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I

We present a new geometric construction that leads us to new examples of pairs
of six-dimensional compact manifolds satisfying a non-Kähler version of Mirror Sym-
metry as formulated by Lau, Tseng, and Yau using SU(3)-structures. In this new
setting, the Calabi-Yau geometry is replaced by the symplectic half-flat geometry
on the IIA-side and by the complex-balanced geometry on the IIB-side. The link
between the two is provided by the Strominger-Yau-Zaslow construction which relies
on the presence of a third space B over which the IIA-side fibers in Lagrangian tori.
We will show how to build these examples using the theory of solvmanifolds and
how it is linked to the affine geometry of the base of the fibration. Finally, we will
describe the action of the Fourier-Mukai transform on semi-flat differential forms
and how it realizes the equivalence of the Tseng-Yau cohomology on the IIA-side
with the Bott-Chern cohomology on the IIB-side.



῾Ο ἀγεωμὲτρης εἰσίτω, ὡς μανϑάνῃ1

Let who is untrained in geometry enter,
so that they can learn it

Entri chi non conosca la geometria,
affinché possa apprenderla

1
Ἀγεωμέτρης μεδείς εισίτω - “Let no one untrained in geometry enter” was the motto over the

entrance to Plato’s Academy. This slight modification wants to be more inclusive. No gatekeeping
in math.
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Chapter 1

Introduction

The interplay between mathematics and theoretical physics has always been fruitful.
Very often, new discoveries in physics were anticipated or immediately followed by
fundamental advances in mathematics. Think for example to the groundbreaking
work of Einstein in general relativity, based on the language of the absolute differ-
ential calculus just developed by Ricci and Levi-Civita, or to the rising of interest in
linear algebra and functional analysis bolstered by the birth of quantum mechanics.
However, in the last, say fifty, years the interactions and exchanges were remarkably
intensified, both in terms of variety and in terms of the deepness of the topics. The
desire to get a better understanding of quantum field theory, and the attempt to
build a general framework in which also a quantum formulation of gravity could be
encompassed, has produced many new ideas and approaches. Among them, we will
deal in particular with the origin of string theory that saw light in the second half of
the last century. This is mainly motivated by the fact that the basic ideas of string
theory are geometrical in nature. Moreover, the rigorous mathematical formulation
has established various challenging (and still open) questions in so many areas of
mathematics: algebraic geometry, complex and symplectic differential geometry, ge-
ometrical analysis, knot theory, algebras, and category theory just to name a few.
In this introductory chapter, we will explain why one, as a mathematician, and
in particular as a differential geometer, should keep a mindful eye on these topics.
Starting from a brief historical review of string theory, we will explain the framework
in which a rigorous mathematical formulation of mirror symmetry can be stated.
Then, we will settle down the motivation and the starting point of the present work
and how its development would lead to the objective. We conclude the section with
an outline of the thesis.

1.1 Historical background

Up to our current knowledge, every physical phenomenon can be described in terms
of particles and interactions among them. The Standard Model is our best attempt
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to get a collective picture, but gravity struggles to be included. While the elec-
tromagnetic, weak and strong interactions have a - still not complete, but enough
satisfactory - description in terms of an appropriate gauge theory (i.e. in terms of
the differential geometry of an associated principal bundle), this is not replicable
for the gravitational one. Around the 1920s, a first proposal was already known as
the Kaluza-Klein theory [55],[58] which was quickly discarded. It supposed a fifth
dimension beyond the usual four-dimensional space-time which is compactified on
a S1 with a very small radius. Although unconventional, this assumption made it
possible to write, in a unified formalism, both the gravitational and electromagnetic
interactions. These two main themes, unification and extra dimensions will be re-
sumed by string theory half a century later. In the 1960s the physicist Gabriele
Veneziano proposed a model for the interaction of hadrons [90] whose mathematical
structure, after an observation of Nambu and Susskind, is well understood under the
assumption that the fundamental objects of the theory are not point-like particles
but one-dimensional strings. Therefore, the idea of strings replacing point-like par-
ticles was introduced in the context of strong interactions but it had the drawback
of predicting the existence of an unwanted particle of spin 2 and the idea was aban-
doned. Almost twenty years later, these ideas were revived by Green and Schwarz
[43] who reinterpreted the model as a candidate for a quantum theory of gravity,
also incorporating supersymmetry. This new kind of symmetry asserts, though not
yet observed, that for each fermion there is a supersymmetric partner which is a
boson, and vice-versa.

1.1.1 Overview of string theory

While a point-like particle traces a curve (a world-line) as it moves, a string prop-
agating in the space-time X would trace a surface (a world-sheet) Σ. Studying the
mechanics of a string corresponds to studying a map σ : Σ → X: the action func-
tional is then minimized with respect to a class of surfaces instead of curves. In the
process of quantization of the functional, some extra terms, called anomalies, emerge
but they precisely cancel out when the dimension d of the space-time assumes de-
termined values. In the case of supersymmetric string theory, on a flat space-time
X, one gets d = 10. So what about these extra six-dimension? Physical arguments
imposes the presence, on the internal six-dimensional manifold M , which has to be
compact, of a parallel spinor, which in turn, forcesM to have holonomy contained in
the group SU(3), condition which is fulfilled when M is a three-dimensional Calabi-
Yau (we will say more in section 2.2.1). Here it starts the interest of string theorists
in studying Kähler geometry and Calabi-Yau manifolds.

1.1.2 Mathematical formulation of mirror symmetry

In particular, they managed to construct a physical model out of the geometric
invariants, namely the Dolbeault cohomology groups Hp,q(M) of the Calabi-Yau
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three-fold. Such parameters for the model, called a superconformal field theory
(SCFT), were in fact linked to the h2,1(M) and h1,1(M). But here it comes the crucial
observation which is at the heart of the entire mirror symmetry: they noticed that
another Calabi-Yau three-fold M̌ with h2,1(M̌) = h1,1(M) and h1,1(M̌) = h2,1(M)
would produce the same observable physics! This has the effect of transferring
the geometrical information associated to the symplectic structure of M to the
geometrical information associated to the complex structure of M̌ and vice-versa .
Given a Calabi-Yau three-fold M , one can then build two different SCFTs, called
A-model, defined in terms of the complexified Kähler class, and B-model, defined
in terms of infinitesimal variations of complex structure . Then, at the physical
level, mirror symmetry foresees the existence of another Calabi-Yau three-fold M̌
on which the role of A-model and B-model are swapped. In mathematical terms,
this can be formally stated in terms of the isomorphism of cohomology groups

Hp,q(M) ≃ H3−p,q(M̌) (1.1)

and can be visualized, in a fancy way, as a symmetry for the Hodge diamond
along the oblique - from bottom left to right top - axis:

1

0 0

0 1 0

1 101 101 1

0 1 0

0 0

1

1

0 0

0 101 0

1 1 1 1

0 101 0

0 0

1

Figure 1.1: Mirror diamonds for the quintic

The first explicit computations in this sense were carried out in 1991 by Cande-
las, de la Ossa, Green, Parkes in their striking paper [20] . There the authors started
with a Calabi-Yau three-fold M , represented by a quintic in P4, and constructed its
mirror M̌ verifying the cohomological relation between them (see the figure). Above
all, the big surprise came when they used this correspondence to compute correla-
tion functions for the A-model on M , which were particularly involved, in terms
of the correlation functions for the B-model on M̌ which was an easier task. This
had the unexpected consequence of giving a prevision for the number nd of rational
curves in M of given degree d. At that time, the integers n1 and n2 were already
known but for higher d, the computation by classical algebraic geometry techniques
were too complicated. When the prevision for d = 3, given by the correspondence
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in [20], was confirmed some years later, many mathematicians started interesting in
mirror symmetry and the topic became increasingly well known also among alge-
braic geometers. This was the first time that ideas coming from theoretical physics
gave a prevision for a conjecture in enumerative geometry. Since the nineties, two
major approaches were proposed to explain this mysterious phenomenon: the ho-
mological version formulated by Kontsevich [59] and the T-duality one proposed
by Strominger, Yau and Zaslow [82]. The first deals with the equivalence of two
categories: on one hand one deals with the derived category of the Fukaya category
defined in terms of the symplectic geometry, while, on the other, one deals with the
derived category of coherent sheaves which relies on the complex structure. Again
the mirror conjecture is about a switch of geometrical information:

DFuk(M) ≃ DCoh(M̌) DCoh(M) ≃ DFuk(M̌) (1.2)

The other approach, rather more topological, instead postulates the existence of
another space B over which the Calabi-Yau three-fold fibers in special Lagrangian
tori. From the physical viewpoint, the SYZ construction refers to the Type II
string models which again differentiate in the A-symplectic model and the B-complex
model. The duality between the two models is then represented by a duality between
the torus fibers. The conjecture of SYZ mirror symmetry can be stated as

Conjecture 1.1.1. (SYZ Mirror Symmetry)
For each Calabi-yau three-fold M there exist another Calabi-Yau three-fold M̌

and a topological manifold B of dimension three and, possibly singular, fibrations
π :M → B and π̌ : M̌ → B such that

1. Let Bsing ⊂ B the locus where π, π̌ are singular and let B0 = B\Bsing. Then
both M and M̌ fibers in special Lagrangian tori over B0.

2. The torus fiber T := π−1(b) is dual to Ť := π̌−1(b) for each b ∈ B.

3. Hp,q(M) ≃ H3−p,q(M̌)

Many examples were constructed but a full comprehension of the picture is
still far from being obtained. Partial positive results are also obtained in the
semi-flat setting, namely when the fibration is everywhere smooth and so B = B0.
The main reference for the topic is the program carried by Gross [5],[44],[45], and
together with Siebert [46], see also the survey by Auroux [6] or the paper by Castaño
and Matessi [16]. Moreover, also the mechanism which realizes the equivalence be-
tween the two sides is not completely understood. A differential-geometric version
of the Fourier-Mukai transform, appearing first in the homological approach as an
equivalence of derived categories over abelian varieties, is the proposed tool [23],[62],
[63]. We will deal with this side of the story, the SYZ program, but in a broader
context, the one of non-Kähler geometry.
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1.2 Starting point and purpose

Our starting point is the paper by Lau, Tseng, and Yau [61] in which a generalization
of the SYZ approach is proposed. If we enlarge the picture by relaxing the Kähler
condition one still has a manifestation of mirror symmetry but the single manifold
now encompasses just a single string model. The new formulation is based on
SU(3)-structures which differentiate into symplectic half-flat manifolds on the IIA
side and into complex balanced manifolds on the IIB side. More in details, an
SU(3)-structure is represented by a couple of differential forms (ω,Ω) ∈ A2(M,R)⊕
A3(M,C) satisfying some properties. If moreover dω = 0 and dReΩ = 0, we are
talking about IIA equations while if dω2 = 0 and dΩ = 0, they are IIB equations
instead. The mechanism of the exchange still requires the existence of an SYZ-
fibration, which has to start from the symplectic side. Since the manifolds are no
longer Kähler we can not compute their Hodge diamonds by means of the Dolbeault
cohomology. Therefore, on the complex side, we will avail the already well-known
Bott-Chern cohomology while, on the symplectic side, we will make use of the more
recent Tseng-Yau cohomology [85],[86]. Moreover, the equivalence of the two models
is provided by another differential-geometric version of the Fourier-Mukai transform
proposed in [61]. We can roughly summarize in the following

Theorem 1.2.1. (Theorem 5.1 and 6.7 in [61]) Let M → B a Lagrangian torus
bundle associated to a semi-flat supersymmetric SU(3)-system of type IIA and M̌ →
B its SYZ dual. Then the Fourier-Mukai transform gives isomorphisms

H3−p,q
B,TY (M) ≃ Hp,q

B,BC(M̌)

and exchanges the IIA-equations on M with the IIB-equations on M̌ .

Here the “B” subscripts mean that we are restricting to basic, T-invariant forms.
We will give a more precise statement in chapter 3. We also remark that corre-
spondence between Tseng-Yau and Bott-Chern cohomologies does not require the
half-flat/balanced condition to be present but relies only on the SU(3)-structure plus
the Lagrangian fibration showing that mirror symmetry is a phenomenon combining
symplectic and complex geometry in a more general way. We will show this with
one of our examples. At this point it is worth mentioning that mirror symmetry,
and T-duality, can also be described in terms of the generalized-complex geome-
try language introduced by Hitchin [51] and developed by Cavalcanti and Gualtieri
[21],[47]. A generalized-complex version of T-duality for nilmanifolds was treated
by del Barco, Grama, Soriani [9]. Moreover, also Tseng and Yau reinterpreted their
previous analysis in terms of a generalized-complex cohomology theory [87].

The main result of the thesis is the discovery of the SYZ mirror partner, in terms
of the above theorem, of almost all the known examples of compact non-Kähler
type IIA (symplectic half-flat) six-dimensional manifolds. With few exceptions,
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all known such examples come from left invariant structures on six-dimensional
solvable Lie groups. More precisely, there is a classification ([26],[30]) of solvable
Lie groups/Lie algebras admitting left-invariant type IIA structures. All of these
admit lattices, i.e. discrete cocompact subgroups. The first result of the thesis
is a reinterpretation of this classification in terms of affine structures on three-
dimensional solvable Lie groups. While the existing classification for IIA structures
is obtained case by case with a purely algebraic classification, we provide a general
geometric construction that allows us to build almost all the known examples of
compact type IIA manifolds. This has been achieved by blending the theory of
action-angle coordinates, coming from a canonical Lagrangian fibration, with the
left-invariant affine structure of the base. In [61], the only example, in dimension
three, is provided by the (co)tangent bundle of the Heisenberg manifold modulo a
lattice. We were able to reinterpret the compact IIA solvmanifolds as the cotangent
bundle of a three-dimensional compact solvmanifold B modulo a lattice which is,
in turn, related to different affine structures on B. There are several reasons for
why the class of manifolds we used was selected among nilmanifolds and the more
general solvmanifolds. They are also called by physicists twisted tori ([40],[41]) since
they can always be seen as a bundle over a torus with another nilmanifold as a fiber
(the Mostow bundle [18]). In particular, in the case of 2-step nilmanifolds, the
fibration is a principal torus bundle over a torus [71]. This feature makes it quite
reasonable to use them to test the effects of T-duality. The complex non-Kähler
geometry of nilmanifolds and solvmanifolds is already well and deeply investigated,
see [32], [60] and references therein. Instead, for the symplectic side, there are only
existence results, cited above, in [26],[30], but no complete classification. Moreover,
from the cohomological viewpoint, the availability of Nomizu-like theorems allows
us to reduce the computation for the cohomology at the level of Lie algebras which is
more tractable. One of the novelties of this work is the first explicit computations for
(p, q)-groups in Tseng-Yau cohomology. This leads us to produce therefore the first
Tseng-Yau-Hodge diamonds and to relate them with the already known Bott-Chern-
Hodge diamonds for the complex side. Looking at the structure of the algebras
we were using for our computation, we noticed that they were sharing a common
pattern. In fact, the simply-connected Lie group associated with them had, in each
case, the structure of a semidirect product of a three-dimensional solvable Lie group
and the abelian R3. Then, motivated by the symplectic theory of Lagrangian torus
fibrations, we investigated the affine integral geometry of such three-dimensional Lie
groups and we managed to relate it to the group structure of the six-dimensional
Lie groups. This also leads us to produce a common recipe to build a natural
symplectic SU(3)-structure on each example. The main results of the present thesis
are contained in the article SYZ mirror symmetry of solvmanifolds in preparation
with my advisor L. Bedulli [14].



7

1.2.1 Outline

Mirror symmetry lies at the crossroad of symplectic and complex geometry and as
the SYZ construction enters the picture, it carries with itself also the affine geometry
baggage. Moreover, if one wants to build examples using solvmanifolds, all the ge-
ometric structures have to be reconciled with the algebraic structure of the groups.
Therefore we start in Chapter 2 with a review of basic facts and fundamental results
about all these topics. After that, we explain in detail the SYZ construction and
the non-Kähler mirror symmetry formulation as stated by [61] in Chapter 3. We
describe our technique to build examples and we show the algebraic structure of the
six-dimensional Lie groups that will be used to create the six-dimensional compact
solvmanifolds for the mirror pairs. Lastly, in Chapter 4, we carry on the analysis
induced by the dual set of action-angle coordinates, we write down the supersym-
metric SU(3)-structures, we present their diamonds and show the correspondence of
ω̌ and Ω via Fourier-Mukai transform. All the computations for the cohomology are
collected in the appendix.
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Chapter 2

Preliminaries

This chapter is devoted to recalling the definitions and fixing the notations for each
type of geometry we are going to interface with. We also recollect the results of
classification needed to build our examples.

2.1 Affine geometry

Definition 2.1.1. An affine structure on a smooth manifoldM is an (equivalence
class of an) atlas U = {Ui, φi}i whose transition functions are affine, i.e. φij ∈
Aff(Rn) = GL(n,R) ⋉ Rn. This is equivalent to the existence of a flat, torsionfree
connection on the tangent bundle of the manifold. It is called special when the
linear part is contained in SL(n,R). If additionally the φij’s are in AffZ(R) =
GL(n,Z)⋉Rn the affine structure is said integral.

Affine structures can also be described in terms of the more general language
of (G,X)-structures á la Thurston. A manifold M admits a (G,X)-structure if its
transition functions are induced by an element of a Lie group G acting transitively
on another manifold X. In our case X = Rn and G =Aff(Rn). Associated to
any (G,X)-structure there are two fundamental objects from which we can recover
the structure. Let M̃ the universal cover of M and let π1(M) be its fundamental
group, then there exists a pair of maps (Dev,hol) with the following properties:
Dev: M̃ −→ X is an immersion and hol: π1(M) −→ G is a homomorphism of
groups such that

M̃ X X

M̃ X X

γ

Dev

hol(γ)

g

hol(γ′)

Dev g
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commutes for every g ∈ G, γ, γ′ ∈ π1(M). In particular the square on the right
is saying that such a pair is unique up to inner automorphism of the structure. The
maps Dev and hol are called the developing map and holonomy representation
respectively. If the developing map is a homeomorphism, then the (G,X)-structure
is complete. In general Dev is just injective. The image Γ := hol(π1(M)) ⊂ G is the
holonomy group of the (G,X)-structure. Since we are working with G = Aff(Rn) we
therefore refer to Γ as the affine holonomy of the structure and composing hol with

the natural homomorphism Aff(Rn)
Lin−−→GL(n,R) we get the linear holonomy.

Remark 2.1.1. The introduction of the developing map serves as a globalization for
the (G,X)-structure whose definition is rather in term of local coordinates. Moreover
the holonomy representation is the holonomy of a flat connection of a principal G-
bundle associated to the structure.

At this point we can adopt the point of view of [7],[8],[34],[35],[36],[38] and restrict
ourselves to left-invariant affine structures on Lie groups. Take a simply-connected
Lie group G: an affine structure on it is left-invariant if the left-multiplication map
is an automorphism of the structure. Equivalently, left-multiplication map is affine
in local charts. In this case, for every g ∈ G there is a unique affine automorphism
α(g) in Aff(Rn) such that the diagram commutes:

G Rn

G Rn

Lg

Dev

α(g)

Dev

The map α : G −→ Aff(Rn) is called the affine representation of the affine
structure: its image α(G) preserves the connected open set Dev(G) ⊂ Rn and acts
transitively on it. Thus Dev(G) is an open orbit of α(G) since Dev is an open
map. Moreover, since G is n-dimensional, the isotropy group is discrete and this
implies the action is locally simply transitive. The construction can go backward:
if we are given an affine representation α : G −→ Aff(Rn) with an open orbit
O := α(G)x0 for some x0 ∈ Rn and dim G=n, then there is a unique left-invariant
affine structure on G with developing map Dev(g) := α(g) · x0. Therefore there
is a 1:1 correspondence between left-invariant affine structures on a n-dimensional
simply-connected Lie group G and its locally simply-transitive affine actions on Rn.
If the open orbit O is the whole Rn then the above correspondence can be promoted
between simply-transitive affine actions and complete left-invariant affine structures.

Since we are interested in compact affine manifold, assume that the Lie group
G, with a left-invariant affine structure, admits a lattice, i.e. a cocompact discrete
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subgroup. Then the homogeneous space of right cosets M := Γ/G inherits an affine
structure. Assume, as it will be in all our cases, that α(Γ) ⊂ AffZ(Rn), i.e. the
restriction α|Γ is an integral affine representation. In particular, its linear part is
an element of GL(n,Z). This feature will be fundamental to build a bridge with
symplectic geometry.

We now make the following observation that we will use later in section 3.2:

Remark 2.1.2. Assume O = Rn. We have seen the affine representation is defined
via

α(g) := Dev ◦ Lg ◦ Dev−1 : Rn → Rn (2.1)

and α(g) is an affine transformation of Rn, that is is of the form Av + b with
A ∈ GL(n,R) and b ∈ Rn. Its linear part is then defined as λ := Lin ◦ α where
the map Lin simply sends the affine transformation (A, b) 7→ A to its linear part.
This new linear transformation λ(g) of Rn can be seen as the derivative of the affine
transformation α(g):

λ(g) := dα(g) = dDev ◦ (dLg) ◦ dDev−1 (2.2)

which is just the expression for the (dLg) in the new coordinates.

This result of Auslander [8] allows us to make a further restriction about our
analysis:

Theorem 2.1.1. [8] If G is a simply connected Lie group which has a representation
ρ as a simply transitive group of affine motion, then G is solvable.

Therefore we will consider in our work only solvable Lie groups with a focus
on the three-dimensional case. Of particular importance is the work of Fried and
Goldman [34] in which they classify all possible simply transitive affine action of
a solvable unimodular three-dimensional Lie group G, i.e. left-invariant complete
affine structure on G. In the following theorem, such transitive actions are presented
as subgroups of Aff(R3).

Theorem 2.1.2. [34] Let G be a simply connected unimodular solvable Lie group
acting simply transitively by affine transformations on R3. Then

1. If G is nilpotent then it is conjugate to one of

(a)

Hα :=

{1 a11t+ a12u a21t+ a22u
0 1 0
0 0 1

 ,

s+ a11t
2 + a22u

2 + (a12 + a21)
ut
2

t
u

∣∣∣ s, t, u ∈ R

}

The conjugacy class ofHα corresponds to conjugacy class of α =

(
a11 a12
a21 a22

)
as a bilinear form on R2;
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(b)

Hb,c :=

{1 cu bt+ 1
2
cu2

0 1 u
0 0 1

 ,

s+ (b+ c) tu
2
+ u3

6

t+ u2

2

u

∣∣∣ s, t, u ∈ R

}

Where Hb,c and Hab,ac are conjugate for a > 0 .

In particular Hα is abelian if and only if α is a symmetric bilinear form.
Hb,c is abelian if and only if b = c. If the group is not abelian, then it is
isomorphic to the Heisenberg group.

2. If G is not nilpotent, then G is conjugate to one of

(a)

Iλ :=

{1 λesu λe−st
0 es 0
0 0 e−s

 ,

s+ λtu
t
u

 ∣∣∣ s, t, u ∈ R

}

(b)

Dλ :=

{1 λ(t cos s− u sin s)u λ(t sin s+ u cos s)
0 cos s − sin s
0 sin s cos s

 ,

s+ λ tu
2

t
u

 ∣∣∣ s, t, u ∈ R

}

In both cases, the conjugacy class depends only on whether λ is 0 or not.

Remark 2.1.3. In their article Fried and Goldman [34] put aside the groups Dλ

since they cannot arise as crystallographic hulls of affine crystallographic groups. It
will be also excluded by our analysis since it is not completely solvable. We will meet
again the groups Iλ andDλ under the notation of E(1, 1) and E(2) respectively.

We end this section by recalling some result about the geometry of affine mani-
fold.

Theorem 2.1.3 ([34]). Let M3 a closed 3-manifold. The following conditions are
equivalent:

1. M admits a complete affine structure;

2. M is finitely covered by a 2-torus bundle over the circle;

3. π1(M) is solvable and M is aspherical

4. M has a Riemannian metric locally isometric to a left-invariant metric on a
3-dimensional solvable Lie group.
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Theorem 2.1.4. [36] Let M be a compact affine manifold whose affine holonomy
group is nilpotent. The the following are equivalent

a. M is complete;

b. the map Dev is surjective;

c. the linear holonomy is unipotent;

d. the linear holonomy preserves volume;

e. the affine holonomy is irreducible;

f. the affine holonomy is indecomposable;

g. M is a complete affine nilmanifold;

h. M has a polynomial volume form;

i. M is orientable and the de Rham cohomology of M is the cohomology of the
complex of polynomial exterior forms.

Remark 2.1.4. Isomorphic Lie groups acting simply transitively by affine trasfor-
mations on Rn are conjugated by a polynomial automorphism of Rn. By this we
mean that if α, α′ are the affine representation of two isomorphic Lie groups G,G′

acting simply transitively on Rn, then there exists a polynomial automorphism F of
Rn such that α′(g) · v = F (α · F−1(v)). Equivalently, if Dev,Dev’ are the developing
maps of α, α′ respectively, Dev’ = F ◦ Dev.

2.2 Complex geometry

We leave, for the moment, the realm of affine geometry and review the basic notions
and the fundamental results in complex geometry. We refer to [54],[69],[91].

Let M be a smooth manifold of even dimension 2n.

Definition 2.2.1. An almost-complex structure on M is a vector bundle endo-
morphism J on TM such that J2 = −IdTM .

The presence of J allows to decompose the complexified tangent bundle

TCM = T 1,0M ⊕ T 0,1M

where the summands are defined as the ±i-eigenbundle w.r.t. JC, the natural
C-linear extension of J . The almost complex structure is said to be integrable if
the subbundle T 0,1M is an integrable distribution, i.e. [T 0,1M,T 0,1M ] ⊆ T 0,1M .
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By tensoriality, we obtain a decomposition on the complexified exterior bundles

ΛkCM =
⊕
k=p+q

Λp,qM =
⊕
k=p+q

p∧
(T 1,0M)∗ ⊗

q∧
(T 0,1M)∗

and on their space of sections

Ak(M,C) =
⊕
k=p+q

Ap,q(M)

This also induces a decomposition for the complexified de Rham operator (we
still denote with) d:

d = µ+ ∂ + ∂̄ + µ̄

where µ is a differential operator of bidegree (2,−1) coming from the Nijenhuis
tensor associated to the almost complex structure J :

NJ(X, Y ) := [X, Y ] + J [X, JY ] + J [JX, Y ]− [JX, JY ] for X, Y ∈ TM

and

µ+ µ̄ = −1

4

(
NJ ⊗ IdC

)∗
Definition 2.2.2. A complex structure on M is the datum of an (equivalence
class of an) atlas whose transition functions are holomorphic. A complex structure
always induces an almost complex structure J while the vice versa holds if and only
if the J is integrable (Newlander-Nirenberg theorem).

Proposition 2.2.1. The following are equivalent

1. M has a complex structure

2. [T 0,1M,T 0,1M ] ⊆ T 0,1M , i.e. T 0,1M is integrable distribution

3. d(A1,0(M)) ⊂ A2,0(M)⊕A1,1(M) , i.e. d = ∂ + ∂̄

4. NJ = 0

The pair (M,J), with J (almost) complex structure, is called an (almost)
complex manifold. On a complex manifold, d2 = 0 implies that ∂2 = ∂̄2 = 0
and ∂∂̄ + ∂̄∂ = 0. One can then define these complex analogues of the de Rham
cohomology:

Hp,q
∂ (M) :=

Ker ∂ : Ap,q(M) −→ Ap+1,q(M)

Im ∂ : Ap−1,q(M) −→ Ap,q(M)
, Hp,q

∂̄
(M) :=

Ker ∂̄ : Ap,q(M) −→ Ap,q+1(M)

Im ∂̄ : Ap,q−1(M) −→ Ap,q(M)



14

They are naturally isomorphic under complex conjugation but it is more natural
to work with the second one which is called the Dolbeault Cohomology of M .
This choice is related to the fact that “holomorphicity” of functions is defined in
terms of the operator ∂

∂z̄
.

2.2.1 Kähler geometry and Hodge Theory

Let g be a metric on a complex manifold (M,J), i.e. the assignment, for each
point m ∈ M , of a scalar product gm on TmM . It is said to be compatible
with J if g(J ·, J ·) = g(·, ·). We can then define an antisymmetric (0, 2)-tensor via
ω(·, ·) := g(J ·, ·), called the fundamental form of (M,J, g). Posing h := g + iω
we obtain an Hermitian structure and the triple (M, g, J), or simply (M,h), is
called an Hermitian manifold. If additionally the 2-form ω is closed dω = 0 then
it defines a Kähler structure and (M, g, J, ω) is called a Kähler manifold.

Remark 2.2.1. Each of these definitions make sense also for an almost complex
structure J . Knowing two of g, J, ω, with the appropriate compatibility relations,
determines the third.

On an almost Hermitian manifold we have some natural linear operators:

� The Lefschetz operator

L : Ak(M,C) −→ Ak+2(M,C) , α 7−→ ω ∧ α

In particular
L : Ap,q(M) −→ Ap+1,q+1(M)

� The Hodge star operator

∗ : Ak(M,C) −→ A2n−k(M,C)

induced by the metric g via

α ∧ ∗β = g(α, β) volg

In particular
∗ : Ap,q(M) −→ An−q,n−p(M)

� The dual Lefschetz operator

Λ := ∗−1 ◦ L ◦ ∗ : Ak(M,C) −→ Ak−2(M,C)

In particular
Λ : Ap,q(M) −→ Ap−1,q−1(M);
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� The J -operator

J : A•(M,C) −→ A•(M,C) , J =
∑
p,q

ip−qΠp,q

where Πp,q : A•(M) −→ Ap,q(M). This can be seen as the multiplicative
extension of J to the whole exterior algebra A•(M)

and differential operators:

� The adjoints of ∂ and ∂̄

∂∗ := − ∗ ◦ ∂̄ ◦ ∗ , ∂̄∗ := − ∗ ◦ ∂ ◦ ∗

� The Laplacians

∆∂ := ∂∗∂ + ∂∂∗ , ∆∂̄ := ∂̄∗∂̄ + ∂̄∂̄∗

� The dc-operators

dc := J −1 ◦ d ◦ J = −i(∂ − ∂̄) , dc∗ := − ∗ ◦dc ◦ ∗

In particular
ddc = 2i∂∂̄

Remark 2.2.2. The definition of the Lefschetz operator relies only on the 2-form
ω and it will have a fundamental role also in the symplectic case.

The fundamental result in Kähler geometry is

Theorem 2.2.1. (Hodge’s Theorem ) Let (M, g, J, ω) a compact hermitian man-
ifold. Then

� There are orthogonal decompositions

Ap,q(M) = ∂Ap−1,q(M)⊕Hp,q
∂ (M)⊕ ∂∗Ap+1,q(M)

Ap,q(M) = ∂̄Ap,q−1(M)⊕Hp,q

∂̄
(M)⊕ ∂̄∗Ap,q+1(M)

� The canonical projection Hp,q

∂̄
(M) −→ Hp,q

∂̄
(M) is an isomorphism.

If additionally M is Kähler then

� There is a decomposition

Hk(M,C) =
⊕
p+q=k

Hp,q

∂̄
(M)
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Where the space of harmonic forms H•,•
− (M) are defined in terms of the appro-

priate Laplacians.
Moreover, on a compact Kähler manifold there is a fundamental lemma whose

absence characterizes non-Kähler geometries

Lemma 2.2.1 (∂∂̄-lemma). For a d-closed (p, q)-form on a compact Kähler man-
ifold the following properties are equivalent

d-exact⇐⇒ ∂-exact⇐⇒ ∂̄-exact⇐⇒ ∂∂̄-exact

and the following theorem by Lefschetz

Theorem 2.2.2 (Strong Lefschetz Theorem). Let (M, g, J, ω) a compact Kähler
manifold of (real) dimension 2n. Then the maps

Ln−k : Hk(M,R) −→ H2n−k(M,R)

are isomorphisms for k ≤ n

One of the most beautiful consequences of this machinery, available in the Kähler
realm, is the possibility to rearrange the information associated to the Dolbeault
cohomology in a fancy way:

The numbers hp,q :=dimHp,q

∂̄
(M) are in fact called Hodge numbers

hn,n

hn,n−1 hn−1,n

...
...

. . .

hn,0 · · · · · · h0,n

. . .
...

...

h1,0 h0,1

h0,0

(2.3)

while their rearrangement is called the Hodge diamond of M . It has natural
symmetries given by complex conjugation hp,q = hq,p and by Serre duality hp,q =
hn−p,n−q.
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Calabi-Yau Geometry

Even if we are not going to work with Calabi-Yau manifolds it is worth to spend some
words since they furnish the original motivation for the birth of mirror symmetry.

The are several ways to introduce Calabi-Yau structures

Definition 2.2.3. A (compact) Kähler manifold (M, g, J, ω) is called a Calabi-Yau
manifold if one of the following equivalent properties holds

1. The holonomy of the Kähler metric is contained in SU(n).

2. M admits a nowhere-vanishing holomorphic n-form.

3. The canonical bundle KM :=
∧n(T 1,0M)∗ is holomorphically trivial.

What makes Calabi-Yau manifolds so special for string theorists? As we men-
tioned in the introduction, they satisfy the equation imposed by a supersymmetric
formulation of gravity. The Ricci-flatness condition is in fact related to the imposi-
tion of Einstein equations in vacuum (the internal manifolds M for the theory are
also called vacua). In classical field theory there are two fundamental objects: a
Hilbert space of states and a Hamiltonian function which governs the dynamics.
Usually, on curved space-time, the Hilbert space is taken as the L2-space of differen-
tial forms while the Hamiltonian is represented by the Riemannian Laplacian. Then
symmetries of the theory are given by linear operators commuting with the Lapla-
cian. When supersymmetry joins the picture one has to enlarge the (Lie) algebra
of differential operators to make it closed under commutators. When the manifold
is Kähler this is suitably obtained thanks to the Kähler identities. The equation
coming from supergravity can be written as ∇η = 0 for a six-dimensional spinor η.
Since Spin(6) ≃ SU(4), the equation implies that the holomomy reduces to SU(3).
The equations for the spinor can be decoupled into this set of equations

dω = 0 , dΩ = 0 , ω ∧ Ω = 0 ,
1

8
Ω ∧ Ω̄ = i3

ω3

6
(2.4)

for a real two-form ω and a complex three-form Ω. Later, string theorists let flux
compactification enter the picture which resulted in the internal manifold being no
more Kähler and extended the formulation in terms of SU(3)-strucures with torsion
[11],[12],[37],[64],[81]. We will see more in section 2.4.

