost ψ is C∞, positive, convex and satisfies ψ(s) = 0 for s ∈ [−1, 1]. Note that the function ψ
is clearly not strictly convex. As an example, consider the C∞, not analytic function

φ(x) =

{
0 for x = 0,

exp(−1/|x|) for x 6= 0.
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Then, one can build a function ψ(x) as above by choosing

ψ(x) :=


0 for x ∈ [0, 1],∫ x−1

0

ds

∫ s

0

φ(t) dt for x > 1,

ψ(−x) for x < 0.

We assume that the dynamics is given by the equation{
∂tµt + div[u(t, x)µt] = 0,

µ0 = δ0,
(5.2)

where δ0 is the Dirac delta centered in 0.
Set U = [−1, 1] and u ∈ Lip(R;U) be an admissible control. By the standard Cauchy-Lipschitz Theorem, to

any admissible control we can associate a unique flow Xt, i.e. the solution of{
Ẋt = u(Xt),

X0 = x.
(5.3)

It follows that µt = δXt is the unique solution of equation (5.2) with control u. It is clear that any Lipschitz
function u ∈ Lip(R; [−1, 1]) is also optimal, since the corresponding cost is identically zero.

We now consider the viscous optimal control, i.e. where the dynamics is governed by the equation{
∂tµ

ε
t + div[u(t, x)µεt ] = ε∆µεt ,

µε0 = δ0.
(5.4)

The same observations made for the non-viscous case apply: every Lipschitz function u ∈ Lip(R; [−1, 1]) is
optimal and it is associated to a unique solution µε of equation (5.4). For each choice of u ∈ Lip(R; [−1, 1]), one
has convergence of the controls (they are ε-independent), convergence of the trajectories (as an easy consequence
of Lem. 4.4), and convergence of the cost (as a consequence of Lem. 4.5). However, the viscous problem has other
solutions for which the convergence result does not hold. An example is provided by the function ũ(x) = sign(x):
its cost is identically zero and thus it is an optimal control. Moreover, ũ is bounded and then it is associated to
a unique solution µ̃ε of equation (5.4), see [43]. Nevertheless, since ũ is independent from ε, it does not converge
to a Lipschitz optimal control of the inviscid problem. Furthermore, notice that the equation (5.2) with vector
field ũ has multiple solutions, as a consequence of the non-uniqueness for the corresponding ODE (5.3) with
initial datum x = 0. As an example, both the trajectories x(t) = t and x(t) = −t are solutions of the ODE in
the Caratheodory sense.
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