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We present a new geometric construction that leads us to new examples of pairs
of six-dimensional compact manifolds satisfying a non-Kahler version of Mirror Sym-
metry as formulated by Lau, Tseng, and Yau using SU(3)-structures. In this new
setting, the Calabi-Yau geometry is replaced by the symplectic half-flat geometry
on the ITA-side and by the complex-balanced geometry on the IIB-side. The link
between the two is provided by the Strominger-Yau-Zaslow construction which relies
on the presence of a third space B over which the ITA-side fibers in Lagrangian tori.
We will show how to build these examples using the theory of solvmanifolds and
how it is linked to the affine geometry of the base of the fibration. Finally, we will
describe the action of the Fourier-Mukai transform on semi-flat differential forms
and how it realizes the equivalence of the Tseng-Yau cohomology on the ITA-side
with the Bott-Chern cohomology on the IIB-side.



O dyewpétpng €iofrw, og pavddrn'

Let who s untrained in geometry enter,
so that they can learn it

Entri chi non conosca la geometria,
affinché possa apprenderla

PAyewpépnc pedelc ewoitw - “Let no one untrained in geometry enter” was the motto over the
entrance to Plato’s Academy. This slight modification wants to be more inclusive. No gatekeeping

in math.
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Chapter 1

Introduction

The interplay between mathematics and theoretical physics has always been fruitful.
Very often, new discoveries in physics were anticipated or immediately followed by
fundamental advances in mathematics. Think for example to the groundbreaking
work of Einstein in general relativity, based on the language of the absolute differ-
ential calculus just developed by Ricci and Levi-Civita, or to the rising of interest in
linear algebra and functional analysis bolstered by the birth of quantum mechanics.
However, in the last, say fifty, years the interactions and exchanges were remarkably
intensified, both in terms of variety and in terms of the deepness of the topics. The
desire to get a better understanding of quantum field theory, and the attempt to
build a general framework in which also a quantum formulation of gravity could be
encompassed, has produced many new ideas and approaches. Among them, we will
deal in particular with the origin of string theory that saw light in the second half of
the last century. This is mainly motivated by the fact that the basic ideas of string
theory are geometrical in nature. Moreover, the rigorous mathematical formulation
has established various challenging (and still open) questions in so many areas of
mathematics: algebraic geometry, complex and symplectic differential geometry, ge-
ometrical analysis, knot theory, algebras, and category theory just to name a few.
In this introductory chapter, we will explain why one, as a mathematician, and
in particular as a differential geometer, should keep a mindful eye on these topics.
Starting from a brief historical review of string theory, we will explain the framework
in which a rigorous mathematical formulation of mirror symmetry can be stated.
Then, we will settle down the motivation and the starting point of the present work
and how its development would lead to the objective. We conclude the section with
an outline of the thesis.

1.1 Historical background

Up to our current knowledge, every physical phenomenon can be described in terms
of particles and interactions among them. The Standard Model is our best attempt



to get a collective picture, but gravity struggles to be included. While the elec-
tromagnetic, weak and strong interactions have a - still not complete, but enough
satisfactory - description in terms of an appropriate gauge theory (i.e. in terms of
the differential geometry of an associated principal bundle), this is not replicable
for the gravitational one. Around the 1920s, a first proposal was already known as
the Kaluza-Klein theory [55],[58] which was quickly discarded. It supposed a fifth
dimension beyond the usual four-dimensional space-time which is compactified on
a St with a very small radius. Although unconventional, this assumption made it
possible to write, in a unified formalism, both the gravitational and electromagnetic
interactions. These two main themes, unification and extra dimensions will be re-
sumed by string theory half a century later. In the 1960s the physicist Gabriele
Veneziano proposed a model for the interaction of hadrons [90] whose mathematical
structure, after an observation of Nambu and Susskind, is well understood under the
assumption that the fundamental objects of the theory are not point-like particles
but one-dimensional strings. Therefore, the idea of strings replacing point-like par-
ticles was introduced in the context of strong interactions but it had the drawback
of predicting the existence of an unwanted particle of spin 2 and the idea was aban-
doned. Almost twenty years later, these ideas were revived by Green and Schwarz
[43] who reinterpreted the model as a candidate for a quantum theory of gravity,
also incorporating supersymmetry. This new kind of symmetry asserts, though not
yet observed, that for each fermion there is a supersymmetric partner which is a
boson, and vice-versa.

1.1.1 Overview of string theory

While a point-like particle traces a curve (a world-line) as it moves, a string prop-
agating in the space-time X would trace a surface (a world-sheet) ¥. Studying the
mechanics of a string corresponds to studying a map o : ¥ — X: the action func-
tional is then minimized with respect to a class of surfaces instead of curves. In the
process of quantization of the functional, some extra terms, called anomalies, emerge
but they precisely cancel out when the dimension d of the space-time assumes de-
termined values. In the case of supersymmetric string theory, on a flat space-time
X, one gets d = 10. So what about these extra six-dimension? Physical arguments
imposes the presence, on the internal six-dimensional manifold M, which has to be
compact, of a parallel spinor, which in turn, forces M to have holonomy contained in
the group SU(3), condition which is fulfilled when M is a three-dimensional Calabi-
Yau (we will say more in section 2.2.1). Here it starts the interest of string theorists
in studying Kéhler geometry and Calabi-Yau manifolds.

1.1.2 Mathematical formulation of mirror symmetry

In particular, they managed to construct a physical model out of the geometric
invariants, namely the Dolbeault cohomology groups HP4(M) of the Calabi-Yau



three-fold. Such parameters for the model, called a superconformal field theory
(SCFT), were in fact linked to the h®!(M) and h''(M). But here it comes the crucial
observation which is at the heart of the entire mirror symmetry: they noticed that
another Calabi-Yau three-fold M with h>'(M) = KM (M) and hYY (M) = h>'(M)
would produce the same observable physics! This has the effect of transferring
the geometrical information associated to the symplectic structure of M to the
geometrical information associated to the complex structure of M and vice-versa .
Given a Calabi-Yau three-fold M, one can then build two different SCFTs, called
A-model, defined in terms of the complexified Kéhler class, and B-model, defined
in terms of infinitesimal variations of complex structure . Then, at the physical
level, mirror symmetry foresees the existence of another Calabi-Yau three-fold M
on which the role of A-model and B-model are swapped. In mathematical terms,
this can be formally stated in terms of the isomorphism of cohomology groups

HP4(M) ~ H*P4(M) (1.1)

and can be visualized, in a fancy way, as a symmetry for the Hodge diamond
along the oblique - from bottom left to right top - axis:

1 1

0 1 0 0 101 0
1 101 101 1 1 1 1 1

0 1 0 0 101 0

1 1

Figure 1.1: Mirror diamonds for the quintic

The first explicit computations in this sense were carried out in 1991 by Cande-
las, de la Ossa, Green, Parkes in their striking paper [20] . There the authors started
with a Calabi-Yau three-fold M, represented by a quintic in P4, and constructed its
mirror M verifying the cohomological relation between them (see the figure). Above
all, the big surprise came when they used this correspondence to compute correla-
tion functions for the A-model on M, which were particularly involved, in terms
of the correlation functions for the B-model on M which was an easier task. This
had the unexpected consequence of giving a prevision for the number ny of rational
curves in M of given degree d. At that time, the integers n; and ny were already
known but for higher d, the computation by classical algebraic geometry techniques
were too complicated. When the prevision for d = 3, given by the correspondence



in [20], was confirmed some years later, many mathematicians started interesting in
mirror symmetry and the topic became increasingly well known also among alge-
braic geometers. This was the first time that ideas coming from theoretical physics
gave a prevision for a conjecture in enumerative geometry. Since the nineties, two
major approaches were proposed to explain this mysterious phenomenon: the ho-
mological version formulated by Kontsevich [59] and the T-duality one proposed
by Strominger, Yau and Zaslow [82]. The first deals with the equivalence of two
categories: on one hand one deals with the derived category of the Fukaya category
defined in terms of the symplectic geometry, while, on the other, one deals with the
derived category of coherent sheaves which relies on the complex structure. Again
the mirror conjecture is about a switch of geometrical information:

DFuk(M) ~ DCoh(M)  DCoh(M) ~ DFuk(M) (1.2)

The other approach, rather more topological, instead postulates the existence of

another space B over which the Calabi-Yau three-fold fibers in special Lagrangian

tori. From the physical viewpoint, the SYZ construction refers to the Type II

string models which again differentiate in the A-symplectic model and the B-complex

model. The duality between the two models is then represented by a duality between
the torus fibers. The conjecture of SYZ mirror symmetry can be stated as

Conjecture 1.1.1. (SYZ Mirror Symmetry) )
For each Calabi-yau three-fold M there exist another Calabi-Yau three-fold M

and a topological mapz’fald B of dimension three and, possibly singular, fibrations
m: M — B and 7w : M — B such that

1. Let B*™ C B the locus where w7 are singular and let By = B\B*". Then
both M and M fibers in special Lagrangian tori over By.

2. The torus fiber T := n=1(b) is dual to T := 7#~'(b) for each b € B.
3. HP9(M) ~ H3Pa()M)

Many examples were constructed but a full comprehension of the picture is
still far from being obtained. Partial positive results are also obtained in the
semi-flat setting, namely when the fibration is everywhere smooth and so B = B,.
The main reference for the topic is the program carried by Gross [5],[44],[45], and
together with Siebert [46], see also the survey by Auroux [6] or the paper by Castano
and Matessi [16]. Moreover, also the mechanism which realizes the equivalence be-
tween the two sides is not completely understood. A differential-geometric version
of the Fourier-Mukai transform, appearing first in the homological approach as an
equivalence of derived categories over abelian varieties, is the proposed tool [23],[62],
[63]. We will deal with this side of the story, the SYZ program, but in a broader
context, the one of non-Kahler geometry.



1.2 Starting point and purpose

Our starting point is the paper by Lau, Tseng, and Yau [61] in which a generalization
of the SYZ approach is proposed. If we enlarge the picture by relaxing the Kéahler
condition one still has a manifestation of mirror symmetry but the single manifold
now encompasses just a single string model. The new formulation is based on
SU(3)-structures which differentiate into symplectic half-flat manifolds on the ITA
side and into complex balanced manifolds on the IIB side. More in details, an
SU(3)-structure is represented by a couple of differential forms (w,2) € A*(M,R) @
A3(M, C) satisfying some properties. If moreover dw = 0 and dReQ2 = 0, we are
talking about IIA equations while if dw? = 0 and d2 = 0, they are IIB equations
instead. The mechanism of the exchange still requires the existence of an SYZ-
fibration, which has to start from the symplectic side. Since the manifolds are no
longer Kéahler we can not compute their Hodge diamonds by means of the Dolbeault
cohomology. Therefore, on the complex side, we will avail the already well-known
Bott-Chern cohomology while, on the symplectic side, we will make use of the more
recent T'seng-Yau cohomology [85],[86]. Moreover, the equivalence of the two models
is provided by another differential-geometric version of the Fourier-Mukai transform
proposed in [61]. We can roughly summarize in the following

Theorem 1.2.1. (Theorem 5.1 and 6.7 in [61]) Let M — B a Lagrangian torus
bundle associated to a semi-flat supersymmetric SU(3)-system of type IIA and M —
B its SYZ dual. Then the Fourier-Mukai transform gives isomorphisms

H;%?(M) =~ H%?BC’(M)
and exchanges the IIA-equations on M with the IIB-equations on M.

Here the “B” subscripts mean that we are restricting to basic, T-invariant forms.
We will give a more precise statement in chapter 3. We also remark that corre-
spondence between Tseng-Yau and Bott-Chern cohomologies does not require the
half-flat /balanced condition to be present but relies only on the SU(3)-structure plus
the Lagrangian fibration showing that mirror symmetry is a phenomenon combining
symplectic and complex geometry in a more general way. We will show this with
one of our examples. At this point it is worth mentioning that mirror symmetry,
and T-duality, can also be described in terms of the generalized-complex geome-
try language introduced by Hitchin [51] and developed by Cavalcanti and Gualtieri
[21],[47]. A generalized-complex version of T-duality for nilmanifolds was treated
by del Barco, Grama, Soriani [9]. Moreover, also Tseng and Yau reinterpreted their
previous analysis in terms of a generalized-complex cohomology theory [87].

The main result of the thesis is the discovery of the SYZ mirror partner, in terms
of the above theorem, of almost all the known examples of compact non-Kéhler
type IIA (symplectic half-flat) six-dimensional manifolds. With few exceptions,



all known such examples come from left invariant structures on six-dimensional
solvable Lie groups. More precisely, there is a classification (][26],[30]) of solvable
Lie groups/Lie algebras admitting left-invariant type ITA structures. All of these
admit lattices, i.e. discrete cocompact subgroups. The first result of the thesis
is a reinterpretation of this classification in terms of affine structures on three-
dimensional solvable Lie groups. While the existing classification for ITA structures
is obtained case by case with a purely algebraic classification, we provide a general
geometric construction that allows us to build almost all the known examples of
compact type ITA manifolds. This has been achieved by blending the theory of
action-angle coordinates, coming from a canonical Lagrangian fibration, with the
left-invariant affine structure of the base. In [61], the only example, in dimension
three, is provided by the (co)tangent bundle of the Heisenberg manifold modulo a
lattice. We were able to reinterpret the compact ITA solvmanifolds as the cotangent
bundle of a three-dimensional compact solvmanifold B modulo a lattice which is,
in turn, related to different affine structures on B. There are several reasons for
why the class of manifolds we used was selected among nilmanifolds and the more
general solvmanifolds. They are also called by physicists twisted tori ([40],[41]) since
they can always be seen as a bundle over a torus with another nilmanifold as a fiber
(the Mostow bundle [18]). In particular, in the case of 2-step nilmanifolds, the
fibration is a principal torus bundle over a torus [71]. This feature makes it quite
reasonable to use them to test the effects of T-duality. The complex non-Kéhler
geometry of nilmanifolds and solvmanifolds is already well and deeply investigated,
see [32], [60] and references therein. Instead, for the symplectic side, there are only
existence results, cited above, in [26],[30], but no complete classification. Moreover,
from the cohomological viewpoint, the availability of Nomizu-like theorems allows
us to reduce the computation for the cohomology at the level of Lie algebras which is
more tractable. One of the novelties of this work is the first explicit computations for
(p, q)-groups in Tseng-Yau cohomology. This leads us to produce therefore the first
Tseng-Yau-Hodge diamonds and to relate them with the already known Bott-Chern-
Hodge diamonds for the complex side. Looking at the structure of the algebras
we were using for our computation, we noticed that they were sharing a common
pattern. In fact, the simply-connected Lie group associated with them had, in each
case, the structure of a semidirect product of a three-dimensional solvable Lie group
and the abelian R3. Then, motivated by the symplectic theory of Lagrangian torus
fibrations, we investigated the affine integral geometry of such three-dimensional Lie
groups and we managed to relate it to the group structure of the six-dimensional
Lie groups. This also leads us to produce a common recipe to build a natural
symplectic SU(3)-structure on each example. The main results of the present thesis
are contained in the article SYZ mirror symmetry of solvmanifolds in preparation
with my advisor L. Bedulli [14].



1.2.1 Outline

Mirror symmetry lies at the crossroad of symplectic and complex geometry and as
the SYZ construction enters the picture, it carries with itself also the affine geometry
baggage. Moreover, if one wants to build examples using solvmanifolds, all the ge-
ometric structures have to be reconciled with the algebraic structure of the groups.
Therefore we start in Chapter 2 with a review of basic facts and fundamental results
about all these topics. After that, we explain in detail the SYZ construction and
the non-Kéahler mirror symmetry formulation as stated by [61] in Chapter 3. We
describe our technique to build examples and we show the algebraic structure of the
six-dimensional Lie groups that will be used to create the six-dimensional compact
solvmanifolds for the mirror pairs. Lastly, in Chapter 4, we carry on the analysis
induced by the dual set of action-angle coordinates, we write down the supersym-
metric SU(3)-structures, we present their diamonds and show the correspondence of
w and €2 via Fourier-Mukai transform. All the computations for the cohomology are
collected in the appendix.



Chapter 2

Preliminaries

This chapter is devoted to recalling the definitions and fixing the notations for each
type of geometry we are going to interface with. We also recollect the results of
classification needed to build our examples.

2.1 Affine geometry

Definition 2.1.1. An affine structure on a smooth manifold M is an (equivalence
class of an) atlas U = {U;, p;}i whose transition functions are affine, i.e. ¢;; €
Aff(R™) = GL(n,R) x R™. This is equivalent to the existence of a flat, torsionfree
connection on the tangent bundle of the manifold. It is called special when the
linear part is contained in SL(n,R). If additionally the ¢;;’s are in Affz(R) =
GL(n,Z) x R™ the affine structure is said integral.

Affine structures can also be described in terms of the more general language
of (G, X)-structures d la Thurston. A manifold M admits a (G, X)-structure if its
transition functions are induced by an element of a Lie group G acting transitively
on another manifold X. In our case X = R™ and G =Aff(R"). Associated to
any (G, X)-structure there are two fundamental objects from which we can recover
the structure. Let M the universal cover of M and let m (M) be its fundamental
group, then there exists a pair of maps (Dev hol) with the following properties:
Dev: M — X is an immersion and hol: 7(M) — G is a homomorphism of
groups such that

evX g X

M D
l’y lhol(’y) \Lhol(w’)
M D

eVX g X



commutes for every g € G, v,y € m(M). In particular the square on the right
is saying that such a pair is unique up to inner automorphism of the structure. The
maps Dev and hol are called the developing map and holonomy representation
respectively. If the developing map is a homeomorphism, then the (G, X)-structure
is complete. In general Dev is just injective. The image I" := hol(m (M)) C G is the
holonomy group of the (G, X)-structure. Since we are working with G = Aff(R") we
therefore refer to I' as the affine holonomy of the structure and composing hol with
the natural homomorphism Aff(R") 2>GL(n, R) we get the linear holonomy.
Remark 2.1.1. The introduction of the developing map serves as a globalization for
the (G, X)-structure whose definition is rather in term of local coordinates. Moreover
the holonomy representation is the holonomy of a flat connection of a principal G-
bundle associated to the structure.

At this point we can adopt the point of view of [7],[8],[34],[35],[36],[38] and restrict
ourselves to left-invariant affine structures on Lie groups. Take a simply-connected
Lie group G: an affine structure on it is left-invariant if the left-multiplication map
is an automorphism of the structure. Equivalently, left-multiplication map is affine
in local charts. In this case, for every g € G there is a unique affine automorphism
a(g) in Aff(R™) such that the diagram commutes:

G Dev Rn

ng la (9)

G Dev Rn

The map o : G — Aff(R") is called the affine representation of the affine
structure: its image «(G) preserves the connected open set Dev(G) C R"™ and acts
transitively on it. Thus Dev(G) is an open orbit of a(G) since Dev is an open
map. Moreover, since G is n-dimensional, the isotropy group is discrete and this
implies the action is locally simply transitive. The construction can go backward:
if we are given an affine representation o : G — Aff(R") with an open orbit
O = a(G)zy for some xy € R" and dim G=n, then there is a unique left-invariant
affine structure on G with developing map Dev(g) := a(g) - 9. Therefore there
is a 1:1 correspondence between left-invariant affine structures on a n-dimensional
simply-connected Lie group G and its locally simply-transitive affine actions on R".
If the open orbit O is the whole R™ then the above correspondence can be promoted
between simply-transitive affine actions and complete left-invariant affine structures.

Since we are interested in compact affine manifold, assume that the Lie group
G, with a left-invariant affine structure, admits a lattice, i.e. a cocompact discrete
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subgroup. Then the homogeneous space of right cosets M :=I'/G inherits an affine
structure. Assume, as it will be in all our cases, that «(T') C Affz(R™), i.e. the
restriction a|r is an integral affine representation. In particular, its linear part is
an element of GL(n,Z). This feature will be fundamental to build a bridge with
symplectic geometry.

We now make the following observation that we will use later in section 3.2:

Remark 2.1.2. Assume O = R". We have seen the affine representation is defined
via

a(g) := Devo L, 0 Dev ' : R" — R" (2.1)

and «(g) is an affine transformation of R™, that is is of the form Av + b with
A € GL(n,R) and b € R™. Its linear part is then defined as A\ := Lin o o where
the map Lin simply sends the affine transformation (A,b) — A to its linear part.
This new linear transformation X\(g) of R™ can be seen as the derivative of the affine
transformation a(g):

Mg) := da(g) = dDevo (dL,) o dDev™" (2.2)

which is just the expression for the (dL,) in the new coordinates.

This result of Auslander [8] allows us to make a further restriction about our
analysis:

Theorem 2.1.1. [8] If G is a simply connected Lie group which has a representation
p as a simply transitive group of affine motion, then G is solvable.

Therefore we will consider in our work only solvable Lie groups with a focus
on the three-dimensional case. Of particular importance is the work of Fried and
Goldman [34] in which they classify all possible simply transitive affine action of
a solvable unimodular three-dimensional Lie group G, i.e. left-invariant complete
affine structure on G. In the following theorem, such transitive actions are presented
as subgroups of Aff(R3?).

Theorem 2.1.2. [34] Let G be a simply connected unimodular solvable Lie group
acting simply transitively by affine transformations on R3. Then

1. If G is nilpotent then it is conjugate to one of

(a)

1 apt+apu ast + axnu s+ at® + apu® + (a12 + as1)%
He = 0 1 0 , t ‘ s,t,u € R

0 0 1 U

@11 A12

The conjugacy class of H,, corresponds to conjugacy class of o = (a a
21 A22

as a bilinear form on R?;

)
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(b)

1 cu bt+ 5cu? s+(b+e) oy
7-[1,70::{ 0 1 u , t-|-“2_2 ‘s,t,ueR}

0 0 1 u

Where Hy. and Hapac are conjugate for a > 0 .

In particular H,, is abelian if and only if « is a symmetric bilinear form.
Hy is abelian if and only if b = c. If the group is not abelian, then it is
1somorphic to the Heisenberg group.

2. If G is not nilpotent, then G is conjugate to one of

1 defu de %t s+ Atu
I,\::{ 0 e 0 , t s,t,uER}
0

0 e ? U

(b)

1 A(tcoss —usins)u A(tsins+ ucoss) s+ A&
D, :—{ 0 CoS § —sin s , t s,t,uER}
0 sin s cos s u

In both cases, the conjugacy class depends only on whether X is 0 or not.

Remark 2.1.3. In their article Fried and Goldman [34] put aside the groups D,
since they cannot arise as crystallographic hulls of affine crystallographic groups. It
will be also excluded by our analysis since it is not completely solvable. We will meet
again the groups I, andD, under the notation of F(1,1) and E(2) respectively.

We end this section by recalling some result about the geometry of affine mani-

fold.

Theorem 2.1.3 ([34]). Let M? a closed 3-manifold. The following conditions are
equivalent:

1. M admits a complete affine structure;
2. M s finitely covered by a 2-torus bundle over the circle;
3. m (M) is solvable and M is aspherical

4. M has a Riemannian metric locally isometric to a left-invariant metric on a
3-dimensional solvable Lie group.
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Theorem 2.1.4. [36] Let M be a compact affine manifold whose affine holonomy
group s nilpotent. The the following are equivalent

a. M is complete;

b. the map Dev is surjective;

c. the linear holonomy is unipotent;

d. the linear holonomy preserves volume;
e. the affine holonomy is irreducible;

f. the affine holonomy is indecomposable;
g. M is a complete affine nilmanifold;

h. M has a polynomial volume form;

i. M is orientable and the de Rham cohomology of M s the cohomology of the
complex of polynomial exterior forms.

Remark 2.1.4. Isomorphic Lie groups acting simply transitively by affine trasfor-
mations on R™ are conjugated by a polynomial automorphism of R™. By this we
mean that if o, are the affine representation of two isomorphic Lie groups G, G’
acting simply transitively on R™, then there exists a polynomial automorphism F of
R™ such that o/(g) -v = F(a- F~Y(v)). Equivalently, if Dev,Dev’ are the developing
maps of a, o’ respectively, Dev’ = F o Dew.

2.2 Complex geometry

We leave, for the moment, the realm of affine geometry and review the basic notions
and the fundamental results in complex geometry. We refer to [54],[69],[91].

Let M be a smooth manifold of even dimension 2n.

Definition 2.2.1. An almost-complex structure on M is a vector bundle endo-
morphism J on T'M such that J? = —Idzy,.

