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Abstract

Turbulence in geophysical fluids and space plasmas compete with internal waves

in transferring the energy across scales. Evidences point to the possibility that an

upscale energy transfer, resembling the case of two-dimensional turbulent flows, may

develop in the atmosphere and in the oceans, under the effect of rotation, perhaps

helped by the large aspect ratio of the domain. Indeed, bi-directional energy transfers

(to large and small scales) have been observed in different natural contexts, in the

oceans, for instance, but also in kinetic plasmas, in which magnetic fields support the

propagation of waves, and magnetic reconnection contributes to make the dynamics of

these flows even richer. In these frameworks, characterized by strong inhomogeneity

and anisotropy, standard analysis tools can only provide partial information on how

energy is distributed over the various scales. In order to achieve a more exhaustive

characterization of the energy transfer, in this thesis we employed the so-called

space-filtering (SF) technique to investigate the energetics of stratified turbulent

flows of geophysical interest, and of plasmas in the kinetic regime, the latter being

relevant to understand the dynamics of the interplanetary medium. In particular,

we targeted two major phenomena, the extreme vertical drafts developing in the

stratified geophysical flows, and the reconnection events observed in heliospheric and

magnetospheric plasmas, always using simulation data. After further refining the SF

technique, we used it to analyze a set of direct numerical simulations of stratified

flows, varying the Froude number, focusing on the feedback of developing extreme

vertical drafts on the energy transfer, locally in the physical and the Fourier space.

We were able to verify that vertical drafts do actually inject energy, ultimately

enhancing turbulence and dissipation, affecting the mixing properties of geophysical

flows. The same approach was finally implemented on the outputs of hybrid-kinetic

plasma simulations to asses the effects of magnetic reconnection events on the energy

transfer at the sub-ion scales. Our analysis emphasized for the first time the role of

reconnection as a trigger for dual energy transfers, simultaneously towards scales

larger and smaller than the scales associated to the observed reconnection events.
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Résumé

La turbulence dans les fluides géophysiques et les plasmas spatiaux entre en con-

currence avec les ondes internes pour transférer l’énergie à travers les échelles. Des

preuves pointent vers la possibilité qu’un transfert d’énergie vers les grandes échelles,

ressemblant au cas des écoulements turbulents bidimensionnels, puisse se développer

dans l’atmosphère et dans les océans, sous l’effet de la rotation, éventuellement

aidé par le grand rapport d’aspect du domaine. En effet, des transferts d’énergie

bidirectionnels (à grande et petite échelles) ont été observés dans différents contextes

naturels, dans les océans par exemple, mais aussi dans les plasmas cinétiques, dans

lesquels les champs magnétiques favorisent la propagation des ondes et la reconnexion

magnétique contribue à rendre la dynamique de ces flux encore plus riche. Dans

ces situations, caractérisées par une forte inhomogénéité et anisotropie, les outils

d’analyse standards ne peuvent fournir qu’une information partielle sur la répartition

de l’énergie aux différentes échelles. Afin de parvenir à une caractérisation plus

exhaustive du transfert d’énergie, dans cette thèse, nous avons utilisé la technique du

filtrage spatial (SF) pour étudier l’énergétique des écoulements turbulents stratifiés,

d’intérêt géophysique, et des plasmas dans le régime cinétique, ce dernier étant

pertinent pour comprendre la dynamique du milieu interplanétaire. En particulier,

nous avons ciblé deux phénomènes majeurs, les courants verticaux extrêmes se

développant dans les écoulements géophysiques stratifiés et les événements de recon-

nexion observés dans les plasmas héliosphériques et magnétosphériques, toujours

à l’aide de données de simulation. Après avoir encore plus affiné la technique SF,

nous l’avons utilisée pour analyser un ensemble de simulations numériques directes

d’écoulements stratifiés, en faisant varier le nombre de Froude, en nous concentrant

sur la rétroaction du développement des vents verticaux extrêmes sur le transfert

d’énergie, localement dans l’espace physique et de Fourier. Nous avons pu vérifier

que les courants verticaux injectent effectivement de l’énergie, renforçant finalement

la turbulence et la dissipation, et affectant les propriétés de mélange des écoulements

géophysiques. La même approche a finalement été mise en œuvre sur les sorties des

simulations de plasma hybride-cinétique, afin d’évaluer les effets des événements de
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reconnexion magnétique sur le transfert d’énergie aux échelles sub-ioniques. Notre

analyse a souligné pour la première fois le rôle de la reconnexion comme déclencheur

de transferts double d’énergie simultanément vers des échelles plus grandes et plus

petites que les échelles associées aux événements de reconnexion observés.
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Chapter 1

Introduction

Flow turbulence is ubiquitous in nature, characterizing for instance the dynamics

and energetics of the Earth’s atmosphere and oceans, as well as astrophysical and

space plasmas, such as the solar wind pervading the interplanetary environment.

Turbulence is a multi-scale phenomenon, involving structures across a wide range

of spatial scales; in addition, in plasma turbulence different physical descriptions

may be adopted at different scales (e.g., magneto-hydrodynamics (MHD), two-fluids,

kinetic), therefore it can be considered also as a multi-physics process.

The various length scales ` of turbulent motion are well sketched in the energy

spectrum E(k) in Fourier space, see Fig. 1.1, where wave vectors are linked to

length scale ` by the relation k ∼ `−1. In the classical description of turbulence,

spatial scales are split into three ranges: the energy-containing range, the inertial

range and the dissipation range (see Fig. 1.1(a)). The bulk of the energy resides

in the large scales, which is therefore called the energy-containing range; on the

other hand, the bulk of the dissipation is at the small-scale range, in the so-called

dissipation range. The interval of scales in between is the inertial range, the most

studied in turbulence theory. However, given the vast range of scales involved, the

energy transfer processes usually link these scales together. The power-law spectra,

observed in the atmosphere for the kinetic energy [163, 162, 118], and in the solar

wind for the magnetic energy [204, 34, 136], represent one direct evidence of ranges

tied together. The kinetic energy spectrum shows a power law in the inertial range,

the slope steepens and finally breaks near the so-called Kolmogorov scale η. The
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a) b)

Figure 1.1. Sketch of turbulent energy spectra of kinetic energy ((a) from Kalmar-Nagy

and Bak [98]), and of magnetic energy ((b) from Yang [235]), highlighting the richness

of spatial scale involved.

main goal of this work is to characterize the effect of large-scale extreme events,

observed in the vertical velocity, on the local energy transfer of stratified turbulent

flows, in a range of governing parameters compatible with geophysical fluids. Such

extreme events have been observed in both numerical simulations and observations

of stably stratified flows, drawing the attention of the fluid mechanics community

as well as the atmospheric physics one. For the sake of simplicity, the introduction

of turbulence will be mainly given in the framework of hydrodynamics (HD), with

particular attention to terrestrial flows.

1.1 Incompressible hydrodynamic turbulence

The following sections are provided to briefly review incompressible hydrody-

namics (HD) turbulence, with the aim of giving a qualitative understanding of the

main ideas that are involved in energy transfer processes.

1.1.1 The energy cascade

The current ideas on HD turbulence date back to the seminal work of A. N.

Kolmogorov in 1941 (in short K41) [102, 103]. The classical theory [103] suggests

the development of a turbulent energy cascade (introduced first by Richardson [69]),
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in which energy is transferred from large to small scales at a constant rate, i.e.,

Π` ∼ ε, until the energy is dissipated by viscous action at small-scales. Following

Richardson’s idea, the energy cascade is the result of successive generations of eddies

with smaller sizes. Indeed, eddies of size ` have a characteristic velocity u` and energy

u2
` . It is then possible to define the so-called eddy turnover time associated with a

given scale `, τ` ∼ `/u`. Instead, the average turnover time τNL is defined using the

integral length scale and the root mean squared (rms) velocity. Such a timescale

can be considered as the typical time for eddies of size ` to be affected by significant

distortions; it is also the typical time required for the energy to be transferred from

` to a smaller scale; so that, the energy transfer rate can be estimated as

Π` ∼
u2
`

τ`
∼ u3

`

`
, (1.1)

therefore in the inertial range, where forcing and viscous effects can be neglected,

the following relation is valid, Π` ∼ ε, leading to

u` ∼ ε1/3`1/3 . (1.2)

The energy spectra E(k)dk, already shown in Fig. 1.1, represents the energy in the

wave vector range k ≤ |k| ≤ k + dk, where |k| is the radius of a spherical shell in

the Fourier space. By using Eq. (1.2), the Kolmogorov spectrum of kinetic energy

can be written as

E(k) = CKε
2/3k−5/3 , (1.3)

where CK is a dimensionless constant, depending on the context. Several studies

in numerical simulations [139, 202, 181] and observations [162, 118] support the

evidence of a Kolmogorov-like (or more in general power-law) spectrum in geophysical

flows.

1.1.2 Small-scale intermittency

By using the self-similarity hypothesis suggested by the power-law spectrum, the

K41 theory also encompasses the idea of small-scale intermittency. This is defined

in terms of scaling behavior of the structure functions of order p, [δu(r)]p, being

δu(r) = u(x+ r)− u(x) the velocity increments between two points separated by
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r. Therefore, according to K41,

Sp(r) = 〈[δu(r)]p〉 = rζp , (1.4)

with ζp = p/3, and 〈...〉 denoting the ensemble average. It is worth mentioning that

Eq. 1.4 assumes global homogeneity and isotropy of the system. Structure functions

computed especially from experimental data give a power-law dependence on r with

scaling exponents which sometimes deviate from the Kolmogorov prediction, which

is attributed to the small-scale (or internal) intermittency. We refer to a quantity

as intermittent, whether it is distributed sparsely in time or space, showing the

rare occurrence of very strong fluctuations. For instance, the dissipation is highly

intermittent, presenting local and instantaneous extreme values in small regions of

the space and during fractions of time [174, 139]. Several intermittency models have

been implemented as a correction to the K41 theory, such as the β-model [81], the

multifractal model [81] and the log-normal or log-Levy models [174]. One of the

most successful models, especially with experimental and numerical data, is the

She-Lévêque formula [195]. The classical K41 theory for structure functions with

p ≥ 4 is no longer valid in presence of intermittency. However, both in HD and

MHD turbulence, there exist a few exact laws derived from the dynamic equations

which have been successfully applied in several context [136]. For instance, the most

famous result in HD turbulence is Kolmogorovs’ four-fifths law [51, 78], relating the

third-order structure functions to the energy dissipation rate. This relation requires

homogeneity, isotropy and the finiteness of the energy dissipation in the limit of an

infinite Reynolds number, and it can be expressed as,

〈
[
δu‖(r)

]3
〉 = −4

5εr, (1.5)

with δu‖ = δu · r/r. An analogous law for the transport of a passive scalar was

established by Yaglom [155, 234], and in the context of MHD turbulence by Politano-

Pouquet [178] by using the Elsasser variables z± = u± b (with b the magnetic field

in velocity units).
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1.1.3 Locality of the energy transfer

The Kolmogorov phenomenology of incompressible hydrodynamics turbulence

assumes the locality in the spectral space of energy transfer, meaning that interactions,

produced by the non-linear term in the Navier-Stokes equations (NSEs), occur

predominately between comparable scales `1 ∼ `2. In this framework, the flow

motions over the inertial range are independent of the injection (large) and dissipative

(small) scales, having therefore universal statistics at high Reynolds numbers. The

locality of energy transfer discussed here is close to, but not exactly the same as, the

concept of local (or triadic) interactions. Indeed, as suggested by Kraichnan [105, 106],

triadic interactions involve wave vectors (k, p, q) satisfying k + p + q = 0. If the

three wave numbers are of comparable size, we can talk about local energy transfer,

otherwise the former is non-local. Therefore, the locality of interactions implies

the locality of transfer, but the opposite is not true. The properties of energy

transfer across scales in HD turbulence have been studied in great detail, being able

to prove the locality for very large Reynolds numbers (see e.g., Aluie and Eyink

[5], Domaradzki and Carati [63], Eyink [67]). However, in geophysical flows as well

as in MHD plasmas the picture of energy transfer processes is more complicated; this

happens mainly because of the presence of several energy transfer channels between

different fields (and between fields and scalars), but also for the propagation of waves

(gravito-inertial in the atmosphere and oceans, and Alfvén waves in plasmas). As a

result, small scales may interact directly with large scales. In this thesis works, we

will focus on the locality of energy transfer, and we will introduce as well the idea of

locality-in-space which represent the key point for the analysis of non-homogeneous

and/or anisotropic turbulent systems.

1.2 Geophysical Flows

Geophysical fluid dynamics deals with motions observed in various systems

governed by similar dynamics, such as Earth’s anticyclones, vortices in the Gulf

Stream and Jupiters’ Great Red Spot (see Fig. 1.2). Indeed, all those systems involve

large-scale motions, where either the ambient rotation or density differences assume
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Figure 1.2. Four examples of geophysical flows, where rotation and/or stratification plays

a central role: (a) evolution of an hurricane, (b) Jupiters’ Great Red Spot, (c) mesoscale

eddies in the ocean, (d) particle dispersion after a volcanic eruption.

great importance. In this respect, geophysical fluid dynamics comprises all naturally

occurring rotating-stratified fluid motions, therefore encompassing an enormous

range of spatial and temporal scales, from the vortices of a river around a stone

to the global atmospheric and oceanic current systems. Speaking of geophysical

flows, the terms “large-scale” and “small-scale” must be necessarily contextualized,

and their definition dynamically depends on other characteristic length scales of the

system. For instance, a phenomenon with a characteristic length scale of 100km can

be considered small-scale for the atmosphere but large-scale for oceans. In general,

however, we can refer to large-scale as those which are significantly affected by the

Earth’s rotation.
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1.2.1 Effects of rotation and stratification on turbulent flows

The presence of the Earth’s rotation introduces in the Navier-Stokes equations

(NSEs) two acceleration terms that, in the rotating framework, can be viewed as

forces: the Coriolis and the centrifugal force. The latter is not relevant however in

geophysical flows, whereas the former is crucial in geophysical motions. The major

effect of the Coriolis force is to impose vertical rigidity on the fluid, which is thus

characterized by strict columnar motions. The strength of rotation is measured

through the Rossby number Ro = U/Lf , being defined as the ratio between the

characteristic time of inertial waves τIW = 1/f (with f = 2Ω the Coriolis parameter

and Ω ≈ 7 × 10−5Hz the average Earths’ rotation) and the turnover time U/L.

Strong rotation implies small Rossby, meaning that large-scale motions are slow

compared to the velocity imposed by the rotation. The other key ingredient for

geophysical flows is stratification, arising in nature because of fluids of different

densities and of the gravitational force, which tends to lower the heaviest fluid and

raise the lightest. Under the condition of hydrostatic equilibrium, the fluid develops

a stable stratification, consisting of vertical layers whose extension is controlled by

the so-called buoyancy scale `B = U/N , being N (≈ 10−2Hz in the atmosphere)

the Brunt-Väisälä frequency. As we did for the rotation, it is possible to define

a dimensionless parameter controlling the intensity of stratification, this is the

Froude number Fr = U/LN , which is defined as the ratio of the characteristic

time of gravity waves τGW = 1/N and the non-linear time τNL. Indeed, the

propagation of internal gravity waves in stably stratified flows, such as in the

ocean and in the upper atmosphere, are produced by perturbations of the ambient

density stratification. Rotation and stratification are common features accounted

in geophysical fluid dynamics that strongly affects the evolution of turbulence. In

particular, stratification partially inhibits vertical motions, typically leading to a

kz ∼ 3 scaling of the vertical kinetic energy spectrum, differently from what foreseen

by the K41 and observed for the horizontal spectrum (k⊥ =
√
k2
x + k2

y ∼ −5/3 in the

inertial range). These different scaling laws make those system highly anisotropic,

posing a true challenge for modeling and parameterizations. The horizontal velocity

spectrum in the atmosphere was analyzed using aircraft observations by Nastrom
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and Gage [162], which found a power-law with exponent around -5/3 in the mesoscale

range; however, it is still controversial whether this is due to an upscale (inverse)

cascade of energy [137] as it happens for two-dimensional turbulence [21], or a

downscale (direct) cascade because of the intermittent breaking of internal gravity

waves [27, 26]. Despite this discussion, the inertial range with an exponent of

∼ −5/3 in the horizontal component has been observed by many authors using both

observations [213, 145] and numerical simulations [2]. Lindborg [119] proposed a

scaling analysis of the Navier-Stokes equations in the Boussinesq framework (see

Sec. 2.2.2), which works pretty well for strong stratification and high Reynolds

numbers, to explains the horizontal and vertical spectra observed in the atmosphere

in terms of strong anisotropic 3D turbulence. Other studies, instead, claim that,

since the atmosphere and oceans can be considered as shallow layers developing on

a spherical frame, their vertical extension is much smaller than the horizontal one

and therefore, also for this reason, their motions are strongly affected by quasi-2D

dynamics, other than by rotation and stratification [118]. Generally speaking, the

original picture of turbulent energy cascade and local transfer by Kolmogorov (K41)

is extremely more complicated, for instance, in geophysical flows. Indeed, in this

latter turbulent motions do not represent the sole mechanism of energy transfer but

dynamics and energetics emerge from the interaction between waves and turbulent

eddies. Whether this interplay produces either a direct or inverse (or both) energy

cascade is still debated, and mostly depend on the spatial and temporal characteristic

scales of the two phenomena; however, this represents a crucial question in geophysics

which will help for instance for understanding the oceanic circulation closure [140]

or the mechanisms of formation of large-scale structures in the atmosphere.

1.2.2 Modeling geophysical turbulent flows

Numerical simulations of turbulent process in geophysical flows are manifold,

since they range from the weather forecasting to operational oceanic prediction, and

climate studies. However, in many situations one is mainly interested to gain insight

and understanding of a specific process, of a form of instability or of the role of

shears in a particular regime of parameters. Therefore, a review of the numerical
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models and methods to simulate Earths’ flows is out of the aim of this paragraph,

and it would probably need an entire book. In this section, instead, we focus on

the use of numerical simulations for fundamental studies of turbulence processes

in rotating and stratified fluids. Despite the wide number of numerical codes and

different approaches, we made a simple separation in two main categories: direct

numerical simulations (DNSs) and Large-Eddy simulations (LES). The difference

is that, while the former solve the equations of motion from the energy-containing

scale to the dissipative one. On the other hand, LES (and similar approaches)

solve only a portion of the range of available scales and rely on sub-grid models to

simulate the feedback of small-scale effects on the larger scales; such methods are

based on the universality of small-scales at high Reynolds number (see Kolmogorov

[102, 103]). In recent years, DNSs have benefited from the advent of peta- and hexa-

scale computing capacity since they are computationally expensive, requiring large

amounts of memory and computing hours. Turbulent flows, especially with rotation

and/or stratification (see Fig. 1.5), involve many spatial and temporal scale whose

dynamics needs to be resolved. The complexity in solving turbulent flows (with

or without rotation and stratification) arises mainly from the non-linearity of the

Navier-Stokes equations (NSEs) and, in particular, from the convective term u ·∇u,

and the pressure gradient, being this latter both non-linear and non-local. For these

reasons, usually, DNSs are not suitable to simulate complex geometries, including

structured boundary conditions, or to take into account many different effects and

phenomena (e.g, thermodynamical or radiative process) at large- and small-scales.

Algorithms to perform DNSs of turbulent fluids and plasmas range from pseudo-

spectral codes [189], finite volume [97] and finite difference methods [214] directly

solving the equations of motion, to different approaches, such as Lattice-Boltzmann

methods (LBMs) [75]. As we mentioned in the previous section, geophysical flows in

general represent complex interacting systems, as those under study in condensed

matter physics or biology, therefore most of the times the best approach is to seek

explanations of complex phenomena by simply looking at the interactions of all the

constituent parts. Nowadays, this level of information is almost achievable by DNSs

from the governing equations. However, in the majority of situations, we can only
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understand how those complex systems behave by means of reduced model, such

as the Large-Eddy simulations (LES). Atmospheric General Circulations Models

(AGCMs), Oceanic General Circulation Models (OGCMs) and coupled General

Circulation Models (GCMs) are all base on the LES approach. For its versatility, the

possibility of including complex geometries, boundary conditions and many different

interactions allowed to these methods to significantly improve since the seminal idea

of [112], then futher developed by Germano [86]. The idea proposed by Germano

[86] was to apply a low-pass filtering function to the NSEs at the last resolved length

scale. The filtered equations present an additional term which represents the effect

of the filtered small-scales on the large-scale dynamics; in the LES approach this is

called Reynolds stress tensor, it is obtained by and ensemble average operation, and

the performance of LES strongly relies on how sub-grid scale closures are able to

reliably simulate such term (see Sec. 1.3 for a detailed derivation). Limitations of

LES codes rely on the fact that, sub-grid scale turbulence closures generally suffer

from the problem that the computed Reynolds stresses are of the same order as

the grid truncation error; this interference may lead to computational instability or

a lack of grid convergence. Several sub-grid scale models have been developed to

take into account various small-scale effects, such as intermittency, velocity shears or

helicity structures. Probably, the most famous is the Smagorinsky model [99], and

its modified versions [124, 25], but more structured turbulence closures have been

created, as those based on the eddy damped quasi-normal Markovian (EDQNM)

models [160, 198]. Large-Eddy simulations definitely are based on our understanding

of turbulence indeed, for instance, in the atmosphere, convection occurs on the scale

of km, so it is impossible to properly capture its effects in global climate models in

DNSs, and this will be for many years to come. Therefore, improved parametrization

and sub-grid scale models, accounting for more and more phenomena and small-scale

effects, are probably still the best option to simulate geophysical flows, but novel

codes need some prior understanding on the physical system to be implemented.

Indeed, the existence of complicated numerical models of complex phenomena only

increases the need for understanding at a more basic level, with such understanding

coming from analytical studies, but also from simplified numerical models. In this



1.3 General formulation of the space-filtering (SF) approach 14

thesis manuscript, however, we are mainly interested in the idea at the basis of

Large-Eddy simulations (LES), employed by [86] for the study of turbulent systems,

since it represents the starting point for the space-filtering (SF) (or coarse-graining

(CG)) approach, being at the heath of this analysis of large-scale intermittent events

in stratified flows.

1.3 General formulation of the space-filtering (SF) ap-

proach

In general, given any turbulent field f(x), the space-filtering (SF) technique

consists in computing its convolution with a filtering function G`,

f̃(x) = G` ∗ f (1.6)

or

f̃(x) =
∫
V

G`(x− ξ)f(ξ, t)d3ξ (1.7)

where the integral is computed over the entire volume V . The filtering function can

be chosen as any real-valued and sufficiently smooth even function, rapidly decaying

for large x and normalized, so that
∫

G(x)d3x = 1. To interpret (1.7) as a spatial

average, the filtering function must also be positive definite (G(x) ≥ 0 for any x).

This represents a linear operator, which can be applied to the dynamical equations

of the system, commuting with space and time derivatives,

∂̃tf(x) = ∂tf̃(x) and ∇̃ · f(x) =∇ · f̃(x) (1.8)

preserving for an incompressible flow the divergence-free condition of the filtered

velocity field, ∇ · ũ = 0. Any other filtering operations, such as a simple average of

adjacent values along the domain, do not satisfy these conditions resulting in filtered

fields which are not suitable for analyzing the scale-to-scale dynamics [9]. The

choice of the filtering kernel adopted in this technique determines the information

we can derive from the filtered fields. A variety of functions is commonly used

(i.e. Gaussian kernel, top-hat kernel, Butterworth filter and many others), and they

can be classified into three categories: low-pass, high-pass and band-pass filters
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(see the sketch 3.3). Low- and high-pass filters essentially describe the interaction

between scales above and below the filtering scale, while band-pass filters are useful

to highlight the energy exchange within a particular range of scales.

*

Original

=

Gaussian filter (width: 10 pts) Filtered

Figure 1.3. Example of the application of a Gaussian filter (center) on a 2D field of

temperature θ (left).

Let us derive the general formulation of the space filtering approach for ho-

mogeneous, isotropic and incompressible fluids, as from [86]. If we consider the

incompressible formulation of the Navier-Stokes equations (NSEs),

∂juj = 0 (1.9)

∂tuj + ui∂iuj = −∂jp+ 2ν∂isij (1.10)

where sij is the strain tensor defined as,

sij = 1
2 (∂iuj + ∂jui) (1.11)

For a generic linear filtering operator G applied to the velocity field, we obtain the

following filtered equation,

∂tũj + ũi∂iũj = −∂j p̃+ 2ν∂is̃ij − ∂iτ(ui, uj) (1.12)

with

τ(ui, uj) = ũiuj − ũiũj (1.13)

representing the turbulent stress relative to the filtered scales. Suppose the filtering

operation is obtained through an ensemble average. In that case, τ(ui, uj) =

〈uiuj〉 − 〈ui〉〈uj〉 = 〈u′iu′j〉, u′i being the velocity field fluctuations, is the usual
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Reynolds stress tensor which is commonly at the hearth of Large-Eddy simulations

(LES). Then, multiplying (1.12) by ũj we can derive the equation for the rate of

variation of the filtered energy. The detailed derivation follows,

ũj∂tũj︸ ︷︷ ︸
(I)

+ ũiũj∂iũj︸ ︷︷ ︸
(II)

= − ũj∂j p̃︸ ︷︷ ︸
(III)

+ 2νũj∂is̃ij︸ ︷︷ ︸
(IV)

− ũj∂iτ(ui, uj)︸ ︷︷ ︸
(V)

(1.14)

We can rearrange the above equation by considering the relations,

(I) ũj∂tũj = 1
2 (ũj∂tũj + ũj∂tũj) = 1

2∂tũj ũj = ∂tẼ (1.15)

(II) ũiũj∂iũj = 1
2 (ũiũj∂iũj + ũiũj∂iũj) = 1

2 ũi∂iũj ũj = ũi∂iẼ (1.16)

(III) ∂j (ũj p̃) = ũj∂j p̃+��
��*

0 continuity eq.
p̃∂j ũj (1.17)

(IV) ∂iũjτ(ui, uj) = ũj∂iτ(ui, uj) + τ(ui, uj)∂iũj

ũj∂iτ(ui, uj) = ∂iũjτ(ui, uj)− τ(ui, uj)∂iũj
(1.18)

(V) 2ν∂iũj s̃ij = 2ν (ũj∂is̃ij + s̃ij∂iũj)

2νũj∂is̃ij = 2ν(∂iũj s̃ij − s̃ij∂iũj︸ ︷︷ ︸
s̃ij∂iũj = 1

2 s̃ij
(
∂iũj + ∂j ũi

)
= s̃ij s̃ij

) = 2ν (∂iũj s̃ij − s̃ij s̃ij) (1.19)

Finally, we can write the expression for the energy rate as,

∂tẼ + ∂i
[
ũi
(
Ẽ + p̃

)
+ ũjτ(ui, uj)− 2ν∂iũj s̃ij

]
= −τ(ui, uj)∂iũj − 2νs̃ij s̃ij (1.20)

which highlights how multiple effects produce the temporal variation of the energy.

The second and third terms left-hand side (LHS) in (1.20) indicate the energy

transport due to the mean flow and the pressure work, respectively; the fourth

term is the energy variation due to turbulent advection and finally the last term

LHS is the transport of energy through the system due to viscous effects. The two

terms right-hand side (RHS) indicate the energy rate (first) and the dissipation

ε = 2νs̃ij s̃ij , respectively. In particular, by the sub-grid term S it is clear that the

energy transport arises because of the interaction between the strain tensor ∂iũj
at scales greater than the filtering scale and the sub-grid stress tensor τ(ui, uj),

pointing out how the filtering approach relates larger scale with those filtered out.

This term gives a measure of any source or sink for the energy at a given scale and
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−ρ(z + ζ)g
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ρ(z)∂ρ/∂z

z

Figure 1.4. Sketch of a fluid parcel in hydrostatic equilibrium. If displaced, it oscillates

around its equilibrium state with frequency N , if N2 > 0. On the contrary, if N2 < 0,

the stratification is unstable and usually convective motions are triggered.

time, in any point x within the domain. According to this, let us rewrite the rate of

energy as follows,

∂tẼ + ∂i
[
ũi
(
Ẽ + p̃

)
+ ũjτ(ui, uj)− 2ν∂iũj s̃ij

]
= −S̃ − ε̃ (1.21)

with

S = τ(ui, uj)∂iũj (1.22)

1.4 The Boussinesq approximation

In many cases in geophysical flows, the density variations are quite small compared

to the mean density, and this evidence can be exploited to derive, starting from

the NSEs. This model provides a pretty accurate description of fluid dynamics in a

geophysical context. The model is known as the Boussinesq approximation which

describes the fluid motion, with a system of equations coupling the bulk velocity

with the temperature (or buoyancy) scalar field, which in this scenario is an active
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scalar affecting the fluid velocity. However, even though the density fluctuations

are assumed small, they are still relevant for the evolution of the buoyancy ρg and

thus are taken into account in the Boussinesq model (only) when coupled with the

gravity. The Boussinesq model has been successfully applied also for the study of

the dynamics of the oceans as well of the upper Earth’s atmosphere. A very simple

derivation of the Boussinesq equations for incompressible stably stratified flows from

the Navier-Stokes equations in the compressible formulation, therefore accounting for

density variations, with a forcing term, acting along the z direction, due to gravity,

is proposed here [175]
dρ

dt
+ ρ∇ · u = 0 (1.23)

Du
Dt = −∇p+ µ∇2u + ρg (1.24)

where D/Dt = ∂/∂t+ u · ∇ is the material derivative, g = gêz is the gravity acceler-

ation and µ the viscosity coefficient. In this framework, considering thermodynamic

relationships between state variables for an ideal gas, i.e. e = cvT and p = ρRT , the

balance equation of thermal energy can be written in terms of temperature T as,

DT
Dt = 1

ρcp

dp
dt + κ∇2T (1.25)

here cp is the specific heat and κ the thermal diffusivity. The set of equations (1.23),

(1.24) and (1.25) describes the hydrostatic balance for a fluid. Indeed if u = 0, the

conservation of momentum (1.24) reduces to dzp0 = −ρg, indicating that the state

variables (e.g ρ, T , p) are simply a function of the vertical coordinate z, therefore the

fluid is said to be in hydrostatic equilibrium. Since the Boussinesq model is valid for

small density fluctuations, we can obtain the equations of motion by considering this

approximation as a first-order perturbation of the hydrostatic equilibrium. Therefore,

by subtracting the hydrostatic balance relation, 0 = ρ0g − ∇p0, from Eq. (1.24),

then dividing by ρ0, we obtain,(
1 + ρ′

ρ0

) Du
Dt = ρ′

ρ0
gêz −

1
ρ0
∇p′ + ν∇2u (1.26)

where ν = µ/ρ0 is the kinematic viscosity and ρ′ = ρ−ρ0. Considering small density

fluctuations (i.e. ρ′/ρ0 � 1), Eq. (1.26) reduces to,

Du
Dt = ρ′

ρ0
gêz −

1
ρ0
∇p′ + ν∇2u (1.27)
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Indeed, as mentioned before, even if the fluctuations are weak, gravity can still

make the term ρ′g/ρ0 of the same order of Dtu, and therefore it should not be

neglected. It is also worth noticing that the small density variations in the Boussinesq

approximation essentially imply an incompressible fluid ∇ · u = 0.

The same approach can be adopted for the thermal energy equation (1.25), consid-

ering its perturbation from the equilibrium, which gives

DT ′

Dt = 1
cpρ0

dp′

dt + κ∇2T ′ (1.28)

The term dtp′/cpρ0 represents the temperature fluctuations due to the perturbation

of the hydrostatic equilibrium from an isentropic state. This is in general not true

in the atmosphere, however the deviation from the isentropic equilibrium can be

considered small; therefore we can neglect this term, obtaining,

DT ′

Dt = κ∇2T ′ (1.29)

Equations (1.27) and (1.29) with the incompressibility condition represent the

full set of Boussinesq equations. However, since the state variables are strictly

linked together and to reduce the number of parameters of this set of equations,

it is sometimes helpful to express the Boussinesq model in terms of (potential)

temperature fluctuations θ, which is the temperature that a fluid parcel would have

if moved adiabatically to some reference pressure. By recalling that for an ideal gas

d ln p = d ln ρ+ d lnT , and assuming small perturbations in an adiabatic system, we

can replace T from Eq. 1.29 by using the relation,

T̃ ≈
(
−T0
ρ0

)(
ρ̃− ρ0

p0
p̃

)
(1.30)

where a general state variable q̃ = q1 + q′ represents departure from isentropic hydro-

static equilibrium. By replacing Eq. (1.30) in Eq. (1.29), after a few straightforward

manipulations we obtain an equation for the density fluctuations which reads as,

D
Dt

(
ρ̃− ρ0

p0
p̃

)
= κ∇2

(
ρ̃− ρ0

p0
p̃

)
(1.31)

which eventually leads to,

Dρ′

Dt = bu · êz + κ∇2ρ′ (1.32)
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Figure 1.5. Schematic representation of the typical scales involved for a stratified turbulent

flow. All the definitions are summarized in Sec. 3.2.2.

where b = −∂z (ρ1 − ρ0p1/p0) is the buoyancy term. In obtaining this equation, we

neglected the material derivative and the Laplacian of the pressure variations p′. In

many geophysical applications, this can be justified by the quasi-geostrophic and

quasi-hydrostatic assumptions [175].

At this point we introduce an additional parameter, which will be particularly

useful in the following for the setup of numerical simulations, the so-called Brunt-

Väisälä (or buoyancy) frequency N (see Fig. 1.4). This represents the frequency

of oscillation of a fluid parcel having a small density difference with respect to the

surrounding flow, and it is strictly related to the fluid stratification. Indeed, if

we consider a typical mean flow velocity U , the vertical extension of the strata in

a stably stratified flow is inversely proportional to the buoyancy frequency, that

is LB = U/N . The Brunt-Väisälä frequency as well as other relations involving

quantity can be used to rescale the Boussinesq equations (1.27) and (1.29),

N =
√
gb

ρ0

ρ′ = θ

√
bρ0
g

p = p′

ρ

(1.33)

Therefore, the set of Boussinesq equations can be written in terms of the minimum

number of free parameters as follows,

∇ · u = 0 (1.34)

∂u
∂t

+ (u · ∇) u = −∇p−Nθêz + ν∇2u + F (1.35)
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∂θ

∂t
+ (u · ∇) θ = Nu · êz + κ∇2θ (1.36)

where we completed the momentum equation with a generic forcing F As it is

commonly done in the classical framework of the Navier-Stokes equations, if we

proceed with the non-dimensionalization of the equations set (1.34)–(1.36), we obtain

∇ ·U = 0 (1.37)

∂U
∂t

+ (U · ∇) U = −∇P − 1
FrΘêz + 1

Re∇
2U + F (1.38)

∂Θ
∂t

+ (U · ∇) Θ = 1
FrU · êz + 1

Nu
∇2θ (1.39)

in which we defined U = u/U , P = p/U2 and Θ = θ/U as dimensionless physical

units, where U and L represent some macroscopic characteristic features of the mean

flow. Nu is the Nusselt number, analogously representing the ratio of convective

to conductive heat transfer. However, for our applications the Prandtl number

Pr = ν/κ is usually taken as unity, meaning that Nu = Re. The set of equations

above depends on an additional parameter which involves the buoyancy, the Froude

number Fr = U/LN , referring essentially to the intensity of stratification. This non-

dimensional parameter indeed represents a measure of the strength of gravity waves,

propagating within the domain because of the density fluctuations, with respect

to the turbulent motions; in fact, it can also be defined as the ratio between the

characteristic time of gravity waves τWg and the non-linear time τNL, Fr = τWg/τNL.

For Fr ∼ 1, meaning τWg ∼ τNL, the two phenomena have almost the same intensity.

Therefore the flow is very close to the homogeneous isotropic turbulence (HIT) case,

on the contrary for Fr� 1 the system is strongly stratified (and strongly anisotropic),

being the characteristic time associated with inertial waves much smaller than the

typical turnover time.
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Chapter 2

Dynamics and energetics of

geophysical flows

2.1 Extreme Vertical Drafts in Stratified Turbulent Flows

Intermittency is a hallmark of fully developed turbulence in fluids. Contrary to the

predictions of Kolmogorov’s original theory (K41), both experiments and numerical

simulations show that dissipation exhibits intense fluctuations, localized in space and

time. This phenomenon, known as small-scale (or internal) intermittency, is widely

observed in the atmosphere and in the ocean in the form of highly concentrated and

sporadic patches of dissipation. Intermittency, however, is not only present at the

smallest scales. In the problem of mixing of a passive scalar by a turbulent flow [183],

for stratified flows as in the Earth’s atmosphere and in the oceans [174, 49, 58, 42],

non-stationary energetic bursts at scales comparable to that of the mean flow are also

observed [188, 72]. Such large-scale intermittency of vertical velocity and temperature

and its relation with the mixing properties of stably stratified turbulent flows have

been recently studied using both Lagrangian and Eulerian fields from DNSs of the

Boussinesq equations [72], in a parameter space relevant for the atmosphere and the

oceans, very close to the set of simulations adopted in this work. Over a range of

Froude numbers of geophysical interest (Fr ' 0.05−0.3) very large fluctuations of the

vertical components of the velocity and the potential temperature (diagnosed through

their kurtosis of the fields Kx = 〈x4〉/〈x2〉, with x = u, θ) have been observed, with
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a)

atmosphere/ocean
observations

b)

c)

numerical
simulations

d)

Figure 2.1. Major results regarding vertical drafts in observations and numerical simulations

from: a) time series of the kurtosis computed from atmospheric velocity measurements

obtained by aircraft [128], b) PDF of the vertical velocity w from floaters in the Oregon

shelf (from [58]), c) PDF of the vertical velocity w and temperature θ fields for different

levels of stratification in DNSs (from [188]) and d) trend of the kurtosis of the vertical

velocity Kw as a function of the Froude number obtained from several DNSs (adapted

from [72]).

a non-monotonic trend as a function of Fr resulting in a sharp transition from

Gaussian to non-Gaussian wings of the probability distribution functions and back

again, Fig. 2.1 (panel d), [72]). This behavior is also captured by a simple model,

representing the competition between gravity waves on a fast time-scale and nonlinear

steepening on a slower time-scale (details in [72]). The existence of a resonant

regime characterized by enhanced large-scale intermittency, as understood within the

framework of the proposed model, was then linked to the emergence of structures in

the velocity and potential temperature fields, localized overturning diagnosed through

the gradient Richardson number Rig = [N (N − ∂zθ) ∂zu⊥]2 and mixing. In the
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Figure 2.2. Turbulence and small-scale intermittency generation by large-scale extreme

vertical drafts. Kinetic energy power density spectra in panel a) are computed over

peaks (red spectra) and troughs (blue spectra), respectively (adapted from [139]),. Panel

b): Temporal trend of Kw for run N = 8.0 which shows the highest overall volume

kurtosis (vertical dotted line). The bottom right inset shows the kinetic and potential

dissipation integrated for k ≥ 30 in the sub-interval with highlighted peaks (red) and

troughs (blue) of Kw.

same regime, the mixing efficiency Γ exhibits a linear scaling with the Froude number

and an increase of its value of roughly one order of magnitude, reaching its maximum

value in correspondence with the peak in Kw. It is worth noticing that, unlike

other studies on the mixing efficiency in stratified and/or rotating flows [127, 101],

these flows are forced, increasing the probability of observing extreme vertical drafts

intermittently developing in the simulation domain. Large-scale intermittency in

stratified flows has also been linked to mixing, dissipation and anisotropy. This last,

in particular, has been extensively studied with the help of velocity and temperature

tensors [182] referring to the geometry of the fields (1D or 2D, 3D and axisymmetric,

oblate or prolate); these tensors are equal to zero in the isotropic case. A lack

of isotropy can be associated with intermittency, as well as with the long-range

interactions between large-scale coherent structures and small-scale dissipative eddies.

Combining these mathematical tools with dimensional analysis and estimates of

the adimensional numbers it can be found that, in rotating stratified flows, a sharp

increase in mixing and dissipation efficiency associated, in an intermediate regime of

parameters, with large-scale anisotropy and large-scale intermittency, as observed in

the vertical velocity through its kurtosis [182].
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The same authors [139] extended some of the simulations of the Boussinesq

equations used in [72, 73], yet with Fr ≈ 0.05− 0.3, for much longer times (under

the action of a random forcing, isotropic in the Fourier space) observing that the

temporal evolution of the volume kurtosis of the vertical component of the velocity

Kw is characterized by the alternation “quite” regions, with values close to the

Gaussian reference (namely 3), and very “active” regions where Kw spikes up to '11.

Kinetic and potential energy spectra averaged (in time) over peaks and troughs show

that in correspondence with the highest values of the kurtosis, small (turbulent)

scales are massively generated in the fluid domain, the spectral redistribution of

the kinetic energy approaching a k -5/3 slope within the inertial range (thus at

intermediate scales), compatibly with the Kolmogorov prediction for fully developed

turbulence. Conversely, the spectra corresponding to the troughs in Kw are steeper

and lower in magnitude (for wavevectors k > 10), following a k -2 trend at the

intermediate scale, with much reduced spectral density at the smaller scales (up to

four orders of magnitude) compare to what is observed in the neighbour regions

of the signal (with higher kurtosis, see panels (b) and (c) in Fig. 2.2). The same

happens for the potential energy spectrum which is characterized by a k -5/3 power

law behaviour inertial range in both peaks and troughs [139]. In the study presented

in Marino et al. [139] the statistics of kinetic and potential energy dissipation rates

(εV = ν (∂jui) (∂iuj) and εP = κ|∇ζ|2, respectively) revealed that extreme vertical

drafts feedback on εV and εP , playing a major role in the way energy is dissipated

in stratified turbulence. Large-scale intermittent structures in the vertical velocity

do generate small turbulent scales and dissipation, thus modulating the distribution

of the kinetic energy dissipation rate (see 2.3).

A comparison between the vertical profile of Kw(z, t) and εV (z, t), shown in

Fig. 2.3(c)–(d) for the stratified flow with N = 8, also evidenced at a given time

t = T ∗ in panels (a)–(b), reveals how planes characterized by strong values of

the dissipation (integrated into the horizontal, for a fixed z identifying the plane)

corresponds to peaks of the by-plane kurtosis indicative of the abundance of vertical

drafts at that quota along z. The correlation can be clearly appreciated visually in

Fig. 2.3 showing patches of enhanced kinetic energy dissipation (larger than three
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Figure 2.3. Visual comparison between extreme values of the vertical velocity (a) and

of kinetic dissipation (b). Bottom panels, (c)–(d), show the variation of the vertical

velocity kurtosis Kw and kinetic dissipation εV over time and planes (identified by the z

coordinate), respectively (adapted from [139]).

standard deviations) emerging concomitantly with extreme values of w. On the

other hand, regions with moderate and weak values of the integral dissipation are

associated with lower values of the by-plane kurtosis. Visualizations in Fig. 2.3

(bottom panels) of the vertical profiles of the by-plane kurtosis and of the normalized

kinetic energy dissipation εV (z, t+ φ) (as a function of time) emphasize both spatial

and temporal correlations between the emergent vertical drafts (detected through

the amplitude of the kurtosis) and the enhancements of the kinetic energy dissipation

along the z-axis. The large dissipation peaks occur immediately after the strong

vertical drafts and develop in the same flow layer. Although the small temporal

shift cannot be appreciated from the visualized signals, its existence results clearly

and quantitatively from a cross-correlation analysis between the two signals. The

latter shows how the (point-wise) correlation between the two quantities maximizes

for a time delay φ ' τNL/3 (time lag of the forward shift of the kurtosis signal),

proving causation [139]. Linked to this analysis, the authors discovered that extreme

drafts are necessary, for flows with moderate-to-strong stratification, to dissipate

energy as efficiently as in the HIT case. Based on this study, it was possible to

conclude that in stratified flows, due to the development of extreme drafts, 50% of
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the total kinetic energy dissipation occurs in only the 10% of the domain volume,

and potential energy is generally dissipated more efficiently than kinetic energy [139].

As a reference, in the Ocean 90% of the kinetic energy dissipation is accomplished

within the 10% of the global oceanic volume [174].

2.2 Space-Filtering the Boussinesq equations

An assessment of the effect of the extreme vertical drafts on the energetics of

stratified turbulent flows was possible in terms of their correlation with global spatial

and temporal statistics, sometimes conditioned to select the region of space with

extreme events. However, their intermittent occurrence makes it very difficult to

assess how these extreme events affect the spectral energy density at the location

where they occur. In other words, stratified flows characterized by powerful vertical

drafts and temperature bursts end up being non-homogeneous. In contrast, classical

Fourier techniques are based on global spectral decomposition that works better

when applied to homogeneous systems. In other words, the straight implementation

of a three-dimensional Fourier transform involves overall volume computations, thus

averaging over regions that in the case of non-homogeneous flows have significantly

variable features. To achieve a scale decomposition of kinetic and potential energy

(as well as of other second-order quantities), which is also local in the physical

space, to identify the regions where drafts develop, we adopted here the well-known

space-filtering (SF) technique, analogously to what originally done in the frame of the

Large-Eddy simulations (LES) approach. Here, we present our implementation of the

SF approach for rotating stratified flows in the Boussinesq framework, while filtered

plasma equations will be described in App. A. While in the case of LES simulations

small scales are filtered, and modeled, to obtain more complex simulations at the cost

of not having all the available scales of the system fully resolved, the SF technique

is instead applied to the output of (DNSs), or to experimental and observational

data, as we will see more in detail later in this chapter. Briefly, by knowing the

fundamental equations that generate the analyzed data, it is indeed possible with

the SF method to obtain quantities representing the cross-scale energy transfer rate

(in the spectral space) which at the same time are defined point-wise in the physical
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space. The latter is the real strength of this approach. In the following, we derive

the evolution equations for the total energy, as well as for the kinetic and potential

energies separately, by applying the space-filtering technique to the NSEs in the

Boussinesq approximation (see Sec. 1.4) in the rotating stratified case. We will see

in the next chapter how its implementation could be further improved by extending

the definition to even more general filtering kernels accounting for the anisotropy

characterizing many geophysical and astrophysical flows

2.2.1 Energy equations of the Boussinesq model

The governing equations in the dimensionless formulation for the incompress-

ible fluid-velocity field, u, and the (potential) temperature fluctuations, θ, in the

Boussinesq approximation are

∇ · u = 0 (2.1)

∂ u

∂t
+ ω×u + 2 Ω×u = −Nθez − ∇P + ν∇2u , (2.2)

∂ θ

∂t
+
(
u ·∇

)
θ = Nw + κ∇2θ , (2.3)

where ω = ∇×u is the flow vorticity, Ω is the rotation rate of the system,

N
.=
√
−(g/θ0)∂θ/∂z is the Brunt-Väisälä frequency, related to the background

stratification of the fluid due to the gravity acceleration g = −gez, P = p/%0 +

|u|2/2 = θ + |u|2/2 is the total pressure1 (per unit mass), and w = u · ez is the

vertical component of the flow (here taken along the stratification direction). The

parameters ν and κ are the kinematic viscosity and the diffusivity, respectively.

The Brunt-Väisälä frequency can also be seen as the inverse of the characteristic

time of internal gravity waves which can develop into the fluid due to the density

fluctuations, while the characteristic time of inertial waves is the inverse of the

rotation rate 2Ω = f , related to the Coriolis parameter f . From (2.2) and (2.3)

it is straightforward to derive the equations for the evolution of kinetic (or flow)

Eu = |u|2/2 and potential (or thermal) Eθ = θ2/2 energy. Indeed, by taking the
1This scalar includes the term |u|2/2 as a consequence of rewriting the non-linear term that

would usually appear in the Navier-Stokes equation by using the vector identity
(
u · ∇

)
u =

ω×u+∇
(
|u|2/2

)
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scalar product with u of Eq. (2.2) and multiplying Eq. (2.3) by θ, one directly

obtains,
∂ Eu
∂t

+ ∇ · (Pu) = −Nθw + ν
[
∇2Eu − ||Σ||2

]
, (2.4)

∂ Eθ
∂t

+ ∇ · (Eθu) = Nθw + κ
[
∇2Eθ − |∇θ|2

]
, (2.5)

where we made use of the incompressibility condition ∇ ·u = 0. If a volume average

is considered with periodic or vanishing boundary conditions, the divergence terms

right-hand side (RHS) in (2.4) and (2.5) easily read as,

∂ 〈Eu〉
∂t

= −〈Nθw〉 + 〈Dν〉 , (2.6)

∂ 〈Eθ〉
∂t

= 〈Nθw〉 + 〈Dκ〉 . (2.7)

From that the equation for the total conservative energy is,

∂ 〈E〉
∂t

= 〈Dν〉 + 〈Dκ〉 , (2.8)

If none injection term is present εinj , the energy is only dissipated in time as indicated

by the terms Dν,κ < 0.

2.2.2 Filtered Boussinesq equations

Following the approach described, for instance, in [46] (and references therein),

here we apply the space-filtering (SF) technique to equations (2.2–2.3), deriving the

evolution equations for the “filtered” kinetic and potential energies. The application

of a filter implies specifying a particular scale `∗, as reported in (1.7). The purpose

of this procedure is to derive a set of equations for kinetic and potential energy that,

for the particular case of a low-pass filter, describe the evolution of these energy

channels for a given length scale ` < `∗. As a consequence, the non-linear terms

in the Boussinesq equation will give rise to the so-called “sub-grid terms”, which

represent the energy transfer between (all) the scales ` ≥ `∗ and (all) the scales

` < `∗ below the filter. The direction of this transfer is explicitly encoded in the

sign of these terms: that is, positive if the energy is transferred to scales smaller

than `∗, in this case, the “sub-grid term" is seen by scales ` ≥ `∗ as a sink term, and

vice versa if it is negative. We also remark that this procedure does not assume
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locality (in Fourier space) of the interactions involved in the non-linear transfer

through scale `∗, so that any non-local and/or multiple coupling between any of the

scales smaller than `∗ with any of the scales larger than `∗ are implicitly included in

sub-grid terms. Moreover, the technique does not assume homogeneity (in the flow)

which is what is implicitly assumed in classical spectral approaches, meaning that

the “sub-grid" terms, since they are defined in the physical space, allow an analysis

of the cross-scale energy transfer which is local (in the physical space) and can be

directly related to structures and features within the fluid domain.

