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We develop a numerical method to approximate the adjusted value of a European contingent claim subject to 
multiple credit risks in a market model where the underlying’s price is correlated with the stochastic default 
intensities of both parties of the contract. When the close-out value of the contract is chosen as a fraction of the 
adjusted value, the latter verifies a non-linear, not explicitly solvable BSDE. In a Markovian setting, this adjusted 
value is a deterministic function of the state variables verifying a non-linear PDE. Thus, we build a numerical 
method to approximate the solution of this non-linear PDE, as an alternative to the commonly used Monte Carlo 
simulations, which require large computational times, especially when the number of the state variables grows. 
We construct this approximated solution by the simple method of finite differences and we show the method to 
be accurate and efficient.
1. Introduction

In periods of financial distress or crisis, some classical financial mod-
els became inadequate to represent all the risk factors. As a matter of 
fact, in 2004, the Basel Committee signed the Basel II agreement re-
garding the capital requirements banks must meet to curb financial 
risks. In particular, Basel II set up the accounting standards regarding 
Counterparty Credit Risk (CCR), which is the risk that a counterparty 
might default before honouring its engagements, and it covers loans 
and repurchase agreement (Repo) transactions, and most importantly, 
over-the-counter (OTC) derivatives. In the last decade, the interest in 
CCR increased remarkably, and a theory of Value Adjustments was de-
veloped. The first to be introduced was the Credit Valuation Adjustment 
(CVA), as the difference between the risk-free value of a portfolio and 
the calculation taking into account the possibility of counterparty de-
fault, while the investor was always considered default-free.

Over the years, the role of the CVA has increased considerably, and 
it has become crucial in derivatives trading in OTC markets, stimulat-
ing much research in the field: see [16,20,26,27], and [8] for a list of 
frequently asked questions on the subject.

Before the financial crisis of 2007 −08, most institutions did not cor-
rectly incorporate default risks in their risk system, indeed a statistical 
study showed that more than two-thirds of the losses for that period 
were due to incorrect evaluation of derivative products rather than an 
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actual counterpart’s default. Hence after the financial crisis, in 2009, the 
Basel Committee issued a new version of the act called Basel III, pushing 
financial institutions to incorporate default risks of either party, when 
evaluating products with cashflows in both directions.

A new measure called Debt Valuation Adjustment (DVA) was intro-
duced as an accruement of the claim’s value due to the investor’s default 
risk.

To mitigate credit risk collateralization usually employed to balance 
the parties exposure to reciprocal default event, it is often possible to 
re-hypothecate the collateral for self-financing. The impact of collateral-
ization on default risk, CVA and DVA has been analyzed in [11,10,15].

As investments/collateralizations are often funded also from exter-
nal sources, further risks are involved and further adjustments had to 
be introduced. Funding Value Adjustment (FVA) and Liquidity Value 
Adjustment (LVA), which makes the pricing problem recursive and non-
linear, as those quantities are closely linked to the adjusted price itself.

We refer the reader to [13,15,18,19] for a detailed discussion.
Following those papers and exploiting the intensity approach [1,12,

13], it can be show that the adjusted value of a financial contract, under 
a risk-neutral measure, can be characterized as the solution of a BSDE 
(Backward Stochastic Differential equation). This equation depends on 
the so-called “close-out value”, which is a portion of a contractually 
agreed price to be paid as partial compensation when the default of 
one of the parties occurs. There are fundamentally two possibilities: 
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either the close-out value is taken as a portion of the default-free price 
or of the defaultable contract price. The first choice usually determines 
a solvable linear BSDE, while the second, returns a non-linear BSDE, 
not explicitly solvable. The first setting was investigated in [1] with an 
expansion and approximation technique, which fails in presence of non 
linearity. Typically, this leaves only Monte Carlo simulation techniques, 
(for instance [33]), as the main choice for the numerical approximation 
of the solution, with usually very long computational times.

Recently, Deep Learning techniques have been successfully em-
ployed to solve BSDE’s and hence employed to compute non-linear 
value adjustments, in [25] a deep BSDE Solver showed to be a highly 
efficient method to approximate the dynamics of defaultable portfo-
lios. Nevertheless, those algorithms remain computationally costly in 
the learning phase.

Here, we propose a simple numerical method with low computa-
tional times and efficient results, in a Markovian setting when the 
derivative’s value can be expressed as a deterministic function of the 
state variables. Such function satisfies a non-linear PDE with final con-
dition given by the product’s payoff (for a detailed discussion about the 
connection between CVA and the PDEs, see [17]), and we propose to 
discretize this associated PDE.

More precisely, we consider the case of a European claim subject to 
default, funding, and liquidity risks, when

• the default intensities are constant;
• the default intensities are driven by a CIR process.

Our main goal is to treat the second case, and we use the first to com-
pare with the results obtained in [13] in the same setting. A fixed point 
approach was proposed in [31], though not succeeding to consider non-
constant rates and intensities.

Still with constant intensities, we quote the recent work by [3,2]
that extend the analysis to jump-diffusion models and apply the finite 
elements and contraction methods to approximate the PDE solutions. 
Stochastic intensities are rarely treated [23] (except for the Gaussian 
case, not fit to represent positive processes in [2]), even though they 
represent an important modeling choice.

Here, we consider both parties to be defaultable with stochastic in-
tensities subject to funding and collateralization risks, and the close-out 
value to be a portion of the adjusted value itself. The intensities are 
represented by means of CIR processes to ensure their positivity.

Under those choices, the backward equation becomes non-linear re-
flecting in a 4 dimensional non-linear PDE. We used the simple method 
of finite differences [21,22,29] to approximate the PDE with a system of 
ODEs, which by one-step methods, such as the Euler one, can be solved.

We implemented the method by Matlab software, and we used 
Monte Carlo simulations as benchmark.

We achieved the same degree of accuracy as by Monte Carlo method 
was preserved by the method of finite differences. Computational times 
were remarkably shorter even when compared with the methods in [3,
2].

The paper is structured as follows. In the first section, we briefly 
describe the modeling of the problem, and we introduce the BSDE char-
acterizing the adjusted contract’s value. Next, we consider the specific 
case of a European call, and we obtain the associated non-linear PDE. 
The third section is dedicated to the method of finite differences and its 
implementation. In the last sections, we discuss the numerical results, 
and a sensitivity analysis is performed.

2. Evaluation of European claims under the intensity approach

We consider a finite time interval [0, 𝑇 ] and a complete probability 
space (Ω,  , ℙ).

The market is described by the risk-free interest rate process 𝑟𝑡, de-
termining the money market account and by an adapted process 𝑆𝑡, 
representing the asset price (underlying), and we assume to be in ab-
25
sence of arbitrage with ℙ representing a risk-neutral measure selected 
by some criterion. We denote by {𝑡}𝑡∈[0,𝑇 ] the market filtration gen-
erated by the processes 𝑆𝑡, 𝑟𝑡 and other possible stochastic factors. The 
process 𝑆𝑡 has the following dynamics under the measure ℙ:

𝑑𝑆𝑡 = 𝑟𝑡𝑆𝑡𝑑𝑡+ 𝜎(𝑡,𝑆𝑡)𝑑𝑊𝑡 (1)

where 𝑊𝑡 is a Brownian motion, and 𝜎(𝑡, 𝑥) is Lipschitz continuous in 𝑥
uniformly in time and with sub-linear growth.1

We consider two financial entities (1 =Counterparty, 2 =Investor) 
exchanging some European claim with maturity 𝑇 and payoff Φ(𝑆𝑇 ), 
where Φ is a function as regular as needed, not necessarily non-
negative.