The presence of J allows to decompose the complexified tangent bundle

TeM =TY°M & T M

where the summands are defined as the +i-eigenbundle w.r.t. J¢, the natural
C-linear extension of J. The almost complex structure is said to be integrable if
the subbundle T%!' M is an integrable distribution, i.e. [T%'M, T®*M] C T** M.
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By tensoriality, we obtain a decomposition on the complexified exterior bundles

%M:@%WM:G}AW%W@A@%N

k=p+q k=p+q

and on their space of sections

AN(M,C) = € AP(M)

This also induces a decomposition for the complexified de Rham operator (we
still denote with) d:

d=pu+0+0+p

where p is a differential operator of bidegree (2, —1) coming from the Nijenhuis
tensor associated to the almost complex structure J:

Ny(X,Y):=[X,Y]+ J[X,JY]+ JJX,Y] - [JX,JY] for X,Y € TM

and

1 *
M_’_ﬂ:_Z(NJ@Id(C)

Definition 2.2.2. A complex structure on M is the datum of an (equivalence
class of an) atlas whose transition functions are holomorphic. A complex structure
always induces an almost complex structure J while the vice versa holds if and only
if the J is integrable (Newlander-Nirenberg theorem).

Proposition 2.2.1. The following are equivalent
1. M has a complex structure
2. [TO*M, T M| C T M, i.e. T M is integrable distribution
3. d(AM(M)) C A20(M)® A (M) ,ie. d=0+0
4. Ny =0

The pair (M, J), with J (almost) complex structure, is called an (almost)
complex manifold. On a complex manifold, d*> = 0 implies that 9> = 9> = 0
and 00 + 00 = 0. One can then define these complex analogues of the de Rham
cohomology:

~ Ker 9: AP9(M) — APTLI(M) _ Ker 0: API(M) — APITL(M)

HYN(M) -

- Im 9 A-Le(M) — Apa(M) 7 9 " Im 9 Ara=1(M) — Ara(M)
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They are naturally isomorphic under complex conjugation but it is more natural
to work with the second one which is called the Dolbeault Cohomology of M.

This choice is related to the fact that “holomorphicity” of functions is defined in

d
terms of the operator 35

2.2.1 Kahler geometry and Hodge Theory

Let g be a metric on a complex manifold (M, J), i.e. the assignment, for each
point m € M, of a scalar product g, on T,,M. It is said to be compatible
with J if g(J-,J-) = g(+,-). We can then define an antisymmetric (0, 2)-tensor via
w(-,+) == g(J-,-), called the fundamental form of (M, J, g). Posing h := g + iw
we obtain an Hermitian structure and the triple (M, g, J), or simply (M, h), is
called an Hermitian manifold. If additionally the 2-form w is closed dw = 0 then
it defines a Kéhler structure and (M, g, J,w) is called a Kéhler manifold.

Remark 2.2.1. Each of these definitions make sense also for an almost complex
structure J. Knowing two of g, J,w, with the appropriate compatibility relations,
determines the third.

On an almost Hermitian manifold we have some natural linear operators:
e The Lefschetz operator
L:A*(M,C) — A*2(M,C) , ar—wAa

In particular

L: APY(M) — APTHIE(A)
e The Hodge star operator
x: AF(M,C) — A*"*(M,C)
induced by the metric g via
aAx*f = g(a, ) vol,

In particular
s« APYM) — A"TITP(M)

e The dual Lefschetz operator
A:=xtoLox: A*(M,C) — A*2(M,C)

In particular
A APUM) — APTHL (M),
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e The J-operator
J 1 AY(M,C) — A(M,C) , J=>) I
o
where 1179 . A*(M) — AP9(M). This can be seen as the multiplicative
extension of .J to the whole exterior algebra A®*(M)
and differential operators:

e The adjoints of 0 and 0

O :=—%00d ox , O :=—%00 ox

e The Laplacians

Np =00+ 00" , Ag:=0"0+ 00"

e The d°-operators

d:=J  odoJ=—i(0—-0) , d™:=—xodox

In particular
dd® = 2i00

Remark 2.2.2. The definition of the Lefschetz operator relies only on the 2-form
w and it will have a fundamental role also in the symplectic case.

The fundamental result in Kahler geometry is

Theorem 2.2.1. (Hodge’s Theorem ) Let (M, g, J,w) a compact hermitian man-
ifold. Then

e There are orthogonal decompositions
APUM) = DAY (M) & HEY(M) & 0F APTH1(M)
AP4(M) = 0APTH (M) @ HEN(M) © O* AP (M)
e The canonical projection Hy*(M) — HE(M) is an isomorphism.
If additionally M s Kdhler then

e There 1s a decomposition

HY(M,C)= € HZ(M)

p+q=k
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Where the space of harmonic forms H**(M) are defined in terms of the appro-
priate Laplacians.

Moreover, on a compact Kahler manifold there is a fundamental lemma whose
absence characterizes non-Kahler geometries

Lemma 2.2.1 (90-lemma). For a d-closed (p, q)-form on a compact Kdhler man-
ifold the following properties are equivalent

d-exact <= J-exact <= O-exact <= 90-exact
and the following theorem by Lefschetz

Theorem 2.2.2 (Strong Lefschetz Theorem). Let (M, g, J,w) a compact Kdhler
manifold of (real) dimension 2n. Then the maps

L% H*(M,R) — H*"7*(M,R)
are isomorphisms for k <n

One of the most beautiful consequences of this machinery, available in the Kahler
realm, is the possibility to rearrange the information associated to the Dolbeault
cohomology in a fancy way:

The numbers h?¢ :=dimH;?(M) are in fact called Hodge numbers

Qo

hn,n—l hn—l,n

hn,O . . hO,n (23)

hl,O hO,l

hO,U

while their rearrangement is called the Hodge diamond of M. It has natural

symmetries given by complex conjugation h?? = h%P and by Serre duality h?? =
hr—pn—a,
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Calabi-Yau Geometry

Even if we are not going to work with Calabi-Yau manifolds it is worth to spend some
words since they furnish the original motivation for the birth of mirror symmetry.

The are several ways to introduce Calabi-Yau structures

Definition 2.2.3. A (compact) Kihler manifold (M, g, J,w) is called a Calabi-Yau
manifold if one of the following equivalent properties holds

1. The holonomy of the Kdhler metric is contained in SU(n).
2. M admits a nowhere-vanishing holomorphic n-form.
3. The canonical bundle Ky = N\"(T°M)* is holomorphically trivial.

What makes Calabi-Yau manifolds so special for string theorists? As we men-
tioned in the introduction, they satisfy the equation imposed by a supersymmetric
formulation of gravity. The Ricci-flatness condition is in fact related to the imposi-
tion of Einstein equations in vacuum (the internal manifolds M for the theory are
also called vacua). In classical field theory there are two fundamental objects: a
Hilbert space of states and a Hamiltonian function which governs the dynamics.
Usually, on curved space-time, the Hilbert space is taken as the L?-space of differen-
tial forms while the Hamiltonian is represented by the Riemannian Laplacian. Then
symmetries of the theory are given by linear operators commuting with the Lapla-
cian. When supersymmetry joins the picture one has to enlarge the (Lie) algebra
of differential operators to make it closed under commutators. When the manifold
is Kahler this is suitably obtained thanks to the Kdahler identities. The equation
coming from supergravity can be written as V7 = 0 for a six-dimensional spinor 7.
Since Spin(6) ~ SU(4), the equation implies that the holomomy reduces to SU(3).
The equations for the spinor can be decoupled into this set of equations

1 awW?

for a real two-form w and a complex three-form (). Later, string theorists let flux
compactification enter the picture which resulted in the internal manifold being no

more Kéhler and extended the formulation in terms of SU(3)-strucures with torsion
[11],]12],[37],[64],[81]. We will see more in section 2.4.

2.2.2 Non-Kahler complex geometry

Relaxing the Kahler condition there is a pletora of different notion of Hermitian
metrics and related geometries that are important by their own. We recall some of
the most investigated ones:
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Definition 2.2.4. Let M be a hermitian manifold of complex dimension n and let
w its fundamental form. Depending on the equation involving w we have different
definitions:

o if dw" ' =0 it defines a balanced metric
e if 0w = 0 it defines a strong Kdihler with torsion (SKT) metric
o if 00w™ ! =0 it defines a Gauduchon metric

The study of balanced metrics started with the work of Michelsohn [68] in the
context of special Hermitian metrics. They are also called co-Kdhler metrics since
dw™ ! is equivalent to d*w = 0. Instead SKT metrics, also known as pluriclosed
metrics, were introduced by Bismut at the end of 80’s [17]. If a metric is Gauduchon
and dw™ ! is D-exact, then it is called strongly Gauduchon (sG).

Bott-Chern Cohomology

Let (M, J) be a complex manifold. Without the assumption of a Ké&hler structure
we can not more make use of the Hodge theory. Nevertheless there are other, more
general, cohomology theories which encode information about the complex geometry
of the manifold.

Definition 2.2.5. We define the Bott-Chern and Aeppli cohomologies respec-

tively as
HP9 (M) — Ker d : AP4(M) — _AP+q+1(M)
B 50 D) — A
) : AP pt+la+1
fo’q(M)' Ker 90 : A (M)—>.A (M)

T Ima: AP=La(M) — AP4(M) @ Im 0 : Apa—1(M) — APa(M)
We recall some properties, [2]:
e Hodge-star operator induces isomorphism HpL (M) ~ H " P(M)

e Complex conjugation induces isomorphisms H%2 (M) ~ HEZ (M) and HY(M)
HYP(M)

e There are natural maps from Hy¢ (M) and HYY(M) into Hjjp(M,C) which
are isomorphism precisely when the dd-lemma holds.
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e Assume M is also compact, there are natural maps induced by the identity
HZL(M)

HPY(M H%. (M, C) (M)

\l/

Hpq

for k = p+ q. If the map HZL(M) — HY*(M) is injective, then any map in
the diagram is an isomorphism and this happens precisely when M satisfies
the 00-lemma.

There are natural laplacians associated to both cohomologies:

“0)"(0°0)

Apc = (00)(90)" + (00)*(90) + (0°0)(9°9)* + (0 (2.6)
(907)(90")" '

Ay = (00)*(00) + (00)(00)* + (00*)*(00*) +
but they are not elliptic. Nevertheless,
Theorem 2.2.3. Let (M, h) be a compact hermitian manifold. Then by defining

Asc = (00)(90)" + (98)*(08) + (30)(F°D)* + (3°0)*(5°0) + 5D + 00
and
Ay =00 + 90 + (35)*(85) + (85)(35)* + (53*)*(58*) + (53*)(58*)*

They have the same principal symbol of Agc and A 4 respectively and by standard
elliptic theory one obtains dimHBL(M) < oo and dimHY* (M) < cc.

By setting AL :=dimHRL (M) and A% :=dimHY?(M) we obtain the Bott-
Chern-Hodge and Aeppli-Hodge numbers so we can have an analogus version
of the Hodge diamond for complex non-Kahler manifolds. Clearly, all these notions
coincide when the manifold is Kahler.

2.3 Symplectic Geometry

Symplectic geometry is the mathematical formalism underlying the Hamiltonian for-
mulation of classical mechanics. Basically, the phase space of position-momentum
configuration of the mechanical system is the prototype of what is called a symplectic
manifold, namely a manifold where the change of coordinates are canonical transfor-
mations for the mechanical system. For the material here we refer to [66],[67],[80].
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Linear symplectic spaces

Let V' a vector space of dimension 2n and let w be a 2-covector on V. If the linear
map «’ : V — V* defined by w’(v) = t,w is invertible, then w is said non-
degenerate. A non-degenerate 2-covector is called a symplectic form. The pair
(V,w) is then called a symplectic linear space.

Unlike in the Riemannian geometry, where the non-degeneracy of the scalar
product gives the notion of orthogonal complement, in the symplectic case there are
various notions of “orthogonality”.

Let (V,w) a symplectic linear space and let U C V a subspace. Then the
symplectic complement U¥ of U is defined as

UY={veV|w(uv)=0foralueU}

We can then characterize subspaces in symplectic vector spaces as follows:
e U is symplectic if U N U* = {0};

e U is isotropic if U C U¥;

e U is coisotropic if U D U¥;

e U is Lagrangian if U = UY,

In particular Lagrangian subspaces are the maximal (co)isotropic subspaces since
they have dimU = %dimV. By a skew-symmetric version of Gram-Schmidt process,
there exists a basis eq,...,e,, fi..., fn of V such that w(e;, f;) = d;;, w(e;,e;) =
w(fi, fj) = 0 and it is called a symplectic basis. Moreover in term of the dual
basis

w=efNfi+---+e Af,

and the matrix associated to w has expression

0 Id
SO:(—Id o)

Compatible linear complex structures

A (linear) complex structure on V is an endomorphism J such that /2 = —Id. On a
symplectic vector space (V,w), J is said to be w-compatible if w(Ju, Jv) = w(u,v)
and w(u, Ju) > 0 for all u # 0. In particular g;(u,v) := w(u, Jv) is a well-defined
inner product on V.

Remark 2.3.1. Once we are given an inner product g on a linear symplectic space
(V,w) we can produce a canonical compatible complex structure J. In general the
metric gy will be different from g. In fact we can define a skew-symmetric endo-
morphism A :V — V wia the identity
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w(u,v) = g(Au,v)

In particular AA* is symmetric and positive, i.e. g(AA'u,u) = g(Atu, Alu) > 0
for all w # 0. Therefore, by the spectral theorem, the operator v/ AAt is well-defined
and commutes with A. By setting J := (VAAY) LA we get the desired compatible

linear structure. The factorization A = v AA'J is called polar decomposition of
A.

Let J be a compatible complex structure on (V,w). If L is a Lagrangian subspace
of (V,w), then also JL is Lagrangian and JL = L* with respect to g;. Another
consequence of compatibility is that one can take the f; in the symplectic basis as
fi=Je;.

2.3.1 Symplectic manifolds

Let M be a smooth manifold of dimension 2n.

Definition 2.3.1. A symplectic structure on M is a non-degenerate differential
2-form w which is closed. Therefore w™ # 0 and dw = 0. The pair (M,w) is called
a symplectic manifold.

Given a symplectic manifold (M, w), a submanifold N C M is said to be

e symplectic if T,V is a symplectic subspace of T,,M m € N.
e isotropic if 7,,N is a isotropic subspace of T,,M m € N.
e coisotropic if 7;, N is a coisotropic subspace of T,,M m € N.

e Lagrangian if 7,,N is a Lagrangian subspace of T,,M for all m € N .

Another fundamental difference between symplectic structures and Riemannian
metrics is that there is no local obstruction to a symplectic structure being locally
equivalent to the standard linear model

Theorem 2.3.1 (Darboux). Let (M,w) be a 2n-dimensional symplectic manifold.
For any m € M, there are smooth coordinates (T1,...,Tn,Y1,...,Yn), centered at
m, wn which w has coordinate representation

w = i dz' A dy'.
i=1

These coordinates are called Darboux coordinates.
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Cotangent bundles

The prototypical examples of symplectic manifolds are provided by cotangent bun-
dles of smooth manifolds. Define on the total space of 7 : T*M — M the tauto-
logical 1-form as

Tim,a) = dwé‘m,a)a

where we denoted with (m,«) a point in T*M. If xq,...,x, are local coordinates
around m and 1, ..., ¥y, are the coordinate expression for o = y;dz*, then
T = yda’
and clearly wea, := —dr = dx' A dy® defines a symplectic structure on T*M. In

general if ¢ is a section for 7, that is ¢ is a smooth 1-form, o is closed as differential
forms if and only if o(M) is a Lagrangian submanifold of (7% M, wean).

2.3.2 Lagrangian Fibrations
A coisotropic submanifold N C (M, w) is such that TN C T'N and can be charac-
terized in the following manner:
T.N={veT,M|v(F)=0foral Fe C*(M)y}
Anmn(T,N) ={a € T:M |a = dF)|, for some F € C*(M)xn}

where C®°(M)y = {F € C*(M) | F|y = 0}. In particular the map «’ :
T,M — T} M allow us to identify Ann(7'N) with TN“ C TM|y and dF with Xp.
We have

Lemma 2.3.1. The following are equivalent:
1. For all F € C*(M)y, X is tangent to N;
2. C®°(M)N is a Poisson subalgebra of C>°(M).
3. N is a coisotropic submanifold of M.

Lemma 2.3.2. Suppose F : (M,w) — R* is a submersion and that the components
of F' = (Fi,...,Fy) Poisson commute, that is {F;, F;} = 0. Then the fibers of F

are coisotropic submanifolds of M of codimension k.
Let us now specialize in the case maximally coisotropic case k = n.

Definition 2.3.2. Let (M,w) be a symplectic manifold. A Lagrangian fibration
is a fibration w : (M,w) — B such that every fiber is a Lagrangian submanifold of
M, in particular dimB = n.

We will see that when M and B are compact the fibers must be tori. In general
they are of the form T* x R"~*.
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Affine torus bundles

Let G be a Lie group and X be a principal homogeneous G-space, that is X is
equipped with a free, transitive action of G. In particular dimG=dimX and we can
identify X = G.x ~ G for any choice of a x € X, up to a translation in G. If G is
a torus we say X is an affine torus, if G is a vector space instead we say X is an
affine vector space. Let V' be a vector space acting transitively on X and that dim
V = dim X = n. The stabilizer V, is a discrete subgroup of V| not depending on
x. Therefore we can see X as a principal homogeneous H := V/V -space. Since H
is compact, connected and abelian it is of the form of a vector space times a torus.
In particular the space X has a product structure of an affine torus times an affine
vector space.

Extend now this construction to fiber bundles: we want to define an action of a group
bundle to a given fiber bundle £ — B. By a group bundle we mean a fiber bundle
G — B with fibers carrying a group structure and bundle charts being fiberwise
group isomorphism with a given group GG. Then we can define smooth maps

gxplk — F

that are fiberwise group actions. We are interested in the case when the model
group is a torus. Then

Definition 2.3.3. We say a fibration m : M — B is an affine torus bundle if
it is equipped with a fiberwise, free, transitive action of a torus bundle T — B.

When the fibration 7 : M — B has compact fibers we can mimic the construction
above for vector spaces and obtain easily such a torus bundle action. In fact, suppose
we are given a vector bundle £ — B, dimFE =dimM, with a transitive, fiberwise
action of £ on M. Then we can construct the stabilizer bundle A — B for the fiber
bundle action and define the torus bundle as the quotient bundle 7 := E/A — B.
In the context of symplectic geometry the vector bundle F will be represented by
the cotangent bundle of the base T* B while the torus-action is related to theory of
action-angle coordinates (Arnol’d-Liouville Theorem).

Remark 2.3.2. The presence of any global section o : B — M would identify
the two fiber bundles M and T. We will construct our examples in a way that a
global section always exists. Moreover, if T — B is trivial, then M — B is a
principal torus bundle. The bundle A — B is therefore related to the monodromy
of the fibrations. In our treatment it will play a prominent role and the absence of
triviality will give rise to a rich geometric interpretation.

In the following we will resume the construction by Duistermaat [28] following
[67]

Theorem 2.3.2. Let (M,w) = B be a Lagrangian fibration with compact, connected
fibers. Then there is a canonical, fiberwise transitive vector bundle action T*B X
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M — M. Thus every Lagrangian fibration has canonically the structure of an affine
torus bundle.

Proof. For each 1-form on the base @ € A'(B) we can define a vertical vector field
X, in the following way

Lx,w=—T"«

Let VM := kerdm the vertical bundle of M relative to 7 and let Xy (M) :=
['(VM). For any vector field Y € Xy (M) we have

w(Xa,Y) =tytx,w=—tym*a=0

since « is a basic 1-form. Since V' M is a Lagrangian subbundle, this implies that
Xo € Xy (M). Such construction extends to an isomorphism of vector bundles

VM ~7*T*B
We now exploit this map to define an action of 7*B on M as follows: let ®,, :

M — M the time-one flow associated to X,. Since X, is vertical, so is the flow i.e.
it preserves the fibers of . Define the fiber bundle map

T*BxgM — M , (ap,m)— Py(m)

To check this is indeed a vector bundle action we just need the flows commuting
for each . Take then ay, 9 € AY(B). Let X,,, X,, the associated vertical vector
fields.

Uy XoglW = (L£x0, X0, = X0, L0, )W
*
= _‘CXal,/T Qg — LXanLXalw

(2.7)

— —EXalﬂ*ozg + LXQQW*dOél
=0

Non-degeneracy of w implies [X,,, Xa,] = 0. Moreover since each map T7,,B —
V., is an isomorphism, the action is fiberwise transitive.

]

Let A be the bundle of stabilizers for this T* B-action

ANy ={aecTyB| ®,(m)=m}

and since the group (which is pointwise just the vector space T; B) has the same
dimension of the orbit, A, must be a discrete subgroup. In particular it is a lattice
by compactness assumption. Therefore A is also called period lattice (bundle). We
set
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T:=T*B/A — B

Moreover the canonical symplectic form on T* B is preserved by A, which becomes
a Lagrangian submanifold, and descends to 7 turning the 7 — B into a Lagrangian
fibration.

The covering group of the covering bundle A — B is a homomorphism

py - m1(B,b) — Aut(Ay) ~ Aut(Hy(F}),Z) ~ GL(n,Z)

called the monodromy of the bundle 7 : M — B. Here Fj} denotes the fiber
over b.

Remark 2.3.3. Up to taking the inverse transpose of p we note that the monodromy
is nothing else that the holonomy of the flat connection associated to the affine
structure on the base.

Action-angles coordinates

Here we review the theory of action-angle coordinates as described in [28],[48],[67].
Take a point b € B and a basis 81(b),. .., Bn(b) of Ay, = ANT;B. Then there are
unique differential forms, say 3;, defined in some neighborhood of b such that form a
local basis for A. Since by the preceding observation A is a Lagrangian submanifold,
the 3; define a Lagrangian section of 7*B. In particular dj3; = 0 so they are locally
exact:

6]' = 27Td7”j
where rq,...,7, are functions on B. The fact the (; are linear independent
implies the r; are local coordinates around b. Let 6;,...,0, be the corresponding

dual variables on T*B near 7~ !(B). The lattice subbundle is described by 6; € 27Z,
j=1...,n.

Thus (ry,...,7,,01,...,0,) form a system of local coordinates on M known as
action-angle coordinates and the symplectic form on M is locally given as

w=dr

and 7 = > " r;df; is a well-defined 1-form on M. Note that

1
Ti(C):%/()T
Yile

where 7;(c) is the curve in the fiber above ¢ given by 0 <6, <27 ,0; =0,j # ¢

Theorem 2.3.3. [48] Under the hypothesis of Theorem 2.3.2, local action angle
coordinates exist. If T is a 1-form on M such that w = dt and if v;(c) are smoothly
varying curves in the fiber above ¢ whose homotopy classes [v;(c)],i =1,...,n form
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a basis for the fundamental group of the fiber over c for each c, then the functions
r; give action variables, whose dual variables give the angle variables.

Assume for simplicity the symplectic form w = dr7 is exact. Consider the local
system ¢ — B whose fiber over b is the abelian group Hy(r~'(b),Z) ~ Z". Let
¢ : B — B be the universal cover and let 5 = ¢*¢. Since B is simply-connected, § is
trivial. Let ¢q, ..., ¢, be a Z-basis of continuous sections of & — B.

Definition 2.3.4. The fluxz map is defined to be the map R : B — R™ given by

R(E) = (D), ..., ra(b)) = (%/@ T% . T>. (2.8)

Lemma 2.3.3. Suppose U C B and U C B are open subsets such that qlg - U—U
is a diffeomorphism. Then R o (q|g) : U — R" gives action coordinates on U.

For a generic, not necessary exact, symplectic form w the definition of action
coordinates has to be modified. Denote with 7 : ¢*M — B the pullback of the
universal cover. Fix a basepoint by € B. Given a point b € B, pick a path v
[0,1] = B from by to b. A family of loops over ~ is a homotopy C' : 51 x[0,1] = ¢*M
satisfying 7(C(s,t)) = 7(t), i.e. if ¢ is fixed, C(s,t) is a loop in 7 !(y(¢)). For
k=1,...,n pick a family of loops Cy over y with Cy(+,t) € ¢ (y(t)) for all ¢ € [0, 1].
Define

RO) = (n(),....raB) () = / " (2.9)
Ck
This definition does not depend on :

e the basis ¢q,...,c, of ¢*¢
e the basepoint b~0
e the path vy

e the family of loops Cj over 7.