2.2.2 Non-Kähler complex geometry

Relaxing the Kähler condition there is a pletora of different notion of Hermitian
metrics and related geometries that are important by their own. We recall some of
the most investigated ones:
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Definition 2.2.4. Let M be a hermitian manifold of complex dimension n and let
ω its fundamental form. Depending on the equation involving ω we have different
definitions:

� if dωn−1 = 0 it defines a balanced metric

� if ∂∂̄ω = 0 it defines a strong Kähler with torsion (SKT) metric

� if ∂∂̄ωn−1 = 0 it defines a Gauduchon metric

The study of balanced metrics started with the work of Michelsohn [68] in the
context of special Hermitian metrics. They are also called co-Kähler metrics since
dωn−1 is equivalent to d∗ω = 0. Instead SKT metrics, also known as pluriclosed
metrics, were introduced by Bismut at the end of 80’s [17]. If a metric is Gauduchon
and ∂ωn−1 is ∂̄-exact, then it is called strongly Gauduchon (sG).

Bott-Chern Cohomology

Let (M,J) be a complex manifold. Without the assumption of a Kähler structure
we can not more make use of the Hodge theory. Nevertheless there are other, more
general, cohomology theories which encode information about the complex geometry
of the manifold.

Definition 2.2.5. We define the Bott-Chern and Aeppli cohomologies respec-
tively as

Hp,q
BC(M) :=

Ker d : Ap,q(M) −→ Ap+q+1(M)

Im ∂∂̄ : Ap−1,q−1(M) −→ Ap,q(M)

Hp,q
A (M) :=

Ker ∂∂̄ : Ap,q(M) −→ Ap+1,q+1(M)

Im ∂ : Ap−1,q(M) −→ Ap,q(M)⊕ Im ∂̄ : Ap,q−1(M) −→ Ap,q(M)

We recall some properties, [2]:

� Hodge-star operator induces isomorphism Hp,q
BC(M) ≃ Hn−q,n−p

A (M)

� Complex conjugation induces isomorphismsHp,q
BC(M) ≃ Hq,p

BC(M) andHp,q
A (M) ≃

Hq,p
A (M)

� There are natural maps from Hp,q
BC(M) and Hp,q

A (M) into Hk
dR(M,C) which

are isomorphism precisely when the ∂∂̄-lemma holds.
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� Assume M is also compact, there are natural maps induced by the identity

Hp,q
BC(M)

Hp,q
∂ (M) Hk

dR(M,C) Hp,q

∂̄
(M)

Hp,q
A (M)

(2.5)

for k = p+ q. If the map Hp,q
BC(M) −→ Hp,q

A (M) is injective, then any map in
the diagram is an isomorphism and this happens precisely when M satisfies
the ∂∂̄-lemma.

There are natural laplacians associated to both cohomologies:

∆BC := (∂∂̄)(∂∂̄)∗ + (∂∂̄)∗(∂∂̄) + (∂̄∗∂)(∂̄∗∂)∗ + (∂̄∗∂)∗(∂̄∗∂)

∆A := (∂∂̄)∗(∂∂̄) + (∂∂̄)(∂∂̄)∗ + (∂̄∂∗)∗(∂̄∂∗) + (∂̄∂∗)(∂̄∂∗)∗
(2.6)

but they are not elliptic. Nevertheless,

Theorem 2.2.3. Let (M,h) be a compact hermitian manifold. Then by defining

∆̃BC := (∂∂̄)(∂∂̄)∗ + (∂∂̄)∗(∂∂̄) + (∂̄∗∂)(∂̄∗∂)∗ + (∂̄∗∂)∗(∂̄∗∂) + ∂̄∗∂̄ + ∂∗∂

and

∆̃A := ∂∂∗ + ∂̄∂̄∗ + (∂∂̄)∗(∂∂̄) + (∂∂̄)(∂∂̄)∗ + (∂̄∂∗)∗(∂̄∂∗) + (∂̄∂∗)(∂̄∂∗)∗

They have the same principal symbol of ∆BC and ∆A respectively and by standard
elliptic theory one obtains dimHp,q

BC(M) <∞ and dimHp,q
A (M) <∞.

By setting hp,qBC :=dimHp,q
BC(M) and hp,qA :=dimHp,q

A (M) we obtain the Bott-
Chern-Hodge and Aeppli-Hodge numbers so we can have an analogus version
of the Hodge diamond for complex non-Kähler manifolds. Clearly, all these notions
coincide when the manifold is Kähler.

2.3 Symplectic Geometry

Symplectic geometry is the mathematical formalism underlying the Hamiltonian for-
mulation of classical mechanics. Basically, the phase space of position-momentum
configuration of the mechanical system is the prototype of what is called a symplectic
manifold, namely a manifold where the change of coordinates are canonical transfor-
mations for the mechanical system. For the material here we refer to [66],[67],[80].
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Linear symplectic spaces

Let V a vector space of dimension 2n and let ω be a 2-covector on V . If the linear
map ω♭ : V −→ V ∗ defined by ω♭(v) = ιvω is invertible, then ω is said non-
degenerate. A non-degenerate 2-covector is called a symplectic form. The pair
(V, ω) is then called a symplectic linear space.

Unlike in the Riemannian geometry, where the non-degeneracy of the scalar
product gives the notion of orthogonal complement, in the symplectic case there are
various notions of “orthogonality”.

Let (V, ω) a symplectic linear space and let U ⊆ V a subspace. Then the
symplectic complement Uω of U is defined as

Uω = {v ∈ V | ω(u, v) = 0 for all u ∈ U}

We can then characterize subspaces in symplectic vector spaces as follows:

� U is symplectic if U ∩ Uω = {0};

� U is isotropic if U ⊆ Uω;

� U is coisotropic if U ⊇ Uω;

� U is Lagrangian if U = Uω;

In particular Lagrangian subspaces are the maximal (co)isotropic subspaces since
they have dimU = 1

2
dimV . By a skew-symmetric version of Gram-Schmidt process,

there exists a basis e1, . . . , en, f1 . . . , fn of V such that ω(ei, fj) = δij, ω(ei, ej) =
ω(fi, fj) = 0 and it is called a symplectic basis. Moreover in term of the dual
basis

ω = e∗1 ∧ f ∗
1 + · · ·+ e∗n ∧ f ∗

n

and the matrix associated to ω has expression

S0 =

(
0 Id
−Id 0

)
Compatible linear complex structures

A (linear) complex structure on V is an endomorphism J such that J2 = −Id. On a
symplectic vector space (V, ω), J is said to be ω-compatible if ω(Ju, Jv) = ω(u, v)
and ω(u, Ju) > 0 for all u ̸= 0. In particular gJ(u, v) := ω(u, Jv) is a well-defined
inner product on V .

Remark 2.3.1. Once we are given an inner product g on a linear symplectic space
(V, ω) we can produce a canonical compatible complex structure J . In general the
metric gJ will be different from g. In fact we can define a skew-symmetric endo-
morphism A : V −→ V via the identity
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ω(u, v) = g(Au, v)

In particular AAt is symmetric and positive, i.e. g(AAtu, u) = g(Atu,Atu) > 0
for all u ̸= 0. Therefore, by the spectral theorem, the operator

√
AAt is well-defined

and commutes with A. By setting J := (
√
AAt)−1A we get the desired compatible

linear structure. The factorization A =
√
AAtJ is called polar decomposition of

A.

Let J be a compatible complex structure on (V, ω). If L is a Lagrangian subspace
of (V, ω), then also JL is Lagrangian and JL = L⊥ with respect to gJ . Another
consequence of compatibility is that one can take the fi in the symplectic basis as
fi = Jei.

2.3.1 Symplectic manifolds

Let M be a smooth manifold of dimension 2n.

Definition 2.3.1. A symplectic structure on M is a non-degenerate differential
2-form ω which is closed. Therefore ωn ̸= 0 and dω = 0. The pair (M,ω) is called
a symplectic manifold.

Given a symplectic manifold (M,ω), a submanifold N ⊆M is said to be

� symplectic if TmN is a symplectic subspace of TmM m ∈ N .

� isotropic if TmN is a isotropic subspace of TmM m ∈ N .

� coisotropic if TmN is a coisotropic subspace of TmM m ∈ N .

� Lagrangian if TmN is a Lagrangian subspace of TmM for all m ∈ N .

Another fundamental difference between symplectic structures and Riemannian
metrics is that there is no local obstruction to a symplectic structure being locally
equivalent to the standard linear model

Theorem 2.3.1 (Darboux). Let (M,ω) be a 2n-dimensional symplectic manifold.
For any m ∈ M , there are smooth coordinates (x1, . . . , xn, y1, . . . , yn), centered at
m, in which ω has coordinate representation

ω =
n∑
i=1

dxi ∧ dyi.

These coordinates are called Darboux coordinates.
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Cotangent bundles

The prototypical examples of symplectic manifolds are provided by cotangent bun-
dles of smooth manifolds. Define on the total space of π : T ∗M −→ M the tauto-
logical 1-form as

τ(m,α) = dπ∗
(m,α)α

where we denoted with (m,α) a point in T ∗M . If x1, . . . , xn are local coordinates
around m and y1, . . . , yn are the coordinate expression for α = yidx

i, then

τ = yidx
i

and clearly ωcan := −dτ = dxi ∧ dyi defines a symplectic structure on T ∗M . In
general if σ is a section for π, that is σ is a smooth 1-form, σ is closed as differential
forms if and only if σ(M) is a Lagrangian submanifold of (T ∗M,ωcan).

2.3.2 Lagrangian Fibrations

A coisotropic submanifold N ⊆ (M,ω) is such that TNω ⊆ TN and can be charac-
terized in the following manner:

TnN = {v ∈ TnM |v(F ) = 0 for all F ∈ C∞(M)N}

Ann(TnN) = {α ∈ T ∗
nM |α = dF |n for some F ∈ C∞(M)N}

where C∞(M)N := {F ∈ C∞(M) | F |N = 0}. In particular the map ω♭ :
TnM −→ T ∗

nM allow us to identify Ann(TN) with TNω ⊆ TM |N and dF with XF .
We have

Lemma 2.3.1. The following are equivalent:

1. For all F ∈ C∞(M)N , XF is tangent to N ;

2. C∞(M)N is a Poisson subalgebra of C∞(M).

3. N is a coisotropic submanifold of M .

Lemma 2.3.2. Suppose F : (M,ω) −→ Rk is a submersion and that the components
of F = (F1, . . . , Fk) Poisson commute, that is {Fi, Fj} = 0. Then the fibers of F
are coisotropic submanifolds of M of codimension k.

Let us now specialize in the case maximally coisotropic case k = n.

Definition 2.3.2. Let (M,ω) be a symplectic manifold. A Lagrangian fibration
is a fibration π : (M,ω) −→ B such that every fiber is a Lagrangian submanifold of
M , in particular dimB = n.

We will see that when M and B are compact the fibers must be tori. In general
they are of the form Tk × Rn−k.
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Affine torus bundles

Let G be a Lie group and X be a principal homogeneous G-space, that is X is
equipped with a free, transitive action of G. In particular dimG=dimX and we can
identify X = G.x ≃ G for any choice of a x ∈ X, up to a translation in G. If G is
a torus we say X is an affine torus, if G is a vector space instead we say X is an
affine vector space. Let V be a vector space acting transitively on X and that dim
V = dim X = n. The stabilizer Vx is a discrete subgroup of V , not depending on
x. Therefore we can see X as a principal homogeneous H := V/Vx-space. Since H
is compact, connected and abelian it is of the form of a vector space times a torus.
In particular the space X has a product structure of an affine torus times an affine
vector space.
Extend now this construction to fiber bundles: we want to define an action of a group
bundle to a given fiber bundle E → B. By a group bundle we mean a fiber bundle
G → B with fibers carrying a group structure and bundle charts being fiberwise
group isomorphism with a given group G. Then we can define smooth maps

G ×B E −→ E

that are fiberwise group actions. We are interested in the case when the model
group is a torus. Then

Definition 2.3.3. We say a fibration π : M −→ B is an affine torus bundle if
it is equipped with a fiberwise, free, transitive action of a torus bundle T −→ B.

When the fibration π :M → B has compact fibers we can mimic the construction
above for vector spaces and obtain easily such a torus bundle action. In fact, suppose
we are given a vector bundle E → B, dimE =dimM , with a transitive, fiberwise
action of E on M . Then we can construct the stabilizer bundle Λ→ B for the fiber
bundle action and define the torus bundle as the quotient bundle T := E/Λ → B.
In the context of symplectic geometry the vector bundle E will be represented by
the cotangent bundle of the base T ∗B while the torus-action is related to theory of
action-angle coordinates (Arnol’d-Liouville Theorem).

Remark 2.3.2. The presence of any global section σ : B → M would identify
the two fiber bundles M and T . We will construct our examples in a way that a
global section always exists. Moreover, if T → B is trivial, then M → B is a
principal torus bundle. The bundle Λ → B is therefore related to the monodromy
of the fibrations. In our treatment it will play a prominent role and the absence of
triviality will give rise to a rich geometric interpretation.

In the following we will resume the construction by Duistermaat [28] following
[67]

Theorem 2.3.2. Let (M,ω)
π−→ B be a Lagrangian fibration with compact, connected

fibers. Then there is a canonical, fiberwise transitive vector bundle action T ∗B ×
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M →M . Thus every Lagrangian fibration has canonically the structure of an affine
torus bundle.

Proof. For each 1-form on the base α ∈ A1(B) we can define a vertical vector field
Xα in the following way

ιXαω = −π∗α

Let VM := kerdπ the vertical bundle of M relative to π and let XV (M) :=
Γ(VM). For any vector field Y ∈ XV (M) we have

ω(Xα, Y ) = ιY ιXαω = −ιY π∗α = 0

since α is a basic 1-form. Since VM is a Lagrangian subbundle, this implies that
Xα ∈ XV (M). Such construction extends to an isomorphism of vector bundles

VM ≃ π∗T ∗B

We now exploit this map to define an action of T ∗B on M as follows: let Φα :
M →M the time-one flow associated to Xα. Since Xα is vertical, so is the flow i.e.
it preserves the fibers of π. Define the fiber bundle map

T ∗B ×B M −→M , (αb,m) 7−→ Φα(m)

.
To check this is indeed a vector bundle action we just need the flows commuting

for each α. Take then α1, α2 ∈ A1(B). Let Xα1 , Xα2 the associated vertical vector
fields.

ι[Xα1 ,Xα2 ]
ω = (LXα1

ιXα2
− ιXα2

LXα1
)ω

= −LXα1
π∗α2 − ιXα2

dιXα1
ω

= −LXα1
π∗α2 + ιXα2

π∗dα1

= 0

(2.7)

Non-degeneracy of ω implies [Xα1 , Xα2 ] = 0. Moreover since each map T ∗
π(m)B →

Vm is an isomorphism, the action is fiberwise transitive.

Let Λ be the bundle of stabilizers for this T ∗B-action

Λb = {α ∈ T ∗
b B | Φα(m) = m}

and since the group (which is pointwise just the vector space T ∗
b B) has the same

dimension of the orbit, Λb must be a discrete subgroup. In particular it is a lattice
by compactness assumption. Therefore Λ is also called period lattice (bundle). We
set
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T := T ∗B/Λ −→ B

Moreover the canonical symplectic form on T ∗B is preserved by Λ, which becomes
a Lagrangian submanifold, and descends to T turning the T → B into a Lagrangian
fibration.

The covering group of the covering bundle Λ→ B is a homomorphism

ρb : π1(B, b) −→ Aut(Λb) ≃ Aut(H1(Fb),Z) ≃ GL(n,Z)

called the monodromy of the bundle π : M −→ B. Here Fb denotes the fiber
over b.

Remark 2.3.3. Up to taking the inverse transpose of ρ we note that the monodromy
is nothing else that the holonomy of the flat connection associated to the affine
structure on the base.

Action-angles coordinates

Here we review the theory of action-angle coordinates as described in [28],[48],[67].
Take a point b ∈ B and a basis β1(b), . . . , βn(b) of Λb = Λ ∩ T ∗

b B. Then there are
unique differential forms, say βj, defined in some neighborhood of b such that form a
local basis for Λ. Since by the preceding observation Λ is a Lagrangian submanifold,
the βj define a Lagrangian section of T ∗B. In particular dβj = 0 so they are locally
exact:

βj = 2πdrj

where r1, . . . , rn are functions on B. The fact the βi are linear independent
implies the rj are local coordinates around b. Let θ1, . . . , θn be the corresponding
dual variables on T ∗B near π−1(B). The lattice subbundle is described by θj ∈ 2πZ,
j = 1, . . . , n.

Thus (r1, . . . , rn, θ1, . . . , θn) form a system of local coordinates on M known as
action-angle coordinates and the symplectic form on M is locally given as

ω = dτ

and τ =
∑n

i ridθi is a well-defined 1-form on M . Note that

ri(c) =
1

2π

∫
γi(c)

τ

where γi(c) is the curve in the fiber above c given by 0 ≤ θi ≤ 2π , θj = 0, j ̸= i

Theorem 2.3.3. [48] Under the hypothesis of Theorem 2.3.2, local action angle
coordinates exist. If τ is a 1-form on M such that ω = dτ and if γi(c) are smoothly
varying curves in the fiber above c whose homotopy classes [γi(c)], i = 1, . . . , n form
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a basis for the fundamental group of the fiber over c for each c, then the functions
ri give action variables, whose dual variables give the angle variables.

Assume for simplicity the symplectic form ω = dτ is exact. Consider the local
system ξ → B whose fiber over b is the abelian group H1(π

−1(b),Z) ≃ Zn. Let
q : B̃ → B be the universal cover and let ξ̃ = q∗ξ. Since B̃ is simply-connected, ξ̃ is
trivial. Let c1, . . . , cn be a Z-basis of continuous sections of ξ̃ → B.

Definition 2.3.4. The flux map is defined to be the map R : B̃ → Rn given by

R(b̃) = (r1(b̃), . . . , rn(b̃)) :=

(
1

2π

∫
c1(b̃)

τ, . . . ,
1

2π

∫
cn(b̃)

τ

)
. (2.8)

Lemma 2.3.3. Suppose Ũ ⊆ B̃ and U ⊆ B are open subsets such that q|Ũ : Ũ → U
is a diffeomorphism. Then R ◦ (q|Ũ) : U → Rn gives action coordinates on U .

For a generic, not necessary exact, symplectic form ω the definition of action
coordinates has to be modified. Denote with π̃ : q∗M → B̃ the pullback of the
universal cover. Fix a basepoint b̃0 ∈ B̃. Given a point b̃ ∈ B̃, pick a path γ :
[0, 1]→ B̃ from b̃0 to b̃. A family of loops over γ is a homotopy C : S1×[0, 1]→ q∗M
satisfying π̃(C(s, t)) = γ(t), i.e. if t is fixed, C(s, t) is a loop in π̃−1(γ(t)). For
k = 1, . . . , n pick a family of loops Ck over γ with Ck(·, t) ∈ ck(γ(t)) for all t ∈ [0, 1].
Define

R(b̃) = (r1(b̃), . . . , rn(b̃)) , rk(b̃) =

∫
Ck

ω (2.9)

This definition does not depend on :

� the basis c1, . . . , cn of q∗ξ

� the basepoint b̃0

� the path γ

� the family of loops Ck over γ.

Instead, if we change the basepoint, the resulting flux map differs just by a
translation. In particular, if we change the basis of sections c1, . . . , cn by an element
of GL(n,Z) then the result is to apply a Z-linear transformation to the flux map.
Moreover the integral affine structure on B̃ descends to B. This observation brings
us back to the realm of (integral) affine geometry and we can note that this flux
map, or just the action coordinates, are nothing else that the developing map for
the affine structure induced on the base. This establish the fundamental connection
between affine geometry and symplectic geometry.
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This story can also be interpreted in terms of the cohomology of a sheaf as we
can see from Duistermaat [28]. The choice of angle coordinates is determined by the
choice of a Lagrangian section λi : Ui →M and on the intersections Ui ∩Uj one has

λi(b) = µij(b)(λi(b))

for a uniquely determined Lagrangian section µij : Ui ∩ Uj → T . The µij
constitute a cocycle which modulo coboundaries determines the bundle π :M → B
with symplectic structure and Lagrangian fibers.

Therefore, let L(T ) be the sheaf of germs of Lagrangian sections B → T , then
the structure of M is determined by the base B, the Lagrangian covering Λ ⊂ T ∗B
and the cohomology class [µ] ∈ H1(B,L(T )). We have a short exact sequence

0 −→ Λ −→ L(T ∗B) −→ L(T ) −→ 0

which induces a long exact sequence

0→ H0(B,Λ)→ H0(B,L(T ∗B))→ H0(B,L(T )) δ−→ H1(B,Λ)→

→ H1(B,L(T ∗B))→ H1(B,L(T )) δ−→ H2(B,Λ)→ · · ·

.
Then the class

ν = δ[µ] ∈ H2(B,Λ)

is called the Chern class of the fibration π : M → B. If the covering bundle
Λ→ B is trivial, then Λ ≃ Zn and H2(B,Λ) ≃ (H2(B,Z))n.

We note moreover that

0→ H i(B,C∞(T )) δ−→ H i+1(B,Λ)→ 0 for i ≥ 1

In particular H1(B,C∞(T )) δ−→ H2(B,Λ) is an isomorphism, which means that
the structure of π : M → B as smooth bundle is governed by the Chern class. We
end the section with the following result by Duistermaat concerning the topological
relationship between the fibrations:

Theorem 2.3.4. The following are equivalent

1. M ≃ T as smooth bundles

2. There exists a global section σ : B →M for π :M → B

3. The Chern class δ[µ] ∈ H2(B,Λ) is trivial

In particular if (2) hold also the following are equivalent

� M ≃ T as a symplectic manifold fibered over B with Lagrangian fibers;
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� M → B admits a global Lagrangian section σ : B →M ;

� The Chern class vansishes and for any section σ : B → M the 2-form σ∗ω is
exact on B.

Theorem 2.3.5 (Global action-angle coordinates). The fibration π : M → B is
topologically trivial if and only if the monodromy and the Chern class are trivial.
Moreover the following are equivalent

1. There is a smooth map (R,Θ) :M → Rn × (R/Z)n such that

� ω =
∑n

i=1 dθi ∧ dri
� The ri are constant along the fibers of π

� θ is injective on each fiber of π

2. The fibration π :M −→ B is topologically trivial and ω is exact

2.3.3 Tseng-Yau cohomology

In a series of paper [84],[85],[86],[87] ,Tseng and Yau introduced a new cohomology
theory suited for symplectic manifolds. Pursuing an idea already present in the work
of Brylinski [19] they developed in full generality a symplectic analogue of Hodge
theory. In this section we will recall the basic facts about it. We have already met
the Lefschetz operator L = ω ∧ ·, its dual Λ and the Hodge star operator ∗. In
the same spirit of Kähler identities, it is reasonable to consider the commutator
dΛ := [d,Λ] = dΛ− Λd. It is a differential operator of degree −1:

dΛ : Ak(M) −→ Ak−1(M)

In the same way as in the Riemannian setting, we can define a symplectic
Hodge-star operator ∗s using the symplectic volume form ωn

n!
(also called Liouville

volume form) via the identity

α ∧ ∗sβ = ω−1(α, β)
ωn

n!

In particular we can rewrite the operator dΛ as the symplectic adjoint of the de
Rham differential d:

dΛ = (−1)k ∗s d∗s
and also

Λ = ∗sL∗s
One has (dΛ)2 = 0 and ddΛ + dΛd = 0. Also the operator ddΛ has an important

role and it is of degree 0. We recall the definition of the counting operator H as
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H :=
∑
k

(n− k)Πk

where Πk is the projector onto forms of degree k. Then, there are the following
commutators relations for d, dΛ and ddΛ with sl2-operators L,Λ, H.

Lemma 2.3.4.
[d, L] = 0 , [d,Λ] = dΛ , [d,H] = d

[dΛ, L] = d , [dΛ,Λ] = 0 , [dΛ, H] = −dΛ

[ddΛ, L] = 0 , [ddΛ,Λ] = 0 , [ddΛ, H] = 0

.

Then Tseng and Yau found that the symplectic analogue of Bott-Chern and
Aeppli cohomologies are

Hk
d+dΛ(M) :=

Ker{d : Ak(M)→ Ak+1(M, } ∩Ker{dΛ : Ak(M)→ Ak−1(M)}
Im{ddΛ : Ak(M) −→ Ak(M)}

Hk
ddΛ(M) :=

Ker{ddΛ : Ak(M) −→ Ak(M)}
Im{d : Ak−1(M)→ Ak(M)} ⊕ Im{dΛ : Ak+1(M)→ Ak(M)}

For each operator dΛ, d + dΛ, ddΛ, they developed the Hodge theory associated
to each Laplacian. In particular the cohomology groups are finite-dimensional and
there is a pairing, as for Bott-Chern and Aeppli, such that Hk

d+dΛ(M) ≃ H2n−k
ddΛ

(M).

Moreover there is a symplectic version of the ∂∂̄-lemma:

Lemma 2.3.5 (ddΛ-lemma/Definition). Let α be a d-closed and dΛ-closed dif-
ferential form. We say that the ddΛ-lemma holds if the following properties are
equivalent:

(i) α is d-exact;

(ii) α is dΛ-exact;

(iii) α is ddΛ-exact.

so that

Proposition 2.3.1 ([85]). On a compact symplectic manifold (M,ω), the ddΛ-
lemma holds, or equivalently the strong Lefschetz property is satisfied, if and only if
the canonical homomorphism Hk

d+dΛ(M)→ Hk
dR(M) is an isomorphism for all k.

From now on we will refer to H•
d+dΛ(M) as the Tseng-Yau cohomology of

M and it will represent the symplectic cohomology involved in the formulation of
non-Kähler mirror symmetry.
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2.4 SU(n)-geometry

We take as definition of SU(n)-structure the one used in [61].

Definition 2.4.1. Let M a real 2n-dimensional smooth manifold. A SU(n)-
structure on M is the datum of a couple of differential forms (ω,Ω) satisfying
the following properties

� Ω is a nowhere-vanishing decomposable complex n-form such that by defining

T 0,1M := {v ∈ TM ⊗ C|ιvΩ = 0} (2.10)

and letting T 1,0M its complex conjugate, one has a splitting

TM ⊗ C = T 1,0M ⊕ T 0,1M (2.11)

which induces an almost-complex structure J on M . Then Ω is a type (n, 0)
w.r.t. this J .

� ω is a non-degenerate real (1, 1)-form w.r.t J and it is such that ω(·, J ·) is an
Hermitian metric.

From both properties one deduces that

ω ∧ Ω = 0

Ω ∧ Ω̄ = in · F · ω
n

n!

(2.12)

for some nowhere-vanishing function F onM which is called the conformal factor
of the SU(n)-structure.

Remark 2.4.1. If both forms are closed, dω = dΩ = 0, then the J is integrable and
the ω is symplectic turning M into a Calabi-Yau manifold

This is equivalent to the common one used in [15],[24],[33]:

Definition 2.4.2. Let M be a 2n-dimensional smooth manifold and let L(M) its
GL(2n,R)-principal bundle of linear frames. A SU(n)-structure onM is a SU(n)-
reduction of L(M).

Therefore a SU(n)-structure on M is determined by the choice of the following
data

� an almost complex structure J ;

� a J-Hermitian metric g;
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� a complex (n, 0)-form Ω of constant norm.

It is important to cite here also the characterization for SU(3)-structures done
by Hitchin [52],[53]

We recall that a stable 3-form, in the sense of Hitchin, is a three-form such
that λ(ψ+(p)) < 0 for each p ∈ M . The map λ is pointwise defined as follow
[53]: set V := TpM and fix a volume form η. Consider the canonical isomorphism
A : Λ5(V ∗)→ V ⊗Λ6(V ∗) defined via A(ξ) = v⊗ η, where ιvη = ξ. Then define for
a fixed ρ ∈ Λ3(V ∗) the maps

Kρ : V → V ⊗ Λ6(V ∗) , Kρ(v) = A(ιvρ ∧ ρ)

and

λ : Λ3(V ∗)→ (Λ6(V ∗))⊗2 , λ(ρ) :=
1

6
trK2

ρ

Then, if λ(ρ) ̸= 0, the form
√
|λ(ρ)| ∈ Λ6(V ∗) defines a volume form by choosing

the orientation of V for which ω3 is positively oriented. Moreover if λ(ρ) < 0, ρ
defines an almost complex structure J = Jρ via Jρ := − 1√

−λ(ρ)
Kρ. In our case ρ =

ψ+ and by setting ψ− = Jψ+ one can define a complex-volume form Ω = ψ+ + iψ−.

So an SU(3)-structure is the datum of

� an almost symplectic structure ω

� a stable three-form ψ+

such that ω ∧ ψ+ = 0 and ω(·, Jψ+·) defines a positive definite Hermitian form.

Moreover Ω ∧ Ω̄ = cω
3

3!
for a constant c.

2.4.1 Supersymmetric systems of type IIA/IIB in dimen-
sion three

We now focus on the three-dimensional case and differentiate the structure into
two models: let M be a smooth six-dimensional real manifold admitting an SU(3)-
structure defined by a couple (ω,Ω) in the sense of definition 2.4.1. Then the system

IIA :


dω = 0

d Re Ω = 0

Ω ∧ Ω̄ = −i · F · ω3

6

ddΛ(F · Im Ω) = ρA

(2.13)

defines a symplectic half-flat geometry on M and we refer to the triple
(M,ω,Ω) as supersymmetric SU(3)-structure of type IIA
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Remark 2.4.2. We recall that an SU(3)-structure (ω,Ω) such that d(ω ∧ ω) = 0
and dReΩ = 0 is called half-flat.

We will deal only with examples of symplectic half-flat structures coming from
solvmanifolds. For other interesting examples, also non compact, one can look in
[73],[74],[93].

Instead, the system

IIB :


dω2 = 0

dΩ = 0

Ω ∧ Ω̄ = −i · F · ω3

6

2i∂∂̄(F−1 · ω) = ρB

(2.14)

defines a complex balanced geometry on M and we refer to the triple (M,ω,Ω)
as supersymmetric SU(3)-structure of type IIB. From now on we will use
“check” superscripts to denote the components of a IIB-system.

Remark 2.4.3. The last equations in both systems has to be taken as definitions
for the flux forms ρA and ρB. Their presence is related to the presence of torsion.
We will not deal with them in particular but we remark their importance in the
context of geometric PDEs associated to them (see for example the recent survey
by D. H. Phong [72]) .

Remark 2.4.4. The definition of IIA/IIB systems can be extended to an arbitrary
dimension. The definition for a supersymmetric SU(n)-structure of type IIB is
straightforward. Instead, for the type IIA system one has to take

IIA :



dω = 0

d(πn,0∆ · Ω) = 0

d(π1,n−1
∆ · Ω) = 0

Ω ∧ Ω̄ = −i · F · ω3

6

ddΛ
(
F · (πn−1,1

∆ · Ω + π0,n
∆ · Ω)

)
= ρA

(2.15)

where ∆ is a Lagrangian distribution with respect the (p, q)-decomposition of forms
is taken (see section 2.3.3). Clearly, for n = 3 one recovers the above definition.

Torsion of a SU(3)-structure

We have already mentioned that the formulation of string theory in the non-Kähler
setting is related to the presence of torsion in the structures defining the geometry.
The obstruction of a SU(3)-structure to be Calabi-Yau is encoded in the so called
torsion forms which are described in [15],[24]:
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dω = ν0 ψ

+ + α0 ψ
− + ν1 ∧ ω + ν3

dψ+ = π0 ω
2 + π1 ∧ ψ+ − π2 ∧ ω

dψ− = σ0 ω
2 + σ1 ∧ ψ+ − σ2 ∧ ω

(2.16)

where we set Ω = ψ+ + iψ− and α0, ν0, π0, σ0 ∈ C∞(M), ν1, π1, σ1 ∈ Λ1M ,
ν3 ∈ Λ2

12M,π2, σ2 ∈ Λ2
8M .

We also recall the decomposition of Λ•M as su(3)-module:

Λ2M = Λ2
1M ⊕ Λ2

6M ⊕ Λ2
8M

Λ3M = Λ3
ReM ⊕ Λ3

ImM ⊕ Λ3
6M ⊕ Λ3

12M

Λ4M = Λ4
1M ⊕ Λ4

6M ⊕ Λ4
8M

(2.17)

Λ2
1 = Rω

Λ2
6M =

{
∗s (α ∧ ψ+)

∣∣α ∈ Λ1M
}
=
{
φ ∈ Λ2M

∣∣ Jφ = −φ
}

Λ2
8M =

{
φ ∈ Λ2M

∣∣φ ∧ ψ+ = 0 and ∗s φ = −φ ∧ ω
}
=

=
{
φ ∈ Λ2M

∣∣Jφ = φ , φ ∧ ω2 = 0
} (2.18)

and

Λ3
Re = Rψ+

Λ3
Im = Rψ−

Λ3
6M =

{
α ∧ ω

∣∣α ∈ Λ1M
}
=
{
γ ∈ Λ3M

∣∣ ∗s γ = γ
}

Λ3
12M =

{
γ ∈ Λ3M

∣∣γ ∧ ω = 0 , γ ∧ ψ+ = 0 andγ ∧ ψ− = 0
} (2.19)

In the case of a symplectic half-flat structure the equations (2.16) reduce to
dω = 0

dψ+ = 0

dψ− = −σ2 ∧ ω
(2.20)

while for complex balanced one to
dω = ν3

dψ+ = 0

dψ− = 0

(2.21)
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Refined Tseng-Yau Cohomology

Let (ω,Ω) be an SU(3)-structure on M , here we are not specifying the type of the
structure. We recall that a real polarization w.r.t a non-degenerate 2-form ω is
an integrable distribution ∆ ⊆ TCM such that ω|∆ = 0 and ∆̄ = ∆ (see [48],[92]
for the example). Set ∆⊥ for the g-orthogonal complement of ∆ where the metric
g is the one associated to ω and Ω in the defining SU(3)-structure. The orthogonal
decomposition TM = ∆⊕∆⊥ extends to the space of differential forms

A•(M) =
⊕
p+q=k

Ap,q∆ (M)

where Ap,q∆ (M) ranges over the p ∆-directions and q ∆⊥-directions.
We are now in position to define the cohomology we will use to compute the

symplectic invariants of a IIA structure.

Definition 2.4.3. Let (ω,Ω) be an SU(3)-structure on M such that ω is symplec-
tic and let ∆ be a real polarization with respect to ω. The refined Tseng-Yau
cohomology of M is defined as

Hp,q
TY,∆(M) :=

Ker (d+ dΛ) ∩ Ap,q∆ (M)

Im (ddΛ) ∩ Ap,q∆ (M)

When a supersymmetric SU(3)-structure (M,ω,Ω) is the total space of a La-
grangian fibration π : M → B, the vertical Lagrangian distribution induced by π
will be chosen as the real polarization.

2.5 Lie groups and Lie algebras

We are interested in studying the properties of compact solvmanifolds. We therefore
recall some basic facts about solvable Lie groups and solvable Lie algebras. The
main reference in this sense is the paper by Bock [18]. There the author studied and
classified in a comprehensive way the algebra, and geometry, of solvmanifolds up to
dimension six.

