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di�erences ãi (pictures on the right), gotten by the (4.51), (4.52)
and (4.53) for the Point 1 . . . . . . . . . . . . . . . . . . . . . . 86

4.30 Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their
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di�erences ãi (picture on the right) gotten by the (4.51), (4.52)
and (4.53) for the Point 5 . . . . . . . . . . . . . . . . . . . . . . 88

4.34 Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their
di�erences ãi (picture on the right) gotten by the (4.51), (4.52)
and (4.53) for the Point 6 . . . . . . . . . . . . . . . . . . . . . . 88

4.35 Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their
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di�erences ãi (picture on the right) gotten by the (4.51), (4.52)
and (4.53) for the Point 12 . . . . . . . . . . . . . . . . . . . . . . 91

4.41 Fig. 10 from [67] (�gure and caption are not modi�ed): "(a)
QUAD4M and BESOIL solutions compared with H/V applied to
strong-motion and microtremor data and S/R applied to weak-
motion data at the AQPK site. (b) QUAD4M and BESOIL solu-
tions compared with H/V applied to microtremor data at the GDIF
site. The line symbol are the same in both (a) and (b)" . . . . . . 92

4.42 The spectral ratio between the horizontal (a) and vertical (b) non-
linear accelerations of the Point 8 and the Point 1 (that is situated
into the bedrock, see Fig. 4.28) compared with the Fig. 10-a from
[67]. The spectral are smoothed with a 50 points moving window. 93

4.43 The spectral ratio between the horizontal (a) and vertical (b) non-
linear accelerations of the Point 12 and the Point 1 (that is situated
into the bedrock, see Fig. 4.28) compared with the Fig. 10-b from
[67]. The spectral are smoothed with a 50 points moving window. 94

10



Abstract

This research investigates the complex interplay between structural mechanics
and material degradation in civil engineering and soil. The focus is on two pri-
mary areas: the long-term behaviour of concrete dams subjected to aging and
the limitations of linear models in capturing seismic response. Aging-induced de-
terioration in concrete dams is primarily attributed to the di�usion of deleterious
substances, which subsequently trigger internal chemical reactions. This study
proposes a uni�ed hemivariational framework for investigating damage and defor-
mation in concrete dams subjected to aging-related processes. The model incor-
porates both one-dimensional (Timoshenko beam) and two-dimensional represen-
tations of the dam structure. A novel aspect of the proposed approach is the in-
troduction of an "external distributed aging �uid in�ux pressure" as a dual of the
concentration of the aging �uid. This pressure drives the inward di�usion of the
aging agent, which is coupled with the evolution of damage. Parametric analyses
are conducted to evaluate the in�uence of di�usivity and damage-concentration
coupling term on the damage progression and service life prediction. The results
indicate that the dam's shape signi�cantly impacts stress distribution and, conse-
quently, damage initiation and propagation. For the bi-dimensional case a more
re�ned damage threshold is introduced to account for the distinct compressive
and tensile behaviours of concrete. The proposed modelling approach provides
a robust framework for assessing the long-term performance and safety of aging
concrete dams, with potential applications in structural health monitoring and
life cycle management. The same theory is also used to investigate a particu-
lar phenomenon we called apparent creep because the underlying mechanism is
analogous to the processes occurring subsequent to classical creep deformations.
This phenomenon, observed in a two-dimensional polymeric beam, exhibits char-
acteristics akin to creep, as evidenced by numerical simulations demonstrating
increased displacements under constant external loading conditions due to �uid
ingress into the domain. The presence in soils of deteriorating �uids induce modi-
�cations of its mechanical characteristics. However, it is important to preliminary
investigate. Additionally, one more research investigates the limitations of linear
models in capturing the complex behaviour of geomaterials subjected to extreme
loading conditions, such as those induced by seismic events. The research chal-
lenges the conventional linear paradigm in geophysics and civil engineering, par-
ticularly in the context of seismic events. This research investigates the in�uence
of non-linear material behaviour on seismic response. A non-linear viscoelastic
model is developed to capture large deformations near geological discontinuities,
commonly observed in complex geological settings (such as those observed in
the Aterno River Valley). Numerical simulations demonstrate the critical role
of non-linearity in accurately predicting ground motion characteristics, includ-
ing frequency content and amplitude. By combining these factors, the research
provides a comprehensive framework for enhancing the reliability and accuracy
of seismic hazard assessment and structural analysis. The �ndings contribute to



the development of advanced computational tools for mitigating seismic risk and
ensuring the safety of critical infrastructure.
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Chapter 1

Introduction

The monitoring of dams is a critical part of structural health monitoring, and as
such, there has been continuous research e�orts in investigating this issue [9, 28,
115, 199]. The mechanical integrity of dams may be a�ected by many phenomena:
not only mechanical loads, but also the di�usion of particles, and the resulting
chemical interactions. Indeed, the di�usion of particles may contribute to the nu-
cleation and growth of microcracks inside the dam [68, 76, 197], thus motivating
research e�orts to model such di�usive phenomena [21]. More speci�cally, various
types of di�using species may be involved, leading to di�erent e�ects. For ex-
ample, moisture content may activate damage through creeping [112, 223, 225].
Aging phenomena may be activated [146] by an aging �uid spreading through
the dam by capillary phenomena [17], or sorption of particles [41], resulting in
chemical interactions between those aging elements and the dam material [47, 48,
57, 58, 62, 63, 174]. Gravity dams are critical infrastructures designed to hold
back water by utilizing the weight of the structure itself to resist the hydraulic
pressure. Constructed of concrete, these dams must endure various environmen-
tal and operational stressors over their service life. One signi�cant concern in the
long-term durability and safety of gravity dams is the phenomenon of aging due
to �uid in�ltration within the dam body. Fluid di�usion into concrete structures
can induce several deleterious e�ects, including but not limited to, chemical reac-
tions such as alkali-silica reaction (ASR), increased pore pressure, and freeze-thaw
cycles. These processes collectively contribute to the deterioration of the mechan-
ical properties of the dam, potentially compromising its structural integrity. The
penetration of �uids can be driven by various factors, including the hydraulic gra-
dient, the porosity of the concrete, and the presence of microcracks. Over time,
this in�ltration can lead to signi�cant changes in the material properties of the
concrete, such as increased permeability and reduced strength. Understanding
the mechanisms of �uid transport within concrete and their impact on the aging
of gravity dams is crucial for developing e�ective maintenance and rehabilitation
strategies. This thesis aims to investigate the di�usion of �uids within concrete
gravity dams, identify the key factors in�uencing this process and evaluate the
consequent e�ects on the structural performance of the dams. To achieve these
objectives a numerical simulations will be employed. The numerical simulations
model the �uid transport and its impact on the dam structure over time, provid-
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ing insights into the long-term behaviour of aging dams. The �ndings from this
research will contribute to the development of more robust predictive models for
the aging of concrete gravity dams, informing the design of more e�ective mon-
itoring and maintenance programs to ensure their safety and functionality over
extended periods.

Formulation of the problem

For the formulation of this problem, the classical kinematic descriptors (displace-
ments and, possibly, rotations) are supplemented by the concentration of the
aging �uid c within the body and the damage ω that describes its deterioration.
The aging phenomenon is attributed to the di�usion of the aging �uid within
the body, which reduces the material's sti�ness as the damage variable evolves.
The evolution of the damage variable is hypothesized to be governed by the dif-
fusion process of the damaging �uid using a proper coupling term whose meaning
will be thoroughly discussed in subsequent chapters of this work. Damage is
an irreversible �eld whose value increases in time until the failure is reached.
This phenomenon is represented by means of a scalar variable ω ranging from
0, denoting the undamaged case, to 1, denoting the complete failure. In order
to describe the behaviour of the dam, at the �rst, the body B is modeled both
as one-dimensional [51, 188] and bi-dimensional domain [187]. The variational
principle [4, 73, 103, 122, 140, 157�159, 162, 168, 175, 213] is applied in order
to obtain the Eulerian equations and the Karush Kuhn Tucker (KKT) condition.
Because the damage ω is an entropic variable (ω is a no decreasing function in
time) the variational approach to obtain the KKT conditions is characterized by
an inequality and it is called hemi-variational approach [120, 121, 123, 124, 153,
156, 159, 161, 165, 210, 211]. The hemi-variation inequality will be better ex-
plained in the following sections for the one- and two-dimensional cases. Using the
same theory, one more applications is presented: a speci�c creep phenomenon,
called apparent. Furthermore, for a geotechnical point of view, the �ndings of
this study will inform future research on the evolving mechanical behaviour of
soils under seismic conditions in�uenced by di�usive substances.

Apparent creep

Creep in a polymeric beam has been studied. This creep is called apparent be-
cause it is induced by the presence of a �uid that, spreading within the body,
a�ects the mechanical properties of the beam, thereby reducing its sti�ness. The
reduction in sti�ness of the polymeric beam under investigation results in an
increase in deformations under a constant load. The beam, modelled as a two-
dimensional domain, was constrained on three sides and subjected to a uniformly
distributed load on the remaining quarter one. The problem at hand is one of
elastic damage, devoid of plastic e�ects. This implies that upon removal of the
distributed load acting on the domain, deformations will diminish and vanish,
despite the persistence of a damaged region within the domain. The reduction
in sti�ness is modelled analogously to the aging phenomenon investigated in the
dam study (both mono and two-dimensional cases).
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Earthquake

The di�usion theory presented in this work introduces a novel theoretical model
with interesting potential applications in various scienti�c �elds. In this context,
we will focus on how the model can be used in the �eld of geotechnical engineering.
The focal point of the future application for this model lies its ability to deal with
materials with mechanical/elastic characteristics that change, in the presence of
�uid, over time. This property makes it particularly suitable for studying soils
subjected to �uid di�usion phenomena within them, which signi�cantly alter
their behaviour. The scienti�c literature o�ers numerous examples of geotechnical
studies that are based on models of materials with time-varying properties [5, 7,
226] The mechanical characteristics of soils can be described by linear or non-
linear relationships between stress and strain. The model developed in this thesis
is able to capture both types of behaviour, allowing for a more complete and
realistic analysis of geotechnical phenomena. In this �rst phase of analysis, we
will focus on the e�ects of the non-linear characteristics of the soil. In particular,
we will study how non-linearity in�uences the response of the soil to dynamic
loads, the stability of slopes and foundations, and the propagation of seismic
waves.