We take the perspective of the investor with the objective to com-
pute the contract value, that we denote by 𝑉𝑡, taking into account all 
the cashflows (see [13,14] for more details).

Both parties might default, and we denote by 𝜏1, 𝜏2 the random 
variables representing their default times. We assume that they can-
not occur jointly, which is, for example, satisfied in all intensity models 
of credit risk.

In general, these r.v.’s are not necessarily stopping times with re-
spect to the filtration 𝑡, generated by the market observable. To price 
the defaultable contract, we first need to extend 𝑡, to 𝑡 = 𝑡 ∨1

𝑡
∨2

𝑡
, 

where 𝑖
𝑡
= 𝜎({1{𝜏𝑖≤𝑠}, 𝑠 ≤ 𝑡}), 𝑖 = 1, 2, which is the smallest filtration 

making the random variables 𝜏𝑖 stopping times. We assume that 𝜏1, 
𝜏2 are the first jump times of two Cox processes with stochastic  -
predictable positive intensities 𝜆1, 𝜆2 (see [13,30]). More precisely

• 𝜏𝑖 = inf{𝑡 ≥ 0| ∫ 𝑡0 𝜆𝑖𝑢𝑑𝑢 > 𝜉𝑖}, where 𝜉𝑖 are two independent standard 
exponential random variables.

The so defined default times result being conditionally independent with 
respect to  , that is

ℙ[𝜏1 > 𝑡1, 𝜏2 > 𝑡2|𝑡] = ℙ[𝜏1 > 𝑡1|𝑡]ℙ[𝜏2 > 𝑡2|𝑡], ∀𝑡1, 𝑡2 ∈ [0, 𝑡],

so that the probability of simultaneous default is 0.
As a consequence, the conditional distribution of the “first to de-

fault” time 𝜏 =𝑚𝑖𝑛(𝜏1, 𝜏2) has the representation

ℙ[𝜏 > 𝑡|𝑠] = e−∫ 𝑡0 𝜆𝑢𝑑𝑢, 𝜆 = 𝜆1 + 𝜆2, 𝑠 ≥ 𝑡
and we denote 𝜏 =𝑚𝑖𝑛(𝜏, 𝑇 ).

We denote 𝔼[⋅] = 𝔼[⋅|],  = , , and we assume that so called 𝐻 -
hypothesis (𝐻) every 𝑡-martingale remains a 𝑡-martingale (see [24,
30]).

By following [13], we know the 𝑡-adapted value process of the 
defaultable derivative, 𝑉𝑡, is given by the sum of the discounted default-
free price and the adjustments due to default, funding, and collateral-
ization risks, and it is characterized as the solution of the following 
BSDE

𝑉𝑡 = 𝔼
𝑡

[
1{𝜏>𝑇 }e−∫ 𝑇

𝑡
𝑟𝑠𝑑𝑠Φ(𝑆𝑇 ) +

𝜏

∫
𝑡

e−∫ 𝑢
𝑡
𝑟𝑠𝑑𝑠𝜋𝑢𝑑𝑢

]

− 𝔼
𝑡

[ 𝜏

∫
𝑡

e−∫ 𝑢
𝑡 𝑟𝑠𝑑𝑠

(
𝑐𝑢 − 𝑟𝑢

)
𝐶𝑢𝑑𝑢

]

− 𝔼
𝑡

[ 𝜏

∫
𝑡

e−∫ 𝑢
𝑡
𝑟𝑠𝑑𝑠(𝑓𝑢 − 𝑟𝑢)(𝑉𝑢 −𝐶𝑢)𝑑𝑢

]
(2)

− 𝔼
𝑡

[ 𝜏

∫
𝑡

e−∫ 𝑢
𝑡
𝑟𝑠𝑑𝑠(𝑟𝑢 − ℎ̄𝑢)𝐻̄𝑢𝑑𝑢

]

1 Such hypotheses guarantee the existence and uniqueness of a strong solution 
for equation (1).
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Table 1

Summary of cashflows and their measurability properties.

Symbol Role Assumption

Φ() Payoff at maturity Lipschitz function of 𝑆𝑇
𝜋 Contract dividends  -predictable
𝐶 Collateral process  -predictable
𝐻̄ Hedging process -predictable
𝜖 Close-out value  -predictable
𝑐 Collateral rate  -predictable
𝑓 Funding rate -predictable
ℎ̄ Hedging rate -predictable
𝐿𝐺𝐷𝑖, 𝑖 = 1,2 Loss Given Default Constant

+ 𝔼
𝑡

[
e−∫ 𝜏

𝑡
𝑟𝑠𝑑𝑠1{𝑡≤𝜏≤𝑇 }

(
𝜖𝜏 − 1{𝜏1<𝜏2}𝐿𝐺𝐷1(𝜖𝜏 −𝐶𝜏 )+

+ 1{𝜏2<𝜏1}𝐿𝐺𝐷2(𝜖𝜏 −𝐶𝜏 )−
)]
.

Some terms in the above are predefined by the contract’s agreement, 
others depend on the price evolution. We summarize their meaning and 
measurability properties in Table 1. The close-out value 𝜖𝑢 is usually 
taken as the default-free price or as the adjusted price of the defaultable 
claim: the first choice gives a solvable linear BSDE, while the second 
(𝜖𝑢 = 𝑉𝑢) determines a non-linear BSDE, not explicitly solvable.

It is to be noted that the default times are not market observable, 
thus the theoretical price represented by (2) must be projected on to 
the market filtration 𝑡.

To do so, we employ the well-known Key Lemma and its extensions, 
(see for instance [5,6,20,30]).

Theorem 1 (Key Lemma). For any -measurable random variable 𝑋 and 
𝑡 > 0, we have

𝔼
𝑡

[
1{𝑡<𝜏𝑖≤𝑠}𝑋

]
= 1{𝜏>𝑡}

𝔼
𝑡

[
1{𝑡<𝜏𝑖≤𝑠}𝑋

]
𝔼
𝑡

[
1{𝜏𝑖>𝑡}

] , 𝑖 = 1,2.

In particular, we have that for any 𝑡-measurable random variable 𝑌 there 
exists an 𝑡-measurable random variable 𝑍 such that 1{𝜏𝑖>𝑡}𝑌 = 1{𝜏𝑖>𝑡}𝑍, 
𝑖 = 1, 2.

• If 𝜑𝑢 is a -adapted process, then

𝔼𝑡
[ 𝜏

∫
𝑡

𝜑𝑢𝑑𝑢

]
= 1{𝜏𝑖>𝑡}𝔼

𝑡
[ 𝑇

∫
𝑡

e−∫ 𝑢
𝑡
𝜆𝑖𝑠𝑑𝑠𝜑̄𝑢𝑑𝑢

]
, 𝑖 = 1,2,

where 𝜑𝑢 is an 𝑢-adapted process such that 1{𝜏𝑖>𝑢}𝜑̄ = 1{𝜏𝑖>𝑢}𝜑.