Definition 2.5.1. A solvable (respectively nilpotent) Lie algebra g is a Lie
algebra such that its derived series g ≥ [g, g] ≥ [[g, g], [g, g]] ≥ · · · (lower center
series g ≥ [g, g] ≥ [g, [g, g]] ≥ · · · ) terminates in a finite number of steps. A Lie
algebra is said completely solvable if it admits a chain of ideals Li such that

0 = L0 ⊂ L1 ⊂ · · · ⊂ Ln = g

with dimLi = i . Equivalently, if g is defined over a field K, it is completely solvable
if and only if the eigenvalues of adX are in K for all X ∈ g. A Lie group G is said
solvable (nilpotent, completely solvable respectively) if it is its Lie algebra.
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Remark 2.5.1. We will be interested in left-invariant structures defined on the Lie
groups. In the following, when taking the quotient by a lattice, the action is always
meant by left translation and we will adopt the expression G/Γ for the space of right
cosets.

Definition 2.5.2. A (compact) solvmanifold is a quotient of a solvable Lie group
modulo a lattice.

In dimension three the only unimodular, solvable Lie groups (not compact) are

1. The abelian (R3,+)

2. The Heisenberg group

H3(R) :=

{1 x1 x3
0 1 x2
0 0 1

∣∣∣x1, x2, x3 ∈ R

}

3. The universal cover of the group of rigid motion of the Minkowski plane

E(1, 1) :=

{
ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

∣∣∣x1, x2, x3 ∈ R

}

4. The universal cover of the group of rigid motion of Euclidean plane

E(2) :=

{
cos t − sin t 0 x
sin t cos t 0 y
0 0 1 t
0 0 0 1

∣∣∣x, y, t ∈ R

}

with corresponding Lie algebras

1.
a3 = (0, 0, 0)

2.
h3 = (0, 0, 12)

3.
e(1, 1) = (13,−23, 0)

4.
e(2) = (23,−13, 0)



36

We are adopting the convention that (0, 0, 12) stands for a basis {E1, E2, E3}
({e1, e2, e3}) for the (co)algebra such that [E1, E2] = E3 and the other brackets
vanish (de1 = de2 = 0 and de3 = −e12).

Remark 2.5.2. The Heisenberg group is nilpotent while E(1, 1) is completely solv-
able. This will have consequences for our forthcoming constructions.

Remark 2.5.3. Each of these solvable Lie groups has a structure of semidirect
product R⋉µi R2 where the action is one of

µ1 = 0 , µ2(x) =

(
1 x
0 1

)
, µ3(z) =

(
ez 0
0 e−z

)
, µ4(t) =

(
cos t − sin t
sin t cos t

)
Each of these solvable Lie groups admits a lattice Γ. For simplicity we will present

just one possible lattice and consider the solvmanifold obtained by quotienting by
it.

1.
Γ = Z3

so that R3/Z3 ≃ T3

2.

Γ = H3(Z) :=

{1 n1 n3

0 1 n2

0 0 1

∣∣∣n1, n2, n3 ∈ Z

}

so that H3(R)/H3(Z) is the Heisenberg manifold

3.

Γ = Γt := tZ ⋉µ3 ⟨
(
1
1

)
,

(
et

e−t

)
⟩Z , for t = log

3 +
√
5

2

so that E(1, 1)/Γt correspond to the (compact) Sol geometry in Thurston’s
classification. An element γ ∈ Γt can be written as

etn1 0 0 n2 + etn3

0 e−tn1 0 n2 + e−tn3

0 0 1 tn1

0 0 0 1


see Bock [18] or Auslander [29].
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4.
Γ = Γπ := πZ ⋉µ4 Z2

so that E(2)/Γπ is a compact solvmanifold with b1 = 1

if we take 2π instead of π we get a quotient diffeomorphic to a three-torus
E(2)/Γ2π ≃ T which has b1 = 3 ([18]).

In fact, the diffeomorphism type of a solvmanifold is governed by the fundamental
group which is isomorphic to the lattice Γ.

Theorem 2.5.1 (Mostow [75]). Let (G1/Γ1) (G2/Γ2) two solvmanifold. Then any
isomorphsim φ : Γ1 −→ Γ2 extends to an equivariant diffeomorphism Φ : G1 −→ G2.

The hypothesis of nilpotence or complete solvability is crucial for cohomological
computations:

Theorem 2.5.2 (Nomizu [70]). Let G be a simply connected nilpotent Lie group
with a discrete subgroup Γ. Assume that X := Γ\G is compact. Then, the de Rham
cohomology of X can be represented by G-invariant forms

This has been then extended by Hattori to the completely solvable case

Theorem 2.5.3 (Hattori [50]). Let G/Γ be a solvmanifold. Then

1. The natural inclusion of the Chevalley-Eilenberg complex into the de Rham
complex (

∧• g∗, δ)→ (A•(G/Γ), d) induces an injection in cohomology.

2. If G is completely-solvable, then the inclusion is a quasi-isomorphism.

3. If Ad(Γ) and Ad(G) have the same Zariski closure, then the inclusion is a
quasi-isomorphism.

and more recently Kasuya gave a useful tool also for the generic solvable case

Theorem 2.5.4 (Kasuya [56]). Let G be a simply connected solvable real Lie group
and let g be its Lie algebra. Assume it contains a lattice Γ. Let α1, . . . , αn complex
characters for the semi-simple representation Ψ : G → Aut(g) induced by a semi-
simple complement in g and associated to a basis X1, . . . , Xn of gC. Then by defining

ApΓ = span⟨αIxI | I ⊂ {1, . . . , n}, |I| = n, αI |Γ = 1⟩ x1, . . . , xndual basis of g
∗
C

the inclusion of the sub-complex A•
Γ in the complex valued de Rham complex

A•
C(G/Γ) is a quasi-isomorphism.

The Nomizu-Hattori type theorem has been extended to Bott-Chern and Tseng-
Yau cohomologies by Angella and Kasuya in [3],[4], also for the non completely-
solvable case under suitable assumptions. The result for the symplectic cohomologies
was already done by Macr̀ı [65].
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2.5.1 Classification of structures on six-dimensional solvable
Lie algebras

In this section we collect the classification results for the structures of our interest
on Lie algebras.

Nilpotent Lie algebras

A complex structure on a nilpotent Lie algebra g is an endomorphism J : g→ g
such that J2 = −Id for which exists a basis {ψi}ni=1 of the i-eigenspace g1,0 relative
to the extension JC on gC such that

dψi ∈ span⟨ψ1, . . . , ψi−1⟩

When the subalgebra g1,0 is abelian, the complex structure J is said abelian and
consequently d(g1,0) ⊂

∧1,1 g∗. Instead, it is said complex-parallelizable if d(g1,0) ⊂∧2,0 g∗. Moreover if the basis ψ1, . . . , ψn satisfies

dψi ∈
2∧
⟨ψ1, . . . , ψi−1, ψ1̄, . . . , ψi−1⟩

it is called nilpotent.
A first list of nilpotent Lie algebras (NLA from now on) admitting complex

and/or symplectic structures was given by Salamon [76]. There are 34 classes of
isomorphism of NLA: 18 of them admit a complex structure, 26 of them admit a
symplectic structure while 15 of them admit both.

Among the complex ones, the NLA admitting a balanced structure were clas-
sified by Latorre,Ugarte,Villacampa [60] where also computations for their Bott-
Chern cohomology were provided. This was achieved exploiting the computations
in [22],[88],[89].

Theorem 2.5.5 ([22],[60],[88]). Let g be an NLA of dimension 6. Then, g has a
complex structure if and only if it is isomorphic to one of the following Lie algebras:

h1 = (0, 0, 0, 0, 0, 0) h10 = (0, 0, 0, 12, 13, 14)
h2 = (0, 0, 0, 0, 12, 34) h11 = (0, 0, 0, 12, 13, 14 + 23)
h3 = (0, 0, 0, 0, 0, 12 + 34) h12 = (0, 0, 0, 12, 13, 24)
h4 = (0, 0, 0, 0, 12, 14 + 23) h13 = (0, 0, 0, 12, 13 + 14, 24)
h5 = (0, 0, 0, 0, 13 + 42, 14 + 23) h14 = (0, 0, 0, 12, 14, 13 + 42)
h6 = (0, 0, 0, 0, 12, 13) h15 = (0, 0, 0, 12, 13 + 42, 14 + 23)
h7 = (0, 0, 0, 12, 13, 23) h16 = (0, 0, 0, 12, 14, 24)
h8 = (0, 0, 0, 0, 0, 12) h−19 = (0, 0, 0, 12, 13, 14− 35)
h9 = (0, 0, 0, 0, 12, 14 + 25) h+26 = (0, 0, 12, 13, 23, 14 + 25)

Moreover:
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a. Any complex structure on h−19 and h+26 is non-nilpotent;

b. For 1 ≤ k ≤ 16, any complex structure on hk is nilpotent;

c. Any complex structure on h1,h3,h8,h9 is abelian;

d. There exist both abelian and non-abelian nilpotent complex structures on h2, h4, h5
and h15;

e. Any complex structure on h6, h7, h10, h11, h12, h13, h14 and h16 is not abelian.

f. Any complex structure on h6 and h−19 has compatible metrics which are balanced;

g. On the Lie algebras h2, h4, h5 there exist complex structure having balanced com-
patible metrics but also not admitting such metrics. On h3 there is only a complex
structure admitting compatible balanced metrics;

h. There exists an SKT metric on g if and only if is isomorphic to h2, h4, h5 or h8.

i. There exists an sG metric on g if and only if it is isomorphic to hk, for k =
1, . . . , 6 or h−19.

From points f. and g. we get that the only NLAs we are possibly interested in
are

h2 = (0, 0, 0, 0, 12, 34) h5 = (0, 0, 0, 0, 13 + 42, 14 + 23)
h3 = (0, 0, 0, 0, 0, 12 + 34) h6 = (0, 0, 0, 0, 12, 13)
h4 = (0, 0, 0, 0, 12, 14 + 23) h−19 = (0, 0, 0, 12, 23, 14− 35)

On the symplectic side instead, a result of classification is represented by the
work of Conti, Tomassini [26]. General half-flat NLA were classified by the first
author in [25]. Also in [10] appeared nilpotent examples which correspond to some
we have constructed.

The only symplectic half-flat NLA’s are

h6 = (0, 0, 0, 0, 12, 13) and h7 = (0, 0, 0, 12, 13, 23)

We remark there is no in literature a corresponding treatment, as done for the
complex balanced condition, on the symplectic side. Below we will present a useful
lemma which helps understanding when a Lie algebra can not admit a symplectic
half-flat structure. That is a slightly improvement of the criterion used in [26] and
[30]: it is still a computational method but it has the advantage to be defined in
terms of the symplectic cohomology of the algebra.



40

Solvable Lie algebras

The list of six-dimensional solvable Lie algebras (SLA from now on) is notably more
numerous. Among all SLA we will consider only the unimodular one. The SLA
(non-nilpotent) admitting a complex balanced structure are presented in [32].

Theorem 2.5.6 ([32]). Let g be a unimodular (non nilpotent) solvable Lie algebra of
dimension 6. Then, g admits a complex structure with a non-zero closed (3, 0)-form
if and only if it is isomorphic to one in the following list:

g1 = A−1,−1,1
5,7 ⊕ R = (15,−25,−35, 45, 0, 0)

gα2 = A−α,α,1
5,17 ⊕ R = (α 15 + 25,−15 + α 25,−α 35 + 45,−35− α 45, 0, 0) α ≥ 0

g3 = e(2)⊕ e(1, 1) = (0,−13, 12, 0,−46,−45)
g4 = A0,0,1

6,37 = (23,−36, 26,−56, 46, 0)
g5 = A0,1,1

6,82 = (24 + 35, 26, 36,−46,−56, 0)
g6 = A0,0,1

6,88 = (24 + 35,−36, 26,−56, 46, 0)
g7 = B1

6,6 = (24 + 35, 46, 56,−26,−36, 0)
g8 = N0,−1,−1

6,118 = (−16 + 25,−15− 26, 36− 45, 35 + 46, 0, 0)
g9 = B1

6,4 = (45, 15 + 36, 14− 26 + 56,−56, 46, 0)

While for special metrics

Theorem 2.5.7 ([32]). Let (M = G/Γ, J) be a 6-dimensional solvmanifold endowed
with an invariant complex structure J with holomorphically trivial canonical bundle,
and denote by g the Lie algebra of G.

� Then, (M,J) has an SKT metric if and only if g is isomorphic to g02 or g4

� Then, (M,J) has a balanced metric if and only if g is isomorphic to one of
g1, g

α
2 , g3, g5, g7, g8. Moreover, in such cases, any J admits a balanced metric

expect for the first two complex structures on g8.

� Then (M,J) has an sG metric if and only if g is isomorphic to one of g1, g
α
2 , g3, g5, g7, g8.

Moreover any invariant Hermitian metric is sG.

On the other side, the list of SLA admitting a symplectic half-flat structure are
listed in [30].

Theorem 2.5.8 ([30]). A unimodular (non-Abelian) solvable Lie algebra g has a
symplectic half-flat structure if and only if it is isomorphic to one in the following
list:
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e(1, 1)⊕ e(1, 1) = (0,−13,−23, 0,−46,−45)
g5,1 ⊕ R = (0, 0, 0, 0, 12, 13)

A−1,−1,1
5,7 ⊕ R = (15,−25,−35, 45, 0, 0)

g6,N3 = (0, 0, 0, 12, 13, 23)

A−α,α,1
5,17 ⊕ R = (α 15 + 25,−15 + α 25,−α 35 + 45,−35− α 45, 0, 0) α ≥ 0

g06,38 = (23,−36, 26, 26− 56, 36 + 46, 0)

g0,−1
6,54 = (16 + 35,−26 + 45, 36,−46, 0, 0)

g0,−1,−1
6,118 = (−16 + 25,−15− 26, 36− 45, 35 + 46, 0, 0)

Some of these already appeared as examples in [83] (e(1, 1) ⊕ e(1, 1) and g0,−1
6,54 )

while the nilpotent g5,1 ⊕ R in [13].

Remark 2.5.4. Solvmanifolds have been proposed as compactification space in string
theory by various authors [1],[31],[40],[41],[42]. One of the results of the thesis is the
discovery that some of these NLAs and SLAs can be paired by a mirror symmetry
relation.

A useful lemma

In the case of a symplectic half-flat structure the equations (2.16) reduce to
dω = 0

dψ+ = 0

dψ− = −σ2 ∧ ω
(2.22)

and there is an additional identity involving the operator dΛ:

dΛψ− = (dΛ− Λd)ψ− = −Λdψ− =

= Λ(σ2 ∧ ω) = ΛLσ2 = σ2
(2.23)

since

Λψ− = − ∗ L ∗ ψ− = − ∗ Lψ+ = − ∗ (ω ∧ ψ+) = 0 (2.24)

Lemma 2.5.1. Let M be a compact six-dimensional manifold with a syumplectic
half-flat SU(3)-structure represented by (ω,Ω = ψ+ + iψ−). Then dσ2 = 0 implies
σ2 = 0.

Proof. Let ⟨α, β⟩s =
∫
M
α∧∗sβ the scalar product induced on Λ•M by the symplectic

hodge star operator ∗s = J∗ = ∗J . Then
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||σ2||2s = ⟨σ2, σ2⟩s =

=

∫
M

σ2 ∧ ∗sσ2 = (σ2 ∈ Λ2
8M)

= −
∫
M

σ2 ∧ σ2 ∧ ω = (by (2.16))

=

∫
M

σ2 ∧ dψ− = (Leibniz)

= −
∫
M

d(σ2 ∧ ψ−) +

∫
M

dσ2 ∧ ψ− = ( Stokes Theorem)

= −
∫
M

dσ2 ∧ ψ− = 0 ( by hypothesis)

(2.25)

Therefore, since ⟨, ⟩ is non degenerate we get σ2 = 0.

Remark 2.5.5. [49] A solvmanifold G/Γ is Kähler if and only if it is a finite
quotient of a complex torus which has the structure of a complex torus bundle over
a complex torus. If G is completely solvable, then G/Γ is Kähler if and only if it is
a complex torus.

Corollary 2.5.1. On a compact, six-dimensional, symplectic solvmanifold M =
G/Γ, if the operator ddΛ is zero when restricted to Λ3g∗, then M cannot admit a
symplectic half-flat SU(3)-structure, unless it is a torus.

Proof. By the identity 2.23, ddΛγ = 0 for every 3-form γ would imply ddΛψ− =
dσ2 = 0. Then for the previous lemma there would not be torsion anymore and the
manifold should be Calabi-Yau. This can happen only if M is a torus.

Therefore, in view of this lemma, at least for non-toric solvmanifolds, the con-
dition ddΛImΩ = 0 is complementary to the condition dReΩ = 0. This is the same
that happens for SKT and balanced structure in the complex non-Kähler case. It is
then reasonable to call a manifold (M,ω,Ω) such that ddΛImΩ = 0 a symplectic
SKT manifold. This is in accordance with the fact that, in presence of torsion, also
flux-forms make their appearance and they are related to the ddΛ and ∂∂̄ operators.
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Chapter 3

Constructing SYZ pairs

In this chapter we first recall briefly the setting as described by Lau,Tseng,Yau
[61] and then we explain the method by which we intend to produce examples that
satisfy all the required properties.

3.1 Strominger-Yau-Zaslow picture

Let π : M → B be a Lagrangian fibration with compact connected fibers. As we
have already seen, the fibers are necessarily tori and there is an induced integral
affine structure on B. By the Arnol’d-Liouville theorem, every b ∈ B has an open
neighborhood U ⊆ B such that (π−1(U), ω) is symplectomorphic to (T ∗U/Λ∗, ωcan)
where Λ∗ ⊂ T ∗U is the lattice induced by the integral affine structure. Around
π−1(b) there exist local coordinates {r1, . . . , rn, θ1, . . . , θn} such that the lattice bun-
dle Λ∗ is generated by dr1, . . . , drn and the symplectic form ω is in Darboux coor-
dinates ω =

∑n
i=1 dθi ∧ dri. The dual torus bundle π̌ : M̌ → B is locally obtained

by π̌−1(U) ≃ TU/Λ where Λ is the dual lattice generated by taking { ∂
∂r1
, . . . , ∂

∂rn
}.

That is, we are just dualizing, fiberwise, the torus fibration.

Remark 3.1.1. M̌ can be also interpreted as

M̌ := {(b,∇) | r ∈ B , ∇ is a flat U(1)-connection on π−1(b)}

The dual bundle map π̌ : M̌ → B is then given by forgetting the fiberwise connection.

The dual total space M̌ is endowed with a canonical complex structure: for
each b ∈ B there exists an open subset Ǔ ⊆ B containing b and a biholomor-
phism π̌−1(Ǔ) ≃ TU/Λ, where Λ is the dual lattice bundle of Λ∗ generated by
{ ∂
∂r1
, . . . , ∂

∂rn
}. Then dual coordinates on the fiber of TB are denoted as θ̌1, . . . , θ̌n

and one can take zi = θ̌i + iri as complex coordinates on M̌ . If the affine structure
on the base can be taken with special linear part, then one can define a holomorphic
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volume form on M̌ which is locally given by

Ω̌can =
n∧
i=1

dzi =
n∧
i=1

(
dθ̌i + idri

)
Definition 3.1.1. We will refer to M and M̌ in this construction as a semi-flat
mirror pair or just an SYZ (mirror) pair.

Semi-flat setting and SU(3)-structures

We now return to the three-dimensional case and, using the notation coming from
the SYZ construction, we will restrict our attention to a subset of the algebra of
differential forms.

Definition 3.1.2. We denote with AkB(M,C) the space of complex-valued k-forms
on M which depend only on the base, also called semi-flat (differential) forms.
An element ϕ ∈ AkB(M,C) is locally written as

ϕ =
∑
I,J

aIJ(r)dθI ∧ drJ

where I = (i1, . . . , ip), J = (j1, . . . , jq) are multi-indices and p + q = k, (ri, θi)
are action-angle coordinates and aIJ(r) are complex-valued functions on B with r =
(r1, . . . , rn).

If the total space of the fibration π :M → B admits a SU(3)- structure (not just
a symplectic form), we denote with Ap,qB,∆(M) ⊂ Ap,q∆ (M) the space of semi-flat
(p, q)-forms. Since in our construction the choice of the Lagrangian distribution
will be indeed induced by the fibration itself we will omit the subscript for the dis-
tribution and we will write just Ap,qB (M) (see section 2.4.1). Clearly the p-directions
in ∆ correspond to dθ1, dθ2, dθ3 while the q-directions for the orthogonal ∆⊥ to
dr1, dr2, dr3.

Similarly, we will denote with Ap,qB (M̌) the semi-flat (p,q)-forms on the SYZ-dual
M̌ which are locally written as.

ϕ̌ =
∑
I,J

aIJ(r)dzI ∧ dz̄J

Definition 3.1.3. Let (M,ω,Ω) a supersymmetric SU(3) system of type IIA. As-
sume that M → B has the structure of a Lagrangian-torus bundle. If the defining
forms ω,Ω are taken in A•

B(M,C) then (M,ω,Ω) is said to be a supersymmetric
semi-flat SU(3)-structure of type IIA. Analogously, if (M̌, ω̌, Ω̌) is a super-
symmetric SU(3) system of type IIB such that ω̌ and Ω̌ are in A•,•

B (M), we say that
(M̌, ω̌, Ω̌) is a supersymmetric semi-flat SU(3)-structure of type IIB.
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Also the (refined) Tseng-Yau and the Bott-Chern cohomology can be restricted
to the semi-flat forms only:

Hp,q
TY,B(M) :=

Ker (d+ dΛ) ∩ Ap,qB (M)

Im (ddΛ) ∩ Ap,qB (M)

Hp,q
BC,B(M̌) :=

Ker (d) ∩ Ap,qB (M̌)

Im (∂∂̄) ∩ Ap,qB (M̌)

(3.1)

On the complex SYZ-dual, the (p, q)-decomposition on forms is taken with re-
spect to the complex polarization induced by the aforementioned complex structure
Ω̌. However, on M̌ , we can take another polarization induced by the dual action-
angle coordinates {ri, θ̌i}.

This extra structure in the complex side allow us to define a new operator:

Definition 3.1.4. The polarization switch operator P on A•,•
B (M̌) is defined

as the operator which acts as a switch on the basic wedges as

dzI ←→ dθ̌I , dz̄J ←→ drJ

Therefore if

ϕ̌ =
∑
I,J

aIJ(r)dzI ∧ dz̄J

one has

P · ϕ̌ =
∑
I,J

aIJ(r)dθ̌I ∧ drJ

3.1.1 Fourier-Mukai Transform and Mirror Symmetry

We are now in place to define the main tool of the construction which realizes the
mirror transform. Let π : (M,ω,Ω) → B be a supersymmetric semi-flat SU(3)-
system of type IIA. Let π̌ : M̌ → B its SYZ-dual and consider their fiber product
over B:

M ×B M̌

M M̌

B

p p̌

π π̌
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On the Poincaré bundle line over M ×B M̌ there is a universal connection which
locally is written as d + iθ̌idθi + iθidθ̌i . Its curvature form is

F = 2i
3∑
i

dθ̌i ∧ dθi (3.2)

We can finally define

Definition 3.1.5. Let ϕ ∈ A•
B(M) and ϕ̌ ∈ A•

B(M̌). Their Fourier-Mukai
transforms are defined as

FT · ϕ̌ := p∗

(
(p̌∗(P · ϕ̌)) ∧ exp

F

2i

)
FT · ϕ := P−1 ·

(
p̌∗
(
(p∗ϕ) ∧ exp

−F
2i

)) (3.3)

where the pushforward maps p∗, p̌∗ are just the integration along the fibers.

We recall here the main properties of the Fourier-Mukai transform:

Proposition 3.1.1 ([61]). We have

� FT 2 = (−1)
n(n−1)

2 Id

� FT ◦ ∂̄ · ϕ̌ = (−1)ni
2
· d ◦ FT · ϕ

� FT ◦ ∂ · ϕ̌ = (−1)ni
2
· dΛ ◦ FT · ϕ

We note also that

Lemma 3.1.1. The Fourier-Mukai transform intertwines, up to a sign, complex
conjugation with the symplectic Hodge star operator, that is

FT · ¯̌ϕ = ∗s FT · ϕ̌

Proof. Denote with c : A•,•
B (M̌,C)→ A•,•

B (M̌,C) the complex conjugation.

On the basic element dzI ∧ dz̄J the Fourier-Mukai transform acts as

FT (dzI ∧ dz̄J) = dθIc ∧ drJ
Then, by straightforward computation:

FT
(
c(dzI ∧ dz̄J)

)
= FT

(
dzJ ∧ dz̄I

)
= dθJc ∧ drI

while
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∗s
(
dθK ∧ drL

)
= ∗
(
JΩ
(
dθK ∧ drL

))
= ∗
(
dθL ∧ drK

)
= dθLc ∧ drKc

Then by setting K = Ic and L = J we get the claim.

Using Proposition 3.1.1 the authors in [61] prove the following

Theorem 3.1.1 ([61]). Fourier-Mukai transform induces an isomorphism of double
complexes (

A•,•
B (M,C),

(−1)ni
2

d,
(−1)ni

2
dΛ
)
≃
(
A•,•
B (M̌,C), ∂̄, ∂

)
and at level of cohomologies

Hn−p,q
B,TY (M,C) ≃ Hp,q

B,BC(M̌) (3.4)

The last isomorphism is precisely the mirror symmetric relation between the
diamonds associated to the two different cohomology theories. This is the non-
Kähler version of mirror symmetry.

Finally we can state the main result of [61] for which we want to produce concrete
examples:

Theorem 3.1.2 ([61]). Let (M,ω) and (M̌, Ω̌) a semif-flat SYZ-pair. Let ω̌ be a
real (1, 1)-form in A1,1

B (M̌) and set Ω = FT (e2ω̌). Then

1. The triple (M̌, ω̌, Ω̌) forms a SU(n)-structure if and only if (M,ω,Ω) forms
a SU(n)-structure. Moreover the conformal factors are related by the relation
FF̌ = 22n;

2. (M,ω,Ω) is supersymmetric of type IIA if and only if (M̌, ω̌, Ω̌) is supersym-
metric of type IIB;

3. Under Fourier-Mukai transform the fluxes ρA and ρB correspond to each other
up to a constant multiple.

3.2 Strategy for constructing semi-flat SYZ mir-

ror pairs from affine structures on Lie groups

In this section we will show how to produce pairs of compact six-dimensional solv-
manifolds which admit semi-flat supersymmetric SU(3)-structure and satisfy the
relation (3.4) and the Theorem 3.1.2.
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We started from the computation of the Tseng-Yau cohomology for the NLA’s
we knew were admitting a symplectic half-flat structure and we noticed that, un-
der the right (p, q)-decomposition, the numbers could be related to the Bott-Chern
numbers in [60]. This would have meant that the nilmanifolds underlying these
NLAs were possible candidates as mirror pairs. As mentioned in the preliminaries,
a (2-step) nilmanifold fits in a natural torus fibration over a torus which comes from
the study of the commutator subgroup of the nilpotent Lie group (see Palais and
Stewart [71]). Nevertheless, this fibration is not, in general, Lagrangian. Moreover,
since we started working with homogeneous manifolds, it was reasonable to look
among nilmanifolds also for the base B. This had limited the possibility to only
two options: a three-torus or a Heisenberg manifold. At this point, we noticed
that all the nilpotent Lie groups involved in our analysis could be obtained as a
semidirect product G ⋉ρ R3, where G was the three-dimensional Heisenberg group
or the additive R3. Different choices of the acting homomorphism ρ would lead to
different six-dimensional nilpotent Lie groups. We then reversed the point of view
and started with the group G and considered its cotangent bundle T ∗G which is
globally a trivial vector bundle G× R3 since the group is parallelizable. Then, the
construction of the six-dimensional Lie group G⋉ρR3 was just endow the cotangent
bundle T ∗G with a group structure. The six-dimensional manifold is obtained by
quotienting by the lattice Γ⋉ρ Z3 so that

M = G⋉ρ R3/Γ⋉ρ Z3 π−−→ B := G/Γ (3.5)

is an honest submersion between compact, smooth manifolds. The natural pro-

jection on the first factor G⋉ρR3 π̃−→ G, being also obviously a group homomorphism,
descends to a well-defined map π between the quotients. However, we still had to
let the symplectic geometry enter the picture. In Lau, Tseng, and Yau [61] the
example given is represented by the Lagrangian torus bundle T ∗B/Λ∗ → B where
B is the Heisenberg manifold and the symplectic form is the canonical one. We then
reinterpreted this example in our language and realized the total space T ∗B/Λ∗ of
the fibration as a nilmanifold, namely we realized it as a homogeneous space for the
nilpotent Lie group G ⋉ρ R3 (see the lemmas below). A posteriori, looking under
the lens of section 2.3.2, this construction corresponds to having a Lagrangian fi-
bration π :M → B with a global section that makes the (symplectic) identification
of M with the torus bundle T ∗B/Λ∗. Nevertheless, we remark that the presence
of monodromy, related to the homomorphism ρ, makes the topology of the total
space highly non-trivial. The fundamental observation we made at this point was
the possibility to relate all this construction with the integral affine geometry of the
base B. In fact, it was already well-known that the monodromy of the fibration
M

π−→ B, once a basis for the H1(π
−1(b),Z) is fixed, is just the inverse transpose

of the linear holonomy of the affine structure of the base. What we have done was
just conciliate this feature with the group structure of our spaces. This has been
fundamental to exploit all the advantages of working with homogeneous spaces. We
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then extended this construction to the (completely) solvable case with G = E(1, 1)
producing more new examples. This should work also in the non completely solvable
case with the appropriate minor modification but we have not treated this in our
discussion. We will say more in the conclusions. In the following, we will explain in
detail the construction in full generality.

Let G be a simply connected, unimodular, solvable n-dimensional Lie group and
let Γ ⊂ G be a lattice. Recalling the notation in section 2.1, let α : G → Aff(Rn)
an affine representation and assume that its restriction to Γ, say a := α|Γ, restricts
to an integral affine representation of the lattice a : Γ → AffZ(Rn). That is, we
have chosen a left-invariant affine structure on G that descends on an integral affine
structure on the quotient B := G/Γ. Denote with λ and l the linear part of α and
a respectively, that is λ : G→ GL(n,R) and l : Γ→ GL(n,Z).

Consider now the natural projection π̃ : T ∗G→ G. Since G is parallelizable, one
has T ∗G ≃ G × Rn. We want to endow T ∗G with a group structure induced by G
and its affine representation via semidirect product:

T ∗G = G⋉φ Rn

where φ := λ−T (here −T denotes the dual representation). For g, g′ ∈ G and
v, v′ ∈ Rn, the group law is therefore given by

(g, v) · (g′, v′) = (gg′, v + φ(g)v′).

Clearly this construction endows also the tangent bundle TG of a group structure
via G⋉λ Rn in the same way. Set, just as a matter of notation, T ∗Γ := Γ⋉f Zn and
consider the quotient M := T ∗G/T ∗Γ (analogously set TΓ := Γ⋉l Zn so that M̌ :=
TG/TΓ will be in the sequel the dual fibration). The projection π̃ is equivariant
with the actions (indeed it is a group homomorphism) and therefore it descends to
a well-defined map on the quotients:

π :M → B

.
Moreover T ∗G/T ∗Γ can be identified with T ∗B/Λ∗ where Λ∗ is the lattice in

T ∗B generated by {dr1, . . . , drn} and {r1, . . . , rn} are the affine coordinates of the
structure induced by α. This identification can be shown as follows.

First of all, also B is parallelizable and therefore T ∗B is globally a product
B×Rn as well. Moreover B×Rn is the quotient of T ∗G = G⋉φRn by its subgroup
Γ× {0} ≃ Γ. Thus we can define a natural action of T ∗G on T ∗B via

(g, y) · (Γh, ν) = (Γhg−1, y + φ(g)ν) (3.6)

for g, h ∈ G and y, ν ∈ Rn. We are tacitly identifying the Rn factors.
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Lemma 3.2.1. The map defined in (3.6) is indeed an action. Moreover it is tran-
sitive.

Proof. Clearly (e, 0) · (Γh, ν) = (Γh, ν). We check it is an action

(g, y) ·
(
(g′, y′) · (Γh, ν)

)
= (g, y) · (Γhg′−1

, y′ + φ(g′)ν)

= (Γhg′
−1
g−1, y + φ(g)y′ + φ(g)φ(g′)ν)

= (Γh(gg′)−1, y + φ(g)y′ + φ(gg′)ν)

(3.7)

while

(gg′, y + φ(g)y′) · (Γh, ν) = (Γh(gg′)−1, y + φ(g)y + φ(gg′)ν) (3.8)

In order to show that this is transitive let (Γh, ν) and (Γk, µ) two different points
in T ∗B and just take the element in T ∗G of the form (g, y) := (k−1h, µ−φ(k−1h)ν).
By plugging this in the action we get (g, y) · (Γh, ν) = (Γk, µ)

Also the lattice Λ∗ acts on T ∗B by translations:

(Γh, l) · (Γh, v) = (Γh, l + v) (3.9)

where l =
∑n

i midri and the mi’s are in Z. We claim that these two actions are
indeed compatible, namely

Lemma 3.2.2. The action 3.6 and 3.9 commute

Proof.

(g, y) ·
(
(Γh, l) · (Γh, ν)

)
= (g, y) ·

(
Γh, ν + l

)
= (Γhg−1, y + φ(g)(ν + l))

= (Γhg−1, y + φ(g)ν + φ(g)l)

(3.10)

while

(Γhg−1, l′) ·
(
(g, y) · (Γh, ν)

)
= (Γhg−1, l′) ·

(
Γhg−1, y + φ(g)ν

)
= (Γhg−1, y + φ(g)ν + l′)

= (Γhg−1, y + φ(g)ν + φ(g)l)

(3.11)

Where in the last equality the fact that l′ = φ(g)l follows from the change of basis
for covectors from the point Γh to Γhg−1. We indeed note that φ is just the (dLg)

∗

in the basis dr1, . . . , drn (see the remark 2.1.2) .
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Therefore the T ∗G-action on TB descends on T ∗B/Λ∗. Clearly we can also see
from the construction, and the last observation, that the stabilizer of this action
is indeed Γ ⋉φ Zn. In fact, under our initial hypothesis, for γ ∈ Γ, φ(γ) takes
values in GL(n,Z) and therefore φ(γ)l is trivial mod Λ∗. This exhibits T ∗B/Λ∗ as a
homogeneous space for the action of T ∗G ≃ G⋉φRn with stabilizer T ∗Γ = Γ⋉f Zn.
Therefore T ∗G/T ∗Γ ≃ T ∗B/Λ∗. We will refer to them commonly with M . Clearly,
by taking the dual correspondent for each ingredient, one can obtain the same for
TG/TΓ and TB/Λ and we will refer to them commonly with M̌ . A posteriori we
can do also the following observation

Remark 3.2.1. The fibration π̃ : T ∗G → G has a natural global section σ̃ : G →
T ∗G = G×Rn, namely its zero-section as a vector bundle. We note that σ̃ commutes
with the action of T ∗Γ and therefore descends to a global section σ : B →M . From
what we have seen in the section 2.3.2, the presence of the global section allows us
to identifiy the bundle π : M → B with the torus bundle τ : T ∗B/Λ∗ → B so that
π :M → B is a honest Lagrangian torus bundle.