The space-filtered version of a generic field is denoted as (1.7), and it follows the

commutation properties reported in (1.8). Since convolution is a linear operator, in

general the following inequality should be considered ũu 6= ũũ (see (1.13)). Following

the definitions described in the previous section we can derive the filtered version of

the Boussinesq equations by applying a general filter to (2.1)–(2.3)

∂ ũ

∂t
+ ω̃× ũ+ T (ω)

×u + 2
(
Ω̃× ũ+T (Ω)

×u
)

= −
(
Ñ θ̃+T (θ)

N

)
ez −∇P̃ + ν∇2ũ , (2.9)

∂ θ̃

∂t
+ ∇

(
θ̃ ũ+ T θu

)
= Ñw̃ + T (w)

N + κ∇2θ̃ , (2.10)

where we have introduced the following sub-grid terms:

T (ω)
×u = ω× ũ − ω̃× ũ , (2.11)

T θu = θ̃u− θ̃ ũ , (2.12)

and,

T (θ)
N = Ñθ − Ñ θ̃ , (2.13)

T (w)
N = Ñw − Ñ w̃ , (2.14)

T (Ω)
×u = Ω× ũ − Ω̃× ũ , (2.15)

In geophysical flows, such as the atmosphere and the oceans, often constant and

uniform stratification and a solid-body rotation can be assumed. In this case, it is

worth noticing that, for N = N0 = cst and Ω = Ω0ez (with Ω0 = cst), the filtered

equations simplify since T (... )
N = 0 and T (Ω)

×u = 0, respectively. Therefore the filtered

Boussinesq equations reduce to

∂t ũ + ω̃× ũ + T (ω)
×u = −N θ̃ez − ∇P̃ + ν∇2ũ + F̃ ext (2.16)
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∂t θ̃ + ∇
(
θ̃ ũ+ T θu

)
= Nw̃ + κ∇2θ̃ (2.17)

In deriving the filtered version of the energy equations, it is important to explicitly

rewrite the filtered total pressure, P̃, since it contains sub-grid terms. In fact, it is

easy to see that

P̃ = θ̃ + |̃u|
2

2 = θ̃ + |ũ|
2

2 + 1
2Tu2 , (2.18)

with

Tu2
.= ũ · u− ũ · ũ = tr

[
T uu

]
, (2.19)

where T uu
.= ũu− ũũ is the sub-grid (or “turbulent”) Reynolds stress tensor of the

flow (or, written by components, Tuu;ij = ũiuj − ũiũj). To obtain the equations for

the filtered kinetic energy Ẽu
.= |ũ|2/2 we need to take the scalar product of (2.16),

∂ Ẽu
∂t

+∇·
(
P̃ũ

)
= − Ñ θ̃w̃+ ν

[
∇2Ẽu− ||Σ̃||2

]
− ũ·

(
T (ω)
×u+2T (Ω)

×u
)
− w̃ T (θ)

N , (2.20)

where Σ̃ij = ∂iũj is the strain tensor associated to the flow velocity ũ at scales ` > `∗.

The RHS terms of (2.20), involving sub-grid quantities, are the terms that determine

the transfer of flow energy through scale `∗. Let us note that T (ω)
×u can be rewritten

in terms of the sub-grid Reynolds stress tensor T uu, as T (ω)
×u =∇ ·

(
T uu−tr[T uu]/2

)
.

Therefore, ũ ·T (ω)
×u is in effect related to the energy transfer through the scale `∗ that

arises because of the interaction between the strain tensor at scales > `, Σ̃ =∇ũ,

and the “turbulent” Reynolds stress tensor T uu,

ũ · T (ω)
×u = ∇ ·

[(
T uu −

tr[T uu]
2 I

)
· ũ
]
− T uu : Σ̃ , (2.21)

where in the last step we used the incompressibility condition, ∇ · ũ = 0. As a result,

equation (2.20) can be rewritten as

∂ Ẽu
∂t

+ ∇ ·
[(
Ẽu + θ̃

)
ũ+ T uu · ũ

]
= − Ñ θ̃w̃ + ν

[
∇2Ẽu − ||Σ̃||2

]
+ T uu : Σ̃ − 2 ũ · T (Ω)

×u − w̃ T (θ)
N , (2.22)

where the symbol “:” means tensor scalar product, i.e., T uu : Σ̃ = TijΣ̃ji. In (2.22)

we neglected the external forcing term, which was considered in the filtered mo-

mentum equation (2.16). This term represents a filtered energy injection rate ε̃inj
affecting the kinetic (and total) energy rate usually at a large scale.
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Analogously, multiplying equation (2.10) by θ̃, after rewriting some terms, it is

possible to obtain the evolution equation for the filtered potential energy Ẽθ
.= |θ̃|2/2:

∂ Ẽθ
∂t

+∇ ·
(
Ẽθũ+T θuθ̃

)
= Ñ θ̃w̃ + κ

[
∇2Ẽθ − |∇θ̃|2

]
+ T θu ·∇θ̃ + θ̃ T (w)

N , (2.23)

where now the sub-grid term T θu plays the role of a sort of “turbulent” heat-flux

vector for the temperature fluctuations θ̃ at scales > `. It is worth noting that

the divergence terms left-hand side (LHS) in (2.22)and (2.23) represent the energy

transported through the domain because of the work of the mean flow, pressure and

turbulence. In particular, these divergence terms vanish by taking a spatial average

of the equations, which in this case reduces to the following expression

∂ 〈Ẽu〉
∂t

= − 〈Ñ θ̃w̃〉 + 〈D̃ν〉 − 〈Su〉 , (2.24)

∂ 〈Ẽθ〉
∂t

= 〈Ñ θ̃w̃〉 + 〈D̃κ〉 − 〈Sθ〉 , (2.25)

where

D̃ν = ν
[
∇2Ẽu − ||Σ̃||2

]
, (2.26)

D̃κ = κ
[
∇2Ẽθ − |∇θ̃|2

]
, (2.27)

and the kinetic and potential sub-grid terms

Su = −T uu :∇ũ + 2 ũ · T (Ω)
×u + w̃ T (θ)

N (2.28)

Sθ = −T θu ·∇θ̃ − θ̃ T (w)
N (2.29)

The sub-grid terms in (2.28) and (2.29) indicate the energy crossing the filtering

scale `∗, and therefore they represent a local (in space) measure of the non-local (in

Fourier) interactions between scale ` < `∗ and ` ≥ `∗. According to the filtering type

(e.g. high-pass, low-pass or band-pass), but also to the filtering function (e.g. Fourier,

Gaussian, top-hat, Butterworth and so on) the meaning of the sub-grid terms can

slightly change. However, the results do not, and indeed they are independent from

the choice of the filtering kernel [67]. We developed the filtered Boussinesq equations

using a notation which results in sub-grid terms having the same meaning of the

classical spectral flux; therefore, as depicted in Fig. 2.4, the sign of S indicates if the
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Figure 2.4. Schematic representation of the direction of the energy flux in the presence of a

dual transfer, to large (red) and small (blue) scales. Analogously to what is the classical

notation for the spectral energy transfer, if the sub-grid terms Sα (with α = {u, θ, tot})

are positive the transfer is toward smaller scales, the opposite if negative.

net transfer is either direct (towards small scale) when S > 0 or inverse (to large

scale) when S < 0. The first term on the RHS in (2.24) and (2.25) Nθ̃w̃ is present

in both the equation for the filtered kinetic and potential energy with an opposite

sign; this term, often referred as to buoyancy flux [73], represents the amount of

energy converted from kinetic to potential (if positive) and vice versa (if negative) at

the filtering scales. The buoyancy term indicates that stratification (due to gravity)

is the key ingredient that couples the two energy channels which would be otherwise

independent of each other. Gathering equations (2.22) and (2.23) together we obtain

the expression for the filtered total energy

∂ Ẽ
∂t

+ ∇ ·
[(
Ẽ + θ̃

)
ũ+ T uu · ũ+ T θuθ̃

]
= D̃ν + D̃κ + θ̃ T (w)

N + T θu ·∇θ̃

+ T uu : Σ̃ − 2 ũ · T (Ω)
×u − w̃ T (θ)

N ,

(2.30)

where the sub-grid Stot term for the total energy is the sum of the previously

defined sub-grid terms for the kinetic and potential energy (2.29) and (2.29)

Stot = −T uu :∇ũ − T θu ·∇θ̃ + 2 ũ · T (Ω)
×u + w̃ T (θ)

N − θ̃ T (w)
N , (2.31)

By taking the spatial average, equation (2.30) reduces to

∂ 〈Ẽ〉
∂t

= 〈D̃ν〉+ 〈D̃κ〉 − 〈Stot〉 (2.32)
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which tells us that, in the absence of an energy injection mechanism and in the

unfiltered expression, the total energy rate is determined by dissipation due to

kinematic viscosity and thermal diffusivity; however the rate of filtered total energy

depends also on the amount of energy exchanged between spatial scales which here

is represented by the sub-grid term.

We can summarize the equations for the filtered energy as

∂ 〈Ẽu〉
∂t

= − 〈Ñ θ̃w̃〉 + 〈D̃ν〉 − 〈Su〉 (2.33)

∂ 〈Ẽθ〉
∂t

= 〈Ñ θ̃w̃〉 + 〈D̃κ〉 − 〈Sθ〉 (2.34)

with

Su = −T uu :∇ũ (2.35)

Sθ = −T θu ·∇θ̃ (2.36)

and

Stot = Su + Sθ = −T uu :∇ũ − T θu ·∇θ̃ (2.37)

The two remaining contributions of the sub-grid terms in (2.35) and (2.36) represent

the energy transfer through scale for the standard hydrodynamic case.

The space-filtering (SF) approach can be easily applied to direct numerical simulations

(DNSs), despite a large amount of data, since their application is based on three-

dimensional gradients of either vector or scalar fields and on the knowledge of the

governing equations of motion which determine the expression of the sub-grid terms.

In a completely controlled scenario, as is the case for numerical simulations in

general, the SF techniques have a straightforward application; indeed several works

have been recently published combining the SF method with DNSs in a variety of

contexts, ranging from magneto-hydrodynamics (MHD) [40, 6] to compressible fluid

turbulence [94], and also in oceanic simulations [37, 9] or more in general DNSs

in the Boussinesq framework [7]. In observational data, the SF technique is often

applied to reduced models of the original equations since not all the components

of the field gradient are available. This technique is indeed successfully applied to

both observational and experimental data, as it has been for some very interesting
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works (e.g., Aluie et al. [9], Buzzicotti et al. [37], De Leo and Stocchino [59], Manzini

et al. [132]). Especially on observational data, the space-filtering approach gives

information (in the spectral-temporal or spectral-spatial domain) that resemble what

is usually obtained through wavelet analysis [71]; the latter has been widely adopted

in the last decades for the analysis of turbulence in various physical systems [216].

However, the SF method, compared to the wavelet analysis, directly exploits the

dynamical equations which can also be adopted to verify specific models in many

physical frameworks; moreover, it allows the computation of third-order quantities

∝ U3/L that gives a wider picture of how the energy is transferred in turbulent flows.

In this work, we also implemented a novel definition of the filtering procedure which

allows us the analysis of the anisotropic components of the energy flux, which is

particularly important for the investigation of turbulent flows, such as the atmosphere

and oceans where the Earth’s rotation and gravity impose the anisotropy, or in the

solar wind whit a strong background magnetic field.

scales < l*

kinetic 
energy

potential 
energy

dissipation

kinetic 
energy

potential 
energy

scales ≥ l*

dissipation

conversion

non-linear transfer through scale l*

injection

Figure 2.5. Scheme of the available energy routes after applying the space-filtering

technique to the Boussinesq equations.



36

Chapter 3

Space-Filtering and spectral

energy transfer rate

To understand how the energy is transferred in turbulent systems when multiple

scales are involved, spectral analyses (in Fourier space) are commonly implemented

since they provide information on the energy transfer through spatial (or temporal)

scales. However, in order to know how the energy is distributed both spatially

and through the scales, we can make use of the so-called space-filtering (SF) or

coarse-graining (CG) approach. This is a common technique adopted in the analysis

of PDEs, first introduced by Leonard [112] for modeling turbulent flows via Large-

Eddy simulations (LES), then further developed by [86] as an investigation tool

for turbulent systems. TheSF technique has been successfully applied in several

turbulence domains. Eyink [67] and Aluie and Eyink [5] proved, without any

assumptions of homogeneity or isotropy, the locality of turbulent cascades both

with rigorous mathematical arguments and in direct numerical simulations DNSs.

The same authors extended the application of the technique to geophysical flows

described by the Navier-Stokes equations (NSEs) in the Boussinesq approximation [7],

to compressible flows [8] and to astrophysical plasmas in the magneto-hydrodynamics

(MHD) regime [6]. Several authors employed the SF technique to study how the

presence of coherent structures affects the transfer of energy across scales both in

neutral and electrically conductive fluids; in particular, Motoori and Goto [157]

revealed the hierarchy and the sustaining mechanism of vortex structures in turbulent
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channel flow simulations at high friction Reynolds number, Camporeale et al. [40]

combined the SF approach with wavelet analysis to prove that coherent structures in

plasmas, described by 2.5D Hall-MHD simulations, represent locations of enhanced

energy transfer in a particular range of scales, and Manzini et al. [133] observed,

in fully 3D Hall-MHD simulations, how magnetic reconnection sites affect the

energy dissipation. In addition, the SF technique has been successfully applied to

experimental data of water channel flow [14], quasi-2D laboratory flow [114, 70] and

tidal flows [59], and also to observational data, as in Buzzicotti et al. [37] where

they analyze the scale dependence of the geostrophic kinetic energy using satellite

images of the oceanic flow at high latitude, or Rai et al. [184] which studied the

scale interaction between wind and the geostrophic ocean flow showing that wind

releases kinetic energy into the ocean only at a scale larger than ∼ 200km. The

direct application of the technique to observational and experimental data remains

however much more complicated in many situations because of limited data sets,

strong approximations and assumptions. As it is possible to understand from the

various applications described above, the main strength of the SF technique, which

complements the classical Fourier approach, is that this method allows probing the

dynamics of a turbulent system simultaneously in scale and in the physical space,

resulting particularly suited for non-homogeneous systems. Indeed, this approach

provides a direct quantification of the direction (upscale or downscale) and intensity

of the energy flux across scales, maintaining, at the same time, local (in physical

space) information on how energy is transferred in the domain. The space locality is

a key point of this method not implying the assumptions of homogeneity or isotropy.

Recently, Hellinger et al. [94] compared this approach with the Karman-Howarth-

Monin (KHM) equation for compressible 3D hydrodynamics simulations. The authors

found agreement between the two approaches even though a few discrepancies were

observed, especially in the localization of different turbulence processes (e.g., inertial

range, dissipative effects and others), this is not surprising, as the authors claim

the structure functions and space-filtering approaches are very different procedures.

Indeed, also Kuzzay et al. [110] pointed out that the SF technique adopted by Aluie

and Eyink [5], Camporeale et al. [40] and many other authors, derived from the
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LES approach, does not provide an easy and direct comparison with the classical

third-order structure functions. The main difficulty relies on the definition of the

filtered energy, defined as the square of the filtered fields Ẽφ = φ̃2/2, which determines

the type of structure functions one chooses to study. Therefore, the authors [110]

proposed an alternative definition of the large-scale energy based on the filtering

approach which is directly related to the energy flux, leading to a local version of the

3/4-law of MHD which does not rely on any assumption of isotropy and homogeneity.

It has been also pointed out by Sadek and Aluie [190] that there exist a direct

connection between SF and wavelet analysis, the latter widely used in many studies

to overcome Fourier analysis’ limitations. The wavelet analysis, indeed, is essentially

a band-pass filtering with a kernel function with varying amplitude, corresponding

to the different filtering scales. Wavelets have been used extensively since Farge [71]

to investigate local properties of turbulence such as energy density, spectrum, and

intermittency [35, 227].

Here, we try to make another step in understanding the relation between classical

spectra (Fourier) approaches and the space-filtering technique by comparing the two

approaches in several DNS where the behaviour of the energy flux is well known and

therefore they can represent benchmark cases to further validate this technique.

3.1 Total Energy Flux

A considerable effort has been made within the scientific community in charac-

terizing turbulence by analyzing the transfer of energy among scales in Fourier space

(e.g., Mininni et al. [151], Verma [217], Debliquy et al. [60], Mininni et al. [152],

as already mentioned, this approach is particularly useful when we are interested

in quantifying globally the scale-by-scale energy budget. However, its limits arise

when we try to link the energy transfer with local properties or structures of the

flow which is often the case when dealing with non-homogeneous and/or anisotropic

systems. In the classical spectral framework, we make use of the Fourier transforms

(û) of the physical fields (u),

u =
∑

k
û(k)eik·x, û(k) = 1

V

∫
u(x)e−ik·xdx3 (3.1)
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which is computed over the entire domain, globally, and therefore it does not provide

information about the spatial locality. By doing the Fourier transforms of the Navier-

Stokes equations (NSEs) and taking the dot product with the spectral representation

of the field, we end up obtaining the evolution of the kinetic energy passing through a

given scale, identified by its wave number k. If we consider, for the sake of simplicity,

the ideal (non-viscous) HD framework,

∂tEu(k) = −
∫ ∑

q

uk (u ·∇) uq =
∑
q

T uu(q, k) (3.2)

T uu(q, k) is the transfer function indicating the rate of energy exchanged between

the shells (or modes) k and q. Indeed, (3.2) involves that T uu(q, k) = −T uu(k, q),

highlighting how the rate of energy passing from the shell q to k must be equal to the

rate at which the shell k is receiving energy from q [1, 64, 217]. The transfer function

allows evaluating the energy exchange taking place between various Fourier modes

because of nonlinear triadic interactions between wavenumbers, satisfying the relation

k + p + q = 0, which are at the basis of the energy transfer in turbulence [107]. The

previous expression for the transfer function (3.2) is indeed equivalent to summing

over all the wavenumbers p of the advecting field satisfying the triadic relation with

k and p which represent the exchanging energy modes. The definition of transfer

function accounts thus for both local and non-local interactions, but whether the

former or the latter are dominant cannot be evaluated. However, in a comparison

with the SF approach, we are mainly interested in the energy flux (e.g. kinetic,

potential and magnetic), which can be defined as,

Πu(k) = −
∑
k′<k

∑
q

T uu(k′, q) (3.3)

this quantity further highlights the net contribution of local and non-local interaction

with the selected mode k (see panel (a) of Fig. 3.1). However, in the total energy

flux, the non-local contributions often cancel out leaving the total flux dominated by

local interactions [220, 67]. The energy flux Πu(k) can be seen as the rate of energy

exchanged by the modes inside a shell in the interval [k,k + 1]; if the flux is positive

(negative) the energy is transferred to scale smaller (larger) than k. The concept can

be extended to the classical definition of direct (downscale) and inverse (upscale)
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  Wavenumber Wavenumber

a) Total Energy Flux b) Cross-Scale Energy Transfer

Figure 3.1. Schematic representation of the comparison between the total energy flux

provided by the Fourier analysis (a) and the cross-scale energy transfer (b) provided by

the sub-grid terms after the application of a low-pass (or high-pass) filter.

turbulent cascade whether a clear range with constant energy flux is observed. In

the Boussinesq model (Sec. 2.2.2) an equation for the evolution of a scalar is coupled

with the momentum equation through the buoyancy term Nw, with N Brunt-Väisälä

frequency and w the vertical velocity. However, even if the scalar field only represents

a passive quantity the equations for the energy conservation should be completed

considering the evolution of the potential energy as well (see (2.5)), being the total

energy ET = Eu + Eθ. Since the scalar field is non-linearly advected by the velocity

field, we can define the spectral flux of the potential energy, indicating the energy

transfer across scales, in an analogous way to what we did for the kinetic energy.

Therefore, the potential energy flux can be defined as,

Πθ(k) = −
∑
k′<k

∑
q

T θθ(k′, q) (3.4)

with

Tθθ(q, k) = −
∫
θk (u ·∇) θq (3.5)

Nevertheless, as we will see in the following, both the kinetic and potential energy

transfer, across wave numbers in the Boussinesq model, are strongly affected by the

energy exchange between the two channels (which is not the case if N = 0). In

particular, in our simulations, only the velocity field is forced and the temperature

fluctuations would be zero if θ was not coupled with the velocity field.
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Πu(k)

a)

Isotropic (Total)
Flux

Πu(k⊥)

b)

Perpendicular (Horizontal)
Flux

Πu(k‖)

c)

Parallel (Vertical)
Flux

Figure 3.2. Isotropic (or spherical) total energy flux, panel a), and the anisotropic flux

representations in the form of cylindrical (or axisymmetric) shells for the perpendicular

(or horizontal) flux, panel b), and of planar shells for the parallel (or vertical) flux, panel

c). Here, gravity is assumed to be in the z direction.

3.1.1 Anisotropic energy fluxes

It is well-known that in geophysical flows, that are strongly stratified, gravity

inhibits the vertical motions, creating typical features, such as pancake structures,

which make the fluid both anisotropic and non-homogeneous. The classical turbulence

theory by Kolmogorov (K41) and the statistical tools derived, such as the energy

fluxes, is strongly based on the assumption of homogeneity and isotropy, therefore

the standard interpretation of energy cascade may not be valid anymore in this

framework. This is also the case for MHD turbulence, especially in the astrophysical

context when often an ambient magnetic field imposes a direction of anisotropy. For

this reason, it is often useful distinguish between the perpendicular (or horizontal)

and a parallel (or vertical) component of the energy flux. Billant and Chomaz

[19] pointed out that, even in strongly stratified fluids, the vertical Froude number

Frv = U/LvN is O(1) meaning that when length scales of the order of the buoyancy

scale LB = U/N are considered the idea of energy cascade proposed by Kolmogorov,

characterized by a direct energy transfer, may be still valid. The axisymmetric

energy transfer function is obtained from,

T uu(k⊥, k‖) = −
∫

uk (u ·∇) uq × k sin Θdφ (3.6)

which can be integrated over cylinders (perpendicular), planes (parallel) or spheres

(isotropic) to obtain the perpendicular (to the direction of anisotropy imposed by
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ω

G(ω)

ω∗

a) Low-pass

ωω∗

b) High-pass

ωω∗1 ω∗2

b) Band-pass

Figure 3.3. Cartoon of the three principal kinds of filters represented in the 1D version

in the Fourier space. The three panels show the filter kernel G(ω) as a function of the

frequency ω for: (a) low-pass, (b) high-pass and (c) band-pass filter.

gravity, see Fig. 3.2),

Πu(k⊥) = −
∑

k′⊥<k⊥

∑
k‖

T uu(k⊥, k‖) (3.7)

and the parallel energy flux,

Πu(k‖) = −
∑
k′‖<k‖

∑
k⊥

T uu(k⊥, k‖) (3.8)

these quantities represent the anisotropic energy flux passing either through a

cylinder or a plane in the Fourier space, and do not vanish when integrated over all

the wave numbers [137, 148], unlike (3.3).

3.2 Space-Filtering to investigate the anisotropic flux

In the previous chapter, we presented the filtered Boussinesq equations and their

sub-grid terms which are the focus of this analysis. We explained how they provide a

local (in space) representation of the cross-scale energy transfer rate and introduced

the Fourier fluxes. In the following, we make quantitative and qualitative analyses

of the comparison between the space-filtering (SF) technique and the classical

Fourier approach. Indeed SF represent a valuable tool to (locally) analyze the

scale interactions in turbulent systems, and several authors have already shown its

reliability in reproducing all the expected spectral features of turbulence [94, 172, 110].

Several kinds of filters have been used (the most common are the Gaussian filter, the
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Fourier filter, the top-hat filter and the Butterworth filter). They can be grouped

into three main categories (see Fig. 3.3): low-pass and high-pass filters essentially

give the same kind of information, that is the sub-grids terms indicate the rate of

energy passing from wave numbers k < k∗ (larger scales) to wave numbers k > k∗

(smaller scales) in case of a low-pass filter (or vice versa in case of a high-pass

filter). The former is exactly the approach derived from LES for filtering out the

small scales which sub-grid models indeed represent. Another category of filters

commonly used is the band-pass filters (e.g. Gaussian, top-hat and Fourier), which

provide sub-grid terms quantifying the energy transfer rate between modes inside

and outside the filtering band. This kind of filter is particularly useful since its

filtering operation more closely resembles what is commonly done in the classical

Fourier approach, nevertheless, band-pass filters are strongly dependent on the filter

width which can affect the results obtained [1]. For all these reasons, in this analysis

we applied a Butterworth (low-pass) filter G(n)(k) = 1/[1 + (k/k∗)2n], with n = 4

and k∗ the characteristic wave number above which fluctuations are filtered out. As

it is evident this filter does not depend on any additional parameter, the only choice

resides in the filtering degree n indicating how sharp will be the transition around

the filtering scale, higher values of n mean sharper low-pass filtering. In contrast,

whether a small value of n is picked the energy transfer rate will be overestimated

accounting for effects coming from wave numbers around the filtering scale k∗.

Despite the wide application of the isotropic version of the space filtering technique

in 1D [132], 2D/2.5D [40, 37] and 3D [9, 133] turbulent systems, there are no (or

few) works in literature implementing the anisotropic SF [133, 132], which would

be particularly worth in many geophysical and astrophysical frameworks, such as

the atmosphere, the oceans and the solar wind, where gravity, the Earth’s rotation

and a background magnetic field impose a clear direction of anisotropy. To tackle

this issue and to analyze stratified turbulent DNSs, we implement a more general

Butterworth filter G(n)(k) which can have different support geometries, instead of

simply a spherically symmetric filter. In particular, we are mainly interested in the

axisymmetric and parallel (see Fig. 3.2) geometry, also for a direct comparison with

the anisotropic representation of the energy transfer rate, Eqs. (3.7) and (3.8). In
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this new framework, we can define the filtering operation of a generic physical field,

such as the velocity u(x), as the convolution with a filtering kernel with a support

depending either on k⊥ =
(
k2
x + k2

y

)1/2
or k‖ = |kz|,

ũ(x) =
∫
V

G`⊥(x− ξ)u(ξ, t)d3ξ

ũ(x) =
∫
V

G`‖(x− ξ)u(ξ, t)d3ξ
(3.9)

these operations allow us to define the anisotropic version of the sub-grid terms,

Su(k⊥) and Su(k‖), as well as the spherical version to make a thorough analysis of

both the isotropic and axisymmetric energy transfer rates. Indeed, in the next pages

we will show how, in several DNSs of turbulent flows, this novel implementation of

the SF technique can capture the main features of the Fourier fluxes, representing a

valuable proxy for the cross-scale energy rate with the addition of the locality in

the physical space. We expect to observe quantitative differences between the two

quantities since the intrinsically different approaches of the two methods. At the same

time, the standard spectral flux represents a local-in-Fourier-space representation of

the energy transfer rate, the SF technique can be considered as a cross-scale energy

transfer between scales above and below the filtering one, therefore not strictly local

in the spectral space. However, in the latter, the fluxes are defined point-wise in the

physical space of quantities which allows us to evaluate the rate of energy passing

through a given scale. This is a crucial difference between the two methods, and

it may be more relevant when strong non-local (in Fourier) interactions due to the

non-linear term in the NSEs are present, and deeply resides in the different filtering

operation performed by the two methods. Indeed, the standard approach to obtain

the energy flux is based on filtering the physical fields with a Fourier filter, which

has the advantage of selecting specific modes and studying the interactions with the

selected scale but losing the spatial information of these structures. On the contrary,

the SF approach manifests an issue of locality in the Fourier space, allowing only

an evaluation of the rate of energy crossing the filtering scale. After an extensive

validation of the method, the axisymmetric sub-grid terms will be used to highlight

how stratified turbulent flows, presenting non-homogeneities, extreme events and

coherent structures, locally inject, transfer and dissipate energy in various regimes
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defined by the controlling parameters (i.e., Reynolds, Froude and buoyancy Reynolds

numbers).

3.2.1 Direct numerical simulations

In this section, we briefly introduce the numerical framework adopted for all the

DNSs analyzed through the manuscript. Contrary to the LES (see Introduction)

approach, DNSs integrate the governing equations of a turbulent system without

resorting to any modelling for the small scales. Among the various numerical schemes

to solve PDEs, the GHOST [153] uses pseudo-spectral methods which have the main

advantage of simulating the dynamics at all the scales with almost zero numerical

dissipation, which is not the case for other approaches, such as finite-volume or

finite-difference, kinetic codes and Lattice Boltzmann methods [75]. GHOST is

written mainly in Fortran 90/95 with a hybrid MPI/OpenMP parallelization, and

with the option to run also on GPUs [189]. Despite the huge computational cost,

DNSs represent the optimal solution for studying the smallest scales in turbulent

flows and the effects arising from non-linear interactions, which would not be possible

with other numerical approaches (e.g. LES, RANS and URANS), and it provides

information about all the physical quantities in any position of the domain. GHOST

has been adopted in several works ranging from astrophysical [149, 150, 151] to

geophysical turbulence [180, 138] for its versatility, high computing performance

and the reliability. The hybrid parallelization of this numerical scheme achieves

optimal scaling performance up to ∼ 20, 000 computing core, resulting in an average

efficiency of ∼ 80%. The simulation domain is optimally decomposed on the various

processes, allowing for an efficient implementation of the Fast-Fourier tranform

(FFT) at the core of pseudo-spectral methods. Time integration of the equations is

performed using a second-order Runge-Kutta scheme (RK2); most of the simulations

are given in single precision (round-off error ∼ 6 · 10−8), which does not affect the

quality of the results at the resolution considered here, to reduce the computational

impact in terms of memory; however also the possibility of running simulations

in double precision is provided. The set of simulations analyzed in this work has

been obtained by numerically integrating the Boussinesq equations in the purely
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stratified framework (see Sec. 2.2.2) with the GHOST code. It is composed by seven

DNSs of fully developed stably stratified turbulence performed mainly for hundreds

of turnover time, in which a random mechanical forcing guarantees the turbulent

state generally imposed on a large-scale isotropic shell kf (only 1 run with kf at

intermediate scale S20, see Tab. 3.1). The initial conditions for all the runs consist

of null potential temperature (θ = 0) and all the initial energy randomly distributed

in terms of kinetic energy on spherical shells at k0 = 2.5 in Fourier space, resulting

in an initial kinetic spectrum with a Dirac’s delta shape which peaks at k0 where

all the energy is at t0 = 0. We applied the SF technique to such DNSs, with 5123

grid-point resolution, which is an acceptable trade-off in terms of computational

cost, scale separation and the possibility of performing very long simulations with a

high temporal frequency of the output. Moreover, the SF method is a very memory-

consuming algorithm, since for each time step the analysis produces for each sub-grid

term (i.e., 3 sub-grid terms for Boussinesq equations of purely stratified flows) a

cube with the same dimension of the simulation domain for all the resolved spectral

scales (kmax = nP /3). In other words, for a 5123 simulation, the SF technique can

produce between ∼ 100GB and ∼ 800GB of data, which require a significant amount

of memory and computing hours. However, one single run at higher resolution 10243

(H1, see Tab 3.1) was analyzed, partially allowing a convergence analysis of the

space-filtering approach and further exploration of the parameter space (e.g. higher

Reynolds). From the values of the simulations parameter reported in Tab. 3.1, which

are widely described in the next section (Sec. 3.2.2), it is possible to appreciate

the accuracy of each computation, as expressed through the ratio between the

smallest resolved scale (corresponding to the wave vector kmax) and the Kolmogorov

dissipation wave number kmax/kη (see Tab. 3.1) which varies between 1.5 and 2. For

the stably stratified runs this evaluation is made considering values of the large-scale

buoyancy Reynolds RB, always greater than 1, meaning that globally the small

scales in our simulations have recovered isotropy. However, sometimes the Ozmidov

scale is not well resolved, i.e. kOz > kη, as is the case for most of the interval

analyzed described in Tab. 3.1. Most of the runs have been performed in a range

of parameters which is relevant for geophysical studies and also significant for the
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analysis of large-scale extreme events developing in stratified turbulent flows. Our

analysis is conducted by varying the Froude number, with values of the Reynolds

number smaller than those measured in the atmosphere or the oceans (Re 108).

However Re-up to 106 have been recently reached with the largest simulation of

rotating stratified turbulence ever made (i.e., 12, 2882 × 384 [2]), with a non-unitary

aspect ratio. In our simulation of stratified turbulence, the Reynolds number does

not vary much (Re between 3,500 and 4,000), although the buoyancy Reynolds

number is the real governing parameter in atmospheric and oceanic flows. We

recently started exploring regimes of higher RB (RB ≥ 100) which are more realistic

in geophysical systems with higher resolution DNSs (e.g. 10243) but even larger

simulations would be worth. Three of the runs included in the analysis have been

performed as a benchmark for evaluating the space-filtering technique in a well-

controlled environment where the behaviour of the scale-to-scale energy transfer is

known like in the case of homogeneous and isotropic turbulence (run H1), or it has

been already studied as in the case of previously performed stratified simulations,

with a large-scale forcing [137].

3.2.2 Operative definitions of the governing parameters

The purpose of this section is to summarize the main characteristic length scales

and the relative controlling parameters involved in the turbulent flows analyzed

through this manuscript as they are examined starting from the DNSs. All the

values of the quantities described are reported in Tab. 3.1. We start introducing the

integral scale defined as,

Lint = 2π
∫
EV (k)k−1dk∫
EV (k)dk (3.10)

where EV (k) is the kinetic power spectral density. Generally, the integral scale is

well defined by the large-scale forcing injecting energy into the flow, however in

simulations it slightly varies, therefore we use as integral scale the isotropic shell in

Fourier space where the forcing is applied in simulations to define all the controlling

parameters, therefore,

L ≡ Lf = 2π/kf (3.11)
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The parameter controlling the strength of stratification in our runs is the Brunt-

Väisälä frequency, which can be written in physical dimensionless units as,

N =
√
−g∂zθ
θ0

(3.12)

being proportional to the vertical fluctuations of the potential temperature along

the z direction ∂zθ with respect to a background reference temperature θ0. In our

simulations, the integral Reynolds number is defined as,

Re = UL

ν
(3.13)

with

U ≡ Urms =
√
〈|u|2〉 (3.14)

However it is possible to define also a "small-scale" Reynolds number,

Reε = (εV L)1/3

ν
(3.15)

obtained using the relation εV ∼ U3/L, being εV the kinetic energy dissipation rate,

εV = ν〈(∇u)2〉 = 2νEω

with Eω = 1
2〈|ω|

2〉 = 1
2〈|∇× u|2〉

(3.16)

In stratified turbulence, the parameter governing the relative strength of gravity

waves versus turbulent motions is the Froude number,

Fr = U

LN
(3.17)

which can be as well defined in terms of kinetic energy dissipation rate as,

Frε = 1
N

(
εV
L2

)1/3
(3.18)
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Run H1 S20 S89 S3 S5 S8 S12 S14 S16

n 1024 512 512 512 512 512 512 512 512

Urms 0.563 0.317 0.612 1.182 1.438 1.527 1.528 1.668 1.310

Re 6700 99.6 452.7 2970 3614 3837 3849 4192 3827

Reε 4564 79 262 1581 1380 1325 1314 1326 1342

N 0 8.0 8.0 2.948 5.0 8.0 11.8 14.0 16.0

Fr ∞ 0.126 0.104 0.160 0.114 0.076 0.052 0.045 0.038

Frε ∞ 0.100 0.060 0.085 0.044 0.026 0.018 0.015 0.013

RB ∞ 1.58 4.86 76.0 47.0 22.2 10.4 8.5 5.6

Rβ ∞ 0.805 0.942 11.51 2.677 0.908 0.423 0.297 0.237

kf 2.5 20 8.5 2.5 2.5 2.5 2.5 2.5 2.5

kmax 342 171 171 171 171 171 171 171 171

kη 222 85 88 100 90 87 87 87 88

kB ∞ 25 13 2.5 3.5 5 8 8.5 12

kOz ∞ 100 92 16 43 93.5 169 216 259

Table 3.1. The table summarizes the main parameters of all the simulations performed

for this analysis. The number of grid points per dimension n, the forcing wave number

kF , the root mean square velocity Urms ≡ U , the Reynolds number Re, the buoyancy

frequency N = (−g∂z θ̄/θ0)1/2, the Froude number Fr = U/LN and the buoyancy

Reynolds RB = ReFr2, being L the integral scale, taken as the scale of the forcing

L ≡ LF = 2π/kF and ν the kinematic viscosity.

The combination of Froude and Reynolds numbers combines in the buoyancy

Reynolds number

RB = ReFr2 or RIB =
(
`Oz
η

)4/3
(3.19)

which is a measure of the relative interplay between buoyancy and dissipation,

as clearly expressed in the ratio between the Kolmogorov length scale η and the

Ozmidov scale `Oz, which read as,

η = 2π
(
εV
ν3

)−1/4
(3.20)

and

`Oz = 2π
(
εV
N3

)1/2
(3.21)
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when the buoyancy Reynolds is close to unity, the balance between buoyancy and

dissipative effects happens at the Kolmogorov scale. Another characteristic length

scale which is important in stratified turbulence is the buoyancy scale,

`B = 2π U
N

(3.22)

which represents the typical scale of the vertical motions, indeed it has also been

often referred to as a vertical integral scale and, therefore adopted to derive the

vertical expression of the governing parameters; for instance, it would be possible

to define a vertical Frh = U/LBN , observing that within the strata Fr is always

close to unity being of the same order or even negligible with respect to turbulent

eddies [19].

3.2.3 Validation of the Space-Filtering technique in DNS

To give a more quantitative comparison between the space-filtering technique

implemented in this work and the classical Fourier energy flux, both in the isotropic

and anisotropic setup, we test the two approaches using two different DNSs (runs

H1 and S20). Run H1 is a high spatial resolution homogeneous isotropic turbulence

(HIT) simulation where we expect to observe no difference between the isotropic

and anisotropic energy transfer rate, and we expect to observe minor discrepancies

between the two approaches. Run S20 on the contrary is a DNS of stably stratified

with a mechanical forcing applied at intermediate scales since it has been observed

that the perpendicular component of the energy flux rate shows a dual (upscale

and downscale) transfer when forcing is applied at sufficiently small wave numbers

still having both scales above and below the forcing scale well resolved [137]. The

comparison between the two different approaches needs to be taken carefully into

consideration for the obvious differences explained in the previous section. However,

discrepancies and differences between the sub-grid terms and the spectra flux may

evidence interesting features of the energy transfer in these flows. For instance,

larger differences between the two may be interpreted as an enhancement of non-local

cross-scale interactions mediating the energy transfer.
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HIT run at high spatial resolution

In Fig. 3.4 it is reported the one-dimensional version of the Butterworth filter

employed for the space-filtering technique used in the manuscript, together with the

isotropic (first line) and anisotropic kinetic energy sub-grid term Su, in the parallel

(second line) and perpendicular (third line) frameworks, at three different filtering

scales `∗, i.e. `∗1 = 1.257, `∗2 = 0.314 and `∗3 = 0.062, with `∗ = 2π/k∗. The three

snapshots are taken from homogeneous isotropic turbulence (HIT) DNS performed

at a resolution 10243, which allows reaching a Reynolds number (Re = 6, 700) double

with respect to the other simulations (5123); all the parameters of this run are

summarized in Tab. 3.1, where the Reynolds number is defined as Re = ULf/ν (3.13)

with U the root mean square flow velocity, Lf = 2π/kf (3.11) the integral scale

taken as the scale of forcing and ν the kinematic viscosity. The ratio between

the maximum and the Kolmogorov wave numbers is kmax/kη ≈ 1.54, therefore we

fully resolve the small scales. The sub-grid term is computed over five time steps

covering almost one turnover time τNL = U/Lf after the peak of dissipation or

the peak of enstrophy (see (3.16)), and then averaged to obtain smoother curves

and more points to have a convergent statistics; indeed, in homogeneous isotropic

turbulence when a stationary turbulent state is reached, statistics computed either

over temporal or spatial ensembles are equivalent. The three-dimensional renderings

of Fig. 3.4 show interesting features of the space-filtering technique. Although the

run is characterized by isotropic structures (top left cube), the filters highlight

structures of energy transfer rate which resemble the geometry of the filter itself, i.e.

isotropic for the spherical filter, tube-like for the parallel filter and pancake-like for

the perpendicular version. These particular geometries are exactly what is observed

in structures in HIT, rotating turbulence (see Godeferd and Moisy [88] and reference

therin) and stratified turbulence [239, 116].
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Figure 3.4. Top panel: 1D Butterworth filter for different values of n. The 3D renderings

represent the kinetic energy sub-grid term Su in the isotropic, panels a)–c), parallel,

panels d)–f), and perpendicular version, g)–i), for three decreasing scales identified by

the wave numbers k = 5, 20 and 100.

As already mentioned, we expect for this run essentially the same behavior of

the three components (isotropic, parallel and perpendicular) of energy flux, with an
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Figure 3.5. Comparison between the spectral Fourier flux (black solid) and the kinetic

sub-grid term obtained from the SF technique (black dashed) for the isotropic (left),

parallel (center) and perpendicular (right) filtering kernel. Quantities are averaged over

five snapshots resulting in almost one turnover time τNL for a HIT simulation with

10243 grid points (H1, Tab. 3.1). The gray shaded area represents the spherical shell

where a random mechanical forcing is applied.

evident constant inertial range in the total (isotropic) flux where the energy cascades

from scale to scale.

The results of the comparison are represented in Fig. 3.5 where the three compo-

nents of the flux Eqs. (3.3), (3.8) and (3.7), obtained from the GHOST code, are

represented with a black solid line in the left, middle and right panel for the isotropic,

parallel and perpendicular flux, respectively. The kinetic energy sub-grid term Su is

depicted with a dashed black line. The total energy flux (left panel), as well as the

isotropic sub-grid term, show a clear energy direct (to small scale) cascade of energy

between nearly k ≥ 3 and k ∼ 40 where local non-linear interactions between eddies

of similar size (in Fourier) interacting distributing energy to always smaller scales,

in the classical Kolmogorov picture of HIT. In the inertial range, the two methods

are equivalent and essentially proportional to the kinetic energy cascade rate of the

turbulent flow. At large scale, around kf = 2.5 where the forcing is applied and

a non-local component transfer can be relevant the space-filtering technique gives

opposite results, underestimating the flux at a large scale while the same is always

overestimated for the anisotropic components in the same range of wave numbers

(up to kf ). Beyond the inertial range, there is little discrepancy between the two

approaches at the dissipative scale (large wave numbers). Here, the SSF always shows
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higher values to the Fourier flux which are probably related to an underestimation

of dissipative effects and therefore discrepancies could be reduced by computing the

filtered term D̃ν (2.26) which should be subtracted to Su with a significant effect

only at the very small scales. The parallel and perpendicular sub-grid terms show

results consistent with what was previously concluded for the isotropic component,

with a more evident inertial range for the perpendicular component (right panel).

By looking at both the panels in Fig. 3.5 and the 3D renderings of Fig. 3.4 it seems

that the anisotropic version of the energy transfer rate, both in the classical and

SF approach, tend to overestimate the total flux (isotropic) at large scale. More

than the high average values of Fig. 3.5, by comparing the structures in the different

rows of Fig. 3.4, the first two columns representing relative large scales show a

significantly higher difference in the amount of structures between the isotropic

(being more realistic) and anisotropic flux, while the same differences are less evident

or almost vanishing at small scales (third column). The HIT run has helped assess

the method’s reliability and convergence with enhanced and better-resolved statistics.

Also for this reason in the next sections, we validate the SF with a DNS of stably

stratified turbulence, at lower resolution 5123, forced at an intermediate scale, to

have enough resolution above and below the forcing wave number to observe both a

direct and inverse energy transfer if present.

Stably stratified run with forcing at intermediate scale

The main results in this manuscript (see Chap. 4) are obtained for the anisotropic

versions of the SF technique, since in stably stratified flow gravity imposes a strong

direction of anisotropy along z, and therefore the two components k⊥ = (k2
x + k2

y)1/2

and k‖ = kz behave differently; however for the validation of the technique we still

analyze also the isotropic component in order to have a complete assessment of the

computed sub-grid terms. The stratified run performed for this step has a Froude

number very close to those observed in the atmosphere Fr ∼ 0.1 [29], however the

Reynolds number is smaller Re ' 100, leading to relatively small buoyancy Reynolds

numbers. This is the consequence of the choice of applying a random forcing at

relatively large scale to give to the system the opportunity of developing a dual,
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Figure 3.6. Panels (a)–(c): comparison between the isotropic (left), parallel (center)

and perpendicular (right) scale-to-scale Fourier total flux Πtot (black solid lines) and

the sub-grid terms (black dashed lines) for run S20. In panels (d)–(f) and (g)–(i) the

same comparison for the kinetic and potential energy fluxes, respectively. Within the

single energy channels, Φ̃ is the sum of the conservative terms on the right-hand side of

Eqs. (2.33)–(2.34). The channel-conversion terms alone ∓N〈θ̃w̃〉 are also shown (gray

dashed lines). A vertical dashed area denoting kf = 20 is provided.

direct and inverse, transfer of energy in the perpendicular direction (in Fourier

space), as observed in Marino et al. [137]. All the parameters of run S20 are listed

in Tab. 3.1. These parameters have also been chosen to have the same buoyancy

frequency N = 8.0 of the run, at the peak of the probability of developing large-scale

extreme events [72], leading to a Froude number which is close to one of the most

interesting run in terms of vertical drafts (S8, Fr = 0.076), even though in S20

no extreme events can be observed. A simulation with similar parameters to S20,

and in particular with a forcing in the same range, has been widely analyzed in

terms of spectral energy transfer in Marino et al. [137] which highlighted how the

different components of the energy transfer (isotropic, perpendicular and parallel)
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behave differently in presence of a direction of anisotropy, such as when gravity

or rotation are present. In this analysis it has been pointed out that the isotropic

flux ΠT (k) is almost zero for k < kf , indicating that almost no energy goes across

spheres (in Fourier space) towards small wave numbers. On the other hand the

parallel flux ΠT (k‖) is positive and dominant for all wave numbers, indicating a

strong transfer towards smaller vertical scales. Completely different is the behavior

of the perpendicular component of the flux ΠT (k⊥) showing a range with negative

values for k < kf , indicating an inverse energy transfer (to large scale), and a

positive flux for k > kf . Since such particular behavior has been highlighted by the

Fourier analysis of the scale-to-scale energy transfer in previous works [137], here

we want to show that this feature is recovered also within our implementation of

the space-filter approach. This comparison is reported in Fig. 3.6(a)–(i), where we

show the total (a)–(c), kinetic (d)–(f) and potential energy flux (e)–(i) computed

both with the Fourier method ΠT (k⊥) (3.7) (solid black line) and with the sub-grid

terms 〈Stot〉 = 〈Su + Sθ〉 (dashed black line), as well as the energy flux associated

with the single energy channels, i.e., kinetic (b) and potential (c) energy separately.

For the latter cases, the Fourier flux (black lines) is compared with the sum of the

conservative terms on the right-hand side of Eqs. (2.33)–(2.34), i.e., Φ̃u = Su−Nθ̃w̃

and Φ̃θ = Sθ + Nθ̃w̃, respectively (red lines). From all the panels in Fig. 3.6 is

evident the excellent agreement between the two approaches, both at large and

small scales and for any component of the sub-grid terms. For k > kf the energy

fluxes always indicate a downscale energy transfer of total energy, panels (a)–(c),

with a modulation of the intensity of the transfer rate going from the isotropic to

the perpendicular component of the total energy flux. It is worth reminding that

since we do not have enough scale separation to observe a constant flux, both above

and below the forcing wave number, also for the spherical total energy flux we

cannot refer to a direct/inverse energy cascade. Still, we always present the result

in terms of net transfer looking at the sign of the flux to get an indication of the

direction. By looking at the axisymmetric version, panel (c), the behavior previously

described in terms of total Fourier energy flux is correctly recovered with the SF

technique, showing an inverse energy transfer at scale k⊥ < kf and a direct energy
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transfer in the range k⊥ > kf , with an inversion point with almost zero net rates

of total energy at k⊥ ∼ kF . Such a good agreement is also obtained for the single

channels of the energy transfer, in panels (f) and (i). In this case, some interesting

features emerge from the analysis with the SF approach, in particular the role of the

conversion term N〈θ̃w̃〉, also known as buoyancy flux (dashed gray line in panels

(d)–(i)), indicating the conversion from kinetic to potential energy if positive and

vice-versa if negative, at scales k⊥ > kf . Indeed, we can see from panel (f) how

this term becomes the dominant contribution to the perpendicular flux at k⊥ & 90,

where 〈Φu〉 ≈ −N〈θ̃w̃〉: this means that kinetic energy is almost totally converted

into potential energy at small scales. (let us remind that when N〈θ̃w̃〉 is positive, it

represents a sink term for 〈Ẽu〉 and a source term for 〈Ẽθ〉; cf. Eqs. (2.33)–(2.34).)