Instead, if we change the basepoint, the resulting flux map differs just by a
translation. In particular, if we change the basis of sections cy, ..., ¢, by an element
of GL(n,Z) then the result is to apply a Z-linear transformation to the flux map.
Moreover the integral affine structure on B descends to B. This observation brings
us back to the realm of (integral) affine geometry and we can note that this flux
map, or just the action coordinates, are nothing else that the developing map for
the affine structure induced on the base. This establish the fundamental connection
between affine geometry and symplectic geometry.
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This story can also be interpreted in terms of the cohomology of a sheaf as we
can see from Duistermaat [28]. The choice of angle coordinates is determined by the
choice of a Lagrangian section A; : U; — M and on the intersections U; N U; one has

Ai(b) = i (b)(Xi(D))
for a uniquely determined Lagrangian section p;; : U; N U; — T. The py;
constitute a cocycle which modulo coboundaries determines the bundle 7 : M — B
with symplectic structure and Lagrangian fibers.
Therefore, let L£(7T) be the sheaf of germs of Lagrangian sections B — 7T, then
the structure of M is determined by the base B, the Lagrangian covering A C T*B
and the cohomology class [u] € H'(B, L(T)). We have a short exact sequence

0—A— L(T*B) — L(T) — 0
which induces a long exact sequence
0— H°(B,A) — H°(B, L(T*B)) — H(B, L(T)) > H'(B,A) —
— HY(B,L(T*B)) — H' (B, L(T)) > H*(B,A) — - --

Then the class

v =8[u] € H*(B, \)

is called the Chern class of the fibration 7 : M — B. If the covering bundle
A — B is trivial, then A ~ Z" and H*(B,A) ~ (H*(B,Z))".
We note moreover that

0— Hi(B,C™(T)) % H(B,A) >0 for i>1

In particular H'(B,C(T)) 2 H2(B, A) is an isomorphism, which means that
the structure of 7 : M — B as smooth bundle is governed by the Chern class. We
end the section with the following result by Duistermaat concerning the topological
relationship between the fibrations:

Theorem 2.3.4. The following are equivalent
1. M ~T as smooth bundles
2. There exists a global section 0 : B — M form: M — B
3. The Chern class 6[u) € H*(B, A) is trivial

In particular if (2) hold also the following are equivalent

o M ~ T as a symplectic manifold fibered over B with Lagrangian fibers;
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e M — B admits a global Lagrangian section o : B — M ;

e The Chern class vansishes and for any section o : B — M the 2-form o*w 1is
exact on B.

Theorem 2.3.5 (Global action-angle coordinates). The fibration 7 : M — B is
topologically trivial if and only if the monodromy and the Chern class are trivial.
Moreover the following are equivalent

1. There is a smooth map (R,0) : M — R" x (R/Z)"™ such that
® W= Z?:l dQZ A d?”i

e The r; are constant along the fibers of

e 0 is injective on each fiber of ™

2. The fibration m : M — B 1is topologically trivial and w is exact

2.3.3 Tseng-Yau cohomology

In a series of paper [84],[85],[86],[87] ,Tseng and Yau introduced a new cohomology
theory suited for symplectic manifolds. Pursuing an idea already present in the work
of Brylinski [19] they developed in full generality a symplectic analogue of Hodge
theory. In this section we will recall the basic facts about it. We have already met
the Lefschetz operator L = w A -, its dual A and the Hodge star operator . In
the same spirit of Kéahler identities, it is reasonable to consider the commutator
d* :=[d,A] = dA — Ad. Tt is a differential operator of degree —1:

d . AF(M) — AFH(M)

In the same way as in the Riemannian setting, we can define a symplectic
Hodge-star operator *, using the symplectic volume form ‘;’1—7 (also called Liouwville
volume form) via the identity

1 w"
aA*gff =w" (C(,B)m

In particular we can rewrite the operator d* as the symplectic adjoint of the de
Rham differential d:

dd = (—=1)F x, dx,

and also

A = x,Lxg

One has (d*)? = 0 and dd* + d*d = 0. Also the operator dd* has an important
role and it is of degree 0. We recall the definition of the counting operator H as
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H:

Z(n — k)II*

k

where II* is the projector onto forms of degree k. Then, there are the following
commutators relations for d, d* and dd® with sly-operators L, A, H.

Lemma 2.3.4.
[d,L]=0 , [dA=d" |, [dH=d
[dA> L] =d P [dAJ A] =0 P [dAu H] = _dA
[dd*, L]=0 , [dd*,A]=0 , [dd* H]=0

Then Tseng and Yau found that the symplectic analogue of Bott-Chern and
Aeppli cohomologies are

(M) e Ker{d : A*(M) — A*1(M,} N Ker{d" : A¥x(M) — A*=1(M)}
arar (M) = Tm{dd® : AF(M) — AF(M))

HE (M) = Ker{dd" : A*(M) — A*(M)}
AN Im{d - AN (M) — AR(M)Y @ Tm{dA - AF1(M) — AF(M)}
For each operator d*,d + d*,dd*, they developed the Hodge theory associated
to each Laplacian. In particular the cohomology groups are finite-dimensional and

there is a pairing, as for Bott-Chern and Aeppli, such that H§+dA (M) ~ ng,(k(]\/[).
Moreover there is a symplectic version of the 99-lemma:

Lemma 2.3.5 (dd*-lemma/Definition). Let a be a d-closed and d*-closed dif-
ferential form. We say that the dd™-lemma holds if the following properties are
equivalent:

(i) « is d-ezact;
(ii) « is d-ezact;
(iii) « is dd™-ezact.

so that

Proposition 2.3.1 ([85]). On a compact symplectic manifold (M,w), the dd"-
lemma holds, or equivalently the strong Lefschetz property is satisfied, if and only if
the canonical homomorphism HY (M) — Hjjp(M) is an isomorphism for all k.

From now on we will refer to Hj, (M) as the Tseng-Yau cohomology of
M and it will represent the symplectic cohomology involved in the formulation of
non-Kahler mirror symmetry.
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2.4 SU(n)-geometry

We take as definition of SU(n)-structure the one used in [61].

Definition 2.4.1. Let M a real 2n-dimensional smooth manifold. A SU(n)-
structure on M is the datum of a couple of differential forms (w,(Q) satisfying
the following properties

e () is a nowhere-vanishing decomposable complex n-form such that by defining
TO'M = {v € TM @ C|1,Q2 = 0} (2.10)

and letting T*°M its complex conjugate, one has a splitting

TM®C=T"MoT"M (2.11)

which induces an almost-complex structure J on M. Then Q is a type (n,0)
w.r.t. this J.

e w is a non-degenerate real (1,1)-form w.r.t J and it is such that w(-, J-) is an
Hermitian metric.

From both properties one deduces that

wAQ=0

) n 2.12
OAQ=¢" F. (212)

n!

for some nowhere-vanishing function ' on M which is called the conformal factor
of the SU(n)-structure.

Remark 2.4.1. If both forms are closed, dw = dS) = 0, then the J is integrable and
the w is symplectic turning M into a Calabi- Yau manifold

This is equivalent to the common one used in [15],[24],[33]:

Definition 2.4.2. Let M be a 2n-dimensional smooth manifold and let L(M) its
GL(2n,R)-principal bundle of linear frames. A SU(n)-structure on M is a SU(n)-
reduction of L(M).

Therefore a SU(n)-structure on M is determined by the choice of the following
data

e an almost complex structure J;

e a J-Hermitian metric g;
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e a complex (n,0)-form € of constant norm.

It is important to cite here also the characterization for SU(3)-structures done
by Hitchin [52],[53]

We recall that a stable 3-form, in the sense of Hitchin, is a three-form such
that A(¢4(p)) < 0 for each p € M. The map A is pointwise defined as follow
[53]: set V := T,M and fix a volume form 7. Consider the canonical isomorphism
A N(V*) = V@ AS(V*) defined via A(€) = v ®@n, where v, = . Then define for
a fixed p € A3(V*) the maps

K,:V—=VAWV*) | K,(v)=AlpAp)
and

N AV o (AS(V)E2 L A(p) = %terz

Then, if A(p) # 0, the form /|\(p)| € AS(V*) defines a volume form by choosing
the orientation of V for which w? is positively oriented. Moreover if \(p) < 0, p

defines an almost complex structure J = J, via J, := —\/_;)\_({))K ,- In our case p =
¥, and by setting 1) = Ji, one can define a complex-volume form Q = ¢, +ip_.

So an SU(3)-structure is the datum of
e an almost symplectic structure w
e a stable three-form v

such that w A ¢t = 0 and w(-, Jy+-) defines a positive definite Hermitian form.
Moreover Q A Q = cg—f for a constant c.

2.4.1 Supersymmetric systems of type IIA/IIB in dimen-
sion three

We now focus on the three-dimensional case and differentiate the structure into
two models: let M be a smooth six-dimensional real manifold admitting an SU(3)-
structure defined by a couple (w, ) in the sense of definition 2.4.1. Then the system

dw =0
dRe2=0
QANQ=—i-F-<
dd*(F-Im Q) = py4

IIA : (2.13)

defines a symplectic half-flat geometry on M and we refer to the triple
(M,w, Q) as supersymmetric SU(3)-structure of type ITA
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Remark 2.4.2. We recall that an SU(3)-structure (w,2) such that d(w A w) = 0
and dReS) = 0 is called half-flat.

We will deal only with examples of symplectic half-flat structures coming from
solvmanifolds. For other interesting examples, also non compact, one can look in
[73],[74],[93].

Instead, the system

dw? =0
dQ=0
IIB : _ _ 5 (2.14)
ONQ=—i-F-*
2i00(F~' - w) = pp
defines a complex balanced geometry on M and we refer to the triple (M, w, Q)
as supersymmetric SU(3)-structure of type IIB. From now on we will use

“check” superscripts to denote the components of a IIB-system.

Remark 2.4.3. The last equations in both systems has to be taken as definitions
for the flux forms py and pg. Their presence is related to the presence of torsion.
We will not deal with them in particular but we remark their importance in the

context of geometric PDEs associated to them (see for example the recent survey
by D. H. Phong [72]) .

Remark 2.4.4. The definition of ITA /IIB systems can be extended to an arbitrary
dimension. The definition for a supersymmetric SU(n)-structure of type IIB is
straightforward. Instead, for the type ITA system one has to take

(

dw =0

d(zx°-Q) =0

IMA: ¢ d(my" " -Q)=0 (2.15)
QAQ=—i-F.-<

dd*(F - (rx - Q+ 7" Q) = pa

\

where A is a Lagrangian distribution with respect the (p, ¢)-decomposition of forms
is taken (see section 2.3.3). Clearly, for n = 3 one recovers the above definition.

Torsion of a SU(3)-structure

We have already mentioned that the formulation of string theory in the non-Kéhler
setting is related to the presence of torsion in the structures defining the geometry.
The obstruction of a SU(3)-structure to be Calabi-Yau is encoded in the so called
torsion forms which are described in [15],[24]:
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dw =19 V" +ag V™ +11 Aw+ 13
d¢+ = T w2+7ﬁ/\¢+—7r2/\w (216)
dp~ =og W+ APt —os Aw

where we set Q = ¢ + i~ and ag, vy, T, 00 € C®(M), vy,m,00 € MM,
v3 € N2, M, 9,09 € A2M.

We also recall the decomposition of A*M as su(3)-module:

NM = NM & AgM & AZM
ANPM =AM @A M e AM S A,M (2.17)
A'M = ATM & AgM & AgM

A2 = Rw
AEM:{*S (aA¢+)‘aEA1M}:{ngA2M| Jgpz—go}

2 2 + (218)
A8M={¢EAM|<,0/\¢ :0and>x<8<p:—g0/\w}:
Z{@EA2M|J@:@, go/\wQZO}

and
Ape =Ry*
Afp =Ry~
AGM = {a/\w|a€A1M} = {nyA?’M} *S,y:,y} (2.19)

AB,M = {7 € MMy Aw=0, yAv* =0andy Ay~ =0 }
In the case of a symplectic half-flat structure the equations (2.16) reduce to

dw =0
Ayt =0 (2.20)
Ay~ = —o9 ANw
while for complex balanced one to
dw = 13

dipt =0 (2.21)
dp= =0
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Refined Tseng-Yau Cohomology

Let (w,2) be an SU(3)-structure on M, here we are not specifying the type of the
structure. We recall that a real polarization w.r.t a non-degenerate 2-form w is
an integrable distribution A C TeM such that wja = 0 and A = A (see [48],[92]
for the example). Set AL for the g-orthogonal complement of A where the metric
g is the one associated to w and € in the defining SU(3)-structure. The orthogonal
decomposition TM = A @ At extends to the space of differential forms

A*(M) = @ AR (M)
pta=k
where ARXY(M) ranges over the p A-directions and ¢ A*-directions.
We are now in position to define the cohomology we will use to compute the
symplectic invariants of a ITA structure.

Definition 2.4.3. Let (w,2) be an SU(3)-structure on M such that w is symplec-
tic and let A be a real polarization with respect to w. The refined Tseng-Yau
cohomology of M is defined as

7 Ker (d + d) N ARY (M)
My a M) = =1 Az (00)

When a supersymmetric SU(3)-structure (M,w,€?) is the total space of a La-
grangian fibration 7 : M — B, the vertical Lagrangian distribution induced by 7w
will be chosen as the real polarization.

2.5 Lie groups and Lie algebras

We are interested in studying the properties of compact solvmanifolds. We therefore
recall some basic facts about solvable Lie groups and solvable Lie algebras. The
main reference in this sense is the paper by Bock [18]. There the author studied and
classified in a comprehensive way the algebra, and geometry, of solvmanifolds up to
dimension six.

Definition 2.5.1. A solvable (respectively nilpotent) Lie algebra g is a Lie
algebra such that its derived series g > [g,09] > [[g,9],[9,9]] > --- (lower center
series g > [g,08] > [g,[g,9]] > ---) terminates in a finite number of steps. A Lie
algebra is said completely solvable if it admits a chain of ideals L; such that

O:L()CLlC"'CLn:g

with dimL; =i . Equivalently, if g is defined over a field K, it is completely solvable
if and only if the eigenvalues of adx are in K for all X € g. A Lie group G is said
solvable (nilpotent, completely solvable respectively) if it is its Lie algebra.
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Remark 2.5.1. We will be interested in left-invariant structures defined on the Lie
groups. In the following, when taking the quotient by a lattice, the action is always
meant by left translation and we will adopt the expression G//T" for the space of right
cosets.

Definition 2.5.2. A (compact) solvmanifold is a quotient of a solvable Lie group
modulo a lattice.

In dimension three the only unimodular, solvable Lie groups (not compact) are

1. The abelian (R?, +)

2. The Heisenberg group

1 Tr1 I3
Hg(R) = { 0 1 ) T1,T2,T3 € R}
0 0 1

3. The universal cover of the group of rigid motion of the Minkowski plane

e’ 0 0 To
0 e 0 =z

E(1,1) := { 0 01 xj X1, X9, 23 € ]R}
0 0 0 1

4. The universal cover of the group of rigid motion of Euclidean plane

cost —sint 0 =x
o sint cost 0 y
E(2) = 0 0 1 ¢ x,y,teR}
0 0 0 1
with corresponding Lie algebras
1.
as = (Oa Oa 0)
2.
h, = (0,0, 12)
3.
e(1,1) = (13,—-23,0)
4.

e(2) = (23, -13,0)
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We are adopting the convention that (0,0,12) stands for a basis {F1, Fy, F3}
({e!,e?,e3}) for the (co)algebra such that [E), F5] = FE3 and the other brackets
vanish (de' = de? = 0 and de® = —e'?).

Remark 2.5.2. The Heisenberg group is nilpotent while E(1,1) is completely solv-
able. This will have consequences for our forthcoming constructions.

Remark 2.5.3. Fach of these solvable Lie groups has a structure of semidirect
product R x,, R* where the action is one of

1 =z e 0 cost —sint
H1 = 0 ; M?(x) - (0 1) ) H’S(Z) - (0 €_Z) ’ ﬂ4(t> - (sint cost )

Each of these solvable Lie groups admits a lattice I'. For simplicity we will present
just one possible lattice and consider the solvmanifold obtained by quotienting by
it.

1.
r=7°
so that R3/Z3 ~ T3
2.
1 ny ns
F:H3(Z) = { 0 1 mno ny, Na, N3 EZ}
0 0 1
so that H3(R)/H3(Z) is the Heisenberg manifold
3.

t
F:Ft ::tZD(u3<<}>,<et)>Z ,fort:10g3+2\/5

(&

so that E(1,1)/T'; correspond to the (compact) Sol geometry in Thurston’s
classification. An element v € I'y can be written as

e 0 0 ng+elng
0 e ™ 0 ny+elng
0 0 1 tny
0 0 0 1

see Bock [18] or Auslander [29)].
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=T, :=7ZKx,, Z*

so that E(2)/T'; is a compact solvmanifold with b; = 1
if we take 27 instead of m we get a quotient diffeomorphic to a three-torus
E(2)/Tor ~ T which has b; = 3 ([18]).

In fact, the diffeomorphism type of a solvmanifold is governed by the fundamental
group which is isomorphic to the lattice I'.

Theorem 2.5.1 (Mostow [75]). Let (G1/T'1) (G2/T'e) two solvmanifold. Then any
isomorphsim ¢ : I'y — Ty extends to an equivariant diffeomorphism ® : G; — Gs.

The hypothesis of nilpotence or complete solvability is crucial for cohomological
computations:

Theorem 2.5.2 (Nomizu [70]). Let G be a simply connected nilpotent Lie group
with a discrete subgroup I'. Assume that X := I'\G is compact. Then, the de Rham
cohomology of X can be represented by G-invariant forms

This has been then extended by Hattori to the completely solvable case
Theorem 2.5.3 (Hattori [50]). Let G/T" be a solvmanifold. Then

1. The natural inclusion of the Chevalley-Filenberg complex into the de Rham
complez (\* g*,8) — (A*(G/T'),d) induces an injection in cohomology.

2. If G is completely-solvable, then the inclusion is a quasi-isomorphism.

3. If Ad(I") and Ad(G) have the same Zariski closure, then the inclusion is a
quasi-isomorphism.

and more recently Kasuya gave a useful tool also for the generic solvable case

Theorem 2.5.4 (Kasuya [56]). Let G be a simply connected solvable real Lie group
and let g be its Lie algebra. Assume it contains a lattice I'. Let ay, ..., a, complex
characters for the semi-simple representation ¥ : G — Aut(g) induced by a semi-
simple complement in g and associated to a basis X1, ..., X, of gc. Then by defining

L=span{agxr | I C {1,....,n}|I| =n,arr=1) x,...,x,dual basis of g¢.

the inclusion of the sub-complex A} in the complex valued de Rham complex
A% (G/T) is a quasi-isomorphism.

The Nomizu-Hattori type theorem has been extended to Bott-Chern and Tseng-
Yau cohomologies by Angella and Kasuya in [3],[4], also for the non completely-
solvable case under suitable assumptions. The result for the symplectic cohomologies
was already done by Macri [65].
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2.5.1 Classification of structures on six-dimensional solvable
Lie algebras

In this section we collect the classification results for the structures of our interest
on Lie algebras.

Nilpotent Lie algebras

A complex structure on a nilpotent Lie algebra g is an endomorphism J: g — g
such that J? = —Id for which exists a basis {1'}"; of the i-eigenspace g"° relative
to the extension J® on g¢ such that

dy’ € span(y’, ... ")

When the subalgebra g!? is abelian, the complex structure J is said abelian and
consequently d(g'®) ¢ A" g*. Instead, it is said complez-parallelizable if d(g"°) C
A*? g*. Moreover if the basis ¢!, ... 9" satisfies

2
dyt e \@', ... 0wt )
it is called nilpotent.
A first list of nilpotent Lie algebras (NLA from now on) admitting complex
and /or symplectic structures was given by Salamon [76]. There are 34 classes of

isomorphism of NLA: 18 of them admit a complex structure, 26 of them admit a
symplectic structure while 15 of them admit both.

Among the complex ones, the NLA admitting a balanced structure were clas-
sified by Latorre,Ugarte,Villacampa [60] where also computations for their Bott-
Chern cohomology were provided. This was achieved exploiting the computations
in [22],[88],[89].

Theorem 2.5.5 ([22],(60],[88]). Let g be an NLA of dimension 6. Then, g has a
complex structure if and only if it 1s isomorphic to one of the following Lie algebras:

b, = (0,0,0,0,0,0) bio = (0,0,0,12,13,14)

b2 = (0,0,0,0, 12, 34) b = (0,0,0,12, 13,14 + 23)

bs = (0,0,0,0,0,12 + 34) b2 = (0,0,0,12,13,24)

bs = (0,0,0,0,12, 14 + 23) b5 = (0,0,0,12, 13 + 14, 24)

bs = (0,0,0,0, 13 + 42, 14 + 23) bia = (0,0,0,12, 14, 13 + 42)

be = (0,0,0,0,12, 13) bis = (0,0,0,12, 13 + 42, 14 + 23)
b, = (0,0,0,12,13,23) bis = (0,0,0,12, 14, 24)

bs = (0,0,0,0,0,12) b = (0,0,0,12,13,14 — 35)

(0,0,0 (0,0

,0,12,14 4 25) b ,12,13,23,14 + 25)

I

Moreover:
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a. Any complex structure on b1y and b3s is non-nilpotent;
b. For1 <k <16, any complex structure on by is nilpotent;
c. Any complex structure on by,b3,hs,bg is abelian;

d. There exist both abelian and non-abelian nilpotent complex structures on bs, bhya, b5
and b5,

e. Any complex structure on be, b5, 10, b11, h12, h13, h1a and bis is not abelian.
f. Any complex structure on hg and by has compatible metrics which are balanced;

g. On the Lie algebras Ha, b4, b5 there exist complex structure having balanced com-
patible metrics but also not admitting such metrics. On b3 there is only a complex
structure admitting compatible balanced metrics;

h. There exists an SKT metric on g if and only if is isomorphic to bs, by, bs or bs.

1. There exists an sG metric on g if and only if it is isomorphic to by, for k =
1,...,6 or big.

From points f. and g. we get that the only NLAs we are possibly interested in
are

b = (0,0,0,0,12, 34) bs = (0,0,0,0,13 + 42, 14 4 23)
bs = (0,0,0,0,0,12 + 34) be = (0,0,0,0,12,13)
bs = (0,0,0,0,12, 14 + 23) by, = (0,0,0,12,23, 14 — 35)

On the symplectic side instead, a result of classification is represented by the
work of Conti, Tomassini [26]. General half-flat NLA were classified by the first
author in [25]. Also in [10] appeared nilpotent examples which correspond to some
we have constructed.

The only symplectic half-flat NLA’s are

he = (0,0,0,0,12,13) and b = (0,0,0,12,13,23)

We remark there is no in literature a corresponding treatment, as done for the
complex balanced condition, on the symplectic side. Below we will present a useful
lemma which helps understanding when a Lie algebra can not admit a symplectic
half-flat structure. That is a slightly improvement of the criterion used in [26] and
[30]: it is still a computational method but it has the advantage to be defined in
terms of the symplectic cohomology of the algebra.
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Solvable Lie algebras

The list of six-dimensional solvable Lie algebras (SLA from now on) is notably more
numerous. Among all SLA we will consider only the unimodular one. The SLA
(non-nilpotent) admitting a complex balanced structure are presented in [32].

Theorem 2.5.6 ([32]). Let g be a unimodular (non nilpotent) solvable Lie algebra of
dimension 6. Then, g admits a complex structure with a non-zero closed (3, 0)-form
if and only if it is isomorphic to one in the following list:

= A;7 M @R = (15,25, -35,45,0,0)
g5 = A; 5 @R = (o 15+ 25, 15+ a 25, —a 35 + 45, -35 — « 45,0,0) a >0
gs = ¢(2) ®e(1,1) = (0,—13,12,0, —46, —45)
gs = Ag3r = (23,-36,26, —56, 46,0)
g5 = ATl = (24 + 35,26, 36, —46, —56, 0)
g6 = Ag o = (24 + 35, —36, 26, —56, 46, 0)
g7 = Blg = (24 + 35,46, 56, —26, —36, 0)
gs = N(?H}3 1= (=16 + 25, —15 — 26,36 — 45,35 + 46,0, 0)
g9 = B}, = (45,15 + 36, 14 — 26 + 56, —56, 46, 0)

While for special metrics

Theorem 2.5.7 ([32]). Let (M = G/I', J) be a 6-dimensional solvmanifold endowed
with an invariant complex structure J with holomorphically trivial canonical bundle,
and denote by g the Lie algebra of G.

e Then, (M,J) has an SKT metric if and only if g is isomorphic to g5 or g,

e Then, (M, J) has a balanced metric if and only if g is isomorphic to one of
01,95, 93, 05, 97, 8s. Moreover, in such cases, any J admits a balanced metric
expect for the first two complex structures on gs.

e Then (M, J) has an sG metric if and only if g is isomorphic to one of g1, 95, 93, 85, 97, Os-
Moreover any invariant Hermitian metric is sG.

On the other side, the list of SLA admitting a symplectic half-flat structure are
listed in [30].