• If 𝜑𝑢 is an  -predictable process, we have

𝔼
𝑡

[
1{𝑡<𝜏<𝑇 }1{𝜏1<𝜏2}𝜑𝜏

]
= 1{𝜏>𝑡}𝔼

𝑡

[ 𝑇

∫
𝑡

e−∫ 𝑢
𝑡
(𝜆1𝑠+𝜆

2
𝑠 )𝑑𝑠𝜆1

𝑢
𝜑𝑢𝑑𝑢

]
.

Projecting (2) on 𝑡, and employing the previous lemma we may 
conclude that the 𝑡-adapted adjusted price 𝑉𝑡, such that 1{𝜏>𝑡}𝑉𝑡 =
1{𝜏>𝑡}𝑉𝑡 verifies the following  -BSDE

𝑉𝑡 = 𝔼
𝑡

[
e−∫ 𝑇

𝑡 (𝑟𝑠+𝜆𝑠)𝑑𝑠Φ(𝑆𝑇 )

+

𝑇

∫
𝑡

e−∫ 𝑢
𝑡
(𝑟𝑠+𝜆𝑠)𝑑𝑠

(
𝜋𝑢 − (𝑐𝑢 − 𝑟𝑢)𝐶𝑢 − (𝑓𝑢 − 𝑟𝑢)(𝑉𝑢 −𝐶𝑢) (3)

− (𝑟𝑢 − ℎ𝑢)𝐻𝑢 + 𝑉𝑢𝜆𝑢 −𝐿𝐺𝐷1𝜆
1
𝑢
(𝑉𝑢 −𝐶𝑢)+ +𝐿𝐺𝐷2𝜆

2
𝑢
(𝑉𝑢 −𝐶𝑢)−

)
𝑑𝑢

]
,

where 𝑓𝑢, ℎ𝑢 and 𝐻𝑢 are  -adapted processes such that 1{𝜏>𝑡}𝜉𝑢 =
1{𝜏>𝑡}𝜉𝑢 for 𝜉 = 𝑓, ℎ, 𝐻 .

d
ta
(

𝑉

w
s
to

a
w
d
ti
w
g

3

(
ti
d

b

𝑆

w

𝜆

𝜆

w

𝑊

w
𝛾

p

H
to
a

th
26
If 𝑡 is generated by a (possibly multidimensional) Brownian motion 
riving the market assets prices, by the martingale representation theorem, 
king for granted the necessary integrability conditions, we can rewrite 

3) as

𝑡 =Φ(𝑆𝑇 ) +

𝑇

∫
𝑡

(
𝜋𝑢 + (𝑓𝑢 − 𝑐𝑢)𝐶𝑢 − 𝑓𝑢𝑉𝑢 − (𝑟𝑢 − ℎ𝑢)𝐻𝑢

−𝐿𝐺𝐷1𝜆
1
𝑢
(𝑉𝑢 −𝐶𝑢)+ +𝐿𝐺𝐷2𝜆

2
𝑢
(𝑉𝑢 −𝐶𝑢)−

)
𝑑𝑢−

𝑇

∫
𝑡

𝑍𝑢𝑑𝑊𝑢 +𝑡,

(4)

here 𝑊𝑡 is a (vector) Brownian motion, 𝑍𝑡 an  -adapted possibly 
quare integrable (vector) process, and 𝑡 is a martingale orthogonal 
 ∫ 𝑇
𝑡
𝑍𝑢 ⋅ 𝑑𝑊𝑢, possibly depending on further stochastic factors.

Missing a closed form solution for (4), one may try to construct 
n appropriate approximation procedure. In the literature, the most 
idespread method is Monte Carlo simulations (possibly coupled with 
eep learning-techniques as in [25]), which imply very long computa-
onal times. It is then worth looking for alternative, less costly methods, 
hich is possible to attain when the underlying processes are diffusion, 
enerating a Markovian vector.

. Markovian BSDE and PDE for 𝑽𝒕

Under appropriate conditions, (3) has a unique adapted solution 
𝑉 , 𝑍) (see [13,34]), and in a Markovian setting this is a determinis-
c function of the state variables, which is the case when (𝑆, 𝜆1, 𝜆2) are 
iffusion processes.

Using the flow notation, we assume that the market model is given 
y 𝑆 satisfying:

𝑡,𝑥
𝑠

= 𝑥+

𝑠

∫
𝑡

𝑟𝑢𝑆
𝑡,𝑥
𝑢
𝑑𝑢+

𝑠

∫
𝑡

𝜎𝑆𝑡,𝑥
𝑢
𝑑𝑊𝑢, 𝜎 > 0, 𝑡 ≤ 𝑠 ≤ 𝑇 , (5)

ith default intensities following CIR dynamics

1,𝑡,𝑦
𝑠

=𝑦+

𝑠

∫
𝑡

𝛾1(𝜓1 − 𝜆1,𝑡,𝑦𝑢
)𝑑𝑢+

𝑠

∫
𝑡

𝜂1

√
𝜆
1,𝑡,𝑦
𝑢 𝑑𝐵1

𝑢

2,𝑡,𝑧
𝑠

=𝑧+

𝑠

∫
𝑡

𝛾2(𝜓2 − 𝜆2,𝑡,𝑧𝑢
)𝑑𝑢+

𝑠

∫
𝑡

𝜂2

√
𝜆
2,𝑡,𝑧
𝑢 𝑑𝐵2

𝑢
,

(6)

ith

𝑡 = 𝜌1𝐵1
𝑡
+ 𝜌2𝐵2

𝑡
+
√

1 − 𝜌21 − 𝜌
2
2𝐵

3
𝑡
, 𝜌21 + 𝜌

2
2 ≤ 1, −1 ≤ 𝜌𝑖 ≤ 1 (7)

here (𝐵1
𝑡
, 𝐵2
𝑡
, 𝐵3
𝑡
) is 3-dimensional standard Brownian motion, and 

𝑖, 𝜓𝑖, 𝜂𝑖 ≥ 0, 𝑖 = 1, 2, verify the Feller condition, 2𝛾𝑖𝜓𝑖 ≥ 𝜂2𝑖 , to ensure the 
rocesses’ positivity.

To simplify our discussion we also assume that

• the claim pays no dividends, hence 𝜋 = 0;
• the rates 𝑟, 𝑓, 𝑐, ℎ are deterministic, bounded functions of time;
• the collateral process is a fraction of the process 𝑉𝑢, namely 𝐶𝑢 =
𝛼𝑢𝑉𝑢, where 0 ≤ 𝛼𝑢 ≤ 1 is a function of time;

• the process 𝐻𝑡 = 𝐻(𝑡, 𝑆𝑡, 𝑉𝑡, 𝑍𝑡), where 𝐻(𝑢, 𝑥, 𝑣, 𝑧) is a determin-
istic, Lipschitz-continuous function in 𝑣, 𝑧, uniformly in 𝑢. Besides 
𝐻(𝑢, 𝑥, 0, 0) is continuous in 𝑥. This means that we have an explicit 
representation for the hedging process 𝐻𝑡 (see [1,13,16,9]);

ere, we choose the two default intensities independent of each other 
 simplify calculations, but this assumption may be easily removed by 

dding a correlation parameter in the discussion that follows.
We remark that by taking 𝛾𝑖 = 𝜓𝑖 = 𝜂𝑖 = 0, 𝑖 = 1, 2, we can restrict to 

e case of deterministic intensities (as in [13]).
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Using this representation, (4) becomes