This is consistent with the fact that the flux of total energy, both computed as 〈Stot〉

or as ΠT , goes to zero at small scales, i.e there is no net cascade towards smaller

scales in that range, but just a small-scale kinetic-to-potential energy conversion

(plus dissipation—not shown here). By looking at the potential energy rate, panel

(i), with the space-filtering analysis we can see that the negative values, in this case,

do not indicate an inverse cascade of potential energy in the whole range of wave

numbers but, since for the potential energy channel there is no external forcing, then

this channel is only fed by the conversion of kinetic energy 〈Φθ〉 ≈ N〈θ̃w̃〉 at every

scale. In fact, the transfer of potential energy mediated by the non-linear term 〈Sθ〉

still exhibits simultaneously positive (direct transfer) and negative (inverse transfer)

values, although in this case the inversion scale – i.e., the scale at which 〈Sθ〉 changes

sign – is not exactly at kf , but at slightly larger scales (around k⊥/k0 ≈ 10). The

behavior of the potential energy transfer for the three components, panels (g)–(i), is

pretty much the same, with an almost zero flux at k < kf and a negative transfer

dominated by the conversion term at scale k > k∗, probably because we analyzed a

simulation forced only in the velocity field and with zero temperature fluctuations

at t = 0, therefore its evolution in our case is triggered by the coupling between

the velocity and (potential) temperature embedded in the equation of motions (see

Eqs. 1.34 and 1.35). The isotropic flux is almost zero for k < kf and all the energy

channels (kinetic and potential), therefore no energy is crossing spherical shells in
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Fourier space for small wave numbers, however, this is not the case for the parallel

component of the kinetic and total energy transfer (panels (b) and (e)) where we

observe a flux to small scale which is dominant over the other component for all the

wave numbers, contrary to what happens for the perpendicular component showing

a dual behavior.

0.0

0.2

0.4

0.6

Perpendicular filter vs GHOST: Total energy flux

(a) S3: N = 2.948, Fr=0.160 (b) S5: N = 5.0, Fr=0.114 (c) S8: N = 8.0, Fr=0.076

100 101 102

k⊥

0.0

0.2

0.4

0.6

(d) S12: N = 11.8, Fr=0.052

GHOST ΠT Stot

100 101 102

k⊥

(e) S14: N = 14.0, Fr=0.045

100 101 102

k⊥

(f) S16: N = 16.0, Fr=0.038

Figure 3.7. Comparison of the total energy transfer as depicted by the Fourier flux

(continuous lines) and the total sub-grid term (dashed lines), as written in (2.30) for the

six runs only stratified. From panel (a) to panel (f) are represented simulations from

S1 to S6 (see Tab 3.1). The gray shaded area represents the shell k ∈ [2, 3] where the

mechanical forcing is applied.

3.2.4 Stably stratified runs varying the Froude number

The next step of the space-filtering (SF) validation consists in comparing the sub-

grid terms with the classical spectral fluxes for a set of DNSs of stratified turbulent

flows with different values of the stratification (N), therefore varying the Froude

number Fr. The main parameters describing these simulations are summarized

in Tab. 3.1, and they will be widely described in the next chapter; however the

six runs analyzed here represent a subset of a wider parametric study which has

been performed using 17 DNSs in Feraco et al. [72], as well as for the results in

Chap. 5 of this manuscript. The first aspect, clearly highlighted by both the sub-grid
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Figure 3.8. Same as Fig. 3.7 for the parallel total energy transfer Stot(k‖).

terms (black dashed lines) and the energy fluxes (black solid lines) in Fig. 3.7, is

the decreasing of the energy transfer rate for increasing stratification, as expected

from other results obtained with different analyses [139]. It is worth remarking

that all these simulations have the same random forcing at large scale k ∈ [2, 3]

(gray shaded area). The six runs are selected to have significantly different levels

of large-scale intermittency (i.e., vertical drafts), as highlighted by the kurtosis of

w in Fig. 5.1. Nevertheless, the presence of extreme events cannot be appreciated

by the energy transfer averaged on the entire volume, which further evidence the

“locality” (in space) of the SF approach. The comparison between the axisymmetric

expression of the total sub-grid term Stot and the total energy flux ΠT shows a great

agreement for all the runs, with slightly higher discrepancies around the energy

injection scale k ≈ 2.5. As the stratification intensifies (for N & 8.0), the total energy

flux starts developing an inverse (upscale) transfer for k⊥ < kf , as already observed

in Marino et al. [137], however, we do not have enough resolution in this range to

draw conclusions concerning the role of stratification in driving the dual transfer.

Instead, since for smaller Fr number stronger vertically sheared horizontal winds

(VSHWs) develop into the flow, the latter may be the main reason for such energy

going towards large scales. In Fig. 3.8 the same comparison for the parallel filter
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always shows a good agreement between the two methods in terms of average spectral

features recovered, even though larger differences are observed. In particular, the

total energy fluxes ΠT (k‖) become negative at large wave numbers k‖ & 35, especially

for weak stratification N . 5.0, while this is not the case for the corresponding total

sub-grid terms Stot which instead vanish at small scales for all the simulations. The

space-filtering technique in many cases seems to overestimate the energy transfer at

small scales, and this effect is more pronounced at large Froude, which might be

related to dissipative effects that could be included by computing the terms D̃ν and

D̃κ in Eqs. 2.33 Contrary to what is observed for the perpendicular fluxes, here the

stratification does not seem to inhibit the energy transfer that is almost constant at

the intermediate scale in every panel (Fig. 3.8(a)–(f)). The same simulations will be

further analyzed in the next chapters, focusing on the effect of large-scale vertical

drafts on the energetics of these flows.
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Chapter 4

Local energy injection by

vertical velocity drafts in

stratified geophysical flows

4.1 Characterization of local energy injections by verti-

cal drafts

After having been observed both in the atmosphere and oceans, extreme vertical

drafts were carefully characterized, including in their connection to small scale

phenomena, such as dissipation. In particular, correlation and causation between

these extreme events and enhanced values of dissipation have been pointed out

in Marino et al. [139], as already introduced in Sec. 2.1. The authors concluded

that vertical drafts are, as a matter of fact, dissipative structures, necessary in

stably stratified fluids to dissipate energy as efficient as in homogeneous isotropic

turbulent flows. However, such results do not allow to draw definitive conclusions

on how the emergence of these events represents a local (in the physical space)

injection of energy enhancing the turbulent cascade rate at an intermediate scale

(inertial range) and ultimately increasing the small-scale dissipation. Here, our main

purpose is to characterize vertical drafts in terms of the typical length scales at

which they affect the dynamics of the fluid and the energy transfer at different wave
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Figure 4.1. (Left) Percentage of points having the vertical velocity w in a specific range

of values, computed over bins at increasing w for all the runs in Tab. 3.1. (Right) The

trend of the vertical velocity kurtosis Kw as a function of the Froude number (reprinted

form Feraco et al. [72]).

numbers. For this reason, the space-filtering (SF) approach represents the optimal

technique, since it allows the analysis of the spectral energy transfer with quantities

defined point-wise in the physical domain. In particular, we applied the SF to a set

of six direct numerical simulations (DNSs) of stably stratified flows, obtained by

integrating the Boussinesq equations (Sec. 2.2.2), presenting a different intensity of

large-scale intermittency modulated by the Froude number, as pointed out in Feraco

et al. [72] and also reported in Fig. 4.1. We will pay particular attention to run S8

(see parameter Tab. 3.1), in which extreme events are significantly more numerous,

i.e. the peak in the right panel of Fig. 4.1 shows a global kurtosis Kw ' 11 indeed.

The right panel in Fig. 4.1 also highlight how the vertical drafts occupy a very small

portion of the simulation domain; indeed, values with |w/σw| > 4 represent only

0.4% of the volume for the run with the strongest large-scale intermittency (run

S8, blue triangles in Fig. 4.1). For the other runs, this percentage is even smaller,

whereas for smaller values of vertical velocity (|w/σw| < 3) the percentage of points

is almost the same for all the simulations, independently from the Froude number. In

Fig. 4.2 an example of the application of the SF technique is represented by the two

three-dimensional renderings taken from a snapshot with many vertical drafts for

run S8: (b) vertical velocity field w, where values |w/σw| > 4 are highlighted in red

if positive and blue if negative, while lower values are depicted in transparency; in
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% volume

Bin S3 S5 S8 S12 S14 S16

|w/σw| < 2.5 97.94 97.53 97.92 98.56 98.97 98.88

2.5 ≤ |w/σw| < 3 1.300 1.233 0.802 1.042 0.838 0.902

3 ≤ |w/σw| < 4 0.670 0.903 0.704 0.348 0.175 0.213

4 ≤ |w/σw| < 6 0.084 0.307 0.436 0.045 0.015 0.005

|w/σw| ≥ 6 0.002 0.026 0.138 0.005 0.002 0.000

global Kw 3.9 5.3 10.4 3.6 3.2 3.1

Table 4.1. Percentage of volume filling per bin of vertical velocity w for all the six stratified

turbulence simulations.

panel (c) the same as for the total sub-grid energy transfer −Stot, computed at scale

k⊥ = 10. Positive values (red), being significantly more numerous and intense within

the domain, indicate a transfer to a small scale, the opposite happens for negative

values (blue), which are indeed sporadic patches into the fluid. The left panel (a)

shows the by-plane kurtosis Kw of w (in black) and the average of the absolute

sub-grid energy transfer 〈|Stot(k⊥ = 10)|〉 (in gray). There is a clear correlation

between vertical slices with a high number of extreme events and enhanced energy

transfer, both in the same locations and in the near surroundings. In some regions of

the simulation domain, the sub-grid term almost perfectly maps the extreme vertical

velocity structures in terms of shape and extension, highlighting the reliability of

this approach for studying non-homogeneous systems. In the following we applied

only the anisotropic (parallel and perpendicular) version of the filtering, even though

particular attention is paid to the axisymmetric filter since it allows to decouple

vertical layers. Indeed, even considering that horizontal motions dominate in a stably

stratified environment, the flow develops a strong vertical variability and reorganizes

itself into horizontal layers [159, 95], therefore geophysical fluid motions along the

vertical direction are particularly interesting at these scales.
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Figure 4.2. (a) Vertical profile of the kurtosis Kw(z) of w (black) and the average of

the absolute value of the total sub-grid energy transfer 〈|S(k⊥ = 10, z)|〉, (gray), both

computed over horizontal planes. (b) Three-dimensional rendering of the vertical velocity

w, where values |w/σw| > 4 are represented in solid red (positive) or blue (negative),

while smaller values are depicted in transparency. (c) The same range of extreme values

is selected for S(k⊥ = 10)/σS , where positive (negative) values indicate downscale

(upscale) energy transfer.

4.1.1 Anisotropic energy transfer in the presence of vertical drafts

(run S8)

Leveraging the space-filtering technique it is also possible to analyze the energy

transfer by computing the sub-grid terms on sub-domains identified either by spatial

coordinates or characteristic features of the flow. The presence of vertical drafts can

be quantified by the forth-order moment (i.e., kurtosis) of the vertical velocity w

probability distribution function (PDF), which highlights PDFs with non-Gaussian

tails at values of w larger than several standard deviations σw. probability distribu-

tion functions of the vertical velocity and temperature have been shown in Feraco

et al. [72], Feraco et al. [73], Rorai et al. [188], Capet et al. [42] and others, and we

qualitatively observed in Fig. 4.2 how extreme values of w approximately correspond

to extreme values of energy transfer, identified by the total sub-grid term Stot.

In Fig. 4.3 we also show that the presence of large values of Stot depend on the

considered scale k; the three distributions (panels a–c) clearly show a leptokurtic

behavior at all the scale with evident non-Gaussian tails, here highlighted as values

|Stot/σS)tot| > 4 in blue or red, negative or positive, respectively. The extreme

values seem to increase for increasing wave numbers suggesting that the energy
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transfer has intermittent fluctuations resembling those of the scale-dependent field

increments ∆`u, even though the PDF of Stot show a strong non-Gaussian shape

also at large scale k⊥ = 5. The same behavior is observed for k‖ (not shown).

However there is also an interesting difference in observing the cross-scale transfer

at various scales; in particular, at large scale k⊥ = 5, panel (a), the PDF is highly

asymmetric, with a tail of positive values being far more populated than the negative

one. This is not the case for the PDFs at k⊥ = 17 (panel b) and k⊥ = 33 (panel

c). An asymmetric distribution indicates a mean energy flux Stot which is strongly

positive and therefore directed toward small scales, whereas when the distribution

is more symmetric positive and negative extreme values approximately cancel out

producing a low (almost null) net flux. The presence of numerous positive extreme

values of total energy transfer may be likely associated with the presence of vertical

drafts being particularly active at this length scale. Notably, k = 5 for this run

is also the buoyancy scale kB = 2π/`B = 2πU/N , with U r.m.s. speed and N the

Brunt-Väisälä frequency (see Tab. 3.1, indicating the characteristic length scale of

strata created by the imposed background stratification and being known as the

typical scale dominating vertical motions in stably stratified flows [19]. However,

to further corroborate this hypothesis we computed averages of all the sub-grid

terms (i.e. kinetic, potential and buoyancy flux) over different sub-domains created

starting from the whole simulation box N = 5123. Since the extreme events are easily

identified as points with vertical velocity several standard deviations far from the

mean value (usually |w/σw| > 4), we divided the spatial domain in bins according

to values of w. The largest bin is for |w/σw| < 2.5, representing those points having

vertical velocity within the Gaussian core of the distribution and, as also reported in

Tab. 4.1, filling the majority & 97% of the volume even at the peak of kurtosis (i.e.,

run S8). Second and third bin, |w/σw| ∈ [2.5, 3) and |w/σw| ∈ [3, 4) respectively,

are somewhat transitional intervals creating a distinct separation between points

with a Gaussian behavior and extreme events. Indeed the last two bins are only

those containing values of vertical velocity several standard deviations far from the

average value; for instance, values with |wσw| ≥ 4 already represent intermittent

events filling only a tiny portion of the entire volume, i.e. ∼ 0.6% for the run with
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the highest number of events (S8, see Tab. 4.1). The number and range of vertical

velocity bins are arbitrary and principally depend on the constraint of having enough

points to obtain convergent low-order statistics in every bin. Therefore, the division

reported in Tab. 4.1 is a conservative choice that allows making a comparison also

with runs without vertical drafts (e.g. runs outside the peak of Kw, see Fig. 4.1), as

we will show in Sec 4.2. However, to deeply analyze the most intermittent run (S8)

we divided the last interval into two separate bins |w/σw| ∈ [6, 8) and |wσw| ≥ 8 still

having enough samples to produce significant statistics. It is worth stressing again

that this type of analysis is only possible thanks to the characteristic of a space-filter

approach, which retains the real-space information of the transfer through scale. In

Fig. 4.4 we report panels showing the non-linear transfer through scales of total

energy 〈Stot〉 (a), of the kinetic-to-potential conversion term (or buoyancy flux)

N〈θ̃w̃〉 (b), and of the non-linear energy transfer through scales of kinetic (c) and

potential (d) energies, 〈Su〉 and 〈Sθ〉, respectively, versus k⊥ when the average of

these quantities is conditioned over different values of |w/σw| (see legend). There

are a few important features that are highlighted by these plots. Generally, for all

the quantities, larger values of |w| correspond to higher energy transfer at every

scale. The transfer rate for extreme events |w/σw| > 4 is several orders of magnitude

more intense than the average rate produced by the bulk of points (black lines,

|w/σw| < 2.5) which, on the contrary, is pretty low as a result of several regions

with opposite values of the “local” energy transfer that cancel out. By looking at

the four energy channels separately in Fig. 4.4, various interesting behaviors can

be noticed. First, the direct transfer (i.e., towards smaller scales) of total energy is

strongly enhanced over a broad range of intermediate perpendicular scales, namely

2 . k⊥/ . 20, when increasingly extreme values of the vertical flow are encountered

(Fig. 4.4(a)). This range partially overlaps with the forcing scale kf = 2.5. Second,

there is a significant conversion from kinetic to potential energy approximately over

the same range of scales, and it is larger for larger values of w (Fig. 4.4, panel b).

At large scale k⊥ . 10 the energy conversion is almost null, then at an intermediate

scale, 10 . k⊥ . 30, the filtered buoyancy flux N〈θ̃w̃〉 increases the more rapidly the

larger are values of the vertical velocity |w|. Indeed, nearly all the kinetic-to-potential
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energy transfer in the system occurs in the range 10 . k⊥ . 30 (after k⊥/ ≈ 30,

the conversion is almost saturated, meaning that there is no significant additional

contribution as smaller scales are included). Also, note that the fact that the curve

of N〈θ̃w̃〉 decreases at k⊥/ & 40 means that part of the potential energy is converted

back into kinetic energy at the smallest scales, especially for high values of |w| (this

may explain the small amount of inverse transfer of kinetic energy that can be seen

in Fig. 4.4(c) at small scales). Third, vertical drafts seem to play a different role

for the two energy channels (Fig. 4.4(c)–(d)). In fact, while extreme values of w

result in an enhancement of the direct cascade in kinetic energy at intermediate

scales (the same effect is also seen in the total energy), with a peak around k⊥ ' 5,

these drafts are instead triggering a simultaneous direct and inverse flux in potential

energy (emerging at k⊥ & 20 and at k⊥ . 10, respectively). This means that, from

the perspective of kinetic energy, drafts boost the intermediate-scale direct cascade

that is already present due to the external forcing at large scales, while, through

the coupling term Nθ̃w̃, the potential-energy channel perceives these events as an

external injection of energy in the range 10 . k⊥ . 20. It is also important to notice

that vertical drafts seem necessary to trigger a dual potential energy transfer since

it can be observed only for |w/σw| > 4. Finally, the above analysis highlights the

role of extreme events in locally driving the energy transfer in stratified flows at a

particular Froude numbers around Fr ≈ 0.08. Interestingly, as previously mentioned,

the stable stratification imposed in this simulation is associated with a buoyancy

scale (see Sec. 3.2.2) kB ≈ 5, being also approximately the scale at which the total

perpendicular energy transfer peak (Fig. 4.4(a)-(d)). The buoyancy scale indicates

the width of (potential) temperature layers and seems to represent a sort of bound

for the vertical extension of the most extreme events, even though the peak in

the figure is broad, including numerous smaller and larger drafts. However, the

maximum extension of these phenomena cannot be completely appreciated because

of the effect of the large-scale forcing at kf = 2.5 and the finite size of the box. In

addition, we will see in the following that the position of such peak does not move

significantly varying the Froude number, and therefore varying the layer thickness.

The same analysis has been performed for the parallel component k‖ ≡ kz of the
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space-filtering quantities, and the results are reported in Fig. 4.5(a)–(d). There are

a couple of features resembling what is already observed for the axisymmetric flux:

first, the direct proportionality between |w| and the energy transfer is conserved for

all the energy channels (panels (a)–(d)). Second, the effect of the draft seems to

maximize always at intermediate scale 3 . k‖ . 20; also along the vertical direction,

there is a net conversion of kinetic-to-potential energy Nθ̃w̃ feeding the potential

energy channel (panel b). However, in general, the picture emerging from the parallel

component of the cross-scale energy transfer is pretty different, as was expected

since the intrinsic anisotropy of stratified flows. At first, it is simply noting that the

characteristic length scale at which vertical drafts maximize their effect seems to

move to a smaller scale k‖ ≈ 10; this means that, despite the typical vertical length

scale is represented by the buoyancy scale kB = 5, extreme events tend to be on

average smaller along the direction of gravity and therefore their geometry resembles

the characteristic pancake-like shape observed many times in stratified systems [88].

Such a picture is also consistent with what was qualitatively appreciated from the

three-dimensional rendering at the beginning of this chapter (see Fig. 4.2). Second,

the filtered buoyancy flux (panel b) exhibits a smoother increase up to k‖ ≈ 15,

but then at smaller scales more than a half of the energy is converted back from

potential to kinetic probably inducing an inverse kinetic energy transfer in that

range (see panel c) only for the values of |w/σw| > 4; which is what we have already

observed partially for the perpendicular filter (see Fig. 4.4 panel c). Finally, even

though the above analysis highlights the average value of the energy transfer through

scale within each range of |w/σw|, this only partially provides insights on the overall

impact of extreme events on such transfer at a global level. To further confirm

this idea in Fig. 4.7 we report the cumulative distribution of the non-linear transfer

through scales of total (panel a), kinetic-to-potential (b), kinetic (c) and potential

(d) energy as a function of the percentage of the volume occupied. The trend in

these curves clearly shows that the smaller the scale k⊥, the more intermittent

the energy transfer, since all of them increase more rapidly as large wave numbers

(warmer colors) are considered. At large scale (shades of blue) kinetic and potential

energy fluxes exhibit an almost exact equipartition, whereas the filtered buoyancy
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flux (panel b) is pretty much localized in structure at small k⊥. In Pearson and

Fox-Kemper [174], using data from a global oceanic model, it was observed that

about 90% of the total dissipation in the ocean is achieved in only the 10% of the

volume; a similar result has been obtained by Marino et al. [139] in direct numerical

simulations of stably stratified flows, where the presence of vertical drafts allows

reaching the 50% of kinetic dissipation by considering again only the 10% of the

total volume. Here, the space-filtering technique provides similar information but is

scale-dependent. In Fig. 4.8, we can see a clearer plot obtained from the cumulative

distribution function (CDF) in Fig. 4.7 representing the volume that is necessary

to obtain a determined percentage of cross-scale energy transfer. In other words,

points for a given colored curve in Fig. 4.8 are obtained as intersections between the

various curves in Fig. 4.7 and a vertical line at a fixed percentage of volume filling

(i.e. 50%, 60%, 70%, 80% and 90%). The results for all the energy channels are

pretty consistent with what was previously observed for the dissipation [174, 139].

In addition, we can appreciate that the 50% of total energy transfer is given by

approximately the 10% of the volume already at intermediate scale k⊥ & 20, while

in the range 3 . k⊥ . 20, where we saw the effect of vertical drafts maximizes, all

the curves in Fig. 4.8 show an exponential decrease, indicating that the energy flux

is more and more concentrated in small structures identified by the vertical velocity.

The kinetic and potential non-linear transfer (panels c and d) show essentially the

same behavior which is also reflected in the total energy (panel a), slightly different

is the trend of the filtered buoyancy flux (panel b) which is almost constant for

k⊥ & 4. This analysis highlights the role of vertical drafts in locally injecting a

significant amount of energy having an impact on both the kinetic and potential

energy transfer and distribution in stratified flows, through the kinetic-to-potential

conversion term.

4.1.2 Time variation of the cross-scale energy transfer with vertical

drafts

In the previous section, we analyzed a few time steps corresponding to almost

one turn-over time with many vertical drafts, therefore characterized by a very high
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Figure 4.3. probability distribution function (PDF) of the total energy sub-grid term Stot
computed at three different filtering scale k⊥ = 5, 17, 33 for run S8. Black dotted line is

a Gaussian distribution drawn as a reference. In red (blue) we highlighted Stot/σStot > 4

(Stot/σStot < −4).

value of the vertical velocity kurtosis Kw. However, this simulation (run S8) has

been integrated for hundreds of turn-over times exhibiting a very peculiar pattern

of Kw with alternating peaks having values of the kurtosis as high as Kw ≈ 10

and troughs close to the Gaussian reference. Such behavior has been thoroughly

analyzed in Marino et al. [139], and we reported a detail in Fig. 2.2 showing this

particular oscillating trend for the entire simulation time. This kind of intermittency

with slow but strong quasi-periodic variations differs from the classical small-scale

intermittency; Marino et al. [139] proposed, to reproduce such behavior, a simple

model which is a modified version of the reduced model for field gradients in stratified

turbulent flows presented in Sujovolsky et al. [203], Sujovolsky and Mininni [201]

(see equations in Marino et al. [139]). The model provides a viscous damping and a

forcing term added phenomenologically; in particular, they tested a forcing given by a

superposition of harmonic oscillations with frequencies centered around the buoyancy

frequency N and small amplitude. The other characteristic length scale adopted

in the simplified model is the Ozmidov length `Oz (see Sec. 3.2.2) controlling the

dissipative effects, whose choice can be viewed as partitioning the flow between larger

scales governed by quasi-geostrophic dynamics and strongly stratified turbulence

at small scale. The equations have been integrated using parameters, such as N

and `Oz, compatible with run S8 and the results of the systems’ time variability are

shown in Fig. 6 of Marino et al. [139]. Such a simple model shows a bursty behavior
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Figure 4.4. Results of the filtered total energy (a), buoyancy flux (b), kinetic (c) and

potential (d) energies as a function of the filtering wave number k⊥ =
√
k2
x + k2

y for the

axisymmetric version of the filtering kernel applied to runs S8. The gray shaded area

indicates the shell where kinetic energy is injected.

reminiscent of the so-called on-off intermittency [179, 167, 191], that is long periods

of very small fluctuations, followed by irregular (but sometimes repetitive) bursts

reminding what is observed for Kw in Fig. 2.2, typically separated by times much

larger than the characteristic timescale in the system. In terms of out-of-equilibrium

statistical mechanics, the authors adopted the simplified model to partially explain

the origin of vertical events involving a nonlinear resonant-like amplification of waves

by eddies, as processes occurring in self-organized criticality (SOC) systems in which

the strong events trigger a cascade of smaller extreme events. A different way to

explain such behavior, also proposed in Marino et al. [139], is by postulating a fast

evolution of the system between two slow manifolds (one associated with waves, the

other with the overturning eddy instabilities); this provides even evidence for the

dynamical coupling between large-scale extreme events and small-scale intermittent

dissipation, which ultimately demonstrates the causation between these phenomena.

For all these reasons it is particularly worth observing the impact of vertical drafts
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Figure 4.5. Same as Fig. 4.4 for the parallel filter k‖ = |kz|

on the non-linear energy transfer as a function of time, since their presence and the

associated steepening of gravity waves may lead to enhanced (local-in-time) transfer,

as was already the case for the local-in-space contribution analyzed in the previous

section. In this section we analyzed more than 100τNL, between t ≈ 170τNL and

t ≈ 270τNL (the red portion in Fig. 4.9), corresponding to an interval with very

intense peaks of vertical velocity kurtosis Kw ∼ 10 alternating with troughs close

to the Gaussian reference value Kw ' 3. The temporal profile of Kw for the entire

integration time is reported in Fig. 4.9. We observe that in this range of parameters,

the kurtosis exhibits the oscillating behavior that we previously described, however

even at times corresponding to plateau the value of Kw is always higher than the

reference for a normal distribution indicating the presence of vertical drafts at any

time, with a significant temporal variability.

In Fig, 4.10 we report the scale-time variation of the volume-averaged non-linear

transfer of total 〈Stot〉, kinetic 〈Su〉, potential 〈Sθ〉 and kinetic-to-potential N〈θ̃w̃〉

energy for the entire interval previously shown in red in Fig. 4.9. The volume average

is performed on different domains identified by vertical velocity values w either below

3σw or above 5σw. All the quantities are normalized by the average kinetic energy
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Figure 4.6. Maximum non-linear energy transfer, represented by the four sub-grid terms,

computed as a function of the perpendicular (triangles) or parallel (squares) wave number

for the six different curves in Fig. 4.4 and 4.5 identified by different ranges of the vertical

velocity w (x-axis). For kinetic and potential energy transfer the maximum is computed

with sign since they show both a direct and inverse transfer (see Figs.4.4–4.5).

injection rate 〈F(t) ·u(t)〉. The black dashed line in panel (b) is the temporal profile

of the vertical velocity kurtosis Kw which is strongly correlated with the intensity

of transfer for all the energy channels, as was expected by the previous results.

The total and kinetic transfer related to vertical drafts (panels a and c) show the

typical behavior of a direct cascade in fully developed turbulent flows concentrated

in smaller but more numerous structures, and therefore smaller on average for

increasing wave number. On the other hand, the trend of Sθ and Nθ̃w̃ (panels b

and d) which, as we also observed in the previous section, is significantly different at

large and small scales, with a transition around k⊥ ∼ 10− 20 probably associated

to the peak of the effect of vertical drafts on the flow. Such difference between

kinetic and potential transfer might be due to the fact that in this simulation there

is a random forcing continuously injecting kinetic energy, whereas the (potential)

temperature field is driven by the coupling with the velocity Nθw. In Fig. 4.10

we also observe the same effect, highlighted by the evidence that the kinetic flux
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Figure 4.7. The four panels show the percentage of volume (x-axis), identified in terms of

increasing values of vertical velocity w, necessary to reach a given percentage of energy

transfer (y-axis). In other words, each panel represents the scatter plot between the

cumulative distribution of the vertical velocity field w and of the non-linear energy

transfer at any wave number k⊥: (a) total, (b) kinetic-to-potential, (c) kinetic and (d)

potential.

is higher at very large scale k⊥ ' 3 and probably modulated by the intensity of

the random forcing being δ–correlated in time. Also in this figure, we report the

variation of Kw as a black dashed line in panel (b), while in panel (c) the time curve

of the kinetic energy injection is reported as the black dashed line as well. Indeed,

in Fig. 4.10 sub-domains with low or high vertical velocity, left or right panels

respectively, are represented with different palettes to highlight more temporal and

spectral features of the energy transfer. For |wσw| > 5 the peak of total and kinetic

energy transfer is always at scales smaller than the forcing (kf ≈ 2.5), and it shows

approximately the same temporal modulation with peaks and troughs, which is

also followed by Kw. At the same time, the kinetic-to-potential coupling (panel b),

peaks as well, further highlighting the role of the velocity in driving the temperature

field. The filtered buoyancy flux Nθ̃w̃ for |w/σw| > 5 (panel h) shows almost the
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Figure 4.8. Percentage of the volume necessary to reach a fixed percentage of cross-scale

energy transfer (see legend) as a function of the perpendicular wave number k⊥.

same behavior, with peaks at slightly smaller scale k ∼ 20, suggesting that smaller

but more energetic structures are responsible for the energy conversion. In most of

the flow regions (|w/σw| < 3), the net transfer is from potential to kinetic energy

(Nθ̃w̃ < 0 as it is often observed in the atmosphere and oceans (available potential

energy, [122, 187, 20], but when Kw peaks the energy conversion invert passing from

kinetic to potential (yellow vertical traces, panel (b)). The time-scale variation of

the potential energy transfer for |w/σw| > 5 is completely different with a dual

axisymmetric flux around k ≈ 10− 20 persistent in time. Interestingly the inverse

transfer of potential energy (to large scale) seems to temporarily disappear at late

times t ∼ 260τNL when the kurtosis is at its minimum. The same range of length

scales k ≈ 10− 20 exhibits the maximum kinetic energy (and total) energy transfer

associated with vertical drafts

Since the clear correlation between the volume-averaged non-linear energy transfer

and the time profile of the kurtosis revealed in the previous figures, we computed

the linear correlation between Kw(t) and the various flux terms computed for both

|w/σw| < 3 and |w/σw| > 5. We remark that Kw(t) is computed on the entire
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In red, the interval analyzed in this section, and the black dash-dotted line represents

the Gaussian reference value for the kurtosis Kw = 3.

domain. The results are reported in Fig. 4.11. The correlation is evaluated by using

the Pearsons’ correlation coefficient ρ, defined as

ρ = 〈(X − X̄)(Y − Ȳ )〉
σXσY

with X and Y two arbitrary time- (or space-) varying quantities. ρ varies from -1 for

inversely proportional to 1 for directly correlated variables, while if |ρ| ≤ 0.5 the two

are almost randomly correlated. As expected from what was previously observed,

the correlation of the total (black crosses) and kinetic flux (red circles) with Kw(t) is

particularly high at every scale for vertical drafts (Fig. 4.11(b)). A small decrease is

observed at k⊥ > 60 whereas this does not happen for w < 3 (panel a) for which the

correlation stays above 0.9. Such behavior is likely due to the effect of extreme events

on the entire fluid; large-scale drafts enhance turbulence at an intermediate scale,

as highlighted in the previous section, where their effect is maximized. The energy

locally injected by the drafts ultimately boosts dissipation and allows stratified

flows to dissipate as efficiently as homogeneous isotropic turbulent fluids [139]. The

behavior shown by the kinetic-to-potential transfer (green triangles) suggests that the
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Figure 4.10. 2D visualization of the: (a) total, (b) kinetic-to-potential, (c) kinetic and

(d) potential energy transfer given by points with |w/σw| > 5. On the x-axis time is

expressed in units of turnover time, while the y-axis indicate the spatial scale. The black

dashed line in panel (b) is the kurtosis Kw, and the dashed line in panel (s) represents

the amount of kinetic energy injected at any given time.

vertical velocity kurtosis, and therefore the vertical drafts, only partially temporal

correlate with this term, with almost zero correlation at very large scale and moderate

at small ρ ' 0.5 (panel b). On the contrary, when the majority of the domain is taken

into account (panel a) ρ is slightly higher for the whole range of scales, again likely

indicating a more spread buoyancy flux. The linear correlation between Kw and the

potential cross-scale transfer is significant at every k⊥ for |w/σw| > 5; indeed, for

k⊥ . 10 the two quantities are strongly inversely proportional since, as we observed

in Sec. 4.1, the potential flux is negative at such scales. Thus negative values of ρ

mean that higher values of Kw are statistically associated with an enhanced negative

(to larger scale) transfer of potential energy. Around k⊥ ' 10− 20 the correlation is

almost null because of the flux which is very low and therefore independent of the

variation of kurtosis. Then, moving to k⊥ & 20, the correlation is again elevated but

now directly proportional since the potential flux is positive (to a smaller scale) in

this range. In general, this kind of analysis further highlights relationships between

the emergence of vertical drafts and the local energy transfer, nevertheless the

Pearsons’ correlation coefficient only measures linear monotonic relations. Thus it
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Figure 4.11. Pearsons’ correlation coefficient ρ between Kw(t) and the volume-averaged

cross-scale energy transfer as a function of the filtering scale k⊥. Horizontal black dashed
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is not able to correctly capture non-linear and non-monotonic dependencies as it

may happen for the quantities here considered, since they involve spatial gradients

for instance. Moreover, the correlation highlighted in these results does not imply

causation between the presence of drafts, evaluated through the kurtosis of w, and the

cross-scale energy flux. As already shown in Marino et al. [139], to prove causation,

the same analysis should be performed by applying a time shift to one of the two

time series involved in the correlation; however, this is beyond the purpose of this

manuscript, and it may be an interesting point to further study in the next future.

Also, the choice about the correlation coefficient can be improved by accounting for

different correlation metrics being able to also capture non-linear and non-monotonic

dependence, such as the mutual information [56]. In addition, it is worth reminding

that points with |w/σw| > 5 are a tiny percentage with respect to points with

|w/σw| < 3, filling almost the 99% of the volume, therefore statistical results on the

former are inevitably affected by larger errors, especially when high-order statistics

are computed.

Finally, we analyzed the temporal variation of the length scales, identified in terms

of perpendicular wave number k⊥, at which the volume-averaged energy transfer

has its maximum. Also in this case we computed the non-linear flux on the same

two sub-domains having |w/σw| < 3 and |w/σw| > 5 respectively, and the results

are summarized in Fig. 4.12. Red circles refer to regions with enhanced large-scale

intermittency (|w/σw| > 5), while regions with vertical velocity within three standard
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Figure 4.12. Temporal variation of the scale k⊥ at which the maximum of energy transfer

occurs, computed both for points with vertical velocity |w/σw| < 3 (black crosses) and

|w/σw| > 5 (red circles). Along with the optimal scale, we report the time variation of

the kurtosis Kw (gray), Reynolds (pink), Froude (cyan) and buoyancy Reynolds (green)

numbers, computed as in Sec. 3.2.2.

deviations are represented with black crosses. Along with the wave number of peak

kpeak we reported again the vertical velocity kurtosis Kw (panel a), but also the small-

scale Reynolds Reε = (εV L)1/3/ν (3.15) (panel b), Froude Frε = (εV L−1)1/3/N (3.18)

(panel c) and buoyancy Reynolds numbers RIB = (`Oz/η)4/3 = ReεFr2
ε (3.19) (panel

d). The temporal variation of such parameters has been computed taking the Brunt-

Väisälä frequency N = 8.0, the integral scale L = 2π/kf ' 2.51 and the kinematic

viscosity ν = 10−3 as fixed for this simulation and considering the time variation

of the volume-averaged kinetic dissipation εV (t) = ν〈(∇u(t))2〉. If we focus on the

changes of kpeak related to the vertical velocity kurtosis, it is straightforward the

different behavior of regions with |w/σw| < 3 and regions with |w/σw| > 5 almost in

every panel. Concerning the total and kinetic energy transfer (Fig. 4.12, panels a and

c), the characteristic length scale is always smaller k⊥ ' 7− 20 for extreme events.

In addition, red circles and black crosses seem to behave the opposite according

to Kw, indeed. At the same time, the length scale of vertical drafts decreases for
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increasing values of kurtosis, for points with w within three σw the opposite seems

to happen with a typical scale moving to larger wave numbers concurrently with

troughs of Kw. The same modulation is less evident for the potential and filtered

buoyancy flux (panels b and d), having probably the same behavior because the

temperature field is strongly driven by Nθw in our simulations as we widely saw in

the previous results. For these quantities, the length scale associated with the peak

of volume-average energy transfer seems to be in counter-phase with the kurtosis

and even all the other parameters, but shows globally a smaller variation of the scale

than what was observed for the other energy channels. In general, the characteristic

scale associated with |w/σw| > 5 appears in the entire time range smaller than what

is observed in Sec. 4.1 (kpeak ' 5); however, two major factors certainly affect such

discrepancy; at first, in the two analyses the division of the flow in sub-domains is

different, finer in the previous section and binary in this one, and this leads to a

large bin including regions having high vertical velocity but probably very different

features. Second, and more important, the two results refer to different times of

the simulation concerning significantly different phenomena, early for the results of

Sec. 4.1 (t ' 13τNL) and late times for the last analysis (170 . t . 270). Indeed, as

previously mentioned, our stratified flow DNSs, where kinetic energy is injected to

sustain a fully developed turbulent state for hundreds of turnover times, tends to

develop vertically sheared horizontal winds (VSHWs) with energy piling-up at large

scales and dominating the horizontal motions. This may also influence some features

of vertical drafts or of the fluid itself, such as the characteristic length scales (i.e.

integral scale L, buoyancy LB and Ozmidov scales `Oz), leading the flow to explore

other parameter configurations and thus modulating the emergence of large-scale

extreme events as we further see in the next section.

4.2 Local energy transfer variation with Froude number

We have seen that the Froude number strongly modulates the presence of vertical

drafts (see Fig. 4.1) and therefore the level of stratification. Globally, the intensity

of large-scale intermittency can be characterized through the kurtosis of the vertical

velocity, (the same for temperature θ, not shown here) and its variation as a function
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Figure 4.13. Total cross-scale energy transfer, obtained from the axisymmetric filtering,

for runs from S3 to S16 in Tab. 3.1 (panels (a)–(f), respectively). Curves of different

color are obtained by computing the transfer term over regions with values of vertical

velocity. The gray shaded area indicates the forcing scale kf ∈ [2, 3].

of Fr shows a peculiar non-monotonic behavior with a peak at 0.06 . Fr . 0.1.

This is shown in Fig. 4.1 (left panel) for 17 DNSs analyzed in this thesis work (see

Tab. 5.1), however in this section only six runs, represented by colored points, will

be used for the aim of studying the variability of the cross-scale energy flux with the

stratification regime, identified by the Froude. Indeed, various works have already

shown that the presence and behavior of vertical drafts are strongly modulated by

the intensity of stratification [72, 73]; for instance, in Feraco et al. [72] a simple 1D

model has been employed to explain the rise of Kw and the asymmetry between the

rising and falling part of the curve (see Fig. 4.9); at large Fr (weak stratification)

the non-linear term dominates the dynamics and turbulence is very close to the

homogeneous isotropic turbulence (HIT) case. On the other side, for small Fr, the

linear term related to gravity waves Nθw is the dominant contribution leading, for

very small Froude numbers, to a quasi-2D turbulence. At intermediate Froude (i.e.,

0.06 . Fr . 0.1) which are particularly interesting for geophysical studies, resonant

effects between waves and turbulent eddies arise resulting in peculiar dynamics

intermittently characterized by the emergence of large-scale extreme events in the
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Figure 4.14. Same as Fig. 4.13 for the parallel k = |kz| filter.

vertical velocity and (potential) temperature as well. Of course, the presence and

intensity of vertical drafts are not the only features affecting the energy transfer,

indeed, as discussed before, the regime of stratification strongly determines the

dynamics and therefore how the energy is transferred through structures. We already

introduced in Chap. 1 that different kinds of turbulence (e.g HIT, 2D and others)

lead to different behaviors of the energy flux based on theoretical arguments related

to system invariants. The same analysis performed in Sec. 4.1 has been implemented

to five other runs with different Fr and the non-linear energy terms, obtained by

the space-filtering (SF) technique, computed on sub-domains identified by values

of vertical velocity w reported in Tab. 4.1. It is clear, also observing Fig. 4.9, that

the bulk of the flow, |w/σw| < 4, is mostly independent on the Froude number,

filling almost the same percentage of the volume for all the runs; but, as soon as

we take into account higher values of w, a significant discrepancy arises between

the simulations which is in accordance to what measured by Kw(Fr) and noticed in

previous works [72, 73, 139]. Figs. 4.13– 4.19 summarize the total (Fig. 4.13), kinetic

(Fig. 4.15), potential (Fig. 4.17) and kinetic-to-potential (Fig. 4.19) non-linear energy

transfer obtained by the axisymmetric filtering approach, i.e. k⊥ = (k2
x + k2

y)1/2;

the same for the parallel filter is shown in Figs. 4.14– 4.20. The effect of vertical
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Figure 4.15. Perpendicular kinetic cross-scale energy transfer for runs from S3 to S16

in Tab. 3.1 (panels (a)–(f), respectively). Curves of different color are obtained by

computing the transfer term over regions with values of vertical velocity.

velocity drafts respectively on the perpendicular and parallel components of the flux

is significantly different, showing that they locally release a larger amount of energy

preferentially in modes with k⊥ 6= 0. Despite we tried to create intervals of w to

have a convergent statistics, it is clear both by Tab. 4.1 and Fig. 4.13 that for runs

S3 and S16 we do not have enough points for |w/σw| > 6; this will affect all the

following results for those two simulations which therefore have to be taken carefully.

Cross-scale total energy transfer:

By looking at the total energy transfer in Fig. 4.13, it appears that the intensity of

stratification does not affect the average energy rate of the most extreme values of

w. Indeed, contrary to what previously observed for the volume-averaged flux (see

Fig. 3.7) where the increasing of stratification inhibits the energy transfer, in this

case the total transfer rate, given by points with |w/σw| > 4, has its maximum at

the peak of kurtosis Kw (run S8, i.e. most number of extreme events), corresponding

to panel (c) in Fig. 4.13. The picture is different for the parallel filter in Fig. 4.14,

for which the total transfer given by regions with |w/σw| > 4 looks pretty constant

for runs S5, S8 and S12, while the same shows high fluctuations for Fr = 0.045
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Figure 4.16. Same as Fig. 4.15 integrated in parallel shells k = |kz|.

(run S14). Probably, the parallel component of the flux is more affected by the

contribution of gravity waves being more and more intense for decreasing Froude. In

general, we observe that vertical drafts, identified by intense values of the vertical

velocity w, tend to inject amount of energy several times larger than the flow average

(black curves) in the inertial range, with a peak which is partially modulated by the

buoyancy scale `B = 2πU/N . Such energy injection produces an enhanced transfer

towards smaller scales at any Froude, being obviously proportional to the amount of

the extreme events. We will see in the following that this boosted turbulent transfer

is mainly due to kinetic energy transfer for the perpendicular component Stot(k⊥),

while the potential energy is the principal contribution of the total parallel flux

Stot(k‖).

Cross-scale kinetic energy transfer:

As mentioned earlier, the main contribution to the perpendicular cross-scale transfer

comes from the kinetic energy Su(k⊥), shown in Fig. 4.15. Indeed, this appears

particularly sensitive to values of w, showing a peak many times larger than the

others for |w/σw| > 6 at run S8 (i.e., Fig. 4.15(c)). On the contrary, the kinetic flux

for |w/σw| < 6 varies less among the six simulations. For runs with a significant
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Figure 4.17. Potential cross-scale energy transfer for the perpendicular filter k =
√
k2
x + k2

y

and the same runs (S3 to S16).

level of large-scale intermittency, such as S8, S12 and S14, the axisymmetric kinetic

energy transfer manifests a weak inverse transfer (Su < 0) for k⊥ & 20 and intense

values of w; we will see later that this is probably because of the coupling with the

temperature field. The same upscale transfer is observed for the same runs also in

the parallel component of the kinetic energy flux Su(k‖) in Fig. 4.16. However, the

scenario in this case is a bit more complicated and the effect of drafts on the local

transfer is not so evident, as highlighted by the small values in panel (c) of the same

figure. It is also worth noticing that, for all the simulations and the components of

the flux, the amount of kinetic energy locally injected by values with intense vertical

velocity is in general significantly higher than the energy injected by the random

forcing.

Cross-scale potential energy transfer:

The behavior of the non-linear potential energy transfer is fairly different by looking

either at its axisymmetric (Fig. 4.17) or parallel (Fig. 4.17) component. We interpret

this in terms of the differences we already highlighted for the kinetic energy in the

previous paragraph; in particular, the different effect of drafts on the local injec-

tion of energy determines a stronger or weaker coupling between the velocity and
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Figure 4.18. Same as Fig. 4.17 for the parallel filter.

temperature field, intrinsically given by the buoyancy term Nθw in the governing

equations. The perpendicular flux Sθ(k⊥) shows a dual transfer around k⊥ ≈ 12 for

runs S8, S12 and S14 (smaller for S5, k⊥ ≈ 8), which is approximately in the range

where we observed previously that the effect of vertical drafts on the kinetic energy

transfer is maximized. Therefore, since our simulations present zero temperature

fluctuations at t = 0, the emergence of extreme events do couple the velocity and

(potential) temperature field, which locally injects energy into this latter producing

simultaneously a direct and inverse transfer of potential energy. In other words,

extreme vertical drafts are strictly connected with both large-scale buoyancy-driven

instabilities and small-scale turbulence in terms of production of vorticity, as we

will see more in detail by means of a simple 1D model in the next chapter. The

perpendicular component of the potential energy flux Sθ(k‖), in Fig. 4.18, represents

instead the major contribution to the direct (towards small scale) transfer of total

energy Stot(k‖) observed in Fig. 4.14. However, in this case we do not observe any

particular variation with respect to the stratification (Fr number), likely reflecting

what already appreciated for the kinetic energy.

Cross-scale kinetic-to-potential conversion:



4.2 Local energy transfer variation with Froude number 87

−10

0

10

20

30

N
〈w̃
θ̃〉

Perpendicular filter: Buoyancy flux
(a) N = 2.948, Fr = 0.160 (b) N = 5.0, Fr = 0.114 (c) N = 8.0, Fr = 0.076

100 101 102

k⊥

−10

0

10

20

30

N
〈w̃
θ̃〉

(d) N = 11.8, Fr = 0.052

100 101 102

k⊥

(e) N = 14.0, Fr = 0.045

100 101 102

k⊥

(f) N = 16.0, Fr = 0.038

|w/σw| < 2.5 2.5 ≤ |w/σw| < 3 3 ≤ |w/σw| < 4 4 ≤ |w/σw| < 6 |w/σw| ≥ 6

Figure 4.19. Perpendicular filtered buoyancy flux for runs from S3 to S16 (panels (a)–(f)).

It is worth reminding that the filtered buoyancy flux Nθ̃w̃ represents the kinetic-

to-potential energy conversion whether negative (Nθ̃w̃ < 0) at ` > `∗, and the

opposite when it is positive (Nθ̃w̃ > 0). Therefore, in all the simulations we always

observe a net conversion of energy from kinetic to potential probably due to the

forcing acting on the velocity field only. Indeed, here both the perpendicular and

parallel components of the buoyancy flux, in Figs. 4.19 and 4.19, show mostly the

same qualitative behavior and pretty similar variation with the Froude number.

Surprisingly, we observe an intense kinetic-to-potential transfer for run S3, panels

(a) of Figs. 4.19– 4.19, which is probably largely driven by the large scale forcing,

but at the same time is showing that the coupling between velocity and temperature

mostly occurs at intermediate scale for the perpendicular component k⊥ ≈ 15, while

for the parallel buoyancy flux this happens very close to the forcing scale kf ' 2.5.