The SU(n)-structure

Starting from a solvable n-dimensional Lie group, a left-invariant affine structure
on it, and the choice of a lattice, we produced a recipe to construct a compact
2n-dimensional smooth manifolds M admitting a Lagrangian torus fibration over a
compact n-dimensional smooth manifold B. How can we endow M with an SU(n)-
structure? Having already a symplectic structure ω, it remains for us to define
a complex n-form with the properties satisfying definition 2.4.1. We will achieve
this by blending the theory of action-angle coordinates with the group structure
underlying our construction. Recall by section 2.3.2, that action coordinates on B
correspond to the local coordinates given by the developing map. In particular,
they are global on B̃ = G. In the same way, action-angle coordinates on M lift
to global coordinates on M̃ = T ∗G. In these coordinates ω =

∑n
i=1 dθi ∧ dri. In

other words, action-angle coordinates allow us to symplectically identify (T ∗G,ω)
with (R2n, ωcan). We claim that ω is indeed left-invariant with respect to the group
structure on T ∗G.

Lemma 3.2.3. Left multiplication map of T ∗G acts by symplectomorphisms of
(T ∗G,ω).

Proof. Let h = (g, v) ∈ T ∗G = G × Rn. Under the identification (T ∗G,ω) ≃
(R2n, ωcan) described above, the differential of the left-multiplication map Lh :
T ∗G→ T ∗G

(g′, v′) 7−→ (g, v) · (g′, v′) = (gg′, v + φ(g)v)

is represented, pointwise, by matrices of the form

(
λ(g) 0
0 λ−T (g)

)
which are indeed symplectic. Therefore, one gets L∗

hω = ω.
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Naively, one would be tempted to define the complex n-form as Ω :=
∧n
i=1(dθi+

idri). Unfortunately, this is not left-invariant. Nevertheless, we can argue as follows.
Action-angle coordinates give a global coframe dr1, . . . , drn, dθ1, . . . , dθn on T ∗G.
We can obtain a left-invariant coframe by simply applying the differential of left-
multiplication as above. Define the following 1-forms:

ei =

{
L∗
hdθi for i = 1, . . . , n

L∗
hdri for i = n+ 1, . . . , 2n

(3.12)

Since the symplectic form ω is left-invariant, it can be written as

ω =
n∑
i=1

dθi ∧ dri =
n∑
i=1

L∗
hdθi ∧ L∗

hdri =
n∑
i=1

ei ∧ ei+n (3.13)

Consequently, by defining

Ω :=
n∧
i=1

L∗
h(dθi + idri) =

n∧
i=1

(L∗
hdθi + iL∗

hdri) =
n∧
i=1

(ei + ien+i) (3.14)

we obtain a left-invariant complex n-form with the desired properties.

Therefore the triple (M,ω,Ω) define a symplectic SU(n)-structure together with
the structure of a Lagrangian torus fibration over the n-dimensional manifold B.
In particular, the SU(n)-structure is semi-flat, in the sense that the defining form
(ω,Ω) are semi-flat by construction.

This procedure can be dualized by taking TG and the coordinates r1, . . . , rn, θ̌1, . . . , θ̌n
introduced at the beginning of the chapter. We have already a complex structure
defined by the complex n-form Ω̌ =

∧n
i=1(dθ̌i + idri). Namely J̌(dri) = dθ̌i and

J̌(dθ̌i) = −dri. The Lemma 3.2.3 has its dual version: for ȟ = (g, v̌), the left
multiplication map Ľȟ : TG→ TG

(g′, v̌′) 7−→ (g, v̌) · (g′, v̌′) = (gg′, v̌ + λ(g)v̌′)

is represented, pointwise, by matrices of the form

(
λ(g) 0
0 λ(g)

)
which are complex with respect to the complex structure induced by Ω̌ =∧n

i=1(dθ̌i + idri). So we get

Lemma 3.2.4. Left multiplication map of TG acts by biholomorphisms (with respect
to the complex structure J̌ induced by Ω̌).

Nevertheless, in order to obtain again the left-invariance Ľ∗
ȟ
Ω̌ = Ω̌ the hypothesis

of a special affine structure on the group G is needed since it implies that the
determinant of the matrix diag(λ, λ) is indeed one.
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We need to build the two-form ω̌. Again the naive definition via
∑n

i=1 dθ̌i∧dri is
not left-invariant. Dually, we have a global coframe on TG given by dr1, . . . , drn, dθ̌1, . . . , dθ̌n.
So define the following 1-forms:

ěi =

{
Ľ∗
ȟ
dθ̌i for i = 1, . . . , n

Ľ∗
ȟ
dri for i = n+ 1, . . . , 2n

(3.15)

Analogously, the complex n-form is left-invariant

Ω̌ =
n∧
i=1

(dθ̌i + idri) =
n∧
i=1

(Ľ∗
ȟ
dθ̌i + iĽ∗

ȟ
dri) =

n∧
i=1

(ěi + ien+i) (3.16)

and, by defining

ω̌ :=
n∑
i=1

Ľ∗
ȟ
dθ̌i ∧ L∗

ȟ
dri =

n∑
i=1

ěi ∧ ěn+i (3.17)

we obtain a left-invariant (1, 1)-form with the desired properties. The triple
(M̌, ω̌, Ω̌) defines a complex SU(n)-structure with a torus fibration over B dual to
(M,ω,Ω) −→ B. Again, the forms (ω̌, Ω̌) are semi-flat by construction.

We therefore obtained a pair (M,ω,Ω) and (M̌, ω̌, Ω̌) of manifolds admitting
SU(n)-structures which form also a (semi-flat) SYZ pair.

Remark 3.2.2. At the linear algebraic level, the prototypical examples of symplectic
and complex linear spaces are given by the direct sums V ⊕V ∗ and V ⊕V respectively
which are none else that the linear approximation, at each point of our spaces. In
this sense then, at the infinitesimal level, this explains the switch between symplectic
and complex geometry performed by T-duality.

We summarize all the results of this section in the following statement.

Theorem 3.2.1. Let G a simply connected, unimodular, solvable, n-dimensional
Lie group and let Γ ⊂ G be a lattice and set B := G/Γ. Let α be a special affine
representation of G induced by a developing map Dev and assume that the affine
holonomy a := α|Γ is integral. Denote with λ, l their linear parts respectively and with
φ, f their inverse transpose. Set M := G⋉φRn/Γ⋉f Zn and M̌ := G⋉λRn/Γ⋉l Zn

1. There is a transitive action of T ∗G = G⋉φRn on T ∗B/Λ with stabilizer Γ⋉fZn
which realizes T ∗B/Λ∗ as a homogeneous space for the solvable Lie group T ∗G.
Analogously for TG and TB/Λ;
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2. M ≃ T ∗B/Λ∗ and M̌ ≃ TB/Λ as torus-fibration. In particular M admits a
symplectic structure ω such that (M,ω) is symplectomorphic to (T ∗B/Λ∗, ωcan)
and M̌ admits a complex structure Ω̌ such that (M̌, Ω̌) is biholomorphic to
(TB/Λ, Ω̌can);

3. Moreover, M admits a complex three-form Ω and M̌ admits a real (1, 1)-form
ω̌ such that (M,ω,Ω) and (M̌, ω̌, Ω̌) are semi-flat, SYZ dual, supersymmetric
SU(n)-systems. In particular FT (e2ω̌) = Ω.

Therefore (M,ω,Ω) and (M̌, ω̌, Ω̌) satisfy the theorem 3.1.2 ([61]) and the rela-
tion 3.4.

The rest of the thesis is devoted to showing concrete examples for this construc-
tion when n = 3.

3.3 Affine structures and representations

For what we have seen, recall in section 2.5 we have excluded E(2), the only possibil-
ity for G in dimension three is one of H3(R), E(1, 1) or the abelian (R3,+). We now
describe some affine representation of G and the correspondent affine coordinates.
Different choice for the developing map will lead to different affine representations.

3.3.1 Heisenberg group H3(R)
Choose as developing map

Dev : H3(R) −→ R31 x1 x3
0 1 x2
0 0 1

 7−→
x1x2
x3

 (3.18)

For g =

1 x1 x3
0 1 x2
0 0 1

 and v =

v1v2
v3

 ∈ R3 we compute α = Dev ◦ Lg ◦Dev−1:
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α(g)(v) = Dev ◦ Lg ◦Dev−1(v)

= Dev ◦ Lg

(1 v1 v3
0 0 v2
0 0 1

)

= Dev

(1 x1 x3
0 0 x2
0 0 1

1 v1 v3
0 1 v2
0 0 1

)

= Dev

(1 x1 + v1 x3 + v3 + x1v2
0 1 x2 + v2
0 0 1

)

=

 x1 + v1
x2 + v2

x3 + v3 + x1v2

 =

1 0 0
0 1 0
0 x1 1

v1v2
v3

+

x1x2
x3



(3.19)

Thus we obtained a homomorphism from H3(R) to Aff(R3) = GL(3,R)⋉R31 x1 x3
0 1 x2
0 0 1

 7−→ (1 0 0
0 1 0
0 x1 1

 ,

x1x2
x3

) (3.20)

Affine coordinates on G are then defined by setting
r1 = x1

r2 = x2

r3 = x3

(3.21)

If we perform the same computation in (3.19) for γ ∈ H3(Z) we get

α(γ)(v) =

1 0 0
0 1 0
0 n1 1

v1v2
v3

+

n1

n2

n3

 (3.22)

so that the assignment1 n1 n3

0 1 n2

0 0 1

 7−→ (1 0 0
0 1 0
0 n1 1

 ,

n1

n2

n3

) (3.23)

is a well-defined homomorphism from H3(Z) to AffZ(R3) = GL(3,Z) ⋉ R3 (the
translation part is Z3 indeed, but we are interested just in the linear part).

Set now for future reference
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λN,1 := Lin ◦ α : g 7−→

1 0 0
0 1 0
0 x1 1


lN,1 := Lin ◦ a : γ 7−→

1 0 0
0 1 0
0 n1 1

 (3.24)

Twisted developing map for H3(R)

Take now as developing map

Dev : H3(R) −→ R31 x1 x3
0 1 x2
0 0 1

 7−→
 x1

λx2
(λ− 1)x3 + x1x2

 (3.25)

with inverse is Dev−1 : R3 → H3(R)v1v2
v3

 7−→
1 v1

1
λ−1

(v3 − v1v2
λ
)

0 1 v2
λ

0 0 1


where λ ∈ R\{0, 1}.

By doing the same computation for (3.19):
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α(g)(v) = Dev ◦ Lg ◦Dev−1(v)

= Dev ◦ Lg

(1 v1
1

λ−1
(v3 − v1v2

λ
)

0 1 v2
λ

0 0 1

)

= Dev

(1 x1 x3
0 0 x2
0 0 1

1 v1
1

λ−1
(v3 − v1v2

λ
)

0 1 v2
λ

0 0 1

)

= Dev

(1 x1 + v1
1

λ−1
(v3 − v1v2

λ
) + x3 +

x1v2
λ

0 1 x2 +
v2
λ

0 0 1

)

=

 x1 + v1
λx2 + v2

(λ− 1)x3 + v3 − v1v2
λ

+ λ−1
λ
x1v2 + (x1 + v1)(x2 +

v2
λ
)


=

 x1 + v1
λx2 + v2

(λ− 1)x3 + v3 + x1v2 + x2v1 + x1x2


=

 1 0 0
0 1 0
x2 x1 1

v1v2
v3

+

 x1
λx2

(λ− 1)x3 + x1x2



(3.26)

we obtain the following linear representations for H3(R) and H3(Z) respectively

λN,2 : g 7−→

 1 0 0
0 1 0
x2 x1 1

 and lN,2 : γ 7−→

 1 0 0
0 1 0
n2 n1 1

 (3.27)

and affine coordinates 
r1 = x1

r2 = λx2

r3 = (λ− 1)x3 + x1x2

(3.28)

3.3.2 E(1, 1)

Choose as developing map

Dev : E(1, 1) −→ R3
ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

 7−→
x1x2
x3

 (3.29)
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with inverse Dev−1 : R3 → E(1, 1)

v1v2
v3

 7−→

ev1 0 0 v2
0 e−v1 0 v3
0 0 1 v1
0 0 0 1



For g =


ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

 and v =

v1v2
v3

 ∈ R3 we compute α:

α(g)(v) = Dev ◦ Lg ◦Dev−1(v)

= Dev ◦ Lg

(
ev1 0 0 v2
0 e−v1 0 v3
0 0 1 v1
0 0 0 1


)

= Dev

(
ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1



ev1 0 0 v2
0 e−v1 0 v3
0 0 1 v1
0 0 0 1


)

= Dev

(
ex1+v1 0 0 x2 + ex1v2
0 e−x1−v1 0 x3 + e−x1v3
0 0 1 x1 + v1
0 0 0 1


)

=

 x1 + v1
x2 + ex1v2
x3 + e−x1v3

 =

1 0 0
0 ex1 0
0 0 e−x1

v1v2
v3

+

x1x2
x3



(3.30)

Thus we obtained a homomorphism from E(1, 1) to Aff(R3) = GL(3,R)⋉R3
ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

 7−→
(1 0 0

0 ex1 0
0 0 e−x1

 ,

x1x2
x3

) (3.31)

Take now an element γ in Γt. It is of the form

γ =


etn1 0 0 n2 + etn3

0 e−tn1 0 n2 + e−tn3

0 0 1 tn1

0 0 0 1


with n1, n2, n3 ∈ Z and for a fixed t = log 3+

√
5

2
(see section 2.5). If we compute

again the integral affine representation α(γ)(v) we get
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1 0 0
0 etn1 0
0 0 e−tn1


as linear part which does not lie in GL(3,Z). Nevertheless it is conjugated to an
element of GL(3,Z) as the following identity shows1 0 0

0 et 0
0 0 e−t

 =

1 0 0
0 1 et

0 1 e−t

1 0 0
0 0 −1
0 1 3

1 0 0
0 1 et

0 1 e−t

−1

(3.32)

So that

1 0 0
0 en1t 0
0 0 e−n1t

 =

1 0 0
0 1 et

0 1 e−t

1 0 0
0 0 −1
0 1 3

n1
1 0 0
0 1 et

0 1 e−t

−1

(3.33)

Therefore, though the linear part has not integer entries, it represents an auto-

morphism of the lattice generated by
〈1

0
0

 ,

0
1
1

 ,

 0
et

e−t

〉
Z
inside R3. We will

denote this lattice with Z3
t .

Finally set

λS,1 := Lin ◦ α : g 7−→

1 0 0
0 ex1 0
0 0 e−x1


lS,1 := Lin ◦ a : γ 7−→

1 0 0
0 etn1 0
0 0 e−tn1

 (3.34)

while affine coordinates are then defined as:
r1 = x1

r2 = x2

r3 = x3

(3.35)

Twisted developing map for E(1, 1)

Take now as developing map



60

Dev : E(1, 1) −→ R3
ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

 7−→
x1 + x2x3

x2
x3

 (3.36)

with inverse Dev−1 : R3 → E(1, 1)

v1v2
v3

 7−→

ev1−v2v3 0 0 v2

0 e−v1+v2v3 0 v3
0 0 1 v1 − v2v3
0 0 0 1


Again we compute

α(g)(v) = Dev ◦ Lg ◦Dev−1(v)

= Dev ◦ Lg

(
ev1−v2v3 0 0 v2

0 e−v1+v2v3 0 v3
0 0 1 v1 − v2v3
0 0 0 1


)

= Dev

(
ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1



ev1−v2v3 0 0 v2

0 e−v1+v2v3 0 v3
0 0 1 v1 − v2v3
0 0 0 1


)

= Dev

(
ex1+v1−v2v3 0 0 x2 + ex1v2

0 e−x1−v1+v2v3 0 x3 + e−x1v3
0 0 1 x1 + v1 − v2v3
0 0 0 1


)

=

x1 + v1 − v2v3 + (x2 + ex1v2)(x3 + e−x1v3)
x2 + ex1v2
x3 + e−x1v3


=

x1 + v1 + x2x3 + x2e
−x1v3 + x3e

x1v2
x2 + ex1v2
x3 + e−x1v3


=

1 x3e
x1 x2e

−x1

0 ex1 0
0 0 e−x1

v1v2
v3

+

x1 + x2x3
x2
x3


(3.37)

and we obtain a different affine representation for E(1, 1):
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ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

 7−→
(1 x3e

x1 x2e
−x1

0 ex1 0
0 0 e−x1

 ,

x1 + x2x3
x2
x3

) (3.38)

Take γ ∈ Γt. If we compute α(γ)(v) we obtain as linear part1 etn1(n2 + e−tn3) e−tn1(n2 + etn3)
0 etn1 0
0 0 e−tn1

 (3.39)

which, again, does not lie in GL(3,Z). If we want to show this is still conjugate
to an integral matrix as in (3.39), the computation is rather more cumbersome.
Nevertheless, take as generators for Γt:

γ1 :=


et 0 0 0
0 e−t 0 0
0 0 1 t
0 0 0 1

 , γ2 :=


1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 1

 , γ3 :=


1 0 0 et

0 1 0 e−t

0 0 1 0
0 0 0 1


(3.40)

so that

λ(γ1) =

1 0 0
0 et 0
0 0 e−t

 , λ(γ2) =

1 1 1
0 1 0
0 0 1

 , λ(γ3) =

1 et e−t

0 1 0
0 0 1

 (3.41)

We observe:

1 0 0
0 et 0
0 0 e−t

 =

1 0 0
0 1 et

0 1 e−t

1 0 0
0 0 −1
0 1 3

1 0 0
0 1 et

0 1 e−t

−1

1 1 1
0 1 0
0 0 1

 =

1 0 0
0 1 et

0 1 e−t

1 2 3
0 1 0
0 0 1

1 0 0
0 1 et

0 1 e−t

−1

1 et e−t

0 1 0
0 0 1

 =

1 0 0
0 1 et

0 1 e−t

1 3 7
0 1 0
0 0 1

1 0 0
0 1 et

0 1 e−t

−1

(3.42)

and again we can interpret a matrix of the form (3.39) as an automorphism of
the lattice Z3

t as in previous example.
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Therefore the linear representations are:

λS,2 := Lin ◦ α : g 7−→

1 x3e
x1 x2e

−x1

0 ex1 0
0 0 e−x1


lS,2 := Lin ◦ a : γ 7−→

1 etn1(n2 + e−tn3) e−tn1(n2 + etn3)
0 etn1 0
0 0 e−tn1

 (3.43)

Finally, affine coordinates are defined as:
r1 = x1 + x2x3

r2 = x2

r3 = x3

(3.44)

Remark 3.3.1. It is nice to observe that the integral properties of the previous
matrices are linked to the algebraic properties of the roots of the polynomial x2−kx+1
for x = et. Indeed, the identities obtained in this section can be seen using repeatedly
the identity et + e−t = k = 3 .

3.3.3 (R3,+)

If we take as developing map the “identity map”, as above in the first choice for both
groups, we will obtain a trivial affine representation for the group G = R3. This
would imply trivial linear representation and therefore trivial monodromy. Conse-
quently, this would lead to a six-dimensional example isomorphic to a six-torus and
the fibration being trivial. We will then exclude this from our analysis.

Twisted developing map for (R3,+)

Take R3 with coordinates (x1, x3, x5) and choose as developing map

Dev :

x1x3
x5

 7−→
 x1

x3
x5 + x1x3

 (3.45)

with inverse

Dev−1 :

v1v2
v3

 7−→
 v1

v2
v3 − v1v2

 (3.46)

We compute the representation:
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α(g)(v) =Dev ◦ Lg ◦Dev−1(v) =

Dev ◦ Lg

( v1
v2

v3 − v1v2

) =

Dev

(x1x3
x5

 v1
v2

v3 − v1v2

)

Dev

( x1 + v1
x3 + v2

x5 + v3 − v1v2

) =

 x1 + v1
x3 + v2

x5 + v3 + x1x3 + x1v2 + x3v1

 =

 1 0 0
0 1 0
x3 x1 1

v1v2
v3

+

 x1
x3

x5 + x1x3


(3.47)

And analogously for γ ∈ Z3. Therefore the linear representation are

λT := Lin ◦ α : g 7−→

 1 0 0
0 1 0
x3 x1 1


lT := Lin ◦ a : γ 7−→

 1 0 0
0 1 0
n3 n1 1

 (3.48)

and affine coordinates defined as:
r1 = x1

r2 = x2

r3 = x3 + x1x2

(3.49)

3.3.4 Bonus map for H3(R)
In this example we are going to take a particularly structure that leads to a six-
dimensional pair of examples of SU(3)-manifolds which don’t admit IIA/IIB struc-
tures but still satisfy the cohomological aspect of non-Kähler mirror symmetry.

Choose as developing map

Dev : H3(R) −→ R31 x1 x3
0 1 x2
0 0 1

 7−→
 x1

x2 +
x21
2

x3 +
x31
6

 (3.50)
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with inverse Dev−1 : R3 → H3(R)v1v2
v3

 7−→
1 v1 v3 − v31

6

0 1 v2 − v21
2

0 0 1


We compute

α(g)(v) = Dev ◦ Lg ◦Dev−1(v)

= Dev ◦ Lg

(1 v1 v3 − v31
6

0 1 v2 − v21
2

0 0 1

)

= Dev

(1 x1 x3
0 1 x2
0 0 1


1 v1 v3 − v31

6

0 1 v2 − v21
2

0 0 1

)

= Dev

(1 x1 + v1 x3 + v3 − v31
6
+ x1v2 − x1v21

2

0 1 x2 + v2 − v21
2

0 0 1

)

=

 x1 + v1

x2 + v2 − v21
2
+ (x1+v1)2

2

x3 + v3 − v31
6
+ x1v2 − x1v21

2
+ (x1+v1)3

6


=

 x1 + v1

x2 + v2 + x1v1 +
x21
2

x3 + v3 + x1v2 +
x31
6
+

x21v1
2


=

 1 0 0
x1 1 0
x21
2

x1 1

v1v2
v3

+

 x1

x2 +
x21
2

x3 +
x31
6



(3.51)

Thus we obtained a homomorphism from H3(R) to Aff(R3) = GL(3,R)⋉R31 x1 x3
0 1 x2
0 0 1

 7−→ ( 1 0 0
x1 1 0
x21
2

x1 1

 ,

x1x2
x3

) (3.52)

Doing the same also for γ ∈ H3(Z) we get linear representations
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λY := Lin ◦ α : g 7−→

 1 0 0
x1 1 0
x21
2

x1 1


lY := Lin ◦ a : γ 7−→

 1 0 0
n1 1 0
n2
1

2
n1 1


(3.53)

and affine coordinates: 
r1 = x1

r2 = x2 +
x21
2

r3 = x3 +
x31
6

(3.54)

3.3.5 Recap for linear representations

We recollect here the linear representations of the groups H3(R), E(1, 1), (R3,+)
that will be used to construct the six-dimensional Lie groups.

Dev(g) λ φ

N1

x1x2
x3

 1 0 0
0 1 0
0 x1 1

 1 0 0
0 1 −x1
0 0 1


N2

 x1
λx2

(λ− 1)x3 + x1x2

  1 0 0
0 1 0
x2 x1 1

 1 0 −x2
0 1 −x1
0 0 1


S1

x1x2
x3

 1 0 0
0 ex1 0
0 0 e−x1

 1 0 0
0 e−x1 0
0 0 ex1


S2

x1 + x2x3
x2
x3

 1 ex1x3 e−x1x2
0 ex1 0
0 0 e−x1

  1 0 0
−x3 e−x1 0
−x2 0 ex1


T

 x1
x2

x3 + x1x2

  1 0 0
0 1 0
x2 x1 1

 1 0 −x2
0 1 −x1
0 0 1


Y

 x1

x2 +
x21
2

x3 +
x31
6


 1 0 0
x1 1 0
x21
2

x1 1

 1 −x1 x21
2

0 1 −x1
0 0 1


Table 3.1: Linear representation associated to affine structures
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3.4 From 3d to 6d

In this section we build the six-dimensional Lie groups G⋉ρ R3 where the action ρ
is given by one of the preceding linear representations. We describe the group law
and its Lie (co)algebra. Also we relate the algebras obtained with the ones from the
various classifications.

3.4.1 GN,1 := H3(R)⋉φN,1 R3

Group law reads

(1 x1 x3
0 1 x2
0 0 1

 ,

v1v2
v3

)(1 x′1 x′3
0 1 x′2
0 0 1

 ,

v′1v′2
v′3

) =

(1 x1 + x′1 x3 + x′3 + x1x
′
2

0 1 x2 + x′2
0 0 1

 ,

 v1 + v′1
v2 + v′2 − x1v′3

v3 + v′3

) (3.55)

Rewrite this as

(x1 + x′1, x2 + x′2, x3 + x′3, x4 + x′4, x5 + x′5 + x1x
′
2, x6 + x′6 − x1x′3) (3.56)

We compute the derivative of the new left multiplication
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 x1 0 0 1 0
0 0 −x1 0 0 1

 . (3.57)

from which we get the following basis of left-invariant vector fields

E1 =
∂

∂x1
, E2 =

∂

∂x2
+ x1

∂

∂x5
, E3 =

∂

∂x3
− x1

∂

∂x6
,

E4 =
∂

∂x4
, E5 =

∂

∂x5
, E6 =

∂

∂x6

(3.58)

The only non trivial brackets are

[E1, E2] = E5 and [E1, E3] = −E6 (3.59)

and dually
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e1 = dx1 , e2 = dx2 , e3 = dx3,

e4 = dx4 , e5 = dx5 − x1dx2 , de6 = dx6 + x1dx3.
(3.60)

de5 = −dx1 ∧ dx2 = −e12 and de6 = dx1 ∧ dx3 = e13 (3.61)

After the linear change x3 7→ −x3, this Lie algebra corresponds to g5,1 ⊕ R =
(0, 0, 0, 0, 12, 13) in [30]. We will denote it with gN,1.

3.4.2 ǦN,1 := H3(R)⋉λN,1
R3

Group law reads

(1 x1 x3
0 1 x2
0 0 1

 ,

v1v2
v3

)(1 x′1 x′3
0 1 x′2
0 0 1

 ,

v′1v′2
v′3

) =

(1 x1 + x′1 x3 + x′3 + x1x
′
2

0 1 x2 + x′2
0 0 1

 ,

 v1 + v′1
v2 + v′2

v3 + v′3 + x1v
′
2

) (3.62)

Rewrite this as

(x1 + x′1, x2 + x′2, x3 + x′3, x4 + x′4, x5 + x′5 + x1x
′
2, x6 + x′6 + x1x

′
3) (3.63)

We compute the derivative of the new left multiplication
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 x1 0 0 1 0
0 0 x1 0 0 1

 . (3.64)

from which we get the following basis of left-invariant vector fields

E1 =
∂

∂x1
, E2 =

∂

∂x2
+ x1

∂

∂x5
, E3 =

∂

∂x3
+ x1

∂

∂x6
,

E4 =
∂

∂x4
, E5 =

∂

∂x5
, E6 =

∂

∂x6

(3.65)

The only non trivial brackets are

[E1, E2] = E5 and [E1, E3] = E6 (3.66)
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and dually

e1 = dx1 , e2 = dx2 , e3 = dx3,

e4 = dx4 , e5 = dx5 − x1dx2 , de6 = dx6 − x1dx3.
(3.67)

de5 = −dx1 ∧ dx2 = −e12 and de6 = dx1 ∧ dx3 = −e13 (3.68)

which again corresponds to g5,1 ⊕ R = (0, 0, 0, 0, 12, 13) in [30]. We will denote
it with ǧN,1.

Clearly, GN,1 and ǦN,1 (gN,1 and ǧN,1) are isomorphic as Lie groups (algebras).

3.4.3 GN,2 := H3(R)⋉φN,2 R3

Group law reads

(1 x1 x3
0 1 x2
0 0 1

 ,

v1v2
v3

)(1 x′1 x′3
0 1 x′2
0 0 1

 ,

v′1v′2
v′3

) =

(1 x1 + x′1 x3 + x′3 + x1x
′
2

0 1 x2 + x′2
0 0 1

 ,

v1 + v′1 − x2v′3
v2 + v′2 − x1v′3

v3 + v′3

) (3.69)

Rewrite this as

(x1 + x′1, x2 + x′2, x3 + x′3, x4 + x′4 + x1x
′
2, x5 + x′5 − x1x′3, x6 + x′6 − x2x′3) (3.70)

We compute the derivative of the new left multiplication
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 x1 0 1 0 0
0 0 −x1 0 1 0
0 0 −x2 0 0 1

 . (3.71)

from which we get the following basis of left-invariant vector fields

E1 =
∂

∂x1
, E2 =

∂

∂x2
+ x1

∂

∂x4
, E3 =

∂

∂x3
− x1

∂

∂x5
− x2

∂

∂x6
,

E4 =
∂

∂x4
, E5 =

∂

∂x5
, E6 =

∂

∂x6

(3.72)

The only non trivial brackets are
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[E1, E2] = E4 , [E1, E3] = −E5 , [E2, E3] = −E6 (3.73)

and dually

e1 = dx1 , e2 = dx2 , e3 = dx3,

e4 = dx4 − x1dx2 , e5 = dx5 + x1dx3 , de6 = dx6 + x2dx3.
(3.74)

de4 = −dx1∧dx2 = −e12 , de5 = dx1∧dx3 = e13 , de6 = dx2∧dx3 = e23 (3.75)

After the same linear change x3 7→ −x3, this Lie algebra corresponds to g6,N3 =
(0, 0, 0, 12, 13, 23) in [30]. We will denote it with gN,2.

3.4.4 ǦN,2 := H3(R)⋉λN,2
R3

Group law reads

(1 x1 x3
0 1 x2
0 0 1

 ,

v1v2
v3

)(1 x′1 x′3
0 1 x′2
0 0 1

 ,

v′1v′2
v′3

) =

(1 x1 + x′1 x3 + x′3 + x1x
′
2

0 1 x2 + x′2
0 0 1

 ,

 v1 + v′1
v2 + v′2

v3 + v′3 + x2v
′
1 + x1v

′
2

)
(3.76)

Rewrite this as

(x1 + x′1, x2 + x′2, x3 + x′3, x4 + x′4, x5 + x′5 + x1x
′
2, x6 + x′6 + x1x

′
4 + x2x

′
3) (3.77)

We compute the derivative of the new left multiplication
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 x1 0 0 1 0
0 0 x2 x1 0 1

 . (3.78)

from which we get the following basis of left-invariant vector fields

E1 =
∂

∂x1
, E2 =

∂

∂x2
+ x1

∂

∂x5
, E3 =

∂

∂x3
+ x2

∂

∂x6
,

E4 =
∂

∂x4
+ x1

∂

∂x6
, E5 =

∂

∂x5
, E6 =

∂

∂x6

(3.79)
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The only non trivial brackets are

[E1, E2] = E5 , [E1, E4] = E6 , [E2, E3] = E6 (3.80)

and dually

e1 = dx1 , e2 = dx2 , e3 = dx3,

e4 = dx4 , e5 = dx5 − x1dx2 , de6 = dx6 − x1dx4 − x2dx3.
(3.81)

de5 = −dx1 ∧ dx2 = −e12 and de6 = −dx1 ∧ dx4− dx2 ∧ dx3 = −e14− e23 (3.82)

which corresponds to h4 = (0, 0, 0, 0, 12, 14 + 23) in [60]. We will denote it with
ǧN,2.

3.4.5 GS,1 := E(1, 1)⋉φS,1 R3

Group law reads

(
ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

 ,

v1v2
v3

)(

ex

′
1 0 0 x′2
0 e−x

′
1 0 x′3

0 0 1 x′1
0 0 0 1

 ,

v′1v′2
v′3

) =

(
ex1+x

′
1 0 0 x2 + ex1x′2

0 e−(x1+x′1) 0 x3 + e−x1x′3
0 0 1 x1 + x′1
0 0 0 1

 ,

 v1 + v′1
v2 + e−x1v′2
v3 + ex1v′3

)

(3.83)

Rewrite this as

(x1 + e−x5x′1, x2 + ex5x′2, x3 + ex5x′3, x4 + e−x5x′4, x5 + x′5, x6 + x′6) (3.84)

The derivative of the new left multiplication is
e−x5 0 0 0 0 0
0 ex5 0 0 0 0
0 0 ex5 0 0 0
0 0 0 e−x5 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (3.85)

which gives the following basis of left-invariant vector fields
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E1 = e−x5
∂

∂x1
, E2 = ex5

∂

∂x2
, E3 = ex5

∂

∂x3
,

E4 = e−x5
∂

∂x4
, E5 =

∂

∂x5
, E6 =

∂

∂x6

(3.86)

The only non-trivial brackets are

[E1, E5] = e−x5
∂

∂x1
= E1 , [E2, E5] = −ex5

∂

∂x2
= −E2

[E3, E5] = −ex5
∂

∂x3
= −E3 , [E4, E5] = e−x5

∂

∂x4
= E4

(3.87)

dually we obtain a basis of left-invariant 1-forms

e1 = ex5dx1 , e2 = e−x5dx2 , e3 = e−x5dx3

e4 = ex5dx4 , e5 = dx5 , e6 = dx6
(3.88)

with

de1 = −e15 , de2 = e25 , de3 = e35

de4 = −e45 , de5 = 0 , de6 = 0
(3.89)

Such a Lie algebra corresponds to A−1,−1,1
5,7 ⊕ R = (15,−25,−35, 45, 0, 0) in [30].

We denote it with gS,1

3.4.6 ǦS,1 := E(1, 1)⋉λS,1
R3

Group law reads

(
ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

 ,

v1v2
v3

)(

ex

′
1 0 0 x′2
0 e−x

′
1 0 x′3

0 0 1 x′1
0 0 0 1

 ,

v′1v′2
v′3

) =

(
ex1+x

′
1 0 0 x2 + ex1x′2

0 e−(x1+x′1) 0 x3 + e−x1x′3
0 0 1 x1 + x′1
0 0 0 1

 ,

 v1 + v′1
v2 + ex1v′2
v3 + e−x1v′3

)

(3.90)
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which has the same group law of GS,1

(x1 + ex5x′1, x2 + ex5x′2, x3 + e−x5x′3, x4 + ex5x′4, x5 + x′5, x6 + x′6) (3.91)

and therefore gives the same Lie algebra A−1,−1,1
5,7 ⊕ R = (15,−25,−35, 45, 0, 0).

We refer to it with ǧS,1B : even if it is the same, we do this in order to distinguish
the two sides. Clearly GS,1 and ǦS,1 (gS,1 and ǧS,1) are isomorphic as Lie groups
(algebras).