In subsequent studies, we propose to further investigate the time evolution
of non-linear coe�cients, considering the phenomena of consolidation, creep, and
soil deterioration due to the presence of �uids. A non-linear study of seismic
events was conducted, with particular attention to the seismic event that severely
struck the city of L'Aquila in April 2009. This study stems from the desire to
elucidate the signi�cant contribution of non-linearities, under identical seismic
intensity, when addressing seismic studies. The results obtained from the non-
linear approach are compared with those obtained from a linear approach and
experimental data. As demonstrated subsequently, the linear analysis, widely
employed in seismic studies, is heavily a�icted by errors and inaccuracies. Non-
linear analyses could provide an invaluable tool in the �eld of prevention and
safeguarding human life. In this case, this di�usion theory would be employed
to model not a decay but rather an improvement in mechanical properties. The
application of the theoretical model developed in the thesis to the �eld of geotech-
nical engineering opens up new and interesting perspectives for understanding and
predicting soil behaviour in the presence of �uids. The results of this research can
provide valuable tools for the design of safer and more e�cient civil engineering
structures.
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Chapter 2

Dam: 1-D Timoshenko beam model

For the type of complex coupled di�usion-deformation-damage phenomena being
considered in this work, the beam model [92, 125, 126, 198] can serve as a fea-
sible �rst step before considering the analysis of the more general 2-D and 3-D
problems. The beam theory has, in general, wide interest in the literature of
deformable solid bodies (see, for example, [34, 46, 69, 87, 131]) as well as in the
modeling of the aging phenomenon [29, 30, 118, 195]. Several studies have also
focused on the chemical interactions between the dam material (concrete) and the
aging elements, for example silicates (see [47, 48, 57, 58, 62, 63, 174]). Recently
some works have focused also on the deformation dependecy of the di�usion �ux
in solid [224] and polymeric gels or polymeric solids [114, 173]. In some formu-
lations, e.g. [43], the damage evolution equation is assumed ab initio without a
variational derivation or the consideration of the monolateral condition for the
damage that is constrained to be a non-decreasing function of time.

In contrast, in [51] a hemivariatonal approach was considered for aging of
concrete dams, in which one 3-D deformable body [22, 69] was modeled using a
clamped Timoshenko beam model [15, 78, 79, 154, 221, 229]. However, the aging
phenomenon was considered by decreasing arbitrarily a certain damage energy
threshold. In particular a time dependent logarithmic law was used for describing
the reduction of such a damage energy threshold. As a result the damage could
increase with respect to time but it was not directly linked to the di�usion of
deteriorating ions within the dam. Interrelationships between damage and these
ions should be described by the use of proper coupling terms because of which
the damage increases not only because of the external loads but also because of
the presence of such a deteriorating �uid in the structure of the dam. Finally, a
hemivariational approach is needed to model the irreversible and non-decreasing
trend of the damage.

The aim of the present work is to use a variational approach [73, 103, 140,
157, 158, 161, 162, 168, 210], more speci�cally a hemivariational approach, in
order to describe the aging phenomenon due to the spreading of aging �uid (for
example, the salts) into the structure (concrete dam). The aging �uid can spread
within the dam because imperfections are present in the concrete, such as through
capillary phenomenon [17]. Following the approach �rst described in [51], a 1-D
model is considered for the dam in this paper as well. The 3-D body is modeled
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as a 1-D Timoshenko beam which is subjected to several external loads due
to (i) the pressure of the water, (ii) the self-weight of the dam and (iii) the
external distributed aging �uid in�ux pressure that represents the dual of the �uid
concentration. In this work, the damage threshold is linked with the concentration
of the �uid by means of a proper damage-concentration coupling. During the
analyzed dynamic case, although the external loads do not change, displacements
and deformations evolve as consequence of the reduction of the values of the
sti�nesses due to the increasing values of the damage resulting from di�usion.
The latter concept will be better discussed in the section 2.2 where the energy
functional is presented. The dissipation phenomena during aging is taken into
account by means of the Rayleigh functional, as in [55, 105], but other methods
can be considered (e.g in [53] where Dahl's model was used). As in [51], and also
in this work, the concentration of the �uid is present within the energy functional.
In addition parametric analyses are presented in order to explain the roles of the
concentration-damage coupling and the di�usion coe�cient. In conclusion, it is
analyzed how the life of the dam changes when the previous parameters change.
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2.1 Preliminary de�nitions

Body B is modeled as a 1-dimensional continuum [107, 108, 201] embedded in the
2-dimensional environment and its body points is characterized by means of the
coordinate X in a given frame of reference. The set of kinematical descriptors,
which depends upon the time t and the coordinate X, is composed of (i) the
axial displacement w = w(X, t), (ii) the transversal displacement u = u(X, t),
(iii) the rotation of the section ϑ = ϑ(X, t), (iv) the concentration c = c(X, t) of
a �uid that is supposed to drive the damage evolution and (v) the damage �eld
ω = ω(X, t). The sign convention of the displacement components w and u and
of the rotation ϑ are made explicit in Figure 2.1. Damage is an irreversible �eld
whose value increases in time until the failure is reached. This phenomenon is rep-
resented by means of a scalar variable ω ranging from 0, denoting the undamaged
case, to 1, denoting the complete failure.

bcext

bT
ext

bNext

mext

M0
ext ML

extFu0
ext FuL

extFw0
ext FwL

ext

Figure 2.1: Signs convention

2.2 Total deformation energy functional

Let E(w, u, ϑ, c, ω) be the total deformation energy functional, which de-
pends upon all the kinematical descriptors listed previously. We note that the
kinematical descriptors, as written in subsection 2.1, are functions of the position
X and the time t.

w(X, t), u(X, t), ϑ(X, t), c(X, t), ω(X, t) ∀(X, t) ∈ [0, L]× [t0,+∞) (2.1)
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where L is the length of the beam and t0 is the initial time. The total deformation
energy functional is assumed to have the following form:

E =E(w, u, ϑ, c, ω)

=

∫ L

0

[

1

2
KN(1− ω) (w′)

2
+

1

2
KT (1− ω) (u′ − ϑ)

2
+

1

2
KM(1− ω) (ϑ′)

2

]

dX

+

∫ L

0

[

1

2
KDIF (c

′)2 +
1

2
KF c

2 +KFNcw
′ +KFT c (u

′ − ϑ) +KFMcϑ′

]

dX

−

∫ L

0

[

bextN w + bextT u+mextϑ+ bextc c
]

dX − F ext
c0 c(0)− F ext

cL c(L)

− F ext
w0 w(0)− F ext

wLw(L)− F ext
u0 u(0)− F ext

uL u(L)−M ext
0 ϑ(0)−M ext

L ϑ(L)

+

∫ L

0

[

Kω0ω +Kcωcω +
1

2
Kωω

2

]

dX

(2.2)

where KN , KT , KM are the axial, shear and bending stifnesses respectively, bextN

is the distributed external axial load (dual of w), bextT is the distributed external
shear load (dual of u), mext is the distributed external couples (dual of ϑ), bextc

is the external distributed aging �uid in�ux pressure (dual of c), F ext
c0 and F ext

cL

represent the external concentrated �uid sources at X = 0 and at X = L respec-
tively, F ext

w0 and F ext
wL represent the external concentrated axial loads at X = 0 and

at X = L respectively, F ext
u0 and F ext

uL represent the external concentrated shear
loads at X = 0 and at X = L respectively and M ext

0 and M ext
L represent the

external concentrated couples at X = 0 and at X = L respectively (see Figure
2.1); besides KDIF is a di�usion coe�cient, KF is the �uid elasticity, KFN is the
axial-�uid sti�ness interaction, KFT is the shear-�uid sti�ness interaction, KFM

is the bending-�uid sti�ness interaction. The terms Kω0, Kcω and Kω represent
the damage threshold, the concentration-damage coupling and the resistance to
damage respectively. It is worth to notice that the damage is de�ned by a real
variable ω that is no-decreasing in time. So that the following inequality is as-
sumed:

∂ω

∂t
g 0 ∀X ∈ [0, L] (2.3)

The above condition implies the necessity of a generalization of standard varia-
tional principle into a so-called hemivariational principle. For simplicity of nota-
tion let us de�ne:

Λ = (w, u, ϑ, c, ω) Λ̇ =
(

ẇ, u̇, ϑ̇, ċ, ω̇
)

δΛ = (δw, δu, δϑ, δc, δω) ∆Λ = (∆w,∆u,∆ϑ,∆c,∆ω)
(2.4)

where (i) Λ represents the set of the kinematical descriptors and (ii) Λ̇, (iii) δΛ
and (iv) ∆Λ represent, respectively, the derivative with respect the time, the �rst
variation and the increment of the Λ elements. It follows, trivially:

Λ + δΛ = (w + δw, u+ δu, ϑ+ δϑ, c+ δc, ω + δω) (2.5)

Λ +∆Λ = (w +∆w, u+∆u, ϑ+∆ϑ, c+∆c, ω +∆ω) (2.6)
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Furthermore, the subscript ω indicates the set:

Λω = Λ\ {ω} = {w, u, ϑ, c} (2.7)

2.3 Hemivariational inequality principle

As in [161], a monotonically increasing time sequence Ti ∈ {Ti}
n

i=0 with Ti ∈ R
+
0

and n ∈ N is introduced, including an initial and trivial datum (at t0 = T0)
for each of the fundamental kinematical quantities. Let us consider the set of
kinematically admissible placements and the kinematically admissible variations
of the placements. Also note that the admissible variation of the irreversible
kinematic quantity ω must be positive, hence:

δω ∈ R
+
0 (2.8)

Now, the �rst variation of the energy functional is calculated as follows:

δE (Λ, δΛ) = E (Λ + δΛ)− E (Λ) (2.9)

where the terms of order 2 or higher can be neglected. Let us consider that,
at the i-th instant Ti, the increment of the fundamental kinematic quantities is
calculated by the di�erence between these quantities as evaluated at the times Ti

and Ti−1, namely:
∆Λ = (Λ)Ti

− (Λ)Ti−1
(2.10)

and the increment of the energy functional has the consequent de�nition

∆E (Λ,∆Λ) = E (Λ + ∆Λ)− E (Λ) (2.11)

As in (2.9) the terms of order 2 or higher can be neglected. The Rayleigh func-
tional is a quadratic form of the velocity-�elds,

R(Λ̇ω) =
1

2
cwẇ

2 +
1

2
cuu̇

2 +
1

2
cϑϑ̇

2 +
1

2
ccċ

2 (2.12)

and its variation and increment, respectively, are de�ned as follows:

δR
(

Λ̇ω, δΛω

)

=

∫ L

0

[

cwẇδw + cuu̇δu+ cϑϑ̇δϑ+ ccċδc
]

dX (2.13)

∆R
(

Λ̇ω,∆Λω

)

=

∫ L

0

[

cwẇ∆w + cuu̇∆u+ cϑϑ̇∆ϑ+ ccċ∆c
]

dX (2.14)

In order to get governing equations for this newly introduced model, we assume
that the motion w(X, t), u(X, t), ϑ(X, t), c(X, t) and ω(X, t) veri�es the following
hemivariational principle:

∆E (Λ,∆Λ) + ∆R
(

Λ̇ω,∆Λω

)

f δE (Λ, δΛ) + δR
(

Λ̇ω, δΛω

)

(2.15)

for any admissible variation δΛ, δΛω of the fundamental kinematic quantities.
The variational principle implies Euler�Lagrange equations of di�erent types:
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(i) a system of partial di�erential equations for a non homogeneous Timoshenko
beam with the reduced sti�nesses due to damage and with a modi�ed stress
free reference con�guration due to the �uid concentration (i.e. KFNc mod-
i�es the axial force, KFT c modi�es the shear force and KFMc modi�es the
bending moment):

N ′ + bextN = cwẇ (2.16)

V ′ + bextT = cuu̇ (2.17)

V +M ′
b +mext = cϑϑ̇ (2.18)

with the following de�nition:

N = KN(1− ω)w′ +KFNc (2.19)

V = KT (1− ω)(u′ − ϑ) +KFT c (2.20)

Mb = KM(1− ω)ϑ′ +KFMc (2.21)

and where N, V, and Mb represent the normal force, the shear force and
the bending moment respectively.

(ii) a di�erential equation for the di�usion of the �uid that is characterized
not only by the external distributed aging �uid in�ux pressure bextc but
also by deformations (i.e. by the axial deformation KFNw

′, by the shear
deformation KFT (u

′ − ϑ) and by the bending deformation KFMϑ′), by the
concentration itself KF c and by damage Kcωω,

[KDIF c
′]
′
+bextc = ccċ+KFNw

′+KFT (u
′−ϑ)+KFMϑ′+KF c+Kcωω (2.22)

(iii) a proper set of boundary conditions that yield:
[

N − F ext
wL

]

δw = 0, X = L (2.23)
[

N + F ext
w0

]

δw = 0, X = 0 (2.24)
[

V − F ext
uL

]

δu = 0, X = L (2.25)
[

V + F ext
u0

]

δu = 0, X = 0 (2.26)
[

Mb −M ext
L

]

δϑ = 0, X = L (2.27)
[

Mb +M ext
0

]

δϑ = 0, X = 0 (2.28)
[

KDIF c
′ − F ext

cL

]

δc = 0, X = L (2.29)
[

KDIF c
′ + F ext

c0

]

δc = 0, X = 0 (2.30)

(iv) and a Karush Kuhn Tucker (KKT ) condition

[ω − ωT ] ∆ω = 0, ∀X ∈ [0, L] (2.31)

where

ωT (X, t) =

[

1

2

KN

Kω

(w′)2 +
1

2

KT

Kω

(u′ − ϑ)2 +
1

2

KM

Kω

(ϑ′)2
]

−

[

Kω0

Kω

+
c ·Kcω

Kω

]

(2.32)
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From KKT conditions and from the initial undamaged condition ω(X, 0) = 0,
the damage variable ω starts to increase when the normalized undamaged strain
energy

1

2

KN

Kω

(w′)2 +
1

2

KT

Kω

(u′ − ϑ)2 +
1

2

KM

Kω

(ϑ′)2 (2.33)

reaches the normalized undamaged energy threshold

Kω0

Kω

+
c ·Kcω

Kω

(2.34)

For the �uid to have an aging e�ect, the following restriction on the coupling
term applies

Kcω < 0 (2.35)

Note that from (2.32) this restriction will result in the reduction of the energy
threshold. Further thermodynamic restrictions are due to the needed positive
de�niteness of the strain energy. It is worth to note that, among such conditions
we also have

K2
cω < KωKF (2.36)

2.4 Beam representation of dam

The dam is usually conceived to have a trapezoidal shape, in a 2-D model, and
clamped at the bottom. It is, therefore, modelled here by means of a cantilever
beam as shown in the Figure 2.2 in which the external and triangular distributed
loads are considered due to both the water pressure and the self-weight. According
to the model presented in [51] the geometry that is shown in Figure 2.2, the
water is on the left-hand side and the air is on the right-hand side. As shown
in the Figure 2.2 the red line (the geometric locus of the middle points of the
sections) represents the 1-D beam by means of which the dam is modeled. In
Figure 2.2, β and β′ are the angles between the vertical line and, respectively,
the 1-D beam and the left-hand side oblique surface of the dam. Thus, passing
to the 1-D model, the weight of the dam must be considered on the mean line
(the red line) as a triangular distributed external load (with both normal and
orthogonal components) while the pressure of the water, because it is applied
to the oblique surface of the dam, must be considered not only as a triangular
distributed external load (with both normal and orthogonal components) but also
as a triangular distributed external couple.

Because the concentration of the �uid is a�ected by its pressure, it is reason-
able to think that the distribution of the external distributed aging �uid in�ux is
higher at the bottom of the dam. In the considered model the water height Lw is
equal to that of the dam Ld. Hence, in the 1-D model a triangular distribution
of bextc is considered which has the higher value at the clamped end (for X = 0)
and zero value at the top (for X = L

cosβ
) as it will be shown in (2.40). The water

presure is due to Stevino's law, it is directed orthogonal by to the left-hand side of
the trapezoidal shape and the maximum value is pw. The self-weight is directed
vertically and the maximum value is W , in formulas,

pw = γwgLw and W = γcgLd (2.37)
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Ld=Lw

sb

st

pw
W

Figure 2.2: Dam pro�le

Where γw and γc represent the mass density of the water and of the concrete,
respectively. Notice that the weight of the dam is a distributed load on the domain
while the pressure of the water is on the upstream facet (i.e., on the left-hand
side of the trapezoidal shape) of the dam.

2.4.1 Sti�nesses identi�cation

The stifness of a given material is de�ned both by the Lamé coe�cients λ and
µ or by the Young's modulus E and the Poisson's ratio ν. First of all we recall
their relations,

λ =
E · ν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.38)

Thus, it is possible, as in [190], to identify the axial, shear and bending sti�nesses
KN , KT and KM as follows

KN(X) =
4µ(λ+ µ)

λ+ 2µ
s(X) · th

KT (X) =
2

3
µ · s(X) · th

KM(X) =
4µ(λ+ µ)

λ+ 2µ

[s(X)]3

12
· th

(2.39)

Where th is the depth, i.e. the out of plane dimension of Figure 2.2 of the dam
and where a rectangular cross-section is considered.

14



2.4.2 The distributed external loads

By assuming that bextc is proportional to the pressure of the water and, therefore,
it has a triangular distribution

bextc (X) = bextc,max

(

1−
X

Lw

)

·H
(

Lw −X · cos β̃
)

, (2.40)

then, following the considerations about the weigth of the dam and the pressure
of the water at the beginning of the section 2.4, the distributed external loads
must be decomposed along the parallel and transverse directions of the beam as
in [51]:

bextN (X) =− thγw sin
(

β̃′ − β̃
)(

Lw −X · cos β̃
)

·H
(

Lw −X · cos β̃
)

− γcths(X) cos β̃,
(2.41)

bextT (X) =− thγw sin
(

β̃′ + β̃
)(

Lw −X · cos β̃
)

·H
(

Lw −X · cos β̃
)

− γcths(X) sin β̃,
(2.42)

and the external distributed couple is

mext(X) =
1

2
ths(X)γw

(

Lw −X · cos β̃
)

·H
(

Lw −X · cos β̃
)

(2.43)

Where (i) X is the abscissa of the beam, (ii) Lw is the height of the water, (iii)
st and sb, represented in Figure 2.2, are the thickness at the top and at the bottom
section of the dam respectively, (iv) γc and γw are the density of the materials
(as shown in the (2.37)), and (v) the subscripts c and w are refered to concrete
and water, respectively. Finally, the function H(ζ) is the Heaviside function to
set to zero the contribution of water pressure above its maximum elevation, i.e.,

H(ζ) =

{

1 ζ g 0
0 ζ < 0

(2.44)

2.5 Numerical investigation

The developed model is applied to perform parametric analyses by varying the
values of KDIF and Kcω and for di�erent spatial distributions of bextc .