In the range of scale where we observed that the effect of vertical drafts is maximal

(i.e, 7 . k & 30), principally for the axisymmetric fluxes both partially also for the

other filter, also the conversion from kinetic to potential energy has its maximum,

confirming the hypothesis of vertical drafts driving temperature instabilities. For

scale k & 30 a large amount of energy is converted back from potential to kinetic, as

evidenced by the decreasing of the term Nθ̃w̃ at small scales, probably driving the

inverse transfer of kinetic energy previously observed. This happens in general for
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Figure 4.20. Same as Fig. 4.19 for the parallel filter.

all the simulations with a minimal amount of large-scale intermittency (i.e., runs

from S5 to S14) without any significant trend with the stratification intensity. For

runs with strong background stratification (S12 and S14), the most extreme events

|wσw| > 6 produce a negative (from potential to kinetic) net energy conversion

almost at any k (both k⊥ and k‖). However, we cannot conclude exactly whether

this is either the effect of the interaction between drafts and strong gravity waves

or simply fluctuations due to unresolved statistics, especially for run S14. The

unfiltered version of the buoyancy flux and its statistics will be further analyzed in

relation to large-scale intermittency of both the vertical velocity and temperature

fields in the next chapter, where we will see more in detail the link between vertical

drafts and local instabilities within the flow.
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Chapter 5

Link to small-scale

intermittency and the buoyancy

flux

5.1 Comparison of the kurtosis of large- and small-field

components

We have seen in the introduction how small-scale (or internal) intermittency is a

peculiar feature of turbulence, from laboratory experiments and direct numerical

simulations to geophysical flows, as it has been observed in many instances in the

atmosphere and oceans. Internal intermittency produces intense localized variations

of the energy dissipation, and therefore the small-scale gradients. As we observed

in the previous chapters for the case of large-scale intermittency, the presence of

burst in the field gradients produces a departure from the Gaussian behavior of

the probability distribution function (PDF) of the field one-point derivatives. Nu-

merous are attempts of accurately model intermittency in turbulence, for instance

with log-normal or log-Lévy models [174, 195]; however, it remains a challenging

question which is nowadays fundamental to improve weather and climate models to

simulate the unresolved small scales. Therefore, unraveling the link between internal

intermittency and large-scale vertical velocity and temperature burst might be an
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Run S40 S24 S20b S16 S14 S12 S9 S85 S8 S7 S6 S5 S3 S2 S1 S08 S05

N 40 23.5 20 160 14 11.8 9.0 8.5 8.0 7.372 6.0 5.0 2.948 2.2 1.5 0.8 0.5

Re/103 3.9 3.8 3.8 3.8 3.8 3.8 3.9 3.8 3.8 3.8 3.7 3.6 3.0 2.6 2.6 2.8 2.9

Fr 0.015 0.026 0.030 0.038 0.044 0.051 0.068 0.072 0.076 0.081 0.098 0.11 0.16 0.19 0.28 0.56 0.93

RB 0.87 2.5 3.4 5.6 7.3 10.2 17.7 19.7 22.1 25.2 35.9 47.5 75.2 90.9 201 895 2560

Ku 2.3 2.4 2.3 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.5 2.6 2.9 2.8 2.8

Kv 2.2 2.3 2.2 2.3 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.6 2.8 2.7 2.8 2.8

Kw 3.1 3.2 3.1 3.1 3.2 3.6 7.3 8.6 10.4 9.1 8.8 5.3 3.9 3.5 3.3 3.0 3.0

Kθ 3.3 3.4 3.4 3.5 3.5 3.6 4.0 4.3 4.3 4.1 4.1 3.6 3.1 2.9 2.8 2.7 2.7

K∂xθ 4.7 4.9 6.5 11.7 16.0 45.6 118.0 101.5 112.2 71.7 53.0 28.6 17.5 15.9 15.6 13.6 13.5

K∂yθ 5.0 5.2 6.1 14.9 58.7 157.0 165.0 140.0 150.1 88.1 84.2 34.5 18.5 15.3 16.0 13.5 13.1

K∂zθ 9.8 6.3 6.5 6.4 6.1 6.5 8.7 8.8 10.3 8.7 11.1 8.7 10.2 11.8 16.9 15.3 15.3

K∂xu 4.0 4.5 4.0 4.0 7.4 9.9 49.6 37.3 38.6 33.9 26.0 16.3 7.3 6.03 5.5 5.7 5.8

K∂yv 3.9 4.6 4.6 6.1 22.7 59.5 83.5 71.2 57.4 41.2 35.9 19.2 7.5 6.0 5.5 5.7 5.8

K∂zw 3.4 3.7 5.3 27.5 67.4 90.1 88.4 73.7 56.7 38.3 25.6 13.0 6.0 5.4 5.2 5.6 5.8

K∂yu 5.2 5.9 5.8 5.2 22.7 59.5 60.7 55.7 8.5 51.0 44.6 25.1 10.1 8.6 8.1 8.6 8.8

K∂zu 4.4 3.9 4.0 4.0 4.01 3.9 3.8 3.9 3.9 3.8 4.2 4.3 6.0 6.9 7.5 8.3 8.7

K∂xv 4.3 5.0 4.3 6.0 7.7 8.8 58.5 39.4 8.6 41.4 36.5 23.0 10.0 8.2 7.9 8.5 8.7

K∂zv 3.8 4.2 3.7 3.9 3.8 3.7 3.9 3.8 3.9 3.8 4.0 4.1 5.9 6.9 7.5 8.4 8.6

K∂xw 5.0 5.6 8.4 25.1 61.9 176.1 361.6 225.0 258.4 133.8 78.4 35.8 11.3 8.7 7.7 8.3 8.7

K∂yw 5.4 6.1 10.8 41.4 222.1 354.0 236.0 191.1 199.1 112.1 89.5 36.6 11.6 8.8 7.7 8.5 8.6

Table 5.1. Main parameters for the entire set of runs, namely the buoyancy frequency N ,

the Reynolds number Re, the Froude number Fr, and the buoyancy Reynolds number

RB (first four rows). The other rows report the kurtosis of the three components of the

velocity and the temperature Kα, with α = [u, v, w, θ], all the velocity and temperature

gradient components. Values are averaged for ≈ 8 turnover times after the peak of

dissipation in each run. The runs with bold names are those analyzed in the previous

chapter as well.

important element to include in models for geophysical flows.

Considering the deep connection between large-scale intermittent events and dis-

sipation highlighted in Marino et al. [139], and ultimately the clear evidence that

vertical drafts locally inject energy at intermediate scales, in the following analysis

the purpose is to further study the connection between small- and large-scale inter-

mittency using a large set of DNSs of stably stratified flows [72, 73, see], employing

the kurtosis K computed both for the physical fields and their gradients. In Tab. 5.1

the main parameters and the kurtosis results are reported for every run. Kα, where

α is either a field or a gradient component, has been computed collecting points for

≈ 8 turnover times; it is worth to remember that Kα ' 3 means a Gaussian-like
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Figure 5.1. (Top left) Kurtosis of the three component of the velocity field Ku (red),

Kv (green) and Kw (blue). (Top right) Kurtosis of the (potential) temperature Kθ

and (bottom right) their gradient components K∂αθ, with α = [x, y, z]. (Bottom left)

Kurtosis of the diagonal component of the velocity gradient K∂xu, K∂yv and K∂zw.

Coloured points represent those runs also analyzed in the previous chapter; the top axis

shows the range of buoyancy Reynolds, as reported for each run in Tab. 5.2.

shape of the PDF.

In Fig. 5.1 are presented the main results summarized in Tab. 5.1. The non-monotonic

behavior of the fourth-order moment is evident for almost all the gradient compo-

nents (panels (c) and (d)). Whereas the behavior of the vertical component of the

velocity and temperature was already known from Feraco et al. [72]. However, it

is always worth noting how the horizontal components of the velocity field (u and

v) do not show any trend, staying Gaussian (Ku,v ' 3) or slightly sub-Gaussian

(Ku,v . 3) in all the simulations, pointing to the fact that the large-scale intermit-

tent behavior of the sole vertical velocity w (and/or of the buoyancy) can enhance

small-scale intermittency, as seen from the spatial derivatives both of the velocity

and of the buoyancy (see panels (c) and (d) Fig. 5.1). Even though the kurtosis of
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the temperature (or buoyancy) θ exhibits the same behavior as w, their values are

significantly smaller indicating extreme events which deviate less from 3σ; such a

difference could be probably due to the fact that in our simulations we inject only

kinetic energy, therefore the temperature field is forced only by the coupling with

the velocity field which is modulated in particular by the buoyancy Reynolds.

The diagonal components of the velocity field ∂iui are reported in Fig. 5.1, panel

(c), showing the same trend as the one observed for Kw, with values almost one

order of magnitude higher, indicating high levels of small-scale intermittency in

terms of extreme values of field gradients. The other components of the velocity

gradient ∂iuj are only reported in Tab. 5.1; most of them exhibit however the same

variation, except for ∂zu, ∂zv and ∂zθ (also represented in panel (d) Fig. 5.1). On

the top axis of the same figure it is reported the range of variation of the buoyancy

Reynolds number for the set of simulations; it is worth reminding that in our case

the RB variations are mainly due to the Froude number since the Reynolds varies

only by ≈ 30%. We observe that runs with high values of kurtosis lie in a range

10 ≤ RB ≤ 200, indeed the intermittent dynamics at large scale have already been

interpreted in terms of the interplay between waves and turbulence with a simple

1D model in Feraco et al. [72], in which the flow is considered to be able to explore

different regimes, well-highlighted by the buoyancy Reynolds, where the relative

strength of waves and turbulent eddies plays the central role in the dynamics. Such

relation between large- and small-scale (or internal) intermittency can also be under-

stood in terms of a simplified model for stably stratified flows involving only the field

gradients, which is also helpful to give a possible interpretation of the mechanism

feeding extreme vertical drafts.

5.2 A mechanism for the generation of large-scale ver-

tical drafts

At the end of the previous section, we observed how the gradient components of

the horizontal velocity u, v and the temperature θ along the vertical direction z do

not show any trend with the Froude number. The small kurtosis values of ∂zθ, in
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Figure 5.2. Vertical 2D slices (with the insets showing a horizontal slice of 1/4 of the

domain at the region of the extreme event) for run S8. Correlations of θ and w, ω = |ω|

and θ, ∂yθ and ∂zv, and ω and ∂yθ are shown (the first quantity in colors, the second

with contours). Contours are at ±3σθ for θ, and ±4σ for all other fields. Gray shaded

areas indicate regions with ∂zθ > N .

particular, can be understood since the level of stratification N dynamically bounds

this gradient component, ∂zθ < N . When ∂zθ ≥ N , heavier fluid parcels move on

top of lighter ones reversing the background stratification and triggering instabilities;

this mechanism creates local convection within the fluid. Thus, such buoyancy-driven

instabilities are strictly related to the emergence of large-scale vertical drafts, and

this can be seen considering a simplified version of the Navier-Stokes equations

(NSEs) for the component ∂zθ, where viscous effect is neglected,
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Dt(∂zθ) = (N − ∂zθ)(∂zw)− (∂xθ)(∂zu)− (∂yθ)(∂zv) (5.1)

the equation describes how variations of ∂zθ can be introduced either by strain in

the horizontal winds (∂zu and ∂zv), being bounded to Gaussian values of kurtosis

and slightly inversely proportional to the intensity of stratification (see Tab. 5.1), or

by the saturation of the first term RHS in Eq. (5.2) when ∂zθ ≈ N . For these values,

triggered instabilities make the other gradient grow explosively. Indeed, even though

high values of kurtosis of the velocity and temperature gradients are a universal

feature of turbulence, in this case there is an additional enhancement of small-scale

intermittency due to the emergence of vertical velocity and temperature drafts. This

results eventually, with enhanced energy dissipation in stratified flows characterized

by large-scale intermittency, whereas this is usually smaller than the homogeneous

isotropic turbulence (HIT) case, as shown in Marino et al. [139]. Thus, we can say

that large-scale extreme events are generated via buoyancy-driven instabilities, also

feeding the interaction mechanisms between small- and large-scale intermittency,

and this is well depicted by the four panels in Fig. 5.2, representing vertical cuts (y,z)

and horizontal cuts (insets) of the original 3D domain. In panel (a) temperature

iso-contours, black solid if positive and dashed if negative, are superimposed to the

vertical velocity field showing how localized burst of w essentially mapped also from

the extreme values of θ, with a phase shift between ≈ 2π. This difference can be

further appreciated by the inset, zooming on a horizontal cut over the structure

visible in the bottom right part of the domain. Here we see a quasi-periodic structure

alternating positive and negative extreme values, both in w and θ. Panel (b)

highlights the same relationship but between the temperature θ and the modulus of

the vorticity ω = |ω|; these small-scale structures, evidenced by the vorticity, are

the results of instabilities produced by vertically sheared horizontal winds VSHW(s)

which are characteristic features of stably stratified flows, and which we show here

in panel (c) through the gradient component ∂zv (the same results for ∂zu). Indeed,

such horizontals shears are particularly prone to Kelvin-Helmholtz instabilities KHIs,

modulating the shape of layers at small scales and thus creating horizontal gradients

of (potential) temperature θ and high values of vorticity Dtω ≈ −N (∂yθêx − ∂xθêy)
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(where viscous effect, forcing and vortex stretching were neglected). This results in a

correlation between ω and the horizontal gradients of θ which is shown in panel (d).

Therefore, the generation of vorticity is the mechanism supplying the small-scale

intermittency, allowing a direct link between large- and small-scale extreme values.

On the other hand, from (5.2) it is clear that fluctuations of the horizontal gradients

of θ may eventually produce a nonlinear amplification of the vertical gradients of

the horizontal velocity (∂zu and ∂zv), as it is highlighted in panel (c) for ∂yθ and

∂zv (last term RHS in (5.2)). This mechanism of coupling between small-scale

instabilities produced by large-scale structures (i.e. VSHWs) may proceed with the

generation of extreme up- and down-drafts, and with very strong velocity fluctuations

due to values of ∂zθ ≥ N , creating buoyancy instabilities of the stable background

stratification. Indeed, such regions with ∂zθ ≥ N coincide mostly with the regions

presenting the most extreme values, as shown by the gray-shaded areas in panels (a)

and (b). In summary, large-scale extreme events increase small-scale intermittency

through the generation of vortical motions. However, the main mechanism of

vorticity production is through buoyancy-driven instabilities, resembling in some

way a large-scale baroclinic instability, and not through vortex stretching. These

results also explain the enhanced dissipation, as observed in Marino et al. [139], since

it is roughly proportional to the enstrophy ∝ ω2, and the general lack of filament

structures in stratified flows, contrary to what is observed in HIT. Moreover, the

increase of the background stratification N (smaller Fr numbers) makes more difficult

to have the condition ∂zθ ≥ N ; therefore this gives an explanation of the absence

of extreme events at low Froude. The behaviour of the gradient components of u

and θ, and in particular their kurtosis, suggest that small-scale related to large-scale

extreme events are in a more mixed state compared to other regions of the fluid

reinforcing the idea of a non-homogeneous medium. The same enhanced turbulent

patches present a higher degree of isotropy, even though this should not be confused

with the classical HIT concept of isotropy recovery, which usually happens at scale

≈ `Oz in stratified flows; but, since in these flows the dynamics is dominated by

horizontal motions u⊥ � w, whereas the imposed stratification and gravity suppress

vertical displacement, the presence of extreme vertical drafts locally reduces the
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Run S40 S24 S20b S16 S14 S12 S9 S85 S8 S7 S6 S5 S3 S2 S1 S08 S05

N 40 23.5 20 16.0 14.0 11.8 9.0 8.5 8.0 7.372 6.0 5.0 2.948 2.2 1.5 0.8 0.5

Re/103 3.9 3.8 3.8 3.8 3.8 3.8 3.9 3.8 3.8 3.8 3.7 3.6 3.0 2.6 2.6 2.8 2.9

Fr 0.015 0.026 0.030 0.038 0.044 0.051 0.068 0.072 0.076 0.081 0.098 0.11 0.16 0.19 0.28 0.56 0.93

RB 0.87 2.5 3.4 5.6 7.3 10.2 17.7 19.7 22.1 25.2 35.9 47.5 75.2 90.9 201 895 2560

Kw 3.1 3.2 3.1 3.1 3.2 3.6 7.3 8.6 10.4 9.1 8.8 5.3 3.9 3.5 3.3 3.0 3.0

Kθ 3.3 3.4 3.4 3.5 3.5 3.6 4.0 4.3 4.3 4.1 4.1 3.6 3.1 2.9 2.8 2.7 2.7

KBf 10.25 11.34 12.31 13.57 13.28 29.24 118.6 146.8 156.8 82.51 80.02 30.75 13.02 10.26 8.29 7.36 7.43

Skw/10−2 -5.3 -2.7 -3.4 -4.1 -4.2 -1.3 -8.0 -1.8 -2.5 -0.01 -0.5 -1.4 -1.3 -1.3 -2.4 -0.07 -1.4

Skθ/10−2 -17 -0.83 -1.6 0.5 -1.5 -2.1 -4.2 -4.8 -9.5 -7.0 -8.1 -5.2 -1.5 -9.8 -2.0 -2.6 -4.2

SkBf /10−2 2.4 -3.7 17 25 -3.2 56 87 94 149 93 107 84 76 82 89 119 140

β 0.11 0.10 0.098 0.090 0.085 0.085 0.088 0.088 0.088 0.090 0.10 0.12 0.32 0.52 0.59 0.61 0.63

RIB 0.01 0.25 0.33 0.50 0.62 0.87 1.56 1.73 1.94 2.28 3.61 5.60 23.1 47.1 119 544 1601

Bf/10−2 0.38 -0.14 0.69 0.78 -0.44 0.84 0.15 0.65 0.42 0.63 0.82 1.3 4.1 5.7 8.2 8.8 5.6

Γ̂ 0.081 0.10 0.10 0.11 0.12 0.11 0.12 0.13 0.13 0.14 0.17 0.20 0.38 0.48 0.59 0.50 0.28

Sa 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.94 0.94 0.93 0.87 0.80 0.48 0.36 0.29 0.28 0.27

Table 5.2. For the same runs listed in Tab. 5.1 here we report again the main parameters,

the kurtosis of the vertical velocity Kw, temperature Kθ and buoyancy flux KBf , and

their skewness Skα. Finally, we summarize the average value of some mixing proxies.

anisotropy level. As we will see in the following, since where extreme vertical burst

occur the horizontal component of the velocity remain significantly lower, this results

in patches of small kinetic helicity.

5.3 Effect of large-scale intermittency on the mixing

properties of stratified flows

One way of measuring the mixing properties of stratified flows is by using the

point-wise vertical flux of (potential) temperature, or buoyancy flux, Bf = Nwθ.

It represents the exchange between kinetic and potential energy, since it directly

arises in the primitive equations for the energy conservation of the Boussinesq

model (Sec. 2.2.2). We already analyzed the buoyancy flux in the framework of the

space-filtering technique in the previous chapter; here, we focus on the intermittency

of the buoyancy flux by analyzing both the skewness Skx = 〈x〉3/〈x2〉3/2 and the

kurtosis, as we already did for the velocity and temperature fields, as well as for

their gradients. The results, summarized for the same set of simulations analyzed

before in Tab. 5.2, are reported in Fig. 5.3.
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Figure 5.3. Top: skewness of the vertical velocity w (red), of the temperature fluctuations

θ (green) and of the buoyancy flux Bf (blue) as a function of Froude number for the

17 runs of this study (see 5.2). A power-law fit SkBf ∼ Fra, with a = 0.013, is added

(black dashed line). Bottom: kurtosis of w (red), θ (green) and of the buoyancy flux Bf
(blue) for the same runs. Note the difference of scale compared to the plot for skewness.

All the statistical moments depicted in Fig. 5.3 show a clear variation around

the critical value of Fr ≈ 0.076, corresponding to run S8; the only curves that are

almost constant, and close to zero, are the skewness of the vertical velocity w and

the temperature field θ (top panel), meaning that positive/negative fluctuations have

equal probability to occur. This is not the case for SKBf which slightly increases as

a function of Froude, with a behaviour that can be approximately recovered by a

power-law SkBf ∼ Fra, with a ' 0.013. The increase in the buoyancy flux skewness

can be explained as a preferential coupling between extreme events in w and θ,

indeed Sk > 0 indicates the longest positive tail of the PDF, which in the case of

Bf is the result of the coupling between either updrafts (positive) or downdrafts

(negative) in both the vertical velocity and temperature fluctuations. Such increase

in the skewness however needs to saturate going to higher Fr, since we are moving

to regimes where the stratification is weakening, and the scalar field is always more
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decorrelated from the velocity field, resulting ultimately in a passive scalar when

the HIT case is recovered. In the bottom panel the forth-order moment of w, θ

and Bf are represented, showing the known behavior for the vertical velocity and

temperature field (e.g., Feraco et al. [72], Feraco et al. [73]), and coherently the

same trend is observed for the kurtosis of the buoyancy flux. The variation of KBf

can be due to two main reasons: first that the buoyancy flux is quadratic in w and

θ, whereas the second can be readily appreciated by recovering the 1D modified

Vieillefosse model [218, 219] in which a wave term and the coupling between vertical

velocity and temperature are added. We already mentioned in Ch.r 2 that this simple

turbulence model is helpful to reproduce the high level of large-scale intermittency

for Fr ' 0.05 − 0.3. Its dynamics clearly show how the interplay between waves

and turbulence in an intermediate regime where it may generate resonant effects is

crucial to the emergence of large-scale intermittency. By rewriting the model derived

in Feraco et al. [72] without the term due to dissipation and forcing:

Dtδw = − δw2/`z −Nδθ , (5.2)

Dtδθ = − δwδθ/`z +Nδw , (5.3)

where we recall that δw and δθ are the vertical velocity and temperature variations

on a fixed scale `z; the characteristic length scale has been chosen `z = `Oz in Feraco

et al. [72], implying vertical motions and gradients which dominate the dynamics

over the horizontal components. From Eqs. (5.2) and (5.3) it is straightforward

to derive equations for the total energy δeT = (δw2 + δθ2)/2 and buoyancy flux

δbf = Nδwδθ of the fluctuations, which read as,

DtδeT = −[2δw/`z]δeT , (5.4)

Dtδbf = −[2δw/`z]δbf −N2(δθ2 − δw2) . (5.5)

The buoyancy flux does not give any contribution to the total energy, as we have

already seen in the primitive equations. In contrast, the evolution of δbf depends on

the difference between the potential and kinetic energy of the variations at scale `z.

The evolution of δeT and δbf is the same if the equipartition of energy is satisfied;

however, this is not the case in stratified flows, where the dynamics of the buoyancy
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Figure 5.4. Mixing efficiency Γ̂ (red), buoyancy flux normalized by kinetic energy dissipation

(green), efficiency of kinetic energy dissipation β (blue) and finally Sa, i.e. the VSHWs,

normalized by kinetic energy dissipation (pink), all as a function of Froude number Fr.

The peak of kurtosis of the vertical velocity is marked by a vertical dashed red line.

flux is significantly affected by the wave dynamics and the exchange of energy

between the two channels. This kinetic-potential differential is the additional source

of the high variation of the buoyancy flux, as shown in Fig. 5.5. The left panel

show the skewness of the perpendicular EP − Ev⊥ (red) and vertical energy defect

EP − Ew (blue), normalized by the total energy; the right panel their respective

kurtosis. The high values of kurtosis and skewness of the vertical component of

the energy defect (blue curves) in the range Fr ' 0.05− 0.3 completely resembles

the behavior observed for the other quantities so far, further confirming that the

difference between vertical kinetic and potential energy represents an important

source for large-scale intermittency.

Other ways to evaluate the mixing properties of stratified flows are analyzed

and compared to the point-wise buoyancy flux. The values, obtained for all the

simulations, are reported in Tab. 5.2; we adopted three additional metrics of mixing,
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Figure 5.5. Skewness (left) and kurtosis (right) of the energy defects, normalized by the

total energy, as a function of Froude number (see legends for definitions). There is

a clear correlation between the lack of equipartition of vertical and potential energy

(blue plots) and the strong intermittency close to Fr ≈ 0.076. On the other hand, the

statistics of the energy difference between the horizontal and potential modes do not

vary substantially across Fr.

together with the buoyancy flux largely discussed yet.

The efficiency of kinetic energy dissipation is the total volume energy dissipation

εV = ν|∇u|2 normalized by the characteristic scales of the system β = εV /(U3
rms/L),

namely the rms velocity Urms and the integral scale L.

The irreversible mixing efficiency has been already assessed in Feraco et al. [72]

where it was found that the normalized rate of the potential energy dissipation

Γ̂ = εP /εV scales linearly in the range where extreme events develop, whereas it is

almost constant on different levels for high values of the stratification, consistently

with other studies and with observations.

Finally, the normalized shear dissipation Sa = ν〈(∂zu)2 + (∂zv)2〉/εV measures the

small-scale anisotropy by comparing the amount of dissipation given by vertical

shears of the horizontal velocity to the kinetic energy dissipation εV .

In Fig. 5.5 we can see, as a function of the Froude number, the irreversible mixing

efficiency Γ̂ (red), the buoyancy flux normalized by the total kinetic energy dissipation

Bf/εV (green), the efficiency of kinetic dissipation β (blue) and the shear dissipation

Sa (pink); top axis shows the corresponding values of the interaction parameter

RIB = εV /(νN2) = βRB , also defined in (3.19) as a ratio between the Ozmidov and
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Kolmogorov length scales. The first relevant aspect emerging from the behavior of

these curves is that, contrary to what is observed for higher-order moments, the

average value does not seem to be affected by the presence of large-scale intermittency;

however this is expected since extreme events are rare and therefore their emergence

may not be evaluated on averaged quantities. On the other hand, three evident

regimes can be distinguished, with the intermediate one, in particular, occurring

around Fr = 0.076 (run S8), where a rapid increase of all the curves is observed.

The region at low Fr number (high stratification) is characterized by a plateau

whose value is likely to depend on the Reynolds number [181] for all the quantities,

except the vertical shear Sa which is maximal when the flow is strongly stratified

and dominated by vertical sheared winds. One could state that, at low Fr, vertically

sheared horizontal winds are the main structure dissipating energy, allowing the

flow to return in a state where inertial waves dominate it. The constant and then

increasing regimes for Sa have already been observed in Brethouwer et al. [30] for

values of the interaction parameter up to RIB ≈ 15; we found a very good agreement

with their result for the entire range of RIB. There is a small difference at the

point where a clear transition is observed, which is RIB ≈ 3 in Brethouwer et al.

[30], while in our work the transition seems to occur at around RIB ≈ 5 and 10;

there is however a major difference between their and our investigation since they

adopt a two-dimensional forcing, thus allowing vertical velocity fluctuations only

by the coupling with gravity waves. Also, the normalized buoyancy flux at low

Fr slightly differs from the other curves since we observe a few changes of sign

in that range, and in particular it assumes negative values for two runs (S24 and

S14). By moving towards a region where vertical drafts dominate, we see in Fig. 5.4

how large-scale extreme events generate more turbulence, increasing the dissipation

efficiency [139], e.g. β and Γ̂. While, for the runs with higher Froude the behavior

of the various quantities is different according to their definition; indeed, we observe

a consistent increase of the dissipation efficiency β that should attain unitary values

approaching the HIT case. On the contrary, considering metrics involving (potential)

temperature fluctuations means that they have to inevitably decrease when turbulent

motions dominate over waves (low stratification) and thus regimes where temperature
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fluctuations are decoupled from the velocity field.
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Chapter 6

Low-dimensional representation

of large-scale intermittency in

stratified flows

Nowadays the majority of the most important results in science are obtained

after the analysis of huge amounts of data either coming from high-resolution direct

numerical simulations (DNSs) or observational measurements. The ever increasing

computing capabilities allows the storage of hexa- or peta-bytes of data, being

fundamental not only for scientific but especially for technological purposes. Hence,

there is an inherent need for devising methodologies for data reduction and creation

of reduced order models which could help with the storage and analysis of high-

dimensional data sets. In computational fluid dynamics, the introduction of data

compression may be worth not only for reducing the disk space occupied by numerical

simulations but also for post-processing purposes [154], to study the system dynamics

in a lower-dimensional space [52, 169] and even to create a model being able to

reproduce the flow dynamics with high spatial and temporal resolution [82, 200]. One

major challenge in this area is the ability to sufficiently estimate the (reduced) flow

fields with realistic features allowing (i) simulation restarts using the compressed data

without a significant impact on the long-term behavior of the simulated flow (ii) the

compressed data to still preserve the essential statistical properties of the turbulent
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flow with reasonable accuracy [154]. The first point is particularly important worth

for the intrinsic chaotic behavior of the Navier-Stokes equations (NSEs), for which

minor variations in the initial conditions can determine completely different behaviors

after some time, while the second point becomes more difficult for stratified flows in

the intermittent regime. In the last year, interest has grown for the application of

Machine Learning (ML) methods to computational fluid dynamics (CFD). In fact,

because of their intrinsic non-linear formulation, artificial neural networks (ANNs)

are highly proficient in capturing non-linear and complex interactions. In addition,

the introduction of physics-informed ML techniques [see 57, for a review], where

physical knowledge about the systems are considered to add either information

or constraints on the created model, has exponentially increased the interest on

neural networks for scientific research [74, 41, 10]. For dimensionality reduction or

data compression autoencoders are widely used since they can easily perform non-

linear projections thanks to non-linear activation functions, allowing the creation

of well-performing reduced order models. [154, 87, 165, 230, 161]. Most of the

reduction methods for turbulent flow analyze homogeneous isotropic turbulence

(HIT) which is a simpler case than the simulations of stratified flows considered in

this thesis. Indeed, despite the universal non-linear dynamics of turbulence, HIT

presents statistical features which are stationary both at large and small scales when

a fully-developed turbulent state is reached. On the contrary, we have already seen

in this manuscript how the statistics of stratified flows can drastically change if

computed in different regions of the domain or at different times, as well as with

varying the controlling parameters such as the Froude number. The presence of

large-scale intermittency represents in fact an additional challenge for a reliable

low-dimensional representation since regions with extreme events are in general

those of the phase space with sparse data, and they present very large dimensional

attractors which in combination with the occurrence of transient and rare events

make the application of classical technique significantly cumbersome [222]. Therefore,

in this analysis we implemented a reduction technique for 3D DNSs of stratified

flows using Convolutional Autoencoders (CAEs) where we add statistical constraints

based on our knowledge of these flows. Such information are introduced to tackle
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Id Compression factor No. Layers No. params. Latent space

CF2 2 7 321,156 64× 64× 128

CF4 4 8 339,892 32× 32× 256

CF8 8 9 324,772 32× 32× 128

CF16 16 11 349,804 16× 16× 256

Table 6.1. Description the four Convolutional Autoencoders architecture: the compression

factor (CF), the number of layers referring to both the encoding and decoding part of

the network. The number of parameters account for all the weights and biases which

have to be optimized during the training phase, and the latent space is the reduced

space after the encoding network is applied.

the highly variability of the statistics, and in particular of the forth-order moment

of vertical velocity w PDF, due to the presence of large-scale vertical drafts. We

introduce additional terms to the loss function, that being the objective function

which the CAEs minimizes during the training phase, accounting for the error on

the reconstruction of the statistical moments of the distribution of w up to the

forth-order, so that the statistical properties of the reconstructed field are preserved.

6.1 Statistical-Informed Convolutional Autoencoders

In general, an autoencoder [62] is an unsupervised feed forward artificial neural

network (ANN) that aims to reconstructing the original data through a process

involving data compression and recovery. Indeed, its main objective is to create a

reliable and reduced representation of the input data set, being particularly helpful

for either creating reduced model or simpler but still informative representation of

high-dimensional data. The network consists of an encoder part P : RD −→ Rd, being

an operator which compressed the data (input) into a smaller space representation

(or latent space), and a decoder part Q : Rd −→ RD, which reconstructs the encoded

data back to the original input dimension. When the mapping kernel is linear, the

autoencoder can be considered as a singular value decomposition analysis. Instead if

they employ convolutional layers to perform the encoding and decoding operations on
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Figure 6.1. Schematic representation of a symmetric Convolutional Autoencoder (CAE)

as it is implemented in general in this work.

images, or more in general on 2D (or higher) data, they are named as Convolutional

Autoencoder (CAE). During the convolution operation, the kernel swipes the data

domain to extract features and learn spatial and/or temporal dependencies. The

process is then carried out across multiple layers, obtaining representative features in

a hierarchical sense [141]; CAEs with many hidden layers can be considered as deep

neural networks (DNN). The initial layers learn low-level or particular details about

the data, while subsequent layers focus on larger and larger-scale information. In

our work we developed four CAEs with different compression factors (CFs), defined

as the ratio between the input and the latent dimensions, from 2 to 16; an example

of a general CAE architecture used in our implementations is shown in Fig. 6.1. In

Tab. 6.1 we report the main characteristics of the four CAEs implemented here;

starting from CF2, we obtained higher CFs by adding more hidden layer to the

initial architecture, but trying to keep the number of parameters as fixed as possible

in order to make a more fair comparison of the four networks performance. Indeed,

the number of weights and biases, as highlighted by the values in Tab. 6.1, varies

only by ≈ 10%. On the other hand, more hidden layers allow networks with higher

CF to learn more features of the original fields during the compression step. The

number of hidden layers is intended for the entire CAE architecture, comprising both

the layers of the encoding ne and decoding nd part; they usually have an amount of

layers which follow the relation nd = ne + 1, while the CAE is symmetric if the total

number of layers is even.
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Original CF2 CF4 CF8 CF16

|〈∇ · u〉| [×10−11] 0.42 1.83 3.26 2.37 2.06

max {|∇ · u|} 5.9 · 10−4 538 410 573 530

Table 6.2. Order of magnitude and maximum value of the divergence of the velocity field

after the reconstruction with the different CAEs.

6.1.1 By-plane approach to fluid anisotropy

We already mentioned in the introduction of this chapter that the final objective

is to obtain a tool which is able to reproduce most of the features of the velocity u and

temperature θ fields of a fluid which is anisotropic but moreover non-homogeneous

due to the presence of large-scale events intermittent in space and time. Therefore,

our approach consists in applying various changes to the classical CAE algorithm to

make it the more suitable and better perform for this challenging task. There are

four main key ingredients in our application of CAE to highly intermittent stratified

flows. At first, since stratification creates a direction of anisotropy, even though we

deal with fully three-dimensional simulations the original cubic data are divided into

horizontal planes along the vertical direction. Then, for each time and height value

z, planes for every velocity component (u, v and w) and for θ are stacked together

creating three-dimensional input data with dimensions 512× 512× 4, as indicated

in Fig. 6.1. Before being divided, the data are normalized x̂ = (x− µ)/σ using the

average µ and standard deviation σ computed on each simulation cube. In this

approach, we believe that passing the information from the three components of the

velocity, together with the temperature, is essential for the CAE to better reconstruct

the flow dynamics at a given time t and altitude z, since their variation is strictly

correlated within the primitive equations. This approach has the shortcoming that

it is not possible to add an important information we know about the velocity field,

that is the incompressibility ∇ · u = 0, since working plane by plane we cannot add

constraints on the vertical derivative of the velocity ∂zw. This leads to values for the

maximum and average divergence of u reported in Tab. 6.2, where we can see that

even if on average the condition is well satisfied in the reconstructed fields, locally
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Figure 6.2. History of the loss function weights (detailed in the legend) for the four

Convolutional Autoencoders during the training phase.

this is not true while the condition is satisfied also point-wise for the original field.

6.1.2 Statistical-aware loss function

The learning process of a neural networks is performed through an optimization

algorithm, which looks for the best weights and biases for the network by minimizing

what is called a loss function (or cost function). This represents the metric that

evaluates, during the training phase, how good is the reconstruction made by the

CAE, in our case, and in general represents the objective function for a machine

learning algorithm to minimize to have optimal performance in the required task.

Indeed, in general loss functions are very specific for the problem formulation: many

different losses have been adopted in the literature for problems involving "real"

numbers, such as the (root) mean squared error (R)MSE, the mean absolute error

MAE, the cross-entropy and many others.

As we already mentioned in the introduction, there exist many applications of

CAEs, but also other neural networks, such as generative adversarial networks

(GAN) [113, 36] and fully-connected networks [185, 186] largely adopted for dimen-
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Id MSE σw err. Skw err. Kw err. Loss

[×10−4] [×10−5] [×10−4] [×10−2] [×10−4]

1st stage

“standard loss”

CF2 0.39 0.13 10.9 18.4 0.39

CF4 0.55 0.45 13.2 22.4 0.55

CF8 0.54 0.82 19.1 19.0 0.54

CF16 1.1 5.3 44.9 41.7 1.1

2nd stage

“statistical-informed loss”

CF2 0.67 1.03 1.9 0.04 0.44

CF4 1.0 1.0 3.2 1.4 4.0

CF8 1.3 0.074 3.6 1.7 2.3

CF16 2.3 0.32 12.0 5.9 10.0

Table 6.3. Results of the four CAE on the test set for both the first (top) and second

(bottom) training phase.

sionality reduction or reduced order representation of turbulent systems; however,

in most cases the goal is to reproduce the dynamics of fully-developed turbulent

flows which obviously are characterized by multi-scale structures and a complex

dynamics, but still manifest a stable statistics with Gaussian or quasi-Gaussian

PDF at large scales and fat tails with extreme gradients at smaller ones. These

features are almost constant over time and space once the flow is in a completely

developed turbulent state. Nevertheless, this is not the case when dealing with

numerical simulations of stably stratified flows as those we analyze in this work.

Indeed, we widely observed how the statistics, as well as the dynamics and energetics,

of these flows can drastically change in time and space, but also with the governing

parameters, such as the different regimes explored varying the Froude number (the

buoyancy Reynolds alternatively). The presence of large tails in the vertical velocity

w and temperature θ distributions likely represent an additional challenge for the

reconstruction of the physical fields through CAEs, and with machine learning

techniques in general. As an example, if we evaluate the reconstruction made by
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the implemented CAEs with a standard MSE as loss function we may obtain a

very low reconstruction error, but by looking locally at the point-wise error in areas

where vertical drafts develop the low-dimensional representation is not sufficient

to correctly capture the particular behavior of the flow. Since vertical drafts are

rare and extreme, the flow is dominated by regions with Gaussian distributions and

therefore drafts do not have a significant weight on the global loss function. Yet, we

know that they are fundamental for some aspects of the dynamics of stratified flows.

For these reasons we introduce a statistical-aware loss function which contains four

different terms,

L = 1
D

(
w1

[u,v,w,θ]∑
α

N∑
i=1

(αi − αri )2

N
+ w2

N∑
i=1

(σwi − σwri )
2

N

+ w3

N∑
i=1

(Skwi − Skwri )
2

N
+ w4

N∑
i=1

(Kwi −Kwri
)2

N

)

= 1
D

4∑
j=1

wjRj

(6.1)

where D = 3(w1 +w2 +w3 +w4), αr is the field reconstructed by the CAE, whereas

α the original corresponding one. The second, third and forth term in (6.1) are the

quadratic mean errors between the moments of the original and the reconstructed

vertical velocity w computed over horizontal planes (x,y), namely the standard

deviation σw, the skewness Skw and kurtosis Kw respectively. We recall that for a

normal distribution the reference values are: σ = 1, Sk = 0 and K = 3. Each term

is properly weighted with values wi varying at each epoch during the training phase.

In order to obtain a loss function with terms having the same order of magnitude

during the whole training procedure at a given epoch m, the weight of the ith term

wi is proportional to the sum of the other three terms at the previous epoch m− 1,

e.g. wmi =
∑
j 6=iw

(m−1)
j R

(m−1)
j (and normalized such that their sum is equal to

1). The behavior of the different terms of the loss function during one hundred

epochs of training is shown in Fig. 6.2. We can appreciate from the four panels

how there are essentially three weights (wMSE , wσw and wSkw) which are nearly

equal for the entire training phase, whereas the coefficient weighting the kurtosis

term is significantly smaller indicating a larger error on the forth-order moment, as
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expected. Even though the various terms of the statistical-informed loss function are

well balanced, the training procedure with additional constraints either coming from

the knowledge of the physical system, as it happens for physical-informed neural

networks, or from statistical information can be difficult, slower and sometimes very

noisy. Therefore, in many situations a two stage training approach is adopted [see

for example, 41]. Indeed, during the first stage the algorithm is trained using a

standard MSE loss function (meaning that w1 ≡ 1 and w2 = w3 = w4 ≡ 0) for the

first 50 epochs (see panel (a) in Fig. 6.3). The first stage of training is necessary

to create a robust model which is able to obtain the best average reconstruction of

the physical fields, without accounting for specific features of the flow. During the

second stage of training we switch on all the terms of the loss, proceeding for one

hundred more epochs in creating a model with the addition of statistical constraints

on the first four moments of the vertical velocity PDF (see panels (b)-(f) in Fig. 6.3).

6.2 SI-CAE Performance

We analyze in details the output of run S8 (see Tab. 3.1) for more than 45τNL
corresponding to one-hundred time steps. Since in our approach we divide each

simulation cube in planes along the vertical direction, the data set we use for training

and testing our CAEs comprises N = 51, 200 samples, with dimension 5122 × 4

(5122 grid-points for four variables u, v, w and θ). We divided the data set in

training and test set on a temporal basis, taking the first 70% for the training phase

and the remaining 30% for testing the performance. Fig. 6.3 shows the history

of the various terms of the loss function during the two phases of training. Panel

(a) (yellow) shows the first 50 epochs where the only term in the loss is the mean

squared error, while panel (b) shows the total loss L for the next 100 epochs of the

second training stage. The other panels, from (c) to (f), show the evolution of the

four terms in Eq. (6.1) which determine the behavior of the curves in (a). Obviously

a trend with the compression factor is observed, and as expected the higher CF, the

higher the reconstruction error both on the mean field and the statistical moments.

This is not related to the newly introduced loss function since already during the

first training stage (panel (a)) this trend can be clearly observed. We see from the
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Figure 6.3. Loss function trend during the training phase. Panel (a) shows the MSE

during the first training stage (orange panel), whereas for the second phase (blue panels)

we show the details of all the terms composing the statistical-informed loss function:

MSE in panel (c), standard deviation error in (d), the error on the skewness (panel (e))

and kurtosis (panel (f)). The total statistical-informed loss as a function of the epoch is

represented in panel (b).

behavior of the MSE when other terms are accounted in the objective function in

panel (c) that essentially the CAE during the second training stage stop improving

the average reconstruction of the average physical fields, since all the curves in such

panel are nearly constant for the entire phase. On the contrary there is a significant

improvement of the error on all the statistical moments (panels (d)-(f)), even though

the rate of decreasing of the error seems to be inversely proportional to the order

of moment, meaning that in the same amount of epochs the improvement on the

reconstructed standard deviation (2nd-order moment) is significantly higher than

what obtained for the kurtosis (4th-order moment). As also confirmed by the trend

of the loss weights (Fig. 6.2), the error on the kurtosis is nearly between one and two
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Figure 6.4. In panel (a), the reconstruction of the volume kurtosis obtained with the four

CAE (colored curves) with respect to the original values of Kw (black dashed line),

obtained with standard CAE. Panel (b) shows the same for the statistical-informed

Convolutional Autoencoder (SI-CAE). Panels (c) and (d) show, for each colored curve,

the relative error between the original Ka
w and reconstructed Kr

w values of kurtosis.

orders of magnitude greater than the others. The huge difference with respect to the

error on the other statistical moments may be due to the high variability of Kw (as

we have often seen in this manuscript), whereas standard deviation and skewness

are expected to vary less and to be closer to values of a Gaussian distribution. The

details of the results obtained on the test set for the various terms involved in the

loss function during the two training stages are summarized in Tab. 6.3. We can see

that including other terms into the loss function results in an average reconstruction

error 2-3 times greater than what obtained after the first training stage (see MSE in

Tab. 6.3), even though it remains on the order of MSE∼ 10−4, consistent with other

results found in literature [87, 154]. In addition, when constraints on the statistical

moments are added to the model, we observe that the reconstruction of high-order

moments improves up to 10 times for any compression factor.
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Figure 6.5. Difference between the mean absolute percentage error (MAPE) obtained

after the first training phase MAPE(1)
Kw

and after that the statistical-informed loss is

introduced MAPE(2)
Kw
MAPE, for the four different CAE, evidenced by colored curves.

6.2.1 Low-dimensional representation of extreme vertical drafts

We selected an interval of run S8 where isolated extreme bursts occur, producing

evident peaks of the kurtosisKw. In Fig. 6.4 the values computed on the original data

(black dashed curve) are reported as a function of the turnover time for the entire

test set. This figure clearly highlights how the second stage of training improves the

forth-order moment of the reconstructed velocity, not only if computed by planes but

also considering the whole simulation volume. Indeed, after the reconstruction made

by the CAE we are able to rearrange data into simulation cubes 5123 allowing also to

compute statistics on the entire domain; therefore for each time step in the test set, we

computed the vertical velocity kurtosis both of the original and of the reconstructed

data, and the results of such a comparison are shown in the four panels of Fig. 6.4.

Panels (a) and (c) show the trend of kurtosis obtained with the CAEs after the

first training stage and the mean absolute percentage error (MAPE) computed with

respect to the original values, respectively; the same quantities are shown in panels

(b) and (d) after that the statistical-informed loss has been used. All the CAEs show

a significant reduction of the percentage error, with a particular improvement in

times where volume averaged Kw exhibits highly non-Gaussian values (t ≈ 503τNL
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Figure 6.6. Left: PDFs of w computed at t/τ ≈ 520 (black curve) and the same obtained

from the field reconstructed with the networks (colored curves), when only MSE is used

as loss function. Right: the same as the left panel but using the statistical-informed loss.

and t ≈ 520τNL). In addition, with the application of the modified loss we are able

to obtain percentage errors on the kurtosis smaller than 10% on average. However,

the improvement in the reconstruction of the forth-order moment is obtained also

for values close to the Gaussian reference (Kw ≈ 3). Indeed, it is evident that our

approach can be successfully extended to other situations where the PDFs are far

from Gaussian shape as it is the case for the concentration of a passive scalar [183]

or for the velocity in the boundary layer [32]. The statistical moments up to the

forth-order embedded into the loss function guarantee an optimal reconstruction of

the statistical properties of the physical fields without any prior knowledge about

the shape or variability of their distribution function. The improvement we obtain

with the custom loss is quantified in Fig. 6.5 where we show the difference between

the MAPE computed on Kw after the first and second training stage, as a function

of time. The improvement reaches up to ≈ 40% at times with high values of Kw

but in general an increasing of nearly 10% is observed at all times. In Fig. 6.6 we

show the probability distribution functions (PDFs) computed on the entire volume

at time t ≈ 520τNL (third gray circle in Fig. 6.4), when Kw ' 6.8, using both the

original (black) and data obtained from the four Convolutional Autoencoders. We

notice how after the first training stage (left panel) the PDF core is already reliably

mapped by the reconstructed data, even though the tails significantly differ, and
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Figure 6.7. Right panels show the vertical profile of the vertical velocity kurtosis Kw (black

dashed lines) at times: t/τ ≈ 507 (top), t/τ ≈ 520 (middle) and t/τ ≈ 500. Colored

dashed curves are the same profile of Kw obtained from the reconstructed fields. Right

3D renderings highlight that higher values of Kw indicates more extreme events, which

are represented as solid regions (|w/σw| > 4) while the rest of the domain is shaded.

in particular the departure seems increasing for higher |w|. The PDF in the right

panel of Fig. 6.6, after the second training stage, completely resemble the original

ones, confirming that if the distribution moments are the same up to the forth-order

the shape of the PDF is equal with good approximation.

In Fig. 6.7 we show an example of large-scale intermittency observed at three

different times, indicated by the gray circles in Fig. 6.4. The three-dimensional

renderings represent the vertical velocity field w at low (top, t ' 506τNL), middle

(center, t ' 520τNL) and high kurtosis Kw (bottom, t ' 502.5τNL), where values

|w/σw| > 4 are highlighted in solid color while smaller values are depicted as a trans-

parent blue. Aside each rendering the vertical profile of the kurtosis Kw computed

plane-by-plane with the original data (black), as well as with the reconstructed

(colored for the different CAEs) is shown. Also for the top panel, when the kurtosis
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Figure 6.8. Larger three-dimensional rendering is the orginial vertical velocity w fields

where values |w/σw > |4 are represented with solid colors while other points are in

transparency. The same for the reconstruction obtained with the four CAEs.

is small Kw ' 3.8 there are planes reaching values of Kw ≈ 6, and in general an

high level of variability is observed. These effects are enhanced when more vertical

drafts develop within the flow (center and bottom) with kurtosis more than one

order greater than the Gaussian reference values, as it shown in logarithmic scale in

Fig. 6.7.