3.4.7 GS,2 := E(1, 1)⋉φS,2 R3

Group law reads

(
ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

,
v1v2
v3

)(

ex

′
1 0 0 x′2
0 e−x

′
1 0 x′3

0 0 1 x′1
0 0 0 1

 ,

v′1v′2
v′3

) =

(
ex1+x

′
1 0 0 x2 + ex1x′2

0 e−(x1+x′1) 0 x3 + e−x1x′3
0 0 1 x1 + x′1
0 0 0 1

 ,

 v1 + v′1
v2 + ex1v′2 − x3v′1
v3 + e−x1v′3 − x2v′1

)

(3.92)

Rewrite this as

(x1+e
−x6x′1−x3x′5, x2+ex6x′2−x4x′5, x3+e−x6x′3, x4+ex6x′4, x5+x′5, x6+x′6) (3.93)

The derivative of the new left multiplication is
e−x6 0 0 0 −x3 0
0 ex6 0 0 −x4 0
0 0 e−x6 0 0 0
0 0 0 ex6 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (3.94)

which gives the following basis of left-invariant vector fields

E1 = e−x6
∂

∂x1
, E2 = ex6

∂

∂x2
, E3 = e−x6

∂

∂x3
,

E4 = ex6
∂

∂x4
, E5 =

∂

∂x5
− x3

∂

∂x1
− x4

∂

∂x2
, E6 =

∂

∂x6

(3.95)
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The only non-trivial brackets are

[E1, E6] = e−x6
∂

∂x1
= E1 , [E3, E5] = e−x6

∂

∂x1
= E1

[E2, E6] = −ex6
∂

∂x2
= −E2 , [E4, E5] = ex6

∂

∂x2
= E2

[E3, E6] = e−x6
∂

∂x3
= E3 , [E4, E6] = −ex6

∂

∂x4
= −E4

(3.96)

dually we obtain a basis of left-invariant 1-forms

e1 = ex6dx1 + x3e
x6dx5 , e2 = e−x6dx2 + x4e

−x6dx5 , e3 = ex6dx3

e4 = e−x6dx4 , e5 = dx5 , e6 = dx6
(3.97)

with

de1 = −e16 − e35 , de2 = e26 − e45 , de3 = −e36

de4 = e46 , de5 = 0 , de6 = 0
(3.98)

After the linear change x5 7→ −x5, this Lie algebra corresponds to g0,−1
6,54 =

(16 + 35,−26 + 45, 36,−46, 0, 0) in [30]. We will denote it with gS,2.

3.4.8 ǦS,2 := E(1, 1)⋉λS,2
R3

Group law reads

(
ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

 ,

v1v2
v3

)(

ex

′
1 0 0 x′2
0 e−x

′
1 0 x′3

0 0 1 x′1
0 0 0 1

 ,

v′1v′2
v′3

) =

(
ex1+x

′
1 0 0 x2 + ex1x′2

0 e−(x1+x′1) 0 x3 + e−x1x′3
0 0 1 x1 + x′1
0 0 0 1

 ,

v1 + v′1 + x3e
x1v′2 + x2e

−x1v′3
v2 + ex1v′2
v3 + e−x1v′3

)

(3.99)

(x1, . . . , x6)(x
′
1, . . . , x

′
6) = (x1 + x′1 + x4e

−x6x′2 + x3e
x6x′5, x2 + e−x6x′2,

x3 + e−x6x′3, x4 + ex6x′4, x5 + ex6x′5, x6 + x′6) (3.100)

The derivative of the new left multiplication is
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1 x4e

−x6 0 0 x3e
x6 0

0 e−x6 0 0 0 0
0 0 e−x6 0 0 0
0 0 0 ex6 0 0
0 0 0 0 ex6 0
0 0 0 0 0 1

 (3.101)

which gives the following basis of left-invariant vector fields

E1 =
∂

∂x1
, E2 = x4e

−x6 ∂

∂x1
+ e−x6

∂

∂x2
, E3 = e−x6

∂

∂x3

E4 = ex6
∂

∂x4
, E5 = x3e

x6
∂

∂x1
+ ex6

∂

∂x5
, E6 =

∂

∂x6

(3.102)

The only non-trivial brackets are

[E2, E6] = x4e
−x6 ∂

∂x1
+ e−x6

∂

∂x2
= E2 , [E2, E4] = −

∂

∂x1
= −E1

[E3, E6] = e−x6
∂

∂x3
= E3 , [E3, E5] =

∂

∂x1
= E1

[E4, E6] = −ex6
∂

∂x4
= −E4 , [E5, E6] = −x3ex6

∂

∂x1
− ex6 ∂

∂x5
= −E5

(3.103)

dually we obtain a basis of left-invariant 1-forms

e1 = dx1 − x4dx2 − x3dx5 , e2 = ex6dx2 , e3 = ex6dx3

e4 = e−x6dx4 , e5 = e−x6dx5 , e6 = dx6
(3.104)

with

de1 = e24 − e35 , de2 = −e26 , de3 = −e36

de4 = e46 , de5 = e56 , de6 = 0
(3.105)

This Lie algebra corresponds to g5 = (24 + 35, 26, 36,−46,−56, 0) in [32]. We
will denote it with ǧS,2.

3.4.9 GT := R3 ⋉φT R3

The resulting six-dimensional Lie group has group law

(x1 + x′1, x2 + x′2 − x1x′6, x3 + x′3, x4 + x′4 − x3x′6, x5 + x′5, x6 + x′6) (3.106)
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The differential of left multiplication is
1 0 0 0 0 0
0 1 0 0 0 −x1
0 0 1 0 0 0
0 0 0 1 0 −x3
0 0 0 0 1 0
0 0 0 0 0 1

 (3.107)

which gives the following basis of left-invariant vector fields

E1 =
∂

∂x1
, , E2 =

∂

∂x2
, E3 =

∂

∂x3

E4 =
∂

∂x4
E5 =

∂

∂x5
E6 =

∂

∂x6
− x1

∂

∂x2
− x3

∂

∂x4

(3.108)

The only non-trivial brackets are

[E1, E6] = −E2 [E3, E6] = −E4 (3.109)

and dually

e1 = dx1 , e2 = dx2 + x1dx6 , e3 = dx3

e4 = dx4 + x3dx6 , e5 = dx5 , e6 = dx6
(3.110)

with

de1 = 0 , de2 = e16 , de3 = 0

de4 = e36 , de5 = 0 , de6 = 0
(3.111)

The algebra obtained, up to reordering, is isomorphic to gN,1 but we denote with
gT = (0,−16, 0,−36, 0, 0).

3.4.10 ǦT := R3 ⋉λT R3

The resulting six-dimensional Lie group has group law

(x1 + x′1, x2 + x′2, x3 + x′3, x4 + x′4, x5 + x′5, x6 + x′6 + x1x
′
2 + x3x

′
4) (3.112)

The differential of left multiplication is
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 x1 0 x3 0 1

 (3.113)
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which gives the following basis of left-invariant vector fields

E1 =
∂

∂x1
, E2 =

∂

∂x2
+ x1

∂

∂x6
, E3 =

∂

∂x3

E4 =
∂

∂x4
+ x3

∂

∂x6
E5 =

∂

∂x5
E6 =

∂

∂x6

(3.114)

The only non-trivial brackets are

[E1, E2] = E6 [E3, E4] = E6 (3.115)

and dually

e1 = dx1 , e2 = dx2 , e3 = dx3

e4 = dx4 , e5 = dx5 , e6 = dx6 − x1dx2 − x3dx4
(3.116)

with

de1 = 0 , de2 = 0 , de3 = 0

de4 = 0 , de5 = 0 , de6 = −e12 − e34
(3.117)

The algebra obtained is isomorphic to h3 = (0, 0, 0, 0, 0, 12 + 34) in [60] but we
denote with ǧT = (0, 0, 0, 0, 0, 12 + 34).

3.4.11 GY := H3(R)⋉φY R3

Group law reads

(1 x1 x3
0 1 x2
0 0 1

 ,

v1v2
v3

)(1 x′1 x′3
0 1 x′2
0 0 1

 ,

v′1v′2
v′3

) =

(1 x1 + x′1 x3 + x′3 + x1x
′
2

0 1 x2 + x′2
0 0 1

 ,

v1 + v′1 − x1v′2 +
x21
2
v′3

v2 + v′2 − x1v′3
v3 + v′3

)
(3.118)

Rewrite this as

(x1+x
′
1, x2+x

′
2, x3+x

′
3, x4+x

′
4+x1x

′
2, x5+x

′
5−x1x′3, x6+x′6−x1x′5+

x21
2
x′3) (3.119)

We compute the derivative of the new left multiplication
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1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 x1 0 1 0 0
0 0 −x1 0 1 0

0 0
x21
2

0 −x1 1

 . (3.120)

from which we get the following basis of left-invariant vector fields

E1 =
∂

∂x1
, E2 =

∂

∂x2
+ x1

∂

∂x4
, E3 =

∂

∂x3
− x1

∂

∂x5
+
x21
2

∂

∂x6
,

E4 =
∂

∂x4
, E5 =

∂

∂x5
− x1

∂

∂x6
, E6 =

∂

∂x6

(3.121)

The only non trivial brackets are

[E1, E2] = E4 , [E1, E3] = −E5 , [E1, E5] = −E6 (3.122)

and dually

e1 = dx1 , e2 = dx2 , e3 = dx3,

e4 = dx4 − x1dx2 , e5 = dx5 + x1dx3 , e6 = dx6 + x1dx5 +
x21
2
dx3.

(3.123)

de4 = −dx1∧dx2 = −e12 , de5 = dx1∧dx3 = e13 , de6 = dx1∧(dx5+x1dx3) = e15

(3.124)
Up to linear changes, this Lie algebra corresponds to h10 = (0, 0, 0, 12, 13, 14) in

[60]. We will denote it with gY .

3.4.12 ǦY := H3(R)⋉λY
R3

Group law reads

(1 x1 x3
0 1 x2
0 0 1

 ,

v1v2
v3

)(1 x′1 x′3
0 1 x′2
0 0 1

 ,

v′1v′2
v′3

) =

(1 x1 + x′1 x3 + x′3 + x1x
′
2

0 1 x2 + x′2
0 0 1

 ,

 v1 + v′1
v2 + v′2 + x1v

′
1

v3 + v′3 + x1v
′
2 +

x21
2
v′1

)
(3.125)
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Rewrite this as

(x1+x
′
1, x2+x

′
2, x3+x

′
3, x4+x

′
4+x1x

′
2, x5+x

′
5+x1x

′
3, x6+x

′
6+x1x

′
5+

x21
2
x′3) (3.126)

We compute the derivative of the new left multiplication

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 x1 0 1 0 0
0 0 x1 0 1 0

0 0
x21
2

0 x1 1

 . (3.127)

from which we get the following basis of left-invariant vector fields

E1 =
∂

∂x1
, E2 =

∂

∂x2
+ x1

∂

∂x4
, E3 =

∂

∂x3
+ x1

∂

∂x5
+
x21
2

∂

∂x6
,

E4 =
∂

∂x4
, E5 =

∂

∂x5
+ x1

∂

∂x6
, E6 =

∂

∂x6

(3.128)

The only non trivial brackets are

[E1, E2] = E4 , [E1, E3] = E5 , [E1, E5] = E6 (3.129)

and dually

e1 = dx1 , e2 = dx2 , e3 = dx3,

e4 = dx4 − x1dx2 , e5 = dx5 − x1dx3 , e6 = dx6 − x1dx5 +
x21
2
dx3.

(3.130)

de4 = −dx1∧dx2 = −e12 , de5 = dx1∧dx3 = −e13 , de6 = −dx1∧(dx5−x1dx3) = −e15
(3.131)

which, again, corresponds to h10 = (0, 0, 0, 12, 13, 14) in [60]. We will denote it
with ǧY .
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Chapter 4

Supersymmetric Structures and
Fourier-Mukai Transforms

In this chapter we present all the explicit computation involving the semi-flat super-
symmetric SU(3)-structures of type IIA/IIB. We write the expression for the forms
(ω,Ω), as defined in the previous chapter, we check their properties and show the
cohomology diamond associated. Then, for each mirror pair, we describe explicitly
the Fourier-Mukai transform realizing FT (e2ω̌) = Ω. From example to example the
forms

ω = e12 + e34 + e56

Ω =
(
e1 + ie2

)
∧
(
e3 + ie4

)
∧
(
e5 + ie6

) (4.1)

will change their expression according to a reordering of the basis. This has been
done to relate the structures with the ones already known in the literature and in
order to maintain an accordance with the classifying results cited in section 2.5. For
each pair we are not writing the explicit correspondence among the flux forms ρA
and ρB since they follow directly from the computation in the appendix.

4.1 (MN,1, M̌N,1)

IIA Equations on gN,1 = (0, 0, 0, 0, 12,−13)

Take

ω = e41 + e62 + e35

Ω = (e4 + ie1) ∧ (e6 + ie2) ∧ (e3 + ie5)
(4.2)

We have
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Re Ω = e463 − e425 − e165 − e123

Im Ω = e465 + e423 + e163 − e125
(4.3)

dω = e132 + e123 = 0

d Re Ω = de463 − de425 − de165 − de123 = 0

d Im Ω = de465 + de423 + de163 − de125 = −e4135 − e4612 ̸= 0

(4.4)

and

1

8
Ω ∧ Ω̄ = −ie123456 = −iω

3

6
. (4.5)

which implies F ≡ 8.

TY Diamond for gN,1

1

2 2

2 6 3

1 5 6 1

2 6 3

2 2

1

(4.6)

IIB Equations on ǧN,1 = (0, 0, 0, 0, 12, 13)

Take

ω̌ = ě41 + ě32 + ě65

Ω̌ = (ě4 + iě1) ∧ (ě3 + iě2) ∧ (ě6 + iě5)
(4.7)

We have
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Re Ω̌ = ě436 − ě425 − ě135 − ě126

Im Ω̌ = ě435 + ě426 + ě136 − ě125
(4.8)

dω̌ = −ě135 + ě612 ̸= 0

dω̌2 = 2dω̌ ∧ ω̌ = 2(−ě135 + ě126) ∧ (ě41 + ě32 + ě65) = 0

d Re Ω̌ = dě436 − dě425 − dě135 − dě126 = 0

d Im Ω̌ = dě435 + dě426 + dě136 − dě125 = −ě4312 − ě4213 = 0

(4.9)

and

1

8
Ω̌ ∧ ¯̌Ω = −iě123456 = −i ω̌

3

6
. (4.10)

that implies F̌ ≡ 8.

BC Diamond for ǧN,1

1

3 3

2 6 2

1 6 6 1

2 5 2

2 2

1

(4.11)

Fourier-Mukai Transform and Mirror Duality for MN,1 and M̌N,1

The SYZ-dual fibrations are
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MN,1 =
H3(R)⋉φN,1R3

H3(Z)⋉fN,1Z3 M̌N,1 =
H3(R)⋉λN,1

R3

H3(Z)⋉lN,1
Z3

B = H3(R)/H3(Z)

π π̌

(4.12)
We start from the symplectic side where the symplectic form ω

ω = e41 + e62 + e35 = dx4 ∧ dx1 + dx6 ∧ dx2 + dx3 ∧ dx5 (4.13)

gives as action coordinates on the base and angle coordinates on the fibers re-
spectively: 

r1 = x1

r2 = x2

r3 = x5

,


θ1 = x4

θ2 = x6

θ3 = x3

(4.14)

and ω =
∑3

i=1 dθi ∧ dri.
Rewrite the coframe of differential 1-forms in action-angle coordinates:

e1 = dx1 = dr1

e2 = dx2 = dr2

e3 = dx3 = dθ3

e4 = dx4 = dθ1

e5 = dx5 − x1dx2 = dr3 − r1dr2
e6 = dx6 + x1dx3 = dθ2 + r1dθ3

(4.15)

The expression of the three-form Ω in these coordinates is

Ω = (e4 + ie1) ∧ (e6 + ie2) ∧ (e3 + ie5) =

=
(
dθ1 + idr1

)
∧
(
(dθ2 + r1dθ3) + idr2

)
∧
(
dθ3 + i(dr3 − r1dr2)

) (4.16)

On the complex side, the dual action-angle coordinates are
r1 = x1

r2 = x2

r3 = x5

,


θ̌1 = x4

θ̌2 = x3

θ̌3 = x6

(4.17)

and
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ě1 = dx1 = dr1

ě2 = dx2 = dr2

ě3 = dx3 = dθ̌2

ě4 = dx4 = dθ̌1

ě5 = dx5 − x1dx2 = dr3 − r1dr2
ě6 = dx6 − x1dx3 = dθ̌3 − r1dθ̌2

(4.18)

Define complex (1, 0)-forms:

ψ1 = ě4 + iě1 , ψ2 = ě3 + iě2 , ψ3 = ě6 + iě5 (4.19)

and complex coordinates
z1 = θ̌1 + ir1 = x4 + ix1

z2 = θ̌2 + ir2 = x3 + ix2

z3 = θ̌3 + ir3 = x6 + ix5

(4.20)

so that

ψ1 = dθ̌1 + idr1 = dz1

ψ2 = dθ̌2 + idr2 = dz2

ψ3 = (dθ̌3 − r1dθ̌2) + i(dr3 − r1dr2) = dz3 − r1dz2

(4.21)

and

ω̌ = ě41 + ě32 + ě65

=
i

2
(ψ11̄ + ψ22̄ + ψ33̄)

=
i

2

(
dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + (dz3 − r1dz2) ∧ (dz̄3 − r1dz̄2)

)
=
i

2

(
dz1 ∧ dz̄1 + dz2 ∧

(
(1 + r21) dz̄2 − r1dz̄3

)
+ dz3 ∧ (dz̄3 − r1dz̄2)

)
(4.22)

Now, consider the fiber product

MN,1 ×B M̌N,1

MN,1 M̌N,1

B

p p̌

π π̌
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and recall the definition of the Fourier-Mukai tranform

FT · ϕ̌ := p∗

((
p̌∗(P · ϕ̌)

)
∧ exp

F

2i

)
(4.23)

where

F = 2i
3∑
i=1

dθ̌i ∧ dθi (4.24)

so that

P · (2ω̌) = i
(
dθ̌1 ∧ dr1 + dθ̌2 ∧

(
(1 + r21)dr2 − r1dr3

)
+

+ dθ̌3 ∧
(
dr3 − r1dr2

)) (4.25)

Set

η1 := dr1

η2 := (1 + r21)dr2 − r1dr3
η3 := dr3 − r1dr2

(4.26)

and take the product

eP·2ω̌ ∧ e
F
2i = ei

∑3
i=1 dθ̌i∧ηi ∧ e

∑3
i=1 dθ̌i∧dθi

= e
∑3

i=1 dθ̌i∧(dθi+iηi)
(4.27)

Integrating this along the θ̌i’s we get

(dθ1 + iη1) ∧ (dθ2 + iη2) ∧ (dθ3 + iη3)

=
(
dθ1 + idr1

)
∧
(
dθ2 + i

(
(1 + r21)dr2 − r1dr3

))
∧
(
dθ3 + i

(
dr3 − r1dr2

))
=
(
dθ1 + idr1

)
∧
(
(dθ2 + r1dθ3) + idr2

)
∧
(
dθ3 + i(dr3 − r1dr2)

) (4.28)

that coincide with (4.16), showing that FT (e2ω̌) = Ω.

4.2 (MN,2, M̌N,2)

IIA Equations on gN,2 = (0, 0, 0, 12,−13,−23)

Take, for λ ∈ R\{0, 1}

ω = e61 + λe52 + (λ− 1)e34

Ω = (e6 + ie1) ∧ (e5 + iλe2) ∧ (e3 + i(λ− 1)e4)
(4.29)
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We have

Re Ω = e653 − λ(λ− 1)e642 − (λ− 1)e154 − λe123

Im Ω = (λ− 1)e654 + λe623 + e153 − λ(λ− 1)e124
(4.30)

dω = e231 + λe132 + (λ− 1)e312 = (1− λ+ λ− 1)e123 = 0

d Re Ω = de653 − λ(λ− 1)de642 − (λ− 1)de154 − λde123 = 0

d Im Ω = (λ− 1)de654 + λde623 + de153 − λ(λ− 1)de124

= (λ− 1)(−e2345 + e1346 + e1256) ̸= 0

(4.31)

and

1

8
Ω ∧ Ω̄ = −ie123456 = −iω

3

6
. (4.32)

which implies F ≡ 8.

TY Diamonds for gN,2

Depending on the value of the parameter λ ∈ R\{0, 1} we have three possible
diamonds

For λ = −1

1

1 2

2 6 3

1 4 7 1

2 6 3

1 2

1

(4.33)

For λ = 2 or λ = 1
2



86

1

1 2

2 6 3

1 5 6 1

2 6 3

1 2

1

(4.34)

Otherwise

1

1 2

2 6 3

1 4 6 1

2 6 3

1 2

1

(4.35)

IIB Equations on ǧN,2 = (0, 0, 0, 0, 12, 14 + 23)

Take, for λ ∈ R\{0, 1},

ω̌ = ě31 + λě42 + (λ− 1)ě65

Ω̌ = (ě3 + iě1) ∧ (ě4 + iλě2) ∧ (ě6 + i(λ− 1)ě5)
(4.36)
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We have

Re Ω̌ = ě346 − λ(λ− 1)ě325 − (λ− 1)ě145 − λě126

Im Ω̌ = (λ− 1)ě345 + λě326 + ě146 − λ(λ− 1)ě125
(4.37)

dω̌ = (λ− 1)(−e145 − e235 + e612) ̸= 0

dω̌2 = 2dω̌ ∧ ω̌ = 2(λ− 1)(−e145 − e235 + e126) ∧ (ě31 + λě42 + (λ− 1)ě65) = 0

d Re Ω̌ = dě346 − λ(λ− 1)dě325 − dě145 − λdě126 = 0

d Im Ω̌ = (λ− 1)dě345 + λdě326 + dě146 − λ(λ− 1)dě125

= (1− λ)ě1234 + λě1234 − e1234 = 0

(4.38)

and

1

8
Ω̌ ∧ ¯̌Ω = −iě123456 = −i ω̌

3

6
. (4.39)

that implies F̌ ≡ 8.

BC Diamond for gN,2B

Depending on the value of the parameter λ ∈ R\{0, 1} we have three possibly
diamonds

For λ = −1

1

3 3

2 7 2

1 6 6 1

1 4 1

2 2

1

(4.40)
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For λ = 2 or λ = 1
2

1

3 3

2 6 2

1 6 6 1

1 5 1

2 2

1

(4.41)

Otherwise

1

3 3

2 6 2

1 6 6 1

1 4 1

2 2

1

(4.42)

Fourier-Mukai Transform and Mirror Duality for MN,2 and M̌N,2

The SYZ-dual fibrations are
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MN,2 =
H3(R)⋉φN,2R3

H3(Z)⋉fN,2Z3 M̌N,2 =
H3(R)⋉λN,2

R3

H3(Z)⋉lN,2
Z3

B = H3(R)/H3(Z)

π π̌

(4.43)
We start from the symplectic side where the symplectic form ω

ω = e61 + λe52 + (λ− 1)e34

= (dx6 + x2dx3) ∧ dx1 + λ(dx5 + x1dx3) ∧ dx2 + (λ− 1)dx3 ∧ (dx4 − x1dx2)
= dx6 ∧ dx1 + x2dx3 ∧ dx1 + λdx5 ∧ dx2 + λx1dx3 ∧ dx2+
+ (λ− 1)dx3 ∧ dx4 − (λ− 1)x1dx3 ∧ dx2
= dx6 ∧ dx1 + λdx5 ∧ dx2 + (λ− 1)dx3 ∧ dx4 + dx3 ∧ d(x1x2)
= dx6 ∧ dx1 + dx5 ∧ λdx2 + dx3 ∧ d

(
(λ− 1)x4 + x1x2

)
(4.44)

gives as action coordinates on the base and angle coordinates on the fibers re-
spectively: 

r1 = x1

r2 = λx2

r3 = (λ− 1)x4 + x1x2

,


θ1 = x6

θ2 = x5

θ3 = x3

(4.45)

and ω =
∑3

i=1 dθi ∧ dri

Rewrite the coframe of differential 1-forms in action-angle coordinates:

e1 = dx1 = dr1

e2 = dx2 =
dr2
λ

e3 = dx3 = dθ3

e4 = dx4 − x1dx2 =
1

λ− 1
dr3 −

r2
λ(λ− 1)

dr1 −
r1

λ− 1
dr2,

e5 = dx5 + x1dx3 = dθ2 + r1dθ3

e6 = dx6 + x2dx3 = dθ1 +
r2
λ
dθ3

(4.46)
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The expression of the three-form Ω in these coordinate is

Ω = (e6 + ie1) ∧ (e5 + iλe2) ∧ (e3 + i(λ− 1)e4) =

=
(
(dθ1 +

r2
λ
dθ3) + idr1

)
∧
(
(dθ2 + r1dθ3) + idr2

)
∧
(
dθ3 + i(dr3 −

r2
λ
dr1 − r1dr2)

)
(4.47)

On the complex side, the dual action-angle coordinates are
r1 = x1

r2 = λx2

r3 = (λ− 1)x5 + x1x2

,


θ̌1 = x3

θ̌2 = x4

θ̌3 = x6

(4.48)

and

ě1 = dx1 = dr1

ě2 = dx2 =
dr2
λ

ě3 = dx3 = dθ̌1

ě4 = dx4 = dθ̌2

ě5 = dx5 − x1dx2 =
1

λ− 1
dr3 −

r2
λ(λ− 1)

dr1 −
r1

λ− 1
dr2

ě6 = dx6 − x1dx4 − x2dx3 = dθ̌3 − r1dθ̌2 −
r2
λ
dθ̌1

(4.49)

Define complex (1, 0)-forms:

ψ1 = ě3 + iě1 , ψ2 = ě4 + iλě2 , ψ3 = ě6 + i(λ− 1)ě5 (4.50)

and complex coordinates
z1 = θ̌1 + ir1 = x3 + ix1

z2 = θ̌2 + ir2 = x4 + iλx2

z3 = θ̌3 + ir3 = x6 + i
(
(λ− 1)x5 + x1x2

) (4.51)

so that

ψ1 = dθ̌1 + idr1 = dz1

ψ2 = dθ̌2 + idr2 = dz2

ψ3 = (dθ̌3 − r1dθ̌2 −
r2
λ
dθ̌1) + i(dr3 − r1dr2 −

r2
λ
dr1) = dz3 − r1dz2 −

r2
λ
dz1

(4.52)

and
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ω̌ = ě31 + λě42 + (λ− 1)ě65

=
i

2
(ψ11̄ + ψ22̄ + ψ33̄)

=
i

2

(
dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + (dz3 − r1dz2 −

r2
λ
dz1) ∧ (dz̄3 − r1dz̄2 −

r2
λ
dz̄1)

)
=
i

2

(
dz1 ∧

(
(1 +

r22
λ2

)dz̄1 +
r1r2
λ
dz̄2 −

r2
λ
dz̄3
)
+

+ dz2 ∧
(r1r2
λ
dz̄1 + (1 + r21) dz̄2 − r1dz̄3

)
+ dz3 ∧

(
− r2
λ
dz̄1 − r1dz̄2 + dz̄3

))
(4.53)

Now

P · (2ω̌) = i
(
dθ̌1 ∧

(
(1 +

r22
λ2

)dr1 +
r1r2
λ
dr2 −

r2
λ
dr3
)
+

+ dθ̌2 ∧
(r1r2
λ
dr1 + (1 + r21) dr2 − r1dr3

)
+

+ dθ̌3 ∧
(
− r2
λ
dr1 − r1dr2 + dr3

)) (4.54)

Set

η1 := (1 +
r22
λ2

)dr1 +
r1r2
λ
dr2 −

r2
λ
dr3

η2 :=
r1r2
λ
dr1 + (1 + r21)dr2 − r1dr3

η3 := −
r2
λ
dr1 − r1dr2 + dr3

(4.55)

and take the product

eP·2ω̌ ∧ e
F
2i = ei

∑3
i=1 dθ̌i∧ηi ∧ e

∑3
i=1 dθ̌i∧dθi

= e
∑3

i=1 dθ̌i∧(dθi+iηi)
(4.56)

Integrating this along the θ̌i’s we get

(dθ1 + iη1) ∧ (dθ2 + iη2) ∧ (dθ3 + iη3) =

=
(
dθ1 + i

(
(1 +

r22
λ2

)dr1 +
r1r2
λ
dr2 −

r2
λ
dr3
))

∧
(
dθ2 + i

(r1r2
λ
dr1 + (1 + r21)dr2 − r1dr3

))
∧

∧
(
dθ3 + i

(
− r2
λ
dr1 − r1dr2 + dr3

))
=
(
(dθ1 +

r2
λ
dθ3) + idr1

)
∧
(
(dθ2 + r1dθ3) + idr2

)
∧
(
dθ3 + i(dr3 −

r2
λ
dr1 − r1dr2)

)
(4.57)
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that coincide with (4.47), showing that FT (e2ω̌) = Ω.

4.3 (MS,1, M̌S,1)

IIA Equations on gS,1 = (15,−25,−35, 45, 0, 0)

Take

ω = e31 + e42 + e65

Ω = (e3 + ie1) ∧ (e4 + ie2) ∧ (e6 + ie5)
(4.58)

We have

Re Ω = e346 − e325 − e145 − e126

Im Ω = e345 + e326 + e146 − e125
(4.59)

dω = 0

dRe Ω = 0

dIm Ω = −2(e2356 + e1456)

(4.60)

and

1

8
Ω ∧ Ω̄ = −i e123456 = −iω

3

6
(4.61)

with F ≡ 8
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TY Diamond for gS,1

1

1 1

1 3 1

1 3 3 1

1 3 1

1 1

1

(4.62)

IIB Equations on ǧS,1 = (15,−25,−35, 45, 0, 0)

Take

ω̌ = ě41 + ě32 + ě65

Ω̌ = (ě4 + iě1) ∧ (ě3 + iě2) ∧ (ě6 + iě5)
(4.63)

We have

Re Ω̌ = ě436 − ě425 − ě135 − ě126

Im Ω̌ = ě435 + ě426 + ě136 − ě125
(4.64)

dω̌ = −ě451 + ě415 + ě352 − ě325 = 2(−ě145 + ě235) ̸= 0

dω̌2 = 2dω̌ ∧ ω̌ = 2(−ě14532 + ě23541) = 0

dRe Ω̌ = 0

dIm Ω̌ = 0

(4.65)

and

1

8
Ω̌ ∧ ¯̌Ω = −i ě123456 = −i ω̌

3

6
(4.66)

that implies F̌ ≡ 8.
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BC Diamond for ǧS,1

1

1 1

1 3 1

1 3 3 1

1 3 1

1 1

1

(4.67)

Fourier-Mukai Transform and Mirror Duality for MS,1 and M̌S,1

The SYZ-dual fibrations are

MS,1 =
E(1,1)⋉

φS,1R3

Γt⋉fS,1
Z3
t

M̌S,1 =
E(1,1)⋉λS,1

R3

Γt⋉lS,1
Z3
t

B = E(1, 1)/Γt

π π̌
(4.68)

We start from the symplectic side where the symplectic form ω

ω = e31 + e42 + e65 = e−x5dx3 ∧ ex5dx1 + ex5dx4 ∧ e−x5dx2 + dx6 ∧ dx5
= dx4 ∧ dx1 + dx3 ∧ dx2 + dx6 ∧ dx5

(4.69)

gives as action coordinates on the base and angle coordinates on the fibers re-
spesctively 

r1 = x1

r2 = x2

r3 = x5

,


θ1 = x3

θ2 = x4

θ3 = x6

(4.70)
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and ω =
∑3

i=1 dθi ∧ dri.
Rewrite the coframe of differential 1-forms in action-angle coordinates

e1 = ex5dx1 = er3dr1

e2 = e−x5dx2 = e−r3dr2

e3 = e−x5dx3 = e−r3dθ1

e4 = ex5dx4 = er3dθ2

e5 = dx5 = dr3

e6 = dx6 = dθ3

(4.71)

The expression of the three-form Ω in these coordinates is

Ω = (e3 + ie1) ∧ (e4 + ie2) ∧ (e6 + ie5)

= (e−r3dθ1 + ier3dr1) ∧ (er3dθ2 + ie−r3dr2) ∧ (dθ3 + idr3)

= e−r3(dθ1 + ie2r3dr1) ∧ er3(dθ2 + ie−2r3dr2) ∧ (dθ3 + idr3)

= (dθ1 + ie2r3dr1) ∧ (dθ2 + ie−2r3dr2) ∧ (dθ3 + idr3)

(4.72)

On the complex side instead, the dual action-angle coordinates are
r1 = x1

r2 = x2

r3 = x5

,


θ̌1 = x4

θ̌2 = x3

θ̌3 = x6

(4.73)

and

ě1 = ex5dx1 = er3dr1

ě2 = e−x5dx2 = e−r3dr2

ě3 = e−x5dx3 = e−r3dθ̌2

ě4 = ex5dx4 = er3dθ̌1

ě5 = dx5 = dr3

ě6 = dx6 = ďθ3

(4.74)

Define complex (1, 0)-forms:

ψ1 = ě4 + iě1 , ψ2 = ě3 + iě2 , ψ3 = ě6 + iě5 (4.75)

and complex coordinates
z1 = θ̌1 + ir1 = x4 + ix1

z2 = θ̌2 + ir2 = x3 + ix2

z3 = θ̌3 + ir3 = x6 + ix5

(4.76)
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so that

ψ1 = e4 + ie1 = ex5dθ̌1 + iex5dr1 = ex5dz1

ψ2 = e3 + ie2 = e−x5dθ̌2 + ie−x5dr2 = e−x5dz2

ψ3 = e6 + ie5 = dθ̌3 + idr3 = dz3

(4.77)

and

ω̌ = ě41 + ě32 + ě65

=
i

2
(ψ11̄ + ψ22̄ + ψ33̄)

=
i

2

(
e2r3dz1 ∧ dz̄1 + e−2r3dz2 ∧ dz̄2 + dz3 ∧ dz̄3

) (4.78)

Now

P · (2ω̌) = i
(
e2r3dθ̌1 ∧ dr1 + e−2r3dθ̌2 ∧ dr2 + dθ̌3 ∧ dr3

)
(4.79)

Set

η1 := e2r3dr1

η2 := e−2r3dr2

η3 := dr3

(4.80)

Take the product

eP·2ω̌ ∧ e
F
2i = ei

∑3
i=1 dθ̌i∧ηi ∧ e

∑3
i=1 dθ̌i∧dθi

= e
∑3

i=1 dθ̌i∧(dθi+iηi)
(4.81)

Integrating this along the θ̌i’s we get

(dθ1 + iη1) ∧ (dθ2 + iη2) ∧ (dθ3 + iη3)

= (dθ1 + ie2r3dr1) ∧ (dθ2 + ie−2r3dr2) ∧ (dθ3 + idr3)
(4.82)

which agrees with (4.72), showing that FT (e2ω̌) = Ω.