Theorem 2.5.8 ([30]). A unimodular (non-Abelian) solvable Lie algebra g has a
symplectic half-flat structure if and only if it is isomorphic to one in the following
list:
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¢(1,1) @ e(1,1) = (0, —13, —23,0, —46, —45)

g51 @R = (0,0,0,0,12,13)

Asp P @ R = (15,25, -35,45,0,0)

as.vs = (0,0,0,12,13,23)

AT O R = (a 15425, —15 + o 25, —a 35 +45,-35 —  45,0,0) a >0

9035 = (23,36, 26,26 — 56,36 + 46, 0)

o051 = (16 + 35, —26 + 45,36, —46, 0, 0)

gons ' = (—16 425, —15 — 26,36 — 45,35 + 46,0, 0)

Some of these already appeared as examples in [83] (e(1,1) @ e¢(1,1) and 92:5?41)
while the nilpotent gs; & R in [13].

Remark 2.5.4. Solvmanifolds have been proposed as compactification space in string
theory by various authors [1],[31],[40],[41],[42]. One of the results of the thesis is the
discovery that some of these NLAs and SLAs can be paired by a mirror symmetry
relation.

A useful lemma
In the case of a symplectic half-flat structure the equations (2.16) reduce to
dw =10

dypt =0 (2.22)
Ay~ = -0y ANw

and there is an additional identity involving the operator d*:

dMp™ = (dA — Ad)yp~ = —Ady~ = 593
= Aoy ANw) = ALoy = 09 (2.23)

since

A~ =—*Lxyp” =—*LpT = —x (wWAYT) =0 (2.24)

Lemma 2.5.1. Let M be a compact siz-dimensional manifold with a syumplectic
half-flat SU(3)-structure represented by (w, Q2 = ¥+ + ™). Then doy = 0 implies
09 = 0.

Proof. Let (a, B)s = [), a/Ax,f the scalar product induced on A®*M by the symplectic
hodge star operator %, = Jx = *.J. Then
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lo2|2 = (o2, 02), =

:/ 09 N\ %409 = (02 EA%M)
M

_ _/ oy Aoy Aw = (by (2.16))

2.25
= / o9 A dip~ = (Leibniz) (2.25)
M
= —/ d(oa A7) +/ doy AN~ = ( Stokes Theorem)
M M
= —/ doy AN~ =0 ( by hypothesis)
M
Therefore, since (,) is non degenerate we get oo = 0. O]

Remark 2.5.5. [49] A solvmanifold G/U is Kdihler if and only if it is a finite
quotient of a complex torus which has the structure of a complex torus bundle over
a complex torus. If G is completely solvable, then G /T is Kdhler if and only if it is
a complex torus.

Corollary 2.5.1. On a compact, siz-dimensional, symplectic solvmanifold M =
G/T, if the operator dd™ is zero when restricted to A*g*, then M cannot admit a
symplectic half-flat SU (3)-structure, unless it is a torus.

Proof. By the identity 2.23, dd*y = 0 for every 3-form ~ would imply dd*¢~ =
dos = 0. Then for the previous lemma there would not be torsion anymore and the
manifold should be Calabi-Yau. This can happen only if M is a torus. O

Therefore, in view of this lemma, at least for non-toric solvmanifolds, the con-
dition dd*Im€ = 0 is complementary to the condition dReQ2 = 0. This is the same
that happens for SKT and balanced structure in the complex non-Kéhler case. It is
then reasonable to call a manifold (M,w, Q) such that dd*ImQ = 0 a symplectic
SKT manifold. This is in accordance with the fact that, in presence of torsion, also
flux-forms make their appearance and they are related to the dd* and 90 operators.
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Chapter 3

Constructing SYZ pairs

In this chapter we first recall briefly the setting as described by Lau,Tseng,Yau
[61] and then we explain the method by which we intend to produce examples that
satisfy all the required properties.

3.1 Strominger-Yau-Zaslow picture

Let 7 : M — B be a Lagrangian fibration with compact connected fibers. As we
have already seen, the fibers are necessarily tori and there is an induced integral
affine structure on B. By the Arnol’d-Liouville theorem, every b € B has an open
neighborhood U C B such that (77}(U),w) is symplectomorphic to (T*U/A*, Wean)
where A* C T*U is the lattice induced by the integral affine structure. Around
7~1(b) there exist local coordinates {r1,...,7r,,01,...,0,} such that the lattice bun-
dle A* is generated by drq,...,dr, and the symplectic form w is in Darboux coor-
dinates w = Y, db; A dr;. The dual torus bundle 7 : M — B is locally obtained
by #7Y(U) ~ TU/A where A is the dual lattice generated by taking {aim, e afn .
That is, we are just dualizing, fiberwise, the torus fibration.

Remark 3.1.1. M can be also interpreted as

M :={(b,V) | re€ B, Visa flat U1)-connection on =~ (b)}
The dual bundle map 7 : M — B is then given by forgetting the fiberwise connection.

The dual total space M is endowed with a canonical complex structure: for
each b € B there exists an open subset U C B containing b and a biholomor-
phism 7~ 1(U ) = TU/A, where A is the dual lattice bundle of A* generated by
{8%1, e B 9 1. Then dual coordinates on the fiber of TB are denoted as 0y,...,0,

and one can take z; = 6; + ir; as complex coordinates on M. If the affine structure
on the base can be taken with special linear part, then one can define a holomorphic
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volume form on M which is locally given by

n

Qcan = /n\ dZZ = /\ (déz + Zd?”z)
i=1

=1

Definition 3.1.1. We will refer to M and M in this construction as a semi-flat
mirror pair or just an SYZ (mirror) pair.

Semi-flat setting and SU(3)-structures

We now return to the three-dimensional case and, using the notation coming from
the SYZ construction, we will restrict our attention to a subset of the algebra of
differential forms.

Definition 3.1.2. We denote with A% (M, C) the space of complez-valued k-forms
on M which depend only on the base, also called semi-flat (differential) forms.
An element ¢ € AY%(M,C) is locally written as

¢:ZGIJ(T>d9]AdTJ
1,J

where I = (iy,...,1,), J = (J1,...,Jq) are multi-indices and p + q = k, (r;,0;)
are action-angle coordinates and ay;(r) are complex-valued functions on B with r =
(7’1, c. ,T’n).

If the total space of the fibration 7 : M — B admits a SU(3)- structure (not just
a symplectic form), we denote with AR\ (M) C AR(M) the space of semi-flat
(p, q)-forms. Since in our construction the choice of the Lagrangian distribution
will be indeed induced by the fibration itself we will omit the subscript for the dis-
tribution and we will write just A%?(M) (see section 2.4.1). Clearly the p-directions
in A correspond to dfy,dfsy,dfs; while the g-directions for the orthogonal At to
dTl, dTQ, dTg.

Similarly, we will denote with A2%%(M) the semi-flat (p,q)-forms on the SYZ-dual
M which are locally written as.

QVS = Z aU(r)dz[ A dZ]

1,J

Definition 3.1.3. Let (M,w, ) a supersymmetric SU(3) system of type IIA. As-
sume that M — B has the structure of a Lagrangian-torus bundle. If the defining
forms w,Q are taken in A% (M, C) then (M,w, Q) is said to be a supersymmetric
semi-flat SU(3)-structure of type ITA. Analogously, if (M,&,Q) is a super-
symmetric SU(3) system of type IIB such that & and Q are in A%* (M), we say that
(M,2,9) is a supersymmetric semi-flat SU(3)-structure of type IIB.
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Also the (refined) Tseng-Yau and the Bott-Chern cohomology can be restricted
to the semi-flat forms only:

, Ker (d+ d*) N AR (M)
s M) = =1 @@y Az ()
. Ker (d) N A% (M)
HYEL 5(M) = —
sesM) =10 (09) N AB(M)

(3.1)

On the complex SYZ-dual, the (p,q)-decomposition on forms is taken with re-
spect to the complex polarization induced by the aforementioned complex structure
Q). However, on M, we can take another polarization induced by the dual action-
angle coordinates {r;, éz}

This extra structure in the complex side allow us to define a new operator:

Definition 3.1.4. The polarization switch operator P on A}'(M) is defined
as the operator which acts as a switch on the basic wedges as

dZ[<—>dé[ , d2J<—>dTJ
Therefore if

Cg = ZGIJ(T)CZZ[ A d?l]
1,J
one has

P‘QB:Z(I[J(T)dé]AdTJ

1,0

3.1.1 Fourier-Mukai Transform and Mirror Symmetry

We are now in place to define the main tool of the construction which realizes the
mirror transform. Let m : (M,w,Q) — B be a supersymmetric semi-flat SU(3)-
system of type ITA. Let 7 : M — B its SYZ-dual and consider their fiber product
over B:

MXBM

N

P
M

7
S A
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On the Poincaré bundle line over M x g M there is a universal connection which
locally is written as d + 16;df; + 16;df; . Its curvature form is

3
F=2iY df; \db; (3.2)

We can finally define

Definition 3.1.5. Let ¢ € A%(M) and ¢ € A%(M). Their Fourier-Mukai
transforms are defined as

FT-@iz]h((p( ) Aexp — )
FT6:= P (b (0" ¢)/\exp_2—))
where the pushforward maps p., P« are just the integration along the fibers.

We recall here the main properties of the Fourier-Mukai transform:

Proposition 3.1.1 ([61]). We have

o FT? = (—1)"%"1d
. FToé-qB:(*;)”‘ldoFT-qs
e FTod -¢=" dho FT. ¢

We note also that

Lemma 3.1.1. The Fourier-Mukai transform intertwines, up to a sign, complex
conjugation with the symplectic Hodge star operator, that is

FT-¢=x, FT &
Proof. Denote with ¢ : A%*(M,C) — A% (M, C) the complex conjugation.
On the basic element dz; A dZ; the Fourier-Mukai transform acts as

FT(dZ[ N dZJ) = d@[c VAN dTJ
Then, by straightforward computation:

FT(c(dzI A dz,)) — FT (dzJ A dz,) — dfye Adry

while
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wu(dbic Ndrs) =+ (Jo (A8 A drz) ) = (00 A dric) = dbpe A drc

Then by setting K = I° and L = J we get the claim.

Using Proposition 3.1.1 the authors in [61] prove the following

Theorem 3.1.1 ([61]). Fourier-Mukai transform induces an isomorphism of double
complexes

(Ag'(M, C), (_;)nid, (_;)nid/‘> ~ (A;'(M,C),é, a)

and at level of cohomologies
Hy £5/(M, C) ~ Hpsc (M) (3.4)

The last isomorphism is precisely the mirror symmetric relation between the
diamonds associated to the two different cohomology theories. This is the non-
Kahler version of mirror symmetry.

Finally we can state the main result of [61] for which we want to produce concrete
examples:

Theorem 3.1.2 ([61]). Let (M,w) and (M,Q) a semif-flat SYZ-pair. Let & be a
real (1,1)-form in Ag' (M) and set Q = FT(e**). Then

1. The triple (M,w,Q) forms a SU(n)-structure if and only if (M,w,Q) forms
a SU(n)-structure. Moreover the conformal factors are related by the relation
FF =27,

2. (M,w, Q) is supersymmetric of type IIA if and only if (M, o, Q) is supersym-
metric of type IIB;

3. Under Fourier-Mukai transform the fluxes pa and pg correspond to each other
up to a constant multiple.

3.2 Strategy for constructing semi-flat SYZ mir-
ror pairs from affine structures on Lie groups

In this section we will show how to produce pairs of compact six-dimensional solv-
manifolds which admit semi-flat supersymmetric SU(3)-structure and satisfy the
relation (3.4) and the Theorem 3.1.2.
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We started from the computation of the Tseng-Yau cohomology for the NLA’s
we knew were admitting a symplectic half-flat structure and we noticed that, un-
der the right (p, g)-decomposition, the numbers could be related to the Bott-Chern
numbers in [60]. This would have meant that the nilmanifolds underlying these
NLAs were possible candidates as mirror pairs. As mentioned in the preliminaries,
a (2-step) nilmanifold fits in a natural torus fibration over a torus which comes from
the study of the commutator subgroup of the nilpotent Lie group (see Palais and
Stewart [71]). Nevertheless, this fibration is not, in general, Lagrangian. Moreover,
since we started working with homogeneous manifolds, it was reasonable to look
among nilmanifolds also for the base B. This had limited the possibility to only
two options: a three-torus or a Heisenberg manifold. At this point, we noticed
that all the nilpotent Lie groups involved in our analysis could be obtained as a
semidirect product G x, R*, where G was the three-dimensional Heisenberg group
or the additive R3. Different choices of the acting homomorphism p would lead to
different six-dimensional nilpotent Lie groups. We then reversed the point of view
and started with the group G and considered its cotangent bundle 7*G which is
globally a trivial vector bundle G x R? since the group is parallelizable. Then, the
construction of the six-dimensional Lie group G x ,R? was just endow the cotangent
bundle T*G with a group structure. The six-dimensional manifold is obtained by
quotienting by the lattice I' x, Z? so that

M=Gx,R*T'x,7* " B:=G/T (3.5)

is an honest submersion between compact, smooth manifolds. The natural pro-

jection on the first factor Gx ,R? 5 G, being also obviously a group homomorphism,
descends to a well-defined map 7 between the quotients. However, we still had to
let the symplectic geometry enter the picture. In Lau, Tseng, and Yau [61] the
example given is represented by the Lagrangian torus bundle T*B/A* — B where
B is the Heisenberg manifold and the symplectic form is the canonical one. We then
reinterpreted this example in our language and realized the total space T*B/A* of
the fibration as a nilmanifold, namely we realized it as a homogeneous space for the
nilpotent Lie group G x, R? (see the lemmas below). A posteriori, looking under
the lens of section 2.3.2, this construction corresponds to having a Lagrangian fi-
bration w : M — B with a global section that makes the (symplectic) identification
of M with the torus bundle T*B/A*. Nevertheless, we remark that the presence
of monodromy, related to the homomorphism p, makes the topology of the total
space highly non-trivial. The fundamental observation we made at this point was
the possibility to relate all this construction with the integral affine geometry of the
base B. In fact, it was already well-known that the monodromy of the fibration
M 5 B, once a basis for the H,(7'(b),Z) is fixed, is just the inverse transpose
of the linear holonomy of the affine structure of the base. What we have done was
just conciliate this feature with the group structure of our spaces. This has been
fundamental to exploit all the advantages of working with homogeneous spaces. We
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then extended this construction to the (completely) solvable case with G = E(1,1)
producing more new examples. This should work also in the non completely solvable
case with the appropriate minor modification but we have not treated this in our
discussion. We will say more in the conclusions. In the following, we will explain in
detail the construction in full generality.

Let G be a simply connected, unimodular, solvable n-dimensional Lie group and
let I' C G be a lattice. Recalling the notation in section 2.1, let a : G — Aff(R")
an affine representation and assume that its restriction to I', say a := a|r, restricts
to an integral affine representation of the lattice a : I' — Affz(R™). That is, we
have chosen a left-invariant affine structure on G that descends on an integral affine
structure on the quotient B := G/I". Denote with A and [ the linear part of o and
a respectively, that is A : G — GL(n,R) and [ : T" — GL(n, Z).

Consider now the natural projection 7 : T*G — G. Since G is parallelizable, one
has T*G ~ G x R". We want to endow T*G with a group structure induced by G
and its affine representation via semidirect product:

T"G =G x,R"
where ¢ := A7 (here =7 denotes the dual representation). For g,¢' € G and
v,v" € R™, the group law is therefore given by

(g,0) - (¢, 0") = (99", v + @(g)V').

Clearly this construction endows also the tangent bundle T'G of a group structure
via G X, R™ in the same way. Set, just as a matter of notation, 7"I' := I" x; Z" and
consider the quotient M := T*G/T*T (analogously set TT :=T' x(Z" so that M :=
TG/TT will be in the sequel the dual fibration). The projection 7 is equivariant
with the actions (indeed it is a group homomorphism) and therefore it descends to
a well-defined map on the quotients:

T: M — B

Moreover T*G/T*I" can be identified with 7*B/A* where A* is the lattice in
T*B generated by {dry,...,dr,} and {ry,...,r,} are the affine coordinates of the
structure induced by «. This identification can be shown as follows.

First of all, also B is parallelizable and therefore T*B is globally a product

B x R™ as well. Moreover B x R" is the quotient of 7*G = G x, R" by its subgroup
I' x {0} ~ . Thus we can define a natural action of 7*G on T*B via

(9,9) - (Th,v) = (Thg™",y + ¢(g)v) (3.6)

for g,h € G and y,v € R". We are tacitly identifying the R" factors.
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Lemma 3.2.1. The map defined in (3.6) is indeed an action. Moreover it is tran-
sitive.

Proof. Clearly (e,0) - (I'h,v) = (I'h,v). We check it is an action

(9,v) - ((9’7?/) - (Th, V)) = (g9.y) - (Chg™", ¥ + ©(g')v)

= (Thg' " g™y + o(g)y + o(g)e(g)w) BT
= (Ch(gg") "y + 0(9)y + ¢(99)v)
while
(99", y +¢(9)y') - Th,v) = (Ch(gg) ",y + ¢(9)y + ¢(g9)v) (3.8)

In order to show that this is transitive let (I'h, v) and (I'k, 1) two different points
in 7* B and just take the element in T*G of the form (g,y) := (k™ h, u — o(k7'h)v).
By plugging this in the action we get (g,y) - (I'h,v) = (Tk, )

[

Also the lattice A* acts on T*B by translations:

(Th,1) - (Th,v) = (Th, 1 + ) (3.9)

where [ = Z? m;dr; and the m;’s are in Z. We claim that these two actions are
indeed compatible, namely

Lemma 3.2.2. The action 3.6 and 3.9 commute

Proof.
(9.9)- (Ch.0) - (Ch.v)) = (9.) - (Th.v +1)
= (Thg™,y+ ¢(g) (v + 1)) (3.10)
= (Chg™ ",y + o(g)v + ¢(9)1)
while

(Thg™",1') - ((97 y) - (Th, V)) = (Thg™,I') - (Thg™",y + ¢(g)v)
= (™" y + plg)v +1) (3.1)
= (Thg ™,y + w(g)v + w(9)l)
Where in the last equality the fact that I’ = ¢(g)l follows from the change of basis
for covectors from the point T'h to Thg™'. We indeed note that ¢ is just the (dL,)*

in the basis dry,...,dr, (see the remark 2.1.2) .
[
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Therefore the T*G-action on T'B descends on T*B/A*. Clearly we can also see
from the construction, and the last observation, that the stabilizer of this action
is indeed I' x, Z™. In fact, under our initial hypothesis, for v € I', ¢(v) takes
values in GL(n,Z) and therefore ¢(+)l is trivial mod A*. This exhibits T*B/A* as a
homogeneous space for the action of TG ~ G x, R™ with stabilizer 7*I" = I" x; Z".
Therefore T*G /T*T" ~ T*B/A*. We will refer to them commonly with M. Clearly,
by taking the dual correspondent for each ingredient, one can obtain the same for
TG/TT and TB/A and we will refer to them commonly with M. A posteriori we
can do also the following observation

Remark 3.2.1. The fibration 7@ : T*G — G has a natural global section ¢ : G —
T*G = GxR", namely its zero-section as a vector bundle. We note that & commutes
with the action of T*T" and therefore descends to a global section o : B — M. From
what we have seen in the section 2.3.2, the presence of the global section allows us
to identifiy the bundle 7 : M — B with the torus bundle 7 : T*B/A* — B so that
m: M — B is a honest Lagrangian torus bundle.

The SU(n)-structure

Starting from a solvable n-dimensional Lie group, a left-invariant affine structure
on it, and the choice of a lattice, we produced a recipe to construct a compact
2n-dimensional smooth manifolds M admitting a Lagrangian torus fibration over a
compact n-dimensional smooth manifold B. How can we endow M with an SU(n)-
structure? Having already a symplectic structure w, it remains for us to define
a complex n-form with the properties satisfying definition 2.4.1. We will achieve
this by blending the theory of action-angle coordinates with the group structure
underlying our construction. Recall by section 2.3.2, that action coordinates on B
correspond to the local coordinates given by the developing map. In particular,
they are global on B = G. In the same way, action-angle coordinates on M lift
to global coordinates on M = T*G. In these coordinates w = Yoo do; ANdr;. In
other words, action-angle coordinates allow us to symplectically identify (T*G,w)
with (R*", wean). We claim that w is indeed left-invariant with respect to the group
structure on T*G.

Lemma 3.2.3. Left multiplication map of T*G acts by symplectomorphisms of
(TG, w).

Proof. Let h = (g,v) € T*G = G x R". Under the identification (T*G,w) ~
(R*", wean) described above, the differential of the left-multiplication map Ly, :
"G — TG

(9", 0") — (g,v) - (¢',v") = (99", v + ©(g)v)

0 A
which are indeed symplectic. Therefore, one gets Liw = w. O

is represented, pointwise, by matrices of the form <>\(g ) 9 (g))
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Naively, one would be tempted to define the complex n-form as Q := A" (d6; +
idr;). Unfortunately, this is not left-invariant. Nevertheless, we can argue as follows.
Action-angle coordinates give a global coframe dry,...,dr,,df,...,d#, on T*G.
We can obtain a left-invariant coframe by simply applying the differential of left-
multiplication as above. Define the following 1-forms:

: Lydo; for i=1,...,n
e = . (3.12)
Liydr; for i=n+1,...,2n
Since the symplectic form w is left-invariant, it can be written as
w=Y do; Ndr; =Y Lydb; A Lpdr; =Y e Nt (3.13)
i=1 i=1 i=1
Consequently, by defining
Q= N\ L;(db; + idr;) = \(L;db; + iLjdri) = [\ (¢’ + ie"™) (3.14)

i=1 =1 i=1

we obtain a left-invariant complex n-form with the desired properties.

Therefore the triple (M, w, §2) define a symplectic SU(n)-structure together with
the structure of a Lagrangian torus fibration over the n-dimensional manifold B.
In particular, the SU(n)-structure is semi-flat, in the sense that the defining form
(w, Q) are semi-flat by construction.

This procedure can be dualized by taking T'G and the coordinates r1, ...,y 01, . . .

introduced at the beginning of the chapter. We have already a complex structure
defined by the complex n-form Q = A", (df; + idr;). Namely J(dr;) = df; and
J(df;) = —dr;. The Lemma 3.2.3 has its dual version: for h = (g,7), the left
multiplication map Lj : TG — TG

(9", 0") — (g,0) - (¢, ") = (99", 0 + A(g)D")

is represented, pointwise, by matrices of the form ()\%g) A\ ?g))

which are complex with respect to the complex structure induced by Q =
Niy (d6; + idr;). So we get

Lemma 3.2.4. Left multiplication map of TG acts by biholomorphisms (with respect
to the complex structure J induced by €).

Nevertheless, in order to obtain again the left-invariance I};LQ = Q) the hypothesis
of a special affine structure on the group G is needed since it implies that the
determinant of the matrix diag(A, \) is indeed one.
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We need to build the two-form . Again the naive definition via )", db; Adr; is

not left-invariant. Dually, we have a global coframe on T'G given by dry, . .., dr,, db;, . ..

So define the following 1-forms:

G l};d@i for zizl,...,n (3.15)
Lidr; for i=n+1,...,2n
Analogously, the complex n-form is left-invariant
Q= N\(db; + idr;) = \(L;df; +iLidr;) = \(€' +ie™™) (3.16)
i=1 i=1 i=1
and, by defining
@:=Y Lydf; ALidr; =) & et (3.17)
i=1 i=1

we obtain a left-invariant (1,1)-form with the desired properties. The triple
(M,w,Q) defines a complex SU(n)-structure with a torus fibration over B dual to
(M,w, ) — B. Again, the forms (w, {2) are semi-flat by construction.

We therefore obtained a pair (M,w,Q) and (M,©,Q) of manifolds admitting
SU(n)-structures which form also a (semi-flat) SYZ pair.

Remark 3.2.2. At the linear algebraic level, the prototypical examples of symplectic
and complex linear spaces are given by the direct sums V ®V™* and V&V respectively
which are mone else that the linear approximation, at each point of our spaces. In
this sense then, at the infinitesimal level, this explains the switch between symplectic
and complex geometry performed by T-duality.

We summarize all the results of this section in the following statement.

Theorem 3.2.1. Let G a simply connected, unimodular, solvable, n-dimensional
Lie group and let T' C G be a lattice and set B := G/T". Let « be a special affine
representation of G induced by a developing map Dev and assume that the affine
holonomy a := a|r is integral. Denote with A, | their linear parts respectively and with
@, § their inverse transpose. Set M := G x ,R" /T x; Z" and M := G x\R" /T % Z"

1. There is a transitive action of T*G = Gx ,R"™ on T* B/ A\ with stabilizer I'x;Z"
which realizes T*B/N* as a homogeneous space for the solvable Lie group T*G.
Analogously for TG and TB/A;
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2. M ~ T*B/A* and M ~ TB/A as torus-fibration. In particular M admits a
symplectic structure w such that (M,w) is symplectomorphic to (T* B/A*, wean)
and M admits a complex structure Q0 such that (M,Q) is biholomorphic to
(TB/A, ),

3. Moreover, M admits a complvex th(‘ee—form Q and M admits a real (1,1)-form
w such that (M,w,Q) and (M,©,Q) are semi-flat, SYZ dual, supersymmetric
SU(n)-systems. In particular FT(e**) = 2.