6.2.2 Physical fields 3D reconstruction

We saw that the statistical properties, and in particular the kurtosis, of the

vertical velocity are well recovered by the developed CAEs. However we already

mentioned that the presence of large-scale extreme events represents a challenge

for their intermittency in time but also in space, creating patches of enhanced

turbulence where the flow may explore completely different regimes. In addition,

the low-dimensional representation of turbulent flows would represent a valuable

result if the reconstruction produces truthful physical fields with local features which

realistically resemble the quantities produced by the evolution of the governing

equations. Therefore in this last part of the results we analyze how the introduction

of large-scale terms to the loss function locally affect the reconstruction of the entire
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velocity field u as well as the potential temperature θ. In Fig. 6.8 we report a three-

dimensional visualization of the vertical velocity w obtained with the four CAEs, as

well as the original field for comparison. Data are taken at time t ' 520τNL, with

relatively high kurtosis Kw ≈ 6.8. Clear extreme vertical drafts, identified as values

with |w| > 4σw, have developed in the mid-bottom part of the domain. The same

kind of structures can be noted in cubes reconstructed with the CAEs up to the

maximum compression; only at CF = 16 their shape starts being more noisy. The

gray transparent shading, representing velocity values below the threshold of 4σw,

and therefore the majority of the volume, is consistent for the recovered data which

confirms the small values of MSE observed earlier. However, the reconstruction made

by the implemented CAEs involves also the other components of the velocity field

(u and v) as well as the (potential) temperature fluctuations θ. To have a general

overview of how the neural networks recover all the physical quantities interested in

the analyzed DNSs we represent them with several panels in Fig. 6.9. This figure

shows an horizontal cut (x,y) of the simulation domain taken at the same time of the

previous figure (Fig. 6.8 at the height z∗ indicated with a dash-dotted line in Fig. 6.7

(middle panel). The columns of Fig. 6.9 refer to the three components of the velocity

field u = (u, v, w) and the temperature θ. All the images are represented by the same

color bar which is not shown since the main objective of this figure is the comparison

between the first row, the original data, and the others, being the reconstructed

physical fields for increasing values of the compression factor. Since we are looking

the domain from top (gravity is a vector entering the page), it is correct to have

horizontal components strongly dominated by a nearly constant positive (red) for v

and negative (blue) for u mean wind; this is indeed the effect of vertically sheared

horizontal winds (VSHWs) which are ubiquitous in stratified flows. Nevertheless,

also the horizontal components of the velocity show small-scale perturbations where

extreme vertical drafts develop, as already seen throughout this manuscript. The

extreme events developed in this snapshot are clearly visible from the vertical velocity

and partially from the temperature renderings (third and forth columns in Fig. 6.9),

and the same detail is captured also by the field reconstructions. Indeed, as already

noticed for the three-dimensional visualization, the reconstruction is very reliable up
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to CF = 16 where a significant checkerboard effect starts developing everywhere in

the domain. This is probably due to the combined effect of the high compression

factor and of the statistical-informed loss function presenting large-scale statistical

constraints. In fact, by looking at the reconstructed fields after the first stage of

training (not shown here), we can observe the same artifact at high compression but

it is slightly reduced for the absence of other terms into the loss function.
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Figure 6.9. Horizontal 2D slice of the original physical fields under analysis: the three

velocity component (u, v, w) and the (potential) temperature θ. Other rows represent

the same fields reconstructed after the compression by a factor 2 (second line), 4 (third

line), 8 (forth line) and 16 (fifth line).
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Chapter 7

Conclusions and discussion

7.1 Conclusions

In this thesis we worked on implementing and further developing a well-established

data analysis tool, known as space-filtering (SF) or coarse-graining (CG) technique,

already employed for the analysis of neutral and conductive turbulent flows in a

variety of physical contexts, to characterize the dynamics of stratified flows. The

SF approach proved to be a valuable tool to provide information on the energy

distribution in both physical and spectral space, as testified by many results appeared

in the literature concerning the study of turbulent structures and instabilities in

geophysical [9, 59, 37] and astrophysical flows [40, 133, 132, 238, 237]. On of our

main contribution to this method is the extension to the use filter functions with a

generic shape, beyond the classical filtering kernel with isotropic support (i.e., G`(k)

with k =
√
k2
x + k2

y + k2
z). In particular, here we implemented the axisymmetric

(k⊥ =
√
k2
x + k2

y) and parallel (k‖ = |kz|) versions of the filtering approach which

are particularly helpful for the analysis of anisotropic turbulent systems, such as the

Earth’s atmosphere and oceans, where the effect of gravity and rotation determines

a dynamics which significantly differs in the parallel and perpendicular directions.

This framework has been validated against classical reduced energy fluxes [137, 1],

directly obtained from the transfer functions, showing an excellent agreement in

terms of the average spectral features recovered (e.g., inertial range, injection scale,

intensity of the transfer rate and others). The analysis performed in this theis and



7.1 Conclusions 121

their outcome can be summarized in four main points:

1. In stratified fluids large-scale intermittent events developing in the form of

sudden enhancement of the vertical component of the velocity (w) and of

the temperature (θ) do locally generate turbulence, determining enhanced

downscale energy transfer and dissipation. These events make stratified flows

as efficient as in homogeneous isotropic turbulence (HIT) flows Marino et al.

[139] in dissipating energy, whereas in general they would be less dissipative

due to the strong stratification. Our space-filtering analysis unrevealed that

the enhanced energy transfer observed in a certain parameters range, is mainly

due to the coupling between the small-scale Reynolds stress tensor T uu and

the large-scale strain tensor ∇ũ. We emphasized how, in presence of extreme

drafts, the mechanism involved in the energy transfer to small-scale structures

is through generation of vorticity and therefore the creation of strong gradients,

especially in the velocity field. Indeed, we observed that in the same range

of Froude numbers in which the kurtosis of the vertical velocity Kw peaks

(Fr ≈ 0.06− 0.1), the same happens to the kurtosis of some of the components

of the velocity gradient ∂iuj , pointing to the connection between large- and

small-scale intermittency.

2. What we found in our simulations, where no forcing is applied to the (potential)

temperature field, is that vertical drafts act as a mechanism to inject potential

energy through the buoyancy term, which couples velocity and temperature

fields in the Boussinesq model (see 2.2.2). All that results in a transfer of the

potential energy, in the perpendicular direction (in Fourier space, k⊥), towards

both large and small scales, all that occurring withing the turbulent inertial

range. Such coupling affects also the mixing properties of the flow, quantified

here in terms of buoyancy flux, also through the application of filters, Nθ̃w̃,

providing both local-in-space and local-in-scale information. Variations of the

local value of the buoyancy flux can be relevant for geophysical applications,

especially in global models, since the trends we observe concern a range of

Froude numbers close to that of the atmosphere and the oceans.
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3. Further exploring the interaction between large- and small-scale structures by

means of a model for the field gradients, we proposed a mechanism for the

generation of extreme vertical drafts based on buoyancy-driven instabilities.

The occurrence of the latter is somewhat related to the presence of vertical

shears, driving small-scale instabilities, such as Kelvin-Helmholtz instability

(KHI), at the interface between strata. Finally, the amplification of vertical

gradients through strain interaction and the development of overturning regions,

often identified in terms of Richardson number [72], results in extreme events

generating small-scale vortical motions with a mechanism which resembles what

happens in the atmosphere with baroclinic instabilities. Nowadays weather

and climate embed complex modeling through the parameterization of the

unresolved small scales, on which depends the capability of the model to

make predictions of the dynamical state of the system. Therefore, a deeper

understanding of the link between small-scale intermittency and large-scale

enhancement of vertical velocity and buoyancy is crucial to develop more

accurate sub-grid models, reproducing more phenomena, such as strong vertical

shear layers, vertical drafts and others.

4. As it is shown throughout the manuscript, vertical drafts provide a direct

contribution to the energy transfer in stratified flows. This behavior is pretty

consistent for different values of the Froude number in a range of geophysical

interest, Fr ≈ 0.04− 0.15, while the presence and intensity of extreme events

is modulated in the same interval. The capability of stratified flows to transfer

energy approximately in the same range of scale, with a mechanism mediated

by the vertical drafts, is something that should be taken into account in

modeling the energy transfer in geophysical flows.

In the last chapter of this manuscript we presented the preliminary results of

the implementation of machine learning (ML) methods for the low-dimensional

representation of the velocity and temperature fields in stratified turbulent flows,

with a particular focus on the reconstruction of the statistics up to the forth-order

moment, in direct numerical simulation. The main goal of this analysis is to develop a

tool combining ML algorithms with physical constraints to investigate the dynamics
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of these turbulent frameworks optimizing the use of both numerical simulations and

experimental data. Indeed, as we explain in the text, the possibility to extract richer

information as well as of performing accurate predictions of the dynamical state

of these systems, from sparse and/or heterogeneous data, is crucial in a variety of

contexts such as the weather forecasting, space weather and climatology.

There is a broad range of turbulent systems, from geophysical fluids to space

plasmas, with varying characteristic parameters, some involving additional physical

processes and phenomena, to which the approaches and tools presented here could

be successfully applied, extending the results obtained in this thesis. Some of them

would require running direct numerical simulation at higher resolution, allowing

for a more comprehensive analysis of the behavior of large-scale intermittency at

higher Reynolds number, and therefore a larger buoyancy Reynolds RB = ReFr2,

characteristic of the troposphere, for instance. Other parameters which would be

worth investigating, which are relevant to the emergence of vertical drafts, are of

course the forcing and the aspect ratio in the simulations domain. Among the

physical processes to consider, there is certainly rotation, important to describe the

dynamics of the Earths’ atmosphere at large scale and of the oceans. As a reference,

considering Ω ≈ 10−4s−1 as the Earths’ rotation frequency at mid latitudes, the

ratio of rotation-over-stratification (N/f , where f = 2Ω) is 10 in the ocean, and

more than one order of magnitude larger in the atmosphere ( 100). That means

rotation at small Rossby numbers (with Ro = Urms/[fLint]) can play a role in the

development of large-scale and small-scale intermittency. However, considering extra

term in the equations would come with additional computational cost since, in the

presence of forcing, both a direct and inverse cascade of energy develops for small

Ro, and thus it may be necessary to introduce a large-scale friction mechanism to

prevent the pile-up of energy at those scales, especially for long integration times as

in Feraco et al. [72], Marino et al. [139] or using much larger grids. The framework

we developed can be applied to study a variety of intermittent phenomena, transients

and non-homogeneous turbulent flows, having potentially a vast range of applications,

involving the analysis of observational and laboratory data, which did not concern

this thesis. For instance, we mentioned that the SF could be use to elucidate the
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dynamics of the extreme events robserved in the mesosphere-lower-termosphere

(MLT) [49], as well as that of switchbacks in the heliospheric plasma [205] and the

magnetic reconnection processes developing in the Earths’ magnetosphere [132].
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Appendix A

Space-Filter analysis of

reconnection events in 2D3V

hybrid Vlasov-Maxwell

simulation

We show the versatility of the space-filtering (SF) approach to 2D3V (2 dimen-

sions, 3 vector components) plasma simulations at kinetic scales to understand the

characteristics of the processes allowing the energy cascade from large (or injection)

to small (or dissipation) scales in space plasma. Turbulence in those systems is

non-collisional, multi-scale and multi-physics, being able to explore a large variety

of physical regimes at different scales, and therefore it is significantly different

from what observed in neutral fluids and fusion plasma, for example. Particularly

relevant for space plasma turbulence is the formation of local-in-space coherent

structures, such as current sheets and magnetic islands, showing enhanced small-

scale features confirmed with both observations and simulations [e.g., 194, 91, 111,

166, 206, 229, 240, 48, 144, 13, 77, 171, 176, 177, 212, 221, 92, 38, 197, 12, 223].

In particular, an increasing attention has been focused on the scale smaller than

the ion cyclotron radius ρi = vTi/Ωci, being vTi and Ωci the ion thermal speed and

cyclotron frequency, respectively, also identified from phenomena faster than the
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ion cyclotron period 1/Ωci, usually called kinetic scales. Indeed in the past decade,

the study of this range has been possible thanks to increasingly accurate in-situ

measurements [4, 192, 51, 33, 50, 224], but also with direct numerical simulation

with particle-in-cell (PIC) [44, 79] and (hybrid) Vlasov-Maxwell, (H)VM [131, 211],

codes being able to simultaneously solve both the MHD and kinetic regime at the

cost of a huge computational impact in terms of memory and time. The commonly

adopted idea of full turbulent cascade in space plasmas is that quasi-2D Aflvènic

modes feed the energy transfer in the MHD regime [143, 18] whereas range dispersive

fluctuations dominate at the ion kinetic range [199, 84, 54, 96, 193, 23, 24]. However,

at sub-ion scales the role of current sheets and of magnetic reconnection producing

non-linear interactions local in the physical space needs to be taken into account

in this picture. In this context, the effect of the aforementioned structures and in

particular the disruption of current sheets due to magnetic reconnection, as possible

mechanism mediating the energy transfer in plasma turbulence as well as heating,

accelerating particles and creating sub-ion instabilities, has been extensively stud-

ied [43, 22, 123, 129, 130, 45, 78, 40, 55, 65, 215, 170, 133, 132]. As we widely showed

in this manuscript, an effective approach in order to observe the effect of particular

physical mechanisms simultaneously in the physical and spectral space is provided by

the space-filtering (SF) technique. Despite the large use for neutral fluid turbulence,

the SF has not received the same attention in the plasma physics community, with a

few exceptions in recent years [e.g., 236, 40, 68, 109]. In particular, in the context of

2D3V PIC simulations, Yang et al. [236] found, using the SF approach, a qualitative

correspondence between the coherent structures and spatial location of enhanced

energy transfer. In the present work we exploit the space-filtered equations provided

in Cerri and Camporeale [46], representing a finer description than the original

application to the MHD and Hall-MHD plasmas [e.g., 133] but coarser than the

six-dimensional phase-space kinetic description [68]. The SF technique is applied to a

hybrid-kinetic simulation where the Vlasov equation for the ion distribution function

is coupled to a neutral fluid responsive to a generalized Ohm’s law and representing

mass-less electrons. On one hand, the hybrid Vlasov-Maxwell (HVM) represents an

acceptable trade-off between partially interpreting the effects due to the electron-ion
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coupling and the complexity and computational impact of the various terms arising

from the filtering operation. A qualitative picture of the energy transfer at sub-ion

scales on the same HVM plasma simulation was originally proposed in Franci et al.

[78] (see their Fig 4), while in Cerri and Califano [45] the authors partially correlate

the presence of magnetic reconnection and the enhancement of small-scale turbulence.

In the following analysis we will show how the occurrence and intensity of magnetic

reconnection events: (i) triggers an enhanced total energy transfer across ion scales,

and (ii) drives simultaneously a direct (to smaller scale) and inverse (to larger scale)

energy transfer developing within the sub-ion range.
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The properties of energy transfer in the kinetic range of plasma turbulence have

fundamental implications on the turbulent heating of space and astrophysical plas-

mas. It was recently proposed that magnetic reconnection may be responsible for

driving the sub-ion scale cascade, and that this process would be characterized by

a direct energy transfer towards even smaller scales (until dissipation), and a simul-

taneous inverse transfer of energy towards larger scales, until the ion break. Here

we employ the space-filter technique on high-resolution 2D3V hybrid-Vlasov simu-

lations of continuously driven turbulence providing for the first time quantitative

evidence that magnetic reconnection is indeed able to trigger a dual energy transfer

originating at sub-ion scales.

Introduction.—Kinetic-scale plasma tur-
bulence is a topic that has seen a surge of
interest in the past decade, since increas-
ingly accurate in-situ measurements in such
range have become available[1–6]. In this
context, a transition between magnetohydro-
dynamic and kinetic regimes occurs when the
turbulent energy reaches ion scales as a re-
sult of a forward cascade process. An ex-
tensive numerical campaign has been recently
performed in order to better understand the
properties of turbulence and plasma heat-
ing across and below the so-called ion break,
targeting the interplanetary medium[7–21].
Based on these recent simulation results, it
has been speculated that magnetic reconnec-
tion might be at the origin of the observed
ion-break formation driving the subsequent
sub-ion scale cascade[22, 23]. Such conjec-
ture has been supported both by theoreti-
cal arguments[24–27] and, at least partially,

by solar-wind observations[28]. Since then,
tearing-mediated turbulence has been the sub-
ject of thorough numerical investigations[29–
34]. Yet, the features of the energy trans-
fer across and below the ion scales, in a
tearing-mediated scenario, remains rather
unexplored. As we show in this letter, an ef-
fective approach in order to tackle potentially
relevant physical mechanisms is provided by
the so-called space-filter technique, originally
developed in the context of hydrodynamics to
perform ‘large-eddy simulations’[35, 36], and
later on adopted as an investigative tool in
plasma turbulence[37–47].

A qualitative picture of the energy transfer
in the kinetic range for the tearing-mediated
regime was originally proposed in [23] (see
their Fig.4). In that work, the interaction be-
tween large-scale vortices feeding the forma-
tion of strong current sheets at their bound-
aries, quickly destroyed by the plasmoid in-
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stability, was interpreted as a non-local trans-
fer of energy from the large scales (of the
vortices) directly to sub-ion scales (of the
order of the thickness of the reconnecting
layer). Moreover, the continuous formation
of small-scale magnetic islands (plasmoids)
and their subsequent merging to form struc-
tures at increasingly large scales, was inter-
preted as a dual transfer of energy: a direct
transfer of reconnection-induced fluctuations
towards smaller scales until dissipation, and
a simultaneous inverse transfer towards the
ion break due to the plasmoid growth by is-
land coalescence. This picture has remained
a cartoon until now.

In this Letter, 2D3V hybrid-kinetic sim-
ulations of continuously driven turbulence
are analyzed through the implementation of
space-filter technique, which allows to inves-
tigate the (local and non-local) energy trans-
fer through scales as a function of spatial lo-
cation and time. We will show how the oc-
currence of magnetic reconnection: (i) trig-
gers a consistent energy transfer across ion
scales, and (ii) drives a dual (inverse and di-
rect) transfer developing within the sub-ion
range.

Method.—We analyze the 2D3V hybrid-
Vlasov-Maxwell (HVM) simulation of contin-
uously driven turbulence in a βi = βe = 1
plasma presented in Ref.[22]. The HVM
model evolves fully kinetic ions, solving the
Vlasov equation for their distribution func-
tion fi(x,v, t), and fluid electrons through a
generalized Ohm’s law in the quasi-neutral
approximation ni = ne

.
= n (displacement

current in the Ampére’s law is neglected).
The simulation employs 10242 grid points in
real space, spanning a wavenumber range (in
ion inertial length units di) 0.1 ≤ kdi ≤ 51.2,
where k = k⊥ = (k2

x + k2
y)

1/2. The exter-
nal forcing in the Vlasov equation continu-
ously injects ion-momentum fluctuations in
the range 0.1 ≤ kextdi ≤ 0.2; small-amplitude
magnetic-field perturbations δB in the range
0.1 ≤ kδB di ≤ 0.3 are also initialized at t =
0. Results from this HVM simulation were

used to first conjecture about the existence
of a sub-ion-scale tearing-mediated range[22];
they were later accompanied by the hybrid-
PIC simulation of Ref.[7] to confirm such
conjecture[23]. Despite fluctuations’ proper-
ties have been thoroughly analyzed[48], a de-
tailed analysis of the turbulent energy trans-
fer based on this high-resolution numerical
simulation had to await the development of
proper space-filter formalism and diagnostics
for hybrid-kinetic models[43].

In the following, a filtered vector field

Ṽ (x, t) denotes the convolution of V (x, t)

with a filter φ, i.e., Ṽ (x, t)
.
=
∫
Ω
φ(x −

ξ)V (x, t)dξ over the domain Ω. Here, we
adopt the low-pass Butterworth filter, which
in Fourier space reads φk = 1/[1 + (k/k∗)8]
with k∗ (∼ ℓ−1

∗ ) being the characteristic filter-
ing wavenumber (scale). The Favre filter of

V is V̂
.
= ϱ̃V /ϱ̃, where ϱ is the mass density.

Filtered equations for the energy channels in
general quasi-neutral hybrid-kinetic models
are presented in Ref. [43]. When dissipa-
tion and external injection can be neglected
in the HVM model with massless, isothermal
electrons, these equations read

∂⟨Êui
⟩

∂t
= ⟨Φ̂ui,B⟩ + ⟨Φ̂ui,Πi

⟩ − ⟨Sui
⟩ , (1)

∂⟨ÊΠi
⟩

∂t
= − ⟨Φ̂ui,Πi

⟩ − ⟨SΠi
⟩ , (2)

∂⟨ÊB⟩
∂t

= ⟨Îe⟩ − ⟨Φ̂ui,B⟩ − ⟨SB⟩ , (3)

where ⟨. . . ⟩ denotes a spatial average, Êui
=

1
2
ϱ̃|ûi|2, ÊΠi

= 1
2
tr[Π̂i], and ÊB = |B̂|2/8π

are the ion-kinetic, ion-thermal, and mag-
netic energy densities at scales ℓ ≥ ℓ∗, re-
spectively (Πi is the ion-pressure tensor and
ui is the ion-bulk flow, both obtained as v-
space moments of fi). The injection-like term

Îe
.
= P̃e(∇ · ûe) involving scales ℓ ≥ ℓ∗

is due to the isothermal-electron condition
Pe = nT0,e. The terms Φ̂ui,B

.
= ĵ i · Ê (where

ĵ i = eñûi) and Φ̂ui,Πi

.
= Π̃i : ∇ûi repre-

sent energy exchange (i.e., conversion) be-
tween different channels (occurring at scales
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ℓ ≥ ℓ∗). Finally, the source/sink terms rep-
resenting the (local and non-local) energy
transfer between large (k < k∗) and small
(k > k∗) scales through the filtering scale
k∗ ∼ ℓ−1

∗ are

Sui

.
= ĵ i · ϵ∗MHD − T (i)

uu : ∇ûi , (4)

SΠi

.
= T (i)

Π∇u , (5)

SB
.
= ĵe · (ϵ∗MHD + ϵ∗Hall) + j∗ · Ê , (6)

where ĵe = −eñûe = J̃ − eñûi (with J̃ =
c
4π
∇× B̃), and we have introduced the “tur-

bulent” electric fields and current density at

scales ℓ < ℓ∗, ϵ∗MHD = −T (i)
u×B, ϵ∗Hall =

−T J×B, and j∗ = T (i)
nu − T (e)

nu = Ĵ − J̃ .
The sign convention is such that S > 0 de-
notes direct energy transfer from large to
small scales, while S < 0 means inverse trans-
fer from small to large scales. The “sub-
grid” terms T associated to nonlinearities are

given by T (i)
uu

.
= ϱ̃(ûiui − ûiûi), T (i)

u×B
.
=

1
c
(ui ×B
∧

− ûi × B̂), T (i)
Π∇u

.
= Πi,jk∂kui,j

∧

−
Π̃i,jk∂kûi,j, T J×B

.
= mi

ec
1
ϱ̃
( J × B̃ − J̃ × B̃),

and T (α)
nu

.
= n̂uα − ñûα. The correspond-

ing equation for the (filtered) total energy

Ê = Êui
+ ÊΠi

+ ÊB is ∂t⟨Ê⟩ = ⟨Îe⟩ − ⟨Stot⟩,
where Stot = Sui

+SΠi
+SB. In the following,

we focus our analysis on the terms S, repre-
senting the actual transfer through scales.

Results.—The simulation exhibits two
noteworthy times (in inverse ion-cyclotron
frequency units Ω−1

c,i ): the time of first re-
connection events trec ≈ 135, and the time
marking the transition to quasi-steady tur-
bulence tqst ≈ 200 [23]). Here we analyze
the same three times belonging to the stages
separated by the above-mentioned times, i.e.,
t ≃ 120, ≃ 150, and ≃ 228.

Fig.1 shows contours of the out-of-plane
current density normalized to its standard de-
viation Jz/σJz (first column) at the above-
mentioned times (top to bottom row, re-
spectively), alongside contours of the total-
energy transfer Stot/σStot (also normalized by
its standard deviation) through three repre-
sentative wavenumbers k⊥di = 1.5, = 5.5,

and = 13 (second, third and fourth column,
respectively). Although the normalization of
Stot in Fig.1 prevents a quantitative analy-
sis of how much energy is transferred during
these three different stages, it allows to high-
light some key qualitative features. First,
as k increases, the energy transfer becomes
significantly less volume filling and simulta-
neously more localized within strong current
structures and magnetic islands[41, 42]. Sec-
ond, we can observe that while at kdi ∼ 1 and
kdi ∼ 10 the contribution to Stot is mainly
positive (yellow-red colors), meaning direct
transfer of total energy from the large to the
small scales, at kdi ∼ 5 the total transfer is
dominated by negative values (cyan-blue col-
ors), which instead denotes an inverse energy
flux from small to large scales.

In order to quantitatively assess the prop-
erties of energy transfer as a function of the
scale, in what follows we focus on volume-
averaged (i.e., global) quantities. This is
shown in Fig.2, where we plot the total-
energy transfer and its components, i.e.,
⟨Stot⟩, ⟨SB⟩, ⟨Sui

⟩, and ⟨SΠi
⟩ versus kdi (top

to bottom panel, respectively), at t ≃ 120,
≃ 150, and ≃ 228 (dotted, dashed and solid
line, respectively). First of all, we note that
the transfer Stot at t ≃ 120 (i.e., before
the first reconnection events occur) is neg-
ligible with respect to the energy transfer oc-
curring at later times (i.e., when magnetic-
reconnection events continuously destroy the
forming current sheets). This feature also
holds for each energy channel separately and
supports the interpretation of magnetic re-
connection as the process that allows to
achieve a fully developed turbulent state[22].
After the first reconnection events occur,
there is a transitional stage (at t ≃ 150) over
which the transfer of total energy ⟨Stot⟩ has
significantly increased. This stage is overall
characterized by forward flux at MHD scales
(⟨Stot⟩ ≈ const. > 0 for kdi ≲ 0.8) and by
initial indications of a bi-directional transfer
of the total energy at sub-ion scales. More
precisely: a direct transfer (⟨Stot⟩ > 0) at
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FIG. 1. Contours of the out-of-plane current density normalized to its standard deviation Jz/σJz
(first column) at times t ≃ 120, ≃ 150, and ≃ 228 (top to bottom row, respectively). Second, third,

and fourth columns show contours of the normalized total energy transfer Stot/σStot through three

representative wavenumbers k⊥di = 1.5, 5.5, and 13, respectively. The dashed box in contour of

Stot/σStot at t ≃ 228 (bottom row, third panel from the left) denotes the zoom analyzed in Fig.3.

kdi ≳ 7 and an inverse transfer (⟨Stot⟩ < 0)
in the range 4 ≲ kdi ≲ 7. In the quasi-steady
state (t > 200) these ranges slightly adjust,
settling down to a fully developed dual trans-
fer, featuring an inverse flux at 3 ≲ kdi ≲ 9
and a direct flux at kdi ≳ 9. Around ion
scales (0.8 ≲ kdi ≲ 3), the total-energy trans-
fer also exhibits a peak. This feature is as-
sociated to significant conversion of ion-bulk

energy Êui
into ion-internal energy ÊΠi

that is
driven by the large-scale pressure-strain in-

teraction Φ̂ui,Πi
= Π̃i : ∇ûi term (which

has a bump at those scales; not shown) and
boosts the transfer within the latter chan-
nel (mediated by the pressure-strain sub-grid

nonlinearity SΠi
= T (i)

Π∇u; Fig.2d). This pic-
ture supports the idea that turbulent ion
heating occurs mostly around k⊥ρi ∼ 1 and
within the first few sub-ion scales[see, e.g.,

49, 50]. By looking at the different energy
channels separately, one can notice a few in-
teresting features. First, the actual transfer
of magnetic energy ⟨SB⟩ is about two orders
of magnitude smaller than the correspond-
ing transfer of ion-bulk and ion-internal en-
ergy. A detailed inspection of the terms con-
tributing to ⟨SB⟩ shows that this is domi-
nated by the turbulent Hall electric field ϵ∗Hall,
while the turbulent current density j∗ is al-
ways negligible (i.e., in our simulation the or-

dering |j∗ · Ê| ≪ |ĵe · ϵ∗MHD| ≲ |ĵe · ϵ∗Hall|
always holds; not shown). The magnetic-
energy channel is also showing only an in-
verse transfer of energy during the transi-
tion stage at t ≃ 150 (Fig.2b, dashed line),
whereas in the quasi-steady state it exhibits
only one sign inversion of the flux, with a
direct transfer at kdi ≳ 3 and an inverse
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FIG. 2. Box-averaged turbulent energy transfer

through scales at t ≃ 120 (dotted line), t ≃ 150

(dashed line), and t ≃ 228 (solid line). From top

to bottom: total energy ⟨Stot⟩, magnetic energy

⟨SB⟩, ion-bulk energy ⟨Sui⟩, and ion-internal en-

ergy ⟨SΠi⟩, versus kdi.

transfer at kdi ≲ 3, i.e., no direct cascade
of magnetic energy is observed at large scales
(Fig.2b, solid line). We attribute the direct
transfer of magnetic energy towards smaller
scales to the breakup of large-scale current
structures by reconnection, while the neg-
ative flux of magnetic energy is likely due
to the growth of magnetic-islands by coales-
cence. The absence of a MHD-range direct
cascade of magnetic energy may be due to
the limited range of fluid scales of the sim-
ulation and/or to the fact that the external
forcing only injects ion-bulk energy. Another
interesting feature is that the dual transfer
of total energy at sub-ion scales seems to be
driven by the ion-bulk-energy channel, i.e.,
by ⟨Sui

⟩ (Fig.2c). The only non-negligible
contribution to such transfer is represented
by the interaction between the “sub-grid”
Reynolds stress tensor T (i)

uu and the large-

scale strain tensor Σ̂
.
= ∇ûi, i.e., ⟨Sui

⟩ ≈
⟨T (i)

uu : ∇ûi⟩ (not shown). Here we specu-
late that the emergence of an inverse trans-
fer of ion-bulk energy from the above in-
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FIG. 3. Top panels: contour plots of Jz/σJz (left

panel) and of Stot/σStot computed at kdi = 5.5

(right panel) in a sub-region of the simulation

domain (dashed box in Fig.1). Bottom plot:

total-energy transfer Stot averaged over subdo-

main I (black), over subdomain II (red), and

over the whole simulation box (grey). Solid line

means direct transfer (Stot > 0), while dashed

line denotes inverse transfer (Stot < 0).

teraction might be the manifestation of the
ion jets generated by “ion-coupled” magnetic
reconnection[22] (as opposed to “electron-
only” reconnection[51, 52]).

In order to show that the dual energy
transfer is associated to reconnection events
and actual magnetic-islands dynamics, we ex-
ploit the fact that Stot is defined in configura-
tion space. We thus monitor the behavior of
density current and flux terms in a sub-region
of the entire simulation plane in the quasi-
steady state, at t ≃ 228 (dashed box in Fig.1,
bottom row, third column). The top pan-
els of Fig.3 show the zoomed contour plots
of Jz/σJz (left panel) and of Stot/σStot com-
puted at kdi = 5.5 (right panel). This sub-
region is then further divided into two subdo-
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mains, “I” and “II”, of equal size (Fig.3, top
left panel), to ensure statistical consistency.
The upper subdomain I does not have sig-
nificant reconnection sites and/or plasmoids,
whereas the lower subdomain II includes one
of the largest structure present in the simu-
lation, showing a streak of reconnection sites
and grown/merged magnetic islands. In the
bottom panel of Fig.3 we then report the
total-energy transfer Stot averaged over sub-
domain I (black) and subdomain II (red) sep-
arately, and over the whole simulation box
(grey). Solid lines are used to denote di-
rect transfer (Stot > 0), while dashed lines
denote inverse transfer (Stot < 0). It is re-
markable how, when averaged over subdo-
main I (Fig.3, black curve), the transfer of
total energy would emerge only as a direct
transfer at any k. On the contrary, when
we consider subdomain II (Fig.3, red curve),
the dual transfer at sub-ion scales clearly
emerges and is similar to the one obtained
from the global picture (Fig.3, grey curve),
suggesting a dominance of the points com-
ing from subdomain II in the overall statis-
tics. Moreover, the transfer rate is clearly
larger in subdomain II than in subdomain I,
and thus represents the major contribution
to the global energy transfer. An analogous
result holds if the average of the total trans-
fer Stot is conditioned over different intervals
of |Jz/σJz | (not shown). This study clearly
demonstrate, within the constraints of the
high-resolution run analyzed, that the dual
transfer observed globally is indeed an inter-
mittent feature associated to local dynamics
driven by patches of magnetic reconnection,
that make the plasma non-homogeneous.

Conclusions.— Exploiting the space-filter
techniques, we have shown for the first time,
that magnetic reconnection and the conse-
quent island dynamics is associated with (i)
the enhancement of the energy transfer across
the scales, the onset of a quasi-steady turbu-
lent state, and (ii) the emergence of a dual
(direct and inverse) transfer of energy origi-
nating from sub-ion scales. Once such quasi-

steady state is attained, the observed bidi-
rectional energy flux is globally characterized
by a direct transfer towards smaller scales at
k⊥di ≳ 9 and a simultaneous inverse trans-
fer in the range 3 ≲ k⊥di ≲ 9. Although in
our simulations the magnetic-energy channel
exhibits as well a dual transfer (which is dom-
inated by the interaction between the large-
scale electron-current density and the “tur-

bulent” Hall electric field ĵe · ϵ∗Hall), its con-
tribution to the total-energy transfer is neg-
ligible with respect to the one coming from
the ion-bulk and ion-internal channels. The
sub-ion-scale dual transfer of total energy
that emerges globally is driven by the ion-
bulk-energy channel, which is dominated by
the interaction between the large-scale strain
tensor and the “turbulent” Reynolds stress
T (i)

uu : ∇ûi (and is likely a consequence of ion
jets triggered by “ion-coupled” magnetic re-
connection). The MHD-scale direct cascade
is driven by the ion-internal-energy chan-
nel, which is dominated by the “turbulent”

pressure-strain interaction T (i)
Π∇u (and shows

signatures of ion turbulent heating across a
limited range of scales around k⊥di ∼ 1).

The existence of a simultaneous direct and
inverse transfer at sub-ion scales driven by
magnetic reconnection may have fundamen-
tal implications on our understanding of tur-
bulent ion heating in the solar wind, espe-
cially in the context of the so-called “helicity
barrier”[20, 21, 53, 54]. Moreover, the fact
that this sub-ion-scale dual transfer seems
to require “ion-coupled” magnetic reconnec-
tion (in order to form ion outflows) can feed
back significantly on the species’ turbulent
heating in the presence of “electron-only”
reconnection[51, 52] and, thus, on the heating
of the Earth’s magnetosheath[55, 56].
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Appendix B

Deep-FLRID: Machine Learning

Algorithms for Automated Field

Line Resonance Identification

The near-Earth environment is composed of different plasma populations that

cover an energy range of several orders of magnitude. The plasmasphere is the

innermost layer of the Earth’s magnetosphere and it is composed of dense cold

plasma (∼ 1eV ), and it typically extends from the top of the ionosphere up to 4–6

Earth radii (RE). Because of its preponderant contribution to the mass density

in the magnetosphere, it plays a crucial role in exciting plasma-waves and driving

their interaction with energetic particles [117, 207]. This makes the plasmasphere

central in the space weather context, and therefore the real-time monitoring of

the cold plasma in the inner magnetosphere would be an essential task to achieve.

Several systems and tools have been developed, in particular, for monitoring the

plasmaspheric mass density using ground-based magnetometers measurements, and

all of them are based on the gradient method proposed by Baransky et al. [16]

and further developed by Waters et al. [226]. This represents the most adopted

and reliable technique to estimate the Field Line Resonance (FLR) frequency of

magnetic field lines, based on the Fourier cross-spectral analysis of the magnetic

signal recorded by two stations slightly separated in latitude. In this configuration,



140

it is possible to estimate the resonance frequency of the field line whose footprint

is halfway between the stations. Indeed, around the FLR frequency and its higher

harmonics the cross-phase presents a maximum and the amplitude ratio crosses one

with a positive slope. One or both these characteristics can be used to identify FLR

frequencies which, in turn, depend on the magnetic field strength and plasma mass

density distribution along the field line. The importance of the FLR frequencies is

that it allows, by making assumptions on the magnetic field topology and the field

line plasma distribution, to solve the governing wave equation [196], providing an

estimate of the plasma mass density in the equatorial crossing point of the field line.

Based on the gradient method, several authors in the past developed algorithms to

automatically detect FLRs based on the cross-phase and/or cross-amplitude or both.

In these works, either statistical or morphological properties of the cross-spectra

were used to individuate the resonance peaks. Berube et al. [17] and Chi et al.

[53] used very similar statistical arguments to select eigenfrequencies based both

on the phase difference and amplitude ratio, employing a t-statistic test to detect

the peak associated with the most significant eigenfrequencies. In Lichtenberger

et al. [115], the authors combine several features of the cross-spectra, such as the

location of the inflection point in the amplitude ratio, the amplitude ratio at the

inflection point, the magnitude of the phase difference, and others that all help to

identify the FLR and to estimate the uncertainty in the detected frequency. Many

of these procedures exploit the ultra-low frequency wave data measured by the

magnetometer stations developed inside the PLASMON FP7 European project [115]

during which the European quasi-Meridional Magnetometer Array (EMMA) was

established (see Del Corpo et al. [61] and reference therein for more specifications

on the EMMA network). EMMA consists of 27 ground-based magnetic stations

approximately located along the same magnetic meridian and mapping into magnetic

L-shells in the range 1.6–6.1, where L is the McIlwain parameter evaluated using

the IGRF, providing a real-time monitoring of the plasmasphere dynamics. Using

ULF signals simultaneously observed by pairs of stations it is possible to infer the

radial distribution of the equatorial plasma mass density in the longitudinal sector

identified by the network [61, 115].
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Del Corpo et al. [61] created a data set of validated fundamental frequencies employ-

ing a semi-automated algorithm which require in the final steps the intervention of

a trained user to select the best FLR. They used the TS05 model [208] to represent

the geomagnetic field lines and assumed a power-law dependence of the plasma mass

density along them. The validation procedure, manually performed, takes care of

possible failures of the automated part. Indeed, the gradient technique presents

critical situations which may yield to a difficult identification of resonances. The first

issue concerns the computation of Fourier cross-spectra; according to the latitude of

the pair of stations, to the separation between them and other factors, also dependent

on the geomagnetic conditions, the cross-spectra need to be computed with proper

parameters in order to maximize the information within them. The other major

critical situations concerns the detection of FLR frequencies at high latitudes. They

can be very close to the spectral resolution, so the fundamental harmonic could be

hard to detect, especially during prolonged quiet period, when the FLR frequency

usually decreases. In this case higher harmonics could be accidentally picked up by

a fully automated procedure [61]. Other issues can emerge when a pair is sounding

the region near the PBL where the selected FLR frequency can be mismatched or

can even disappear [80, 146, 147].

In the last thirty years, the increasing amount and quality of both space- and ground-

based data has allowed an exponential development of data-driven technique, such as

machine learning, deep learning and artificial intelligence. These approaches became

one of the most powerful tool for understanding the dynamics of complex systems

involving several degrees of freedom and multiple non-linear interactions, especially

in the space weather context. Nowadays machine learning methods are adopted

for the most varied space weather applications [see 39, for a review], ranging from

algorithms for event identification, such as solar image classification [11], near-Earth

plasma regions classification [31] and the classification of periods with ultra-low

frequecy (ULF) waves activity [15]; to methods for revealing causality between high

dimensional data sets and specific events, see Wing et al. [228] and Heidrich-Meisner

and Wimmer-Schweingruber [93], and forecasting algorithms, widely used for predict-

ing solar flares [142], the arrival time of coronal mass ejections [121] and the behavior
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of various geomagnetic indices [47]; and even algorithms for modeling non-linear

relationships which try to reveal the physical action of the system starting from first

principles [28].

In this work, by employing multiple supervised Machine Learning (ML) algorithms,

we develop a completely automated procedure for the identification of FLR fre-

quencies using ground-based measurements from the EMMA network. At first, we

tested several ML regression algorithms to find the optimal in the estimation of

FLR frequencies starting from 1D cross-phase spectra. The implemented method

needs to be combined with an additional step, based on classification algorithms,

for the discrimination of quiet and active periods, being the presence of FLRs not

a continuous phenomenon. Machine Learning methods proved to be sometimes

more accurate, but certainly more efficient than other methods, in automating the

recognition and estimation of FLR frequency in the Earths’ plasmasphere using ULF

magnetometer measurements.



1. Introduction
The near-Earth environment is composed of different plasma populations that cover an energy range of several 
orders of magnitude. The plasmasphere is the coldest one (∼1 eV) and typically extends from the top of the 
ionosphere up to 4–6 Earth radii (RE). Its shape, composition and extension change in response to geomagnetic 
activity variation and, due to its preponderant contribution to the mass density, plays a crucial role in excit-
ing plasma-waves and driving their interaction with more energetic particles (Liemohn, 2006; Thorne, 2010). 
During major storms the outer boundary, the plasmapause, also defined as the plasmasphere boundary layer 
(PBL, Carpenter & Lemaire, 2004), can move earthward as near as 1.5–2 RE, and the recovery to the pre-storm 
conditions can last for several days.

For its central role in the space weather context, a real-time monitoring of the cold plasma in the inner magneto-
sphere would be an essential task to achieve. A prototype of such system was developed inside the PLASMON 
FP7 European project (Lichtenberger et al., 2013) during which the European quasi-Meridional Magnetometer 
Array (EMMA) was established. EMMA provides a unique opportunity to monitor the plasmasphere dynamics in 
near real-time. It consists of 27 ground-based magnetic stations approximately located along the same magnetic 
meridian and mapping into magnetic L-shells in the range 1.6–6.1, where L is the McIlwain parameter evaluated 
using the IGRF. Using Ultra Low Frequency (ULF) signals simultaneously observed by pairs of stations it is 
possible to infer the radial distribution of the equatorial plasma mass density in the longitudinal sector identified 
by the network (Del Corpo et al., 2019; Lichtenberger et al., 2013).

The core of this monitoring system is the gradient method proposed by Baransky et al. (1985) and further devel-
oped by Waters et  al.  (1991): By performing Fourier cross-spectral analysis of the magnetic signal recorded 
by two stations slightly separated in latitude, it is possible to estimate the resonance frequency of the field line 
whose footprint is halfway between the stations. Around the field line resonance (FLR) frequency and its higher 
harmonics the cross-phase presents a maximum and the amplitude ratio crosses one with a positive slope. One or 
both these characteristics can be used to identify FLR frequencies which, in turn, depend on the magnetic field 
strength and plasma mass density distribution along the field line. By making assumptions on the magnetic field 

Abstract Monitoring the plasmasphere is an important task to achieve in the Space Weather context. 
A consolidated technique consists of remotely inferring the equatorial plasma mass density in the inner 
magnetosphere using Field Line Resonance (FLR) frequencies estimates. FLR frequencies can be obtained via 
cross-phase analysis of magnetic signals recorded from pairs of latitude separated stations. In the last years, 
machine learning (ML) has been successfully applied in Space Weather, but this is the first attempt to estimate 
FLR frequencies with these techniques. We survey several supervised ML algorithms for identifying FLR 
frequencies by using measurements of the European quasi-Meridional Magnetometer Array. Our algorithms 
take as input the 2-hour cross-phase spectra of magnetic signals and return the FLR frequency as output; we 
evaluate the algorithm performance on four different station pairs from L = 2.4 to L = 5.5. Results show that 
tree-based algorithms are robust and accurate models to achieve this goal. Their performance slightly decreases 
with increasing latitude and tend to deteriorate during nighttime. The estimation error does not seem to depend 
on the geomagnetic activity, although at high latitudes the error increases during highly disturbed geomagnetic 
conditions such as the main phase of a storm. Our approach may represent a prominent space weather tool 
included into an automatic monitoring system of the plasmasphere. This work represents only a preliminary 
step in this direction; the application of this technique on a more extensive data set and on more pairs of stations 
is straightforward and necessary to create more robust and accurate models.
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topology and the field line plasma distribution, the governing wave equation (Singer et al., 1981) can be numer-
ically solved, providing an estimate of the plasma mass density in the equatorial crossing point of the field line.

Using EMMA observations, Del Corpo et al. (2019) created a data set of validated frequencies considering only 
the fundamental harmonic and employing a semi-automated algorithm which performs the above procedure. 
They used the TS05 model (Tsyganenko & Sitnov, 2005) to represent the geomagnetic field lines and assumed a 
power-law dependence of the plasma mass density along them. The validation procedure takes care of possible 
failures of the automated part. One of the most critical situations concerns the detection of FLR frequencies at 
high latitudes. They can be very close to the spectral resolution, so the fundamental harmonic could be hard 
to detect, especially during prolonged quiet period, when the FLR frequency usually decreases. In this case 
higher harmonics could be accidentally picked up by a fully automated procedure (Del Corpo et al., 2019). Other 
issues can emerge when a pair is sounding the region near the PBL where the selected FLR frequency can be 
mismatched or can even disappear (Fraser et al., 2005; Menk et al., 2004; Milling et al., 2001).

Based on the gradient method, mentioned above, a few authors in the past developed algorithms to automatically 
detect FLRs (Berube et al., 2003; Chi et al., 2013; Lichtenberger et al., 2013; Wharton et al., 2018). In these 
works, either statistical or morphological properties of the cross-phase spectra were used to individuate the reso-
nance peaks. In this study, we propose an alternative approach based on machine learning methods, using the 
cross-phase spectra by Del Corpo et al. (2019) as input data and their data set of validated frequencies to train 
the algorithms.

Machine learning techniques represent a subset of artificial intelligence and they have turned into one of the 
most powerful tools for addressing space weather problems. Since the early 90s machine learning has benefited 
from the high amount and quality of both space and ground-based data. Nowadays machine learning methods 
are applied to the most varied space weather topics, and they can be identified according to their final goal into 
four macro categories (Camporeale et  al.,  2018): (i) algorithms for event identification, such as solar image 
classification (Armstrong & Fletcher, 2019), near-Earth plasma regions classification (Breuillard et al., 2020) 
and the classification of periods with ULF waves activity (Balasis et al., 2019); (ii) methods for revealing causal-
ity between high dimensional data sets and specific events, see Wing et al.  (2018) and Heidrich-Meisner and 
Wimmer-Schweingruber (2018); (iii) forecasting algorithms, widely used for predicting solar flares (Massone 
et al., 2018), the arrival time of coronal mass ejections (Liu et al., 2018) and the behavior of various geomagnetic 
indices (Chandorkar & Camporeale, 2018); and (iv) algorithms for modeling non-linear relationships which try 
to reveal the physical action of the system starting from first principles (Boynton et al., 2018).

Despite the wide application, machine learning techniques were applied to the characterization of plasmasphere 
regions only in the past few years. Main contribution is from Zhelavskaya et al.  (2016, 2017) who applied a 
convolutional neural network for estimating electron mass density. To the best of our knowledge, the only attempt 
of estimating FLR frequencies using a ML approach has been developed by Fujimoto et al. (2019) for a pair of 
stations in New Zealand (mid-latitude).

In this work, we assess various machine learning methods for addressing the challenging task of identifying FLR 
frequencies by using ground-based measurements.

In Section 2 we briefly introduce the machine learning algorithms adopted for this analysis. Section 3 widely 
explains the set of data obtained from the EMMA network. Section 4 focuses on pre-processing, feature and 
model selection procedure which compose the whole machine learning process. Finally, in Section 5 we discuss 
the results and in Section 6 we outline the significant breakthrough and development produced by this analysis.

2. Machine Learning Algorithms
Machine Learning (ML) algorithms can be principally divided into three macro categories: supervised (labeled 
data set yi), unsupervised (not labeled data set yi) and reinforcement learning (goal-oriented algorithms). Since 
our analysis is the first attempt to identify ULF wave resonance frequencies from ground-based measurements 
using a ML approach, we assess several different algorithms, widely used for regression problems, that is, iden-
tification and/or prediction. A general regression problem within this framework can be expressed as the esti-
mation of a real-valued function F(X), where X is a d-dimensional input variable defined by an input/output pair 
(Xi, yi). It is possible to divide regression algorithms into three main groups: classification and regression trees 
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(CART, i.e., Decision Tree by Breiman et al., 1984), ensemble methods (i.e., Random Forest and Gradient Boost-
ing algorithms) and kernel methods (linear methods using the “kernel trick,” that is, Support Vector Machines 
and Kernel Ridge).

2.1. Kernel Methods

Ridge regression employs ordinary least squares (OLS) for minimizing the error between predictions 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 and targets 
yi, by adding a penalty term (α ≥ 0) that controls the complexity of the learned model (Hoerl & Kennard, 1970).

Kernel Ridge Regression (KRR) combines such a described method with the kernel trick (Theodoridis & 
Koutroumbas, 2008). Kernel functions transform data into higher dimensional space, by computing the inner 
product in the input space. There exist several different kernel functions; the Gaussian radial basis function 
(RBF), polynomial and sigmoid kernels are the most used, just to cite a few.

As well as KRR, several ML algorithms can operate with the kernel method; among them, support vector 
machines (SVMs, Cortes & Vapnik, 1995) are the best known, though they were initially used for classification.

SVM models employ the so called support vectors (i.e., data points nearest the division boundary) for identifying 
the optimal hyperplane in the feature d-dimensional space, which divides the points by maximizing the margin 
around the hyperplane itself. Because of its universality and robustness many variants were developed (see Kumar 
et al., 2019, for a review), and they have been widely used also for regression problems (Bao et al., 2020; Yang 
et al., 2009). In particular, the so-called ɛ-SVM addresses regression problems by employing an ɛ-range which 
represents the approximation region of the real-valued target function.

After the training process SVM and KRR have learned the same model shape, though they use different cost 
functions, that is, quadratic for KRR and ɛ-insensitive for SVM. Another difference between these two algorithms 
is the execution time; since KRR can be computed in a closed form, it results faster with medium-sized (less 
than 10 4 samples) data sets, but SVM can learn sparse models resulting in faster performance with massive sets 
(Murphy, 2012).

2.2. Decision Trees

Differently from single-stage algorithms, like those described in the previous section, decision trees (DTs) are 
multi-step models which recursively divide data in two partitions (binary split). Starting from the root node, 
containing all data, the tree structure is composed by intermediate nodes (called splits) and terminal nodes 
(leaves).

The process involves two macro phases: the splitting procedure and the pruning phase. The main objective of 
pruning techniques (see Esposito et al., 1997, for a review) is to generalize the tree structure and hence avoid 
over-fitting, see Figure 1. Pruning techniques can be controlled by various parameters which drive the growth of 
DTs, such as the minimum number of samples in a split/leaf or the maximum number of features to consider for 
the best split.

The splitting procedure determines the growth of a DT; at each iteration the central operation is finding the best 
split for the data set according to some error measures (Buntine & Niblett, 1992). The tree growth continues 
until no more splitting produces a significant gain in the error measure or a stopping criterion is satisfied. DTs 
represent optimal algorithms in processing massive data sets, handling missing values and mixed data (ordinal, 
categorical and continuous), performing features selection, ignoring redundant features, but even for their user-
friendly final structure.

One of the major shortcoming is a poorness of generalization which make this kind of algorithms prone to 
over-fitting and highly unstable with respect of slight variation in the input data (Li & Belford,  2002). This 
error, namely variance error, can be addressed using ensemble (or “forest”) models which combine results from 
numerous trees (usually averaging, i.e., Random Forest), or combine various DTs during the growth phase (i.e., 
Gradient Boosting methods).
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2.3. Ensemble Methods

The central concept besides ensemble methods is that multiple weak estimators can achieve better results than a 
single complex model; they result more efficient than DTs in reducing the variance error (Breiman, 1996).