𝑑𝑉 𝑡,𝑥,𝑦,𝑧
𝑠

=

[
(1 − 𝛼𝑡)

[
𝑓𝑡𝑉

𝑡,𝑥,𝑦,𝑧
𝑠

+𝐿𝐺𝐷1𝜆
1,𝑡,𝑦
𝑠
𝑉 𝑡,𝑥,𝑦,𝑧,+
𝑠

−𝐿𝐺𝐷2𝜆
2,𝑡,𝑦
𝑠
𝑉 𝑡,𝑥,𝑦,𝑧,−
𝑠

]
+ 𝛼𝑡𝑐𝑡𝑉 𝑡,𝑥,𝑦,𝑧𝑠

+ (𝑟𝑡 − ℎ𝑡)𝐻(𝑡,𝑆𝑡,𝑥
𝑠
, 𝑉 𝑡,𝑥,𝑦,𝑧
𝑠

,𝑍𝑡,𝑥,𝑦,𝑧
𝑠

)

]
𝑑𝑡

+𝑍𝑡,𝑥,𝑦,𝑧
𝑠

𝑑𝑊𝑡 + 𝑑𝑡

𝑉
𝑡,𝑥

𝑇
=Φ(𝑆𝑡,𝑥

𝑇
).

(8)

As shown in [1], assuming a 𝛿-hedging for this product, an appropriate 
change of probability may be applied to include the hedging function 
𝐻 in the dynamics, to rewrite (8) as

𝑑𝑉 𝑡,𝑥,𝑦,𝑧
𝑠

=−

[
(1 − 𝛼𝑡)

[
− 𝑓𝑡𝑉 𝑡,𝑥,𝑦,𝑧𝑠

−𝐿𝐺𝐷1𝜆
1,𝑡,𝑦
𝑠
𝑉 𝑡,𝑥,𝑦,𝑧,+
𝑠

+𝐿𝐺𝐷2𝜆
2,𝑡,𝑦
𝑠
𝑉 𝑡,𝑥,𝑦,𝑧,−
𝑠

]
− 𝛼𝑡𝑐𝑡𝑉 𝑡,𝑥,𝑦,𝑧𝑠

− (𝑟𝑡 − ℎ𝑡)
𝜕𝑉

𝑡,𝑥,𝑦,𝑧
𝑠

𝜕𝑆
𝑆𝑡,𝑥
𝑠

]
𝑑𝑡

+𝑍𝑡,𝑥,𝑦,𝑧
𝑠

𝑑𝑊𝑡 + 𝑑𝑡

𝑉
𝑡,𝑥

𝑇
=Φ(𝑆𝑡,𝑥

𝑇
),

(9)

when 𝑥+ =𝑚𝑎𝑥(𝑥, 0), 𝑥− =𝑚𝑎𝑥(−𝑥, 0).
Since the triple (𝑆𝑡,𝑥, 𝜆1,𝑡,𝑦, 𝜆2,𝑡,𝑧) is Markovian, 𝑉 𝑡,𝑥,𝑦,𝑧𝑠 is a determinis-

tic function of the state variables, 𝑢(𝑠, 𝑆𝑡,𝑥𝑠 , 𝜆
1,𝑡,𝑦
𝑠 , 𝜆2,𝑡,𝑧𝑠 ), with 𝑢(𝑡, 𝑥, 𝑦, 𝑧) ∈

𝐶1,2([0, 𝑇 ] ×ℝ3
+).

By applying Ito’s formula, and comparing the two expressions, it can 
be shown that 𝑢(𝑡, 𝑥, 𝑦, 𝑧) verifies the non-linear PDE independent of the 
interest rate 𝑟.

⎧⎪⎨⎪⎩
(𝑢)(𝑡, 𝑥, 𝑦, 𝑧) − (1 − 𝛼)

[
𝐿𝐺𝐷1𝑦𝑢(𝑡, 𝑥, 𝑦, 𝑧)+ −𝐿𝐺𝐷2𝑧𝑢(𝑡, 𝑥, 𝑦, 𝑧)−

]
= 0

𝑢(𝑇 ,𝑥, 𝑦, 𝑧) = Φ(𝑥),

(10)

where, with the parameters introduced by the model (5), (6), (7)

(𝑢)(𝑡, 𝑥, 𝑦, 𝑧) = 𝜕𝑡𝑢(𝑡, 𝑥, 𝑦, 𝑧) + 𝛾1(𝜓1 − 𝑦)𝜕𝑦𝑢(𝑡, 𝑥, 𝑦, 𝑧)
+ 𝛾2(𝜓2 − 𝑧)𝜕𝑧𝑢(𝑡, 𝑥, 𝑦, 𝑧)

+ ℎ𝑥𝜕𝑥𝑢(𝑡, 𝑥, 𝑦, 𝑧) +
1
2
𝜂21𝑦𝜕

2
𝑦
𝑢(𝑡, 𝑥, 𝑦, 𝑧) + 1

2
𝜂22𝑧𝜕

2
𝑧
𝑢(𝑡, 𝑥, 𝑦, 𝑧)

+ 1
2
𝜎2𝑥2𝜕2

𝑥
𝑢(𝑡, 𝑥, 𝑦, 𝑧) + 𝜌1𝜎𝑥𝜂1

√
𝑦𝜕𝑥𝑦𝑢(𝑡, 𝑥, 𝑦, 𝑧)

+ 𝜌2𝜎𝑥𝜂2
√
𝑧𝜕𝑥𝑧𝑢(𝑡, 𝑥, 𝑦, 𝑧) − 𝛼𝑐𝑢(𝑡, 𝑥, 𝑦, 𝑧)

− (1 − 𝛼)𝑓𝑢(𝑡, 𝑥, 𝑦, 𝑧).

When considering a triple of stochastic processes, Monte Carlo simula-
tions needed to approximate 𝑉𝑡 in (3) are bound to be extremely costly 
in terms of machine time, thus we suggest a discretization of (10) that 
seems to work efficiently in terms of computational times and accuracy.

4. Problem discretization

The method of finite differences (see for instance [21,22,29,32,35,
36,38]) is a numerical method to solve PDEs by approximating the spa-
tial derivatives with finite differences, so generating a system of ODEs 
at each point of the discretization grid that can be solved by a suitable 
time integration method.