2.5.1 Uncoupled concentration c and the kinematic descrip-

tors w, u, ϑ case

Consdering that concrete dam deformations (w′, u′−ϑ and ϑ′), from (2.19), (2.20)
and (2.21), are not expected to be a�ected by the density of the aging �uid. In
the presented analyses, all the coupling terms KFN , KFT , KFM are considered
negligible.

KFN = 0
J
kg

, KFT = 0
J
kg

, KFM = 0
m3

s2
. (2.45)
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In this case, the dam does not have a sponge-like behaviour, which could be of
interest for many other porous materials. The considered structural model and
loading is shown in the Figure 2.3 and the adopted parameters are reported in
Tabel 2.1.

Ld = Lw = 10m bextc,max = 5 · 105 J
kg

st = 1m KDIF = 105 m5

kg·s2

sb = 3m KF = 107 m3

kg·s2

β̃ = arctan
(

sb−st
2L

)

= 0.1 rad cc = 1016 m3

kg

β̃′ = arctan
(

sb−st
L

)

= 0.2 rad Kcω = −9 · 105 J
kg

L = Ld

cosβ̃
= 10.05m Kω0 = 800N

E = 4 · 104MPa Kω = 105N

th = 1m γw = 10 kg

m3

ν = 0.2 γc = 24 kg

m3

λ = 1.1 · 1010MPa tf = 3 · 109 s ≈ 95 years

µ = 1.67 · 1010MPa

Table 2.1: Parameters for numerical investigation

where Ld is the height of the dam and L is the length of the equivalent beam. The
values of the paramateres are chosen according to [51]. However, two parametric
analyzes have been performed for the values of the new parametersKDIF and Kcω.
The results are shown in the section (2.5.3) and (2.5.4). All the analyzes have
been carried out using the FEM software Comsol considering the following (i)
kinematic boundary conditions:

w(0, t) = 0, u(0, t) = 0, ϑ(0, t) = 0 (2.46)

and (ii) initial values

w(X, 0) = 0, u(X, 0) = 0, ϑ(X, 0) = 0. (2.47)

The value of the damage threshold ωT , for each time step, is prescribed in (2.32).
The value of damage ω at a given time is taken to be the maximum between ωT

and the value of ω at the previous time step to update step-by-step according the
KKT condition (2.32). It is noted that the KKT condition imposes the constraint
that the damage is always increases in time, so that the monolateral condiction
for the damage ω is met. Figures 2.4, 2.5 and 2.6 give the results of this analysis.
It is worth noting that the kinematical descriptors w, u, and ϑ evolve in time
not because of the increase in the external loads, but because of the increase of
damage ω, which results in the reduced values of the sti�nesses KN , KT and KM
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Figure 2.3: Cantilever beam model

in (2.19), (2.20) and (2.21). The negative values of w for X > 0 shown in the
Figure 2.4a is reasonable because of the considered external gravity load. This
results in the loss of strength of the dam.

0 5 10

-10

-8

-6

-4

-2

0
10

-5

t=0 years

t=71 years

t=89 years

(a)

0 5 10

-10

-5

0
10

-5

t=0 years

t=71 years

t=89 years

(b)

Figure 2.4: (a) Axial displacement w(X, t) and (b) strain w′(X, t). The evolution in time of

the kinematic quantities by a color gradient is represented. The aging evolution is represented

from the lightest color to the most de�ned one.

Thus, the axial deformation w′ is, as shown in Figure 2.4b negative near the
base (at X = 0) and null at the free side at X = L. The modulus of both
the axial displacement and deformation are increasing functions of time. Similar

17



observations are made for the transverse displacement from Figure 2.5a and the
shear deformation in Figure 2.5b, and for the rotation 2.6a and the curvature
2.6b.
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Figure 2.5: (a) Transversal displacement u(X, t) and (b) shear deformation u′ − ϑ. The

evolution in time of the kinematic quantities by a color gradient is represented. The aging

evolution is represented from the lightest color to the most de�ned one.
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Figure 2.6: (a) Rotation of the sections ϑ(X, t) and (b) curvature ϑ′. The evolution in time of

the kinematic quantities by a color gradient is represented. The aging evolution is represented

from the lightest color to the most de�ned one.

The concentration of the aging �uid and the damage are shown in the Figures
2.7a and 2.7b. It can be seen that the aging �uid concentration and the damage,
because they are coupled by the term Kcω, are both higher at the bottom of the
beam at X = 0. So, if one increases, the other one increases as well. Finally, it is
worth to note that, once damage reaches the unity value (at X = 0), the collapse
of the dam is expected.
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Figure 2.7: (a) Concentration c(X, t) and (b) damage ω(X, t). The evolution in time of the

kinematic quantities by a color gradient is represented. The aging evolution is represented from

the lightest color to the most de�ned one.

2.5.2 Parametric analysis: distribution of bextc

In this subsection, we evalaute the behaviour of the beam subjected to di�erent
bextc distributions. The real distribution of bextc is not known without measure-
ments. Thus, we consider di�erent distributions for demonstrating the potential
e�ects. In order to compare the results with the triangular case the integral of
bextc on the domain remains the same as that of the previous triangular case. Here
as an exemple, the externally distributed aging �uid in�ux pressure has been
considered having an half gaussian curve distribution (see the Figure (2.8)). The
half gaussian curve has the peak at X = 0. The parameters of the half gaussian
distribution is such that:

∫ L

0

[

bextc,triangular

]

dX =

∫ L

0

[

bextc,gaussian

]

dX (2.48)

The three di�erent gaussian distributions (with three di�erent maximum values
at X = 0) and the triangular distribution are compared, in Figure 2.8.

Figure 2.8: Three di�erent gaussian distribution with di�erent σ and the triangular one of

bext
c
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It is worthwhile to notice that, for the gaussian distribution, the maximum value
of the externally distributed aging �uid in�ux pressure is L · bextc,max, where L is
the length of the beam:

∫ L

0

[

bextc,max · triang(X)
]

dX =

∫ L

0

[

L · bextc,max · gauss(X)
]

dX = bextc,max ·
L

2
(2.49)

where (i) triang(X) = 1 − X
L

represents the triangular distribution and (ii)

gauss(X) = 1
σ
√
2π
e−

1

2
(X

σ
)
2

the gaussian one. Because the considered distribution
is an half gaussian curve, we have:

∫ L

0

[gauss(X)] dX ≈
1

2
(2.50)

The results for di�erent values of standard deviation σ =
{

1
2
, 1, 2

}

are shown in
Figures 2.9, 2.10 and 2.11 for the same values of other parameters, the same of
that of the section 2.5.1. In the Figure 2.9 the case with σ = 1

2
is shown.
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Figure 2.9: Plot of:(a) concentration c(X, t) and (b) damage ω(X, t) for σ = 1

2
. The evolution

in time of the kinematic quantities by a color gradient is represented. The aging evolution is

represented from the lightest color to the most de�ned one.

In the Figure 2.10 the case with σ = 1 is shown.
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Figure 2.10: Plot of:(a) concentration c(X, t) and (b) damage ω(X, t) for σ = 1. The evolution

in time of the kinematic quantities by a color gradient is represented. The aging evolution is

represented from the lightest color to the most de�ned one.

In the Figure 2.11 the case with σ = 2 are shown.
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Figure 2.11: Plot of:(a) concentration c(X, t) and (b) damage ω(X, t) for σ = 2. The evolution

in time of the kinematic quantities by a color gradient is represented. The aging evolution is

represented from the lightest color to the most de�ned one.

As expected, when σ increases, we show a trend to the triangular case. These
results prove that the higher is the concentration of the aging �uid in one part of
the beam, the lower is the life time of the dam..

2.5.3 Parametric analysis: KDIF

In this section concentration c and damage ω are evaluated for di�erent values
of KDIF such that its role can be better clari�ed. Four di�erent values of KDIF

are considered in Figures 2.12, 2.13, 2.14 and 2.15 by increasing one order of
magnitude compared to the previous one, as follows:

KDIF =
{

103, 105, 107, 109
} m5

kg · s2
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All the other parameters are equal to that given in section 2.5.1.
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Figure 2.12: Plot of:(a) concentration c(X, t) and (b) damage ω(X, t) for KDIF = 103 m5

kg·s2
.

The evolution in time of the kinematic quantities by a color gradient is represented. The aging

evolution is represented from the lightest color to the most de�ned one.
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Figure 2.13: Plot of:(a) concentration c(X, t) and (b) damage ω(X, t) for KDIF = 105 m5

kg·s2
.

The evolution in time of the kinematic quantities by a color gradient is represented. The aging

evolution is represented from the lightest color to the most de�ned one.
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Figure 2.14: Plot of:(a) concentration c(X, t) and (b) damage ω(X, t) for KDIF = 107 m5

kg·s2
.

The evolution in time of the kinematic quantities by a color gradient is represented. The aging

evolution is represented from the lightest color to the most de�ned one.
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Figure 2.15: Plot of:(a) concentration c(X, t) and (b) damage ω(X, t) for KDIF = 109 m5

kg·s2
.

The evolution in time of the kinematic quantities by a color gradient is represented. The aging

evolution is represented from the lightest color to the most de�ned one.