Let us consider many shallow DT regressors (usually hundreds) which give K solutions of a real-valued function, 
𝐴𝐴 𝐹𝐹1(𝑋𝑋) , 𝐴𝐴 𝐹𝐹2(𝑋𝑋) , …, 𝐴𝐴 𝐹𝐹𝐾𝐾 (𝑋𝑋) . We can build the final prediction using a linear combination of the estimation:

𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸(𝑋𝑋) =

𝐾𝐾
∑

𝑗𝑗=1

𝑎𝑎𝑗𝑗𝐹𝐹𝑗𝑗(𝑋𝑋) 

where the coefficients, aj, determine the type of procedure adopted in constructing the ensemble. Two main 
approaches are commonly used: bootstrap aggregating (or Bagging) methods use the average as an estimator, 
that is, aj ≡ 1/K, and boosting techniques, which employs coefficients dependent on the number of estimators 
(Buhlmann, 2012).

Similarly to bagging methods, the Random Forest (RF) algorithm averages the solutions of many estimators; still, 
it considers for splitting data only a subset of features, d < D, producing highly varied estimators and resulting in 
faster performance with high dimensional data sets. In RF, each tree grows independently, while boosting algo-
rithms create one tree at a time to improve the prediction of the previous model recursively. Usually, RF obtains 
better performance than bagging methods but worse than boosting ones.

A wide group of boosting methods are those related to the gradient descent technique, widely known as Gradient 

boosting models. Considering, for instance, a quadratic loss function 𝐴𝐴 𝐴𝐴 =
∑

(𝑦𝑦𝑖𝑖 − 𝐹𝐹 (𝑥𝑥𝑖𝑖))
2
∕2 , these methods act 

to minimize L by adding further estimators according to the value of the negative gradient, r(xn) = yn − F(xn) = −
∂L/∂F(xn), which represents how far the model is from a reliable estimation. Gradient boosting algorithm can be 
directly generalized to different loss functions, without modifying any part of their procedure.

In this analysis, we focus our attention on two particular boosting algorithms: eXtreme Gradient Boost (XGB, 
Chen & Guestrin, 2016) and Light Gradient Boost Model (LGBM, Ke et al., 2017). Both methods have shown in 
the last years to address regression/classification problems with high and robust performance.

More in detail, XGB is a recent algorithm resulted in being highly efficient in regression/classification compe-
tition (see www.kaggle.com) and many real-world applications (Ivanov et al., 2020; Kunte & Panicker, 2020; 

Figure 1. Illustration of a typical scenario occurring during the procedure of hyperparameter tuning for every machine 
learning method. As the model complexity increases the estimation error for the training set decreases; still, the model 
parameters are too specific and hence they are not able to reproduce the same high performance with unseen data (i.e., 
validation set), namely over-fitting.
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Luckner et al., 2017). XGB employs second-order derivative during gradient descent resulting in faster and more 
refined performance. It results particularly reliable in handling massive data sets because of its parallel imple-
mentation. Despite the numerous novelties and improvements of XGB, this algorithm can result barely efficient 
with high dimensional data set, because of its splitting method which turns out very time-consuming.

For speeding up the splitting procedure, LGBM combines two additional methods, namely Gradient-based 
One-Side Sampling (GOSS) and Exclusive Features Bundling (EFB). GOSS, in combination with EFB, picks 
(usually randomly) only a small portion of data having small gradients for estimating the information gain, since 
these points give minor contributions to the gradient descent. LGBM, in comparison to XGB, can simply handle 
with categorical data without requiring any pre-processing phase.

3. Data
The plasmaspheric mass density can change drastically during active geomagnetic periods and the associated 
field line resonance frequencies change accordingly. Therefore, a good data set, suitable to train ML algorithms, 
should cover the most comprehensive range of geomagnetic disturbance levels. The data set by Del Corpo 
et al.  (2019) was created following this idea and covers 165 days along 5 years: 2012 (DoY 266–336), 2013 
(DoY 72–86 and 145–162), 2014 (DoY 45–68), 2015 (DoY 72–90 and 169–178), and 2017 (DoY 146–153). 
It comprises prolonged quiet geomagnetic periods as well as disturbances of different intensity, including 13 
geomagnetic storms, nine of them having a minimum Dst value less than −100 nT. For each period, the analysis 
has been carried out over a variable number of station pairs, depending on the data coverage. About 20 pairs were 
analyzed for each period, but only eight were common to all the data set.

This work aims to test the viability of a machine learning algorithm to pick up trusted FLR frequencies from 
magnetic field cross-phase spectra collected by a network like EMMA. Since the frequency generally decreases 
with latitude, such algorithm should be tested not only in different geomagnetic conditions, but also for data 
collected at different latitudes. For this reason, we selected four pairs among the eight common to the entire data 
set, that cover at the same time the largest range of latitudes. Figure 2 shows the position of the selected pairs 
inside the EMMA network: Suwalki-Belsk (SUW-BEL) in black, Tartu-Birzai (TAR-BRZ) in green, Oulujär-
vi-Hankasalmi (OUJ-HAN) in red and Muonio-Pello (MUO-PEL) in blue. More details about coordinates and 
the L-parameters are reported in Table 1.

The data set consists of daily Fourier cross-phase spectra computed with a 2-h moving window every half an hour 
(Del Corpo & Vellante, 2020). Each 2-h window is divided into a variable number of sub-intervals that depends 
on the latitude (increasing from 1 to 7 with decreasing latitude). The spectra are evaluated for each sub-interval 
and successively averaged. This implies a spectral resolution that increases with increasing latitude, a condition 
necessary to detect FLR frequencies that vary by more than a factor of 10, moving from the lowest to the high-
est latitude station pair. Each final spectrum is smoothed over 9–11 samples and the fundamental resonance 
frequency is eventually provided following a selection and validation process composed of both automated and 
manual steps.

The fundamental resonance frequencies are provided with a time resolution of 30 min, although the coverage is 
not continuous. In fact, for several reasons, it is not always possible to detect FLR frequencies from cross-phase 
spectra: (i) data gaps in one or both stations; (ii) noise in the magnetic signals that inhibits the appearance of 
the resonance signatures in the spectra; (iii) quiescent LF wave periods that prevent the excitation of standing 
Alfvén waves (Balasis et al., 2019). Statistical works have shown that the FLR detection rate changes also with 
latitude and local time with a broad peak around noon; in particular, during nighttime it can be as low as 10% 
(Chi et al., 2013; Del Corpo et al., 2019).

To efficiently sustain a standing Alfvén wave, the field line should be fixed at the footprints, which implies an 
infinite conductivity. This approximation is generally satisfied during daytime, when the ionospheric conductiv-
ity is sufficiently high, but after sunset the conductivity decreases due to the predominant role of recombination 
processes and it should be assumed finite (Allan & Knox, 1979). Whether the ionosphere conditions are able 
to sustain normal modes also during nighttime, is still under debate. If the conductivity is sufficiently small, 
the observed modes should be interpreted as free-end ones. Recently Takahashi et  al.  (2020) observed FLRs 
across the midnight sector compatible with a fixed-end mode configuration. In some cases, only one footprint is 
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sunlit while the other is in darkness, generating quarter-wave modes (Obana 
et al., 2008, 2015). These situations make less reliable the nighttime vali-
dated frequencies.

Despite the data set contains some dubious frequencies, that is, especially 
during nighttime hours, we kept all the frequencies for the training and used 
sunrise and sunset information to interpret the results according to the relia-
bility of validated frequencies; the main reason is that we want to maximize 
the number of samples for the training phase.

Excluding times without selected frequencies, we eventually obtain 3514 
samples for SUW-BEL, 4721 for TAR-BRZ, 3270 for OUJ-HAN and 3112 
for MUO-PEL.

Figure 2. The European quasi-Meridional Magnetometer Array network map in geographic coordinates. The four pairs used 
in this analysis are highlighted in different colors.

Pair code Stations name
Latitude 
(deg.)

Longitude 
(deg.) L

MUO-PEL Muonio-Pello 67.5 23.8 5.5

OUJ-HAN Oulujärvi-Hankasalmi 63.4 26.9 4.1

TAR-BRZ Tartu-Birzai 57.2 25.6 2.9

SUW-BEL Suwalki-Belsk 52.9 22.0 2.4

Abbreviation: EMMA, European quasi-Meridional Magnetometer Array.

Table 1 
Station Pairs of the EMMA Network Considered in This Work With Their 
Mid-Point Geographic Coordinates and the Corresponding McIllwan 
Parameter
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3.1. Input and Output Data

Every ML algorithm adopted in this analysis requires a so-called features matrix as input data, where rows repre-
sent different samples and columns are the input features. As previously stated, following the well-established 
cross-phase technique, our input for the ML algorithm is the cross-spectrum, as shown in Figure 3. The output 
will be the estimated value of the resonance frequency fi for that sample.

Since we would like to test our ML algorithms on different pairs of stations, the input matrix is created sepa-
rately for each couple. Typically, the resonance frequency decreases with increasing latitude except across the 
PBL where the behavior is the opposite. Thus, to obtain reasonable average spectral resolutions (𝐴𝐴 Δ𝑓𝑓∕𝑓𝑓 ∼ 3% ) at 
every latitude along the EMMA network, different pairs of stations have a different length of cross-phase spectra, 
resulting in features matrix with different dimensions: TAR-BRZ and SUW-BEL spectra are composed by 212 
frequency bins (between 0 and 120 mHz), while OUJ-HAN and MUO-PEL have both 285 input features, but for 
OUJ-HAN they vary between 0 and 80 mHz while for MUO-PEL between 0 and 40 mHz.

Input data are transformed using two subsequent operations to improve the performance of ML algorithms: 
standardization, (x − μ)/σ and normalization, (x − xmin)/(xmax − xmin). The same procedure is applied to the output 
frequencies.

As can be observed in Figure 4, the first transformation gives a more Gaussian-like shape to the distribution of 
frequency, while the second one forces values between 0 and 1. Both operations are commonly adopted in various 
ML applications resulting in higher accuracy with every algorithm. After these transformation data are split in 
training and test set with roughly a 7:1 ratio (Figure 4); the former will be used to create the ML model, while the 
latter will evaluate the model performance.

4. Methods
In Figure 5 is depicted the entire ML pipeline built for FLR frequencies identification. After the stage of data 
pre-processing, described in the previous section, our ML procedure involves the application of typical ML tech-
niques for creating the optimal model and subsequently improving its performance: feature selection and model 
selection.

Every ML algorithm is then trained via the cross-validation technique to further avoid over-fitting, producing a 
final model which is used to estimate frequencies from the test set.

Figure 3. Graphical representation of the input matrix preparation. Every entry 𝐴𝐴 𝐴𝐴
𝑗𝑗

𝑖𝑖
 represents the cross-phase value at a specific time and frequency value.
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4.1. Feature Selection

Feature selection techniques are one of the central concept in ML methods, since the data set dimensionality, as 
well as the feature choice, severely affects the algorithm performance. Various works showed that numerous and 
redundant features may result in decreasing the algorithm accuracy and robustness (Guyon & Elisseeff, 2003; 
Hua et al., 2004; Kapetanios, 2007; Peng et al., 2005). The reasons for implementing and including feature selec-
tion routines in a ML pipeline can be summarized in four main points: lower dimensional data sets are simpler 
to interpret and visualize for end-users (the curse of dimensionality), increasing the model generalization (avoid 
over-fitting), improving the algorithm accuracy and shortening data processing times. For all these reasons we 
include two different feature selection techniques for reducing the data set dimensionality as well as evaluating 
additional features.

Feature selection methods can be categorized in embedded, filters, and wrapper methods (Guyon & Elis-
seeff, 2003). Embedded methods are ML models which implement feature selection using different regulariza-
tion techniques, that is, l1/l2-norm for linear models and a feature sub-sampling for DTs (Lal et al., 2006). Filters 
are model-independent methods which simply employ some correlation measure to find the optimal subset of 
features. Commonly known correlation measures are mutual information, point-wise mutual information and 
the Pearson's R correlation coefficient. Filters are computationally cheaper than other methods. Eventually, 
wrapper methods use model performance (accuracy and robustness) as a metric for evaluating feature subsets. 

Figure 4. The left panel shows the original data set, while the right panel represents the same data after the pre-processing 
stage for Tartu-Birzai. In both panels distributions are divided in training (blue) and test (orange) set. This division is 
performed before the pre-processing procedure.

Figure 5. Graphical representation of the entire machine learning pipeline we built.
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These methods are computationally heavy, especially with high-dimensional data set, and often they allow only 
a random (or sparse) search between all the possible subsets.

For reducing the initial matrix dimensionality, we first compute the mutual information (MI) at every frequency 
bin and for the whole data set. Mutual information can be interpreted as a correlation measure between inputs 
and outputs, and it represents a powerful tool to identify even non-linear and non-monotonic correlations. Then 
we apply a time average over the entire period and compare mutual information values, represented in Figure 6 as 
a color scale, with the average cross-phase spectrum (Figure 6, top panel). By imposing a confidence level over 
the cumulative function of the mutual information (bottom panel of Figure 6) at α = 0.95 (vertical dotted line), 
we can keep only frequencies below this threshold value. In this way, we ensure that, despite the lower number of 
features, the data set contains at least 95% of the information to estimate the output frequencies.

Figure 6 summarizes the results of this procedure for TAR-BRZ. As expected, highest values of mutual informa-
tion correspond to the first peak of the average cross-phase spectrum, meaning that, on average, this is the most 
informative part of the spectrum for predicting the frequencies. The first peak occurs at f1 ≃ 14 mHz and is related 
to the first harmonic since it perfectly overlaps with the blue interval (top panel in Figure 6) which represents the 
0.25 and 0.75 percentile of the validated FLR frequency distribution (i.e., interquartile range, IQR). The second 
peak occurs at f2 ∼ 50 mHz; the frequency ratio between the first and second peak is f2/f1 ∼ 3.6 which is compat-
ible with the expected ratio between the third and fundamental harmonics (Schulz, 1996).

Applying this procedure to the four pairs, we found that, independently from the couple of stations, the 95% 
threshold is reached using only the 80% of the initial number of features, resulting in 170 for TAR-BRZ and 
SUW-BEL, and 230 for OUJ-HAN and MUO-PEL.

The second part of the feature selection stage is the evaluation of additional features using wrapper methods. 
These novel features are spatio-temporal information, solar activity proxies, and geomagnetic activity indicators 
derived from geomagnetic indices. All the additional features analyzed in this section are summarized in Table 2. 
Temporal features are represented by the day of year (DoY) to highlight the seasonal variation of the resonance 
frequency (Vellante et al., 2007) and the decimal hour, because is commonly known that resonance frequencies 
show a diurnal modulation (e.g., Chi et al., 2013; Del Corpo et al., 2019).

To consider the effects of solar activity, mostly for its impact on the production of ion-electron pairs at iono-
spheric height, we take into account the daily radio solar flux at 10.7 cm (F107, see Table 2) as provided by 
OMNIWeb. From the same database we also consider the y-component of the solar wind electric field (EField in 
Table 2) to investigate any impact of the convection electric field.

Figure 6. Results from the first feature selection technique. The upper panel represents the average cross-phase spectrum 
over the entire data set of Tartu-Birzai; black dash-dotted and red dotted vertical lines are the median and the average value 
of the validated frequency, respectively, while the blue interval is built with the first and third quartile of the distribution 
of frequencies. The average spectrum shows a peak close to the median value of the frequency, with a highly right-skewed 
distribution (high frequencies). The bottom panel is the cumulative mutual information (MI) indicating the 95% (vertical 
dotted line) of information subsisting between inputs and output. This confidence level is reached around 100 mHz.
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Since the frequency also depends on the geomagnetic field line length we consider the equatorial crossing (req) 
using the TS05 models to map the field line from the station pair position.

Geomagnetic activity indicators are evaluated to consider the FLR frequency variations due to the geomagnetic 
activity. The use of such indicators is widespread in the literature (e.g., Carpenter & Anderson, 1992; Del Corpo 
et al., 2019, 2020; Gallagher et al., 1988; Moldwin et al., 2002; Sheeley et al., 2001; Takahashi et al., 2006). The 
simplest indicators are the geomagnetic indices themselves. For this analysis, we consider the Kp, the Dst and the 
AE indices provided by the OMNIWeb database (https://omniweb.gsfc.nasa.gov/). More sophisticated indicators 
that take into account some effects of the magnetospheric dynamics can be derived from the Kp and Dst indices. 
In this work we consider two main different approaches: in the first, following the work by Moldwin et al. (2002), 
the maximum/minimum Kp/Dst are evaluated over a period τ preceding the time analyzed t0; the second is made 
by following the work by Gallagher et al. (1988) and by evaluating the average Kp over a period τ preceding t0, 
weighted with an exponential function of the form w(t) = exp[−(t − t0)/τ]. Both the procedures are applied to 
values of τ in the range 12–72 h with a step of 12 h, producing three groups of indices. The first is related to 
the Kp maximum in the preceding period and is reported in Table 2 and Figure 7 as Kp_m_XX, where XX are 
the τ values expressed in hours. The second group is related to the minimum Dst in the preceding period and it 
is indicated as DST_m_XX. The third one consists of Kp weighted averages and are represented as Kp_w_XX.

Figure 7 summarizes the evaluation of the additional features for all the six ML methods applied to the TAR-BRZ 
data set. Method performance, obtained using only the cross-phase as input, is reported as the initial value of the 
coefficient of determination, namely 𝐴𝐴 𝐴𝐴2

0
 (reported in the lower right side of each panel of Figure 7). The additional 

features are evaluated by adding recursively the quantity which produces the best variation of the R 2-score with 
respect to the previous value. This technique, commonly known as Sequential Forward Selection (SFS, Ferri 
et al., 1994), represents the most powerful tool to investigate medium and low-dimensional data sets. At each step, 
the selected feature is evaluated multiple times using the cross-validation technique; in this way we can produce 
a confidence interval defined by the standard deviation of the cross-validation score (orange area in Figure 7).

From the six panels in Figure 7 we can observe that the additional features have lower influence as the method 
complexity (and model performance) increases. Except for KRR and SVR, which result in poor performance, the 
other ML methods considered for this analysis (DTR, RF, LGBM, and XGB) basically express the same behavior. 
Algorithms that reach higher performance tend to return similar results also adding novel features, meaning that 
for these algorithms information from the cross-phase is sufficient to achieve the best accuracy. Another aspect 
is that it is impossible to select optimal quantities resulting in best performance for all the considered methods. 
Similar results are found for the other pairs of stations.

Hence, since no additional feature results in a significant improvement of the algorithms performance, we 
consider as input the cross-phase spectra only.

Col. Name Description

DoY Day of Year

Hour Decimal hour with a resolution of 0.5 h

Kp Instantaneous Kp value

Kp_w_XX Kp index weighted at different intervals 12, 24, …,72 h

Kp_m_XX Maximum value of Kp index during last 12, 24, …, 72 h

DST Instantaneous Dst value (nT)

DST_m_XX Minimum value of Dst index during last 12, 24, …, 72 h (nT)

AE Index Auroral Electrojet index

F107 Radio flux emitted from the entire solar disc at 10.7 cm (sfu or W m −2 Hz −1)

EField Convection electric field (mV m −1)

req Field line equatorial crossing point (in Earth radii) with the Tsyganenko and Sitnov (2005, TS05) model

Notes. The geomagnetic indexes, the solar radio flux, and the convection electric field are derived from the OMNIWeb database.

Table 2 
Summary of all the Other Features Evaluated During the Features Assessment Procedure
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4.2. Model Selection

The choice of the optimal ML method for a specific task and the procedure for tuning the model hyperparam-
eters are both objectives of model selection. In Section 5.1 we will address the choice of the most suitable ML 
method for predicting resonance frequencies, by observing the model complexity and the accuracy for all the four 

Figure 7. Results of the performance evaluation of all the additional features for Tartu-Birzai. The behavior for the 
other station pairs is the same. 𝐴𝐴 𝐴𝐴2

0
 is the score obtained using only the cross-phase as input features. Methods with lower 

performance (Kernel Ridge Regression and Support Vector Regression) have an improvement with additional features while, 
as the model accuracy increases, they become less relevant. A comparison of these panels makes difficult to conclude which 
features could be more relevant for improving predictions.

 21699402, 2021, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020JA

029008 by C
ochraneItalia, W

iley O
nline L

ibrary on [16/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Space Physics

FOLDES ET AL.

10.1029/2020JA029008

12 of 21

station pairs. In this section we focus the attention on the selection of the best 
hyperparameters which control the model complexity of the six ML methods 
described in Section 2.

The number, typology and value of these parameters determine the model 
complexity and its performance. It is worth noting that hyperparameters, 
optimized in this step, are significantly different for the various methods; 
their optimal values are summarized in Table 3.

The first two rows in Table 3 are kernel methods which control the model 
complexity via the regularization terms, α for KRR and C for SVM. Higher 
values of α reduce collinearity between coefficients leading in higher gener-
alization, while as α approaches zero KRR reverts to a simple OLS. In SVMs 
applied to regression problems (Support Vector Regression, SVR), the regu-
larization parameter, C, controls the tolerance region width around the divi-
sion boundary; increasing C results in more points close to the boundaries 
and hence more support vectors are required. Conversely, higher values of C 
mean a narrower tolerance and thus fewer points near boundaries.

In both methods input data are transformed using an RBF kernel for creat-
ing non-linear regression models (see Section  2.1). The hyperparameter γ 
for kernel methods refers to the standard deviation adopted for the Gaussian 
kernel (RBF kernel).

For decision trees and ensemble methods the main hyperparameters 
controlling the tree structure and the ensemble population are the maximum 
depth (i.e., Max. depth) and the number of estimators (i.e., # estimators), as 
briefly explained in Section 2.3.

Since the hyperparameter space is not too wide, for selecting the optimal 
values we perform a random search (N = 3,000 points) over the hyperparam-

eter grid of each ML method. Real-valued hyperparameters are sampled using a logarithmic scale with M = 1,000 
points, except for the maximum number of features which is picked from the values [0.0, 0.2, 0.5, 0.7, 1.0]. 
Kernel methods hyperparameters, α, C, and γ, vary in the range [10 −5, 10], and the learning rate in the [10 −5, 0.5] 
interval. Discrete-valued hyperparameters are all selected from specific lists of values: the maximum depth, the 
number of leaves and minimum samples in leaf/split are selected in the interval [0, 1, …, 20], and the number of 
estimators is picked between [100, 200, 500, 700, 1000, 1500, 2000].

The selection of optimal model hyperparameters is essential into the ML pipeline for avoiding model over-fitting, 
reducing the variance error and increasing model accuracy. We select the best method and model for identifying 
resonance frequencies by considering two main aspects: the accuracy of the method and the ability to create 
a common model for all the four station pairs, reflected by more stable hyperparameters across the pairs (see 
Table 3).

After this stage, the next step is training/validation, during which all the ML models are trained using the 
cross-validation (CV) technique, with a number of CV folds, kCV = 5. CV divides the training set into kCV parti-
tions; at each step one of the partition is excluded from the training phase, and it will be only used for validation. 
By optimizing results obtained with the validation set model, over-fitting is avoided and the model generalization 
increases.

The training set for each pair of stations is selected using two main criteria: all the station pairs must have the 
same proportion between training and test set, and the four pairs must share periods in the test set for a compari-
son. In particular, we selected DoY 148–162 (2013) as common test for the extremely varied geomagnetic condi-
tions, consisting of a geomagnetic storm (June 2013, Stepanova et al., 2019; Thaller et al., 2015; Zou et al., 2017) 
preceded by prolonged quiescent days. It follows that the test set (∼13% of the whole data set) consists of DoY 
78–82 and 145–162 (2013) for TAR-BRZ, DoY 148–162 (2013) for OUJ-HAN, and DoY 145–162 (2013) for 
SUW-BEL and MUO-PEL. The remaining portion, 87%, composes the training set.

Method Hyperparameters
SUW- 
BEL

TAR- 
BRZ

OUJ- 
HAN

MUO- 
PEL

KRR (w. RBF) α 7 ⋅ 10 −3 0.06 0.23 0.06

γ 0.01 0.1 0.1 0.1

SVR (w. RBF) C 1.5 1.5 1.5 1.5

γ 0.1 0.1 0.5 0.5

DTR Max. depth 19 17 17 5

Min. samp. leaf 19 4 12 6

Min. samp. split 14 8 19 8

RF Max. depth 15 19 19 19

# estimators 400 500 200 500

Max. features 0.2 0.2 0.2 0.2

LGBM # estimators 1,500 1,500 1,000 1,000

# leaves 19 18 19 19

XGB # estimators 1,000 200 300 200

Max. depth 5 6 5 6

Learn. rate 0.1 0.1 0.1 0.1

Abbreviations: KRR, Kernel Ridge Regression; LGBM, Light Gradient Boost 
Model; SVR, Support Vector Regression; XGB, eXtreme Gradient Boost.

Table 3 
Table of the Hyperparameters Optimized During Model Selection for Every 
Pair of Stations
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5. Results and Discussions
5.1. Models Evaluation

The first part of the results focuses on the performance comparison of the various ML methods. The accuracy of 
regression problems can be evaluated by using various estimators, the coefficient of determination (R 2), the mean 
absolute error (MAE), the mean absolute percentage error (MAPE) and the root mean squared error (RMSE):

𝑅𝑅2 = 1 −

∑𝑁𝑁

𝑖𝑖=1 (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)
2
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where yi are the actual frequencies, 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 the predicted frequencies and 𝐴𝐴 𝐴𝐴𝐴 the average value of yi.

For the CV procedure we use R 2, since it weakly depends on the distribution function of data and therefore it is 
more reliable for regression problems. The results from the CV procedure are shown in the boxplot of Figure 8 for 
TAR-BRZ, the other station pairs show a similar behavior; hence we show only one pair for the sake of simplicity. 
The first aspect of this graph is a significant difference in accuracy between kernel-based (KRR and SVR) and 
tree-based models. The main reason for such a difference could rely on data: by using discrete cross-phase spec-
tra the validated frequencies can assume only a discrete set of values and, for their implementation, tree-based 
methods are more suitable, and therefore accurate, to estimate discrete-like data.

From Figure 8 we can also argue that DTR has a high variance error, meaning that the model is too simple for 
the specific task. This statement is also supported by the high variability of hyperparameters across the station 
pairs (see Table 3). On the other hand, RF results in high accuracy, but it does not appear sufficiently robust with 
high frequency outliers, as highlighted by a large skewness and the presence of a flier point out of the ends of 
the whiskers. LGBM and XGB show a similar behavior even in their performance, resulting in robust algorithms 
which avoid over-fitting and reduce the variance error. These two methods also result in similar hyperparameter 
variability between the four station pairs (see Table 3), the main difference relies on the execution time (see 
Table 4); XGB processes the same number of sample in half the time with respect of LGBM.

After the CV stage each ML method is applied to the prediction of resonance frequencies of the test set for each 
station pair. The frequencies obtained during both the training and the test phase are available from https://doi.
org/10.5281/zenodo.4304911 (Foldes et al., 2020). The results for TAR-BRZ (DoY 78–82 and 145–162, 2013, 

Figure 8. Comparison of the 6 ML methods trained in this analysis for Tartu-Birzai. Results for other station pairs have 
the same tendency. At first glance, we observe a substantial difference between kernel-based (Kernel Ridge Regression and 
Support Vector Regression) and tree-based models. Light Gradient Boost Model (LGBM) and eXtreme Gradient Boost 
(XGB) are quite similar methods as we see even from results, but XGB tends to be more robust for all the four pairs of 
stations since it reaches performances comparable with LGBM and RF using a lower number of estimators (i.e., simpler 
model, see Table 3); hence we consider XGB as the best-performed algorithm for this task.
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Ntest = 619) are summarized in Table 4. By observing parameter stability in 
Table 3 and the algorithm performance in Table 4, we can observe that XGB 
and LGBM show almost the same robustness and accuracy. For these reasons, 
we choose XGB as most performing algorithm between them by considering 
two main aspects: it always employs fewer estimators than LGBM to reach 
the same performance, resulting as a simpler model, and because of its faster 
execution time it is more suitable for real-time applications.

To further explore the performance of the six ML methods we show, as an 
example, the relative error as a function of time (Figure 9) for a particular 
case study: 2013, DoY 151 (31 May). The relative error is the difference 
between the estimated frequency (fmeth) and the observed one (fobs), normal-
ized to fobs. The intervals in which one or both the field line footprints are in 
darkness are represented as light or dark shadowed areas, respectively. The 
sunrise and sunset times (edges of the shadowed area) are evaluated at the 
height of 120 km as suggested by Del Corpo et al. (2020). The error increases 
during nighttime for all the methods, probably because, as stated above, the 
night frequencies are harder to detect and the relative cross-phase spectra can 
result poorly informative. During daytime the prediction error is remarkably 

low for ensemble methods (especially LGBM and XGB), as previously pointed out in Table 4, and their fluctua-
tions show a Gaussian-like behavior.

As stated above, XGB is the most suitable method to estimate FLR frequencies, hence, starting from this point, 
we perform further analysis using only the XGB method.

In Figure 10, we show an overview of the results obtained on the test set of TAR-BRZ. The first scatter plot (left 
panel) contains the median value of the predicted frequencies with the interquartile range (IQR) represented with 
bars. To compute the uncertainty of the model estimation we use two different approaches; for single estimator 
algorithms (i.e., KRR, SVR, and DTR) the uncertainty is computed using N = 1,000 different runs, while for 
multi-estimator algorithms (i.e., RF, LGBM, and XGB) the IQR is derived from the distribution of the estimators. 
The error increases when we observe a broader spread of the estimators; the uncertainty seems to increase slightly 
with frequency, but surely the error is greater when points are farther from the actual frequency value.

R 2 MAE (mHz) MAPE RMSE (mHz) CV time (s)

KRR 0.613 2.4 0.128 3.9 2.83

SVR 0.688 2.0 0.106 3.5 17.8

DTR 0.828 1.0 0.057 2.6 1.82

RF 0.840 0.93 0.042 2.5 32.7

LGBM 0.878 0.98 0.052 2.3 46.6

XGB 0.875 0.95 0.046 2.2 24.3

Abbreviations: KRR, Kernel Ridge Regression; LGBM, Light Gradient 
Boost Model; ML, machine learning; SVR, Support Vector Regression; 
TAR-BRZ, Tartu-Birzai; XGB, eXtreme Gradient Boost.
Notes. These results are obtained on the test set, Ntest = 619. The best results 
for each metric are in bold. XGB does not show the best performances even 
though they are always close to the best results.

Table 4 
The General Performance of the Six ML Algorithms for TAR-BRZ

Figure 9. Comparison of the six machine learning methods for a quiescent day, 31 May. The light-gray area indicates when 
only one of the field line footprints is in the night-side. The dark-gray area occurs when both footprints are in darkness. In the 
daily part of the graph the relative error is significantly low (≤±10%) for ensemble methods.
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Colors of the scatter plot represent the day, night and penumbral frequencies; the latter are those selected when 
only one footprint of the field line is sunlit. The division is made using the same criteria of Figure 9. Night and 
penumbral frequencies are harder to be observed (Balasis et al., 2019; Del Corpo et al., 2019) and indeed they 
are less numerous. The main reason is that cross-phase spectra are barely informative and hence FLR identi-
fication results more difficult. During penumbra, frequencies could correspond to quarter-wave mode events 
(Del Corpo et al., 2019; Obana et al., 2015). Right panel in Figure 10 represents a quantile-quantile plot (Q-Q 
plot). The Q-Q plot describes various distributional aspects of the two set of frequencies, actual and estimated; 
since points in Figure 10 (right panel) accurately follow the identity line (dashed line), the mean value of the 
two distributions does not show a significant shift. At frequency values higher than 38 mHz, and between 25 
and 32 mHz, points move below the bisector, which means that estimated frequencies are slightly lower than 
actual frequencies in these ranges. As can be noticed from the left panel in Figure 10, the lack of points at higher 
frequencies  (≥40 mHz) produces higher errors which nevertheless can be considered as statistical fluctuations.

5.2. The June 2013 Geomagnetic Storm: A Case Study

As already stated in Section 4.2, the geomagnetic storm occurred in June 2013 offers an excellent opportunity to 
test the algorithm performance since it comprises highly variable geomagnetic conditions with comprehensive 
data coverage for all the considered station pairs. The two top panels of Figure 11 show the time variations of 
the Dst and Kp indices, respectively. The main phase starts at the beginning of DoY 152 and proceeds until noon 
when Dst reaches a minimum value of about −120 nT and Kp rises up to 7. The recovery phase lasts for a few 
days during which both geomagnetic indices slowly recover to quiet time values. A peculiarity of this event is the 
prolonged very low geomagnetic activity conditions that characterize the days preceding the storm, allowing us 
to test the efficiency of the algorithm also in such an unusual situation.

The last four panels in Figure 11 show, from top to bottom, the relative error of the estimated frequency for the 
four station pairs arranged in decreasing latitude order. As for Figure 9, light and dark shadowed areas correspond 
to periods in which the field lines have one or both footprint in dark, respectively. The average relative error at 
L = 2.4, 2.9, 4.1 is about +1–2% suggesting that the distribution of the deviations has a Gaussian-like shape. At 
L = 5.5 the average relative error is about +4.5% suggesting a systematic overestimation of the algorithm, even if 
this larger value might be due to a preponderance of positive deviations on DoY 152 during which the main phase 
of the storm took place. To further evaluate the performance of the algorithm we can look at the average deviation 

Figure 10. Global results from the test set of Tartu-Birzai. The left panel shows the median value of all the 619 test 
frequencies with their interquartile range range as error bars; colors distinguish between diurnal (green), nocturnal (red) and 
penumbral (blue) frequencies. Right panel is the quantile-quantile (Q-Q) plot; it summarizes simultaneously several aspects 
of the target (actual frequencies) and obtained (estimated frequencies) distribution. The dashed line is the bisector and it 
indicates that the two sets come from a population with the same distribution.
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from zero (the MAPE) that does not exceed 13%, although it increases from 4% to 13% with increasing latitude. 
As already pointed out, this could be due to the signal-to-noise ratio in the cross-phase spectra that becomes lower 
as the latitude increases. During daytime hours the MAPE assumes the values 2.4%, 2.7%, 4.7%, and 6.9% at 
L = 2.4, 2.9, 4.1, and 5.5, respectively, suggesting that the method performs significantly better in these condi-
tions. Again, there is the exception on DoY 152 at L = 5.5 for which the daytime MAPE is 17.5%, indicating that, 
at least for high latitude pairs, the performance of the method deteriorates during highly dynamical geomagnetic 
conditions. Also during the extreme quiet conditions on DoY 150 there are some important deviations at L = 4.1 
and 5.5, mainly during nighttime. Other than that, there is no evidence of any dependence of the relative error 
from the geomagnetic activity. It is important to note that almost all the situations in which the algorithm does not 
perform well are associated to fuzzy or low signal-to-noise ratio cross-phase spectra for which also the supervised 
selection can be sometimes questionable. These issues can be better understood looking at Figure 12 which shows 
the dynamic cross-phase spectra of the four pairs on DoY 151 (panels a–d) and 152 (panels e–h). Black open 
squares are the frequencies estimated by the algorithm while magenta open circles are the frequencies validated 
by Del Corpo et al. (2019). The shadowed regions represent dark and light hours as in Figures 9 and 11. The main 
phase of the storm starts at the beginning of DoY 152, however the magnetosphere is already perturbed in the 

Figure 11. From top to bottom. First two panels represent the Kp and Dst indices respectively during DoY 150–155 of 2013 
(30 May to 4 June). It is possible to clearly distinguish between the pre-storm phase (DoY 150 and 151), the main phase 
(DoY 152) and the recovery phase (DoY 153 and subsequent). The other four panels represent the evolution of the relative 
error during these six days with the station latitude in descending order. In this representation the difference between stations, 
the behavior with variable geomagnetic conditions and various data gaps are well evidenced. Points out of graph limits are 
represented as open circles.
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afternoon of DoY 151 as clearly visible from the growing of the Kp index (see Figure 11). During this period the 
spectra are fuzzy for all the pairs but TAR-BRZ, and important mismatches between the estimated and validated 
frequencies occur at SUW-BEL on DoY 151 and at MUO-PEL on DoY 152. Such mismatches could not depend 
exclusively from the algorithm efficacy, but also from the presence of questionable points in the data set by Del 
Corpo et al. (2019), as is the case for the above mentioned points at SUW-BEL. They created the data set taking 
particular care to daytime hours when the physical assumptions made in the entire procedure are expected to be 
applicable, but keeping also nighttime frequencies to study the efficiency of the procedure during these condi-
tions; occasionally, they kept also some unclear points as the ones just described. In this preliminary work we 

Figure 12. Panel of results obtained with eXtreme Gradient Boost for DoY 151 and 152 (2013). Black points with error 
bars are the predicted frequencies while the magenta ones are the observed frequencies. DoY 151 is a quiescent day while 
during DoY 152 (1 June) the main phase of a geomagnetic storm occurs. Such a difference is highlighted by slightly different 
resonance frequencies between the two days. Predictions show high accordance with observed frequencies in most cases, 
especially during daytime.
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used the entire data set as it was, analyzing also nocturnal frequencies, but to obtain an operative space weather 
tool the reliability of the selected night frequencies should be investigated and all questionable data points should 
be excluded. It is worth noting that, also during nighttime or disturbed geomagnetic conditions, the algorithm 
performs well when the spectra have smooth and clear traces of the resonance peak. A good example are the 
spectra of TAR-BRZ (panels c and g) in which the only notable deviations from the validated frequencies arise 
during discontinuities as in the interval 02:30–03:30 of DoY 151 and at 16:30 on DoY 152, when a quarter wave 
event and a PBL crossing probably happened. In general, the good performances of the algorithm, mainly during 
daytime hours, are confirmed.

6. Conclusions
Our work represents a preliminary result in the direction of building a tool for monitoring the plasmasphere 
dynamics using the whole EMMA network.

We have evaluated several ML algorithms, commonly adopted for regression problems, to estimate FLR frequen-
cies in cross-phase spectra among magnetic field measurements. This survey has proved that ML techniques 
can be successfully applied for addressing this challenging task; in our particular case tree-based methods have 
resulted the most reliable algorithms of those considered.

Results have shown a slight dependence of the estimation error with the station latitude, that is, MAPE increases 
from 4% to 13% passing from L = 2.4 to L = 5.5, so it remains acceptable even at high latitude. In fact, the 
percentage of points with an absolute relative error ≤0.1 is about 70% for MUO-PEL (L = 5.5), and it increases 
rapidly at OUJ-HAN (L = 4.1), 82%, reaching 90% for TAR-BRZ (L = 2.9) and SUW-BEL (L = 2.4). An inter-
esting aspect evidenced in this analysis is that results generally do not depend on geomagnetic activity, except for 
high latitude pairs for which extreme geomagnetic conditions (i.e., storm main phase, prolonged quiet conditions) 
could produce a higher estimation error. We have considered the June 2013 geomagnetic storm as case study; 
except for L = 5.5, when the MAPE reaches values greater than 15% in some points, during this event the esti-
mation error remains around its average value passing from quiescent days to the main phase of the geomagnetic 
storm, and eventually to the recovery phase. This feature makes our ML procedure particularly reliable for space 
weather purposes within the framework of the plasmaspheric density nowcast.

However, since we have trained our models only on times with observed FLR frequencies, our procedure is 
unable to distinguish whether a resonance is triggered. To create a complete automated ML procedure suitable 
for real-time monitoring, it may be required an additional ML step placed before the one we have already built. 
To classify times when the FLR frequency can be observed or not, we could follow an approach similar to Balasis 
et al. (2019), who adopted a fuzzy-logic neural network for classifying periods with ULF activity in geomagnetic 
field time series.

The present analysis could be mainly improved by extending our training set. First, a larger data set means a 
more balanced proportion between the number of samples, N, and the number of features, M, that in our case is 
represented by the number of frequencies in the cross-phase spectra. Then, by extending the data set, we could 
remove from the training data those FLR frequencies which present an unclear trace on the cross-phase spectrum 
and hence are considered less reliable (e.g., nighttime frequencies, quarter-waves). Lastly, a larger data set would 
allow to test our procedure on most varied geomagnetic conditions.

Our approach may be extended to all the EMMA station pairs, and in principle to any magnetometer network, like 
CARISMA (Mann et al., 2008) and McMAC (Chi et al., 2005). Testing this method on other pairs of stations, 
even longitudinally separated from EMMA, would allow to obtain more information about the accuracy and the 
robustness of our technique.

Data Availability Statement
Cross-phase spectra and FLR resonances used to train the ML methods are available from Zenodo (https://doi.
org/10.5281/zenodo.4304662). The output of the various ML methods are available from Zenodo (https://doi.
org/10.5281/zenodo.4304911).
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Appendix C

FLAME: Fast Lattice

Boltzmann Algorithm for

Magnetohydrodynamics (MHD)

Experiments

In this chapter, we briefly introduce the theoretical background, the context

and the reasoning behind the development of a Lattice-Boltzmann (LB) solver for

plasmas in the magneto-hydrodynamics (MHD) and Hall magneto-hydrodynamics

(Hall-MHD) regimes. The implemented code, Fast Lattice-Boltzmann Algorithm

for MHD Experiments (FLAME) relies on a multi-GPU (Graphic Processing Unit)

implementation of the LB scheme to reach high resolution with acceptable com-

putational times. In the frame of ideal MHD turbulence, plasma is treated as a

single species quasi-neutral conductive fluid responsive to the effect of the magnetic

field [83]; ions and electrons are tied to the magnetic field, moving with the same

velocity. The Hall magneto-hydrodynamics (Hall-MHD) model is a finer representa-

tion of plasma, taking into account smaller-scale effects. Indeed, it relaxes the MHD

hypotheses assuming ions disentangled from the magnetic field due to their inertia,

while electrons remain bound to it [168]. In this framework, the resistive Ohm’s

law is generalized through the introduction of the Hall term, proportional to J×B,
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where J and B denote the current density and the magnetic field, respectively. The

Hall electric field acts on the plasma dynamics at length scales shorter than the ion

inertial length di = c/ωpi (with ωpi the ion plasma frequency and c the speed of

light), even identified as time scales shorter than the ion cyclotron period 1/ωci [97].

Hall-MHD has been successfully adopted in literature to describe a variety of astro-

physical, space and laboratory environments to study how the introduction of the

Hall current affects the plasma dynamics in different scenarios. In the astrophysical

context, their applications span from the star formation [164, 134, 231], and the

solar atmosphere and the solar wind at Earth distance [85, 90], to the dynamo

action [149, 151, 89] and the Earth and planetary magnetospheres [120, 66, 233, 210].

Several studies show that the Hall effect is central in enhancing the rate of magnetic

reconnection [225, 156, 126, 125]. Moreover, its effect can also be employed to explain

the steepening of the power spectrum of the magnetic field, showing otherwise a

power-law slope close to -5/3 (as in the Kolmogorov hydrodynamic theory) at large

scale (MHD scale). Indeed, at scales above the ion inertial length the spectrum

shows a steeper trend, even though the value of the spectral index and the nature of

this additional inertial range are strongly debated. Some theoretical and numerical

works predicted a value close to -7/3 [85, 96], due to either the Hall term or the

effect of faster wave modes on the non-linear interactions. However, most spacecrafts

observations (principally in the near-Earth solar wind) suggest a steeper value,

between -2.6 and -3 [100, 3], also reported in other numerical studies [76, 44].

A major difficulty in simulating Hall-MHD is related to the need to resolve

fast phenomena such as whistler and Hall-drift waves, evolving on faster dynamics

than Alfvén waves and requiring smaller time steps. To properly account for the

propagation of the perturbations caused by the Hall effect, it is necessary to capture

those plasma waves with max(cw) ∝ 1/∆x, at the smallest resolved wavelength ∆x.

The Courant-Friedrichs-Lewy (CFL) condition then yields ∆t ∝ ∆x2. This scaling

implies a rapid decrease in the time step as the spatial resolution increases, which

poses severe limitations in terms of computational cost. Nevertheless, several different

numerical schemes performing Hall-MHD simulations have been developed over the

years; pseudo-spectral methods [150] are commonly recognized as having the most ac-
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curate representation of the fields at the resolved dynamical scales [173], however also

finite-volume [209, 135] or hybrid particle-in-cell codes [125, 170] have been widely

adopted. Here, we propose a Lattice-Boltzmann (LB) implementation of the Hall

magneto-hydrodynamics (Hall-MHD) equations representing a valuable alternative

to more established algorithms and providing a convenient trade-off between accuracy

and computational efficiency. Indeed, unlike more traditional methods that solve

the dynamics of flows at the macroscopic level, Lattice-Boltzmann method (LBM)

operate at an underlying mesoscopic level, in which the flow complexity emerges from

re-iterating simple rules of collision and streaming of populations of particles moving

along the links of a regular cubic lattice [108]. Therefore, its intrinsically discrete

nature and focus on the local dynamics, makes it computationally extremely efficient

[104]. Also, these reasons encouraged us to pursue the LB modeling to simulate

Hall-MHD turbulence, an effort that has never been undertaken. The development

of FLAME was also strongly motivated by the need of the community for innovative

numerical tools for the study of space plasma turbulent dynamics at scales that are

by now within reach of high-resolution on-board spacecraft’s instruments, such as

the ESA mission Solar Orbiter [158].

In this work, the implemented code, FLAME, is validated at first against an

analytical solution of the dissipative Hall-MHD equations [232], and then against

MHD simulations performed with the Geophysical High-Order Suite for Turbulence

(GHOST) code, providing optimal results of FLAME in terms of stability and

accuracy. As an example, in a regime of high Reynolds numbers, we show that

LB simulations are able to reproduce the break in the magnetic energy spectrum

at sub-ion scales, in perfect agreement with solar-wind measurements. Numerical

simulations of MHD and Hall-MHD turbulence performed with FLAME have been

used for comparisons of high-order statistics with magnetic field measurements in

the solar wind, showing also in this case a good agreement.
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Simulating plasmas in the Hall-MagnetoHydroDynamics (Hall-MHD) regime represents
a valuable approach for the investigation of complex non-linear dynamics developing in
astrophysical frameworks and fusion machines. Taking into account the Hall electric field
is computationally very challenging as it involves the integration of an additional term,
proportional to ∇× ((∇×B)×B) in the Faraday’s induction law. The latter feeds back
on the magnetic field B at small scales (between the ion and electron inertial scales),
requiring very high resolutions in both space and time in order to properly describe its
dynamics. The computational advantage provided by the kinetic Lattice Boltzmann (LB)
approach is exploited here to develop a new code, the Fast Lattice-Boltzmann Algorithm
for MHD Experiments (flame). The flame code integrates the plasma dynamics
in lattice units coupling two kinetic schemes, one for the fluid protons (including the
Lorentz force), the other to solve the induction equation describing the evolution of the
magnetic field. Here, the newly developed algorithm is tested against an analytical wave-
solution of the dissipative Hall-MHD equations, pointing out its stability and second-
order convergence, over a wide range of the control parameters. Spectral properties of
the simulated plasma are finally compared with those obtained from numerical solutions
from the well-established pseudo-spectral code ghost. Furthermore, the LB simulations
we present, varying the Hall parameter, highlight the transition from the MHD to the
Hall-MHD regime, in excellent agreement with the magnetic field spectra measured in
the solar wind.