The spatial domain ℝ3
+ is unbounded, so we need to restrict it to 

an appropriate bounded rectangle [𝑎𝑥, 𝑏𝑥] × [𝑎𝑦, 𝑏𝑦] × [𝑎𝑧, 𝑏𝑧] ⊂ ℝ3
+. This 

truncation requires defining appropriate boundary conditions, which 
can be done by identifying, when possible, the asymptotic behaviour of 
27
the solution. Here, we decided to exploit the knowledge of the Black & 
Scholes formula, with adjusted rates to include the default intensities

𝑢(𝑡, 𝑎𝑥, 𝑦, 𝑧) = 0, 𝑢(𝑡, 𝑏𝑥, 𝑦, 𝑧) = 𝜙(𝑡, 𝑏𝑥; 𝑟+ 𝜆,𝜎),

𝑢(𝑡, 𝑥, 𝑎𝑦, 𝑧) = 𝜙(𝑡, 𝑥; 𝑟+ 𝜆,𝜎), 𝑢(𝑡, 𝑥, 𝑏𝑦, 𝑧) = 𝜙(𝑡, 𝑥; 𝑟+ 𝜆,𝜎),

𝑢(𝑡, 𝑥, 𝑦, 𝑎𝑧) = 𝜙(𝑡, 𝑥; 𝑟+ 𝜆,𝜎), 𝑢(𝑡, 𝑥, 𝑦, 𝑏𝑧) = 𝜙(𝑡, 𝑥; 𝑟+ 𝜆,𝜎),

(11)

where 𝜙(𝑡, 𝑥; 𝑤, 𝜎) is the Black and Scholes’s pricing function. The choice 
of the Black and Scholes’s pricing function to set the Dirichlet boundary 
conditions is somewhat arbitrary. The rationale behind such choice is 
that it is exactly what we would have, when considering only the CVA 
without any other feature. We sub-divide the three space intervals into 
𝑚 uniform2 sub-intervals by taking, 𝑥𝑖 = 𝑎𝑥 + 𝑖Δ𝑥, 𝑦𝑖 = 𝑎𝑦 + 𝑖Δ𝑦, 𝑧𝑖 =
𝑎𝑧 + 𝑖Δ𝑧 with Δ𝑥 = (𝑏𝑥−𝑎𝑥)

𝑚
, Δ𝑦 = (𝑏𝑦−𝑎𝑦)

𝑚
, Δ𝑧 = (𝑏𝑧−𝑎𝑧)

𝑚
for 𝑖 = 0, … , 𝑚, and 

we apply the finite difference method to approximate the space partial 
derivatives,

𝜕𝑥𝑢(𝑡, 𝑥𝑘, 𝑦𝑖, 𝑧𝑗 ) ≈
𝑢(𝑡, 𝑥𝑘+1, 𝑦𝑖, 𝑧𝑗 ) − 𝑢(𝑡, 𝑥𝑘,𝑦𝑖, 𝑧𝑗 )

Δ𝑥
𝑘 = 0,… ,𝑚− 1, 𝑖, 𝑗 = 0,… ,𝑚

𝜕2
𝑥
𝑢(𝑡, 𝑥𝑘, 𝑦𝑖, 𝑧𝑗 ) ≈

𝑢(𝑡, 𝑥𝑘+1, 𝑦𝑖, 𝑧𝑗 ) − 2𝑢(𝑡, 𝑥𝑘, 𝑦𝑖, 𝑧𝑗 ) + 𝑢(𝑡, 𝑥𝑘−1, 𝑦𝑖, 𝑧𝑗 )
Δ𝑥2

𝑘 = 1,… ,𝑚− 1, 𝑖, 𝑗 = 0,… ,𝑚

𝜕2
𝑥𝑦
𝑢(𝑡, 𝑥𝑘, 𝑦𝑖, 𝑧𝑗 )

≈
𝑢(𝑡, 𝑥𝑘+1, 𝑦𝑖+1, 𝑧𝑗 ) − 𝑢(𝑡, 𝑥𝑘, 𝑦𝑖+1, 𝑧𝑗 ) − 𝑢(𝑡, 𝑥𝑘+1, 𝑦𝑖, 𝑧𝑗 ) + 𝑢(𝑡, 𝑥𝑘, 𝑦𝑖, 𝑧𝑗 )

Δ𝑥Δ𝑦
𝑖, 𝑘 = 0,… ,𝑚− 1, 𝑗 = 0,… ,𝑚.

We write the equation at each point 𝑥𝑘, 𝑦𝑖, 𝑧𝑗 , and we denote the 
piecewise approximation of 𝑢(𝑡, 𝑥, 𝑦, 𝑧) by 𝑢𝑘,𝑖,𝑗 (𝑡) = 𝑢(𝑡, 𝑥𝑘, 𝑦𝑖, 𝑧𝑗 ) for 𝑥 ∈
[𝑥𝑘, 𝑥𝑘+1), 𝑦 ∈ [𝑦𝑖, 𝑦𝑖+1), 𝑧 ∈ [𝑧𝑗 , 𝑧𝑗+1) with 𝑖, 𝑗, 𝑘 = 0, … , 𝑚 − 1. For fixed 
𝑥𝑘, 𝑦𝑖, 𝑧𝑗 we get the following non-linear ODE

𝑢𝑘,𝑖,𝑗 (𝑡)′ =(𝑢𝑘,𝑖,𝑗 )(𝑡) − (1 − 𝛼)
[
𝐿𝐺𝐷1𝑦𝑖𝑢𝑘,𝑖,𝑗 (𝑡)+ −𝐿𝐺𝐷2𝑧𝑗𝑢𝑘,𝑖,𝑗 (𝑡)−

)
],

𝑘, 𝑖, 𝑗 = 0,… ,𝑚,

(12)

(𝑢𝑘,𝑖,𝑗 ) is the discretized operator of (𝑢).
We can write the non-linear ODE system in matrix form

𝑢̄(𝑡)′ = A(𝑥̄, 𝑦̄, 𝑧̄)𝑢̄(𝑡) − (1 − 𝛼)
[
𝐿𝐺𝐷1𝑦̄𝑢̄(𝑡)+ −𝐿𝐺𝐷2𝑧̄𝑢̄(𝑡)−

]
, (13)

where 𝑢̄(𝑡)′, 𝑢̄(𝑡), and A(𝑥̄, 𝑦̄, ̄𝑧) is a 3-dimensional tensor respectively, 
and 𝑥̄, 𝑦̄, ̄𝑧 are the vectors in ℝ𝑚+1 given by

𝑥̄ = (𝑎𝑥, 𝑥1,… , 𝑥𝑚−1, 𝑏𝑥), 𝑦̄ = (𝑎𝑦, 𝑦1,… , 𝑦𝑚−1, 𝑏𝑦), 𝑧̄ = (𝑎𝑧, 𝑧1,… , 𝑧𝑚−1, 𝑏𝑧)

with final condition 𝑢(𝑇 , ̄𝑥, 𝑦̄, ̄𝑧) = Φ̄(𝑥) holds, where Φ̄(𝑥) =
(
Φ0(𝑥), Φ1(𝑥),

… , Φ𝑚(𝑥)
)
.

Accordingly with the choice described before, we pose the boundary 
conditions

𝑢(𝑡, 𝑥0, 𝑦𝑖, 𝑧𝑗 ) =0 𝑖, 𝑗 = 0,… ,𝑚,

𝑢(𝑡, 𝑥𝑚, 𝑦𝑖, 𝑧𝑗 ) =𝜙(𝑡, 𝑥𝑚; 𝑟+ 𝜆,𝜎) 𝑖, 𝑗 = 0,… ,𝑚,

𝑢(𝑡, 𝑥𝑘, 𝑦0, 𝑧𝑗 ) =𝑢(𝑡, 𝑥𝑘, 𝑦𝑚, 𝑧𝑗 ) = 𝜙(𝑡, 𝑥𝑘; 𝑟+ 𝜆,𝜎) 𝑘, 𝑗 = 1,… ,𝑚− 1,

𝑢(𝑡, 𝑥𝑘, 𝑦𝑖, 𝑧0) =𝑢(𝑡, 𝑥𝑘, 𝑦𝑖, 𝑧𝑚) = 𝜙(𝑡, 𝑥𝑘; 𝑟+ 𝜆,𝜎) 𝑘, 𝑖 = 1,… ,𝑚− 1.