The results in the Figures 2.12, 2.13, 2.14 and 2.15 con�rm the interpration of
KDIF as a di�usivity coe�cient. Indeed, when KDIF is higher the aging �uid
spreads easier into the whole body redistributing, at the same time, the damage.
In particular, from Figure 2.15, the highest value of KDIF induced the �uid to
spread freely and rapidly within the body. The concentration (and the damage)
distribution tend therefore to have a rectangular shape. It means that the damage
is now longer localized in a small area of the botom of the beam and the life of
the dam increases for a given bextc distribution. This means that the failure is
reached later and the life of the dam increases when the di�usivity is larger. The
reason for di�erent values of KDIF may be due, for example, to the quality of
the concrete. The sulfate attacks could cause an increase in porosity by allowing
�uid to �ow more easily within the beam. However, although the poor quality
of the concrete implies higher KDIF , the concentration will be more uniformally
distributed and therefore the age at which damage reaches 1 is delayed.
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2.5.4 Parametric analysis: Kcω

We have already pointed out in (2.34) that the normalized undamaged energy
threshold is decreased by a negative value of the concentration-damage coupling
term. Thus, a parametric analysis for di�erent values of Kcω is worth to be done
that will be analyzed in Figure 2.16. The considered values of Kcω are:

Kcω = {−9.5, −9, −8.5, −8} · 105
J
kg
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Figure 2.16: Plot of:(a) concentration c(X, t) (a) and damage ω(X, t) (b) for Kcω = −9.5 ·

105 J
kg
. The evolution in time of the kinematic quantities by a color gradient is represented.

The aging evolution is represented from the lightest color to the most de�ned one.

As the value of Kcω varies, the behavior of the structure remains the same but the
time for reaching the damage (ω = 1) increases. In particular, we observe that
the higher is the modulus of such a coupling term, the higher is the transmission
of the in�uence of the concentration of the aging �uid on damage and the lower
is the life of the dam.

2.5.5 Dam's life

As a result of the parametric analyses in sections 2.5.3 and 2.5.4 it is possible
to analyze how the life of the dam is a�ected by the di�usivity characteristics
and the di�usion-deformation-damage coupling. The dam's life for the triangular
distribution of the external distributed aging �uid in�ux pressure bextc and several
values of KDIF and Kcω are shown in the Figures 2.17 and 2.18.
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Figure 2.17: Parametric analysis for KDIF
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Figure 2.18: Parametric analysis for Kcω

The results shown in the Figures 2.17 and 2.18 show that if the values ofKDIF

and Kcω are higher, the dam's life increases. Furthermore Figures 2.18 shows that
the damage is sensitive to changes in the value of the coupling term Kcω.
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Chapter 3

Dam: 2-D case

The present work is a continuation of previous research e�orts to model the defor-
mation and aging-related damage of concrete dams. A one-dimensional model of
a shear deformable beam (widely used in literature [65, 100]) has been proposed
earlier in [51, 188], and is here extended to a bi-dimensional model. The consid-
ered modelling approach lies within the framework of variational principles [73,
103, 140, 157, 158, 162], applied to the derivation of balance equations for gener-
alized continuum models, which involve in a non-classical way the dual quantities
of the kinematic ones describing the strain of the continuum [74]. Among those
generalised continua, higher-gradient continua have been studied and applied to
modelling non-local elastic e�ects, by taking into account the derivatives of the
considered strain tensor in the deformation energy. As a consequence, such mod-
els are able to account for phenomena which cannot be seen by classical Cauchy
continua [3, 26, 178]. Thus, strain-gradient continua have been used extensively
for modelling metamaterials, i.e. synthetic materials speci�cally engineered to
have exotic behaviours resulting from their microstructure [25, 71, 72, 75, 86].
The physical-mathematical model is formulated in Sect. 3.1 and 3.2 as a 2-D prob-
lem: the kinematic description is introduced, before de�ning energy functionals to
model the considered phenomena, and then a hemivariational inequality principle
is used to formulate the mathematical problem. Then, numerical investigations
are carried out and presented in Sect. 3.5 for bodies having two di�erent cross
sections.

3.1 Preliminary de�nition

For the bi-dimensional case, the dam is modeled as a 2-D continuum body B.
Its points are characterized by means of the coordinates X = Xiêi (where ∥êi∥ =
1 and i = 1, 2) in a given reference con�guration. The set of the kinematical
descriptors which depend upon Xi and t is composed of (i) the horizontal dis-
placement u1 (X1, X2, t), (ii) the vertical displacement u2 (X1, X2, t), (iii) the con-
centration of a �uid c (X1, X2, t) and (iv) the damage ω (X1, X2, t). The damage,
whose evolution is supposed driven by the concentration of the aging �uid c, is a
no-decreasing in time irreversible �eld and it is represented by means of a scalar
variable ω raging from 0 (denoting the undamaged state) to 1 (denoting the at-
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tainment of the failure). Let u = u(X, t) = uiêi (where ∥êi∥ = 1 and i = 1, 2) be
the displacement vector, Φ (X, t) is the placement function, F is the deformation
gradient tensor and G is the Green strain tensor. Indicating with x = xiêi the
coordinates, in the current con�guration, of the point having coordinates X in
the reference con�guration, one has

x = Φ (X, t) = X+ u, F = ∇Φ, G =
1

2

(

F
T
F− I

)

(3.1)

or, in index notation:

xi = Φi = Xi + ui, Fij =
∂Φi

∂Xj

= ui,j + δij, Gij =
1

2
(FkiFkj − δij) (3.2)

where

ui,j =
∂ui

∂Xj

and δij =

{

1 i = j
0 i ̸= j

(3.3)

In terms of the displacement ui the Green Lagrange strain tensor is:

Gij =
1

2
(ui,j + uj,i + uh,iuh,j) (3.4)

Indicating with U the internal deformation energy density, it is worth note that
the stress σij and hyperstress Tijh are:

σij =
∂U

∂Gij

=
∂U

∂Gji

= σji and Tijh =
∂U

∂Gij,h

=
∂U

∂Gji,h

= Tjih, (3.5)

3.2 Total deformation energy functional

From the [168, 188, 228] the energy functional can be splitted, as in the following,
in three part.

(i) The elastic part:

Ee(u, ω) =

∫

B

[

U (G,∇G, ω)− b
ext · u−M

ext : ∇u
]

dA

−

∫

∂B

[

t
ext · u+ τ ext · [(∇u)n]

]

ds−

∫

∂∂B

f
ext · u,

(3.6)

where b
ext represents the external body force (i.e., per unit area) whereas

M
ext represents the external body double force (i.e.,per unit area) and the

operator : represents the scalar product between tensors. So that:

M
ext : ∇u = Mijui,j (3.7)

Instead t
ext and τ ext represent, respectively, the external force and double

force per unit length, so they act on the boundary of the domain, denoted
as ∂B. The vector f ext, instead, represents the concentrated external force
applied on the vertexes, which is the boundary of the boundary denoted as
∂∂B.
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(ii) The di�usion part:

Ec(c) =

∫

B

[

1

2
KDIF∥∇c∥2 +

1

2
KF c

2

]

dA−

∫

∂B

[

bextc c
]

ds (3.8)

where KDIF , KF and bextc represent the di�usivity of the body, its �uid
elasticity and the external distributed aging in�ux pressure, respectively.

(iii) The dissipative part:

Eω(c, ω) =

∫

B

[

Kω0ω +Kcωcω +
1

2
Kωω

2

]

dA. (3.9)

where Kω0, Kcω and Kω represent the damage threshold, the concentration-
damage coupling term and the resistance to damage. Noting that the
threshold Kω0 depends upon the strain state assuming, therefore, di�er-
ent value either in tension or in compression, so as to represent reasonably
the behaviour of the concrete. Hence:

Kω0 = K̄ω0 [1 + (ξ − 1)H (−trG)] (3.10)

where K̄ω0 is the smaller value of the threshold associated with the tensile
state, trG (namely the trace of the strain tensor G) represents a measure of
the strain state of the body B, ξ is the ampli�cation factor that increases
the threshold value and H (•) is the Heaviside function whose value is equal
to 0, when its argument is negative, or 1, when its argument is greater or
equal than 0. That means that:

Kω0 =

{

K̄ω0 in tension
ξK̄ω0 in comprension

(3.11)

The heaviside function is a powerfull tool because it allows us to change
the value of the threshold for each case, both in tension or in compression,
leaving these terms as a costant which multiplies the descriptor ω. This
means that using this kind of function the variation does not change.

So, the energy functional E is assumed to be additively decomposed in the equa-
tions (3.6), (3.8) and (3.9):

E(u, c, ω) =Ee(u, ω) + Ec(c) + Eω(c, ω)

=

∫

B

[

Ue (G,∇G, ω)− b
ext · u−M

ext : ∇u
]

dA

+

∫

B

[

1

2
KDIF∥∇c∥2 +

1

2
KF (c)2

]

dA

−

∫

∂B

[

t
ext · u+ τ ext · [(∇u)n]

]

ds−

∫

∂B

[

bc

extc
]

ds−

∫

∂∂B

f
ext · u

+

∫

B

[

Kω0ω +Kcωcω +
1

2
Kωω

2

]

dA.

(3.12)
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and its variation, in index notation, is:

δE(u, c, ω) =δEe(u, ω) + δEc(c) + δEω(c, ω)

=−

∫

B

[(

σij,j − Tijh,hj + bexti −M ext
ij,j

)

δui

]

dA

−

∫

B

[(

KDIFF c,ic,i +KF c+Kcωω
)

δc
]

dA

+

∫

∂B

[(

ti − texti −mext
ij nj

)

δui

]

ds

+

∫

∂B

[(

τi − τ exti

)

nkδui,k

]

ds

+

∫

∂B

[(

KDIF c,inj − bextc

)

δc
]

ds

+

∫

∂∂B

[

fi − f ext
i

]

δui

+

∫

B

[(

∂Ue

∂ω
+Kω0 +Kcωc+Kωω

)

δω

]

dA.