1. Introduction
In the frame of the MHD model, plasma is treated as a single species quasi-neutral

fluid with conductive properties sensitive to the action of the magnetic field (Galtier

† Email address for correspondence: raffaello.foldes@ec-lyon.fr
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2016). In the ideal MHD description, ions and electrons are tied to the magnetic field,
moving with the same velocity. The Hall-MHD model relaxes the MHD prescriptions
assuming ions disunite from the magnetic field due to their inertia, while electrons
remain bound to it (Pandey & Wardle 2008). In this framework, the resistive Ohm’s
law is generalized through the introduction of the Hall electric field, proportional to
J × B, where J and B denote the current density and the magnetic field, respectively.
The Hall electric field has an effect on the magnetic field at length scales shorter than
the ion inertial length di = c/ωpi (ωpi being the ion plasma frequency, c the speed of
light) as well as at time scales shorter than the ion cyclotron period 1/ωci (Huba 2003).
The scale di corresponds to the scale at which ions and electrons decouple, and the
magnetic field becomes frozen into the electron fluid rather than in the bulk plasma.
Hall-MHD has been already adopted in literature to describe a variety of astrophysical,
space and laboratory environments, and to provide a detailed description of plasma
dynamics. Its applications span from the star formation (Norman & Heyvaerts 1985;
Marchand, P. et al. 2018) to the solar atmosphere and the solar wind (Galtier & Buchlin
2007; González-Morales et al. 2019), and it has been used also to investigate magnetic
reconnection processes (Wang et al. 2001; Morales et al. 2005; Ma et al. 2018) and the
dynamo action (Mininni et al. 2002, 2005; Gómez et al. 2010). A major difficulty in
simulating Hall-MHD is related to the need to resolve whistler waves, evolving on fast
dynamics with a phase speed cw(k) ∝ k increasing linearly with the wavenumber k. In
order to properly account for the propagation of the perturbations caused by the Hall
effect, it is, therefore, necessary to capture those plasma waves with max(cw) ∝ 1/∆x,
at the smallest resolved wavelength ∆x. The Courant-Friedrichs-Lewy (CFL) condition
then yields ∆t ∝ ∆x2. This scaling implies a rapid decrease of the time-step as the
spatial resolution increases, which poses severe limitations in terms of computational
cost. Nevertheless, Hall-MHD simulations have been proposed over the years in numerous
studies, through the integration of the equations with pseudo-spectral (Mininni et al.
2003), finite-volume (Tóth et al. 2008; Marchand, P. et al. 2018) or hybrid particle-in-cell
codes (Ma et al. 2018; Papini et al. 2019). When dealing with turbulent flows, pseudo-
spectral methods are usually recognized as the best option that allows for an equally-
accurate representation of the fields at the resolved dynamical scales (Patterson & Orszag
1971). On the other hand, their computational cost can be prohibitive (as mentioned
before) when it comes to the integration of simulations in three dimensions and for many
turnover times (Huba 2003). The main purpose of the novel code that we developed here,
flame (Fast Lattice-Boltzmann Algorithm for MHD Experiments), is to overcome
this issue. Indeed, the Lattice Boltzmann (LB) implementation provides an alternative
to achieve a convenient trade-off between accuracy and computational efficiency. Unlike
more traditional methods that solve the dynamics of flows at the macroscopic level, LB
methods operate at an underlying mesoscopic kinetic level. The flow complexity emerges
from re-iterating simple rules of collision and streaming of populations of particles moving
along the links of a regular cubic lattice (Krueger et al. 2016). The connection between
such an idealized representation and the macroscopic dynamics is by now well-established
and accepted, placing the method on a solid theoretical and mathematical ground (Shan
& He 1998). Furthermore, due to its intrinsically discrete nature and its focus on the
local dynamics, it is also computationally extremely efficient (Körner et al. 2006). A
decisive contribution to make possible the simulation of ideal MHD plasmas by means
of LB methods was made by Dellar (2002), who showed that the native LB framework
based on the Bhatnagar-Gross-Krook (BGK) collision (Bhatnagar et al. 1954) could be
consistently extended to encompass both the fluid dynamics driven by the Lorentz force
and the induction equation for the magnetic field. The scheme introduced by Dellar
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overcomes the major limitations of previous efforts (Montgomery & Doolen 1987; Chen
et al. 1991; Succi et al. 1991; Martínez et al. 1994) and fully complies with the macroscopic
MHD equations in a weakly-compressible formulation (see §3). Nevertheless, it is prone to
develop numerical instabilities when strong gradients emerge in the flow, thus delaying in
the community its implementation for the simulation of turbulent fluid frameworks. More
recently, De Rosis et al. (2018) have shown that it is possible to prevent the simulation
to become unstable by replacing the original BGK collision with an operator defined in
the space of moments, allowing the explicit damping of the non-hydrodynamic modes
responsible for the onset of spurious instabilities. An entropic stabilization has also been
proposed by Flint & Vahala (2018), though leading to a more complicated scheme. These
advances encouraged us to pursue the LB modeling to simulate Hall-MHD turbulence,
an effort that has never been undertaken previously. The development of flame was
also strongly motivated by the need of the community for innovative numerical tools
for the study of space plasma turbulent dynamics at scales that are by now within the
reach of high-resolution instruments on board spacecrafts, such as the ESA mission Solar
Orbiter (Müller et al. 2020a).
The paper is organized as follows. In §2, the Hall-MHD equations are presented in a
form that is relevant for LB developments. The LB scheme implemented in flame is
introduced and discussed in §3. The coupling between the fluid and the magnetic lattices
is explained, as well as the inclusion of the Hall effect in the collision operator. The
conversion from physical to lattice units is discussed in great detail. §4 is devoted to
the validation of the code against an analytical solution of the dissipative Hall-MHD
equations (Xia & Yang 2015). This section provides an assessment of the numerical
stability and a quantitative estimation of the dispersion and dissipation errors. The
computational efficiency is discussed in §5, where GPU-accelerated simulations of the
three-dimensional Orszag-Tang vortex problem are considered (Orszag & Tang 1979). In
a regime of high Reynolds numbers, we show that LB simulations are able to reproduce
the break in the magnetic energy spectrum at sub-ion scales, in perfect agreement with
solar-wind measurements. Finally, we outline potential applications for the investigation
of space plasmas in §6, and draw conclusions in §7.

2. The Hall-MHD equations
In this section, the Hall-MHD equations are introduced in the standard incompressible

approximation and in a weakly-compressible formulation, suitable for LB developments.

2.1. Incompressible formulation
In this context, when we refer to the macroscopic description of the plasma what we

mean is the description of the prognostic fields appearing in the model equations. Thus,
at the macroscopic level, the incompressible resistive MHD equations for an electrically
conductive quasi-neutral fluid consist of the incompressible Navier-Stokes equations with
the addition of the Lorentz force, coupled with the resistive induction equation for the
magnetic field:

∇ ·U = 0 (2.1)

∂tU + (U ·∇)U =
1

ρ0
J×B− 1

ρ0
∇p + ν∇2U (2.2)

∂tB = ∇× (U×B− η∇×B) (2.3)

∇ ·B = 0 (2.4)
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where t is the time, ρ0 is the mass density of the fluid, ν is the kinematic viscosity and η
it the magnetic resistivity. The electric current density is expressed as J = 1/µ0∇×B,
where µ0 is the magnetic permeability in the vacuum. To account for the Hall effect, it is
necessary to take a step back in the mathematical developments and resort to a two-fluid
description that includes the fluid equations for both ions and electrons separately. For a
fully ionized plasma in which the masses of ions (mainly protons) and electrons (hereafter
i and e) are me � mi ≈ m, the momentum equations read as

ρ[∂tU + (U ·∇)U] = en(E + U×B)−∇pi + ∇ · σ + R (2.5)

0 = −en(E + Ue ×B)−∇pe −R (2.6)
where e is the unit electric charge, σ is the viscous stress tensor, n is the particle density
with ρ = mn, and R is the rate (per unit volume) of momentum exchange due to
collisions between protons and electrons. The latter is given by R = −mnfie(U −Ue)
where fie denotes the collision frequency and can be reformulated as R = −(mfie/e) J,
with the density current J = en(U − Ue). By summing (2.5) and (2.6) and assuming
σαβ = ρν(∂αUβ + ∂βUα), one obtains

∂tU + (U ·∇)U =
1

ρ
J×B− 1

ρ
∇p + ν∇2U. (2.7)

On the other hand, by replacing Ue by U − J/ne and the expression for the rate of
momentum exchange into (2.6), the Ohm’s law becomes

E = −(U− 1

en
J)×B +

1

en
∇pe +

mfie
e2n

J. (2.8)

Taking the curl of this equation gives in the end an induction equation with Hall’s current
correction in standard physical units as

∂tB = ∇× [(U− αHJ)×B] + η∇2B (2.9)

where αH = 1/en is usually referred to as the Hall parameter and the magnetic resistivity
η = mfie/(e

2nµ0).

2.2. Weakly-compressible formulation
Incompressibility is an assumption made at the macroscopic level and cannot be

implemented in the mesoscopic representation as this would imply that fluid particles
move at infinite speed, in order to adapt instantaneously the pressure. Incompressibility
can nevertheless be approached in the so-called weakly-compressible limit, in which the
speed of sound waves cs becomes much larger than the typical fluid velocity U0, or
equivalently, the pressure field adapts in a time shorter than the time over which the flow
evolves. This regime is attained for vanishing Mach number, Ma ≡ U0/cs. Consequently,
the incompressible equations should be replaced with the compressible formulation

∂tρ+ ∇ · (ρU) = 0 (2.10)

∂t(ρU) + ∇ ·
(
ρU⊗U + pI +

1

2
|B|2I−B⊗B

)
= ρν∇2U (2.11)

in which the Lorentz force has been rewritten in a conservative form, since the divergence
of the Maxwell stress tensor Mαβ = 1

2 |B|2δαβ − BαBβ† and µ0 has been absorbed by
replacing B with µ1/2

0 B. This (standard) normalization will be assumed hereafter, which

† The notation a⊗ b ≡ aαbβ is adopted
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allows simplifying the Lorentz force as (∇×B)×B. Compressibility requires resorting to
an equation of state linking pressure, mass density and temperature. Here, the low-Mach
limit justifies the use of a simple isothermal relation

p = ρc2s (2.12)

which is consistent with O(Ma2) mass-density fluctuations. The induction equation
describing the evolution of the magnetic field can be rewritten in the same fashion as

∂tB + ∇ · ((U− αHJ)⊗B−B⊗ (U− αHJ)) = η∇2B. (2.13)

Let us remark that following the normalization of B by µ1/2
0 , the Hall current αHJ reads

as αH/µ0
1/2 ∇×B. In the next sections, the developed LB scheme will conform to the

set of equations (2.10), (2.11), (2.12) and (2.13). The divergence-free condition on B is
preserved by (2.13), justifying that it is sufficient to impose ∇ · B = 0 initially. In the
numerical modelling, particular attention will be paid to verify that this condition is
indeed preserved with accuracy.

3. Hall-MHD Lattice Boltzmann scheme
In this section, the standard LB method for classical fluid dynamics is briefly intro-

duced, focusing on key steps, then it is extended to encompass Hall-MHD. Further details
are provided in the appendix A. A central-moment collision operator (De Rosis et al.
2018) and a high-connectivity D3Q27 lattice are used to integrate the dynamics of the
fluid protons, while the evolution of the magnetic field is accounted by a Bhatnagar-Gross-
Krook (BGK) collision operator (Bhatnagar et al. 1954) and a low-connectivity D3Q7
lattice. Our original contribution to these developments is the self-consistent integration
of the Hall term in the LB scheme by suitably redefining the equilibrium state for the
magnetic field.

3.1. Lattice Boltzmann scheme for the fluid dynamics
3.1.1. Standard BGK Lattice Boltzmann scheme

The LB method (Krueger et al. 2016) is based on the idea that fluid motions can
be represented by the collective behavior of fictitious (introduced in the frame of the
LB integration strategy) particle populations evolving along the links of a cubic lattice.
When the lattice connectivity, which accounts for the discrete directions of propagation
of the particles, is high enough to satisfy sufficient isotropy, weakly-compressible Navier-
Stokes dynamics can be reproduced with an O(Ma3) error. The macroscopic variables
such as the fluid density ρ, momentum ρU, or stress tensor Σ are obtained as statistical
moments of the particle distributions, i.e.

ρ =
N−1∑

i=0

fi (3.1)

ρU =
N−1∑

i=0

fici (3.2)

Σ =
N−1∑

i=0

fici ⊗ ci (3.3)

by summing over the local mass densities f0, · · · , fN−1 of particles moving with velocities
c0, · · · , cN−1, respectively. The sums replace here the integrals over c of the classical
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(a) D3Q15 (b) D3Q19 (c) D3Q27

Figure 1. Typical cubic lattices with 15, 19 and 27 velocities, respectively. At each lattice node,
the microscopic velocities point towards the centre (black), the 6 centres of faces (green), the
12 centres of the edges (red) or the 8 corners (blue) of a cube. The arrows represent the local
displacements ci∆t of particles from a lattice node to a neighbouring node during exactly one
time-step. In the present study, a D3Q27 lattice that is more appropriate to simulate strongly
non-linear fluid dynamics is considered (Silva & Semiao 2014).

kinetic theory as the result of a drastic decimation in velocity of the phase space. From
a theoretical viewpoint, the LB method is derived by expanding the solution of the
continuum Boltzmann equation onto a finite basis of Hermite polynomials in velocity,
and by resorting to a Gaussian quadrature formula to express the statistical moments
(He & Luo 1997). As a consequence, the particle densities fi(x, t) evolve according to a
discrete-velocity analogue of the Boltzmann equation, which reads as

∂tfi + (ci ·∇) fi = −1

τ

(
fi − f (0)i (ρ,U)

)
(3.4)

under the BGK approximation (Bhatnagar et al. 1954). The latter assumes that collisions
are responsible for the relaxation of the particle densities towards their equilibrium state
f
(0)
i (ρ,U), with a unique relaxation time τ = ν/c2s.
The Lattice keyword refers to the discretization in space and time of (3.4) with a set

of microscopic velocity c0, · · · , cN−1 chosen in a way such that particles travel from a
lattice node to a neighbour lattice node in exactly one time-step (see Fig. 1).

The LB scheme then expresses simply as

f̄i(x + ci∆t, t+∆t) = f̄i(x, t)− ω
(
f̄i(x, t)− f (0)i (ρ,U)(x, t)

)
(3.5)

where the discrete distribution functions f̄i(x, t) depend on the three spatial coordinates
x and on time t, and stems from the change of variables f̄i = fi + ∆t/2τ(fi − f

(0)
i ).

This change of variable comes from the trapezoidal rule used to approximate the integral
of the collision operator (right-hand side of (3.4)) between t and t + ∆t (Krueger et al.
2016). It also calls for a redefinition of the relaxation time as τ +∆t/2 so that

1

ω
=

(
ν

c2s∆t
+

1

2

)
(3.6)

where the speed of sound cs is linked to the lattice spacing by ∆x/∆t =
√

3cs for the
D3Q27 lattice. The expressions of the mass density and fluid momentum as statistical
moments remain unchanged with
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ρ =
N−1∑

i=0

f̄i (3.7)

and ρU =
N−1∑

i=0

f̄ici. (3.8)

In practice, (3.5) is divided into a two-step algorithm with a streaming step consecutive
to a local collision operation, i.e.

f̄i(x + ci∆t, t+∆t) = f̄∗i (x, t) (3.9)

f̄∗i (x, t) = f̄i(x, t)− ω
(
f̄i(x, t)− f (0)i (ρ,U)(x, t)

)
. (3.10)

To complete the algorithm, the particle densities at the equilibrium f
(0)
i need to

be specified. By construction, f (0)i is defined as a truncated Hermite expansion of the
continuous Maxwell-Boltzmann distribution evaluated in ci, which reads as

f
(0)
i (ρ,U) = wiρ

(
1 +

ci ·U
c2s

+
(ci ·U)2

2c4s
− U ·U

2c2s
+ · · ·

)
(3.11)

with the weights wcenter = 8/27, wface = 2/27, wedge = 1/54 and wcorner = 1/216 for
the D3Q27 lattice. An expansion truncated at the second order is enough to recover the
Navier-Stokes equations with an O(Ma3) error. However, several groups (Malaspinas
2015; Coreixas et al. 2017, 2019; De Rosis & Luo 2019) have recently shown that
accounting for high-order terms results in a gain in accuracy and stability. In our code,
f
(0)
i has been developed up to the sixth order. The extension of the standard LB algorithm
to encompass the Lorentz force is straightforward and relies on the fundamental property
that the second-order statistical moment at equilibrium gives the conservative part of
the stress tensor. Therefore, incorporating the Lorentz force in the equation describing
the fluid dynamics, or equivalently, the Maxwell tensor in the stress tensor amounts to
upgrading the equilibrium state as

f
mhd(0)
i (ρ,U,B) = f

(0)
i (ρ,U) +

wi
2c4s

(
(B ·B)(ci · ci)− (ci ·B)2

)
(3.12)

so that the second-order moment becomes,

Σmhd(0) =

N−1∑

i=0

f
mhd(0)
i ci ⊗ ci = ρU⊗U + pI +

1

2
|B|2I−B⊗B. (3.13)

This concludes the introduction of the standard BGK-LB algorithm for MHD.

3.1.2. Central-moment Lattice Boltzmann scheme
Despite its simplicity, effectiveness and large popularity, the BGK-LB scheme is known

to suffer from numerical instability when large velocity gradients develop in the flow. This
issue made it necessary to adapt either the numerical discretization of (3.4) or the collision
operator (Krueger et al. 2016). If the former leads to more stable schemes, accuracy is also
considerably degraded. This drawback motivated the remarkable efforts made towards
developing collision operators with improved stability, as recently reviewed by Coreixas
et al. (2019). Moment-based collision operators rely on relaxing statistical moments rather
than distributions. In addition, different relaxation times can be chosen to individually
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over-damp non-hydrodynamic moments (mainly responsible for instabilities) while en-
suring the correct relaxation of hydrodynamic moments, e.g. density, velocity or stress
tensor. By doing so stability can be considerably enhanced while preserving physical
consistency. Nevertheless, due to the strongly nonlinear character of turbulent dynamics,
spurious dissipative effects can occur as a result of the numerical integration of fluid-like
equations over a very large number of grid points and of time-steps, as is the case for
Hall-MHD turbulence.

A significant reduction of dissipation artifacts developing in turbulence simulations
can be obtained by considering statistical moments expressed in the reference frame of
the moving fluid rather than in the laboratory inertial frame, referring to a class of so-
called central-moment (CM) collision operators (Geier et al. 2007, 2015; De Rosis et al.
2018). This is the very framework adopted in lay-outing our code (details are given in the
appendix A). A key ingredient of CM-LB schemes is the shift of the particle velocities by
the local fluid velocity that defines a new set of local microscopic velocities c̄i = ci −U
used for the CMs evaluation. Here, we consider the set of CMs as formally defined by

|k〉 ≡ [k0 · · · k26]> = T>|f̄〉 (3.14)

where the transformation matrix T applies to the set of distributions |f̄〉 ≡ [f̄0 · · · f̄26]>

and is explicitly defined by the column vectors

|T0〉 = |1〉
|T1〉; |T2〉; |T3〉 = [c̄ix]>; [c̄iy]>; [c̄iz]

>

|T4〉; |T5〉; |T6〉 = [c̄ixc̄iy]>; [c̄ixc̄iz]
>; [c̄iy c̄iz]

>

|T7〉; |T8〉; |T9〉 = [c̄2ix − c̄2iy]>; [c̄2ix − c̄2iz]>; [c̄2ix + c̄2iy + c̄2iz]
>

|T10〉; |T11〉; |T12〉 = [c̄ixc̄
2
iy + c̄ixc̄

2
iz]
>; [c̄ixc̄

2
iy + c̄iy c̄

2
iz]
>; [c̄2ixc̄iy + c̄2iy c̄iz]

>

|T13〉; |T14〉; |T15〉 = [c̄ixc̄
2
iy − c̄ixc̄2iz]>; [c̄ixc̄

2
iy − c̄iy c̄2iz]>; [c̄2ixc̄iy − c̄2iy c̄iz]>

|T16〉 = [c̄ixc̄iy c̄iz]
>

|T17〉; |T18〉; |T19〉 = [c̄2ixc̄
2
iy + c̄2ixc̄

2
iz + c̄2iy c̄

2
iz]
>; [c̄2ixc̄

2
iy + c̄2ixc̄

2
iz − c̄2iy c̄2iz]>; [c̄2ixc̄

2
iy − c̄2ixc̄2iz]>

|T20〉; |T21〉; |T22〉 = [c̄2ixc̄iy c̄iz]
>; [c̄ixc̄

2
iy c̄iz]

>; [c̄ixc̄iy c̄
2
iz]
>

|T23〉; |T24〉; |T25〉 = [c̄ixc̄
2
iy c̄

2
iz]
>; [c̄2ixc̄iy c̄

2
iz]
>; [c̄2ixc̄

2
iy c̄iz]

>

|T26〉 = [c̄2ixc̄
2
iy c̄

2
iz]
>.

This set of vectors forms a simple relevant basis (T is reversible) allowing for a suitable
separation between hydrodynamic and non-hydrodynamic moments (De Rosis 2017). In
the space of CMs, the collision step (3.10) now generalizes as

|k∗〉 = |k〉 − S
(
|k〉 − |k(0)〉

)
with |k(0)〉 = T>|fmhd(0)〉 (3.15)

where S is a diagonal matrix applied to each moment individually. Let us point out that
the BGK collision is recovered by taking S = ωI. A proper choice for S is given by

S = diag[1, 1, 1, 1, ω, ω, ω, ω, ω, 1, ..., 1] (3.16)

which ensures that mass and momentum are conserved by the collision operator and
that viscosity is suitably taken into account. On the other hand, higher-order moments
are set equal to equilibrium. Eventually, the post-collision distributions are obtained by
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returning to the space of the distributions through

|f̄∗〉 = T−1
>|k∗〉 (3.17)

before moving on to the streaming step (3.9).

3.2. Vector-valued Lattice Boltzmann scheme for the magnetic field
We now present the LB scheme for the magnetic field introduced by Dellar (2002), here

extended to encompass the Hall effect in simulating MHD turbulent plasmas. Following
the works previously done by Croisille et al. (1995) and Bouchut (1999), Dellar (2002)
proposed a decomposition of the magnetic field as:

B(x, t) =
M−1∑

i=0

ḡi(x, t) (3.18)

where the sum spans a set of vector-valued densities g0, · · · ,gM−1 associated with the
microscopic velocities ξ0, · · · , ξM−1.

The magnetic field B is here provided by the zeroth-order moment of ḡi hinting that a
lattice with low connectivity should suffice to simulate its dynamics. In practice, a D3Q7
lattice with only seven velocities (see green arrows in Fig. 1) shall prove to be satisfactory
in reproducing the magnetic field of Hall-MHD turbulent plasmas. Analogously to the
fluid case, a LB scheme can be derived in order to simulate the induction equation in the
form

ḡi(x + ξi∆t, t+∆t) = ḡi(x, t)− ωB
(

ḡi(x, t)− g
(0)
i (U,B)(x, t)

)
(3.19)

where the relaxation parameter ωm is now related to the magnetic resistivity η by

1

ωB
=

(
η

C2∆t
+

1

2

)
(3.20)

with ∆x/∆t = 2C for the D3Q7 lattice. In practice, it is desirable that the nodes of
the D3Q7 and D3Q27 lattices coincide so that the macroscopic quantities such as u, B
or J may be exchanged between the two lattices without interpolation. This constraint
imposes that

2C =
√

3cs. (3.21)
In the context of ideal MHD, the densities at equilibrium are given by

g
(0)
iα (U,B) = Wi

(
Bα +

1

C2
ξiβ(UβBα −BβUα)

)
(3.22)

with Wcenter = 1/4 and Wface = 1/8 for a D3Q7 lattice. By doing so, the first-order
moment

M−1∑

i=0

ξiαg
(0)
iβ = U⊗B−B⊗U (3.23)

would suitably reconstruct the transport term of the induction equation. Including the
Hall correction in this equation is thus equivalent to upgrading the equilibrium densities,
so that

Λ
(0)
αβ =

M−1∑

i=0

ξiαg
Hall(0)
iβ = (U− αHJ)⊗B−B⊗ (U− αHJ) (3.24)
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which is obviously possible by now considering

g
Hall(0)
iα (U,B,J) = Wi

(
Bα +

1

C2
ξiβ((Uβ − αHJβ)Bα −Bβ(Uα − αHJα))

)
. (3.25)

Nevertheless, J needs to be computed, possibly from the densities, in this expression.
An essential benefit of the LB framework is that the spatial derivatives of the magnetic

field, thus J, are self-consistently obtained (within an O(Ma3) error) from the first-order
moment of the densities as

Jγ = εαβγ
∂Bα
∂xβ

= −εαβγ
ωB
C2

(
Λαβ −Λ(0)

αβ

)
(3.26)

where εαβγ is the Levi-Civita tensor and Λαβ =
∑M−1
i=0 ξiαḡiβ (Dellar 2002).

By replacing (3.24) in (3.26) we obtain a linear system readily solvable to obtain the
current density J, namely (

I +
2αHωB
C2

M

)
J = J0 (3.27)

where

M =




0 Bz −By
−Bz 0 Bx

By −Bx 0


 and J0 =



Λyz −Λzy − 2 (UyBz − UzBy)

Λzx −Λxz − 2 (UzBx − UxBz)
Λxy −Λyx − 2 (UxBy − UyBx)


 . (3.28)

Obviously, a solution exists only if it is possible to invert M̃ = I+
(
2αHωB/C

2
)
M. It can

be easily verified that det(M̃) 6= 0, which proves this solution exists and is unique. The
current density obtained by solving (3.27) can then be used to compute the equilibrium
densities (3.25) and proceed to the collision operation.

The expression of (3.26) also provides a consistent approximation of the divergence of
the magnetic field. Indeed by taking the trace of the magnetic tensor, one obtains

∇ ·B ' −ωB
C2

Tr (Λαβ) (3.29)

by noticing that Tr
(
Λ

(0)
αβ

)
= 0. Furthermore, the O(Ma3) correction cancels out by

taking the trace. Therefore, this correction is pushed to a higher order, so that the
divergence-free ∇ ·B = 0 corresponds with high accuracy to the condition Tr (Λαβ) = 0
in the LB framework (Dellar 2002). In practice, we have checked in our LB simulations
that this condition was maintained throughout the runs, to machine round-off error.

3.3. Dimensionless formulation
In the following, the Hall-MHD equations are re-arranged in a dimensionless form

in terms of the control parameter εH , associated with the Hall parameter αH = 1/ne.
This control parameter is then recast in lattice units for practical LB purposes. Physical
quantities in lattice units are hereafter indicated with the superscript lbm. In lattice
units, the lattice spacing ∆x and the time-step ∆t of the scheme define the units of
length and time, respectively. In order to obtain a dimensionless induction equation, let
us normalise the magnetic field with a reference value, B0, the fluid velocity with U0, the
current density with B0/L0, the length with L0 and the time with L0/U0. Leveraging
these characteristic quantities, (2.9) can be written in a dimensionless form as

(
U0B0

L0

)
∂tb =

1

L0
∇×

[(
U0u−

αHB0√
µ0L0

∇× b

)
× (B0b)

]
+
ηB0

L2
0

∇2b (3.30)
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Dimensionless fields are here indicated by lowercase letters. This equation can be reduced
to

∂tb = ∇×
[(

u− εH∇× b

)
× b

]
+

1

Rem
∇2b (3.31)

by defining the magnetic Reynolds number Rem = U0L0/η and the dimensionless Hall
parameter

εH =
αHB0√
µ0L0U0

. (3.32)

We can treat in the same fashion the fluid momentum equation, where the reference
scales are the same as those used to adimensionalize the induction equation. Therefore,

ρ
U2
0

L0
[∂tu + (u ·∇) u] = − 1

L0
∇ρc2s + ρν

U0

L2
0

∇2u +
B2

0

L0
(∇× b)× b (3.33)

which gives

∂tu + (u ·∇) u = − 1

Ma2
1

ρ
∇ρ+

1

Re
∇2u +

(
VA
U0

)2

(∇× b)× b (3.34)

where the control parameters are the Mach number Ma = U0/cs, the (fluid) Reynolds
number Re = U0L0/ν and VA/U0, the Alfvèn velocity being VA = B0/

√
ρ. The Hall

number εH is given in lattice units by

εlbmH =
αH√
µ0

[
B0/B

lbm
0

]
[
L0/Llbm

0

] [
U0/U lbm

0

] = εH
U lbm
0 Llbm

0

Blbm
0

. (3.35)

If one considers that the reference velocity U0 corresponds to the Alfvèn velocity (U0 =
VA) and ρ ' 1 for simplicity, one obtains that U lbm

0 = Blbm
0 and

εlbmH = εHL
lbm
0 = εHN (3.36)

with N = L0/∆x being the number of lattice points per reference length L0. The Hall
parameter εH can also be obtained as the ratio of two reference scales as

εH =
VA
U0L0

√
m

µ0ne2
=
LH
L0

(3.37)

with

LH =
VA
U0

√
m

µ0ne2
. (3.38)

In lattice units,

εlbmH =
LH
L0

U lbm
0 Llbm

0

Blbm
0

=
LH
∆x

U lbm
0

Blbm
0

=
U lbm
0 Llbm

H

Blbm
0

. (3.39)

If U0 = VA, LH is equal to the ion inertial length di (or ion skin depth). In that case,
εlbmH = Llbm

H and this corresponds to the number of lattice points per ion inertial length.
It is assumed that the dynamics of a MHD plasma develops under the influence of the
Hall effect at scales ` smaller that LH .

3.4. CFL condition for Hall-MHD turbulence
The Courant–Friedrichs–Lewy (CFL) condition (Lewy et al. 1928) determines, for an

explicit time-marching scheme, the maximum time-step for convergence, as

∆t 6 ∆x/cmax (3.40)
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|U| [×10−4] |B| [×10−3] |J| [×10−5]
1.3 4.0 6.5 9.0 1.6 1.7 1.8 1.9 0 0.85 1.7 2.5

y x

z

Figure 2. Three-dimensional rendering of the initial condition as indicated in (4.5) and (4.6).
The magnitudes of the fluid velocity (left), magnetic field (center) and density of electric current
(right) are here displayed for N = 128.

where cmax refers to the largest speed at which a signal propagates in the solution. In
the context of Hall-MHD, cmax should be identified with the largest phase speed of the
whistler waves. When the plasma dynamics in the direction of the magnetic field B is
dominant, the phase speed of the whistler waves varies as cw(k) = kV 2

A/ωci with the
wavenumber k; VA is the Alfvèn velocity, while ωci is the ion cyclotron frequency. In
physical units, ωci = eB/mi and VA = B/

√
µ0nmi, mi being the mass of ions and the

Hall parameter being αH = 1/ne. Therefore, one obtains that the time-step decreases
quadratically with the grid spacing, as

∆t 6 µ0(∆x)2

π αHB
(3.41)

assuming the largest attainable wavenumber to be kmax = π/∆x in the context of the
Hall-MHD turbulence. This condition can be rewritten accounting for the rescaling of
the magnetic field by µ0

1/2

∆t 6 (∆x)2

π (αH/
√
µ0) B0

(3.42)

which finally yields in lattice units to

1 6 1

π εlbmH Llbm
0 U lbm

0

=
1

π

Blbm
0

εH
(
NU lbm

0

)2 (3.43)

where (3.32) is used to retrieve αH/
√
µ0, and N = Llbm

0 . If U0 = VA, the CFL condition
for whistler waves can be reformulated as a condition on the Mach number Ma =

√
3U lbm

0 ,
which is in turn written as

Ma 6
(√

3

π

)
1

εHN2
. (3.44)

This condition reminds the quadratic dependence of the time step on the resolution
obtained with conventional CFD methods (Gómez et al. 2010). It also confirms that
Hall-MHD turbulence is computationally very demanding due to the presence of whistler
waves.
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Parameters Values
Resolution: N 32, 64, 96, 128
Mach number: Ma [×10−2] 1.0, 0.7, 0.5, 0.3
Kinematic viscosity: ν [×10−3] 1.0, 0.5, 0.33, 0.25, 0.2, 0.17, 0.14, 0.13, 0.11

Table 1. Parameters of LB simulations. The magnetic Prandtl number is kept unitary. The
kinematic viscosity is given in dimensionless units, i.e. normalised by U0L0, which means that
the Reynolds number Re = 1/ν.

4. Results
Our LB scheme and code flame is now validated against the analytical solution

of the incompressible and dissipative Hall-MHD equations proposed in (Xia & Yang
2015). The latter is used as a benchmark to evaluate accuracy and convergence of the
numerical solutions for different values of the control parameters (in a regime of low
Reynolds numbers in which the aforementioned analytical solution holds). A further
validation was done focusing on the MHD range of scales, this time in a regime of
high Reynolds numbers. The solutions of the MHD dynamics produced by flame were
compared in this case with those obtained with a well-established pseudo-spectral solver,
widely used for turbulent plasma simulations, namely the Geophysical High-Order Suite
for Turbulence (ghost, Mininni et al. (2011); Rosenberg et al. (2020)). Finally, the
physical consistency of the output and the computational performance were evaluated
when accounting explicitly for the Hall effect in the turbulent regime. This allowed us
to assess the reliability of our code in simulating the multi-scale dynamics generated by
turbulent flows at high Reynolds numbers, and in reproducing the transition from the
MHD to the Hall-MHD spectral range (at sub-ion scales).

4.1. Exact solution of the dissipative Hall-MHD
Due to their high computational cost, the availability in the literature of plasma

simulations reproducing the Hall-MHD range of scales (in three dimensions) is much less
than for the MHD case. Moreover, Hall-MHD simulations are in general performed using
pseudo-spectral codes (Ferrand et al. 2022; Meyrand & Galtier 2012; Gómez et al. 2010;
Yadav et al. 2022), which integrate of course the dynamical equations in the Fourier
space. Interestingly, Mahajan & Krishan (2005) derived an analytical solution for the
non-dissipative Hall-MHD equations, then extended by Xia & Yang (2015) with the
inclusion of dissipative effects. This solution is used in the following to test the stability
and convergence of flame. Encompassing dissipative effects Xia & Yang (2015), this
analytical solution allowed us to quantify as well the numerical dissipation spuriously
introduced by our scheme.

The solution provided by Xia & Yang (2015) is rewritten in a dimensionless form (see
§3.3) as

u(x, t) = u′(x, t) and b(x, t) = êz + b′(x, t) (4.1)
where the fluctuating velocity and magnetic fields are damped circular polarized waves
given respectively by

u′(x, t) =
[
B(êx + iêy) exp(ikz − iω±t)

+ C(êy + iêz) exp(ikx)

+A(êz + iêx) exp(iky)
]
e−νk

2t

(4.2)



14 R. Foldes, E. Lévêque, R. Marino, E. Pietropaolo et al.

and

b′(x, t) = α±u′(x, t) (4.3)

in complex notations. The amplitudes A, B, and C are arbitrary real values. The ambient
magnetic field here is assumed to be oriented along the unit vector êz. Since the dynamical
equations only consist of real variables, either the imaginary part or the real part is a
solution. The pulsation ω± = −α±k, where α± depends itself on the wavenumber k as

α± = −1

2
εHk±

√
ε2Hk2

4
+ 1. (4.4)

The magnetic Prandtl number is assumed unitary in obtaining this solution and the
reference velocity is assumed as corresponding to the Alfvèn velocity, i.e. U0 = VA in
(3.34). Finally, it is worth mentioning that this analytical solution holds in a strictly
incompressible framework, which, given the intrinsically compressible nature of the LB
scheme, prescribes that our simulations must be run at a (very) low Mach number
so that relative density fluctuations generated by the code remain negligible. In our
investigations, the Hall-MHD equations have been integrated in a cubic box of size
L0 = 2π. The evolution of the velocity field is deterministic from the initial condition

ulbm
x (x, 0) = U lbm

0

(
B sin

(
4πzk
N

)
+A cos

(
4πyj
N

))

ulbm
y (x, 0) = U lbm

0

(
B cos

(
4πzk
N

)
+ C sin

(
4πxi
N

))

ulbm
z (x, 0) = U lbm

0

(
C cos

(
4πxi
N

)
+A sin

(
4πyj
N

))
(4.5)

expressed in lattice units with A = 0.3, B = 0.2, C = 0.1 and N being the number
of lattice nodes per reference length L0. The reference velocity U lbm

0 is related by
construction to the Mach number through U lbm

0 = Ma/
√

3. The magnetic field is initially
proportional to the fluid velocity with

blbm
x (x, 0) = α+ulbm

x (x, 0)

blbm
y (x, 0) = α+ulbm

y (x, 0)

blbm
z (x, 0) = α+ulbm

z (x, 0) + U lbm
0

(4.6)

since U0 = VA. For sake of simplicity, the initial density is set to one everywhere in the
space. The (normalized) Hall parameter is fixed at εH = 1, that is εlbmH = N according to
(3.36). This value ensures that the solution is affected by the Hall effect with LH = L0

from (3.37). A three-dimensional rendering of the initial conditions expressed in (4.5)
and (4.6) is displayed in Fig. 2. With this initialization, the current density J = ∇×B
is non-zero at t = 0. The parameters used in the different simulations are reported
in Tab. 1. The Mach number is always small enough for the plasma to approach the
incompressible limit and in order to reduce the intrinsic discretization error of the LB
method. The CFL condition imposed by this solution is also satisfied. Finally, let us
mention that analogous simulations were performed with the phase speed α− yielding
very similar results on accuracy and stability. However, the phase speed is much larger
in the latter case, requiring a significant reduction of the Mach number (with εH = 1).
Results obtained for α+ and the velocity field only (b = α+u + êz) are presented in the
following.
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Figure 4. Temporal evolution of the velocity magnitude |u|(0, t) for different values of the
resolution (N) and viscosity (ν) at fixed Mach number Ma = 0.007.

4.2. Stability and incompressibility
The stability of the scheme was tested exploring the parameter space defined through

the Mach number, the lattice resolution and the kinematic viscosity (see Tab. 1). The
analytical solution introduced by Xia & Yang (2015) is such that the nonlinear terms
in the incompressible dissipative Hall MHD equations are strictly zero. In practice,
physical instabilities triggered by numerical errors do naturally develop and grow in time
in simulations whenever the viscosity is too small, eventually inducing the transition
to a turbulent state. Therefore, the numerical stability and accuracy of flame were
assessed in runs in which the viscosity was sufficiently high to prevent such transition
to turbulence. The typical temporal evolution of the velocity at a fixed location in
the simulation domain is shown in Fig. 3. The solution appears as a damped wave
propagating in the direction of the ambient magnetic field. The amplitude and the phase
of the solution are well captured in the LB simulation. The results obtained for different
resolutions and viscosity values at Mach number Ma = 0.007 are shown in Fig. 4 for
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Figure 5. Relative density fluctuations at different values of the Mach number (Ma) and
kinematic viscosity (ν) as a function of the resolution (N). In our simulations, the reference
density ρ0 is fixed at unity.

10 wave periods. All simulations remained numerically stable in the explored range of
parameters. The temporal averages of relative density fluctuations at different values of
Mach number and kinematic viscosity are displayed in Fig. 5. The level of these relative
fluctuations is typically of order 10−7 – 10−6’ indicating a very good convergence towards
the incompressible limit in all the simulations presented. Furthermore, the results confirm
that the amplitude of density fluctuations decreases with the Mach number.

4.3. Dispersion and dissipation errors
The dispersion and dissipation errors of the LB scheme implemented in flame are now

assessed. In this analysis, the dispersion error (or phase error) is computed by evaluating
the shift in time between the local maxima of the numerical solution and the analytical
wave solution (see Fig. 3). Therefore, tagging as tmax

i and t̄max
i the positions in time of

the maxima of the numerical and analytical solution (at a fixed location) respectively,
the average value of the relative dispersion error can be defined as

εφ = 1− 1

M

M−1∑

i=0

tmax
i+1 − tmax

i

t̄max
i+1 − t̄max

i

(4.7)

over M oscillating periods. For practical purposes we have used M = 10. As expected,
it can be observed in Fig. 6 how the dispersion error is very small and decreases as
the resolution N of the grid increases, showing a power-scaling law close to 1/N2. This
confirms a second-order accuracy of the LB scheme. We also found that the dispersion
error exhibits a rather constant behavior when changing the Mach number, and does
not seem to be affected by the value of the kinematic viscosity either. Let us remark
that some results differ from the global trend, certainly due to the premise of (physical)
instabilities at the lowest viscosity. After synchronizing the phases of numerical and
analytical solutions, the (relative) dissipation error is evaluated by comparing the velocity
magnitude of the two solutions, i.e.

εr =

M−1∑

i=0

|u(ti)− ū(ti)|
ū(ti)

. (4.8)

The dissipation error provides a first measure of the numerical dissipation. Two different
scaling behaviors are considered, namely the so-called acoustic and diffusive scalings
(Krueger et al. 2016). The acoustic scaling consists in keeping the Mach number fixed
while monitoring the convergence rate of the error εr for different Reynolds numbers,
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Figure 6. Relative dispersion error as defined by (4.7) for different values of the kinematic
viscosity ν and the Mach number Ma. The error decreases as N−2 as expected for a LB scheme.
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Figure 7. Acoustic scaling (Ma constant) of the relative dissipation error for different values
of the kinematic viscosity (ν) at fixed Mach number (Ma). The error decreases as N−2.

as a function of the resolution (see Fig. 7). On the other hand, the diffusive scaling is
obtained by keeping the lattice viscosity fixed (see Fig. 8). The behavior of the numerical
solution is consistent between the two regimes, showing a convergence of the dissipation
error with respect to the grid resolution ∝ 1/N2, as expected for a second-order scheme.

One of the advantages of dealing with a dissipative solution of the Hall-MHD equations
is the possibility to identify an effective viscosity ν̃ related to the damping ∝ exp(−ν̃k2t)
of the numerical solution. By decomposing ν̃ into the sum of a physical and a (spurious)
numerical viscosity, ν̃ = ν + νnum, the ratio between these two contributions reads as

εν =
νnum
ν

=
ν̃ − ν
ν

. (4.9)

The results obtained for the viscosity error εν are shown in Fig. 9. Here, we found that the
numerical viscosity represents only a small percentage of the estimated total viscosity,
and it decreases as 1/N2 with the resolution, which is once again consistent with a
second-order accuracy of the LB scheme. Interestingly, it is observed that the (relative)
viscosity error is independent from the physical viscosity and the Mach number, whereas
it only depends on the lattice resolution.

Finally, despite Dellar (2002) showed that a D3Q7 lattice was sufficient to reliably
account for the dynamics of each component of the magnetic field, in order to check
the validity of this statement, LB simulations with enhanced connectivity have been
performed here to investigate whether a more isotropic representation of the magnetic
densities would significantly improve the level of accuracy of the algorithm (Silva &
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second-order accuracy of the LB algorithm is highlighted by the black lines, i.e. εν ∼ O(∆x2).

Semiao 2014). Interestingly, our results showed no significant improvement when upgrad-
ing the magnetic lattice to D3Q15 or D3Q27 lattices (see Fig. 1), thus confirming what
was reported in Dellar (2002). A plausible explanation of this lies on the fact that the
magnetic field is represented as a zeroth order moment of densities for each component
(see (3.18)). Therefore, a few degrees of freedom are certainly sufficient to accurately
reconstruct the moments and describe the magnetic field dynamics.

4.4. Comparison with pseudo-spectral simulations of MHD turbulence
In this section, comparisons are made between the dynamics of MHD plasmas simulated

with flame and the outputs obtained with the ghost pseudo-spectral solver for high-
resolution simulations, when both codes perform the same decaying test run initialized
with the classical Orszag-Tang (OT) vortex problem (Orszag & Tang 1979). Indeed, the
OT solution is often considered as a prototypical flow to study freely evolving MHD
turbulence. The ghost solver has been widely used to tackle a variety of problems
related to both geophysical fluids and space plasmas (Marino et al. 2013; Pouquet &
Marino 2013; Marino et al. 2014, 2015a; Mininni et al. 2002, 2003, 2006; Gómez et al.
2010; Pouquet et al. 2019). It is a well-established community code available on https:
//github.com/pmininni/GHOST. ghost is a hybrid MPI/OpenMP/CUDA-parallelized
framework that hosts a variety of solvers having also GPU capability, delivering high
performance, robust results and an optimal scaling up to hundreds of thousand computing
cores. It relies on a second-order Runge-Kutta scheme for time integration and is de-
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Figure 10. (Left) Time evolution of the mean magnetic dissipation ∝ 〈|J|2〉 in freely-evolving
MHD turbulence for a LB simulation (N = 512) and a pseudo-spectral simulation (N=512)
performed with the ghost solver. (Right) Time evolution of the mean kinetic (Ev) and magnetic
(EB) energies.

aliased based on the classical two-third rule. As a pseudo-spectral de-aliased code, it
provides very high accuracy in resolving the spatial scales (Patterson & Orszag 1971). The
OT vortex problem prescribes the following initialization for the velocity and magnetic
fields:

U(x,0) = U0 [−2 sin y ; 2 sinx ; 0]

B(x,0) = B0 [−2 sin 2y + sin z ; 2 sinx+ sin z ; sinx+ sin y]

with U0 = 1 and B0 = 0.8 in a cubic box of size 2π.
In the simulation performed here, the Reynolds number attains values up to Re =

UL/ν ' 1600 when the flow reaches its peak of dissipation. The small-scale energy
dissipation is defined as ε = −ν〈|∇ ×U|2〉 − η〈|J|2〉 and encompasses both the kinetic
and magnetic dissipation with ν/η = 1. In the definition of the Reynolds number, U
refers to the r.m.s velocity and L = 2π

∫
k−1Ev(k)dk/

∫
Ev(k)dk is the integral length

scale, where Ev(k) is the energy spectrum of the velocity field. The Mach number is fixed
at Ma = 0.025. The number of grid points in each direction is N = 512.

The time evolution of the mean magnetic dissipation, as well as the kinetic and
magnetic energies, are shown in Fig. 10 for two realizations of LB and pseudo-spectral
simulations of the same OT problem. The simple visual inspection of the runs shows
that the agreement between flame and ghost is very satisfactory for the cases under
study. Only a slight underestimation of the magnetic dissipation in the flame run can
be observed for a few time steps after the peak of the current density J = ∇ × B. Let
us recall at this stage that J is directly obtained from the magnetic densities in the LB
simulation, and is not inferred by differentiating the magnetic field.

A more detailed comparison is provided by looking at the Fourier decomposition of the
fields obtained with the two codes. The kinetic and magnetic energy spectra are displayed
in Fig.11 at the peak of the magnetic dissipation. The kinetic energy spectrum of the LB
simulation seems over-damped at high wavenumbers. This is related to a known drawback
of the moment-based collision operator, which ensures higher stability (compared to the
standard BGK collision operator) but at the cost of an enhanced numerical dissipation
(Coreixas et al. 2019). However, when increasing the spatial resolution to N = 768,
the numerical dissipation is reduced and the spectrum of the flame run gets very
close to that of the pseudo-spectral solution. Concerning the magnetic energy spectrum,
the results from both simulations perfectly match, reflecting the fact that the BGK
collision operator adopted for the magnetic scheme does not add numerical dissipation
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solver.

(as compared to the pseudo-spectral simulation). It should also be noted that, while the
maximum wave-number is kmax = N/3 (due to the 2/3 rule for de-aliasing) in pseudo-
spectral simulations, the range of resolved scales reaches the Nyquist cut-off kmax = N/2
in LB simulations. Particular attention is now paid to the wavenumber-by-wavenumber
energy budget of the MHD equations. Starting from (2.11) and (2.13), the (total) energy
flux across wavenumber k can be defined as

SMHD(k) =
∑

|k′|<k
<[F(U)∗ · (F(U · ∇U)−F(J×B))−F(B)∗ · F(∇× (U×B))]

(4.10)
whereas the (total) dissipation in the range [0, k[ is given by

D(k) =
∑

|k′|<k
νk′2|F(U)|2 + ηk′2|F(B)|2 (4.11)

where F(·) means the Fourier transform and ∗ is the complex conjugate. The
wavenumber-by-wavenumber energy budget then writes

∂t
∑

|k′|<k
E(k′) = −SMHD(k)−D(k). (4.12)

We would like to mention that the contribution of the pressure term (not shown here)
is negligible in the context of these simulations. The fluxes obtained for the LB and
pseudo-spectral OT implementations (with N = 512) are displayed in detail in Fig. 12.
A satisfactory agreement is observed in particular for the non-linear energy transfer
terms, over the entire range of resolved wavenumbers. The slight over-dissipative nature
of the LB scheme is again evidenced in the output of the dissipation term D(k) at very
high wavenumbers.

5. High-Resolution simulations of 3D Hall-MHD plasmas
flame was used to simulate plasma dynamics in a regime in which the Hall-MHD

term is non-negligible. In particular, the governing equations have been integrated in
a triply periodic cubic lattice of size L = 2π with resolution 5123 and 7683, initialized
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Run N Ma [×10−4] Re Prm εH ttot/τ0 tpeak/τ0

I 512 7.0 4400 1 0.0025 48.2 31.8
II 512 1.0 5240 1 0.01 35.8 33.6
III 512 0.625 7150 1 0.025 29.6 26.5
IV 768 0.6 6000 1 0.015 36.6 32.0

Table 2. Parameters of Hall-MHD turbulence runs. Re, Ma and Prm denote respectively the
Reynolds number (at the peak of magnetic dissipation), the initial Mach number and the
magnetic Prandtl number. The (dimensionless) Hall parameter is εH . The number of grid points
per dimension is N . The total duration of the run is ttot/τ0 and the time at which the peak of
current density occurs is tpeak/τ0 in units of the reference time scale L0/U0. The Mach number
satisfies the CFL condition (3.4) imposed by whistler waves.
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Figure 13. Evolution of the magnetic dissipation over time for the three simulations performed
with the OT initial condition (see Tab.2). The shaded areas around the peak of the current
density (black dashed line) correspond to the range over which the energy spectra in Fig. 16
have been averaged.
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with the OT vortex as described in the previous section, for different values of the Hall
parameter (see Tab. 2). The Mach number was adjusted to the Hall parameter in order to
accommodate the CFL condition based on the time-scale of the whistler waves (see 3.4).
The Reynolds number is estimated here at the peak of magnetic dissipation (indicated
by the vertical dashed lines in Fig 13), at which the plasma is assumed to have reached
a fully developed turbulent state. The flame code relies on a multi-GPU (Graphic
Processing Unit) implementation of the LB scheme in order to reach high resolution
that optimizes the computational times. Massive multi-threading is handled within the
OpenCL (Open Computing Language) framework, allowing a high portability of the
code. The spatial domain is split along a single direction and each GPU is assigned a
sub-domain. A one-to-one mapping operates between the host CPU processes and the
GPUs. Therefore, the exchange of boundary nodes between the GPUs is handled through
memory transfers with the CPU processes and a message-passing interface (MPI) between
the latter. Simulations were run on a cluster equipped with NVIDIA A100-40Gb GPU
cards, hosted at the CINECA supercomputing center (Italy). For a 5123 lattice dimension,
only three GPUs were used in parallel, resulting in a computational speed of about 20
iterations per second, or equivalently, in 2.7 BLUPS (Billions of Lattice-node Updates Per
Second). This led to a wall-clock computational time of 10, 55 and 69 hours respectively
for the three runs indicated in Tab. 2 to pass the peak of magnetic-energy dissipation
(see Fig. 13). The computational times reported above are comprehensive of the time
required to transfer the three-dimensional vector fields (u, B and J) between the CPUs
and GPUs, and perform post-processing operations such as the tracking of the mean
kinetic and magnetic energies, and mean energy dissipation rates. All computations were
performed in double precision.