Therefore (M,w, Q) and (M,,Q) satisfy the theorem 3.1.2 ([61]) and the rela-
tion 3.4.

The rest of the thesis is devoted to showing concrete examples for this construc-
tion when n = 3.

3.3 Affine structures and representations

For what we have seen, recall in section 2.5 we have excluded F(2), the only possibil-
ity for G in dimension three is one of H3(R), E(1,1) or the abelian (R?, +). We now
describe some affine representation of G and the correspondent affine coordinates.
Different choice for the developing map will lead to different affine representations.

3.3.1 Heisenberg group H;(R)

Choose as developing map

Dev : H3(R) — R?

1 Tr1 XT3 I (318)
0 1 zo| — | x9
0 0 1 T3
1 r1 I3 V1
Forg=[0 1 29| andv= [vy] € R® we compute @ = Devo L, o Dev !
0 0 1 U3
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a(g)(v) = Devo L, o Dev'(v)

1 V1 Vs
:DeVOLg< 0 0 wg >
0 0 1
1 V1 U3
0 1 UQ )
0 (3.19)

xr1 X3

1
:Dev<0 0 x9

0 0 1

1

0

T1+ v T3+ v+ 102
= Dev( 1 To + Vs
0 0
T+ U1 1 0
= Lo + Vg = 0 0
T3 + U3 + T102 0 =1 1
Thus we obtained a homomorphism from H3(R) to Aff( R3 L(3,R) x R3
1 1 T3 1 0 0 I
0 1 x| +— ( 0 1 0], ) (3.20)
0 0 1 0 I 1 T3

Affine coordinates on G are then defined by setting

rn =T
9 = X9 (321)
s = T3

If we perform the same computation in (3.19) for v € H3(Z) we get

1 0 0 U1 ny
a)w)=10 1 0 ve | + [ n2 (3.22)
0 ny 1 (% ng
so that the assignment
0 1 ng|+— ( 0 1 0f,|ne > (3.23)
0 0 1 0 nq 1 R}

is a well-defined homomorphism from H3(Z) to Affz(R3) = GL(3,Z) x R?® (the
translation part is Z3 indeed, but we are interested just in the linear part).
Set now for future reference
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1 0 0
Ay i=Linoca:g— |0 1 0
0 T 1
(3.24)
1 0 0
[yi:=Linoa:y— |0 1 0
0 s 1
Twisted developing map for H;(R)
Take now as developing map
Dev : H3(R) — R?
Loz o 1 (3.25)
0 1 x9|+—— )\272
0 0 1 (A= 1)a3 + 2129

with inverse is Dev™' : R? — H3(R)

v Lo (o — 252)
v | — |0 1 UTQ
Vs 0 0 1

where A € R\{0, 1}.
By doing the same computation for (3.19):
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a(g)(v) = Devo L, o Dev ' (v)

1ov 5(vs — 252)
= Devo L, 0 1 k2

By
0 0 1
1 1 I3 1 U1 ﬁ(’US - %)
= Dev( 0 0 @] |0 1 % )
0 0 1 0 0 1
1 o +v vy — B2) + x5 4 L2
= Dev( 0 1 To + % )
0 0 1 (3.26)
T+ v
= AT + Vo
()\ — 1).1‘3 + v3 — % + %I’lvg + (fL’l + Ul)(l’g + %)
T+ v
= ATy + Vg
(A = D)xg + v3 + 2103 + 2201 + T129
1 0 O (%1 A
== 0 1 0 (%) -+ )\ZL’Q
To T 1 V3 ()\ — 1)1‘3 + 1129

we obtain the following linear representations for Hs(R) and H3(Z) respectively

1 0 0 1 0 O
Ang2:gr— | 0 1 0 and Iyo:y— [0 1 0 (3.27)
To TI1 1 N9 1N 1
and affine coordinates
=
7"2:)\332 (328)
’1"3:()\—1)33'3+l'1$2
3.3.2 E(l,l)
Choose as developing map
Dev: E(1,1) — R?
et 0 0 =z .
0 e 0 3| ! (3.29)
0 0 1 x 2
0 0 0 1 3
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with inverse Dev ™' : R® — E(1,1)

y e 0 0 vy
vl . 0 e™ 0 wvs
; 0 0 1 u
3 0 0 0 1
e” 0 0 T v
For g = 0 0 1 a2 and v = 22 € R® we compute a:
0 0 0 1 3

a(g)(v) = Devo L, o Dev ' (v)

e 0 0 vy

Soeon (550 )
0

en 0 0 ) v 0 0 V2
B 0 e™ 0 z3 0 e 0 wus
_DW< 0 0 L a||l0 0 1 ) (3:30)
0 0 0 1 0 0 0 1 ’
eT1tul 0 0 a9+ ety
_ Dev 0 e "m0 34 e Flug
- 0 0 1 1+ U1
0 0 0 1
I -+ (%1 1 0 0 (1 )
=| xo+e"vy | =0 ™ 0 vy | + | 22
T3+ e Flug 0 0 e™ V3 T3

Thus we obtained a homomorphism from E(1,1) to Aff(R?) = GL(3,R) x R?

“ eilg 2 1 0 0 T

Sle—= {0 e 0 |, | (3.31)
0 0 1 = 00 e
0 0 0 1 ° v

Take now an element ~ in I';. It is of the form

e 0 0 ng+elng

10 e™ 0 ngt+eng
1o o 1 tn,
0 0 0 1
3+5

with n1,n9,n3 € Z and for a fixed ¢ = log (see section 2.5). If we compute

2

again the integral affine representation a(v)(v) we get
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1 0 0
0 e™ 0
0 0 e'™

as linear part which does not lie in GL(3,Z). Nevertheless it is conjugated to an
element of GL(3,Z) as the following identity shows

1 0 0 10 0 10 0 1 0 0
0e 0]=101 ¢ 00 -1 01 ¢ (3.32)
0 0 e 01 et 01 3 0 1 et
So that
1 0 0 10 10 0\" /10 o\
0 emt 0 =0 1 ¢ 00 —1 01 ¢ (3.33)
0 0 emt 0 1 et 01 3 01 et
Therefore, though the linear part has not integer entries, it represents an auto-
1 0 0
morphism of the lattice generated by < o],(1],] ¢ > inside R3. We will
0o/ \1 ) r
denote this lattice with Z3.
Finally set
1 0 0
Asqp:=Linoa:gr— [0 e 0
0 0 e™
(3.34)
1 0 0
[s1:=Linoa:y+—— [0 e™ 0
0 0 e'm
while affine coordinates are then defined as:
r =T
o = T2 (335)
s = I3

Twisted developing map for E(1,1)

Take now as developing map
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Dev: E(1,1) — R?

e 0 0 Ty + Tk
0 e 0 ws| ! . 273 (3.36)
0 0 1 x ;
0 0 0 1 3
with inverse Dev ™' : R3 — E(1,1)
eV V23 0 0 Vg
Zl R 0 67U1+U2v3 0 ,US
'02 0 0 1 v — vaus
3 0 0 0 1
Again we compute
a(g)(v) = Devo L, o Dev'(v)
ev1—v2us 0 0 Vg
B 0 e*v1+v21)3 0 U3
= Devo Lg ( 0 0 1 V1 — UaUs )
0 0 0 1
et 0 0 =x9 evi—v2us 0 0 Uy
—T1 —v1+v2v
_ Dev 0 e 0 x3 0 e~ viTv2us () U3
0 0 1 T 0 0 1 V1 — U2U3
0 0 0 1 0 0 0 1
P TvLI—v2u3 0 0  x9+ ety
B 0 eTTLTUIARUS () o e Ty
—DeV< 0 0 1 xr1 -+ v — V2U3
0 0 0 1
T1 + U1 — vovz + (T2 + €g) (23 + e ")
— To + €1y

T3+ e "o

T1 + v1 + X223 + 2" ug + 365 19

= Ty + €™y
T3+ e Flug
1 x3e™ x9e ™1 U1 T, + ToTs
=10 e 0 Vg | + T
0 0 e ™ U3 T3

(3.37)

and we obtain a different affine representation for £(1,1):
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e” 0 0 T2 z1 —
0 e 0 z 1 x3e Toe Ty + Tox3
l— | [0 e 0 , Ty (3.38)
O O 1 I 0 O —x
0 0 0 1 c 3

Take v € I'y. If we compute a(v)(v) we obtain as linear part

1 6tn1 (77,2 + eftng) e*tnl (712 + etng)
0 etm 0 (3.39)
0 0 e tm

which, again, does not lie in GL(3,7Z). If we want to show this is still conjugate
to an integral matrix as in (3.39), the computation is rather more cumbersome.
Nevertheless, take as generators for I';:

et 0 00 100 1 100
0 et 0 0 o101 o1 0 e
=10 0 1 ¢ 2o 0010 Bl 01 0
0 0 01 000 1 000 1
(3.40)
so that
10 0 111 1 e et
Ay =10 € o My =01 0] , Ayw)=[0 1 0] 341
00 et 00 1 00 1
We observe:
10 0 10 0 10 0 10 0\ '
0e 0l=[o1 e]loo =1]l0o 1 ¢
0 0 et 01 et)\01 3 01 et
111 10 1 23\/10 o\
01 0|l=(01 el|lflo1o]|lo1 ¢ (3.42)
00 1 01 et/ \oo 1/ \o1 et
1 et et 10 0 137\ /10 o\
01 0ol=fo1 e)lo1o0|llo1 ¢
00 1 01 et)\oo 1/ \o1 et

and again we can interpret a matrix of the form (3.39) as an automorphism of
the lattice Z3 as in previous example.
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Therefore the linear representations are:

1 x3e™ x9e™™

As2:=Linoa:gr— [0 ™ 0
0 0 e " (3.43)
1 e™(ny+ e 'ng) e (ny + e'ny) '
[go:=Linoca:y~— [0 ef™m 0
0 0 e tm
Finally, affine coordinates are defined as:
Ty =T+ TaT3
T9 = T9 (344)

rs = I3

Remark 3.3.1. It is nice to observe that the integral properties of the previous
matrices are linked to the algebraic properties of the roots of the polynomial 2> —kx+1
for x = e'. Indeed, the identities obtained in this section can be seen using repeatedly
the identity ¢! +e ' =k =3 .

3.3.3 (R +)

If we take as developing map the “identity map”, as above in the first choice for both
groups, we will obtain a trivial affine representation for the group G = R3. This
would imply trivial linear representation and therefore trivial monodromy. Conse-
quently, this would lead to a six-dimensional example isomorphic to a six-torus and
the fibration being trivial. We will then exclude this from our analysis.

Twisted developing map for (R?, +)

Take R? with coordinates (1, 3, x5) and choose as developing map

T T
Dev: | z3 | — T3 (3.45)
Ts Ty + T1X3
with inverse
U1 U1
Devt: | vy | — Vg (3.46)
U3 V3 — V1V2

We compute the representation:
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a(g)(v) =Devo L, o Dev ! (v) =

U1
Devo L, Vs =
V3 — U102
I 01
Dev T3 Uy
Ty V3 — V1V

T + 1
Dev T3 + Vo =
X5 + U3 — V1V

T+ U1 1 0 O Uy Ty
T3 + Vo =10 1 0 vy | + T3
T5 + U3 + T1T3 + TV + T30; x3 w1 U3 T5 + 1173
(3.47)

And analogously for v € Z3. Therefore the linear representation are

1 0 O
Ar:=Linoa:g— [ 0 1 0
rs x1 1
o (3.48)
1 0 0
[r ;= Linoca:y— | 0 1 0
ng n; 1
and affine coordinates defined as:
rn=o
T2 = T2 (3.49)

T3:$3+£C1l’2

3.3.4 Bonus map for H;3(R)

In this example we are going to take a particularly structure that leads to a six-

dimensional pair of examples of SU(3)-manifolds which don’t admit ITA/IIB struc-

tures but still satisfy the cohomological aspect of non-Kahler mirror symmetry.
Choose as developing map

Dev : Hy(R) — R?

A o (3.50)
0 1 x9|+—— |29+ Zl
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with inverse Dev ' : R® — H3(R)

U1 1 V1 Uz — %

2
V=10 1 wy— %
U3 0 O 1

We compute

a(g)(v) = Devo L, o Dev ' (v)
1 U1 ’U3—%
:DevoLg< 0 1 U2_ﬁ >
0 0 1
1 Tr1 XT3 1 (%1 Ug—g
:Dev< 0 1 x 0 1 U2_ﬁ )
0 0

Ly \o o 1

1 x14+v x34v3— %% + U9 — xl;%
:Dev< 0 1 QSQ—FUQ—% )
0 0 1 (3.51)
1+ v
= azg—l—vg—g—%—l—w

v T1v x1+v 3
$3+Ug_?1+$102_71+(171)

I + U1
g
= $2+’U2+$1@1+?
w%vl

3
x
T3+ vz + 1102+ G+ 5

2
X
=2z 1 O fo|+ |22+
2 3
.'L’l €T
5 o 1 Us T3+ 5

Thus we obtained a homomorphism from H3(R) to Aff(R?*) = GL(3,R) x R?

1 1 I3 1 0 O T

0 1 x| +— ( rp 1 0 |2 ) (3.52)
2

0 0 1 % r; 1 T3

Doing the same also for v € H3(Z) we get linear representations
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1 0 O
Ay :=Linoa:g+—— [z1 1 0
2
4 2 1
2 (3.53)
1 0 0
[y ;== Linoa:y+~— [n1 1 0
2
% ny 1
and affine coordinates:
rn =T
To = To + % (354)
:ES
s = I3 + Fl

3.3.5 Recap for linear representations

We recollect here the linear representations of the groups Hi(R), E(1,1), (R3 +)
that will be used to construct the six-dimensional Lie groups.

Dev(g) A p
T 1 0 0 10 0
Ny Ta 0 1 0 0 1 —uxy
T3 0 z; 1 0 0 1
Ty 1 0 0 1 0 —xz9
Ny A2 0 1 0 0 1 —uxy
(A= 1)z + 2129 Ty 11 1 00 1
Ty 1 0 0 1 0 0
S1 To 0 e 0 0 e™ 0
T3 0 0 e™ 0 0 em
T1 + Tals 1 e"taxg e lxy 1 0 0
So Ty 0 e™ 0 —x3 e 0
T3 0 0 e ™ re 0 e™
1 1 0 0 1 0 —xo
T To 0O 1 0 0 1 —x
T3+ T1To T9 x1 1 0 0 1
Z1 , 1 0 0 1 —x xg_f
Y Ty + %3 zp 10 0 1 -

Table 3.1: Linear representation associated to affine structures
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In this section we build the six-dimensional Lie groups G x, R® where the action p
is given by one of the preceding linear representations. We describe the group law
and its Lie (co)algebra. Also we relate the algebras obtained with the ones from the

various classifications.

3.4.1 GN,I = H3(R) [><<pN,1 R?’

Group law reads

/ / !/
To + Ty , | V2 + vy — 2105

T+ ) xy+xh+ x2 vy + v}
( |
0 1 v3 + 4

Rewrite this as

/ / / / / / / /
(x1 4 2, Ty + X%, T3 + T3, Ty + Xy, Ts + X5 + X125, Tg + T — T1T3)

We compute the derivative of the new left multiplication

1 0 0 00O
01 0 000
00 1 000
00 0 100
0Oz 0 010
0 0 —x 0 01

from which we get the following basis of left-invariant vector fields

0 0 0 0 0
E1—a—$1 E2_6_x2+x18_x5 ) E3—a—333—$18—%,
0 0 0
YT 0, N 57 Dug

The only non trivial brackets are

[El, EQ] = E5 and [El, Eg] = —E6
and dually

) (3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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el =dr; , e=dry , € =duxs,

4 _ 5_ 6_ (3.60)
e =dxry , e =drs—xidry , de’ =dxg+ xridrs.

de® = —dxy Ndxe = —e'?  and  de® = dxy A dxg = €' (3.61)

After the linear change x5 — —x3, this Lie algebra corresponds to gs1 @ R =
(0,0,0,0,12,13) in [30]. We will denote it with gy ;.

3.4.2 GV'NJ = H3(R) [><)\N,1 RS

Group law reads

1 oz a3 133’13:% vy
(01@ ))O xé,vé):
0 0 1 0 1) \w,
1
0
0

T+ w3+ ah+ x1w2 vy + U]
1 T + T4 : Vg + U5 (3.62)
0 1 Ug + U + 210
Rewrite this as
(z1 4 @), 20 + 25, 13 + 4, x4 + X, T5 + XL + X125, X6 + T + T12) (3.63)

We compute the derivative of the new left multiplication

1 0 0 00O
01 0 000
0O 0 1 000
00 0 100 (3.64)
0Oy 0 0 1 0
0 0 =z 0 0 1
from which we get the following basis of left-invariant vector fields
0 0 0 0 0
Ey=— , EBb=——+u1-— , EB3=_—+u—,
0x 0xo 0xs 0xs 0xg
5 P 9 (3.65)
4 8x4 ’ > 81'5 ’ 6 8x6

The only non trivial brackets are

[By, Ep] = Es and  [Ey, B3] = Eg (3.66)
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and dually
el =dr, , e =dry , € =dzs,
4 _ 5 _ 6 _ (3.67)
e =dxry , e’ =drs—xidry , de’ =dxrg— x1drs.
de® = —dxy Ndxs = —e'?  and  de® = dxy A dag = —e'3 (3.68)

which again corresponds to gs; & R = (0,0,0,0,12,13) in [30]. We will denote
it with gx1. ]
Clearly, Gy 1 and Gn1 (gn1 and gn,1) are isomorphic as Lie groups (algebras).

3.4.3 GN’Q = Hg(R) |><<pN,2 R3

Group law reads

/ / /
To + Ty , | V2 + vy — 2105

r1+ ) w3+ a4+ xa) V1 + U] — 20
( 1 ) (3.69)
0 1 v3 + v}

Rewrite this as

/ / / / / / / / /
(x1 + 2, 20 + @), 3 + 2%, x4 + T + X125, T5 + X5 — 125, k6 + T — Tawy)  (3.70)

We compute the derivative of the new left multiplication

1 0 0 00O
01 0 000
00 1 000
0Oz 0 100 (3.71)
0 0 —x; 010
0 0 —x5 0 0 1
from which we get the following basis of left-invariant vector fields
0 0 0 0 0 0
Ey=— Ey=——+m5— , E3= — I — T2 )
o0xq 0xy 0xy Oxs Oxs 0T¢ (3.72)
B - 0 0 B 0 ’
4_61’4 ’ 5_8275 ’ 6_61‘6

The only non trivial brackets are
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[Ev, Bl = Ey , [By,E3l=—E5 , [By Es]l=—FE;s (3.73)
and dually
el =dr, , e=dry , € =duxs,
L ° . ’ . (3.74)
e =dry —xidry , €’ =dxs+ xidrs , de’ = drg+ rodxs.

de* = —dx\Ndxy = —e? | de® = dxyNdxs = e | de® = dwgNdas = e* (3.75)

After the same linear change z3 — —x3, this Lie algebra corresponds to ge 3 =
(0,0,0,12,13,23) in [30]. We will denote it with gy .

3.4.4 GVN’Q = Hg(R) [><)\N72 Rg

Group law reads

x3 + oh + T2 (I
( Ty + T ) vy + >
0 1 V3 + v + 2oV + X0
(3.76)

Rewrite this as

/ / / !/ / / / / /
(x1 4 @), Ty + X%, T3 + T3, k4 + Xy, Ts + XL + X175, T + T + 127y + oxy)  (3.77)

We compute the derivative of the new left multiplication

1 0 0 0 00
01 0 0 0O
0 0 1 0 0O
00 0 1 0O (3.78)
0Oz 0 0 10
0 0 To Iq 0 1
from which we get the following basis of left-invariant vector fields
0 0 0 0 0
EBy=— , EBb=——+u1— , E3=_—+120—,
8I1 8902 8275 8x3 61‘6
(3.79)
-2 .2 p_9 p_0
4 8174 18x6 , o 8955 ' 6 al’(a
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The only non trivial brackets are

(B, Ep) =E5 , [Ey,E)=FEs , [Es, B3] = E;g (3.80)
and dually
el =dr, , e =dry, , € =dzs, (3.81)
et =dry , € =drs—xidry , de® = drg — ridry — xodrs. ‘

de® = —dxy Ndry = —e' and de® = —dxy Adry — drg Ados = —e™* — e (3.82)

which corresponds to hs = (0,0,0,0,12, 14 + 23) in [60]. We will denote it with
ON,2-

3.45 Gg1:=E(1,1) X s R?

Group law reads

e 0 0 x et 0 0 ,
U1 ’ 2 v
0 e™ 0 z3 " 0 e™ 0 «f U} -
001:;;1’U2 001x'1’v?_
0 0 0 1 s 0 0 0 1 3
et 0 0 x4+ €™ ,
0 e~(@tz) (0 g4+ e "l U1 +_Z} ,
0 0 1 , , | U2 ey
T1h T v3 + e"1v
0 0 0 1
(3.83)
Rewrite this as
(1 4+ €72, 1o + €™ ay, x5 + €™ ay, 1y + €, x5 + %, 16 + T) (3.84)
The derivative of the new left multiplication is
e 0 0 0 00
0 €% 0 0 00
0 0 5 0 00
0 0 0 e 00 (3:85)
0 0 0 0 10
0 0 0 0 01

which gives the following basis of left-invariant vector fields
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El — 6_$5i , E2 — ez5i , E3 — €$5i’
0y 0xs 0x3
(3.86)
T )
4 8.1’4 > (93:5 ’ 6 8:66

The only non-trivial brackets are

9 o)
[El? E5] =e —= El ; [E27 E5] = - — = —E2
Oy 0z (3.87)
0 0 :
[Es, E5] = —e™ Drs ~Ea . BB =e 56_x4 = &

dually we obtain a basis of left-invariant 1-forms

1 2

el =e"dr, , e =e "dry , € =e "dus
4 o 5 6 (3.88)
et =e"dry , e =drs , e =dug
with
de' = —e'® de® = e* de® = %
i_ 5 s e (3.89)
de” = —e , de>=0 , de’=0

Such a Lie algebra corresponds to Ag}_l’l @R = (15, —-25,—-35,45,0,0) in [30].
We denote it with gg;

3.46 Gg1:=E(1,1) x,,, R

Group law reads

et 0 0 =z y et 0 0 af o
0 e ™ 0 w3 vl 0 e™ 0 x4 v’l B
OOl:cl’UQ 0011:'1’v% -
0 0 0 1 3 0 0 0 1 3
eo1 0 0 @9+ e™al ,
0 e*(zlJrfEll) 0 T3+ e w1$/ v + U1
3 vy + e¥10)
0 0 1 T+ ’ 2 2
0 0 0 1 v e

(3.90)



72

which has the same group law of Gg;
(1 + €52, xy + €xh, 13 + € " ay, 1y + €751l x5 + X%, T6 + Tp) (3.91)

and therefore gives the same Lie algebra Ag}’fl’l ® R = (15,—25,—-35,45,0,0).
We refer to it with g%lz even if it is the same, we do this in order to distinguish

the two sides. Clearly Gg; and CV}SJ (gs1 and gg 1) are isomorphic as Lie groups
(algebras).

3.4.7 Ggo:=E(1,1) X, 52 R?

Group law reads

et 0 0 m en 0 0 ,

0 e™ 0 =z vt 0 e™ 0 2 1 _

0 0 1 a | (7 o o 1|\

0 0 0 1) \" 0 0 0 1 vs

et 0 0 x9+e"ad ,

0 e~ (@) 0 py 4 e il U;f, ! ,
0 0 1 - $/1 s v+ e_mv%— ngull
0 0 0 1 v3 + e lug — Tav]

(3.92)

Rewrite this as

— / / / / — / / / /
(x1+e %00 —x3xy, wo+e"0uy — xxy, vyt e Oy, xy+ e 0y, x5+ s, x5+ xy) (3.93)

The derivative of the new left multiplication is

e ™ 0 0 0 —z3 O
0 e 0 0 —x4 O
0 0O e®™ 0 0 0
0 0 0 e 0 0 (3.94)
0 0 0 0 1 0
0 0 0 0 0 1
which gives the following basis of left-invariant vector fields
0 0 0
E1 = 66— s EQ = "0 s E3 = G_IG—,
8271 81‘2 81‘3 (3 95)
P R R R TR T
T 81’4 ’ b 8x5 5 8I1 481’2 ’ 6 0x6
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The only non-trivial brackets are

0 0
E,Eg|=e""—=F B3, E5l =e"—=F
[ 1, 6] € 81}1 1 ) [ 3 5] € al’l 1
[EQ EG] - —e%i - —E2 [E4 E5] - e%i == E2 (396)
’ 8x2 ’ ’ 81’2
[Eg EG] = €_$6i = E3 [E4 E@] = —€$6i = —E4
’ 0$3 ’ ’ 81‘4
dually we obtain a basis of left-invariant 1-forms
el = e"dxy + x5e®dry , €2 = e dry + xge drs , €3 = e 0drs (3.97)
et =e"dr, , € =dry , €°=dxg ‘
with
de! — —pl6 _ 35 de? — 26 _ 45 de® — —e36
’ ’ (3.98)

det =e'® | de®=0 , deb=0

After the linear change x5 +— —ux5, this Lie algebra corresponds to 98:5_41 =

(16 4 35, —26 + 45,36, —46,0,0) in [30]. We will denote it with gg.