To solve system (13), we use the explicit Euler scheme with 𝑁 (0 =
𝑡0 < 𝑡1 <⋯ < 𝑡𝑁−1 < 𝑡𝑁 = 𝑇 ) time sub-intervals of uniform length Δ𝑡 =
𝑡𝑖+1 − 𝑡𝑖 for 𝑖 = 0, … , 𝑁 − 1, so we get

2 There may be sub-regions of the spatial sub-intervals that may be more 
probable than others, so it would be worthwhile to perform non-uniform dis-
cretization, for details see [37,28].
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𝑢̄(𝑡𝑖) = 𝑢̄(𝑡𝑖+1) − Δ𝑡
[
A(𝑥̄, 𝑦̄, 𝑧̄)𝑢̄(𝑡𝑖+1)

− (1 − 𝛼)
(
𝐿𝐺𝐷1𝑦̄𝑢̄(𝑡𝑖+1)+ −𝐿𝐺𝐷2𝑧̄𝑢̄(𝑡𝑖+1)−)

]
.

(14)

We are aware that the explicit Euler method could produce serious nu-
merical instabilities, and therefore favouring an implicit scheme would 
be a better choice, since it has no limitations on the time integration 
step, even through implying quite lengthy computations. In the next 
section, we compare some numerical results from the explicit, implicit, 
and semi-explicit Euler schemes. In our setting, we are indeed able to 
achieve a good and competitive accuracy by the explicit scheme in 
highly shorter computational times.

For 𝑡 = 0, we are interested in computing the value 𝑢(0, 𝑥, 𝑦, 𝑧) for 
given 𝑥, 𝑦, 𝑧. To do so, we simply choose the closest points of the grid 
such that 𝑥𝑘 ≈ 𝑥, 𝑦𝑖 ≈ 𝑦, 𝑧𝑗 ≈ 𝑧 for some 𝑘, 𝑖, 𝑗 = 0, … , 𝑚 and we approx-
imate the solution value by 𝑢(0, 𝑥𝑘, 𝑦𝑖, 𝑧𝑗 ), or, as suggested in [37], the 
specific option value is determined by spline interpolation.

We remark that for the solution of (14) to remain stable, the 
𝑚𝑖𝑛

( Δ𝑡
Δ𝑥2 , 

Δ𝑡
Δ𝑦2 , 

Δ𝑡
Δ𝑧2

)
, which is called the Courant-Friedricks-Levy or CFL 

number, must remain below a critical value. Hence, if one wishes to in-
crease the accuracy of (14) by using smaller Δ𝑥 or Δ𝑦, Δ𝑧, also a smaller 
value of Δ𝑡 is required to keep the CFL number below its critical value. 
Thus, there is a conflicting requirement between improving accuracy 
and maintaining stability (for more detail on the stability theory, see 
Chapter 9 of [32], or Chapter 9 of [29]), which may imply an increase 
in computational time. For completeness, we also give the expression 
using the implicit Euler method

𝑢̄(𝑡𝑖) = 𝑢̄(𝑡𝑖+1) − Δ𝑡
[
A(𝑥̄, 𝑦̄, 𝑧̄)𝑢̄(𝑡𝑖) − (1 − 𝛼)

(
𝐿𝐺𝐷1𝑦̄𝑢̄(𝑡𝑖)+ −𝐿𝐺𝐷2𝑧̄𝑢̄(𝑡𝑖)−)

]
,

(15)

and the semi-implicit Euler method [7,4]

𝑢̄(𝑡𝑖) = 𝑢̄(𝑡𝑖+1)−Δ𝑡
[
A(𝑥̄, 𝑦̄, 𝑧̄)𝑢̄(𝑡𝑖+1)−(1−𝛼)

(
𝐿𝐺𝐷1𝑦̄𝑢̄(𝑡𝑖)+−𝐿𝐺𝐷2𝑧̄𝑢̄(𝑡𝑖)−

)]
.

(16)

5. Numerical results

In this section, we present some numerical results of our method for 
the European call price. First, we looked at the case with constant inten-
sities to test the method’s accuracy, comparing with the results obtained 
in [13] by Monte Carlo simulations, with the same set of parameters. In 
this case, only one state variable, represented by the underlying price, 
is present.

All the algorithms were implemented in MatLab(R2021a) on a In-
tel(R) Core(TM) i5-10210U CPU @ 1.60 GHz 2.11 GHz computer.

We consider a European call option with six months maturity, strike 
price 𝐾 = 90, and we set (as in [13]) 𝑟 = 0.005, 𝜎 = 0.4, 𝐿𝐺𝐷1 = 0.6, 
𝐿𝐺𝐷2 = 0.6, 𝑐 = 0.002, 𝑓 = 𝑟, 𝛼 = 0.5 𝜆1 = 0.04 and 𝜆2 = 0.02.

As the computational time was not reported in [13], we replicated 
their simulations, moreover a 95% confidence interval has been built, 
with 𝑀 = 106 sample independent paths and with 𝑁𝑡 = 1000 temporal 
nodes, obtaining the value 16.4494, in about 7 minutes of machine time 
(fairly close to 16.4534 in [13]). In Table 2, we report the results of our 
method with the relative computational times and we compare them 
with the results in [13]. We remark that with only 30 spatial nodes, we 
get about the same value as by Monte Carlo simulations, with almost 
nihil computational time. From Table 2, we achieve better performance 
and comparable accuracy also with respect to [3],3 where the compu-
tational time is about 25 seconds.

Moreover, increasing the number of spatial nodes and of temporal 
nodes, the second and third digits stabilize, showing the convergence of 
the method. The first two decimal digits coincide with those obtained 

3 All tests have been performed by using Matlab on an Intel(R) Xeon(R) CPU 
E3-1241 3.50 GHz computer.
28
Table 2

Prices of a European call with maturity 6 months and deterministic intensities 
with explicit scheme.

Monte Carlo simulations

𝑁𝑡 Seconds confidence interval Price by Brigo

1000 416 (16.4405;16.4583) 16.4494 16.4534

Method of finite differences

𝑁𝑡 𝑁𝑥 Seconds Price

100 30 0.31 16.4545771
500 50 0.28 16.4272255
1000 90 0.57 16.4643242
5000 150 1.93 16.4555334
5000 200 1.52 16.4568071
10000 300 3.7 16.4574087
50000 500 18.48 16.4574889

by [13], and thanks to the convergence, we probably achieve a better 
accuracy. Indeed, the digits seem to stabilize progressively.

In Table 3, we compare the explicit, semi-implicit and implicit4

methods as the strike price varies (𝐾 = 90; 100; 110), with the bench-
mark values from [13] and from our Monte Carlo simulations. Fi-
nally in the Table 4, we run the same analysis for varying volatility 
(𝜎 = 0.3; 0.4; 0.6).