4.4 (MS,2, M̌S,2)

IIA Equations on gS,2 = (16 + 35,−26 + 45, 36,−46, 0, 0)

Take
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ω = e14 + e23 + e56

Ω = (e1 + ie4) ∧ (e2 + ie3) ∧ (e5 + ie6)
(4.83)

We have

Re Ω = e125 − e136 − e426 − e435

Im Ω = e126 + e135 + e425 − e436
(4.84)

dω = −e164 − e354 − e146 + e263 − e453 + e236 = 0

dRe Ω = 0

dIm Ω = −e2356 + e1456 − 2e1356 − 2e2456
(4.85)

and

1

8
Ω ∧ Ω̄ = −i e123456 = −iω

3

6
(4.86)

with F ≡ 8.

TY Diamond for gS,2

1

1 1

0 2 1

1 2 1 1

0 2 1

1 1

1

(4.87)
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IIB Equations on ǧS,2 = (24 + 35, 26, 36,−46,−56, 0)

Take

ω̌ = ě54 + ě23 + ě16

Ω̌ = (ě5 + iě4) ∧ (ě2 + iě3) ∧ (ě1 + iě6)
(4.88)

We have

Re Ω̌ = ě521 − ě536 − ě426 − ě431

Im Ω̌ = ě562 + ě531 + ě421 − ě436
(4.89)

dω̌ = 2ě456 + 2ě236 + ě246 − ě356 ̸= 0

dω̌2 = 2dω̌ ∧ ω̌ = 4(ě45623 + ě23654) = 0

dRe Ω̌ = ě5621 + ě5261 − ě4631 − ě4361 = 0

dIm Ω̌ = ě5631 + ě5361 + ě5324 + ě4621 + ě4261 − ě4235 = 0

(4.90)

and

1

8
Ω̌ ∧ ¯̌Ω = −i e123456 = −i ω̌

3

6
(4.91)

and F̌ ≡ 8

BC Diamond for ǧS,2

1

1 1

1 1 1

1 2 2 1

1 2 1

0 0

1

(4.92)
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Fourier-Mukai Transform and Mirror Duality for MS,2 and M̌S,2

The SYZ-dual fibrations are

MS,2 =
E(1,1)⋉

φS,2R3

Γt⋉fS,2
Z3
t

M̌S,2 =
E(1,1)⋉λS,2

R3

Γt⋉lS,2
Z3
t

B = E(1, 1)/Γt

π π̌
(4.93)

We start from the symplectic side where the symplectic form ω

ω = e14 + e23 + e56 =

= (ex6dx1 + x3e
x6dx5) ∧ e−x6dx4 + (e−x6dx2 + x4e

−x6dx5) ∧ ex6dx3 + dx5 ∧ dx6
= dx1 ∧ dx4 + x3dx5 ∧ dx4 + dx2 ∧ dx3 + x4dx5 ∧ dx3 + dx5 ∧ dx6
= dx1 ∧ dx4 + dx2 ∧ dx3 + dx5 ∧ d(x6 + x4x3)

(4.94)

gives as action coordinates on the base and angle coordinates on the fibers re-
spectively 

r1 = x4

r2 = x3

r3 = x6 + x4x3

,


θ1 = x1

θ2 = x2

θ3 = x5

(4.95)

and ω =
∑3

i=1 dθi ∧ dri .
Rewrite the coframe of differential 1-forms in action-angle coordinates

e1 = ex6dx1 + x3e
x6dx5 = er3−r1r2dθ1 + r2e

r3−r1r2dθ3

e2 = e−x6dx2 + x4e
−x6dx5 = e−r3+r1r2dθ2 + r1e

−r3+r1r2dθ3

e3 = ex6dx3 = er3−r1r2dr2

e4 = e−x6dx4 = e−r3+r1r2dr1

e5 = dx5 = dθ3

e6 = dx6 = dr3 − r2dr1 − r1dr2

(4.96)

The expression of the three-form Ω in these coordinates is
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Ω = (e1 + ie4) ∧ (e2 + ie3) ∧ (e5 + ie6)

=
(
(er3−r1r2dθ1 + r2e

r3−r1r2dθ3) + ie−r3+r1r2dr1

)
∧
(
(e−r3+r1r2dθ2+

+ r1e
−r3+r1r2dθ3) + ier3−r1r2dr2

)
∧
(
dθ3 + i(dr3 − r2dr1 − r1dr2

)
= er3−r1r2

(
(dθ1 + r2dθ3) + ie−2(r3−r1r2)dr1

)
∧ e−r3+r1r2

(
(dθ2 + r1dθ3) + ie2(r3−r1r2)dr2

)
∧
(
dθ3 + i(dr3 − r2dr1 − r1dr2)

)
=
(
(dθ1 + r2dθ3) + ie−2(r3−r1r2)dr1

)
∧
(
(dθ2 + r1dθ3) + ie2(r3−r1r2)dr2

)
∧

∧
(
dθ3 + i(dr3 − r2dr1 − r1dr2)

)
(4.97)

On the complex side instead, the dual action-angle coordinates are
r1 = x4

r2 = x3

r3 = x6 + x4x3

,


θ̌1 = x5

θ̌2 = x2

θ̌3 = x1

(4.98)

and

ě1 = dx1 − x4dx2 − x3dx5 = dθ̌3 − r1dθ̌2 − r2dθ̌1
ě2 = ex6dx2 = er3−r1r2dθ̌2

ě3 = ex6dx3 = er3−r1r2dr2

ě4 = e−x6dx4 = e−r3+r1r2dr1

ě5 = e−x6dx5 = e−r3+r1r2dθ̌1

ě6 = dx6 = dr3 − r2dr1 − r1dr2

(4.99)

Define complex (1, 0)-forms:

ψ1 = ě5 + iě4 , ψ2 = ě2 + iě3 , ψ3 = ě1 + iě6 (4.100)

and complex coordinates
z1 = θ̌1 + ir1 = x5 + ix4

z2 = θ̌2 + ir2 = x2 + ix3

z3 = θ̌3 + ir3 = x1 + i(x6 + x4x3)

(4.101)

so that
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ψ1 = e−r3+r1r2dθ̌1 + ie−r3+r1r2dr1 = e−r3+r1r2dz1

ψ2 = er3−r1r2dθ̌2 + ier3−r1r2dr2 = er3−r1r2dz2

ψ3 = (dθ̌3 − r2dθ̌1 − r1dθ̌2) + i(dr3 − r2dr1 − r1dr2) = dz3 − r2dz1 − r1dz2

(4.102)

and

ω̌ = ě54 + ě23 + ě16 =

=
i

2
(ψ11̄ + ψ22̄ + ψ33̄) =

=
i

2

(
e−2(r3−r1r2)dz1 ∧ dz̄1 + e2(r3−r1r2)dz2 ∧ dz̄2+

+ (dz3 − r2dz1 − r1dz2) ∧ (dz̄3 − r2dz̄1 − r1dz̄2)
)

(4.103)

Now

P · (2ω̌) = i
(
e−2(r3−r1r2)dθ̌1 ∧ dr1 + e2(r3−r1r2)dθ̌2 ∧ dr2+

+ (dθ̌3 − r2dθ̌1 − r1dθ̌2) ∧ (dr3 − r2dr1 − r1dr2)
)
=

i
(
dθ̌1 ∧

(
(e−2(r3−r1r2) + r22)dr1 + r1r2dr2 − r2dr3

)
+

+ dθ̌2 ∧
(
r1r2dr1 + (e2(r3−r1r2) + r21)dr2 − r1dr3

)
+

+ dθ̌3 ∧
(
− r2dr1 − r1dr2 + dr3

))
(4.104)

Set

η1 := e−2(r3−r1r2)dr1

η2 := e2(r3−r1r2)dr2

η3 := dr3 − r2dr1 − r1dr2

(4.105)

and

η̃1 := η1 − r2η3
η̃2 := η2 − r1η3
η̃3 := η3

(4.106)

so that we can rewrite the two-form as
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P · (2ω̌) = i
3∑
i=1

dθ̌i ∧ η̃i (4.107)

Take the product

eP·2ω̌ ∧ e
F
2i = ei

∑3
i=1 dθ̌i∧η̃i ∧ e

∑3
i=1 dθ̌i∧dθi

= e
∑3

i=1 dθ̌i∧(dθi+iη̃i)
(4.108)

Integrating this along the θ̌i’s we get

(dθ1 + iη̃1) ∧ (dθ2 + iη̃2) ∧ (dθ3 + iη̃3) =(
dθ1 + i(η1 − r2η3)

)
∧
(
dθ2 + i(η2 − r1η3)

)
∧
(
dθ3 + iη3

)
=(

dθ1 + iη1
)
∧
(
dθ2 + iη2

)
∧
(
dθ3 + iη3

)
+

+
(
r2η3 ∧ η2 ∧ dθ3 + r1η1 ∧ η3 ∧ dθ3

)
+ i
(
− r1dθ1 ∧ η3 ∧ dθ3 − r2η3 ∧ dθ2 ∧ dθ3

)
(4.109)

while the expression for Ω in (4.97)

(
(dθ1 + r2dθ3) + ie−2(r3−r1r2)dr1

)
∧
(
(dθ2 + r1dθ3) + ie2(r3−r1r2)dr2

)
∧

∧
(
dθ3 + i(dr3 − r2dr1 − r1dr2)

)
=
(
(dθ1 + r2dθ3) + iη1

)
∧
(
(dθ2 + r1dθ3) + iη2

)
∧
(
dθ3 + iη3

)
=
(
(dθ1 + iη1

)
∧
(
(dθ2 + iη2

)
∧
(
dθ3 + iη3

)
+

+
(
− r2dθ3 ∧ η2 ∧ η3 − r1η1 ∧ dθ3 ∧ η3

)
+ i
(
r2dθ3 ∧ dθ2 ∧ η3 + r1dθ1 ∧ dθ3 ∧ η3

)
(4.110)

and they indeed coincide, showing that FT (e2ω̌) = Ω.

4.5 (MT, M̌T)

IIA Equations on gT = (0,−16, 0,−36, 0, 0) ≃ (0, 0, 0, 0, 12, 13)

ω = e41 + e23 + e65

Ω = (e4 + ie1) ∧ (e2 + ie3) ∧ (e6 + ie5)
(4.111)

Take

Re Ω = e426 − e435 − e125 − e136

Im Ω = e425 + e436 + e126 − e135
(4.112)
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dω = e136 − e136 = 0

dRe Ω = 0

dIm Ω = −e2536 − e1456 ̸= 0

(4.113)

and

1

8
Ω ∧ Ω̄ = −i e123456 = −iω

3

6
(4.114)

with F ≡ 8.

TY Diamond for gT

1

1 3

2 6 3

1 4 7 1

2 6 3

1 3

1

(4.115)

IIB Equations on ǧT = (0, 0, 0, 0, 0, 12 + 34)

ω̌ = ě41 + ě23 + ě65

Ω̌ = (ě4 + iě1) ∧ (ě2 + iě3) ∧ (ě6 + iě5)
(4.116)

We have

Re Ω̌ = ě426 − ě435 − ě125 − ě136

Im Ω̌ = ě425 + ě126 + ě126 − ě135
(4.117)
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dω̌ = −ě125 − ě345 ̸= 0

dω̌2 = 2dω̌ ∧ ω̌ = 0

dRe Ω̌ = 0

dIm Ω̌ = −ě4312 − ě1234 = 0

(4.118)

and

1

8
Ω̌ ∧ ¯̌Ω = −i ě123456 = −i ω̌

3

6
(4.119)

and F̌ ≡ 8

BC Diamond for ǧT

1

3 3

3 7 3

1 6 6 1

1 4 1

2 2

1

(4.120)

Fourier-Mukai Transform and Mirror Duality for MT and M̌T

The SYZ-dual fibrations are

MT =
R3⋉

φTR3

Z3⋉
fTZ

3 M̌T =
R3⋉λTR

3

Z3⋉lTZ
3

B = R3/Z3

π π̌
(4.121)
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We start from the symplectic side where the symplectic form ω

ω = e41 + e23 + e65 =

= (dx4 + x3dx6) ∧ dx1 + (dx2 + x1dx6) ∧ dx3 + dx6 ∧ dx5
= dx4 ∧ dx1 + x3dx6 ∧ dx1 + dx2 ∧ dx3 + x1dx6 ∧ dx3 + dx6 ∧ dx5
= dx4 ∧ dx1 + dx2 ∧ dx3 + dx6 ∧ d(x5 + x1x3)

(4.122)

gives as action coordinates on the base and angle coordinates on the fibers re-
spectively 

r1 = x1

r2 = x3

r3 = x5 + x1x3

,


θ1 = x4

θ2 = x2

θ3 = x6

(4.123)

and ω =
∑3

i=1 dθi ∧ dri .
Rewrite the coframe of differential 1-forms in action-angle coordinates

e1 = dx1 = dr1

e2 = dx2 + x1dx6 = dθ2 + r1dθ3

e3 = dx3 = dr2

e4 = dx4 + x3dx6 = dθ1 + r2dθ3

e5 = dx5 = dr3 − r1dr2 − r2dr1
e6 = dx6 = dθ3

(4.124)

The expression of the three-form Ω in these coordinates is

Ω = (e4 + ie1) ∧ (e2 + ie3) ∧ (e6 + ie5)

=
(
(dθ1 + r2dθ3) + idr1

)
∧
(
(dθ2 + r1dθ3) + idr2

)
∧
(
dθ3 + i(dr3 − r2dr1 − r1dr2)

)
=
(
dθ1 + i

(
(1 + r22)dr1 + r1r2dr2 − r2dr3

))
∧
(
dθ2 + i

(
r1r2dr1 + (1 + r21)dr2 − r1dr3

))
∧

∧
(
dθ3 + i

(
− r2dr1 − r1dr2 + dr3

))
(4.125)

On the complex side instead, the dual action-angle coordinates are
r1 = x1

r2 = x3

r3 = x5 + x1x3

,


θ̌1 = x4

θ̌2 = x2

θ̌3 = x6

(4.126)

and
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ě1 = dx1 = dr1

ě2 = dx2 = dθ̌2

ě3 = dx3 = dr2

ě4 = dx4 = dθ̌1

ě5 = dx5 = dr3 − r2dr1 − r1dr2
ě6 = dx6 − x1dx2 − x3dx4 = dθ̌3 − r1dθ̌2 − r2dθ̌1

(4.127)

Define complex (1, 0)-forms:

ψ1 = ě4 + iě1 , ψ2 = ě2 + iě3 , ψ3 = ě6 + iě5 (4.128)

and complex coordinates
z1 = θ̌1 + ir1 = x4 + ix1

z2 = θ̌2 + ir2 = x2 + ix3

z3 = θ̌3 + ir3 = x6 + i(x5 + x1x3)

(4.129)

so that

ψ1 = dz1

ψ2 = dz2

ψ3 = dz3 − r2dz1 − r1dz2
(4.130)

and

ω̌ = ě41 + ě23 + ě65

=
i

2
(ψ11̄ + ψ22̄ + ψ33̄)

=
i

2

(
dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + (dz3 − r2dz1 − r1dz2) ∧ (dz̄3 − r2dz̄1 − r1dz̄2)

)
=
i

2

(
dz1 ∧

(
(1 + r22)dz̄1 + r1r2dz̄2 − r2dz̄3

)
+

+ dz2 ∧
(
r1r2dz̄1 + (1 + r21)dz̄2 − r1dz̄3

)
+

+ dz3 ∧ (dz̄3 − r2dz̄1 − r1dz̄2)
)

(4.131)

P · (2ω̌) = i
(
dθ̌1 ∧

(
(1 + r22)dr1 + r1r2dr2 − r2dr3

)
+

+ dθ̌2 ∧
(
r1r2dr1 + (1 + r21)dr2 − r1dr3

)
+

+ dθ̌3 ∧
(
− r2dr1 − r1dr2 + dr3

)) (4.132)
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Set

η1 := (1 + r22)dr1 + r1r2dr2 − r2dr3
η2 := r1r2dr1 + (1 + r21)dr2 − r1dr3
η3 := dr3 − r2dr1 − r1dr2

(4.133)

so that we can rewrite the two-form as

P · (2ω̌) = i
3∑
i=1

dθ̌i ∧ ηi (4.134)

Take the product

eP·2ω̌ ∧ e
F
2i = ei

∑3
i=1 dθ̌i∧ηi ∧ e

∑3
i=1 dθ̌i∧dθi

= e
∑3

i=1 dθ̌i∧(dθi+iηi)
(4.135)

integrating this along the θ̌i’s we get

(dθ1 + iη1) ∧ (dθ2 + iη2) ∧ (dθ3 + iη3) =(
dθ1 + i

(
(1 + r22)dr1 + r1r2dr2 − r2dr3

))
∧
(
dθ2 + i

(
r1r2dr1 + (1 + r21)dr2 − r1dr3

))
∧

∧
(
dθ3 + i

(
− r2dr1 − r1dr2 + dr3

))
=(

(dθ1 + r2dθ3) + idr1

)
∧
(
(dθ2 + r1dθ3) + idr2

)
∧
(
dθ3 + i(dr3 − r2dr1 − r1dr2)

)
(4.136)

which agrees with (4.125), showing that FT (e2ω̌) = Ω.

4.6 (MY , M̌Y )

The NLA gY = ǧY = (0, 0, 0, 12, 13, 15) has both a symplectic and a complex struc-
ture (see [76]), but it does not admit any half-flat nor balanced structure. Neverthe-
less, it fits in our SYZ construction and leads to a new mirror pair. In this section
we will show only the fibration and the diamonds. Cohomology computations are,
as above, in the appendix.

Mirror Duality for MY and M̌Y

The SYZ-dual fibrations are
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MY =
H3(R)⋉φY R3

H3(Z)⋉fY
Z3 M̌Y =

H3(R)⋉λY
R3

H3(Z)⋉lY
Z3

B = H3(R)/H3(Z)

π π̌
(4.137)

The symplectic SU(3)-system on MY is

ω = e61 + e52 + e34

Ω =
(
e6 + ie1

)
∧
(
e5 + ie2

)
∧
(
e3 + ie4

) (4.138)

Indeed

dω = 0

but

dReΩ = d(e653 − e624 − e154 − e123) = −e1245

and

dImΩ = d(e654 + e623 + e153 − e124) = −e1346 + e1235

While on M̌Y , the complex SU(3)-structure is given by

ω̌ = ě31 + ě52 + ě64

Ω̌ =
(
ě3 + iě1

)
∧
(
ě5 + iě2

)
∧
(
ě6 + iě4

) (4.139)

with

dω̌ = −ě123 + ě124 + ě145,

dω̌2 = dω̌ ∧ ω̌ = ě12346

and

dReΩ̌ = d(ě356 − ě324 − ě154 − ě126) = 0

dImΩ̌ = d(ě354 + ě326 + ě156 − ě124) = 0



109

TY Diamond for gY

1

1 2

1 5 3

1 4 5 1

1 5 3

1 2

1

(4.140)

BC Diamond for ǧY

1

3 3

2 5 2

1 5 5 1

1 4 1

1 1

1

(4.141)

Fourier-Mukai Transform and Mirror Duality for MY and M̌Y

The symplectic form on MY
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ω = e61 + e52 + e34

= (dx6 + x1dx5 +
x21
2
dx3) ∧ dx1 + (dx5 + x1dx3) ∧ dx2 + dx3 ∧ (dx4 − x1dx2)

= dx6 ∧ dx1 + x1dx5 ∧ dx1 +
x21
2
dx3 ∧ dx1 + dx5 ∧ dx2 + x1dx3 ∧ dx2+

+ dx3 ∧ dx4 − x1dx3 ∧ dx2

= dx6 ∧ dx1 + dx5 ∧ (dx2 + x1dx1) + dx3 ∧ (dx4 +
x21
2
dx1)

(4.142)

gives action-angle coordinates
r1 = x1

r2 = x2 +
x21
2

r3 = x4 +
x31
6

,


θ1 = x6

θ2 = x5

θ3 = x3

(4.143)

and ω can be written as ω =
∑3

i=1 dθi ∧ dri.

Rewrite the coframe of differential 1-forms in action-angle coordinates

e1 = dx1 = dr1

e2 = dx2 = dr2 − r1dr1
e3 = dx3 = dθ3

e4 = dx4 − x1dx2 = dr3 +
r21
2
dr1 − r1dr2

e5 = dx5 + x1dx3 = dθ2 + r1dθ3

e6 = dx6 + x1dx5 +
x21
2
dx3 = dθ1 + r1dθ2 +

r21
2
dθ3

(4.144)

The expression of the three-form Ω in these coordinates is
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Ω = (e6 + ie1) ∧ (e5 + ie2) ∧ (e3 + ie4)

=
(
(dθ1 + r1dθ2 +

r21
2
dθ3) + idr1

)
∧
(
(dθ2 + r1dθ3) + i(dr2 − r1dr1)

)
∧

∧
(
dθ3 + i(dr3 +

r21
2
dr1 − r1dr2)

)
=
(
dθ1 + i

(
(1 + r21 +

r41
4
)dr1 + (−r1 −

r31
2
)dr2 +

r21
2
dr3

)
∧(

dθ2 + i
(
(−r1 −

r31
2
)dr1 + (1 + r21)dr2 − r1dr3

))
∧(

dθ3 + i
(
dr3 +

r21
2
dr1 − r1dr2

))

(4.145)

On the complex side instead, the dual action-angle coordinates are
r1 = x1

r2 = x2 +
x21
2

r3 = x4 +
x31
6

,


θ̌1 = x3

θ̌2 = x5

θ̌3 = x6

(4.146)

and

ě1 = dx1 = dr1

ě2 = dx2 = dr2 − r1dr1
ě3 = dx3 = dθ̌1

ě4 = dx4 − x1dx2 = dr3 +
r21
2
dr1 − r1dr2

ě5 = dx5 − x1dx3 = dθ̌2 − r1dθ1

ě6 = dx6 − x1dx5 +
x21
2
dx3 = dθ̌3 − r1dθ̌2 +

r21
2
dθ̌1

(4.147)

Define complex (1, 0)-forms:

ψ1 = ě3 + iě1 , ψ2 = ě5 + iě2 , ψ3 = ě6 + iě4 (4.148)

and complex coordinates
z1 = θ̌1 + ir1 = x3 + ix1

z2 = θ̌2 + ir2 = x5 + i(x2 +
x21
2
)

z3 = θ̌3 + ir3 = x6 + i(x4 +
x31
6
)

(4.149)

so that
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ψ1 = dz1

ψ2 = dz2 − r1dz1

ψ3 = dz3 − r1dz2 +
r21
2
dz1

(4.150)

and

ω̌ = ě31 + ě52 + ě64

=
i

2
(ψ11̄ + ψ22̄ + ψ33̄)

=
i

2

(
dz1 ∧ dz̄1 + (dz2 − r1dz1) ∧ (dz̄2 − r1dz̄2) + (dz3 +

r21
2
dz1 − r1dz2) ∧ (dz̄3 +

r21
2
dz̄1 − r1dz̄2)

)
=
i

2

(
dz1 ∧

(
(1 + r21 +

r41
4
)dz̄1 + (−r1 −

r31
2
)dz̄2 +

r21
2
dz̄3
)
+

+ dz2 ∧
(
(−r1 −

r31
2
)dz̄1 + (1 + r21)dz̄2 − r1dz̄3

)
+

+ dz3 ∧ (dz̄3 +
r21
2
dz̄1 − r1dz̄2)

)
(4.151)

P · (2ω̌) = i
(
dθ̌1 ∧

(
(1 + r21 +

r41
4
)dr1 + (−r1 −

r31
2
)dr2 +

r21
2
dr3
)
+

+ dθ̌2 ∧
(
(−r1 −

r31
2
)dr1 + (1 + r21)dr2 − r1dr3

)
+

+ dθ̌3 ∧
(r21
2
dr1 − r1dr2 + dr3

)) (4.152)

Set

η1 := (1 + r21 +
r41
4
)dr1 + (−r1 −

r31
2
)dr2 +

r21
2
dr3

η2 := (−r1 −
r31
2
)dr1 + (1 + r21)dr2 − r1dr3

η3 := dr3 +
r21
2
dr1 − r1dr2

(4.153)

so that we can rewrite the two-form as

P · (2ω̌) = i

3∑
i=1

dθ̌i ∧ ηi (4.154)

Take the product
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eP·2ω̌ ∧ e
F
2i = ei

∑3
i=1 dθ̌i∧ηi ∧ e

∑3
i=1 dθ̌i∧dθi

= e
∑3

i=1 dθ̌i∧(dθi+iηi)
(4.155)

integrating this along the θ̌i’s we get

(dθ1 + iη1) ∧ (dθ2 + iη2) ∧ (dθ3 + iη3) =(
dθ1 + i

(
(1 + r21 +

r41
4
)dr1 + (−r1 −

r31
2
)dr2 +

r21
2
dr3

)
∧(

dθ2 + i
(
(−r1 −

r31
2
)dr1 + (1 + r21)dr2 − r1dr3

))
∧(

dθ3 + i
(
dr3 +

r21
2
dr1 − r1dr2

))
(4.156)

which agrees with (4.145), showing that FT (e2ω̌) = Ω.
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Chapter 5

Conclusions

In this last chapter, we sum up the focal points of the thesis and we do some remarks
that may inspire further developments. The main achievement of the thesis has
been the production of concrete examples of pairs of compact manifolds satisfying
the demanding and intricate properties of semi-flat SYZ dual fibrations. We also
presented the first examples of mirror non-Kähler diamonds. This was interlaced
with the classification results for IIA/IIB structures on solvmanifolds: we have found
an appropriate setting in which the construction turned out to be realizable. But
the picture is not fully complete. We remark that:

� As initially stated, we presented the mirror partner for each of the known
sympletic half-flat (completely solvable) solvmanifold with correspondent Lie
algebra:

Symplectic half-flat SLA Complex-balanced SLA

(0, 0, 0, 0, 12,−13) (0, 0, 0, 0, 12, 13)
(0, 0, 0, 12,−13,−23) (0, 0, 0, 0, 12, 14 + 23)
(15,−25,−35, 45, 0, 0) (15,−25,−35, 45, 0, 0)
(16 + 35,−26 + 45, 36,−46, 0, 0) (24 + 35, 26, 36,−46,−56, 0)
(0,−16, 0,−36, 0, 0) (0, 0, 0, 0, 0, 12 + 34)

Symplectic SLA Complex SLA

(0, 0, 0,−12, 13, 15) (0, 0, 0, 12, 13, 15)

Table 5.1: Mirror symmetric SLA’s

� As one can see from the classification in [30] we excluded the algebras:

– A−α,α,1
5,17 ⊕ R and g0,−1,−1

6,118 are not completely solvable, nevertheless their
simply connected Lie groups fit in our construction choosing as starting
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3-dimensional Lie group E(2) (and choosing α = 0 in the first algebra).
We indeed computed the TY cohomologies and checked they correspond
to the BC cohomologies of the complex balanced g02 and g8. The latter
represents the SLA underlying the Nakamura manifold. To make the
construction work completely there is left only to incorporate the analysis
of theorem 2.5.4([56]).

– e(1, 1)⊕e(1, 1) is completely solvable but the SU(3)-structure given in [30]
cannot be associated to a real polarization induced by any torus-fibration.

– g06,38 is not completely solvable and it seems not possible to interpret its
Lie group as a semi-direct product of the form G ⋉ρ R3 but we do not
have a proof.

We guess that our construction is applicable also on these two last algebras if
one allows the fibration to have singularities;

� From the point of view of classification of structures on solvmanifolds we just
hit the tip of the iceberg. In fact, there is no symplectic version of the analysis
carried out in [60] for complex balanced nilmanifolds. This is related to the
fact that the condition on the three-form Ω of having only the real part closed
is rather more difficult to be translated into algebraic terms. It would be a
nice result to classify all the possible symplectic half-flat structures on a fixed
symplectic solvmanifold. Moreover having at hand eventually the Fourier-
Mukai transform, when the SYZ fibration exists, it is, in theory, possible to
translate every feature of complex non-Kähler geometry into symplectic terms
and vice versa (see for the example the corollary 2.5.1 at the end of section
2.5). For example, using the classification of symplectic structures on six-
dimensional NLA’s given by Goze, Khakimdjanov and Medina [39], we have
applied this corollary to exclude the symplectic structure ω2 on the algebra
corresponding to (0, 0, 0, 0, 12, 13) ((23rd ) in [39]) and the symplectic structure
ω3 on the algebra corresponding to (0, 0, 0, 12, 13, 23) ( (18th) in [39]) from
admitting a symplectic half-flat structure;

� Using the result of classification for affine structure on three-solvmanifolds by
Fried and Goldman, it is possible to extend the list of mirror symmetric SU(3)
structures, not necessarily half-flat/balanced, among the six-dimensional solv-
manifolds. In fact, it would be a challenging work to classify all possible
six-dimensional Lie groups that can be obtained by changing the developing
map of the affine structures on the three-dimensional Lie group. The SYZ
construction would then produce a mirror pair for each possible choice;

� The role of ∆. We want to remark that the choice of the base of the fibration
B is indeed crucial in the analysis. Though the total spaces MN,1 and MT
are the same symplectic manifold, the choice of a different base, which in turn
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induces a different Lagrangian distribution, originates two different mirrors,
complex balanced partners;

� In the description of the pair (MN,2, M̌N,2), the SU(3)-structure of type IIA on
MN,2 was given in [83] (the symplectic structure also in [39]). Applying the
Fourier-Mukai transform to Ωλ we noticed that for λ = −1 the corresponding
SU(3)-structure of type IIB on h4 = (0, 0, 0, 12, 14 + 23) in [60] is not figuring
in the complex balanced classification of NLA’s;

� In section 2.3.2 we have seen how, following Duistermaat [28], the invariants
of a Lagrangian fibration are the Chern class and the monodromy. In par-
ticular, a prominent role is played by the cohomology group H2(B,Λ) which
parametrizes the classes of isomorphism of Lagrangian fibrations up to sym-
plectomorphism as described by the work of Sepe [77],[78],[79] which, in turn,
is based on an idea of Dazord and Delzant [27]. Therefore, is in theory possible
to apply the technique presented in [77] to all our examples and obtain a full
classification, at least at the topological level.

Both territories of mirror symmetry and of non-Kähler geometry are still pretty
unexplored. They are promising and inspiring topics and it is quite likely that
the interaction between the two would produce numerous discoveries and a better
understanding for both sides.
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Appendix A

Cohomology Computations

Table A.1: Tseng-Yau cohomology for SLA’s

SLA H1,0
TY H0,1

TY H2,0
TY H1,1

TY H0,2
TY H2,1

TY H1,2
TY

gN,1 2 2 2 6 3 5 6
g−1
N,2 1 2 2 6 3 4 7

g
2, 1

2
N,2 1 2 2 6 3 5 6

gλN,2 1 2 2 6 3 4 6

gS,1 1 1 1 3 1 3 3

gS,2 1 1 0 2 1 2 1

gT 1 3 2 6 3 4 7

gY 1 2 1 5 3 4 5

Table A.2: Bott-Chern cohomology for SLA’s

SLA H1,0
BC H2,0

BC H1,1
BC H2,1

BC H3,1
BC H2,2

BC H3,2
BC

ǧN,1 2 2 5 6 2 6 3

ǧ−1
N,2 2 1 4 6 2 7 3

ǧ
2, 1

2
N,2 2 1 5 6 2 6 3

ǧλN,2 2 1 4 6 2 6 3

ǧS,1 1 1 3 3 1 3 1

ǧS,2 0 1 2 2 1 1 1

ǧT 2 1 4 6 3 7 3

ǧY 1 1 4 5 2 5 3

Here are reported the dimensions of the TY/BC cohomology groups for the
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solvable Lie algebras involved. For the Lie algebra gλN,2 we distinguish three cases
depending on the real parameter λ ∈ R\{0, 1} already appeared in section 3.3.1.

We have said that the choice of working with solvable Lie groups/algebras was
also motivated by the possibility of computing the cohomology of the solvmanifolds
in terms of their associated Lie algebras. The main tool that allows us to exploit
this feature is the result of Angella and Kasuya ([3] Theorem 1.3). The required
fact is that, with respect to both the operators d, dΛ on one side, and ∂, ∂̄ on the
other, the inclusion of invariant forms is a quasi-isomorphism. In the symplectic
case, this is guaranteed thanks to the result of Macr̀ı ([65]). Instead, for the Bott-
Chern cohomology, we have a general result only in the nilpotent case (see Corollary
2.7 in [3]). In the solvable case the situation is more problematic: there is only a
result for the solvmanifolds which are of splitting type or are complex-parallelizable
(see [3]). Therefore for the Lie algebras gN,−, gT, gY and their mirrors those numbers
represent also the TY/BC cohomology of the solvmanifolds. This is valid also for
gS,1 and ǧS,1, since it is of splitting type (this corresponds to the example 3.1 in [3]
case (iii)). For the remaining gS,2 the result still holds in view of [65], but for its
mirror ǧS,2 we can not obtain the same conclusion in a direct way. Nevertheless, we
can a posteriori get the BC-cohomology for the solvmanifolds using Theorem 6.7 in
[61] which gives the correspondence with the TY-cohomology. There is a procedure
by Kasuya [57] for a generic solvmanifold that relies on the semisimple splitting of
the Lie algebra and the structure of the fixed lattice. This could be used for this
remaining case and also for the non-completely solvable ones.