3.4.8 Ggo:=FE(1,1) x,,, R?

Group law reads

et 0 0 m y et 0 0 b o
0 e™ 0 x3 vl 0 e™ 0 2 v} B
0 0 1 x|’ 02 0o 0 1 2]’ U? -
0 0 0 1 ’ 0 0 0 1 5
em1 0 0 @+ e"tal - _w
0 e—(xl-l-rll) 0 1'32—|— 6—331;% U1 + 'Ui + z3€ 1'U§ —i/_ To€ IUQIS
0 0 1 A E Uz + €710y
Tt v3 + e * 1l
0 0 0 1 ’ 3
(3.99)
(1, m6) (2], ..., 2f) = (21 + o) + 240700l + 236" 2L, 19 + € 700),
T3+ e "ah, vy + "0l w5 + e"0ur, 16 + 1) (3.100)

The derivative of the new left multiplication is
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1 x4e7™ 0 0 x3e™ 0
0 e 0 0 0 0
0 0 e 0 0 0
0 0 0 e 0 0 (3.101)
0 0 0 0 e 0
0 0 0 0 0 1
which gives the following basis of left-invariant vector fields
0 0 0 0
Fi=— |, E=xe—+e"— | FE3=¢"—
8[E1 81'1 8902 81‘3 102
9 9 9 9 (3.102)
Ey=e"— Ey = x3e"— 4+ " —— Eg=—
Oxy o Oxs Oxg
The only non-trivial brackets are
0 0 0
Esy, Bgl = x4 — 47— = F. Ey,Byl=——=—-F
[E, Eg] = x4 92, +e D2y s, [Ea, By o1 1
0 0
E3 Egl=e"—=F B3, Bsl=—=F 3.103
[ 35 6] € O3 3 [ 35 5] e 1 ( )
0 0 0
Ey Fgl = —e""— = —F Es5, Egl = —x3e"— — e — = —F
[ 45 6] € 074 4 [ 55 6] T3e Oy € O 5
dually we obtain a basis of left-invariant 1-forms
el = dry — xydry — x3drs , €2 =e"dry , € = e dr,
4 _ _—wg 5_ _—w¢ 6 __ (3104)
et =e "dry , e =e dry; , e =duxg
with
de' = e — ¥ | de? = —e® | e = —¢5 (3,103
de* =e' | deP =€ | def=0 '

This Lie algebra corresponds to g5 = (24 + 35, 26,36, —46, —56,0) in [32]. We
will denote it with gg .

3.49 Gr=R’x;R?

The resulting six-dimensional Lie group has group law

/ / / / / / / /
(x1 + 27, Ta + Ty — X125, T3 + Ty, Ty + Ty — T3Tg, T + Ty, T + Tg) (3.106)
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The differential of left multiplication is

10000 O
01 000 —x
001 00 O
00010 —x3 (3.107)
00001 O
0 00 0O0 1
which gives the following basis of left-invariant vector fields
E]_ - i 7E2 e i R E3 — i
8331 (9.%2 8333 (3 ].08)
5 0 0 > 0 0 0 '
= — = — = — X — X
4 61'4 b 8x5 0 8I6 18@ 381’4
The only non-trivial brackets are
[El, Eﬁ] - —E2 [Eg, E6] - —E4 (3109)
and dually
el =dr; , e =dry+mdrs , € =duzs
4 5 6 (3.110)
e" =dxy+x3drg , e’ =dxs , e =dxg
with
de! =0 |, de*=¢e'® | de*=0 (3.111)

de* =e3¢ | de®=0 , deb=0

The algebra obtained, up to reordering, is isomorphic to gy ; but we denote with
gr = (0,—16,0,-36,0,0).

3.4.10 G :=R3x, R3

The resulting six-dimensional Lie group has group law

(v1 + 2, 20 + xh, 3 + 2%, x4 + Ty, T5 + X%, T6 + T + T1ThH + T3T) (3.112)

The differential of left multiplication is

1 0 00 00
01 0 0 00O
0 01 0 00O
0 001 0O (3.113)
0 00 0 10
0 T 0 T3 0 1
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which gives the following basis of left-invariant vector fields

0 0 0 0
Elz— s E2:_+l‘1_ s E3:—
0xy 0T Oxg O3
(3.114)
Ey= 0 +x 0 Es = 0 E¢ = 0
T 81’4 381‘6 T 81'5 6= 81’6
The only non-trivial brackets are
[y, By = Es B3, By = Eg (3.115)
and dually
e d ) ? = d ) = d
64 T 65 T2 66 T3 (3]_16)
e =dxy , e =dxrs , e =drg— r1dry — x3d1y
with
de! =0 , de*=0 , de*=0
(3.117)

det*=0 , de®=0 , deb=—e?2—¢*
The algebra obtained is isomorphic to h3 = (0,0,0,0,0,12 4+ 34) in [60] but we
denote with gr = (0,0,0,0,0,12 + 34).
3.4.11 Gy := H3(R) x,v R?

Group law reads

1 2 a3 o 1 ) vy
0 1 @], (v 0 1 ah ], | =
0 0 1 U3 0 0 1 A

1 o+ z3+ a5+ 212 (A —xwé%—%%%
( 0 1 Ty + 15 ; Vg + vy — 2104 )
0 0 1 v3 + Ué
(3.118)

Rewrite this as

2
T
/ / / / / / / / / 1 7
(w1427, o+ T4, 3+ T3, Ta+ Ty + 2175, Ts+T5 — 123, x6+x6—x1x5—|——2 xy) (3.119)

We compute the derivative of the new left multiplication
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10 0 0 0 0
01 0 0 0 0
00 1 0 0 0
0z, 0 1 0 0 (3.120)
00 -2, 0 1 0
00 2 0 -z 1

from which we get the following basis of left-invariant vector fields

0 0 0 0 0 2.9
Ey=— Ey=—+x1— , E3= — I ‘|‘ﬁ ;
0xq 0xo 0y 0xs Ors 2 Oxg (3.121)
I 0 0 0 g 0 '
_ —_— _— = — -
4 (91'4 b 0x5 ! 81‘6 ’ 6 8I6
The only non trivial brackets are
[Eb EQ] == E4 9 [E17 E3] = _E5 ) [E17 E5] = _E6 (3122)
and dually
el =dr;, , e =dry, , € =duzs,
2 (3.123)
et =dry —xdry , € =dry+axidrs , €8 =dwg+ xidrs + ?ldxg.

de* = —dr Ndwy = —e? | de® = doNdws = e'® | de® = doiA(dos+x,das) = €'

(3.124)

Up to linear changes, this Lie algebra corresponds to b9 = (0,0,0,12,13,14) in
[60]. We will denote it with gy

3.4.12 Gy := H3(R) x,, R

Group law reads

/
1+ ) wg+ xh + 224 U1+ vy
!/ /
1 To + 24 , Vg Uy T 21U
/ / x /
0 1 v3 + V3 + 2105 + S0

(3.125)
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Rewrite this as

2

T
(v1 42, mo+ 25, x3+ 2%, Xy + 2 + 1125, 5+ 25 + 1125, x6+xg+x1xg+§x3) (3.126)

We compute the derivative of the new left multiplication

10 000 0
01 0000
00 1000
0z 01 00 (3.127)
00 2, 0 1 0
00 40 a4 1

2
El_i ) Ezzi l‘li , E3= a‘f‘l’la‘i‘ﬂaa
81‘1 8x2 8I4 81’3 8%5 2 (9176 3.128
0 0 0 0 (3.128)
Ey=— s=5 - tTig— , Le=5—
014 Oxs Oxg Oxg

The only non trivial brackets are

[Ela EQ] - E4 P [Eh E3] - E5 ) [Eh E5] = EG (3129)
and dually
el =dr, , E=dr, , € =dus,
2 (3.130)
et =dry —xdey , € =dvs —xidrs ., € =drg — xidrs + Eldxg.
de* = —dxiAdxy = —e'? | de°® = dvAdrs = —e'® | de® = —do A(dzs—z1das) = —e'®
(3.131)

which, again, corresponds to b9 = (0,0,0,12,13,14) in [60]. We will denote it
with gy.
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Chapter 4

Supersymmetric Structures and
Fourier-Mukai Transforms

In this chapter we present all the explicit computation involving the semi-flat super-
symmetric SU(3)-structures of type ITA/IIB. We write the expression for the forms
(w,Q), as defined in the previous chapter, we check their properties and show the
cohomology diamond associated. Then, for each mirror pair, we describe explicitly
the Fourier-Mukai transform realizing F'T'(e**) = €. From example to example the
forms

w=e'?+ e 4"
) X 4.1
Q= (1 4 ie?) A (¢! +ic?) A (& +ie) (4.1

will change their expression according to a reordering of the basis. This has been
done to relate the structures with the ones already known in the literature and in
order to maintain an accordance with the classifying results cited in section 2.5. For
each pair we are not writing the explicit correspondence among the flux forms pa
and pp since they follow directly from the computation in the appendix.

4.1 (My1, My1)

ITIA Equations on gy = (0,0,0,0,12, —13)
Take

w=e"+e"+¢e*

Q= (e* +ie') A (e +ie?) A (e® +ie”)

We have
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Re () — (463 _ 425 _ 165 _ 123
Tm © — 465 4 423 | 163 _ (125 (4.3)
dw=e"? 4+ e =0
d Re Q = de'® — de?® — de'% — de'® =0 (4.4)
dTm Q = de'® 1 de'® 1 del® — del? = _ 113 _ 1612 £
and
1 _ w3
§Q AQ = —ie!?56 = i (4.5)
which implies F' = 8.
TY Diamond for gy
1
2 2
2 6 3
1 5 6 1 (4.6)
2 6 3
2 2
1
IIB Equations on gy; = (0,0,0,0,12,13)
Take
o= oM 1 g2y 565 )
Q= (&* +ict) A (e +ie?) A (5 4 ieP) '

We have



Re Q = é436 . é425 o é135 _ é126

Im Q) = é435 + é426 + é136 o é125

dio = =" + %12 2 0
d® = 2di NG = 2(—" + &) A (e + &2 4+ %) =0
d Re Q = de® — d&'® — de'® — 4 =

dTm O = &% 1 Je126 4 o136 _ ga125 _ _p4312 _ p4213 _
and

_ ~3
QAQ:—EM%:%%a

| =

that implies ' = 8.

BC Diamond for gy,

1
3 3
2 6 2
1 6 6 1
2 5 2
2 2
1

Fourier-Mukai Transform and Mirror Duality for My ; and M N1
The SYZ-dual fibrations are

81

(4.8)

(4.10)

(4.11)
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H3(R)x N 1R3 - H3(R)xxy , R?
My, = H3(Z)MtN123 My, = HS(Z)MI§EZ3
B = H3(R)/H3(Z)
(4.12)
We start from the symplectic side where the symplectic form w
A1, 62, 35
w=c¢e" +e*+e” =dry Ndry+ drg N\ dry + drs A dxs (4.13)

gives as action coordinates on the base and angle coordinates on the fibers re-
spectively:

™ =T 91 = T4
9 = X9 X 92 = Tg (414)
r3 =25 03 = x5

and w = 25’:1 do; N\ dr;.
Rewrite the coframe of differential 1-forms in action-angle coordinates:

el = dxy = dry

e? = dxy = dr

3
e = dJTg = d@g
4.15
64 = dlL‘4 = dgl ( )
e’ = drs — x1dry = drs — ridry
66 = dl’G + l’ldI‘g = d@g + r1d03
The expression of the three-form €2 in these coordinates is
Q= (e +ie') A (e +ie?) A (e? +ie”) = (4.16)
= (d01 + id?”l) N ((deg + T1d03) + id?”g) VAN (d@g + ’i(dTg - TldTQ)) .
On the complex side, the dual action-angle coordinates are
™ =T él = T4
T2 = T2 ) é? = I3 (4.17)
T3 =I5 93 = T¢

and



el = dxy = dry
&2 = dry = dr
& = dus = db,
&t = dry = db,

é5 = de5 — l’ldl'g = d?"g — Tld’f‘g

éG = de’ﬁ — C(]ldll/’g = dég — T’ldég
Define complex (1, 0)-forms:

and complex coordinates
21 =01 +iry = x4 + 07y

29 = Oy +iry = T3 + 129

23:93+Z'7"3:£C6+Z'$5

so that

wl = dél + idTl = le

wz = dég + Zd?“g = dZQ

77[)3 = (dég — Tldég) + i(d?"g — TldT2> = ng — TleQ
and
o= é41 —|—é32 _|-é65

(wli +¢2Q +¢33>

<d2,'1 A dzl + dZQ VAN dzg + (dZ3 - TleQ) VAN (dzg - 7”1d22)>

NSRS

| =

2
h %(d'zl Ndzy +dzy A ((1+717) dzy —r1dzs) + dzg A (dzs — 7“1d22)>

Now, consider the fiber product

MN,l X B MN,I

/ \
MN,l MN,I

83

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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and recall the definition of the Fourier-Mukai tranform

FT-¢:=p, ((p (P-)) Aexp 2—) (4.23)
1
where
3 ~
F=2i) df; Adb; (4.24)
i=1
so that
P - (2(;)) = ’L(dél VAN d?“l + dég A ((1 + T%)d?”g - TldT3)+
) (4.25)
+ d93 AN (d?"g - 7”1d’l“2)>
Set
n = dry
Ny = (14 1)dry — ridrs (4.26)
T3 ‘= d?"g — 7’1d7’2
and take the product
e’P'QJJ A 6% — e’i Zf’:l déi/\ni A 62?:1 déz/\dgz
(4.27)

—e ?:1 déi/\(dei—{—ini)

Integrating this along the 6,’s we get

(d0y + imy) A (dBy + ins) A (ds + ings)
- <d91 + idm) A (d@z +i((1+ r2)dry — rldr3)> A (d93 +i(drs — rldrg)) (4.28)
= (d91 + idrl) A ((d92 + r1df3) + z'drg) A (d93 +i(drs — Tld’f’z))

that coincide with (4.16), showing that F'T(e**) = Q.

4.2 (Myo, My>)

ITA Equations on gy, = (0,0,0,12, —13, —23)
Take, for A € R\{0,1}

w= e+ A’ + (A —1)e*

Q= (66 + i61> A (65 + i)\QQ) A (63 + Z()\ o 1)64) (429)
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We have

Re Q = €3 — A\ — 1)e%? — (A — 1)e!™ — \e!?®

4.30
Im Q = (A —1)e®* + X% 4+ €' — M(A — 1)e™! (450
do=e" + 0+ A =1)e*2 =1 - A+ A -1eP =0

d Re Q = de® — A\(\ — 1)de®? — (A — 1)de'™ — \de'®® = 0 (431)

dIm Q = (A — 1)de® + \de® + de'™® — A\(\ — 1)de' '

— ()\ _ 1)(—62345 + 61346 + 61256) 7& 0
and
1 A . 123456 W’

gQ NQ = —ie =i (4.32)

which implies F' = 8.

TY Diamonds for gy

Depending on the value of the parameter A € R\{0,1} we have three possible
diamonds

For A = -1
1
1 2
2 6 3
1 4 7 1 (4.33)
2 6 3
1 2
1

For)\:2or)\:%



1
1 2
2 6
1 5 6
2 6
1 2
1
Otherwise
1
1 2
2 6
1 4 6
2 6
1 2
1

IIB Equations on gy = (0,0,0,0, 12,14 4 23)
Take, for A € R\{0, 1},

At 4 (A —1)e%

i) A (e +iXe?) A (E8 + i\ —1)ed)

86

(4.34)

(4.35)

(4.36)



We have

Re Q — é346 )\(}\ 1)v325 _ ()\ _ 1>é145 _ )\é126
( )v345 + )\v326 + é146 o /\()\ o 1)é125

dio = (A — 1)(—eM5 — 235 4 ¢612) £

di?® = 2dio A = 2(\ — 1)(—e™ — e 4 ) A (&3 + NP 4+ (N —

d Re Q = 4346 — AN — 1)dé325 —dE™ _ \de'26 —
dIm Q = (A — 1)d&*® + Ade®® + de™® — (A — 1)de'®
=(1- )\)61234 4 N\elZ4 1234

and

QAQ = —ie! B0 = i°

co| —
D

that implies ' = 8.

BC Diamond for g}*

87

(4.37)

1)e%) =0

(4.38)

(4.39)

Depending on the value of the parameter A € R\{0,1} we have three possibly

diamonds
For A = —
1

3 3

2 7 2

1 6 6 1

1 4 1

2 2

(4.40)
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For)\:2or)\:%

1
3 3
2 6 2
1 6 6 1 (4.41)
1 ) 1
2 2
1
Otherwise
1
3 3
2 6 2
1 6 6 1 (4.42)
1 4 1
2 2
1

Fourier-Mukai Transform and Mirror Duality for My, and M N2
The SYZ-dual fibrations are
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Hs(R)x_poR3 - H3(R)x ) Y]R?’
My = Hg(Z)thm My = Hg(Z)x[;v’;ZB
B = H3(R)/H;(Z)
(4.43)

We start from the symplectic side where the symplectic form w

w=e 4+ X" + (A —1)e*
= (dxg + wodxs) A dry + AN(dws + x1dxs) A drg + (A — 1)das A (dey — x1dxs)
= dxg N\ dry + xodxs N dxy + Adxs A dxy + Axidrs A dre+
+ (A= 1)dzs ANdzy — (A — 1)adas A dag
= dxg A\ dxy + Adxs A dxe + (N — 1)dws A dry + dos A d(z122)
= dxg N dry + dos A Adxy + dxs A d(()\ —Dxy + l’ll‘g)
(4.44)

gives as action coordinates on the base and angle coordinates on the fibers re-
spectively:

rL =1 0 = xg
re = ATs ;=15 (4.45)
r3 = ()\ — 1)%4 + X122 ‘93 = I3

and w = Z?:1 do; N dr;

Rewrite the coframe of differential 1-forms in action-angle coordinates:

el = dxy = dry

dr
e? =dry = TQ
63 = d.’]fg = d¢93
1 r r (4.46)
et = dry — ridrs = o 1dr3 — O 2_ 1)dr1 3 _1 1d7"2,

65 = dl‘5 + l’ldl’g = deg + r1d63
8 = dug + wodas = dfy + %deg
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The expression of the three-form 2 in these coordinate is
Q= (b +ie") A (e +ire?) A (€2 +i(\ —1)et) =
- ((d@l + %Qdeg) + idm) A ((d92 4 ridfy) + idr2> A <d63 +i(drs — T—;drl . rldr2)>

(4.47)
On the complex side, the dual action-angle coordinates are
T = I 91 =3
Ty = ATg ) 52 = Ty (4-48)
rs = ()\ — 1)1’5 -+ T1T9 ég = Tg
and
él = dl’l = d?”l
dr
é2 = dﬂ?g = 72
é3 = dl‘3 = dél
é4 = de4 = dég (449)
r r
é5 = d.ﬁEg, — l’ldl'g = md’f’g — )\()\—2_1)617’1 — A—_lldrg
éG = d$6 — $1d$4 — xgdﬂfg = dég — T’ldég — %dél
Define complex (1, 0)-forms:
Pl=¢&+iet | Y= +ire? |, PP = +i(A-1)¢ (4.50)

and complex coordinates
z1 :él—l—irl :.T3—|—i$1
Z9 = ég + iT’Q = T4+ Z)\.%‘Q (451)
zZ3 = 93 + ’i?"3 = T+ Z((/\ — ].)ZL‘5 + 1711'2)

so that

’(/)1 = dél +id7"1 = le
¢2 = dég + idry = dzs (452)

W = (dly — rydfy — %dél) +i(dry — rodry — T_;drl) ey — rdey — %dzl

and



O = 31_|_)\v42 ()\_1>é65

91

_ 5(1/}11 + wQQ + wi’)g)

= %(dzl VAN le + dZQ VAN dZQ + (ng — 7’le2 - %dzl) VAN (d23 - r1d22 - T—)\del))
1 2 T1T2

=5 (da A (4 )z + 2z = L)+

rrs

+ dZQ N (szl + (1 + 7"1) dZQ - T1d23) + ng VAN ( - %dzl - r1d22 + d23)>

Now
. A 5 T3 17"2d d
P(Zw):z<d01/\(( )\2)d 1+ )\ TQ_X 7"3
—|— dég A\ (TleT’l —f- (]_ —|— T%) d?"g — Tld’l“g)—f—
—+ dég VAN ( — r—;d?"l — ridry + d?”g))
Set
3 rre
T (1+)\2)d )\ dg—xd’l“g
Ny 1= %d”ﬁ + (1 +r])dry — ridrs
N3 = _fdrl — ridry + drs

and take the product

~ . 3 ) 3 )
oP2@ A 62% _ i A0 p 3T dOiNdG;

—e ?:1 dél/\(dG,—i—zm)

Integrating this along the 6,’s we get

= <d61 +i((1+ v

A <d92 +1 Tdrl +(1+ rl)drg = rldr3)>

A <d93 + z — —drl — rydry + d?”g))

A
]
<(d91 + X

17”2

)d?"l -+ dT’Q — —d?"g )

(4.53)

(4.54)

(4.55)

(4.56)

dby) + idrl) A ((d62 +ridls) + idr2> A <d93 +i(drs — “2dr, — rldr2)>
(4.57)



that coincide with (4.47), showing that F'T'(e**) = Q.

4.3 (Mg, Ms,)

ITA Equations on gg; = (15, —25,—35,45,0,0)

Take
w=e" e +e%
Q= (e +ie') A (e* +ie?) A (ef +ie”)
We have
Re () — 346 _ (325 _ 145 _ 126
Tm Q) = 345 1 326 1 o146 _ 125
dw =0
dRe Q=0
dlm € = —2(23% 4 (1456)
and

1 _ w3
SQAQ = i etz Y
2 ie is

with ' =8

92

(4.58)

(4.59)

(4.60)

(4.61)
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TY Diamond for gg;

1
1 1
1 3 1
1 3 3 1 (4.62)
1 3 1
1 1
1

IIB Equations on gg; = (15, —25,—35,45,0,0)

Take
o= Y 4 32 4 &6 (4 63)
Q= (e* +ie") A (&3 4% A (e84 4eP) ‘
We have
Im € = 435 4 426 4 g136 _ 5125 (4-64)
ddj — —é451 + é415 + é352 _ é325 — 2(_é145 _'_ é235) ?é 0
dovz — de /\(:) — 2(—é14532 + é23541) — O
dRe Q=0 (4.65)
dim Q=0
and
1 ~ ~ (113
gQ AQ = —i 1230 = —ie (4.66)

that implies F' = 8.
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BC Diamond for gg;

1
1 1
1 3 1
1 3 3 1 (4.67)
1 3 1
1 1
1

Fourier-Mukai Transform and Mirror Duality for Mg; and MSJ
The SYZ-dual fibrations are

3
E(lvl)st,lR

E(l,l)xAmRi"
Ftb<f371Z§’

Mg, =
S71 Ft[X[S,IZ?

\ / (4.68)

Mg, =

We start from the symplectic side where the symplectic form w

w=e" 4+ e 4% = e Tdrs A e®dry + e®dry A e dry + drg A drs

(4.69)
= d$4 A dZE1 + d$3 AN d{EQ + d$6 AN d(L’5

gives as action coordinates on the base and angle coordinates on the fibers re-
spesctively

T = 1 01 = T3
T9 = T9 y 92 = T4 (470)

r3s = Ts 05 = ¢
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and w =327 df; A dr;.