(3.13)

where

ti = [σij − Tijh,h]nj − (TijhnhPjk),l Pjl, τi = Tijhnhnj, fi = TijhVhj (3.14)

where, as in [168], Pij = δij − ninj is the tangetial projector operator, ni and nj

are the boundary-normal unit vector Vhj = nl
hv

l
j+nr

hv
r
j is the vertex operator and

vj represent the external tangent vector. The superscript l and r are referred to
the left and right side of a vertex-point in which a concentrated force would be
applied. The damage is de�ned by a a no-decreasing in time real variable ω. So
that, the following inequality is assumed:

∂ω

∂t
g 0 ∀X ∈ B (3.15)

The Rayleigh functional, that in this work is linked only with the �uid concen-
tration parameters, is a quadratic form of the velocity-�elds

R(ċ) =

∫

B

[

1

2
ccċ

2

]

dA (3.16)

and its variation and increment indicated, respectively, by the symbol δ̃ and ∆̃,
are assumed as follows:

δ̃R (ċ, δc) =

∫

B

[ccċδc] dA (3.17)

∆̃R (ċ,∆c) =

∫

B

[ccċ∆c] dA (3.18)
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As in [188] the condition (3.15) implies the necessity of a generalization of the
standard variational principle in the so-called hemivariational principle. Let us
introduce the following sets of parameters:

Λ = (u1, u2, c, ω)

δΛ = (δu1, δu2, δc, δω)

∆Λ = (∆u1,∆u2,∆c,∆ω)

(3.19)

where (i) Λ represents the set of the kinematical descriptors and (ii) δΛ and (iii)
∆Λ represent, respectively, the �rst variation and the increment of the elements
of Λ. It follows, trivially:

Λ + δΛ = (u1 + δu1, u2 + δu2, c+ δc, ω + δω) (3.20)

Λ +∆Λ = (u1 +∆u1, u2 +∆u2, c+∆c, ω +∆ω) (3.21)

Furthermore, by the subscript ω it is indicated the set:

Λω = Λ− {ω} = {u1, u2, c} (3.22)

3.3 Hemivariational inequality principle

As in [161], a monotonically increasing time sequence Ti ∈ {Ti}
n

i=0 with Ti ∈ R
+
0

and n ∈ N is introduced, considering an initial and trivial datum (at t0 = T0)
for each of the fundamental kinematical quantities. Let us consider the set of
kinematically admissible placements and the kinematically admissible variations
of the placements. Also noting that, from (3.15), the admissible variation of the
irreversible kinematic quantity ω must not be negative, hence:

δω ∈ R
+
0 (3.23)

Now, the �rst variation of the energy functional is calculated as follows:

δE (Λ, δΛ) = E (Λ + δΛ)− E (Λ) (3.24)

where the terms of order 2 or higher can be neglected. Let us consider that,
at the i-th istant Ti, the increment of the fundamental kinematic quantities is
calculated by the di�erence between these quantities as evaluated at the times Ti

and Ti−1, namely:

∆Λ = (Λ)Ti
− (Λ)Ti−1

(3.25)

and the increment of the energy functional has the consequent de�nition

∆E (Λ,∆Λ) = E (Λ + ∆Λ)− E (Λ) (3.26)

As in (3.24) the terms of order 2 or higher can be neglected. In order to get
governing equations for this newly introduced model, we assume that the mo-
tion u1(X1, X2, t), u2(X1, X2, t), c(X1, X2, t) and ω(X1, X2, t) veri�es the following
hemivariational principle:

31



∆E (Λ,∆Λ) + ∆̃R (ċ,∆Λω) f δE (Λ, δΛ) + δ̃R (ċ, δΛω) (3.27)

for any admissible variation δΛ, δΛω of the fundamental kinematic quantities.
The variational principle (for i = 1, 2) implies the Euler�Lagrange equations of
di�erent type:(i) a system of partial di�erential equations for the equilibrium

σij,j − Tijh,hj + bexti −M ext
ij,j = 0, (3.28)

(ii) a di�erential equation for the di�usion

KDIFF c,ic,i +KF c+Kcωω = ccċ (3.29)

and (iii) the following set of boundary conditions:

[

ti − texti −mijnj

]

δui = 0 ∀X ∈ ∂B (3.30)
[(

τi − τ exti

)

nk

]

δui,k = 0 ∀X ∈ ∂B (3.31)
[

KDIFF c,inj − bextc

]

δc = 0 ∀X ∈ ∂B (3.32)
[

fi − f ext
i

]

δui = 0 ∀X ∈ ∂∂B (3.33)

It is worth noting that the term KDIFF

cc
has the role of the di�usion coe�cient for

the classical di�usion equation.

3.4 2-D isotropic quadratic internal deformation

energy density functional

The elastic part of the internal deformation energy density functional Ue of a
isotropic second gradient material is provided in [138]:

Ue (G,∇G, ω) =
λ

2
GiiGjj + µGijGji + 4α1Gii,jGjh,h + α2Gii,jGkk,j

+ 4α3Gij,iGkj,k + 2α4Gij,kGij,k + 4α5Gij,kGik,j

(3.34)

where λ, µ and αi ∈ R are parameteres de�ned as follows:

λ = (1− ω)λ0, µ =(1− ω)µ0 and αi = (1 + nω)α0
i

n ∈ [−1,+∞) , i = {1, 2, 3, 4, 5}
(3.35)

λ0 and µ0 are the Lamé parameters and the α0
i 's are the Mindlin coe�cient which

are linked with the characteristic length and the Young's modulus. It is worth
notice that the sti�nesses are a�ected by the damage, whose increasing reduces
them resistance contribution. From the (3.35) and citing [168], the parameter n
is a weight for the damage which ranges from −1 to in�nite, i.e., n ∈ [−1,+∞).
The case n = −1 is related to the fracture because no elastic energy can be
accumulated in the completely cracked region [160]. The case n = 0 means that
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coe�cients αi does not depend upon on the damage ω, this corresponds to the
case where the damage does not a�ect the characteristic length scales of the
material. The (3.34) becomes:

Ue(G,∇G, ω) =

(

λ

2
+ µ

)

(

G2
11 +G2

22

)

+ λG11G22 + 2µG2
12

+
(

G2
11,1 +G2

22,2

)

(4α1 + α2 + 4α3 + 2α4 + 4α5)

+ (G11,1G12,2 +G12,1G22,2) (4α1 + 8α3)

+ (G11,2G12,1 +G12,2G22,1) (4α1 + 8α5)

+ (G11,2G22,2 +G11,1G22,1) (4α1 + 2α2)

+
(

G2
11,2 +G2

22,1

)

(α2 + 2α4)

+
(

G2
12,1 +G2

12,2

)

(4α3 + 4α4 + 4α5)

(3.36)

The α0
i s parameters are identi�ed, as in [23] , in the following way:

α0
1 =

L2

112
λ0

α0
2 =

L2

112
λ0

α0
3 =

L2

1120
(7µ0 + 3λ0)

α0
4 =

L2

1120
(7µ0 − 4λ0)

α0
5 =

L2

1120
(7µ0 + 3λ0)

(3.37)

If only the self weight W, the pressure of the water p and the in�ux pressure bextc

act on the body, the internal energy functional in (3.12) becomes:
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E =

∫

B

[(

λ

2
+ µ

)

(

G2
11 +G2

22

)

+ λG11G22 + 2µG2
12

]

dA

+

∫

B

[(

G2
11,1 +G2

22,2

)

(4α1 + α2 + 4α3 + 2α4 + 4α5)
]

dA

+

∫

B

[(G11,1G12,2 +G12,1G22,2) (4α1 + 8α3)] dA

+

∫

B

[(G11,2G12,1 +G12,2G22,1) (4α1 + 8α5)] dA

+

∫

B

[(G11,2G22,2 +G11,1G22,1) (4α1 + 2α2)] dA

+

∫

B

[(

G2
11,2 +G2

22,1

)

(α2 + 2α4)
]

dA

+

∫

B

[(

G2
12,1 +G2

12,2

)

(4α3 + 4α4 + 4α5)
]

dA

+

∫

B

[

1

2
KDIF∥∇c∥2 +

1

2
KF c

2

]

dA

+

∫

B

[

Kω0ω +Kcωcω +
1

2
Kωω

2

]

dA

−

∫

B

[ρgu2] dA−

∫

∂B

[

p (u · n) + bextc c
]

ds

(3.38)

where ρ, g and n are, respectively, the density of the body B, the gravity ac-
celeration and the unit normal vector of the boundary where the action of the
pressure of the water acts. From the Karush-Kuhn-Tucker and the (3.15), the
damage is obtained:

ω̃ (X, t) =
1

Kω

{(

λ0

2
+ µ0

)

(

G2
11 +G2

22

)

+ λ0G11G22 + 2µ0G
2
12

−n
[(

G2
11,1 +G2

22,2

) (

4α0
1 + α0

2 + 4α0
3 + 2α0

4 + 4α0
5

)

+(G11,1G12,2 +G12,1G22,2)
(

4α0
1 + 8α0

3

)

+(G11,2G12,1 +G12,2G22,1)
(

4α0
1 + 8α0

5

)

+(G11,2G22,2 +G11,1G22,1)
(

4α0
1 + 2α0

2

)

+
(

G2
11,2 +G2

22,1

) (

α0
2 + 2α0

4

)

+
(

G2
12,1 +G2

12,2

) (

4α0
3 + 4α0

4 + 4α0
5

)]}

−
1

Kω

{Kω0
+Kcω · c}

(3.39)

In order to have an aging e�ect Kcω has to be negative. Such a condition is nec-
essary to enable the reduction of the threshold with increasing concentration, as
in (3.39). Clearly in order to obtain the monolateral behaviour of ω, numerically,
the following condition is imposed:

˙̃ω < 0 =⇒ ˙̃ω = 0 (3.40)
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Or, equivalently:

ω̃ (X1, X2, Ti) < ω̃ (X1, X2, Ti−1) =⇒ ω̃ (X1, X2, Ti) = ω̃ (X1, X2, Ti−1) (3.41)

3.5 Numerical investigation

In the following numerical example two cases are shown for two di�erent shape
of the body B. In the �rst case the body is modeled using a rectangular shape
while in the second case the shape chosen is that of the realistic gravity dam
having the same area of the rectangular model. In both of the cases the water is
in the left-hand side. The models, either the rectangular one and the dam one,
are shown in the Fig. 3.1

H

sb

st

bc pw H

sb,dam

st,dam

bc pw
c

AdamArec

c

h

Figure 3.1: Model and boundary conditions for the rectangular shape (left hand side)

and the dam shape (right hand side)

where ρc is the mass density of the body B, pw is the pressure of the water, H
is the height of the body, h is the height of the crest of the dam and, clearly,
the areas (Arec for the rectangular case and Adam for the dam case) respect the
condition:

Arec = Adam.