A.0.1 Tseng-Yau Cohomology

For each SLA we recall the notation, the symplectic form ω and its dual Lefschetz
operator, the complementary Lagrangian distribution ∆,∆⊥ induced by the fibra-
tion. Then we compute the TY cohomology exhibiting also the generators for the
groups.

gN,1 = (0, 0, 0, 0, 12,−13)

ω = e41 + e62 + e35 , Λ = ι1ι4 + ι2ι6 + ι5ι3

∆ = ⟨e4, e6, e3⟩ , ∆⊥ = ⟨e1, e2, e5⟩
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d Λ dΛ Λd dΛ d+dΛ ddΛ

e1 0 0 0 0 0 0 0
e2 0 0 0 0 0 0 0
e3 0 0 0 0 0 0 0
e4 0 0 0 0 0 0 0
e5 −e12 0 0 0 0 −e12 0
e6 e13 0 0 0 0 e13 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12 0 0 0 0 0 0 0
e13 0 0 0 0 0 0 0
e14 0 -1 0 0 0 0 0
e15 0 0 0 0 0 0 0
e16 0 0 0 0 0 0 0
e23 0 0 0 0 0 0 0
e24 0 0 0 0 0 0 0
e25 0 0 0 0 0 0 0
e26 e123 -1 0 0 0 e123 0
e34 0 0 0 0 0 0 0
e35 e123 1 0 0 0 e123 0
e36 0 0 0 0 0 0 0
e45 e124 0 0 e2 e2 e124 + e2 0
e46 −e134 0 0 e3 −e3 −e134 − e3 0
e56 −e126 − e135 0 0 0 0 −e126 − e135 0
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d Λ dΛ Λd dΛ d+dΛ ddΛ

e123 0 0 0 0 0 0 0
e124 0 −e2 0 0 0 0 0
e125 0 0 0 0 0 0 0
e126 0 −e1 0 0 0 0 0
e134 0 −e3 0 0 0 0 0
e135 0 e1 0 0 0 0 0
e136 0 0 0 0 0 0 0
e145 0 −e5 e12 0 e12 e12 0
e146 0 −e6 −e13 0 −e13 −e13 0
e156 0 0 0 0 0 0 0
e234 0 0 0 0 0 0 0
e235 0 e2 0 0 0 0 0
e236 0 e3 0 0 0 0 0
e245 0 0 0 0 0 0 0
e246 −e1234 e4 0 e23 −e23 −e1234 − e23 0
e256 −e1235 e5 −e12 −e12 0 −e1235 0
e345 −e1234 −e4 0 e23 −e23 −e1234 − e23 0
e346 0 0 0 0 0 0 0
e356 e1236 e6 e13 e13 0 e1236 0
e456 e1246 + e1345 0 0 e26 + e35 −e26 − e35 e1246 + e1345 − e26 − e35 −2e123

d Λ dΛ Λd dΛ d+dΛ ddΛ

e1234 0 −e23 0 0 0 0 0
e1235 0 e12 0 0 0 0 0
e1236 0 e13 0 0 0 0 0
e1245 0 e25 0 0 0 0 0
e1246 0 e26 + e14 e123 0 e123 e123 0
e1256 0 e15 0 0 0 0 0
e1345 0 e35 − e14 e123 0 e123 e123 0
e1346 0 e36 0 0 0 0 0
e1356 0 e16 0 0 0 0 0
e1456 0 −e56 e126 + e135 0 e126 + e135 e126 + e135 0
e2345 0 −e24 0 0 0 0 0
e2346 0 −e34 0 0 0 0 0
e2356 0 e26 − e35 0 0 0 0 0
e2456 e12345 −e45 −e124 −e235 − e124 e235 e12345 + e235 0
e3456 −e12346 −e46 e134 e236 + e134 −e236 −e12346 − e236 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12345 0 −e235 − e124 0 0 0 0 0
e12346 0 −e236 − e134 0 0 0 0 0
e12356 0 −e135 − e126 0 0 0 0 0
e12456 0 −e256 − e145 −e1235 0 −e1235 −e1235 0
e13456 0 −e356 − e146 e1236 0 e1236 e1236 0
e23456 0 −e246 − e345 0 0 0 0 0
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H1
TY = ⟨e1, e2, e3, e4⟩

H2
TY = ⟨e12, e13, e14, e15, e16, e23, e24, e25, e26 − e35, e34, e36⟩

H3
TY = ⟨e124, e125, e126, e134, e135, e136, e156, e234, e235, e236, e245, e246 − e345, e346⟩

H4
TY = ⟨e1234, e1235, e1236, e1245, e1246 − e1345, e1256, e1346, e1356, e2345, e2346, e2356⟩

H5
TY = ⟨e12345, e12346, e12356, e23456⟩

(A.1)

H
(0,0)∆

TY = ⟨1⟩

H
(1,0)∆

TY = ⟨e3, e4⟩

H
(0,1)∆

TY = ⟨e1, e2⟩

H
(2,0)∆

TY = ⟨e34, e36⟩

H
(0,2)∆

TY = ⟨e12, e15, e25⟩

H
(1,1)∆

TY = ⟨e13, e14, e16, e23, e24, e26 − e35⟩

H
(3,0)∆

TY = ⟨e436⟩

H
(0,3)∆

TY = ⟨e125⟩

H
(2,1)∆

TY = ⟨e134, e136, e234, e236, e246 − e345⟩

H
(1,2)∆

TY = ⟨e124, e126, e135, e156, e235, e245⟩

H
(3,1)∆

TY = ⟨e1346, e2346⟩

H
(2,2)∆

TY = ⟨e1234, e1236, e1246 − e1345, e1356, e2345, e2356⟩

H
(1,3)∆

TY = ⟨e1235, e1245, e1256⟩

H
(3,2)∆

TY = ⟨e12346, e23456⟩

H
(2,3)∆

TY = ⟨e12345, e12356⟩

H
(3,3)∆

TY = ⟨e123456⟩

(A.2)

gN,2 = (0, 0, 0, 12,−13,−23)

ωλ = e61 + λe52 + (λ− 1)e34 , Λλ = ι1ι6 +
1

λ
ι2ι5 +

1

λ− 1
ι4ι3

∆ = ⟨e6, e5, e3⟩ , ∆⊥ = ⟨e1, e2, e4⟩
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d Λ dΛ Λd dΛ d+dΛ ddΛ

e1 0 0 0 0 0 0 0
e2 0 0 0 0 0 0 0
e3 0 0 0 0 0 0 0
e4 −e12 0 0 0 0 −e12 0
e5 e13 0 0 0 0 e13 0
e6 e23 0 0 0 0 e23 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12 0 0 0 0 0 0 0
e13 0 0 0 0 0 0 0
e14 0 0 0 0 0 0 0
e15 0 0 0 0 0 0 0
e16 −e123 −1 0 0 0 −e123 0
e23 0 0 0 0 0 0 0
e24 0 0 0 0 0 0 0
e25 e123 − 1

λ
0 0 0 e123 0

e26 0 0 0 0 0 0 0
e34 e123 1

λ−1
0 0 0 e123 0

e35 0 0 0 0 0 0 0
e36 0 0 0 0 0 0 0
e45 −e125 − e134 0 0 − 1

λ(λ−1)
e1 1

λ(λ−1)
e1 −e125 − e134 + 1

λ(λ−1)
e1 0

e46 −e126 − e234 0 0 − λ
λ−1

e2 λ
λ−1

e2 −e126 − e234 + λ
λ−1

e2 0

e56 e136 − e235 0 0 λ−1
λ
e3 −λ−1

λ
e3 e136 − e235 + λ−1

λ
e3 0
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d Λ dΛ Λd dΛ d+dΛ ddΛ

e123 0 0 0 0 0 0 0
e124 0 0 0 0 0 0 0
e125 0 1

λ
e1 0 0 0 0 0

e126 0 e2 0 0 0 0 0
e134 0 1

λ−1
e1 0 0 0 0 0

e135 0 0 0 0 0 0 0
e136 0 e3 0 0 0 0 0
e145 0 0 0 0 0 0 0

e146 e1234 e4 −e12 1
λ−1

e12 − λ
λ−1

e12 e1234 − λ
λ−1

e12 0

e156 e1235 e5 e13 1
λ
e13 λ−1

λ
e13 e1235 + λ−1

λ
e13 0

e234 0 1
λ−1

e2 0 0 0 0 0

e235 0 1
λ
e3 0 0 0 0 0

e236 0 0 0 0 0 0 0
e245 −e1234 1

λ
e4 − 1

λ
e12 − 1

λ−1
e12 1

λ(λ−1)
e12 −e1234 + 1

λ(λ−1)
e12 0

e246 0 0 0 0 0 0 0

e256 e1236 − 1
λ
e6 − 1

λ
e23 −e23 λ−1

λ
e23 e1236 + λ−1

λ
e23 0

e345 e1235 1
λ−1

e5 − 1
λ−1

e13 1
λ
e13 1

λ(λ−1)
e13 e1235 + 1

λ(λ−1)
e13 0

e346 e1236 1
λ−1

e6 1
λ−1

e23 −e23 λ
λ−1

e23 e1236 + λ
λ−1

e23 0

e356 0 0 0 0 0 0 0

e456 ϵ 0 0 −κ κ ϵ+ κ −2λ2−λ+1
λ(λ−1)

e123

where ϵ = −e1256 − e1346 + e2345 and κ = 1
λ(λ−1)

e16 − λ
λ−1

e25 − λ−1
λ
e34

d Λ dΛ Λd dΛ d+dΛ ddΛ

e1234 0 1
λ−1

e12 0 0 0 0 0

e1235 0 1
λ
e13 0 0 0 0 0

e1236 0 −e23 0 0 0 0 0
e1245 0 1

λ
e14 0 0 0 0 0

e1246 0 −e24 0 0 0 0 0

e1256 0 −e25 − 1
λ
e16 1−λ

λ
e123 0 1−λ

λ
e123 1−λ

λ
e123 0

e1345 0 1
λ−1

e15 0 0 0 0 0

e1346 0 −e34 + 1
λ−1

e16 − λ
λ−1

e123 0 − λ
λ−1

e123 − λ
λ−1

e123 0

e1356 0 −e35 0 0 0 0 0

e1456 −e12345 −e45 e125 + e134 − 1
λ−1

e125 + 1
λ
e134 λ

λ−1
e125 + 1−λ

λ
e134 −e12345 + λ

λ−1
e125 + 1−λ

λ
e134 0

e2345 0 − 1
λ
e34 + 1

λ−1
e25 1

λ(λ−1)
e123 0 1

λ(λ−1)
e123 1

λ(λ−1)
e123 0

e2346 0 1
λ−1

e26 0 0 0 0 0

e2356 0 1
λ
e36 0 0 0 0 0

e2456 −e12346 1
λ
e46 − 1

λ
e126 − 1

λ
e234 −e234 − 1

λ−1
e126 λ−1

λ
e234 + 1

λ(λ−1)
e126 −e12346 + λ−1

λ
e234 + 1

λ(λ−1)
e126 0

e3456 e12356 1
λ−1

e56 1
λ−1

e136 − 1
λ
e235 e235 + 1

λ
e136 1

λ(λ−1)
e136 − λ

λ−1
e235 e12356 + 1

λ(λ−1)
e136 − λ

λ−1
e235 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12345 0 − 1
λ
e134 + 1

λ−1
e125 0 0 0 0 0

e12346 0 1
λ−1

e126 + e234 0 0 0 0 0

e12356 0 e235 + 1
λ
e136 0 0 0 0 0

e12456 0 e245 + 1
λ
e146 1−λ

λ
e1234 0 1−λ

λ
e1234 1−λ

λ
e1234 0

e13456 0 λ
λ−1

e1235 λ
λ−1

e1235 0 λ
λ−1

e1235 λ
λ−1

e1235 0

e23456 0 1
λ−1

e256 − 1
λ
e346 1

λ(λ−1)
e1236 0 1

λ(λ−1)
e1236 1

λ(λ−1)
e1236 0
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H1
TY = ⟨e1, e2, e3⟩

H2
TY = ⟨e12, e13, e14, e15, e23, e24, e26, e35, e36, e16 + e25, e16 + e34⟩

H3
TY = ⟨e124, e125, e126, e134, e135, e136, e145, e234, e235, e236, e246, e356, γλ⟩

H4
TY = ⟨e1234, e1235, e1236, e1245, e1246, e1345, e1356, e2346, e2356, λ2e2345 + e1346,

(λ− 1)2e2345 + e1256⟩
H5
TY = ⟨e12345, e12346, e12356⟩

(A.3)

where γλ is one of

γλ =


e146 + e245 if λ = −1
e156 − e345 if λ = 2

e256 − e346 if λ = 1
2

0 otherwise

(A.4)

H
(0,0)∆

TY = ⟨1⟩

H
(1,0)∆

TY = ⟨e3⟩

H
(0,1)∆

TY = ⟨e1, e2⟩

H
(2,0)∆

TY = ⟨e35, e36⟩

H
(1,1)∆

TY = ⟨e13, e15, e23, e26, e16 + e25, e16 + e34⟩

H
(0,2)∆

TY = ⟨e12, e14, e24⟩

H
(3,0)∆

TY = ⟨e356⟩

H
(2,1)∆

TY = ⟨e135, e136, e235, e236, γ′λ⟩

H
(1,2)∆

TY = ⟨e125, e126, e134, e145, e234, e246, γ′′λ⟩

H
(0,3)∆

TY = ⟨e124⟩

H
(3,1)∆

TY = ⟨e1356, e2356⟩

H
(2,2)∆

TY = ⟨e1235, e1236, e1345, e2346, λ2e2345 + e1346, (λ− 1)2e2345 + e1256⟩

H
(1,3)∆

TY = ⟨e1234, e1245, e1246⟩

H
(3,2)∆

TY = ⟨e12356⟩

H
(2,3)∆

TY = ⟨e12345, e12346⟩

H
(2,3)∆

TY = ⟨e123456⟩

H
(3,3)∆

TY = ⟨e123456⟩

(A.5)
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where

γ′λ =

{
e146 + e245 if λ = −1
0 otherwise

, γ′′λ =


e156 − e345 if λ = 2

e256 − e346 if λ = 1
2

0 otherwise

, (A.6)

gS,1 = (15,−25,−35, 45, 0, 0)

ω = e31 + e42 + e65 , Λ = ι1ι3 + ι2ι4 + ι5ι6

∆ = ⟨e3, e4, e6⟩ , ∆⊥ = ⟨e1, e2, e5⟩

d Λ dΛ Λd dΛ d+dΛ ddΛ

e1 −e15 0 0 0 0 −e15 0
e2 e25 0 0 0 0 e25 0
e3 e35 0 0 0 0 e35 0
e4 −e45 0 0 0 0 −e45 0
e5 0 0 0 0 0 0 0
e6 0 0 0 0 0 0 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12 0 0 0 0 0 0 0
e13 0 −1 0 0 0 0 0
e14 2e145 0 0 0 0 2e145 0
e15 0 0 0 0 0 0 0
e16 −e156 0 0 e1 −e1 −e123 − e1 e15

e23 −2e235 0 0 0 0 −2e235 0
e24 0 −1 0 0 0 0 0
e25 0 0 0 0 0 0 0
e26 e256 0 0 −e2 e2 e256 + e2 e25

e34 0 0 0 0 0 0 0
e35 0 0 0 0 0 0 0
e36 e356 0 0 −e3 e3 e356 + e3 e35

e45 0 0 0 0 0 0 0
e46 −e456 0 0 e4 −e4 −e456 − e4 e45

e56 0 -1 0 0 0 0 0
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d Λ dΛ Λd dΛ d+dΛ ddΛ

e123 e1235 e2 e25 −e25 0 e1235 0
e124 −e1245 −e1 e15 e15 0 −e1245 0
e125 0 0 0 0 0 0 0
e126 0 0 0 0 0 0 0
e134 −e1345 −e4 e45 e45 0 −e1345 0
e135 0 −e5 0 0 0 0 0
e136 0 −e6 0 0 0 0 0
e145 0 0 0 0 0 0 0
e146 2e1456 0 0 −2e14 2e14 2e1456 + 2e14 4e145

e156 0 −e1 e15 0 e15 e15 0
e234 e2345 e3 e35 e35 0 e2345 0
e235 0 0 0 0 0 0 0
e236 −2e2356 0 0 2e23 −2e23 −2e2356 − 2e23 4e235

e245 0 −e5 0 0 0 0 0
e246 0 −e6 0 0 0 0 0
e256 0 −e2 −e25 0 −e25 −e25 0
e345 0 0 0 0 0 0 0
e346 0 0 0 0 0 0 0
e356 0 −e3 −e35 0 −e35 −e35 0
e456 0 −e4 e45 0 e45 e45 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e1234 0 e24 + e13 0 0 0 0 0
e1235 0 e25 0 0 0 0 0
e1236 e12356 e26 e256 e256 − e123 e123 e12356 + e123 e1235

e1245 0 −e15 0 0 0 0 0
e1246 −e12456 −e16 e156 e156 + e124 −e124 −e12456 − e124 e1245

e1256 0 −e12 0 0 0 0 0
e1345 0 −e45 0 0 0 0 0
e1346 −e13456 −e46 e456 e456 + e134 −e134 −e13456 − e134 e1345

e1356 0 −e56 − e13 0 0 0 0 0
e1456 0 −e14 −2e145 0 −2e145 −2e145 0
e2345 0 e35 0 0 0 0 0
e2346 e23456 e36 e356 −e234 + e356 e234 e23456 + e234 e2345

e2356 0 −e23 2e235 0 2e235 2e235 0
e2456 0 −e56 − e24 0 0 0 0 0
e3456 0 −e34 0 0 0 0 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12345 0 e135 + e245 0 0 0 0 0
e12346 0 e246 + e136 0 0 0 0 0
e12356 0 e256 − e123 −e1235 0 −e1235 −e1235 0
e12456 0 −e156 − e124 e1245 0 e1245 e1245 0
e13456 0 −e456 − e134 e1345 0 e1345 e1345 0
e23456 0 e356 − e234 −e2345 0 −e2345 −e2345 0
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H1
TY = ⟨e5, e6⟩

H2
TY = ⟨e12, e13, e24, e34, e56⟩

H3
TY = ⟨e125, e126, e135, e136, e245, e246, e345, e346⟩

H4
TY = ⟨e1234, e1256, e1356, e2456, e3456⟩

H5
TY = ⟨e12345, e12346⟩

(A.7)

H
(0,0)∆

TY = ⟨1⟩

H
(1,0)∆

TY = ⟨e6⟩

H
(0,1)∆

TY = ⟨e5⟩

H
(2,0)∆

TY = ⟨e34⟩

H
(1,1)∆

TY = ⟨e13, e24, e56⟩

H
(0,2)∆

TY = ⟨e12⟩

H
(3,0)∆

TY = ⟨e346⟩

H
(2,1)∆

TY = ⟨e136, e246, e345⟩

H
(1,2)∆

TY = ⟨e126, e135, e245⟩

H
(0,3)∆

TY = ⟨e125⟩

H
(3,1)∆

TY = ⟨e3456⟩

H
(2,2)∆

TY = ⟨e1234, e1356, e2456⟩

H
(1,3)∆

TY = ⟨e1256⟩

H
(3,2)∆

TY = ⟨e12346⟩

H
(2,3)∆

TY = ⟨e12345⟩

H
(3,3)∆

TY = ⟨e123456⟩

(A.8)

gS,2 = (16 + 35,−26 + 45, 36,−46, 0, 0)

ω = e14 + e23 + e56 , Λ = ι4ι1 + ι3ι2 + ι6ι5

∆ = ⟨e1, e2, e5⟩ , ∆⊥ = ⟨e4, e3, e6⟩
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d Λ dΛ Λd dΛ d+dΛ ddΛ

e1 −e16 − e35 0 0 0 0 −e16 − e35 0
e2 e26 − e45 0 0 0 0 e26 − e45 0
e3 −e36 0 0 0 0 −e36 0
e4 e46 0 0 0 0 e46 0
e5 0 0 0 0 0 0 0
e6 0 0 0 0 0 0 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12 e145 − e235 0 0 0 0 e145 − e235 0
e13 2e136 0 0 0 0 2e136 0
e14 e345 1 0 0 0 e345 0
e15 e156 0 0 e1 −e1 e156 − e1 e16 + e35

e16 −e356 0 0 −e3 e3 −e356 + e3 −e36
e23 −e345 1 0 0 0 −e345 0
e24 −2e246 0 0 0 0 −2e246 0
e25 −e256 0 0 −e2 e2 −e256 + e2 e26 − e45
e26 −e456 0 0 −e4 e4 −e456 + e4 e46

e34 0 0 0 0 0 0 0
e35 e356 0 0 e3 −e3 e356 − e3 e36

e36 0 0 0 0 0 0 0
e45 −e456 0 0 −e4 e4 −e456 + e4 e46

e46 0 0 0 0 0 0 0
e56 0 1 0 0 0 0 0
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d Λ dΛ Λd dΛ d+dΛ ddΛ

e123 e1345 − e1236 e1 −e16 − e35 −e16 − e35 0 e1345 − e1236 0
e124 e2345 + e1246 −e2 −e26 + e45 −e26 + e45 0 e2345 + e1246 0
e125 0 0 0 0 0 0 0
e126 e1456 − e2356 0 0 e14 − e23 e23 − e14 e1456 − e2356 + e23 − e14 −2e345
e134 −e1346 −e3 e36 e36 0 −e1346 0
e135 −2e1356 0 0 −2e13 2e13 −2e1356 + 2e13 4e136

e136 0 0 0 0 0 0 0
e145 0 e5 0 0 0 0 0
e146 e3456 e6 0 e34 −e34 e3456 − e34 0
e156 0 e1 −e16 − e35 0 −e16 − e35 −e16 − e35 0
e234 e2346 e4 e46 e46 0 e2346 0
e235 0 e5 0 0 0 0 0
e236 −e3456 e6 0 −e34 e34 −e3456 + e34 0
e245 2e2456 0 0 2e24 −2e24 2e2456 − 2e24 e246

e246 0 0 0 0 0 0 0
e256 0 e2 e26 − e45 0 e26 − e45 e26 − e45 0
e345 0 0 0 0 0 0 0
e346 0 0 0 0 0 0 0
e356 0 e3 −e36 0 −e36 −e36 0
e456 0 e4 e46 0 e46 e46 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e1234 0 e23 + e14 0 0 0 0 0
e1235 e12356 e15 e156 e156 + e123 −e123 e12356 − e123 −e1345 + e1236

e1236 e13456 e16 −e356 −e356 + e134 −e134 e12456 − e134 −e1346
e1245 −e12456 −e25 e256 e256 − e124 e124 −e12456 + e124 e2345 + e1246

e1246 e23456 −e26 e456 e456 + e234 −e234 −23456 − e234 −e2346
e1256 0 e12 e145 − e235 0 e145 − e235 e145 − e235 0
e1345 e13456 −e35 −e356 e134 − e356 −e134 e13456 − e134 e1346

e1346 0 −e36 0 0 0 0 0
e1356 0 −e13 2e136 0 2e136 2e136 0
e1456 0 e56 + e14 e345 0 e345 e345 0
e2345 −e23456 e45 −e456 −e456 − e234 e234 −e23456 + e234 e2346

e2346 0 e46 0 0 0 0 0
e2356 0 e56 + e23 −e345 0 −e345 −e345 0
e2456 0 e24 −2e246 0 −2e246 −2e246 0
e3456 0 e34 0 0 0 0 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12345 0 e145 + e235 0 0 0 0 0
e12346 0 e236 + e146 0 0 0 0 0
e12356 0 e156 + e123 e1345 − e1236 0 e1345 − e1236 e1345 − e1236 0
e12456 0 −e256 + e124 e2345 + e1246 0 e2345 + e1246 e2345 + e1246 0
e13456 0 −e356 + e134 −e1346 0 −e1346 −e1346 0
e23456 0 e456 + e234 e2346 0 e2346 e2346 0
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H1
TY = ⟨e5, e6⟩

H2
TY = ⟨e14 + e23, e34, e56⟩

H3
TY = ⟨e125, e145, e235, e346, e236 + e146⟩

H4
TY = ⟨e1234, e3456, e1456 + e2356⟩

H5
TY = ⟨e12345, e12346⟩

(A.9)

H
(0,0)∆

TY = ⟨1⟩

H
(1,0)∆

TY = ⟨e5⟩

H
(0,1)∆

TY = ⟨e6⟩

H
(2,0)∆

TY = 0

H
(1,1)∆

TY = ⟨e14 + e23, e56⟩

H
(0,2)∆

TY = ⟨e34⟩

H
(3,0)∆

TY = ⟨e125⟩

H
(2,1)∆

TY = ⟨e145, e235, ⟩

H
(1,2)∆

TY = ⟨e236 + e146, ⟩

H
(0,3)∆

TY = ⟨e346⟩

H
(3,1)∆

TY = 0

H
(2,2)∆

TY = ⟨e1234, e1456 + e2356⟩

H
(3,1)∆

TY = ⟨e3456⟩

H
(3,2)∆

TY = ⟨e12345⟩

H
(2,3)∆

TY = ⟨e12346⟩

H
(3,3)∆

TY = ⟨e123456⟩

(A.10)

gT = (0,−16, 0,−36, 0, 0) ≃ (0, 0, 0, 0, 12, 13)

ω = e41 + e23 + e65 , Λ = ι1ι4 + ι3ι2 + ι5ι6

∆ = ⟨e4, e2, e6⟩ , ∆⊥ = ⟨e1, e3, e5⟩
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d Λ dΛ Λd dΛ d+dΛ ddΛ

e1 0 0 0 0 0 0 0
e2 e16 0 0 0 0 e16 0
e3 0 0 0 0 0 0 0
e4 e36 0 0 0 0 e36 0
e5 0 0 0 0 0 0 0
e6 0 0 0 0 0 0 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12 0 0 0 0 0 0 0
e13 0 0 0 0 0 0 0
e14 −e136 −1 0 0 0 −e136 0
e15 0 0 0 0 0 0 0
e16 0 0 0 0 0 0 0
e23 −e136 1 0 0 0 −e136 0
e24 −e146 − e236 0 0 0 0 −e146 − e236 0
e25 −e156 0 0 e1 −e1 −e156 − e1 0
e26 0 0 0 0 0 0 0
e34 0 0 0 0 0 0 0
e35 0 1 0 0 0 0 0
e36 0 0 0 0 0 0 0
e45 −e356 0 0 e3 −e3 −e356 − e3 0
e46 0 0 0 0 0 0 0
e56 0 −1 0 0 0 0 0
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d Λ dΛ Λd dΛ d+dΛ ddΛ

e123 0 e1 0 0 0 0 0
e124 e1236 e2 e16 e16 0 e1236 0
e125 0 0 0 0 0 0 0
e126 0 0 0 0 0 0 0
e134 0 e3 0 0 0 0 0
e135 0 0 0 0 0 0 0
e136 0 0 0 0 0 0 0
e145 e1356 −e5 0 −e13 e13 e1356 + e13 0
e146 0 −e6 0 0 0 0 0
e156 0 −e1 0 0 0 0 0
e234 e1346 e4 e36 e36 0 e1346 0
e235 e1356 e5 0 −e13 e13 e1356 + e13 0
e236 0 e6 0 0 0 0 0
e245 e1456 + e2356 0 0 −e14 − e23 e14 + e23 e1456 + e2356 + e14 + e23 −2e136
e246 0 0 0 0 0 0 0
e256 0 −e2 −e16 0 −e16 −e16 0
e345 0 0 0 0 0 0 0
e346 0 0 0 0 0 0 0
e356 0 −e3 0 0 0 0 0
e456 0 −e4 −e36 0 −e36 −e36 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e1234 0 −e23 + e14 0 0 0 0 0
e1235 0 e15 0 0 0 0 0
e1236 0 e16 0 0 0 0 0
e1245 −e1235 e25 −e156 e123 − e156 −e123 −e1235 − e123 0
e1246 0 e26 0 0 0 0 0
e1256 0 −e12 0 0 0 0 0
e1345 0 e35 0 0 0 0 0
e1346 0 e36 0 0 0 0 0
e1356 0 −e13 0 0 0 0 0
e1456 0 −e14 − e56 e136 0 e136 e136 0
e2345 −e13456 e45 −e356 −e356 + e134 −e134 −e13456 − e134 0
e2346 0 e46 0 0 0 0 0
e2356 0 e56 − e23 e136 0 e136 e136 0
e2456 0 −e24 e146 + e236 0 e146 + e236 e146 + e236 0
e3456 0 −e34 0 0 0 0 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12345 0 e145 − e235 0 0 0 0 0
e12346 0 e146 − e236 0 0 0 0 0
e12356 0 e156 − e123 0 0 0 0 0
e12456 0 e256 − e124 −e1236 0 −e1236 −e1236 0
e13456 0 e356 − e134 0 0 0 0 0
e23456 0 e456 − e234 −e1346 0 −e1346 −e1346 0
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H1
TY = ⟨e1, e3, e5, e6⟩

H2
TY = ⟨e12, e13, e14 − e23, e15, e16, e26, e34, e35, e36, e46, e56⟩

H3
TY = ⟨e123, e125, e126, e134, e135, e145 − e235, e146, e156, e236, e246, e345, e346, e356⟩

H4
TY = ⟨e1234, e1235, e1236, e1246, e1256, e1345, e1346, e1356, e2346, e3456, e1456 − e2356⟩

H5
TT = ⟨e12345, e12346, e12356, e13456⟩

(A.11)

H
(0,0)∆

TY = ⟨1⟩

H
(1,0)∆

TY = ⟨e6⟩

H
(0,1)∆

TY = ⟨e1, e3, e5⟩

H
(2,0)∆

TY = ⟨e26, e46⟩

H
(0,2)∆

TY = ⟨e13, e15, e35⟩

H
(1,1)∆

TY = ⟨e12, e14 − e23, e16, e34, e36, e56⟩

H
(3,0)∆

TY = ⟨e246⟩

H
(0,3)∆

TY = ⟨e135⟩

H
(2,1)∆

TY = ⟨e126, e146, e236, e346⟩

H
(1,2)∆

TY = ⟨e123, e125, e134, e145 − e235, e156, e345, e356⟩

H
(3,1)∆

TY = ⟨e1246, e2346⟩

H
(2,2)∆

TY = ⟨e1234, e1236, e1256, e1346, e3456, e1456 − e2356⟩

H
(1,3)∆

TY = ⟨e1235, e1345, e1356⟩

H
(3,2)∆

TY = ⟨e12346⟩

H
(2,3)∆

TY = ⟨e12345, e12356, e13456⟩

H
(3,3)∆

TY = ⟨e123456⟩

(A.12)

gY = (0, 0, 0, 12,−13,−15) ≃ (0, 0, 0, 12, 13, 14)

ω = e61 + e52 + e34 , Λ = ι1ι6 + ι2ι5 + ι4ι3

∆ = ⟨e6, e5, e3⟩ , ∆⊥ = ⟨e1, e2, e4⟩
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d Λ dΛ Λd dΛ d+dΛ ddΛ

e1 0 0 0 0 0 0 0
e2 0 0 0 0 0 0 0
e3 0 0 0 0 0 0 0
e4 −e12 0 0 0 0 −e12 0
e5 e13 0 0 0 0 e13 0
e6 e15 0 0 0 0 e15 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12 0 0 0 0 0 0 0
e13 0 0 0 0 0 0 0
e14 0 0 0 0 0 0 0
e15 0 0 0 0 0 0 0
e16 0 −1 0 0 0 0 0
e23 0 0 0 0 0 0 0
e24 0 0 0 0 0 0 0
e25 e123 −1 0 0 0 e123 0
e26 e125 0 0 −e1 e1 e125 + e1 0
e34 e123 1 0 0 0 e123 0
e35 0 0 0 0 0 0 0
e36 e135 0 0 0 0 e135 0
e45 −e125 − e134 0 0 0 0 −e125 − e134 0
e46 −e126 + e145 0 0 −e2 e2 −e126 + e145 + e2 0
e56 −e136 0 0 e3 −e3 −e136 − e3 0
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d Λ dΛ Λd dΛ d+dΛ ddΛ

e123 0 0 0 0 0 0 0
e124 0 0 0 0 0 0 0
e125 0 −e1 0 0 0 0 0
e126 0 e2 0 0 0 0 0
e134 0 e1 0 0 0 0 0
e135 0 0 0 0 0 0 0
e136 0 e3 0 0 0 0 0
e145 0 0 0 0 0 0 0
e146 0 e4 −e12 0 −e12 −e12 0
e156 0 e5 e13 0 e13 e13 0
e234 0 e2 0 0 0 0 0
e235 0 e3 0 0 0 0 0
e236 e1235 0 0 e13 −e13 e1235 − e13 0
e245 −e1245 e4 −e12 −e12 0 −e1234 0
e246 e1245 0 0 e14 −e14 e1245 − e14 0
e256 e1236 −e6 −e15 −e23 −e15 + e23 e1235 − e15 + e23 0
e345 e1235 e5 e13 e13 0 e1235 0
e346 e1236 e6 e15 −e23 e15 + e23 e1236 + e15 + e23 0
e356 0 0 0 0 0 0 0
e456 −e1256 − e1346 0 0 e25 + e34 −e25 − e34 −e1256 − e1346 − e25 − e34 −2e123

d Λ dΛ Λd dΛ d+dΛ ddΛ

e1234 0 e12 0 0 0 0 0
e1235 0 e13 0 0 0 0 0
e1236 0 −e23 0 0 0 0 0
e1245 0 e14 0 0 0 0 0
e1246 0 −e24 0 0 0 0 0
e1256 0 −e25 − e16 −e123 0 −e123 −e123 0
e1345 0 e15 0 0 0 0 0
e1346 0 −e34 + e16 −e123 0 −e123 −e123 0
e1356 0 −e35 0 0 0 0 0
e1456 0 −e45 e125 + e134 0 e125 + e134 e125 + e134 0
e2345 0 e25 − e34 0 0 0 0 0
e2346 e12345 e26 e125 −e134 + e125 e134 e12345 + e134 0
e2356 0 e36 e135 0 e135 e135 0
e2456 −e12346 e46 −e126 + e145 −e234 − e126 e234 + e145 −e12346 + e234 + e145 0
e3456 e12356 e56 e136 e235 + e136 −e235 e12356 − e235 0

d Λ dΛ Λd dΛ d+dΛ ddΛ

e12345 0 −e134 + e123 0 0 0 0 0
e12346 0 e234 + e126 0 0 0 0 0
e12356 0 e235 + e136 0 0 0 0 0
e12456 0 e245 + e146 −e1234 0 −e1234 −e1234 0
e13456 0 e345 + e156 e1235 0 e1235 e1235 0
e23456 0 −e346 + e256 −e1345 0 −e1345 −e1345 0
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H1
TY = ⟨e1, e2, e3⟩

H2
TY = ⟨e12, e13, e14, e15, e16, e23, e24, e25 − e34, e35⟩

H3
TY = ⟨e124, e125, e126, e134, e135, e136, e145, e234, e235, e236 − e345 + e156, e356⟩

H4
TY = ⟨e1234, e1235, e1236, e1245, e1246, e1256 − e1346, e1345, e1356, e2345⟩

H5
TY = ⟨e12345, e12346, e12356⟩

(A.13)

H
(0,0)∆

TY = ⟨1⟩

H
(1,0)∆

TY = ⟨e3⟩

H
(0,1)∆

TY = ⟨e1, e2⟩

H
(2,0)∆

TY = ⟨e35⟩

H
(0,2)∆

TY = ⟨e12, e14, e24⟩

H
(1,1)∆

TY = ⟨e13, e15, e16, e23, e25 − e34⟩

H
(3,0)∆

TY = ⟨e356⟩

H
(0,3)∆

TY = ⟨e124⟩

H
(2,1)∆

TY = ⟨e135, e136, e235, e236 − e345 + e156⟩

H
(1,2)∆

TY = ⟨e125, e126, e134, e145, e234⟩

H
(3,1)∆

TY = ⟨e1356⟩

H
(2,2)∆

TY = ⟨e1235, e1236, e1256 − e1346, e1345, e2345⟩

H
(1,3)∆

TY = ⟨e1234, e1245, e1246⟩

H
(3,2)∆

TY = ⟨e12356⟩

H
(2,3)∆

TY = ⟨e12345, e12346⟩

H
(3,3)∆

TY = ⟨e123456⟩

(A.14)

A.0.2 Bott-Chern Cohomology

For each SLA we recall the notation, the complex three-form Ω̌ and the basis of (1, 0)-
forms with their differentials. Then we compute the BC cohomology exhibiting also
the generators for the groups. This is in according with the computation in ([60]).