Rewrite the coframe of differential 1-forms in action-angle coordinates
el = e®dr; = e"dry

e? = e %dry = e "3dry

63 = €_$5d$3 = €_T3d01

4.71
et = e day = e db, ( )
e’ = drs = drs
66 = dl’@ = dgg
The expression of the three-form €2 in these coordinates is
Q= (e* +ie') A (e* +ie?) A (e° +ieP)
= (e7"3dby + ie"dry) A (€dby + ie”"dry) A (dbs + idrs) (4.72)
= e "3 (df, +ie*3dr,) A e (dfy +ie” 2 3dry) A (dfs + idrs) ‘
= (df, +ie*™dry) A (dfy +ie”>"*dry) A (dOs + idrs)
On the complex side instead, the dual action-angle coordinates are
™ =2 él = T4
9 = T9 y ég = T3 (473)
s = 5 93 = Tg
and
el = e®dr, = e"dry
¢? = e " dry = e "3dr
& = e drs; = e " db,
A y (4.74)
e = e®dxy = e"db,
é5 = dﬂ?5 = d?”g
é6 = dl’(j = d@g
Define complex (1, 0)-forms:
Ppr=etriet | Yr=e&riet , Yi=e8 e (4.75)

and complex coordinates

21 =0, +iry = x4 +ix
Z9 = ég + iTQ = x5+ iZL‘Q (476)

23:93+i7“3::v6+ix5
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so that
Pl =et +iel = e"dly + ie*5dr; = e®dz
Y = e® 4 ie? = e d0y 4 ie T dry = e Tdzy (4.77)
V3 = €8 +ie® = dby + idry = dzsy
and
w =" 4 &% 4 &%
7: _ _ _
— 5(,17/}11 4 w22 + wSS) (478)
- %(&rwzl Adz + e dzy A dzs + dzg A dgg)
Now
P - (2&}) = ’i<62r3dél N d?“l + 6_2r3dé2 VAN d?"g + dég VAN d’f‘g) (479)
Set
m = e"3dr,
Ny 1= e 3dry (4.80)
N3 = drs

Take the product

- . 3 ) 3 )
eP2w A GQEZ. _ i iy dOinni p 3T dOindD;

3 4.81
— X1 A0\ (dOi+in;) (4.81)
Integrating this along the 6;’s we get
dfy +im1) A (dby +ina) A (dBs + in:
(df1 + im) A (dfa + inp) A (dOs + ins) (4.82)

= (d91 + z'e%?’drl) VAN (d@g + ie_2r3dr2) VAN (d03 -+ id?"g)

which agrees with (4.72), showing that FT(e*¥) = (.

4.4 (Msy, Mso)

ITA Equations on gg» = (16 + 35, —26 + 45, 36, —46,0,0)
Take
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W= el g o2 4 56

4.83
Q= (e' +ie*) A (e® +ie®) A (€° +ie®) (4.83)
We have
Re () — 125 _ 136 _ 426 _ 435
126 135 425 436 (4.84)
ImQ=e"4+e?+e"* —¢
dw — —el64 _ 354 _ 16 | 263 453 | 236 _ ()
dRe 2 =0 (4.85)
dlm Q — 2356 1 (1456 _ 91356 _ o 2456
and
1 A . 123456 w?
—QANQ=—ie = —i— (4.86)
8 6
with F' = 8.
TY Diamond for ggs»
1
1 1
0 2 1
1 2 1 1 (4.87)
0 2 1
1 1



IIB Equations on gg» = (24 + 35, 26, 36, —46, —56, 0)
Take

d} = é54 + é23 + élG
Q= (" +ie") A (e" +ie%) A (€ +ie
We have
Re ) — 921 _ 536 _ 5426 _ 5431
Im ) = %62 4 531 | p421 __ 5436
o = 26% 4 96236 4 G246 _ 5356 £
dio® = 2di N @ = A(e%5% 4 §23654) —
dRe € — 621 | 5261 _ sA631 _ 54361 _ )
dlm ) = g9631 4 gB361 | 55324 | 54621 | 54261 _ 54235 _
and
EQ A = —j 123456 _ _Z,dz_3
8 6
and F' =8

BC Diamond for gg-

1

1 1
1 1

1 2 2
1 2

0 0

98

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)
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Fourier-Mukai Transform and Mirror Duality for Mg, and Mg
The SYZ-dual fibrations are

M E(1,1)M¢S,2R3 - E(1,1)M52R3
S2 7 T Tk LF 2 7 T T 23

\ / (4.93)

B = E(1,1)/T,

We start from the symplectic side where the symplectic form w

w=et+e? e =
= (e"dxy + z3e™drs) N e “Cdry + (e *Cdxy + x4e” *0dxs) N €*dxs + dws N dxg
= diL’l A d[L‘4 + l‘ngg) AN dl‘4 + dIQ VAN dl‘g + ZL‘4dl’5 VAN d!L’g + d?[)5 AN d(L’ﬁ
= dxy Ndxy + dog A dxs + dos A d(xg + T423)
(4.94)

gives as action coordinates on the base and angle coordinates on the fibers re-
spectively

= Ty th =z,
9 = T3 s 92 = T2 (495)
T3 = Tg + T4x3 93 = Ty

and w = Z?:l do; N\ dr; .
Rewrite the coframe of differential 1-forms in action-angle coordinates

el = e"dxy + 15" drs = €™ T2 Al + roe™ T2 dh,

e? = e " dxy + zqe Pdry = e T2d0y 4+ rie T2 dh,
e3 = e dry = ™ "2,

et = e T dr, = e 2y

65 = d$5 = d93

eS = dag = drs — rodry — ridry

(4.96)

The expression of the three-form €2 in these coordinates is
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Q= (e! +ie*) A (e* +ie*) A (e’ +ieb)
= ((e”‘””d@l + e T2 dl3) + ie_T3+T1T2dT1) A ((e‘””lmd@g—i-
Fore T, 1 ier3_””dr2> A (d93 +i(dry — rodry — Tldm)
= grire <(d01 +rodfs) + z‘e—2<7"3—’“17“2>dr1> A e ratriTs ((de2 +ridfs) + i62(7"3_’"“"2)dr2>
A (d@g + i(drg — rodr; — rldrg))
- ((d01 4 radfy) + ie_Q(T3_T1T2)d7’1> A ((cwg 4 r1dfy) + iez(m_””)dm)/\

AN (d@g + i(d?"g — T‘Qd?"l — TldT2)>

(4.97)
On the complex side instead, the dual action-angle coordinates are
ro=my 0 = s
Tra = T3 ) 92 = T2 (4-98)
T3 = XTg + T4T3 ég =2
and
él = dl’l — l’4dI2 — $3d$5 = dég — Tldéz — TQdél
&2 = e"dxy = ™12 d0,
=3 __ _x¢ __ _r3—riry
¢’ =e"drg =e dr
4 — ’ —ra3+ ’ (499)
e"=e "dry = e T 2dry
& = e s = e T2,
é6 = dl’ﬁ = d?”3 — TQdTl — Tld’/’g
Define complex (1, 0)-forms:
=6 +iet | W =e"+ie® |, yYdi=e +ie" (4.100)

and complex coordinates
Z1 :é1+iT1 :.7754‘2"7}4
z9 — ég + ir2 = I9 + ’i[L’g (4101)
zZ3 = ég + Z"l“g =T + i($6 + ZL‘4$3)

so that
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¢1 — 6—T3+T1r2dé1 + ie_T3+T1T2dT1 _ €—T3+r17”2d2,1
PP = €TI0y 4 i€ T2 dry = €T 2d 2, (4.102)
V? = (dfs — rodfy — r1dy) 4 i(drs — rodry — ridry) = dzs — Todzy — T1d2s

and
w=¢&"+e¥ 460 =
Z’ _ _ _
_ 5wll b2 4P =
; (4.103)
_ - —2(r3—r1r2)d Adz 2(r3—r1r2)d A dz
5 e 21 Ndzy +e 2y N\ dZo+
+ (ng - 7“2le - 7"le2) VAN (d23 - Tzdil — 7'1d22)>
Now
P (20) = '<e_2(7"3_”’"2)d91 A dry + 2732 0y A drg+
+ (dég — ngél — Tldég) A (d?"g — TQdT'l — 7"1d7"2>> =
Z(dél A ((6_2(7“3—7“17“2) 4 T‘g)d”f’l + ryrodry — T2d7’3)—|— (4104)
+ déQ AN (7“17"2d’l“1 + (62(r3—r1r2) + T%)d’l“g — 7"1d7"3)+
+ dég AN ( — ’I“gd’l“l — 7"1d7"2 + d’l“g))
Set
m = 6_2(T3_r1r2)d’/"1
Ny 1= e2(rs=r1r2) e, (4.105)
N3 = drs — rodry — ridry
and

Th =11 — T2m3
772 =M — T3 (4106)
N3 :=1)3

so that we can rewrite the two-form as
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3
w) =i df; A (4.107)
=1
Take the product

oP2w A e§ _ eiz;”:l dOiNTl; 62;”21 df; Ndb;

. - (4.108)
— elui=1 in/\(dG@'—i—zm)

Integrating this along the 6;’s we get

(d6y + im1) A (dOs + im2) A (dBs + i7)3) =

(d91 +i(m — 7“2173)) A (d92 +i(ne — 7“1773)) A (d@g + ing) =

(d91 + “71) (d@g + ing) A (d93 + in3)+

+ (T2n3 A g AN dbs +rim Ang A d93> + z( — ridfy A3 A dBs — rams A dby A d93)
(4.100)

while the expression for €2 in (4.97)

VS

(d@l + ’I"Qd93) + 'L.€_2(T3_Tlr2)d7“1> A ((d@z + T1d03) + i€2(r3_rlr2)d’f‘2>/\

>

(d(93 -+ i(drg — 7’2d7“1 — ?"1d7"2)>

( d91 + T2d03 + 1771) ((d@g + 7’1d93) —+ 27]2) AN (d@g + 27]3>
( d91 + 2771) ((d@z + ZT]Q) (d@g + ZT}3>—|—
(

+ (= T2d93 A\ T2 A N3 — T N d@g N 773) -+ Z(T2d¢93 N d92 A 73 + r1d01 N deg N 7]3)
(4.110)
and they indeed coincide, showing that F'T'(e**) = Q.
4.5 (Mq, My)
ITA Equations on gr = (0,—16,0,—36,0,0) ~ (0,0,0,0,12,13)
w=e"+e* +e% (4.111)
Q= (e* +ie") A (2 +ie®) A (ef +ie®) '
Take
Re () — 126 _ 435 _ 125 _ 136
Tm Q — ¢425 1 o436 | 126 _ 185 (4.112)
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dw — 136 _ o136 _

dRe Q=0

(4.113)
dlm Q = — 233 _ 1456 £
and
i
§Q AQ = —j 123456 _Z.F (4.114)
with ' = 8.
TY Diamond for gr
1
1 3
2 6 3
1 4 7 1 (4.115)
2 6 3
1 3
1
IIB Equations on gr = (0,0,0,0,0,12 + 34)
(_Z) = é _'_ %23 _|_ é65 (4 116)
Q= (6" +ie") A (& +ie®) A (&5 +ie°) '
We have
Re ) = 426 _ 5435 _ 5125 _ 5136
Im € = ¢425 4 126 | 5126 _ 5135 (4.117)
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d® =2do N =0
5 (4.118)
dRe =0
dlm € — —gt312 _ 51234 _
and
1~ ~ . 123456 w°
“QANQ=—i¢ =—i— (4.119)
8 6
and F =8
BC Diamond for gr
1
3 3
3 7 3
1 4 1
2 2
1

Fourier-Mukai Transform and Mirror Duality for M and My
The SYZ-dual fibrations are

R3x 7R3 “ R3x, R3
— ® — T
My = VADEYA My P I3

\ / (4.121)
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We start from the symplectic side where the symplectic form w

w:€41+€23+€65:
= (da:4 + Igdﬂ?g) N dﬂfl + (d.%’z + ZEld.CIZ@') VAN d.ﬁlﬁg + dﬂf@ VAN d.ﬁlﬁg,
= dl’4 A dl’l + ZL’3dIL‘6 VAN d[L’l + dIL‘Q AN dlL’3 + I’ldl’ﬁ VAN dl’g + dl’ﬁ VAN dCL’5
= dxy Ndxy + dxg A dxs + deg A d(xs + x123)

(4.122)

gives as action coordinates on the base and angle coordinates on the fibers re-
spectively

rn=a 01 = x4
ry = T3 ; 0y = 29 (4.123)
s = T5 -+ 13 93 = T

and w = Z?Zl do; N dr; .
Rewrite the coframe of differential 1-forms in action-angle coordinates

el = dxy = dry
e? = dry + v1drg = dby + ridbs
e3 = dry = dry
et = dxy + r3drg = dfy + rodbs
e’ = dxs = drs — ridry — rodry
¢S = drg = db

(4.124)

The expression of the three-form €2 in these coordinates is

Q= (e* +ie) A (e? +ie®) A (ef +ie®)
(dfy + 72d63) + zdm) A ((d92 +r1dfs) + idr2> A <d03 Vi(dry — rodry — rldr2)>

<d¢91 + ’L 1+ 7’2)d7“1 + 7"17”2(17”2 — ng?“g)) A (deg + i(rlrgdrl —+ (1 -+ ’l"%)d?"g — 7"1d’l"3)>/\

A <d03 + 2 — rodry — ridry + d?“g))

(4.125)
On the complex side instead, the dual action-angle coordinates are
=T él = T4
T3 =I5+ T1T3 05 = x

and
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él = d.f(]l = d?”l

é2 = dl’g = dég
&3 = dxs = dr
L, (4.127)
e = dI4 = d91
é5 = diL‘g, = d?"g — 7"2d7'1 — 7”1d7’2
é6 = diIZ'G — l’leCQ — $3d$4 = dég — Tldéz — TQdél
Define complex (1, 0)-forms:
pl=et+iet | Y =e+ie® , Y =¢&+ied (4.128)

and complex coordinates

Z1 :914—1'7"1 :I4+i$1
Z9 = ég + i?"g = I9 + iZE3 (4129)

Z3 = ég‘FZ"I"g = $6+i($5 +ZC13§3)

so that
¢1 = dz
V? = dzy (4.130)
1/)3 = dZ3 — TQle — TleQ

and

@ =+ e®
_ %(¢li + ¢2§ + 1/}33)
= %<d21 ANdzy + dze N dZy + (ng —rodz; — TleQ) A (dig — rodZ] — T1d§2)>
. %(dzl A (L4 12)d%, + ri7adZ, — radZ5)+
+dzg N (7’17“2(151 + (1 +rddz — r1d23)+
+ ng A (dig — ’I“del — 7’le2)>
(4.131)

P (2w) = i(dél A ((1 +72)dry + riradry — rgdrg)—i—
+ déQ A (T1T2d7“1 -+ (1 + T%)d?”g — TldT3)+ (4132)
—|—dé3 A ( — TQdTl —Tld’f’g +d7’3)>
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Set

m = (14 73)dry + riradry — rodrs
N2 :=riredry + (1 +17)dry — ridrs (4.133)

N3 = drs — rodry — ridrsy
so that we can rewrite the two-form as
3
P (20) =i df; A, (4.134)

i=1
Take the product

oP20 A o3 — eizjf:l dinm A 623’21 df; Adb;

. | (4.135)
— elui=1 in/\(dOi—i—zm)

integrating this along the 6,’s we get

(dby + imy) A (dOs + ina) A (dO3 +ins) =

(d91 +i((1+ r2)dry + ryradry — rgdr3)> A <d02 +i(ryradry + (14 r2)dry — rldr3)>/\

A <d93 + z( — rodry — ridry + dr3)> =

((d91 4 radfy) + z'dr1> A ((d92 4 rdfy) + z'dr2> A (d93 +i(dry — rodry — rldr2)>
(4.136)

which agrees with (4.125), showing that FT(e**) = Q.

4.6 (My, My)

The NLA gy = gy = (0,0,0,12,13,15) has both a symplectic and a complex struc-
ture (see [76]), but it does not admit any half-flat nor balanced structure. Neverthe-
less, it fits in our SYZ construction and leads to a new mirror pair. In this section
we will show only the fibration and the diamonds. Cohomology computations are,
as above, in the appendix.

Mirror Duality for My and My
The SYZ-dual fibrations are



108

H3(R)D<¢Y]R3 M B HS(R)NAYR:S
Y = )%, 23

\ / (4.137)

B = H3(R)/Hs(Z)

The symplectic SU(3)-system on My is

W= O g P2y Bl

Q= (@6 + iel) A (65 + ieQ) A (63 + 2'64) (4.138)

Indeed
dw =0
but
dRe) = d(e5 — 624 _ o154 _ o123y — 1245
and
dTm$) = d(e5% 1 62 4 19 _ o124y = _ 1346 | (1255

While on My, the complex SU(3)-structure is given by

Dol p et (4.139)

= (&) A 6 +i6) A (i)
with

dio = —¢'23 4 124 4 145
de® = dis N = &8

and

dRe$) = d(é356 g8 _ p154 é126) —0

dImQ) = d(635 + 6326 4 6156 _ g124) —
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TY Diamond for gy

1 2
1 ) 3
1 4 5 1 (4.140)
1 ) 3
1 2
1
BC Diamond for gy
1
3 3
2 5) 2
1 5 5 1 (4.141)
1 4 1
1 1

Fourier-Mukai Transform and Mirror Duality for My and My
The symplectic form on My
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W= B B2 4 34

2
= (dzg + r1dxs + %dzz:g) Adxy + (drs + z1dxs) A dxg + des A (dey — x1dzs)
2
= dxg Ndry + r1dxs N dxy + %dﬂfg ANdzry + dxs A dxoy + x1drs A drs+

+ dﬂ?g VAN dl‘4 - xldl'g A diL‘Q
2
= dxe N\ dzy + das A (dzy + 21dzy) + daes A (drg + %dwl)

(4.142)
gives action-angle coordinates
= 01 = 6
2
ro = X2+ %1 ) O = w5 (4.143)
1‘3
r3=2T4+ 5 O3 = x3
and w can be written as w = Z?:1 do; A dr;.
Rewrite the coframe of differential 1-forms in action-angle coordinates
el = dxy = dry
e? = dxy = dry — r1dry
63 = dl’g = d03
2
et = dry — xidry = drs + %drl — ridrs (4.144)

65 = dI5 + J?ldflfg = dQQ + r1d93
ZL’Q T2
e’ = dwg + zidws + ?ld.%:g = db; + ridby + Eldeg

The expression of the three-form €2 in these coordinates is



Q=

(e® +ie') A (e® +ie?) A (e +ie?)

2
= ( d(gl + 7”1d92 + r—1d03) + idrl) A ((deg + T1d93) + i(drg — T’ldT’l)>/\

2
A <d93 +1 d?”g + 5 d?”l — rldrg))

(st s 1
= (d(gl + 'l((l + 1 + Z)d?ﬁ + (—7"1 — E)d?"z + EdT’g)/\

3
<d92 +i((=r — %)drl + (1 +7r])dry — rldr3)>/\

2
<d93 + i(d?“g + Eldﬁ - 7"1d7"2)>

On the complex side instead, the dual action-angle coordinates are

=2 0, = x3
2 -~

re =Ty + ) 0y = x5
3 ~

7"3—$4+ 93:376

and

dZL‘l = d?“l
e° = dl’g = d?”g — TldTl
d

2
é4 = dl’4 — $1d1’2 = d7’3 + %d’f’l - 7”1d7”2
é5 = dl‘5 — xldl'g = dég — T1d01
22 5 2
é6 = dl’ﬁ — $1dl’5 + Eldl‘g = d(93 — 7"1d‘92 + %d@l
Define complex (1, 0)-forms:

Yl=¢&+iet | Y*=&+ie® |, =& +ie

and complex coordinates

21 :914—2'7“1 =3+ 121

29 = O + i1y :xg,—i-z(xg—l—ﬁ)

23 = O + irs —x6+z(x4+§)
so that

111

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)
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@ZJI =dz

V* = dz —ndz 2 (4.150)

WP = dzs — ridzy + %dzl

and

o= é31 +é52+é64

i r? r?
= 5 (le VAN dgl + (dZQ - rldzl) VAN (dfg - TleQ) + (ng -+ Elel — TleQ) VAN (dgg + Eldgl — T1d22)>
i ri rs r?
= 5 (le A ((1 + T% + Zl)dzl + (—7‘1 — El)dZQ + ild,?g)‘f‘
3
+dz A ((—r1 — %)dzl + (14 13)dz — ridz;)+

2
+dzg A (dz3 + %dél - r1d22)>

(4.151)
; 1 B
P (20) = z’(d@l AQA+ri+ Z)dr1 + (=7 — E)dm + Edr3)+
3
+dfy A (= — %)drl + (14 12)dry — rydrs)+ (4.152)
~ 7’2
+ dfs A (Eldﬁ —ridry + dT3)>
Set
4 3 2
m o= (1477 + T—l)dﬁ + (=11 — T—l)dm + T—ldr?)
4 2 2
3
Mo i= (—7“1 — %)d?“l =+ (1 =+ T%)drg — 7“1d7"3 (4153)
i
T3 ‘= d’f’3 + 5d7’1 — TldT‘Q
so that we can rewrite the two-form as
3
P (20) =i df; A, (4.154)

i=1
Take the product
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-~ F . 3 0 3 )
€P.2w A ez = ezzizl do; An; A ezizl do; Ndb;

(4.155)
—e 1 dO; \(dO;+in;)
integrating this along the 6;’s we get
(dOy + im) A (dOa + ing) A (dOs + in3) =
ol G
(del + Z 1 + 7] + Z)Ch’l + (—7“1 — 5)617"2 + EdTg)/\
3 (4.156)
<d6'2+Z 7’1—El)drl—F(l—FT%)dTg—TldTg))/\

7,2
<d6’3 + i(d?“g + Eldﬁ - Tldr2)>

which agrees with (4.145), showing that FT(e*?) = Q.
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Chapter 5

Conclusions

In this last chapter, we sum up the focal points of the thesis and we do some remarks
that may inspire further developments. The main achievement of the thesis has
been the production of concrete examples of pairs of compact manifolds satisfying
the demanding and intricate properties of semi-flat SYZ dual fibrations. We also
presented the first examples of mirror non-Kahler diamonds. This was interlaced
with the classification results for ITA /TIB structures on solvmanifolds: we have found
an appropriate setting in which the construction turned out to be realizable. But
the picture is not fully complete. We remark that:

e As initially stated, we presented the mirror partner for each of the known
sympletic half-flat (completely solvable) solvmanifold with correspondent Lie
algebra:

Symplectic half-flat SLA

Complex-balanced SLA

0,0,0,0,12, —13)
0,0, o 12 —13,-23)

0,0,0,0,12,13)
0,0, o o 12,14 + 23)

16+35 —26 + 45,36, —46,0,0)

24+35 26, 36, —46, —56,0)

(
(0,
(15 —35,45,0,0)
(
(

0,—-16,0,—36,0,0)

0.0
(15 —35,45,0,0)
(
(

0,0,0,0,0,12 + 34)

Symplectic SLA

Complex SLA

(0,0,0, —12, 13, 15)

(0,0,0, 12,13, 15)

Table 5.1: Mirror symmetric SLA’s

e As one can see from the classification in [30] we excluded the algebras:

—a,a,l 0,—1,—
- A5,17 © R and 96,118

! are not completely solvable, nevertheless their

simply connected Lie groups fit in our construction choosing as starting
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3-dimensional Lie group E(2) (and choosing o = 0 in the first algebra).
We indeed computed the TY cohomologies and checked they correspond
to the BC cohomologies of the complex balanced g5 and gg. The latter
represents the SLA underlying the Nakamura manifold. To make the
construction work completely there is left only to incorporate the analysis
of theorem 2.5.4([56]).

— ¢(1,1)®e(1, 1) is completely solvable but the SU(3)-structure given in [30]
cannot be associated to a real polarization induced by any torus-fibration.

— g4 is not completely solvable and it seems not possible to interpret its
Lie group as a semi-direct product of the form G x, R* but we do not
have a proof.

We guess that our construction is applicable also on these two last algebras if
one allows the fibration to have singularities;

From the point of view of classification of structures on solvmanifolds we just
hit the tip of the iceberg. In fact, there is no symplectic version of the analysis
carried out in [60] for complex balanced nilmanifolds. This is related to the
fact that the condition on the three-form €2 of having only the real part closed
is rather more difficult to be translated into algebraic terms. It would be a
nice result to classify all the possible symplectic half-flat structures on a fixed
symplectic solvmanifold. Moreover having at hand eventually the Fourier-
Mukai transform, when the SYZ fibration exists, it is, in theory, possible to
translate every feature of complex non-Kéhler geometry into symplectic terms
and vice versa (see for the example the corollary 2.5.1 at the end of section
2.5). For example, using the classification of symplectic structures on six-
dimensional NLA’s given by Goze, Khakimdjanov and Medina [39], we have
applied this corollary to exclude the symplectic structure wy on the algebra
corresponding to (0,0,0,0,12,13) ((23' ) in [39]) and the symplectic structure
ws on the algebra corresponding to (0,0,0,12,13,23) ( (18™) in [39]) from
admitting a symplectic half-flat structure;

Using the result of classification for affine structure on three-solvmanifolds by
Fried and Goldman, it is possible to extend the list of mirror symmetric SU(3)
structures, not necessarily half-flat /balanced, among the six-dimensional solv-
manifolds. In fact, it would be a challenging work to classify all possible
six-dimensional Lie groups that can be obtained by changing the developing
map of the affine structures on the three-dimensional Lie group. The SYZ
construction would then produce a mirror pair for each possible choice;

The role of A. We want to remark that the choice of the base of the fibration
B is indeed crucial in the analysis. Though the total spaces My ; and Mt
are the same symplectic manifold, the choice of a different base, which in turn



116

induces a different Lagrangian distribution, originates two different mirrors,
complex balanced partners;

e In the description of the pair (My 2, My ), the SU(3)-structure of type ITA on
My o was given in [83] (the symplectic structure also in [39]). Applying the
Fourier-Mukai transform to {2, we noticed that for A = —1 the corresponding
SU(3)-structure of type I1IB on hy = (0,0,0, 12,14 + 23) in [60] is not figuring
in the complex balanced classification of NLA's;

e In section 2.3.2 we have seen how, following Duistermaat [28], the invariants
of a Lagrangian fibration are the Chern class and the monodromy. In par-
ticular, a prominent role is played by the cohomology group H?(B,A) which
parametrizes the classes of isomorphism of Lagrangian fibrations up to sym-
plectomorphism as described by the work of Sepe [77],[78],[79] which, in turn,
is based on an idea of Dazord and Delzant [27]. Therefore, is in theory possible
to apply the technique presented in [77] to all our examples and obtain a full
classification, at least at the topological level.