Given a mesh dense enough, all Euler schemes produce faster re-
sults than Monte Carlo simulations, as shown in Table 3, and they 
approximate the benchmark very well. Furthermore, we observe that 
the explicit method achieves the same results as the implicit one, but in 
remarkably shorter times. This indicates that, in our particular setting, 
the explicit method might be preferable even through unstable. To em-
phasize the explicit technique, also includes the semi-implicit method is 
used. Again, the explicit method results considerably quicker than the 
semi-implicit one, marginally faster, yet less accurate, than the implicit 
one.

Since the explicit method, unlike the implicit one, imposes stability 
constraints on the time step, as the underlying’s volatility increases, 
we expect the CFL constraint to become stricter. Actually, we observe 
instability also with the implicit scheme (see lines 1 −5 Table 4), due to 
a space step problem, while in the explicit scheme the problem is due 
to the time step. These considerations are worth investigation and they 
might bring up new lines of research for future work. Nevertheless, 
in Table 4, we show this has no impact on our issue as long as an 
appropriately dense mesh is selected.

In the case of stochastic intensities, we additionally set the following 
values for the parameters of the CIR processes
𝛾𝑖 = 0.02, 𝜓𝑖 = 0.161, 𝜂𝑖 = 0.08, 𝑖 = 1, 2.
In Table 5, we report the results of our method with the correspond-

ing computational times. To the best of our knowledge, in the literature, 
we could not find numerical methods covering this general case, so 
we had to resort again to Monte Carlo simulations to provide a bench-
mark.

As shown in Table 5, Monte Carlo simulations give 16.4416 in about 
9 minutes, while with 30 nodes for each space interval, we get a re-
sult close to the benchmark in less than a second. To stabilize the first 
two decimal digits, we increased the spatial nodes to 100, still with a 
very reasonable computational time. To achieve better accuracy, we in-
creased the number of spatial and time nodes even further, inevitably 
paying a cost in terms of time machine. Certainly Monte Carlo simula-
tions may be optimized, nevertheless, our approach provides consistent 
improvement in machine.

4 We use the Matlab function “fsolve” to implement the implicit and semi-
implicit approaches.
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Table 3

We compare explicit, semi-implicit and implicit methods with Monte Carlo simulations and with [13] results in the case of 
deterministic intensities.

K=90

P.Brigo 16.4534

𝑁𝑡 Confidence Interval Price MC Seconds

1000 (16.4405;16.4583) 16.4494 416

𝑁𝑡 𝑁𝑥 Seconds Explicit Seconds Semi-Implicit Seconds Implicit

100 30 0.579 16.454577 0.723 16.454279 1.209 16.454577

1000 90 0.544 16.464324 11.56 16.464295 12.64 16.464324

3000 150 1.16 16.455686 81.5 16.455677 81.88 16.455686

K=100

P.Brigo 11.2858

𝑁𝑡 Confidence Interval Price MC Seconds

1000 (11.3064;11.3160) 11.3112 437.36

𝑁𝑡 𝑁𝑥 Seconds Explicit Seconds Semi-Implicit Seconds Implicit

100 30 0.137 11.207271 0.71 11.206931 0.90 11.207271

1000 90 0.67 11.290589 12.3 11.290555 15.5 11.290589

3000 150 1.954 11.296083 87.6 11.296071 89.1 11.296083

K=110

P.Brigo 7.4999

𝑁𝑡 Confidence Interval Price MC Seconds

1000 (7.5416;7.5463) 7.5439 448.22

𝑁𝑡 𝑁𝑥 Seconds Explicit Seconds Semi-Implicit Seconds Implicit

100 30 0.250 7.498880 1.12 7.498544 1.23 7.498880

1000 90 0.460 7.519851 25.18 7.519817 23.02 7.519851

3000 150 1.648 7.513870 84.5 7.513859 83.45 7.513870

Table 4

Comparison between explicit, semi-implicit and implicit methods for various volatilities in the case of deterministic intensities.

𝜎 = 60%

𝑁𝑡 Confidence Interval Price MC Seconds

1000 (21.22770;21.26145) 21.2445788 459.6

𝑁𝑡 𝑁𝑥 Seconds Explicit Seconds Semi-Implicit Seconds Implicit

100 30 0.166 8.46E+24 0.89 0.000000 0.9 0.000000

1000 90 0.5 20.854963 20.74 10.104217 26.16 20.854963

2000 90 0.8 21.328809 19.93 21.328788 21.16 21.328809

3000 150 1.15 20.854866 117.09 10.003868 105.93 10.003868

6000 150 2.10 21.323061 155.5 21.323054 140.8 21.323061

𝜎 = 40%

𝑁𝑡 Confidence Interval Price MC Seconds

1000 (16.4387;16.4567) 16.44777 433.06

𝑁𝑡 𝑁𝑥 Seconds Explicit Seconds Semi-Implicit Seconds Implicit

100 30 0.150 16.454577 0.59 16.454279 0.79 16.454577

1000 90 0.420 16.464324 10.69 16.464295 11.49 16.464324

3000 150 1.160 16.455686 78.5 16.455677 76.57 16.455686

𝜎 = 30%

𝑁𝑡 Confidence Interval Price MC Seconds

1000 (14.0337; 14.0457) 14.03972 476.8

𝑁𝑡 𝑁𝑥 Seconds Explicit Seconds Semi-Implicit Seconds Implicit

100 30 0.158 14.054061 0.57 14.053846 0.83 14.054061

1000 90 0.420 14.071745 11.69 14.071724 12.15 14.071745

3000 150 1.18 14.060971 75.87 14.060971 75.21 14.060978
The Table 6 compare the results of Table 2 with a symmetric finite 
difference for the approximation of the first spatial derivative. This new 
discretization may certainly give benefits in terms faster, but there is no 
significant gain in accuracy.
29
6. Sensitivity analysis

In this section, we run a short sensitivity analysis for our method 
in the case of stochastic intensities. This is done employing the explicit 
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Table 5

Prices of a European call with maturity 6 months and stochastic intensities, 
𝜌1 = 𝜌2 = 0 with explicit scheme.

Monte Carlo simulation

𝑁𝑡 Seconds Price confidence interval

1000 527 16.4416729 (16.433;16.4506)

Method of finite differences

𝑁𝑡 𝑁𝑥𝑦𝑧 Seconds Price

100 30;30;30 0.66 16.42897944
500 50;50;50 4.16 16.42209551
1000 90;90;90 17.68 16.46349986
1500 100;100;100 46.32 16.45064167
2000 120;120;120 173.43 16.45825752
5000 150;150;150 487.6 16.45475883

Table 6

Prices of a European call with maturity 6 months and stochastic intensities, 
𝜌1 = 𝜌2 = 0 with classic and symmetric finite difference for the approximation of 
the first spatial derivatives.