In the Table 3.1 the 2-D case parameters used for the analysis are shown. It is
assumed that the aging �uid di�uses into the structure from the left side and it
is reasonable to think that the distribution of the dual of the concentration bc is
considered triangular at the boundary as well as that of the pressure of the water.
So that:

bextc = bextc (X2) = b̄extc

L−X2

L
(3.42)

where b̄extc is a costant and represents the maximun value of the external dis-
tributed aging in�ux pressure bextc
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Hd = 10 m ξ = 10

Hw = 10 m b̄extc = 1013m
2

s2

st = 5.24 m cc = 1021m
4

kg

sb = 5.24 m KF = 1010 m4

kg·s2

st,dam = 3 m Kcω = −1 m2

s2

sb,dam = 8.6 m K̄ω0 = 4 N
m

h = 2 m Kω = 1N
m

E = 4 · 1010 N
m

KDIFF = 1011 m6

kg·s2

λ0 = 1.11 · 1010 N
m

γw = 10 kN
m3

µ0 = 1.67 · 1010 N
m

γc = 25 kN
m3

ν = 0.2 n = 0

Table 3.1: Parameters for numerical investigation

Analyzes are conducted by carring out a damage check. In particular, the analysis
is over when in a certain percentage (in the numerical examples 1%) of the total
area the damage ω reaches its maximum value, 1.

3.5.1 Rectangular case

The domain is splitted in two subdomain in order to use two di�erent sizes of the
mesh and reducing the computational time. We expected a �ner mesh is needed
in the area of the domain where higher are the phenomena of the di�usion, i.e.
the subdomain at the left hand side of the body. In particular:
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Figure 3.2: Di�erent sizes of the mesh that allowed to investigate with higher
accuracy the area where the evolution of the concentration c and the damage ω is
strongly present. The domain is discretized into elements with side lengths of up
to 67 cm, while the subdomain on the left is further re�ned with elements having
maximum side lengths of 5 cm.

Initially, the displacements are only a�ected by the pressure of the water, as
it is shown in the Fig 3.3-a and 3.4-a. They increase, like a cantilever model,
when the sti�nesses decrease, because the material becames softer in the region
where the damage is concentrated (see Fig. 3.3-b and 3.4-b). When the damage
parameter ω attains the value of 1 in a speci�c region, the material in that region
is considered completely failed and no longer contributes to the load-bearing
capacity. Consequently, the e�ective cross-section of body B is reduced. In this
numerical example, a constraint is placed on the extent of damage. The maximum
allowable damaged area is set to 1% of the total area. This constraint on damaged
area is the reason why the �nal displacements are slightly higher than the initial
ones.
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(a) (b)

Figure 3.3: Horizontal displacement u1 at the (a) initial time and (b) �nal time t ≈ 85years

(a) (b)

Figure 3.4: Vertical displacement u2 at the (a) initial time and (b) �nal time t ≈ 85years

It is worth to notice that, as in [188] the concentration c and the damage ω evolve
in a similar way. This behaviour is clear thinking how, by means the coupling
term Kcω, the two descriptors are linked each other.

(a) (b)

Figure 3.5: Concentration c at the (a) initial time and (b) �nal time t ≈ 85years

38



(a) (b)

Figure 3.6: Damage ω at the (a) initial time and (b) �nal time t ≈ 85years

To clarify the distribution of concentration c and damage ω across the cross-
section, the evolution of these descriptors at a section with coordinate X2 = 0.2
(the red line in Fig. 3.7) m is shown in Fig. 3.7.

(a) (b)

Figure 3.7: Concentration (a) and damage (b) on the section line with X2 = 0.2m for each

instant of time

Several analyses for di�erent values of KDIF , Kcω are done in Sec.s 3.5.1.1 and
3.5.1.2 to clarify the role of the di�ussivity parameter.

3.5.1.1 Parametric analysis: KDIFF

As it is shown in the following, the di�ussivity term KDIF give us a measure
of the permeability of the body. The concentration c and the damage ω are
shown for various values of the di�usivity term KDIF . A parametric analysis
was conducted by examining both higher and lower values of KDIF than that
reported in Table 3.1 (Section 3.5.1) to investigate its in�uence. Fig.s 3.8 and 3.9
show that when permeability is lower, the body's lifetime increases because the
�uid cannot spread easily into the material. Consequently, the �uid needs more
time to attain a concentration su�cient to initiate the damage ω.
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� For KDIF = 5 · 108 m6

kg·s
the analysis is conclused for t ≈ 63years

(a) (b)

Figure 3.8: (a) Concentration c and (b) damage ω for KDIFF
= 5 · 108 m6

kg·s

� For KDIF = 1010 m6

kg·s
the analysis is conclused for t ≈ 38years

(a) (b)

Figure 3.9: (a) Concentration c and (b) damage ω for KDIFF
= 10

10 m6

kg·s

The decreasing trend in lifetime is no longer observed for higher values of KDIF .
Instead, after reaching a minimum value (as it will be shown in Fig. 3.31 the trend
reverses, and lifetime becomes an increasing function of KDIF . This phenomenon
can be readily explained by considering that higher permeability leads to a more
widespread distribution of the �uid, thereby reducing the local value of c and its
rate within the body. The lower di�usion rate of the �uid, in turn, corresponds
to a slower damage growth rate reducing the evolution in time of the damage ω.

� For KDIF = 1011 m6

kg·s
the analysis is conclused for t ≈ 85years
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(a) (b)

Figure 3.10: (a) Concentration c and (b) damage ω for KDIF
= 10

11 m6

kg·s

� For KDIF = 2 · 1011 m6

kg·s
the analysis is conclused for t ≈ 143years

(a) (b)

Figure 3.11: (a) Concentration c and (b) damage ω for KDIF
= 2 · 1011 m6

kg·s

� For KDIF = 3 · 1011 m6

kg·s
the analysis is conclused for t ≈ 204years

(a) (b)

Figure 3.12: (a) Concentration c and (b) damage ω for KDIF
= 3 · 1011 m6

kg·s
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The increased di�usivity value KDIF , by in�uencing the �uid di�usion within the
body, also a�ects the damage evolution. Fig.s 3.8, 3.9, 3.10, 3.11 and 3.12 show
that asKDIF increases, the damage ω concentrates at the base and "di�uses" hor-
izontally, in contrast to the behavior observed for lower values ofKDIF , where the
�uid is hindered from easily propagating within the body B and is concentrated
near the interface boundary in contact with the �uid (left side).

3.5.1.2 Parametric analysis: Kcω

One more parametric analysis is conducted with respect to the concentration-
damage coupling term Kcω. This term links the �uid concentration within the
body B to the damage of the body itself. The increasing in modulus of the
di�usivity (remember that Kcω < 0 as in (3.39)) reducing the threshold Kω0

and thereby activating damage under the same external loads. The analysis was
carried out by systematically varying the value of parameter Kcω, while keeping
all other parameters �xed at the values given in Tab. 3.1. Concentration c and
the damage ω for di�erent values of Kcω are shown. In particular Kcω = −1.1m

2

s2

(Fig. 3.13), Kcω = −1m
2

s2
(Fig.3.14) and Kcω = −0.9m

2

s2
(Fig.3.15). One can see

how the life of the body B increases for lower value (in modulus) of the coupling
parameter Kcω.

� For Kcω = −1.1m
2

s2
the analysis is stopped for t ≈ 73years

(a) (b)

Figure 3.13: (a) Concentration c and (b) damage ω for Kcω = −1.1
m2

s2

� For Kcω = −1m
2

s2
the analysis is stopped for t ≈ 85years
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(a) (b)

Figure 3.14: (a) Concentration c and (b) damage ω for KDIFF
= −1

m2

s2

� For Kcω = −0.9m
2

s2
the analysis is stopped for t ≈ 102years

(a) (b)

Figure 3.15: (a) Concentration c and (b) damage ω for Kcω = −0.9
m2

s2

The damage parameter ω is strongly in�uenced by the coupling term Kcω. As
clearly shown in Figs. 3.13, 3.14 and 3.15, even small variations in Kcω (on
the order of 10−1) lead to signi�cant changes in the lifetime. This parameter
warrants further investigation for future developments, as it can be in�uenced by
the chemical composition of the body B, the damaging �uid, and, of course, their
interaction.