Both territories of mirror symmetry and of non-Kéhler geometry are still pretty
unexplored. They are promising and inspiring topics and it is quite likely that
the interaction between the two would produce numerous discoveries and a better
understanding for both sides.



117

Appendix A

Cohomology Computations

Table A.1: Tseng-Yau cohomology for SLA’s

1,0 0,1 2,0 1,1 0,2 2,1
SLA | Hpy | Hpy | Hyy | Hyy | Hpy | Hpy
gn1 2 2 2 6 3 5

~ o

N |wlo| o ﬂcnqu

N OR[N DN
DO I WO | | O
= N W O

1
1
1
gs.1 1
1
1
1

Table A.2: Bott-Chern cohomology for SLA’s

SLA | e | HEl | | g | ma | 2 | R
gng | 2 2 5 6 2 6 3
gy | 2 4 6 2 7 3
sl 2 |1 s 6] 2] 6| 3
gNo | 2 1 4 6 2 6 3
gsa | 1 1 3 3 1 3 1
gs2 | O 1 2 2 1 1 1
ar | 2 1 4 6 3 7 3
gy | 1 1 4 5 2 5 3

Here are reported the dimensions of the TY/BC cohomology groups for the
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solvable Lie algebras involved. For the Lie algebra gj\m we distinguish three cases
depending on the real parameter A € R\{0, 1} already appeared in section 3.3.1.

We have said that the choice of working with solvable Lie groups/algebras was
also motivated by the possibility of computing the cohomology of the solvmanifolds
in terms of their associated Lie algebras. The main tool that allows us to exploit
this feature is the result of Angella and Kasuya ([3] Theorem 1.3). The required
fact is that, with respect to both the operators d,d* on one side, and 9,0 on the
other, the inclusion of invariant forms is a quasi-isomorphism. In the symplectic
case, this is guaranteed thanks to the result of Macri ([65]). Instead, for the Bott-
Chern cohomology, we have a general result only in the nilpotent case (see Corollary
2.7 in [3]). In the solvable case the situation is more problematic: there is only a
result for the solvmanifolds which are of splitting type or are complex-parallelizable
(see [3]). Therefore for the Lie algebras gn,—, gr, gy and their mirrors those numbers
represent also the TY/BC cohomology of the solvmanifolds. This is valid also for
gs1 and §g1, since it is of splitting type (this corresponds to the example 3.1 in [3]
case (iii)). For the remaining ggo the result still holds in view of [65], but for its
mirror gs o we can not obtain the same conclusion in a direct way. Nevertheless, we
can a posteriori get the BC-cohomology for the solvmanifolds using Theorem 6.7 in
[61] which gives the correspondence with the T'Y-cohomology. There is a procedure
by Kasuya [57] for a generic solvmanifold that relies on the semisimple splitting of
the Lie algebra and the structure of the fixed lattice. This could be used for this
remaining case and also for the non-completely solvable ones.

A.0.1 Tseng-Yau Cohomology

For each SLA we recall the notation, the symplectic form w and its dual Lefschetz
operator, the complementary Lagrangian distribution A, At induced by the fibra-
tion. Then we compute the TY cohomology exhibiting also the generators for the
groups.

gv1=(0,0,0,0,12,—13)

w=el+e2 43 | A= 1104+ a6 + t5i3

A=(e el e?) | At =(e' e ed)



119

<
MOOOOOOOOOOOOOOO
e
< 236B
= olo et e
o) ol < o + _
TleoeoeeeeR @R |@ <
v ol RE R
< ~ i — 616
> o 3 e__
3 e
o
| g AdOOOOOOOOOOOOo.e%O
e}
e Clolololo|lo|lololo|lo|lololory Py |lo
= oo = LRI
M olo AAuOOOOOOOOOOOOOOO
< olo <|lclo|Fioloclolclo|Tio—Holo|lo|o
3 2
— |
—
o) o_.vle L | ©
Cclololololo|loco|lolol of of W
o o [\S) \S) 6_%
| QO —
\8}
|
(o I (o B S U YT B N B T S TR (N T o R T B No R To B No B Ne)
~ o~ =~ H NN NN ™ N O
QOO (VO Q||| Q| Q| Q| Q| V||V |V




120

d A [ dA Ad dr d+d? dd?
el 0 0 0 0 0 0 0
et 0 -2 0 0 0 0 0
el 0 0 0 0 0 0 0
%6 0 —'[ 0 0 0 0 0
et 0 -0 0 0 0 0
el3s 0 el 0 0 0 0 0
136 0 0 0 0 0 0 0
6145 0 —65 612 0 612 612 O
6146 0 —66 —613 O —613 —613 O
196 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0
235 0 e? 0 0 0 0 0
236 0 e 0 0 0 0 0
2P 0 0 0 0 0 0 0
6246 —61234 64 O e23 —623 —61234 _ 623 O
6256 —61235 65 —612 —612 0 _61235 O
6345 _61234 —64 0 623 —623 —61234 _ 623 O
316 0 0 0 0 0 0 0
6356 61236 66 613 615 0 61236 0
6456 61246 + 61345 0 0 e26 + 635 —626 _ e35 61246 + e1345 _ 626 _ 635 —26123
d A dA Ad d? d+d? dd?
1231 0 —eZ 0 0 0 0 0
1235 0 e? 0 0 0 0 0
1236 0 e 0 0 0 0 0
1215 0 e® 0 0 0 0 0
61246 O 626 + e14 €123 0 6123 e123 0
1256 0 e 0 0 0 0 0
e1345 0 63‘) _ 614 6123 0 6123 6123 0
1316 0 %0 0 0 0 0 0
1356 0 16 0 0 0 0 0
e1456 0 656 8126 + 6135 0 6126 + 6135 6126 + 6135 0
2345 0 —e 0 0 0 0 0
2316 0 —et 0 0 0 0 0
2356 0 20 — ¢35 0 0 0 0 0
e2456 612345 —645 —6124 —6235 _ 6124 6235 612345 + e235 0
63456 7812346 7646 6134 6236 + 6134 76236 7612346 _ 6236 0
d A dA [Ad] d* | d+d? | dd?
12345 | () [ 235 _ 124 0 0 0 0 0
612346 0 —6236 _ e134 O 0 0 O 0
612356 0 —6135 - 6126 0 0 0 0 0
eI2456 | () | 256 _ o145 | 1235 0 —el235 | 1235 0
613456 0 —6356 o 6146 61236 0 61236 e1236 0
23456 | () | — 246 _ 345 0 0 0 0 0
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Hziy = (e', €%, e% et)
HZ, = (12,613, 14 15 (10 623 (24 (25 (20 _ (35 ;34 36)
HB, = (e124 (125 (120 o134 (135 (130 (156 (234 (235 ;236 (245 216 _ ;345 346
HY, = (61231 1235 o1236 (1205 (126 (135 (1256 (1346 (1356 (235 (2346 2356)
H3y = (1235 (12346 (12556 23456
(A.1)
A
Hy™ = (1)
A
Hy™ = (e, ef)
A
Hyy"™ = (!, ¢?)
HE™ = (e, ¢ >
HE" = (e'2,¢%, %)
H:(rlx’/l)A — (13 M 16 23 (2 26 _ 35
HEP® = (o)
B — (07 N
H%,/I)A = (e131 136 (234 236 (26 345 (4.2)
H%})A = (e124 o126 (135 o156 (235 245)
H%/UA — (1316 (2316
H%}) = (1234 1236 (1246 _ (1845 (1356 (2345 2356
H:(F1Y,3)A — (p1235 (1215 (1256
H:(F?)YQ)A (12316 23456y
H%,/ia)ﬁ — (12315 12356
Hg’/S)A — (£123456)
N2 = (O, 0, 0, 12, —13, —23)
wy =€ A+ (AN =D | Ay =116+ XLQLE, + S RE
A= (e e | At=(e e et



122
dd*

6123
6123

d+d?

dd?

6123

613
623

(iA

dA | Ad | d* | d+d?

Ad

A

d
dA

<

6123
6123

6123

612
e13
614
615
616
623
624
625
e26
634

1 1
-1 ¢
63

A1
A

PS VRS E 2
o136 _ o235 |

AO—1)

AO—1)

e134
6234
6235

6125
e126
e136

635
636
e45
646
656
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d A dA Ad d?r d+d? dd?
e 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0
e 0 el 0 0 0 0 0
e 0 e 0 0 0 0 0
E 0 [ s5e 0 0 0 0 0
e 0 0 0 0 0 0 0
e 0 e’ 0 0 0 0 0
e 0 0 0 0 0 0
4 12 1 12 A 12 1234 A 12
e e —eA ﬁ? -3¢ e - 5°7€ 0
o i 13 LT3 SR o125 1 A1l 0
e e 0 0 0 0 0
e el 0 0 0 0 0
e 0 0 0 0 0 0
T 1 — 1 12 — 1 __12 T 2 [ _ 1234 I 12
€ 26 2 © 1¢ 2o D° e+ 3¢ 0
e 0 0 0 0 0 0
e _%66 _§e23 B /\;1623 1236 |~ AT 23 0
f T 5 1 13 113 T—13 1235 T— 13
€ 1° 1°¢ 2 © oD et o¢ 0
T 6 T 23 73 X 73 1236 | X .23
€ 1€ ¢ e € e+ 1€ 0
e 0 0 0 0 0 0
_ M)l 123
e 0 0 K K e+ kK 2 o) ©
_ 1256 _ 1346 2345 _ 1 16 _ X\ .25 _ A-1_34
where € e e +e and Kk = o€ 7€ €
A dA Ad ar drd® dd?
e 0 0 0 0 0
L1 0 0 0 0 0
—e 0 0 0 0 0
Ll 0 0 0 0 0
— 2t 0 0 0 0 0
B _ %em T2 123 0 %8123 X123 0
e 0 0 0 0 0
JpS:Z /\;161@ _% 123 0 _ﬁeus _Aileus 0
— e 0 0 0 0 0
__ 45 6125 + 8154 _ﬁelzﬁ + ielii-'i ﬁelzﬁ + %8134 _612345 + ﬁelZS + %6134 0
%c“ + ﬁ 25 oD ,123 0 /\(/\1_1)6123 )\(/\1_1)6123 0
% 0 0 0 0
L 0 0 0 0 0
%646—. l(Jl?G‘ 1(’)2?4 _ /2.?4 _ )\ilreilZG %("234 + A(A171)61?6 761?3%6 + %eZSAL' + )\()\171)6‘126 0
ﬁeub )\1T161$() _ %6255 6235 + %eldb A(A1_1) 615() _ ﬁCQJS 612556 + )\()\1_1)6136 _ ﬁelﬁ 0
d A dA Ad dA d+dA dd?
0| —5e + e 0 0 0 0 0
0] e+ 0 0 0 0 0
0 e?% + %(3136 0 0 0 0 0
0 o255 1146 17\A€1234 0 1;>\61234 1;>\61234 0
X 1235 A 1235 A 1235 A 1235
0 T )‘2_5166 T_316 )‘Tle 1236 . )\Tle 736 T ‘ 1236 X
0] 3= € Ao-1°¢ 0 | xo=p® o1 ¢ 0
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0
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HY”
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Hpy?”
iy
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TY
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HE”

HE”
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1
(', e? ,e
o
- JRUISL:
‘ ; 15, B
126 7 }
123 ' N s
<<€>\ 4 1235 61;366 476135 613,66 1, 636,616+ 25
: : , 45 :
1)262345 e 245,6124676 e o
Ui v e >
1234 e 6> e 1356 , 236 o246
, e12316 12356 , 1356 2346 2;35 ]
6
> e 7)\26234,5 )
is one of :
)
146 | 2
N (A.3)
- o if A=
_ A5 —!
(256 nA
‘ — 346 if »
otherwi o
) erwise i
3 A
<e> (A.4)
(€', e >
<635
<613 3
| . 26 (16
e g 616 4 25 16
(6356> | o
<€135
6 (25
BE /
( 6 134 o
<61 M5 2
| B 216
, '
<61356 2356 N
<61235 61236>
13
<€1234 12 ey (A.S)
45,1246 A
<€12356> 7 > _% 61346 (A
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<6123456
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where
156 345 - _
Q6 4 245 p A= e’ —e if A=2
/ 1 .
M= | ;M= et =M if A =2 ., (A.6)
0 otherwise _
0 otherwise

gsi1 = (157 _257 _357 457 07 0)

w= e 4 ¥ 4 0 A = 0y0s + Lot + L5t
A= <€3>€4a€6> ) At = <€1,€2,65>
d [A[dA[Ad]d* [ d+d® [ ddd
A —eB 01 0 0 0 — T 0
21 e ol o 0 0 i 0
Sl e 1ol ol o]0 35 0
64 —645 O 0 O O —645 0
el o o]l o]o]oO 0 0
eSS 0 [0 O0O]O0]O 0 0
d AJdA] Ad | a* d+d* [ dd®
e 0 00 00 0 0
el 0 [—1]o] 0o 0 0
1 [ 95 0 0 0 0 5115 0
e 0 oo o] o0 0 0
o16 [ _ 156 0 0 ol ol [ —eIB I o5
eB [ 235 0 0 0 — 5075 0
A0 [—-1]ol oo 0 0
e 0 0000 0 0
626 6256 0 O —62 62 6256 I 62 625
et 0 0] 0] 00 0 0
e’ 0 oo o0 o0 0 0
636 6356 0 0 —63 63 6356 + 63 635
e 0 00010 0 0
646 —6456 0 0 64 —64 —6456 — 64 645
el 0 1ol oo 0 0
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d A dA Ad d? d+d? dd?
6123 61235 82 e25 —625 0 81235 0
6124 —61245 —61 e15 615 0 —61245 0
el? 0 0 0 0 0 0 0
el?t 0 0 0 0 0 0 0
6134 —61345 —64 e45 645 0 —61345 0
el 0 —ed 0 0 0 0 0
el30 0 —eb 0 0 0 0 0
el4® 0 0 0 0 0 0 0
6146 261456 0 2614 2614 261456 + 2614 46145
6156 0 —61 e15 0 615 615 0
6234 62345 63 635 635 0 82345 0
e 0 0 0 0 0 0 0
6236 —262356 0 0 2623 2625 —262356 _ 2623 46235
240 0 —e 0 0 0 0 0
210 0 —e 0 0 0 0 0
6256 0 —e —625 0 —625 —625 0
340 0 0 0 0 0 0 0
310 0 0 0 0 0 0 0
6356 0 _63 —635 0 —635 _635 0
6456 0 —64 645 0 645 645 0
d A dA Ad d* d+d* dd?
el234 0 et 4+ el3 0 0 0 0 0
el 0 e? 0 0 0 0 0
61236 612356 626 6256 6256 _ 6123 6’123 6’12356 + 6123 61235
el24 0 —el? 0 0 0 0 0
e1246 —612456 —616 e156 e156 + 6124 —6124 —612456 _ 6124 61245
1296 0 —el? 0 0 0 0 0
el31 0 —e® 0 0 0 0 0
e1346 —613456 —646 6456 6456 + 6134 —6134 —613456 _ 6134 61345
1390 0 —et —el3 0 0 0 0 0
61456 0 —614 —26145 0 —26145 —26145 0
2345 0 e 0 0 0 0 0
62346 623456 636 6356 *6234 + 6356 6’234 6’23456 + 6234 6’2345
62356 0 —623 26235 0 26235 26235 0
2456 0 —e?% — e 0 0 0 0 0
3456 0 —e3t 0 0 0 0 0
d A dA | Ad| d* | d+d* |dd®
612345 0 6135 + 6245 0 0 0 0 0
612346 0 6246 + 6136 0 0 0 0 0
12356 0 256 _ o123 —el235 0 _el235 | _ 1235 0
612456 0 —6156 _ 6124 61245 0 61245 61245 0
613456 0 _6456 _ 6134 61345 0 61345 61345 0
623456 0 6356 _ e234 —62345 0 —62345 —62345 0
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b
2 /12 13 24 34 56
Hyy = (e e e e e >

(
{

H%Y — <6125, 6126, 61357 6136, 6245, 62467 e3457 6346> (A?)
=
{

61234, 61256, 61356, 62456, 63456>

HEP" = (1)

Hy™ = ()

H" = ()

HEY" = <e34>

Hiy™ = (1, e, &)

iy = ()

HEY = ()

H;z},/l)A <€136 246 345> (49
H%f)A (€126 135 o215 '
iy = ()

Hi(FSY 1A <e3456>

H%})A (1234 (1356 2456

H%})A (€1256)

Hg?) <612346>

H;2Y3) = { 612345>

(3 3)2 <6123456>

gs2 = (16 + 35, —26 + 45, 36, —46, 0, 0)

w=et+eB+e | A= 1401+ 1300 + teis

A= (e e? e’y | At =(e* e el
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d A dA Ad ar d+d" dd*
o123 [ 1345 _ 1236 | 1 “oI6 35 | 6 _ 35 0 o1345 _ 1236 0
6124 62345 + 61246 —62 —626 + 645 —626 + 645 0 62345 + 61246 0
1% 0 0 0 0 0 0 0
o126 | 1456 _ 2356 0 0 A B3 o283 _ I | 56 _ 2356 | 23 _ 14 [ _9 345
6134 —81346 —63 836 636 0 —61346 0
e135 —261356 0 0 2613 2613 —261356 + 2613 46136
el 0 0 0 0 0 0 0
el 0 e 0 0 0 0 0
e146 63456 e6 0 e34 —634 63456 _ 634 0
o156 0 ol o6 _ % 0 6 _ % —ol6 _ %5 0
6234 62346 64 846 646 0 62346 0
7 0 & 0 0 0 0 0
2236 3456 6 0 g2 34 o356 | 3 0
6245 262456 0 0 2624 2624 262456 _ 2624 6246
21 0 0 0 0 0 0 0
2256 0 o2 226 _ 45 0 226 _ 45 26 _ 45 0
&35 0 0 0 0 0 0 0
346 0 0 0 0 0 0 0
6’356 0 63 —636 0 —636 —636 0
6456 0 64 846 0 646 646 0
d A dA Ad ar d+d* dd?
e1234 0 e + el 0 0 0 0 0
e1235 612356 e15 6156 6156 + 6123 —6123 612356 _ e123 —61345 + 61236
e1236 613456 616 —6356 —6356 + 6134 —6134 e12456 _ 6134 —61346
e1245 —612456 —625 6256 6256 _ 6124 e124 —612456 + 6124 62345 + 61246
e1246 623456 —626 6456 6456 + 6234 _6234 _ 23456 __ 6234 —82346
61256 0 612 e145 _ 6235 0 6145 _ 6235 6145 _ 6235 0
e1345 613456 —635 —6356 6134 _ 6356 —6134 613456 _ 6134 61346
1346 0 —e30 0 0 0 0 0
61356 0 —613 26136 0 26136 26136 0
e1456 0 656 + 614 6345 0 e345 8345 0
e2345 —823456 e45 —8456 —6456 _ 6234 e234 —623456 + e234 62346
2346 0 et 0 0 0 0 0
e2356 0 856 + 623 —6345 0 —6345 _6345 0
e2456 0 e24 —28246 0 —26246 —26246 0
3456 0 e3t 0 0 0 0 0
d A dA Ad d* d+d? dd*

612345 0 e145 + 6235 0 0 0 0 0

e12346 0 6236 + 6146 0 0 0 0 0

612356 0 6156 + 6123 61345 _ 61236 0 61345 _ 61236 61345 _ 61236 0

612456 0 —6256 + 6124 62345 + 61246 0 62345 + e1246 62345 + 61246 0

613456 0 —6356 + 6134 —61346 0 —61346 —61346 0

623456 0 6456 + 6234 62346 0 62346 62346 0
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Hry = (€”,€%)
H2, = (e + 28, 3 (%)
H3, = (e125 145 235 346 236 4 o146) (A.9)
HA, = (e1234 3456 (1456 | (2356
H5,, = (¢!2345 (12346
HR" = (1)
Hiy”™ = ()
Hy” = ()
iy =0
H%’/l) _ <614 + 6237656>
iy = (™)
Hiy™ = (%)
H%’,l) _ <61457e2357>

(A.10)

H(&?»)A _

gr = (0,—16,0,—36,0,0) ~ (0,0,0,0,12, 13)

w=el+eB+e% | A=1104+ 1300 + 1506

A= {e*e* e | At = (e e e
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d A dA Ad d? d+d? dd?
el?3 0 el 0 0 0 0 0
6,124 61236 62 616 616 0 e1236 0
el? 0 0 0 0 0 0 0
el%0 0 0 0 0 0 0 0
el3 0 el 0 0 0 0 0
el 0 0 0 0 0 0 0
el%0 0 0 0 0 0 0 0
6145 61356 —65 0 —613 613 e1356 + 613 0
116 0 —eb 0 0 0 0 0
el?0 0 —e! 0 0 0 0 0
6234 61346 64 636 636 0 e1346 0
6235 e1356 65 0 —613 613 61356 + 613 0
e*%0 0 b 0 0 0 0 0
6245 61456 + 62356 0 0 —614 _ 623 614 + 623 61456 + 62356 + 614 + 623 —26136
16 0 0 0 0 0 0 0
6256 0 —62 _616 0 —616 —616 0
e3to 0 0 0 0 0 0 0
316 0 0 0 0 0 0 0
3% 0 —e? 0 0 0 0 0
6456 0 —64 —636 0 —636 —636 0

d A dA Ad d* d+d* dd?
123 0 —e* 4 et 0 0 0 0 0
el?3 0 el? 0 0 0 0 0
el236 0 el® 0 0 0 0 0
81245 —61235 625 —6156 6123 _ 6156 —6123 —61235 _ 123 0
el246 0 e 0 0 0 0 0
290 0 —el? 0 0 0 0 0
el34 0 e 0 0 0 0 0
1346 0 36 0 0 0 0 0
1396 0 —el3 0 0 0 0 0
81456 0 —614 _ 656 6136 0 6136 6136 0
62345 —613456 645 —6356 —6356 + 6134 —6134 —613456 _ 6134 0
2346 0 et 0 0 0 0 0
82356 0 656 _ 623 6136 0 6136 6136 0
62456 0 —624 6146 + 6236 0 6146 + e236 6146 + 6236 0
3156 0 —et 0 0 0 0 0
d A dA | Ad| d* | d+d* | dd®

612345 0 6145 _ 6235 0 0 0 0 0

612346 0 6146 _ e236 0 0 0 0 0

612356 0 6156 . e123 0 0 0 0 0

oI2456 | () [ o256 _ 124 | _ 1236 | () | _ 1236 | _ 1236 0

613456 0 6356 - 6134 0 0 0 0 0

623456 0 6456 _ e234 —61346 0 —61346 —61346 0
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HYI’Y = <€176 765766>
2 _ /12 13 14 23 15 16 26 34 35 36 46 _56
Hiy =(e“, e’ et —e* e e, e, e e e e e”)
3 /123 125 126 _134 135 145 235 146 _156 236 246 345 346 356
Hyy = (e, e e e e e — e e 0 0 ¥ 7™ 2 e77)
H%Y _ <€12347 1235 (1236 1246 1256 1345 (1346 1356 2346 (3456 (1456 _ 62356)
5 12345 12346 12356 13456
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A.0.2 Bott-Chern Cohomology

For each SLA we recall the notation, the complex three-form € and the basis of (1, 0)-
forms with their differentials. Then we compute the BC cohomology exhibiting also
the generators for the groups. This is in according with the computation in ([60]).

gn1 = (0,0,0,0,12,13)

Q= (e* +ie') A (e® +ie?) A (ef +ie”)
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