Forward finite difference Symmetric finite difference

𝑁𝑡 𝑁𝑥𝑦𝑧 Seconds Price Seconds Price

50 10 0.226 16.16472574 0.150 16.41309
100 30 0.66 16.42897944 0.320 16.48178
500 50 4.16 16.42209551 1.630 16.46791
1000 90 17.68 16.46349986 12.800 16.51000
1500 100 46.32 16.45064167 32.090 16.49799

Euler scheme. Indeed, again a similar accuracy is achieved by both the 
explicit and the implicit scheme, but with much larger computational 
times for the second. Indeed a better accuracy can be obtained by in-
creasing the number of spatial and temporal nodes. This is achieved us-
ing the explicit scheme (last line of Table 5), but it becomes prohibitive 
timewise when applying the implicit scheme. We further remark that 
when using the explicit scheme, the increase of computational times 
is due solely to the thickening of the spatial nodes, while they remain 
stable (about 1 second) as the number of temporal nodes increases.
Table 7

Prices of a European call with different volatility, with explicit, s
K=90

𝜎 = 60%

𝑁𝑡 Confidence Interval Pric

1000 (21.1139; 21.1475) 21.1

𝑁𝑡 𝑁𝑥𝑦𝑧 Seconds Explicit Seco

50 10 0.15 20.8416 19.8
100 15 0.24 21.4150 320
500 15 0.74 21.3971 115

𝜎 = 40%

𝑁𝑡 Confidence Interval Pric

1000 (16.433;16.4506) 16.4

𝑁𝑡 𝑁𝑥𝑦𝑧 Seconds Explicit Seco

50 10 0.20 16.1647 21.2
100 15 0.21 16.5132 330
500 15 0.67 16.5039 116

𝜎 = 30%

𝑁𝑡 Confidence Interval Pric

1000 (14.0511;14.0631) 14.0

𝑁𝑡 𝑁𝑥𝑦𝑧 Seconds Explicit Seco

50 10 0.14 13.9204 20.0
100 15 0.21 14.2040 322
500 15 0.93 14.1985 117

30
In Table 7, we compare the explicit, semi-implicit and implicit Euler 
schemes. Especially, when using an semi-implicit and implicit schemes, 
computational times grow considerably when increasing the number 
of spatial nodes. Hence we were forced to keep the number of spatial 
nodes equal to 15 with consequently far less accuracy.

The Table 7 emphasizes that, despite the explicit technique’s po-
tential instability, it is precise and extraordinarily fast in solving this 
particular problem.

From Table 5 one might conclude that the introduction of random-
ness for the intensities did really affect the price. To understand whether 
this was due to the particular choice of parameters or it was a general 
feature, fixing 100 spatial nodes, we performed a short sensitivity anal-
ysis, with respect to the intensity parameters, maturity, and strike price. 
In Table 8 we consider a European call option with different maturity 
(six months, nine months, and one year) and different strike prices and 
we compared the results with the constant intensities case (taking the 
initial value of the CIR processes), to underline the effect of introduc-
ing randomness for the intensities. We used the explitic scheme for this 
comparison.

As expected, the price appears to be decreasing with respect to the 
strike price, and increasing with respect to maturity. Table 8 shows also 
that the randomness of the intensities affects the price up to the first 
decimal digit when maturity increases, confirming it might be signifi-
cant to consider stochastic intensities models for longer maturities.

Fixing 𝑆 = 100, 𝐾 = 90, 𝑇 = 0.5, 𝛼 = 0.5, 𝜌1 = 𝜌2 = 0, we also explored 
the sensitivity of the model varying the intensities parameters of 𝜆1 and 
𝜆2. Being the derivative a call, the most relevant effect comes, as it 
is to be expected, by the parameters (regression speed and long term 
average) of the counterparty’s default intensity, while the investor’s in-
tensity parameters influence the price almost irrelevantly (Table 9). 
Finally, in Table 10, we show how the volatility affects the explicit 
method’s convergence.

7. Conclusions

In this work, we developed a simple approximation procedure for 
the adjusted value of a derivative contract subject to counterparty risk, 
collateralization and founding costs, assuming a diffusion model for the 
emi-implicit and implicit schemes in the stochastic case.

e MC Seconds

30690 598.69

nds Semi-Implicit Seconds Implicit

0 20.9650 37.76 20.7396

.23 21.5437 759.70 21.3704

4.24 21.3977 2757.91 21.3882

e MC Seconds

416729 527

nds Semi-Implicit Seconds Implicit

0 16.2614 42.23 16.1024

.05 16.6135 599.97 16.4902

5.80 16.6044 1872.27 16.4993

e MC Seconds

5715 587.5

nds Semi-Implicit Seconds Implicit

8 14.0037 44.38 13.8786

.50 14.2903 354.83 14.1904

4.17 14.2849 5186.40 14.1957
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Table 8

Prices of a European call with explicit scheme with different maturities (6 months, 9 months, and 1 year) and strike prices 
(90, 100, 110), in the deterministic and stochastic case.

6 months 9 months 1 year

K=90
16.4518463 16.450641 18.6724165 18.6835031 20.4575975 20.554191

K=100
11.292111115 11.291427 13.7820539 13.7948775 15.76652711 15.868368

K=110
7.51052959 7.5102467 10.0105913 10.0248779 12.0356766 12.142071
Table 9

Sensitivity analysis for different regression speeds and fixed long term averages 
with explicit scheme.

𝜂1 = 0.08

𝜓1 = 0.161 𝜓1 = 0.25 𝜓1 = 0.4

𝛾1 Price 𝛾1 Price 𝛾1 Price

0.02 16.4510 0.02 16.4499 0.02 16.4480
0.03 16.4502 0.03 16.4486 0.03 16.4458
0.05 16.4488 0.05 16.4459 0.05 16.4415
0.1 16.4451 0.1 16.4397 0.1 16.4307
0.2 16.4380 0.2 16.4274 0.2 16.4096

𝜂2 = 0.08

𝜓2 = 0.161 𝜓2 = 0.25 𝜓2 = 0.4

𝛾2 Price 𝛾2 Price 𝛾2 Price

0.02 16.45102548 0.02 16.451025498 0.02 16.4510255148
0.03 16.45102549 0.03 16.451025512 0.03 16.4510255277
0.05 16.45102551 0.05 16.451025528 0.05 16.4510255387
0.1 16.45102553 0.1 16.451025541 0.1 16.4510255434
0.2 16.45102554 0.2 16.451025544 0.2 16.4510255436

Table 10

Sensitivity analysis for different volatilities with explicit scheme.

𝛾1 = 𝛾2 = 0.1
𝜓1 = 𝜓2 = 0.05

K=90

𝜎 = 40% 𝑁𝑡 = 1500 𝑁𝑡 = 2500 𝑁𝑡 = 3000

𝜂1∕𝜂2 0.08 0.1 0.2

0.08 16.42465705 16.42431168 16.34466761
0.1 16.42466191 16.42431655 16.34467243
0.2 NaN 16.42160683 16.34200124

𝜎 = 60% 𝑁𝑡 = 2500 𝑁𝑡 = 3000 𝑁𝑡 = 4500

𝜂1∕𝜂2 0.08 0.1 0.2

0.08 21.39176544 21.39161946 21.28965302
0.1 21.39177163 21.39162566 21.28964689
0.2 NaN 21.38742986 21.28551264

default intensities and close-out values as a portion of the adjusted price 
itself. This generates a non-linear BSDE, with an associated non-linear 
PDE characterizing the price.

By the simple method of finite differences applied to this PDE, we 
showed that accurate approximations could be achieved in very man-
ageable computational times, differently from what happens when em-
ploying Monte Carlo simulations. We ran a short sensitivity analysis to 
estimate the effects of the introduction of stochastic intensities, and we 
plan to dedicate future work to the error estimates.

Data availability

No data was used for the research described in the article.
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