A rendering of the large-scale fields u and B is shown in Fig. 14 for the simulation
at the highest resolution (run IV in Tab. 2), again taken at the peak of the magnetic-
energy dissipation. The three-dimensional visualization is displayed together with the
kinetic and magnetic energy spectra, the latter showing two regimes above and below
the ion inertial length di. At the same time, the small-scale activity visible in Fig. 15 for
the electric current density J and the vorticity ω = ∇ × u, emphasizes the presence of
current sheets, Kelvin-Helmholtz instabilities and vortices, emerging as the disordered
structures characteristic of the Hall effect (Miura & Araki 2014). Furthermore, we have
found that increasing the intensity of the Hall effect produces a faster development of
turbulence in the plasmas under study due to the presence of both whistler and Hall-drift
waves, propagating quicker than the Alfvèn waves in the ideal MHD (Huba 2003). This
is consistent with the behavior captured in Fig. 13 for the three runs, increasing the Hall
parameter. The kinetic and magnetic energy spectra averaged over a time interval (around
the peak of dissipation, as indicated by the shaded areas in Fig. 13) are plotted in Fig. 16
for each run at resolution 5123. As expected, increasing the value of the Hall parameter
εH (indicated by the vertical dash-dotted line in Fig. 16) produces a shift of the Hall
length-scale LH towards larger scales, hence a shrink of the Kolmorogov’s k−5/3 power
law range in both kinetic and magnetic energy spectra. A very surprising and promising
feature of these simulations is the behavior of the magnetic spectra in the Hall-MHD
regime. In fact, at wavenumbers k > kH , the spectrum develops (as εH increases) a
power-law scaling that is in perfect agreement with the k−2.73 scaling obtained from the
spectral analysis of solar wind measurements at sub-ion scales, as reported in (Kiyani
et al. 2015).

In the MHD regime, the time step of the (compressible) Lattice Boltzmann runs is
constrained by the need for resolving sound waves. Therefore, the time-step of an LB
simulation is typically much smaller compared to the time-step of equivalent (incompress-
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ible) pseudo-spectral simulation, the ratio between the two time-steps being typically
the Mach number (Horstmann et al. 2022). Therefore, in the case of the MHD, the
advantage for our LB scheme in terms of turn-around times is not that big compared
to standard pseudo-spectral simulations. The situation is different when it comes to the
simulation of plasmas in the Hall-MHD regime, where the time-steps of the two methods
are identically constrained by the speed of whistler waves. In this case, the efficiency
of the LB scheme (exploiting the computational power of GPU accelerators) is a major
advantage, leading to wall-clock turn-around times that are significantly smaller for LB
schemes, and for flame in particular. Finally, we would like to mention that an extension
of flame allowing the simulation of the electron MHD dynamics would simply consist
in modifying the equilibrium distributions for the magnetic field in the LB scheme, by
neglecting the bulk velocity U with respect to the Hall current αHJ in (3.25).

6. Hall-MHD simulations for space plasma turbulence investigations
Space plasmas, whose dynamics involve a vast range of scales due to their large

Reynolds numbers Matthaeus et al. (2008); Parashar et al. (2019), do actually develop
well-defined MHD and Hall-MHD power-law spectral ranges, with a distinct transition
between them. This clearly emerges from the observations performed with plasma and
magnetic field instruments on board of two of the most recent space missions: Solar
Orbiter (SO; Müller et al. 2020b) and Parker Solar Probe (PSP; Fox et al. 2016). Fig. 17
shows the trace spectra of the magnetic field fluctuations measured by the PSP/FIELDS
(Bale et al. 2016) and SO/MAG (Horbury et al. 2020) magnetometers on board these
state of the art spacecrafts. In particular, the PSP (red) magnetic field sample, measured
on November 20, 2021, is relative to the fast solar wind plasma stream coming from
an equatorial coronal hole, while the SO (blue) sample is relative to a low-speed solar
wind stream measured on July 14 − 15, 2020, whose origin was identified in a coronal
streamer and pseudo-streamer configuration (D’Amicis et al. 2021). In Tab. 3 we report
the characteristic parameters of these solar wind samples. It is worth recalling that the
ion gyroradius ρi = vT,i/ωci (with vT,i ion thermal speed) and inertial length di = c/ωpi
are defined in terms of ion cyclotron ωci and plasma frequency ωpi, respectively, the latter
being in general significantly larger than the former. For values of density n, temperature
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T and β typical for space plasmas, the relation ρi . di is valid. However, it has been
remarked by several authors how, for β ∼ O(1), these characteristic length scales are
comparable ρi ' di (Alexandrova et al. 2008, 2009; Sahraoui et al. 2009; Kiyani et al.
2015). Thus, in the solar wind the breaking point identifying the transition between
the end of the MHD range and the beginning of the range where plasma kinetic effects
become relevant, in the magnetic field spectrum, at the sub-ion scales, is often referred as
occurring either at the ion gyroradius or at the inertial length scale, when β ∼ 1. In spite
of the different speeds, both the SOLO and the PSP solar wind samples we considered
here are Alfvénic, i.e., they are characterized by a high correlation between velocity
and magnetic field fluctuations (see Bruno & Carbone 2013, and references therein,
for a comprehensive review on the solar wind turbulence). A clear frequency break is
observed at kρi ∼ 1 separating fluid and kinetic scales, as shown in Fig.17, marking
the transition from the MHD turbulent inertial range (where energy is adiabatically
transferred to smaller and smaller scales), that is characterized by a Kolmogorov-like
spectrum Marino et al. (2011, 2012); Marino & Sorriso-Valvo (2023), to a range where
the kinetic effects begin to dominate and in which the energy gets dissipated (at the
bottom of such range), ultimately heating the solar wind plasma Marino et al. (2008).
As is known from spacecraft observations, fluid and kinetic scales in the solar wind
are characterized by different power-law spectral exponents. Features of these spectral
ranges mostly depend on the distance from the Sun at which observations are made, i.e.,
on the observed stage of evolution of the solar wind turbulence (see, e.g., Telloni et al.
2021, 2022a). The physical phenomena as well as the governing parameters controlling
the evolution of turbulence in the interplanetary space are still matter of investigation.
Nonlinear interactions (Bruno & Carbone 2013), expansion-driven magnetic (Shi et al.
2021) and velocity shears Marino et al. (2012), as well as the parametric decay of Alfvén
waves (Malara & Velli 1996), all certainly play some role. However, to date, there is not a
clear consensus on how turbulence evolves from a spectrum resembling the one predicted
by the Iroshnikov-Kraichnan phenomenology (Iroshnikov 1963; Kraichnan 1965) to a
Kolmogorov-like spectrum (Kolmogorov 1941) as the solar wind expands from regions
within the solar corona, or very close to it, to the outer heliosphere. Moreover, the
slope of the magnetic-field spectrum beyond the ion skin depth (or ion inertial length)
is highly variable, with power-law exponents ranging from ∼ −4 to ∼ −2 (Smith et al.
2006; Bruno et al. 2014), being also affected by the redistribution of the magnetic field
energy at the (larger) fluid scales: in general, the larger is overall the power spectral
density (PSD) within the MHD inertial range, the steeper is the spectrum at the kinetic
scales. A number of dissipative wave-particle mechanisms are supposedly involved in the
energy transfer and dissipation at the very small scales. Among these, cyclotron-resonant
dissipation certainly plays an important role (see, e.g., Bruno & Trenchi 2014; Telloni
et al. 2019), though the way energy is first brought to the small scales then dissipated
in the collision-less solar wind plasma is still a matter of debate. Both the evolution
of turbulence in the heliosphere and how energy is dissipated in the solar wind, are
major open questions in the space plasma community that could be effectively targeted
by means of numerical investigations produced with flame, which allows capturing the
transition between MHD and Hall-MHD regimes (Fig.16), like the more standard pseudo-
spectral codes. Another puzzle of solar and space plasma dynamics that can be tackled
with our LB code is how magnetic switchbacks observed in the solar corona as well as
in the solar wind do contribute to the local heating of the plasma. The switchbacks are
intermittent magnetic-field polarity reversals widely observed in the heliosphere (Bale
et al. 2019) and in the solar corona (Telloni et al. 2022b), that are thought to play a
major role in the acceleration and heating of the solar wind. However, characterizing their
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Probe ρ̄ [cm3] V̄ [km/s] T̄ [MK] B̄ [nT] β di [km] Dsun [AU]

PSP 419 622 1.89 332 0.50 57.5 0.09
SO 16 429 1.50 6.76 3.59 11.1 0.64

Table 3. Main solar wind parameters computed at time where the solar wind samples used to
produce the power spectra in Fig. 17 have been collected. Here we report solar wind density ρ̄,
solar wind bulk velocity V̄ , proton temperature T̄ , average magnetic field B̄, ion inertial length
di and the distance of the spacecraft (SO and PSP) from the Sun Dsun.
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Figure 17. Power Spectra Density (PSD) of the magnetic field fluctuations observed by PSP
(red) and SO (blue) on November 20, 2021 and July 14 − 15, 2020, respectively. The k−1.67,
k−1.5 and k−2.73 scalings are shown for reference as colored lines

contribution to the plasma energetics among other plasma processes is a challenging task,
for which it is important to run highly accurate 3D Hall-MHD numerical simulations,
able to resolve an extended dynamical range with the largest possible scale separation.

7. Conclusions
The LB approach extends the horizon for the numerical investigation of plasma

dynamics. Stability issues, which have long been a handicap for the implementation
of the LB method to investigate turbulent flows, are now mostly solved thanks to the use
of improved collision operators that do not compromise the accuracy of the numerical
solutions. Furthermore, the computational efficiency of the LB schemes on many-core
devices such as GPUs allows for advantageous turn-around times. A major advantage
of dealing with a kinetic representation at the level of the numerical scheme, is that
the derivatives of the magnetic field are directly embedded in the solution, allowing
for an intrinsically accurate description of the current density since it does not require
further implementations of a differentiation scheme. The study presented here shows
that the LB approach provides a valuable and efficient numerical tool to simulate Hall-
MHD plasma turbulence. Furthermore, the LB approach allows us to add complexity
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to the plasma, such as thermal effects, multi-species, complex geometries, etc. at the
cost of new coupled lattice dynamics and boundary conditions, therefore preserving the
computational performance.

The preliminary results provided by a simple benchmark based on the OT vortex
problem anticipate that our code will be able to deliver excellent performances with the
simulation of astrophysical and space plasmas in which the Hall term is expected to
play a significant role in the dynamics of the system. Indeed, in plasmas as well as in
anisotropic fluids, turbulence has to compete with waves in transferring energy across the
scales (Marino et al. 2015c; Herbert et al. 2016). The interplay of waves and turbulence
is responsible for the emergence of new characteristic length scales and the existence
of different regimes (Marino et al. 2013; Feraco et al. 2018) in which various forms of
energy can cascade to small or to large scales (Marino et al. 2014), or undergoing a
dual energy cascade (Pouquet & Marino 2013; Marino et al. 2015b). The computational
efficiency of our LB model will allow us to run simulations of fluids and plasmas separating
regimes (in terms of spatial and temporal scales) where different physical phenomena
dominate. We proved, though in a simplified configuration, that our LB model is able to
capture the physical effects produced by the Hall term, such as faster dynamics due to the
interplay of whistler waves and turbulence, the breakdown of the Kolmogorov spectrum
at sub-ion scales and a behavior of the magnetic energy spectrum at that scales which
has been already observed in solar wind measurements. All that provides flame with
the potential to become a powerful tool for the investigation of magnetohydrodynamic
plasmas in a variety of configurations of interest for heliospheric and magnetospheric
studies. The present analysis and tests were performed using a benchmark configuration
(OT vortex problem) which is isotropic, hence does not embed the anisotropy introduced
by the ambient magnetic field in which the solar wind develops its dynamics. However,
LB simulations of Hall-MHD flows performed with flame will be suitable to investigate
plasmas immersed in a background magnetic field, at scales that are nowadays within the
reach of the high-resolution instruments on board of the latest solar and magnetospheric
missions, such as Solar Orbiter or Parker Solar Probe.
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Appendix A. Central-moment-based LB scheme for fluid dynamics
For the fluid, the discretization (in velocity) of the phase space refers to the D3Q27

lattice. The set of adopted microscopic velocities {ci}i=0,..,26 is defined in Cartesian
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components by

|cx〉 = [0,−1, 0, 0,−1,−1,−1,−1, 0, 0,−1,−1,−1,−1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1]>

|cy〉 = [0, 0,−1, 0,−1, 1, 0, 0,−1,−1,−1,−1, 1, 1, 0, 1, 0, 1,−1, 0, 0, 1, 1, 1, 1,−1,−1]>

|cz〉 = [0, 0, 0,−1, 0, 0,−1, 1,−1, 1,−1, 1,−1, 1, 0, 0, 1, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1]>

The equilibrium densities (without accounting for the Lorentz force) are developed up
to the sixth-order as

f
(0)
i (ρ,U) = wiρ

{
1 +

ci ·U
c2s

+
1

2c4s

[
H

(2)
ixxU

2
x +H

(2)
iyyu

2
y +H

(2)
izzU

2
z + 2

(
H

(2)
ixyUxUy+

+H
(2)
ixzUxUz +H

(2)
iyzUyUz

)]
+

1

2c6s

[
H

(3)
ixxyU

2
xUy +H

(3)
ixxzU

2
xUz +H

(3)
ixyyUxU

2
y+

+H
(3)
ixzzUxU

2
z +H

(3)
iyzzUyU

2
z +H

(3)
iyyzU

2
yUz + 2H

(3)
ixyzUxUyUz

]
+

1

4c8s

[
H

(4)
ixxyyU

2
xU

2
y+

+H
(4)
ixxzzU

2
xU

2
z +H

(4)
iyyzzU

2
yU

2
z + 2

(
H

(4)
ixyzzUxUyU

2
z +H

(4)
ixyyxUxU

2
yUz+

+H
(4)
ixxyzU

2
xUyUy

)]
+

1

4c10s

[
H

(5)
ixxyzzU

2
xUyU

2
z +H

(5)
ixxyyzU

2
xU

2
yUz+

+H
(5)
ixyyzzUxU

2
yU

2
z

]
+

1

8c12s
H

(6)
ixxyyzzU

2
xU

2
yU

2
z

}

where the weights wi are related to the lattice connectivity with wcenter = 8/27, wface =

2/27, wedge = 8/27 and wcorner = 1/216 for the D3Q27 lattice (see Fig. 1), and H
(n)
i

refers to the nth-order Hermite polynomial tensor in velocity ci. The Lorentz force is
eventually taken into account by upgrading the densities as

f
mhd(0)
i (ρ,U,B) = f

(0)
i (ρ,U) +

wi
2c4s

(
(B ·B)(ci · ci)− (ci ·B)2

)
.

The set of central moments ki is computed by applying the (invertible) transformation
matrix T with the column vectors

|T0〉 = |1〉
|T1〉; |T2〉; |T3〉 = [c̄ix]>; [c̄iy]>; [c̄iz]

>
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where c̄i = ci −U is the set of microscopic velocities obtained by the shift of particle
velocities by the local fluid velocity. The 27×27 collision matrix S for the central moments
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is a diagonal matrix with the respective relaxation rates

S = diag[1, 1, 1, 1, ω, ω, ω, ω, ω, 1, ..., 1],

which leads to

k∗0···3 = 〈T0···3|fmhd(0)〉
k∗4···8 = ω〈T4···8|fmhd(0)〉+ (1− ω)〈T4···8|f̄〉
k∗9···26 = 〈T9···26|fmhd(0)〉.

Appendix B. Calculation of the electric current density
The electric current is obtained by solving the linear system (3.27). By using (3.28),

this system can be re-expressed as

M̃
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 = − 1

2αH
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Λxy − Λyx − 2 (UxBy − UyBx)




where Λαβ =
∑M−1
i=0 ξiαḡiβ and M̃ is the invertible matrix

M̃ =



C2/2αHωB Bz −By
−Bz C2/2αHωB Bx
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where C represents the characteristic speed of magnetic particles on the D3Q7 lattice
and ωB is the relaxation pulsation (3.20) associated with the BGK collision operator
for the magnetic field. The expression for the three components of the electric current
density obtained by solving the previous linear system reads as
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ABSTRACT

Aims. The linear scaling of the mixed third-order moment of the magnetohydrodynamic fluctuations is used to estimate the energy
transfer rate of the turbulent cascade in the expanding solar wind.
Methods. In 1976 the Helios 2 spacecraft measured three samples of fast solar wind originating from the same coronal hole, at
different distance from the sun. Along with the adjacent slow solar wind streams, these represent a unique database for studying the
radial evolution of turbulence in samples of undisturbed solar wind. A set of direct numerical simulations of the MHD equations
performed with the Lattice-Boltzmann code FLAME is also used for interpretation.
Results. We show that the turbulence energy transfer rate decays approximately as a power law of the distance, and that both the
amplitude and decay law correspond to the observed radial temperature profile in the fast wind case. Results from magnetohydrody-
namic numerical simulations of decaying magnetohydrodynamic turbulence show a similar trend for the total dissipation, suggesting
an interpretation of the observed dynamics in terms of decaying turbulence, and that multi-spacecraft studies of the solar wind radial
evolution may help clarifying the nature of the evolution of the turbulent fluctuations in the ecliptic solar wind.

Key words. (Sun:) solar wind – Turbulence – magnetohydrodynamics MHD)

1. Introduction

Spacecraft observations of interplanetary fields and plasma show
that the solar wind is highly turbulent (Bruno & Carbone 2013).
After the onset of the turbulent cascade at coronal level (Kasper
et al. 2021; Bandyopadhyay et al. 2022; Zhao et al. 2022), sev-
eral processes may energize the fluctuations during the solar-
wind expansion (Verscharen et al. 2019): nonlinear decay of
large-scale Alfvén waves of solar or coronal origin (Malara
et al. 2000; Chandran 2018), expansion-related and coronal-
driven shears (Velli et al. 1990; Tenerani & Velli 2017), pick-
up ions interaction, magnetic switchbacks (Bale et al. 2021;
Hernández et al. 2021; Telloni et al. 2022), large-scale structures
and instabilities (Roberts et al. 1992; Kieokaew et al. 2021). The
properties of turbulence are strongly variable (Bruno & Carbone
2013), reflecting the diversity of solar coronal sources, which
modulate density, velocity, temperature and ion composition of
the plasma (von Steiger et al. 2000). Solar wind intervals are
often classified according to their bulk speed, Vsw, as fast (Vsw ≳
600 km s−1) or slow (Vsw ≲ 500 km s−1). However, turbulence
properties more clearly depend on the Alfvénic nature of the

⋆ Corresponding author: lucasorriso@gmail.com

fluctuations, for example measured using the normalized cross-
helicity, σc = ⟨δv · δb⟩/⟨|δv|2 + |δb|2⟩, where the magnetic field
B is transformed in velocity units through the mass density ρ,
b = B/(4πρ)1/2 (Matthaeus & Goldstein 1982), δ indicates fluc-
tuations with respect to the mean, and brackets indicate sample
average. For example, large-scale Alfvénic fluctuations may re-
duce the nonlinear energy transfer by sweeping apart the inter-
acting structures (Kraichnan 1965; Dobrowolny et al. 1980).

In non-Alfvénic solar wind (often observed in slow in-
tervals), the turbulence generates broadband power-law mag-
netic spectra, E( f ) ∼ f −α. Scaling exponents α, close to Kol-
mogorov’s 5/3 (Kolmogorov 1941), are observed from the in-
jection scales of solar wind structure (∼hours), to the charac-
teristic ion scales (∼10 s at 1 au) (Bruno & Trenchi 2014),
where field-particle effects become relevant and the spectral ex-
ponents increase (Leamon et al. 1998). Within such broad iner-
tial range, strong intermittency is observed (Sorriso-Valvo et al.
1999), revealing inhomogeneously distributed small-scale struc-
tures, such as vortices and current sheets, generated by the non-
linear interactions (Salem et al. 2009; Greco et al. 2016). These
characteristics are robustly observed at any distance from the
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Sun beyond 0.3 au, with no or limited radial evolution of spectral
range extension or intermittency (Bruno et al. 2003).

On the other hand, in typically fast Alfvénic wind strongly
aligned low-frequency velocity and magnetic fluctuations pro-
duce a 1/ f magnetic spectral range (Matthaeus & Goldstein
1986; Verdini et al. 2012; Chandran 2018; Matteini et al. 2018).
The classical turbulence inertial range is narrower, with spec-
tral exponents between 5/3 and the Kraichnan’s 3/2 (Kraichnan
1965). Note that Alfvénic slow solar wind was recently abun-
dantly observed close to the Sun (Chen et al. 2020), and less
frequently near 1 au (D’Amicis et al. 2021). In the Alfvénic
wind, turbulence shows a clearer evolution as the wind radi-
ally expands, with the 1/ f break drifting towards lower fre-
quencies (Bavassano et al. 1982b). The inertial range broad-
ening is interpreted as the growing Reynolds’ number (Frisch
1995; Parashar et al. 2019), which together with the observed
increasing intermittency (Bruno et al. 2003; Bruno et al. 2014),
would suggest an evolution of the solar wind dynamics towards
more developed turbulence states. (Tu & Marsch 1995; Bavas-
sano et al. 2002; Burlaga 2004; Macek et al. 2012; Bruno & Car-
bone 2013; Fraternale et al. 2016; Chen et al. 2020; Bandyopad-
hyay et al. 2020). Such evolution corresponds to the observed
gradual decrease of the Alfvénic alignment between velocity
and magnetic fluctuations (Bavassano et al. 1998, 2002). Al-
ternatively, observations could result from the competing action
between a coherent component (the intermittent inertial range
structures generated by turbulence) with a stochastic compo-
nent (1/ f -range propagating Alfvénic fluctuations, Bruno et al.
2001, 2003; Borovsky 2008). In both interpretations, the slow
solar wind milder evolution is therefore associated with the re-
duced presence of Alfvénic fluctuations (Tu & Marsch 1995;
Bruno & Carbone 2013). Recent observations of Alfvénic so-
lar wind closer to the Sun confirmed the radial evolution proper-
ties briefly described above (Chen et al. 2020; Bourouaine et al.
2020; Hernández et al. 2021). The above observations of spectra
and intermittency are generally used to support the evolving na-
ture of the solar wind turbulence in the inner heliosphere, and to
constrain global solar wind models and their energy budget.

As an alternative to spectra, the turbulent cascade can be ex-
amined using the scaling properties of the third-order moments
of the fluctuations (Marino & Sorriso-Valvo 2023). Based on ro-
bust theoretical predictions (Politano & Pouquet 1998), third-
order laws allow to estimate the energy transfer rate of turbu-
lence (Sorriso-Valvo et al. 2007). Under specific assumptions,
this quantity represents a more fundamental measure of the state
of turbulence, in comparison to power spectra and intermittency.
Furthermore, studies of radial evolution of turbulence mostly
rely on a statistical approach, so that different samples may in-
clude plasma from different originating coronal regions or solar
activity, resulting in different initial energy injection, nonlinear
coupling efficiency, or in-situ energy injection from instabilities
or large-scale structures. These can all diversely contribute de-
termining the properties and energetic content of the turbulent
cascade. One possible way to mitigate such inhomogeneity is to
measure the same plasma with two spacecraft that are occasion-
ally radially aligned at different distance from the sun (D’Amicis
et al. 2010; Telloni et al. 2021a). Alternatively, under optimal or-
bital configurations, plasma from a steady solar source can be
measured by the same spacecraft at different times (see, e.g.,
Bruno et al. 2003).

In this article, we study the status of the turbulence at differ-
ent radial distances from the Sun using the third-order moment
law and intermittency, as measured in a set of recurrent streams
of solar wind measured by the Helios 2 spacecraft. Based on a

qualitative comparison with the plasma generated with a magne-
tohydrodynamic simulation in the spin-down phase, we interpret
the observed trend of the energy transfer rate in the solar wind as
to be determined, among other process, by a decay of turbulence
occurring with the heliocentric distance. In Sections 2 and 3 we
describe the dataset and the methodology used to investigate the
status of turbulence. Section 4 provides the results of the analysis
of Helios 2 data, while in Section 5 results of a lattice-Boltzmann
numerical simulations are shown. Finally, conclusions are given
in Section 6.

2. Helios 2 Data

One popular case of measurements of solar wind from the same
source occurred in 1976, when Helios 2 measured plasma and
fields of three fast solar wind streams at different distances
(0.9, 0.7 and 0.3 au) originated from a persistent polar coronal
hole, which was reasonably stable during nearly two solar ro-
tations (Bavassano et al. 1982a; Bruno et al. 2003). Similarly,
three preceding slow, non Alfvénic wind streams were used as
samples of evolving slow solar wind. These streams have pro-
vided outstanding information about the radial evolution of tur-
bulence, since the initial conditions were statistically steady and
no stream interactions were included, Note, however, that the
more dynamical solar source of the slow streams might not be
as steady as in the case of the coronal hole generating the fast
wind. Figure 1 shows an overview of solar wind bulk speed Vsw,
spacecraft radial distance from the sun R, proton density np, and
magnetic field magnitude B during the days 45 to 110 of 1976.
Six color-shaded areas identify the selected streams, at 0.3 au
(red), 0.7 au (green) and 0.9 au (blue). For each distance, lighter
colors and dashed lines indicate slow streams, darker colors and
full lines identify fast streams.

3. Methodology: the Politano-Pouquet law

Past studies of turbulence mainly relied on spectral and struc-
ture functions analysis (Bavassano et al. 1982a,b; Bruno et al.
1985; Bavassano et al. 2002; Bruno et al. 2003; Bruno et al.
2004; Bruno et al. 2004; Bruno et al. 2014; Perrone et al. 2018).
However, the nature of the turbulent cascade is more thoroughly
captured by the scaling of the third-order moments of the fluctu-
ations, an exact relation obtained from the incompressible MHD
equations under the hypothesis of stationarity, isotropy, and large
Reynolds’ number (Politano & Pouquet 1998). Called Politano-
Pouquet (PP) law, it prescribes that the mixed third-order mo-
ment of the MHD fields fluctuations is a linear function of the
scale:

Y(∆t) ≡ ⟨∆vL(|∆v|2 + |∆b|2) − 2∆bL(∆v · ∆b)⟩
=

4
3
εVsw∆t . (1)

∆ϕL are longitudinal increments of the component of a generic
scalar or vector component ϕ in the sampling direction, with the
magnetic field B in velocity units through the mass density ρ,
b = B/(4πρ)1/2. The mean bulk speed Vsw allows transform-
ing spatial lags ∆l to temporal lags ∆t via the Taylor hypothe-
sis, ∆l = −Vsw∆t (Taylor 1938). Observing linear scaling en-
sures that a turbulent cascade is active and fully developed, and
that the complex hierarchy of structures on all scales is well
formed and sustains the cross-scale energy transfer leading to
small-scale dissipation. Measuring the energy transfer rate ε pro-
vides a quantitative estimate of the turbulent energy flux. This is

Article number, page 2 of 9



Sorriso-Valvo et al.: Turbulence decay in the inner heliosphere

Fig. 1. Helios 2 measurements during days 45—110 of 1976. From top to bottom: solar wind bulk speed Vsw, distance from the sun R, proton
density np, and magnetic field magnitude B. Colored shaded areas identify the selected streams at 0.3 au (red), 0.7 au (green) and 0.9 au (blue).
Lighter (darker) colors indicate slow (fast) streams.

an invaluable information in the collisionless solar wind, where
energy dissipation cannot be measured using viscous-resistive
modeling. The same quantity could in principle be obtained
from the (Kolmogorov) spectrum, but its evaluation includes a
constant factor that can hardly be obtained in the highly vari-
able solar wind. Third-order scaling laws (Marino & Sorriso-
Valvo 2023) have been used to determine the properties of tur-
bulence in the solar wind at 1 au (MacBride et al. 2005; Smith
et al. 2009; Stawarz et al. 2010; Coburn et al. 2012), in the outer
(Sorriso-Valvo et al. 2007; Marino et al. 2008; Carbone et al.
2009; Marino et al. 2012) and inner (Gogoberidze et al. 2013;
Bandyopadhyay et al. 2020; Hernández et al. 2021; Wu et al.
2022) heliosphere, and in near-Earth (Hadid et al. 2017; Quijia
et al. 2021) and near-Mars (Andrés et al. 2020) environments.
Data from Ulysses in the polar outer heliosphere (Marino et al.
2008, 2012; Watson et al. 2022) and from Parker Solar Probe in
the ecliptic inner heliosphere (Bandyopadhyay et al. 2020) sug-
gest that the energy transfer rate statistically decreases radially.
At the same time, the fraction of solar wind intervals where the
linear scaling is observed increases radially (Marino et al. 2012),
in agreement with the observed decrease of the cross-helicity and
generally supporting the evolving nature of the turbulence in the
expanding heliosphere.

4. Results: mixed third-order moment scaling laws,
turbulent energy transfer rate and intermittency

Here we present the analysis of the PP scaling law in the three
fast and three slow streams described above, using the 81 s res-
olution plasma and magnetic field measured by Helios 2. The

mixed third-order moments, Equation (1), are displayed in Fig-
ure 2 for each of the six intervals. Statistical convergence of the
samples was tested using standard techniques (Dudok De Wit
2004; Kiyani et al. 2006). For both fast and slow streams, the
different colors indicate different distances, as stated in the leg-
end. The mixed third-order moments Y are mostly positive (full
symbols), indicating direct energy transfer form large to small
scales. Negative values, most probably due to lack of conver-
gence or presence of large-scale velocity shears (Stawarz et al.
2011), are indicated by open symbols, and are not considered
in this study. An inertial range was identified for each case, at
timescales between 81 s and ∼20 minutes, although the linear
scaling is better defined and more extended in the samples at 0.3
au. The upper scales observed here are larger than, but roughly
consistent with, the outer scale of the turbulence, estimated as
the correlation timescale, τc (Greco et al. 2012), and partially in-
clude the 1/ f range, as will be discussed below. This shows that
the six intervals can be considered as samples of fully developed
turbulence.

Fitting the PP law provides the mean energy transfer rate,
given in colors next to each fitted line in Figure 2. The fit is
performed on a range including more than one decade of scales
in all cases except for the slow solar wind at 0.9 au, where a
slightly shorter range is covered. It should be observed that in
the two examples studied here the linear scaling range is broader
closer to the sun, while the scaling becomes less clear near 1 au.

However, for the purpose of this study, the relevant informa-
tion is the energy transfer rate, which is sufficiently well repre-
sented by the power-law fits shown in Figure 2. The first notable
characteristic is that slow streams have smaller energy transfer
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Fig. 2. PP scaling for fast (top) and slow (bottom) streams, at three dif-
ferent distances from the sun. Linear fits are indicated (grey lines), along
with the mean energy transfer rate, ε (kJ kg−1 s−1) (color coded). Full
and empty symbols refer to positive and negative values of Y , respec-
tively.

rate than fast streams at all distances, suggesting that the initial
energization of the turbulence is stronger in fast wind, perhaps
not systematically but in the cases under study, or that its decay
is faster in slow wind. This is consistent with the known correla-
tion between turbulence amplitude and both proton temperature
and wind speed (see, e.g., Grappin et al. 1991). Furthermore, in
both fast and slow wind the energy transfer rate consistently de-
creases with the distance, as expected from the observed decay
of the turbulent fluctuations (Bruno & Carbone 2013). Such ob-
servations seem to indicate that in the fast streams, while the
spectrum broadens and the small-scale intermittent structures
emerge (Bavassano et al. 1982a; Bruno et al. 2003), the cascade
transports less energy across the scales. The same decreasing en-
ergy transfer is observed in the otherwise steadier slow streams.
In the top panel of Figure 3, the energy transfer rate is plot-
ted versus the distance from the Sun. The measured values can
be compared with standard estimates of the proton heating rate
(Marino et al. 2008, 2011). This can be obtained through a sim-
ple model that, under the isotropic fluid approximation, neglect-
ing heat fluxes, and assuming a stationary flow, uses the solar
wind bulk speed and temperature radial profiles to determine the
proton heating rate accounting for deviation from adiabatic cool-
ing (Verma 2004; Vasquez et al. 2007). In particular, if the proton
temperature decays as a power law of the distance, T (R) ∼ R−ξ,
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Fig. 3. Top panel: energy transfer rate, ε, versus the distance from
the sun, R. Fast streams are indicated with dark purple squares, slow
streams with dark orange circles. Power-law fits and the relative scal-
ing exponents are shown. The heating rate obtained using equation (2),
εT , is also indicated with purple diamonds (fast streams) and orange di-
amonds (slow wind). Bottom panel: the temperature decay for the fast
(cyan squares) and slow (green circles) streams, with power-law fits and
indicated exponents.

then the proton heating rate is given by

εT =
3
2

(
4
3
− ξ

)
kBVS W (R)T (R)

Rmp
, (2)

where kB is the Boltzmann constant and mp is the proton mass.
The decay exponent ξ of the temperature can be estimated us-
ing Helios 2 data. For the two sets of fast and slow streams, the
mean temperature for each stream is shown in the bottom panel
of Figure 3. Assuming power-law decay, a fitting procedure pro-
vides ξ = 0.87 ± 0.01 for the fast streams, and ξ = 1.29 ± 0.03
for the slow streams. These considerably deviate from the ex-
pected adiabatic value (ξ = 4/3) for the fast wind, while for
the slow streams the cooling is closer to adiabatic. Totten
et al. (1995) used Helios 1 data to obtain radial profiles of the
proton temperature, which was observed to consistently decay
with exponent ξ ≃ 0.9, independent of the wind speed. Note
that the results shown here might be specific to the case under
study, while in Totten et al. (1995) a large statistical sample was
used. Similar results were found using MHD numerical simula-
tions (Montagud-Camps et al. 2018, 2020). The Helios 2 results
shown here are in good agreement with the above observations
and models for the fast wind streams, but not for the slow ones.
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Using the obtained temperature radial decay exponent and
the mean speed and temperature of the three streams, the radial
profile of the approximate heating rate can be estimated. The val-
ues obtained are shown in the top panel of Figure 3. For the fast
streams, the agreement with the estimated energy transfer rate
is excellent. This demonstrates that the energy transfer rate esti-
mated using the incompressible, isotropic version of the PP law
are sufficiently accurate. On the other hand, for the slow wind the
required heating is nearly one order of magnitude smaller than
the observed turbulent heating rate. This is a consequence of the
very weak deviation from adiabatic of the power-law tempera-
ture decay. Possible reasons for this discrepancy include: (i) the
relatively poor power-law profile of T (R) and subsequent under-
estimation of the required heating rate; (ii) the possible variabil-
ity in the slow wind source region, which would affect the sta-
tionarity assumption for the model and result in unaccounted for
temperature variability; (iii) energy lost to heat flux and electron
heating, not included in equation (2), and which might be more
relevant than for the Alfvénic, fast wind. Nevertheless, even for
the slow streams the decay of the predicted heating rate is close
to the observed decay of the turbulent energy transfer rate.

In fact, for plasma proceeding from an approximately sta-
tionary coronal structure and far from stream interaction regions,
the turbulent energy transfer can be expected to decrease as a
power law of the distance. If we assume for the energy trans-
fer rate a power-law radial decay, ε ∼ R−α, the measured val-
ues can be fitted to power-laws, providing the decay exponents
αF ≃ 1.8 ± 0.2 and αS ≃ 2.3 ± 0.2 for fast and slow streams, re-
spectively. The slower decay observed in the fast streams could
be the result of the local energy injection from the 1/ f reservoir,
which may partially compensate the dissipation losses and thus
slightly slow down the decay in comparison with the slow wind,
where no supplementary injection is provided.

The above scenario provides a quantitative estimate of the
turbulence decay observed in undisturbed expanding samples,
such as the Helios 2 recurrent streams. Such observation could
be useful to constrain models of the radial evolution of turbu-
lence. These may include, for example, the simple damping of
both velocity and magnetic fluctuations due to the conserva-
tion of angular momentum and of magnetic flux in an expand-
ing plasma volume advected by the radial wind (Parker 1965;
Heinemann & Olbert 1980), as well as local energy injection
as it results from expansion and large-scale shears (Velli et al.
1990; Grappin et al. 1993; Tenerani & Velli 2017), or modifi-
cation of the timescale of nonlinear interactions associated with
the radial decrease of Alfvénicity (Smith et al. 2009; Stawarz
et al. 2010). Since the results presented here are based on only
two case-study events, they lack generality. On the other hand,
they do provide more rigorous parameters for the specific in-
tervals. A larger study of similar events, studied individually, is
however necessary to cover a broader range of parameters. In
order to complete the turbulence analysis of the streams under
study, we quantify the degree of intermittency of the turbulent
fluctuations. Intermittency is typically described by the scaling
of the statistics of the fields fluctuations, measured through prob-
ability distribution functions (Sorriso-Valvo et al. 1999; Pagel &
Balogh 2003), structure functions (Carbone 1994; Kiyani et al.
2009), or multifractal analysis (Macek et al. 2012; Alberti et al.
2019). A standard estimator of intermittency is provided by the
power-law scaling of the kurtosis of a magnetic field component
Bi, K(∆t) = ⟨∆B4

i ⟩/⟨∆B2
i ⟩2 ∼ ∆t−κ. The scaling exponent, κ, pro-

vides a quantitative measure of intermittency, being related to
the fractal co-dimension of the intermittent structures (Castaing
et al. 1990; Carbone & Sorriso-Valvo 2014; Sorriso-Valvo et al.

2015). For these intervals, the kurtosis was already presented by
Bruno et al. (2003). Nevertheless, here we perform a more de-
tailed, quantitative study that will provide additional description
of the intermittency. The two panels of Figure 4 show the mag-
netic field kurtosis for the three fast (top panel) and slow (bottom
panel) solar wind streams, computed using 6-second cadence
magnetic vectors and averaging over the three field components
(after verifying that all individual components displayed simi-
lar behaviour). In the fast streams, two power-law scaling ranges
are identified in the inertial range, ∼6—200 s, and at lower fre-
quency, ∼200—8000 s. In agreement with spectral observations,
the break between the two ranges migrates towards larger scales
with increasing distance from the Sun (see, e.g., Bruno & Car-
bone 2013, and references therein). Note that, for the streams at
0.3 and 0.7 au, the low-frequency range mostly includes the 1/ f
spectral range. Power-law fits provide the scaling exponents κ,
which are indicated in the figure. The inertial-range exponents
agree with previous observations (Di Mare et al. 2019; Sorriso-
Valvo et al. 2021), while the smaller 1/ f -range values are closer
to fluid turbulence’s (where exponents are typically around 0.1;
see, e.g., Anselmet et al. 1984). In both ranges, the values of K
and the scaling exponents quantitatively confirm the radial in-
crease of intermittency (Bruno et al. 2003). To the best of our
knowledge, the kurtosis’ power-law scaling in the 1/ f range was
not observed before. Jointly with the observation of the PP law
discussed above, it suggests that, at least in the streams closer
to the Sun, nonlinear interactions are effectively transferring en-
ergy across scales, even in the 1/ f range. This observation opens
interesting questions about the nature of the fluctuations in the
low-frequency range, which calls for more detailed studies. On
the other hand, in the slow wind streams, where no 1/ f spectral
range is observed, a single power-law covers the whole range,
with no clear radial trend. The scaling exponents reveal strong
intermittency at all distances.

5. Comparison with numerical simulations of
unforced MHD turbulence

The power-law radial decay of the turbulent energy transfer rate
and the associated increase of intermittency, highlighted in the
previous section, represent a solid constraint for models of solar
wind turbulence. It is interesting to notice that similar properties
are also typical features of unforced fluid and magneto-fluid tur-
bulence, as observed in numerical simulations (Biskamp 1993;
Hossain et al. 1995; Miura 2019; Bandyopadhyay et al. 2019).
Using a decaying direct numerical simulation integrating the
incompressible MHD equations, with no mean magnetic field
(Foldes et al. 2022), here we show how a simplified framework
not incorporating signature features of solar wind turbulence
(for example anisotropy), not accounting for effects of the solar
wind expansion (Grappin et al. 1993; Verdini & Grappin 2015;
Tenerani & Velli 2017), is able to qualitatively reproduce trends
and statistics observed by Helios, thus can be used to decipher
the phenomenology underlying the turbulent energy transfer
in the solar wind. What emerged from our analysis is that the
phenomenology described in the previous sections is compatible
with the temporal decay of a magnetohydrodynamic unforced
plasmas. In other words, the basic three-dimensional MHD sim-
ulations used here provide indications of qualitative similarity
between the radial evolution of turbulence in the expanding
solar wind and the temporal decay of unforced MHD turbulence
via viscous-resistive dissipation. This is not in contrast with
the expanding-box simulations previously suggesting that the
inclusion of expansion effects results in faster energy decay
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run Re = Rem v∗rms v0
rms/b

0
rms Ma t∗ ξ

I ∼ 1500 8.5 · 10−4 ∼ 0.5 0.005 79.5 2.4
II ∼ 900 2.7 · 10−3 ∼ 1.0 0.005 51.9 1.7
III ∼ 800 2.5 · 10−3 ∼ 2.0 0.001 45.3 1.8

Table 1. Adimensional parameters at the current peak t∗ (in turnover time units). Re and Rem are respectively the Reynolds and magnetic Reynolds
numbers; Ma is the Mach number; v0

rms/b
0
rms is the ratio between the rms velocity and magnetic fluctuations at the initial time of the simulation

(t = 0); ξ is the fitted exponent (see Figure 6). Box size, (2π)3, and magnetic Prandtl number, Prm = 1, are the same for all runs.
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Fig. 4. Magnetic field kurtosis, K, for fast streams (top) and slow
streams (bottom), averaged over the field components. Power-law fits
in the 5/3 and 1/ f spectral ranges are indicated with the fitted scaling
exponents (fitting errors are ≤ 0.01).

and in inverted cross helicity radial profile, that switches from
increasing to decreasing with distance (see, e.g., Dong et al.
2014; Montagud-Camps et al. 2020, 2022). In this work, we use
actually a lattice Boltzmann (LB) code, FLAME (Foldes et al.
2022), to integrate the quasi-incompressible MHD equations in
a three-dimensional periodic domain, not expanding. In the LB
approach, the volume discretization is operated on a gas of parti-
cles distributed on a lattice, rather than on a grid. The dynamics
of the particles develops in the frame of the kinetic theory, the
temporal evolution of the plasma being achieved through the re-
cursive application of simple collision and streaming operations.
The macroscopic MHD fields (e.g. fluid velocity v, density ρ,
and magnetic field B) are then obtained through integration of
the statistical moments of the particle distribution functions.
Please note that the particles here are not plasma particles, they

exist at the level of the numerical scheme and are instrumental
to the LB approach to obtain (in the case of FLAME) the fields
of the simulated magnetohydrodynamic plasma (see details in
Foldes et al. 2022). We examine three runs, whose parameters
are listed in Table 1. The latter are initialized with a standard
Orszag-Tang (OT) vortex (Orszag & Tang 1979; Mininni
et al. 2006), using different kinetic-to-magnetic energy ratio,
v0

rms/B
0
rms, where v0

rms and B0
rms are the initial rms values of the

field fluctuations (for the Helios 2 solar wind intervals studied
here, vrms/Brms ∼ 0.5–1, Bruno et al. 1985). The integration is
performed over a 5123-point three-dimensional lattice (Orszag
& Tang 1979; Mininni et al. 2006), the functional form of
OT being: U(x, 0) = v0

rms
[−2sin(y), 2sin(x), 0

]
and B(x, 0) =

B0
rms

[−2sin(2y) + sin(z), 2sin(x) + sin(z), sin(x) + sin(y)
]
. Be-

fore computing any statistics, the simulation is let to evolve until
the plasma reaches a state of fully developed turbulence when
the volume averaged density current ,⟨ j⟩, attains its peak value,
at the time t∗. A snapshot of the vorticity field at t∗ is shown
for run I in Figure 5, along with the corresponding isotropic
magnetic and kinetic spectral trace. For all runs, spectra exhibit
the typical extended power-law inertial ranges, which enables
qualitative comparison to the SW.

It must be pointed out that, since the solar wind speed is rea-
sonably steady, the radial distance of each of the six Helios 2
streams analyzed here can be ideally converted to time of travel
from an arbitrary initial position where the turbulence peaks, R0.
We can expect this to be close to the Sun (Bandyopadhyay et al.
2020), for example at the Alfvén point (Kasper et al. 2021; Zhao
et al. 2022), or it can be identified with the stream under study
closest to the Sun (R0 = 0.3 au). Further expressing the solar
wind time of travel in units of the initial nonlinear time, tNL (here
taken as the average between characteristic kinetic and magnetic
nonlinear times, respectively tv = Lv

int/v
∗
rms and tB = LB

int/B
∗
rms,

where Lv
int and LB

int are the kinetic and magnetic integral scales,
whereas v∗rms and B∗rms are the rms values of the field fluctuations,
all estimated at R0) enables the comparison between observa-
tional and numerical estimates and statistics. This suggests the
possible use of the following simple expression to determine the
normalized “age” of the turbulence: tturb = (R − R0)/(VswtNL).
We will not make use of this parameter since our comparison
with the numerical simulation results is only qualitative. Fur-
thermore, determining R0 and the integral scales is not trivial
in solar wind data. However, since the parameters in the above
transformation (the solar wind speed, the initial distance, and
the nonlinear time at the initial position) can all be considered
as constant, the power-law scaling presented will not be affected
by this transformation. Computing spectral energy fluxes from
numerical simulation requires the integration of quantities over
extended intervals, during which the system is assumed to be
stationary. This condition can hardly be attained when dealing
with spin-down runs. Moreover we would like to monitor the
evolution of the turbulent energy transfer rate, in all the simula-
tions in Table 1, at different times after the plasma has reached
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Fig. 5. Left panel: rendering of the vorticity field, at the time t∗ when the peak of the density current is reached. Right panel: isotropic kinetic and
magnetic energy spectra for run I in the table I of the main text at t∗.

the density current peak. For this reason, here we make the as-
sumption (reasonable in case of fully developed turbulence) that
the rate at which kinetic and magnetic energies are transferred
throughout the inertial range, in subsequent time intervals, as
the system relaxes due to viscous effects, does follow the same
trend of the small-scale dissipation with the evolutionary time
of the simulations. We have thus computed systematically the
volume-averaged total dissipation rate, εtot = εV + εB, where
εV = ν⟨(∇v)2⟩ and εB = η⟨ j2⟩ are the kinetic and magnetic dis-
sipation, respectively, and ν = η are the kinematic viscosity and
the resistivity. Figure 6 (top panel) displays the temporal evolu-
tion of the dissipation rate εtot in runs I-III, starting from the tur-
bulence peak t∗. All times are expressed in units of the nonlinear
time, tNL, estimated as described above using the simulation pa-
rameter computed at the time of the peak of the density current,
t∗. For all runs, a power-law time evolution of the energy trans-
fer rate can be clearly identified (Batchelor et al. 1948; Hossain
et al. 1995), with fitted scaling exponents compatible with those
observed in the solar wind.

Finally, the bottom panel of Figure 6 shows the magnetic
field kurtosis versus the scale ∆l for Run II, at three different
times t > t∗ in the simulation. The power-law scaling expo-
nents indicate increasing intermittency with time (Biferale et al.
2003), similarly to observations in the fast recurrent stream stud-
ied here. The same trend is observed for all runs.

By qualitatively comparing both the energy transfer rate and
intermittency, evident similarities arise between the time evo-
lution in our simulations of decaying MHD turbulence and the
radial profile in the solar wind streams. Although the numerical
model used here is not intended to fully reproduce the solar wind
features, such similarities suggest that the ongoing dissipation of
turbulent fluctuations could concur to determine the observed ra-
dial evolution of solar wind turbulence.

6. Conclusions

We used Helios 2 measurements of the solar wind emitted from
a steady coronal source and without interactions with coronal
or heliospheric structures, collected at different distances from
the Sun. We have shown that the turbulence energy transfer rate
decays approximately as a power law of the distance, and we
provided measured decay exponents that may be used to con-

strain models of solar wind expansion. It should be pointed out
that the linear scaling range becomes narrow at larger distance
from the Sun. In the slow wind, for example, such range cov-
ers slightly less than a decade, which is in contrast with the ob-
served broad spectral inertial range. This is likely due to the lim-
ited statistics provided by the relatively low resolution Helios
data, and more in general to the difficult observation of signed
third-order scaling laws. Possible other reasons include the vio-
lation of the isotropy assumption and the presence of large-scale
inhomogeneities (Stawarz et al. 2011; Verdini et al. 2015). In
the Alfvénic fast wind, the turbulence decay is also associated
with increasing intermittency. The observations presented here
are qualitatively compared with three-dimensional direct numer-
ical simulations of decaying MHD turbulence. Despite the sim-
ulations used here do not include important elements such as the
radial expansion of the solar wind, the observed similarity be-
tween trends of energy transfer and dissipation rates (estimated
from Helios 2 observations and DNS, respectively) supports the
possible relevance of dissipation in the radial evolution of solar
wind turbulence. Furthermore, the observation in the 1/ f range
of both the PP law and power-law scaling of the kurtosis sug-
gests that, in fast solar wind, a turbulent cascade is active also
at large scales, even in the presence of strongly Alfvénic large-
scale fluctuations (Verdini et al. 2012). The behavior highlighted
by our analysis, together with the observed parameters, can be
relevant to constrain models of turbulence in the expanding so-
lar wind and of the plasma heating observed in both fast and slow
streams (Marino et al. 2008, 2011). Coordinated studies of PSP
and Solar Orbiter measurements will add statistical significance
to our observations (Velli et al. 2020; Telloni et al. 2021b).
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