ǧN,1 = (0, 0, 0, 0, 12, 13)

Ω̌ = (e4 + ie1) ∧ (e3 + ie2) ∧ (e6 + ie5)
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ψ1 = e4 + ie1 , dψ1 = 0

ψ2 = e3 + ie2 , dψ2 = 0

ψ3 = e6 + ie5 , dψ3 = −e13 − ie12 = i

2
(ψ12 − ψ12̄)

(A.15)

∂ ∂̄ d ∂∂̄
ψ1 0 0 0 0
ψ2 0 0 0 0
ψ3 i

2
ψ12 − i

2
ψ12̄ i

2
(ψ12 − ψ12̄) 0

ψ1̄ 0 0 0 0
ψ2̄ 0 0 0 0
ψ3̄ − i

2
ψ21̄ − i

2
ψ1̄2̄ − i

2
(ψ21̄ + ψ1̄2̄) 0

∂ ∂̄ d ∂∂̄
ψ12 0 0 0 0
ψ13 0 0 0 0
ψ23 0 − i

2
ψ122̄ − i

2
ψ122̄ 0

∂ ∂̄ d ∂∂̄

ψ1231̄ 0 0 0 0
ψ1232̄ 0 0 0 0
ψ1233̄ 0 i

2
ψ1231̄2̄ i

2
ψ1231̄2̄ 0

∂ ∂̄ d ∂∂̄

ψ1231̄2̄ 0 0 0 0
ψ1231̄3̄ 0 0 0 0
ψ1232̄3̄ 0 0 0 0

∂ ∂̄ d ∂∂̄

ψ11̄ 0 0 0 0
ψ12̄ 0 0 0 0
ψ13̄ i

2
ψ121̄ i

2
(ψ11̄2̄) i

2
(ψ121̄ + ψ11̄2̄) 0

ψ21̄ 0 0 0 0
ψ22̄ 0 0 0 0
ψ23̄ 0 i

2
ψ21̄2̄ i

2
ψ21̄2̄ 0

ψ31̄ i
2
ψ121̄ i

2
(ψ11̄2̄) i

2
(ψ121̄ + ψ11̄2̄) 0

ψ32̄ i
2
ψ122̄ 0 i

2
ψ122̄ 0

ψ33̄ i
2
(ψ123̄ − ψ231̄) i

2
(ψ12̄3̄ + ψ31̄2̄) i

2
(ψ123̄ − ψ231̄ + ψ12̄3̄ + ψ31̄2̄) −1

2
ψ121̄2̄
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∂ ∂̄ d ∂∂̄

ψ121̄ 0 0 0 0
ψ122̄ 0 0 0 0
ψ123̄ 0 − i

2
ψ121̄2̄ − i

2
ψ121̄2̄ 0

ψ131̄ 0 0 0 0
ψ132̄ 0 0 0 0
ψ133̄ i

2
ψ1231̄ − i

2
ψ131̄2̄ i

2
ψ1231̄ − ψ131̄2̄ 0

ψ231̄ 0 − i
2
ψ121̄2̄ − i

2
ψ121̄2̄ 0

ψ232̄ 0 0 0 0
ψ233̄ 0 − i

2
(ψ122̄3̄ + ψ231̄2̄) − i

2
(ψ122̄3̄ + ψ231̄2̄) 0

∂ ∂̄ d ∂∂̄

ψ121̄2̄ 0 0 0 0
ψ121̄3̄ 0 0 0 0
ψ122̄3̄ 0 0 0 0
ψ131̄2̄ 0 0 0 0
ψ131̄3̄ 0 0 0 0
ψ132̄3̄ − i

2
ψ1231̄2̄ 0 − i

2
ψ1231̄2̄ 0

ψ231̄2̄ 0 0 0 0
ψ231̄3̄ 0 i

2
ψ121̄2̄3̄ i

2
ψ121̄2̄3̄ 0

ψ232̄3̄ 0 0 0 0

H1,0
BC = ⟨ψ1, ψ2⟩ , H2,0

BC = ⟨ψ12, ψ13⟩
H1,1
BC = ⟨ψ11̄, ψ12̄, ψ21̄, ψ22̄, ψ13̄ − ψ31̄⟩

H2,1
BC = ⟨ψ121̄, ψ122̄, ψ131̄, ψ132̄, ψ232̄, ψ123̄ − ψ231̄⟩

H2,2
BC = ⟨ψ121̄3̄, ψ122̄3̄, ψ131̄2̄, ψ131̄3̄, ψ231̄2̄, ψ232̄3̄⟩

H3,1
BC = ⟨ψ1231̄, ψ1232̄⟩ , H3,2

BC = ⟨ψ1231̄2̄, ψ1231̄3̄, ψ1232̄3̄⟩

(A.16)

ǧN,2 = (0, 0, 0, 0, 12, 14 + 23)

Ω̌λ = (e3 + ie1) ∧ (e4 + iλe2) ∧ (e6 + i(λ− 1)e5)

ψ1 = e3 + ie1 , dψ1 = 0

ψ2 = e4 + iλe2 , dψ2 = 0

ψ3 = e6 + i(λ− 1)e5 , dψ3 = −e14 − e23 − i(λ− 1)e12 =
i

2

((λ− 1

λ

)
ψ12 +

1

λ
ψ12̄ + ψ21̄

)
(A.17)
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∂ ∂̄ d ∂∂̄
ψ1 0 0 0 0
ψ2 0 0 0 0

ψ3 i
2
λ−1
λ
ψ12 i

2
( 1
λ
ψ12̄ + ψ21̄) i

2

((
λ−1
λ

)
ψ12 + 1

λ
ψ12̄ + ψ21̄

)
0

ψ1̄ 0 0 0 0
ψ2̄ 0 0 0 0

ψ3̄ i
2
( 1
λ
ψ21̄ + ψ12̄) − i

2
λ−1
λ
ψ1̄2̄ i

2

((
λ−1
λ

)
ψ1̄2̄ + 1

λ
ψ12̄ + ψ21̄

)
0

∂ ∂̄ d ∂∂̄
ψ12 0 0 0 0
ψ13 0 − i

2
ψ121̄ − i

2
ψ121̄ 0

ψ23 0 i
2
1
λ
ψ122̄ i

2
1
λ
ψ122̄ 0

∂ ∂̄ d ∂∂̄

ψ1231̄ 0 0 0 0
ψ1232̄ 0 0 0 0
ψ1233̄ 0 i

2
λ−1
λ
ψ1231̄2̄ i

2
λ−1
λ
ψ1231̄2̄ 0

∂ ∂̄ d ∂∂̄

ψ1231̄2̄ 0 0 0 0
ψ1231̄3̄ 0 0 0 0
ψ1232̄3̄ 0 0 0 0

∂ ∂̄ d ∂∂̄

ψ11̄ 0 0 0 0
ψ12̄ 0 0 0 0
ψ13̄ − i

2
1
λ
ψ121̄ i

2
λ−1
λ
ψ11̄2̄ i

2
(− 1

λ
ψ121̄ + λ−1

λ
ψ11̄2̄) 0

ψ21̄ 0 0 0 0
ψ22̄ 0 0 0 0
ψ23̄ i

2
ψ122̄ i

2
λ−1
λ
ψ21̄2̄ i

2
(ψ122̄ + λ−1

λ
ψ21̄2̄) 0

ψ31̄ i
2
λ−1
λ
ψ121̄ − i

2
1
λ
ψ11̄2̄ i

2
(λ−1

λ
ψ121̄)− 1

λ
ψ11̄2̄ 0

ψ32̄ i
2
λ−1
λ
ψ122̄ i

2
ψ21̄2̄ i

2
(λ−1

λ
ψ122̄ + ψ21̄2̄) 0

ψ33̄ i
2
(λ−1

λ
ψ123̄ + 1

λ
ψ231̄ + ψ132̄) i

2
( 1
λ
ψ12̄3̄ + ψ21̄3̄ + λ−1

λ
ψ31̄2̄) ∂ψ33̄ + ∂̄ψ33̄ −1

2
λ2−λ+1

λ2
ψ121̄2̄

∂ ∂̄ d ∂∂̄

ψ121̄ 0 0 0 0
ψ122̄ 0 0 0 0
ψ123̄ 0 − i

2
λ−1
λ
ψ121̄2̄ − i

2
λ−1
λ
ψ121̄2̄ 0

ψ131̄ 0 0 0 0
ψ132̄ 0 − i

2
ψ121̄2̄ − i

2
ψ121̄2̄ 0

ψ133̄ 0 − i
2
(ψ121̄3̄ + λ−1

λ
ψ131̄2̄) − i

2
(ψ121̄3̄ + λ−1

λ
ψ131̄2̄) 0

ψ231̄ 0 − i
2
1
λ
ψ121̄2̄ − i

2
1
λ
ψ121̄2̄ 0

ψ232̄ 0 0 0 0
ψ233̄ 0 i

2
( 1
λ
ψ122̄3̄ − λ−1

λ
ψ231̄2̄) i

2
( 1
λ
ψ122̄3̄ − λ−1

λ
ψ231̄2̄) 0
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∂ ∂̄ d ∂∂̄

ψ121̄2̄ 0 0 0 0
ψ121̄3̄ 0 0 0 0
ψ122̄3̄ 0 0 0 0
ψ131̄2̄ 0 0 0 0
ψ131̄3̄ 0 0 0 0
ψ132̄3̄ i

2
1
λ
ψ1231̄2̄ − i

2
ψ121̄2̄3̄ i

2
( 1
λ
ψ1231̄2̄ − ψ121̄2̄3̄) 0

ψ231̄2̄ 0 0 0 0
ψ231̄3̄ i

2
ψ1231̄2̄ − i

2
1
λ
ψ121̄2̄3̄ i

2
(ψ1231̄2̄ − 1

λ
ψ121̄2̄3̄) 0

ψ232̄3̄ 0 0 0 0

H1,0
BC = ⟨ψ1, ψ2⟩ , H2,0

BC = ⟨ψ12⟩
H1,1
BC = ⟨ψ11̄, ψ12̄, ψ21̄, ψ22̄, µλ⟩

H2,1
BC = ⟨ψ121̄, ψ122̄, ψ131̄, ψ232̄⟩

H2,2
BC = ⟨ψ121̄3̄, ψ122̄3̄, ψ131̄2̄, ψ131̄3̄, ψ231̄2̄, ψ232̄3̄, ηλ⟩

H3,1
BC = ⟨ψ1231̄, ψ1232̄⟩ , H3,2

BC = ⟨ψ1231̄2̄, ψ1231̄3̄, ψ1232̄3̄⟩

(A.18)

where

µλ =


ψ13̄ + ψ31̄ if λ = 2

ψ23̄ + ψ32̄ if λ = 1
2

0 otherwise

, ηλ =

{
ψ132̄3̄ + ψ231̄3̄ if λ = −1
0 otherwise

, (A.19)

ǧS,1 = (15,−25,−35, 45, 0, 0)

Ω̌ = (e4 + ie1) ∧ (e3 + ie2) ∧ (e6 + ie5)

ψ1 = e4 + ie1 , dψ1 = −e45 − ie15 = i

2
(ψ13 − ψ13̄)

ψ2 = e3 + ie2 , dψ2 = e35 + ie25 =
i

2
(−ψ23 + ψ23̄)

ψ3 = e6 + ie5 , dψ3 = 0

(A.20)

∂ ∂̄ d ∂∂̄

ψ1 i
2
ψ13 − i

2
ψ13̄ i

2
(ψ13 − ψ13̄) −1

4
ψ133̄

ψ2 − i
2
ψ23 i

2
ψ23̄ i

2
(−ψ23 + ψ23̄) 1

4
ψ233̄

ψ3 0 0 0 0
ψ1̄ − i

2
ψ31̄ − i

2
ψ1̄3̄ − i

2
(ψ31̄ + ψ1̄3̄) −1

4
ψ31̄3̄

ψ2̄ i
2
ψ32̄ i

2
ψ2̄3̄ i

2
(ψ32̄ + ψ2̄3̄) 1

4
ψ32̄3̄

ψ3̄ 0 0 0 0
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∂ ∂̄ d ∂∂̄
ψ12 0 0 0 0
ψ13 0 i

2
ψ133̄ i

2
ψ133̄ 0

ψ23 0 i
2
ψ233̄ i

2
ψ233̄ 0

∂ ∂̄ d ∂∂̄

ψ1231̄ 0 i
2
ψ1231̄3̄ i

2
ψ1231̄3̄ 0

ψ1232̄ 0 − i
2
ψ1232̄3̄ − i

2
ψ1232̄3̄ 0

ψ1233̄ 0 0 0 0

∂ ∂̄ d ∂∂̄

ψ1231̄2̄ 0 0 0 0
ψ1231̄3̄ 0 0 0 0
ψ1232̄3̄ 0 0 0 0

∂ ∂̄ d ∂∂̄

ψ11̄ iψ131̄ iψ11̄3̄ i(ψ131̄ + ψ11̄3̄) −ψ131̄3̄

ψ12̄ 0 0 0 0
ψ13̄ i

2
ψ133̄ 0 i

2
(ψ133̄ 0

ψ21̄ 0 0 0 0
ψ22̄ iψ232̄ −iψ22̄3̄ i(ψ232̄ − ψ22̄3̄) ψ232̄3̄

ψ23̄ − i
2
ψ233̄ 0 − i

2
ψ23̄3̄ 0

ψ31̄ 0 i
2
ψ31̄3̄ i

2
ψ31̄3̄ 0

ψ32̄ 0 − i
2
ψ32̄3̄ − i

2
ψ323̄ 0

ψ33̄ 0 0 0 0

∂ ∂̄ d ∂∂̄

ψ121̄ − i
2
ψ1231̄ − i

2
ψ121̄3̄ − i

2
(ψ1231̄ + ψ121̄3̄) 1

4
ψ1231̄3̄

ψ122̄ i
2
ψ1232̄ i

2
ψ122̄3̄ i

2
(ψ1232̄ + ψ122̄3̄) −1

4
ψ1232̄3̄

ψ123̄ 0 0 0 0
ψ131̄ 0 −iψ131̄3̄ −iψ131̄3̄ 0
ψ132̄ 0 0 0 0
ψ133̄ 0 0 0 0
ψ231̄ 0 0 0 0
ψ232̄ 0 iψ232̄3̄ iψ232̄3̄ 0
ψ233̄ 0 0 0 0

∂ ∂̄ d ∂∂̄

ψ121̄2̄ 0 0 0 0
ψ121̄3̄ − i

2
ψ1231̄3̄ 0 − i

2
ψ1231̄3̄ 0

ψ122̄3̄ i
2
ψ1232̄3̄ 0 i

2
ψ1232̄3̄ 0

ψ131̄2̄ 0 i
2
ψ131̄2̄3̄ i

2
ψ131̄2̄3̄ 0

ψ131̄3̄ 0 0 0 0
ψ132̄3̄ 0 0 0 0
ψ231̄2̄ 0 − i

2
ψ231̄2̄3̄ − i

2
ψ231̄2̄3̄ 0

ψ231̄3̄ 0 0 0 0
ψ232̄3̄ 0 0 0 0
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H1,0
BC = ⟨ψ3⟩ , H2,0

BC = ⟨ψ12⟩
H1,1
BC = ⟨ψ12̄, ψ21̄, ψ33̄⟩

H2,1
BC = ⟨ψ123̄, ψ132̄, ψ231̄⟩

H2,2
BC = ⟨ψ121̄2̄, ψ132̄3̄, ψ231̄3̄⟩

H3,1
BC = ⟨ψ1233̄⟩ , H3,2

BC = ⟨ψ1231̄2̄⟩

(A.21)

ǧS,2 = (−24 + 35, 26, 36,−46,−56, 0)

Ω̌ = (e5 + ie4) ∧ (e2 + ie3) ∧ (e1 + ie6)

ψ1 = e5 + ie4 , dψ1 = e56 + ie46 =
i

2
(−ψ13 + ψ13̄)

ψ2 = e2 + ie3 , dψ2 = −e26 − ie36 = i

2
(ψ23 − ψ23̄)

ψ3 = e1 + ie6 , dψ3 = e24 − e35 = i

2
(ψ12̄ + ψ21̄)

(A.22)

∂ ∂̄ d ∂∂̄

ψ1 − i
2
ψ13 i

2
ψ13̄ i

2
(−ψ13 + ψ13̄) 1

4
(ψ133̄ + ψ121̄)

ψ2 i
2
ψ23 − i

2
ψ23̄ i

2
(ψ23 − ψ23̄) 1

4
(ψ233̄ + ψ122̄)

ψ3 0 i
2
(ψ12̄ + ψ21̄) i

2
(ψ12̄ + ψ21̄) 0

ψ1̄ i
2
ψ31̄ i

2
ψ1̄3̄ i

2
(ψ31̄ + ψ1̄3̄) 1

4
(−ψ31̄3̄ + ψ11̄2̄)

ψ2̄ − i
2
ψ32̄ − i

2
ψ2̄3̄ − i

2
(ψ32̄ + ψ2̄3̄) 1

4
(−ψ32̄3̄ + ψ21̄2̄)

ψ3̄ i
2
(ψ21̄+ψ12̄

) 0 i
2
(ψ21̄+ψ12̄

) 0

∂ ∂̄ d ∂∂̄
ψ12 0 0 0 0
ψ13 0 − i

2
(ψ133̄ + ψ121̄) − i

2
(ψ133̄ + ψ121̄) 0

ψ23 0 i
2
(ψ233̄ + ψ122̄) i

2
(ψ233̄ + ψ122̄) 0

∂ ∂̄ d ∂∂̄

ψ11̄ −iψ131̄ −iψ11̄3̄ −i(ψ131̄ + ψ11̄3̄) −ψ131̄3̄

ψ12̄ 0 0 0 0
ψ13̄ − i

2
(ψ133̄ + ψ121̄) 0 − i

2
(ψ133̄ + ψ121̄) 0

ψ21̄ 0 0 0 0
ψ22̄ iψ232̄ iψ22̄3̄ i(ψ232̄ + ψ22̄3̄) −ψ232̄3̄

ψ23̄ i
2
(ψ233̄ + ψ122̄) 0 i

2
(ψ233̄ + ψ122̄) 0

ψ31̄ 0 − i
2
(ψ11̄2̄ + ψ31̄3̄) − i

2
(ψ11̄2̄ + ψ31̄3̄) 0

ψ32̄ 0 i
2
(ψ21̄2̄ + ψ32̄3̄) i

2
(ψ21̄2̄ + ψ32̄3̄) 0

ψ33̄ − i
2
(ψ231̄ + ψ132̄) i

2
(ψ12̄3̄ + ψ21̄3̄) i

2
(−ψ231̄ − ψ132̄ + ψ12̄3̄ + ψ21̄3̄) −1

2
ψ121̄2̄
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∂ ∂̄ d ∂∂̄

ψ1231̄ 0 − i
2
ψ1231̄3̄ − i

2
ψ1231̄3̄ 0

ψ1232̄ 0 i
2
ψ1232̄3̄ i

2
ψ1232̄3̄ 0

ψ1233̄ 0 0 0 0

∂ ∂̄ d ∂∂̄

ψ1231̄2̄ 0 0 0 0
ψ1231̄3̄ 0 0 0 0
ψ1232̄3̄ 0 0 0 0

∂ ∂̄ d ∂∂̄

ψ121̄ i
2
ψ1231̄ i

2
ψ121̄3̄ i

2
(ψ1231̄ + ψ121̄3̄) −1

4
ψ1231̄3̄

ψ122̄ − i
2
ψ1232̄ − i

2
ψ122̄3̄ − i

2
(ψ1232̄ + ψ122̄3̄) −1

4
ψ1232̄3̄

ψ123̄ 0 0 0 0
ψ131̄ 0 −iψ131̄3̄ −iψ131̄3̄ 0
ψ132̄ 0 −iψ121̄2̄ −iψ121̄2̄ 0
ψ133̄ − i

2
ψ1231̄ − i

2
ψ121̄3̄ − i

2
(ψ1231̄ + ψ121̄3̄) 1

4
ψ1231̄3̄

ψ231̄ 0 −iψ121̄2̄ −iψ121̄2̄ 0
ψ232̄ 0 −iψ232̄3̄ −iψ232̄3̄ 0
ψ233̄ i

2
ψ1232̄ i

2
ψ122̄3̄ i

2
(ψ1232̄ + ψ122̄3̄) 1

4
ψ1232̄3̄

∂ ∂̄ d ∂∂̄

ψ121̄2̄ 0 0 0 0
ψ121̄3̄ i

2
ψ1231̄3̄ 0 i

2
ψ1231̄3̄ 0

ψ122̄3̄ − i
2
ψ1232̄3̄ 0 − i

2
ψ1232̄3̄ 0

ψ131̄2̄ 0 − i
2
ψ131̄2̄3̄ − i

2
ψ131̄2̄3̄ 0

ψ131̄3̄ 0 0 0 0
ψ132̄3̄ i

2
ψ1231̄2̄ − i

2
ψ121̄2̄3̄ i

2
(ψ1231̄2̄ − ψ121̄2̄3̄) 0

ψ231̄2̄ 0 i
2
ψ231̄2̄3̄ i

2
ψ231̄2̄3̄ 0

ψ231̄3̄ i
2
ψ1231̄2̄ − i

2
ψ121̄2̄3̄ i

2
(ψ1231̄2̄ − ψ121̄2̄3̄) 0

ψ232̄3̄ 0 0 0 0

H1,0
BC = 0 , H2,0

BC = ⟨ψ12⟩
H1,1
BC = ⟨ψ12̄, ψ21̄⟩

H2,1
BC = ⟨ψ123̄, ψ132̄ − ψ231̄⟩

H2,2
BC = ⟨ψ132̄3̄ − ψ231̄3̄⟩

H3,1
BC = ⟨ψ1233̄⟩ , H3,2

BC = ⟨ψ1231̄2̄⟩

(A.23)

ǧT = (0, 0, 0, 0, 0, 12 + 34)

Ω̌ = (e4 + ie1) ∧ (e2 + ie3) ∧ (e6 + ie5)

ψ1 = e4 + ie1 , dψ1 = 0

ψ2 = e2 + ie3 , dψ2 = 0

ψ3 = e6 + ie5 , dψ3 = −i(e12 + e34) =
i

2
(ψ12̄ + ψ21̄)

(A.24)
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∂ ∂̄ d ∂∂̄
ψ1 0 0 0 0
ψ2 0 0 0 0
ψ3 0 i

2
(ψ12̄ + ψ21̄) i

2
(ψ12̄ + ψ21̄) 0

ψ1̄ 0 0 0 0
ψ2̄ 0 0 0 0
ψ3̄ i

2
(ψ12̄ + ψ21̄) 0 i

2
(ψ12̄ + ψ21̄) 0

∂ ∂̄ d ∂∂̄
ψ12 0 0 0 0
ψ13 0 − i

2
ψ121̄ − i

2
ψ121̄ 0

ψ23 0 i
2
ψ122̄ i

2
ψ122̄ 0

∂ ∂̄ d ∂∂̄

ψ1231̄ 0 0 0 0
ψ1232̄ 0 0 0 0
ψ1233̄ 0 0 0 0

∂ ∂̄ d ∂∂̄

ψ1231̄2̄ 0 0 0 0
ψ1231̄3̄ 0 0 0 0
ψ1232̄3̄ 0 0 0 0

∂ ∂̄ d ∂∂̄

ψ11̄ 0 0 0 0
ψ12̄ 0 0 0 0
ψ13̄ − i

2
ψ121̄ 0 − i

2
ψ121̄ 0

ψ21̄ 0 0 0 0
ψ22̄ 0 0 0 0
ψ23̄ i

2
ψ122̄ 0 i

2
ψ122̄ 0

ψ31̄ 0 − i
2
ψ11̄2̄ − i

2
ψ11̄2̄ 0

ψ32̄ 0 i
2
ψ21̄2̄ i

2
ψ21̄2̄ 0

ψ33̄ i
2
(ψ132̄ + ψ231̄) i

2
(ψ12̄3̄ + ψ21̄3̄) i

2
(ψ132̄ + ψ231̄ + ψ12̄3̄ + ψ21̄3̄) − i

2
ψ121̄2̄

∂ ∂̄ d ∂∂̄

ψ121̄ 0 0 0 0
ψ122̄ 0 0 0 0
ψ123̄ 0 0 0 0
ψ131̄ 0 0 0 0
ψ132̄ 0 − i

2
ψ121̄2̄ − i

2
ψ121̄2̄ 0

ψ133̄ i
2
ψ1231̄ − i

2
ψ121̄3̄ i

2
(ψ1231̄ − ψ121̄3̄) 0

ψ231̄ 0 − i
2
ψ121̄2̄ − i

2
ψ121̄2̄ 0

ψ232̄ 0 0 0 0
ψ233̄ i

2
ψ1232̄ i

2
ψ122̄3̄ i

2
(ψ1232̄ + ψ122̄3̄) 0
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∂ ∂̄ d ∂∂̄

ψ121̄2̄ 0 0 0 0
ψ121̄3̄ 0 0 0 0
ψ122̄3̄ 0 0 0 0
ψ131̄2̄ 0 0 0 0
ψ131̄3̄ 0 0 0 0
ψ132̄3̄ i

2
ψ1231̄2̄ − i

2
ψ121̄2̄3̄ i

2
(ψ1231̄2̄ − ψ121̄2̄3̄) 0

ψ231̄2̄ 0 0 0 0
ψ231̄3̄ i

2
ψ1231̄2̄ − i

2
ψ121̄2̄3̄ i

2
(ψ1231̄2̄ − ψ121̄2̄3̄) 0

ψ232̄3̄ 0 0 0 0

H1,0
BC = ⟨ψ1, ψ2⟩ , H2,0

BC = ⟨ψ12⟩
H1,1
BC = ⟨ψ11̄, ψ12̄, ψ21̄, ψ22̄⟩

H2,1
BC = ⟨ψ121̄, ψ122̄, ψ123̄, ψ131̄, ψ232̄, ψ132̄ − ψ231̄⟩

H2,2
BC = ⟨ψ121̄3̄, ψ122̄3̄, ψ131̄2̄, ψ131̄3̄, ψ132̄3̄ − ψ231̄3̄, ψ231̄2̄, ψ232̄3̄⟩

H3,1
BC = ⟨ψ1231̄, ψ1232̄, ψ1233̄⟩ , H3,2

BC = ⟨ψ1231̄2̄, ψ1231̄3̄, ψ1232̄3̄⟩

(A.25)

ǧY = (0, 0, 0, 0, 12, 13, 15)

Ω̌ = (e3 + ie1) ∧ (e5 + ie2) ∧ (e6 + ie4)

ψ1 = e3 + ie1 , dψ1 = 0

ψ2 = e5 + ie2 , dψ2 = −e13 = i

2
ψ11̄

ψ3 = e6 + ie4 , dψ3 = −e15 − ie12 = i

2
(ψ12 + ψ21̄)

(A.26)

∂ ∂̄ d ∂∂̄
ψ1 0 0 0 0
ψ2 0 i

2
ψ11̄ i

2
ψ11̄ 0

ψ3 i
2
ψ12 − i

2
ψ21̄ i

2
(ψ12 + ψ21̄) 0

ψ1̄ 0 0 0 0
ψ2̄ i

2
ψ11̄ 0 i

2
ψ11̄ 0

ψ3̄ i
2
ψ12̄ − i

2
ψ1̄2̄ i

2
(ψ12̄ − ψ1̄2̄) 0

∂ ∂̄ d ∂∂̄
ψ12 0 0 0 0
ψ13 0 − i

2
ψ121̄ − i

2
ψ121̄ 0

ψ23 0 − i
2
ψ131̄ − i

2
ψ131̄ 0
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∂ ∂̄ d ∂∂̄

ψ1231̄ 0 0 0 0
ψ1232̄ 0 0 0 0
ψ1233̄ 0 i

2
ψ1231̄2̄ i

2
ψ1231̄2̄ 0

∂ ∂̄ d ∂∂̄

ψ1231̄2̄ 0 0 0 0
ψ1231̄3̄ 0 0 0 0
ψ1232̄3̄ 0 0 0 0

∂ ∂̄ d ∂∂̄

ψ11̄ 0 0 0 0
ψ12̄ 0 0 0 0
ψ13̄ 0 i

2
ψ11̄2̄ i

2
ψ11̄2̄ 0

ψ21̄ 0 0 0 0
ψ22̄ − i

2
ψ121̄ i

2
ψ11̄2̄ i

2
(−ψ121̄ + ψ11̄2̄) 0

ψ23̄ − i
2
ψ122̄ i

2
(ψ11̄3̄ + ψ21̄2̄) i

2
(−ψ122̄ + ψ11̄3̄ + ψ21̄2̄) 0

ψ31̄ i
2
ψ121̄ 0 i

2
ψ121̄ 0

ψ32̄ i
2
(ψ122̄ + ψ131̄) i

2
ψ21̄2̄ i

2
(ψ122̄ + ψ131̄ + ψ21̄2̄) 0

ψ33̄ i
2
(ψ123̄ + ψ132̄) i

2
(ψ21̄3̄ + ψ31̄2̄) i

2
(ψ123̄ + ψ132̄ + ψ21̄3̄ + ψ31̄2̄) −1

2
ψ121̄2̄

∂ ∂̄ d ∂∂̄

ψ121̄ 0 0 0 0
ψ122̄ 0 0 0 0
ψ123̄ 0 − i

2
ψ121̄2̄ − i

2
ψ121̄2̄ 0

ψ131̄ 0 0 0 0
ψ132̄ 0 0 0 0
ψ133̄ 0 − i

2
(ψ121̄3̄ − ψ131̄3̄) − i

2
(ψ121̄3̄ − ψ131̄3̄) 0

ψ231̄ 0 0 0 0
ψ232̄ i

2
ψ1231̄ − i

2
ψ131̄2̄ i

2
(ψ1231̄ − ψ131̄2̄) 0

ψ233̄ i
2
ψ1232̄ − i

2
(ψ131̄3̄ − ψ231̄2̄) i

2
(ψ1232̄ − ψ131̄3̄ + ψ231̄2̄) 0

∂ ∂̄ d ∂∂̄

ψ121̄2̄ 0 0 0 0
ψ121̄3̄ 0 0 0 0
ψ122̄3̄ 0 0 0 0
ψ131̄2̄ 0 0 0 0
ψ131̄3̄ 0 0 0 0
ψ132̄3̄ 0 i

2
ψ121̄2̄3̄ i

2
ψ121̄2̄3̄ 0

ψ231̄2̄ 0 0 0 0
ψ231̄3̄ i

2
ψ1231̄2̄ 0 i

2
ψ1231̄2̄ 0

ψ232̄3̄ i
2
ψ1231̄3̄ i

2
ψ121̄2̄3̄ i

2
(ψ1231̄3̄ − ψ121̄2̄3̄) 0
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H1,0
BC = ⟨ψ1⟩ , H2,0

BC = ⟨ψ12⟩
H1,1
BC = ⟨ψ11̄, ψ12̄, ψ21̄,−ψ13̄ + ψ22̄ + ψ31̄⟩

H2,1
BC = ⟨ψ121̄, ψ122̄, ψ131̄, ψ132̄, ψ231̄⟩

H2,2
BC = ⟨ψ121̄3̄, ψ122̄3̄, ψ131̄2̄, ψ131̄3̄, ψ231̄2̄⟩

H3,1
BC = ⟨ψ1231̄, ψ1232̄⟩ , H3,2

BC = ⟨ψ1231̄2̄, ψ1231̄3̄, ψ1232̄3̄⟩

(A.27)
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Hermitian metrics”. In: J. Geom. Anal. 26.1 (2016), pp. 252–286.

[23] K. Chan, C. N. Leung, and C. Ma. “Flat branes on tori and Fourier transforms
in the SYZ programme”. In: Proceedings of the Gökova Geometry-Topology
Conference 2011. Int. Press, Somerville, MA, 2012, pp. 1–30.

[24] S. Chiossi and S. Salamon. “The intrinsic torsion of SU(3) and G2 structures”.
In: Differential geometry, Valencia, 2001. World Sci. Publ., River Edge, NJ,
2002, pp. 115–133.

[25] D. Conti. “Half-flat nilmanifolds”. In: Math. Ann. 350.1 (2011), pp. 155–168.

[26] D. Conti and A. Tomassini. “Special symplectic six-manifolds”. In: Q. J. Math.
58.3 (2007), pp. 297–311.

[27] P. Dazord and T. Delzant. “Le problème général des variables actions-angles”.
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Birkhäuser, Basel, 1995, pp. 120–139.



152

[60] A. Latorre, L. Ugarte, and R. Villacampa. “On the Bott-Chern cohomology
and balanced Hermitian nilmanifolds”. In: International Journal of Mathe-
matics 25.6 (2014).

[61] S. C. Lau, L.-S. Tseng, and S.-T. Yau. “Non-Kähler SYZ Mirror Symmetry”.
In: Communications in Mathematical Physics 340.1 (2015), pp. 145–170.

[62] N. C. Leung. “Mirror symmetry without corrections”. In: Comm. Anal. Geom.
13.2 (2005), pp. 287–331.

[63] N. C. Leung, S.-T. Yau, and E. Zaslow. “From special Lagrangian to Hermitian-
Yang-Mills via Fourier-Mukai transform”. In: Adv. Theor. Math. Phys. 4.6
(2000), pp. 1319–1341.

[64] J. Li and S.-T. Yau. “The existence of supersymmetric string theory with
torsion”. In: J. Differential Geom. 70.1 (2005), pp. 143–181.

[65] M. Macr̀ı. “Cohomological properties of unimodular six dimensional solvable
Lie algebras”. In: Differential Geom. Appl. 31.1 (2013), pp. 112–129.

[66] D. McDuff and D. Salamon. Introduction to symplectic topology. Third edition.
Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford,
2017.

[67] E. Meinrenken. Lecture notes in symplectic geometry. 1998-2000.

[68] M. L. Michelsohn. “On the existence of special metrics in complex geometry”.
In: Acta Math. 149.3-4 (1982), pp. 261–295.

[69] A. Moroianu. Lectures on Kähler geometry. Vol. 69. London Mathematical
Society Student Texts. Cambridge University Press, Cambridge, 2007.

[70] K. Nomizu. “On the cohomology of compact homogeneous spaces of nilpotent
Lie groups”. In: Annals of Mathematics. Second Series 59 (1954), pp. 531–538.
issn: 0003-486X.

[71] R. S. Palais and T. E. Stewart. “Torus bundles over a torus”. In: Proc. Amer.
Math. Soc. 12 (1961), pp. 26–29.

[72] D. H. Phong. “Geometric flows from unified string theories”. In: https://arxiv.org/abs/2304.02533
(2023).
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