3.5.2 Dam's case

In this section a real dam's case is shown. Also for this case we chose to split
the domain to optimize the sizes of the mesh and in the Fig. 3.16 the model is
shown, one more time the area in which the mesh must be �ner is that one near
the upstream boundary (on the left-hand side):
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Figure 3.16: Di�erent sizes of the mesh that allowed to investigate with higher
accurasy the areas where the evolution of the concentration c and the damage ω
is present

From the [220] the investigated shape has the follow characteristics: the upstream
face is vertical instead the downstream face has usually a uniform slope transi-
tioning to a vertical face near the crest. The ratio of the slope is usually in the
range of 0.7H (Horizontal) to 1V (Vertical), to 0.8H to 1V. In the next example
a crest having a width of 3m (for allowing the transit of vehicles) and a height
of 2m. The parameters, as shown in Tab. 3.1,remain unchanged from the rect-
angular case discussed in Sec. 3.5.1. In contrast to the rectangular counterpart,
the proposed shape demonstrates enhanced resistance to external loads through
an improved contribution of its own weight to stability. Also for this case, un-
der compressive stress conditions the body B responds with a remarkably high
damage threshold (see Eq.(3.2)), con�ning damage ω to the interface and pre-
serving its resistant cross-section almost entirely. This signi�cantly reduces the
body's displacements. Damage in the vicinity of the lower left corner relaxes the
stress state, causing the structure to reduce bending and, consequently, slightly
diminish the horizontal displacement at the top. Fig. 3.17 illustrates the plot
of displacement u1 in the deformed con�guration. Only the horizontal displace-
ment deformation is emphasized (a multiplication factor of 150000 was applied
to enhance visibility). Instead the vertical displacements increase due to sti�ness
reduction caused by the presence of damage (see Fig. 3.18).
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(a) (b)

Figure 3.17: Horizontal displacement u1 at the (a) initial time and (b) �nal time t ≈ 101years

(a) (b)

Figure 3.18: Vertical displacement u2 at the (a) initial time and (b) �nal time t ≈ 101years

As for the rectangular case, concentration c and damage ω evolve in a similar way
but, in this case, the damage need longer time to "spread" through the section be-
cause, as remarked before, the compressive stress state is associated with a higher
damage threshold Kω0, enabling the body to better resist the onset of damage.
This is why its lifetime is signi�cantly longer compared to the rectangular case.

(a) (b)

Figure 3.19: Concentration c at the (a) initial time and (b) �nal time t ≈ 101years
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(a) (b)

Figure 3.20: Damage ω at the (a) initial time and (b) �nal time t ≈ 101years

The evolution of the concentration c and the damage ω for a section with coor-
dinates X2 = 0.2m are shown in the Fig. 3.21

(a) Concentration c (b) Damage ω

Figure 3.21: Concentration c and Damage ω at the section having coordinate X2 = 0.2m

3.5.2.1 Parametric analysis: KDIFF

Also for this case, as for the rectangular one, the concentration c and the damage
ω for di�erent values of the di�usivity term KDIFF are shown in the Fig. 3.22,
3.23, 3.24, 3.25 and 3.26. The parametric analysis is carried out adopting the
same values of KDIFF used in Sec. 3.5.1.1, id est:

� For KDIFF = 5 · 108 m6

kg·s
the analysis is conclused for t ≈ 65years
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(a) (b)

Figure 3.22: (a) Concentration c and (b) damage ω for KDIFF
= 5 · 108 m6

kg·s

� For KDIFF = 1010 m6

kg·s
the analysis is conclused for t ≈ 41years

(a) (b)

Figure 3.23: (a) Concentration c and (b) damage ω for KDIFF
= 10

10 m6

kg·s

� For KDIFF = 1011 m6

kg·s
the analysis is conclused for t ≈ 101years

(a) (b)

Figure 3.24: (a) Concentration c and (b) damage ω for KDIFF
= 10

11 m6

kg·s
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� For KDIFF = 2 · 1011 m6

kg·s
the analysis is conclused for t ≈ 161years

(a) (b)

Figure 3.25: (a) Concentration c and (b) damage ω for KDIFF
= 2 · 1011 m6

kg·s

� For KDIFF = 3 · 1011 m6

kg·s
the analysis is conclused for t ≈ 233years

(a) (b)

Figure 3.26: (a) Concentration c and (b) damage ω for KDIFF
= 3 · 1011 m6

kg·s

From the �gures 3.22, 3.23, 3.24, 3.25 and 3.26 one notes that when the di�u-
sivity KDIF increases not always the life time of the structures increases. The
motivation is the same we explained for the rectangular case in the Sec. 3.5.1.1.
In other words, when di�usivity is high, the �uid can spread across a larger area
of body B, resulting in lower values and rates. This slows down the damage dif-
fusion process. Conversely, when di�usivity is low, the impermeability restricts
the �uid's ability to permeate the structure. Consequently, the damaged area
reaches a limit that cannot be exceeded if KDIF is much smaller. As observed in
the rectangular case (Sec. 3.5.1.1), when the di�usivity increases a "migration"
of the damaged zone from the structure-�uid interface towards the base continues
to be evident.
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3.5.2.2 Parametric analysis: Kcω

As for the rectangular case shown in Sec. 3.5.1.2, the parametric analysis in terms
of Kcω is here presented. In the following the concentration c and the damage ω
for di�erent values of Kcω (one higher and one smaller than the main example
shown in Sec. 3.5.2) are presented. Also for this case the aforementioned analysis
aims to elucidate the role of Kcω and quantify the extent to which this parameter
in�uences the evolution of damage. The di�erent values of Kcω are the same of
the rectangular case to allow to make a comparison. So

Kcω =
{

−1.1 · 106,−1 · 106,−0.9 · 106
} m2

s2

� For Kcω = −1.1m
2

s2
the analysis is stopped for t ≈ 87years

(a) (b)

Figure 3.27: (a) Concentration c and (b) damage ω for Kcω = −1.1
m2

s2

� For Kcω = −1m
2

s2
the analysis is stopped for t ≈ 101years

(a) (b)

Figure 3.28: (a) Concentration c and (b) damage ω for KDIFF
= −1

m2

s2

� For Kcω = −0.9m
2

s2
the analysis is stopped for t ≈ 120years
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(a) (b)

Figure 3.29: (a) Concentration c and (b) damage ω for Kcω = −0.9
m2

s2

3.5.3 Comparison

Some comparisons are reported here between the two cases analyzed above (rect-
angular case and dam case) which show how the stockier shape continues to have
a better mechanical response. The comparison are carried out in terms of life-
time of the dam. In Fig. 3.30 the evolution of the damaged area in time of the
body B is shown for both the rectangular and the dam cases. As can be easily
observed, the rectangular case takes less time to reach 1% of damaged area (and
the di�erence between the two cases is around 15%)
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Figure 3.30: Evolution of the damaged area in time

The evolution of the lifetime shown in Sec. 3.5.1 (Fig. 3.8, 3.9, 3.10, 3.11 and
3.12) and in Sec. 3.5.2 (Fig. 3.22, 3.23, 3.24, 3.25 and 3.26) is plotted at Fig.
3.31. One can be observed that the lifetime of body B exhibits a decreasing trend
for lower di�usivity values KDIF and, after reaching a minimum value, starts
to increase again. This behavior is highly realistic because for lower di�usivity
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values KDIF , the �uid remains con�ned to the interface and, unable to di�use
easily, the concentration c reaches remarkably high values in a relatively con�ned
area. Consequently, through the coupling parameter Kcω, the damage ω also
spreads slowly, leading to a very slow attainment of the imposed limit (1% of the
total area). Conversely, when the di�usivity increases beyond a certain range, the
�uid penetrates and di�uses more easily into the body, causing the same amount
of �uid to distribute over a larger region, thus reducing the concentration rate
in the a�ected area. This lower growth rate of c clearly corresponds to a lower
growth rate of the damage ω. Bigger di�erences are observable for the extreme
values of KDIF (see Fig. 3.31 and Fig. 3.32).
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Figure 3.31: Lifetime of the body B as KDIF varies

Denoting, for each value of di�usivityKDIF , the lifetime of the dam case as td and
the lifetime of the rectangular case as tr, the percentage di�erence is calculated
as follows:

100
td − tr
tr

(3.43)

one can see in Fig. 3.32 that the di�erences in lifetime are negligible within the
range of KDIF between 108 m6

kg·s
and 109 m6

kg·s
. However, these di�erences becomes

more pronounced for both lower and higher values of KDIF , as already depicted
in the Sec. 3.5.1.1 and Sec. 3.5.2.1.
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Figure 3.32: Lifetime of the body B as KDIF varies

In the Fig. 3.33 and 3.34 the plot of the evolution of the eigenvalues and trace of
the strain tensor G is shown in order to analyze the stress state of the body as
the shape changes. The colormap for the eigenvalue plots is scaled to a maximum
of 0, thus enhancing the visibility of regions of compressive stress, as indicated
by negative eigenvalues. Notably, for the dam case, unlike the rectangular case,
the trace is negative throughout the entire domain, signifying overall compressive
behavior. Thus giustifying the shape largely used to design the gravity dams.

(a) Lowest eigenvalue of G

at t = 0 years

(b) Highest eigenvalue of G

at t = 0 years

(c) Trace of G

at t = 0 years

(d) Lowest eigenvalue of G

at t ≈ 85 years

(e) Highest eigenvalue of G

at t ≈ 85 years

(f) Trace of G

at t ≈ 85 years

Figure 3.33: Eigenvalues and trace of G at the initial and �nal time
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(a) Lowest eigenvalue of G

at t = 0 years

(b) Highest eigenvalue of G

at t = 0 years

(c) Trace of G

at t = 0 years

(d) Lowest eigenvalue of G

at t ≈ 101 years

(e) Highest eigenvalue of G

at t ≈ 101 years

(f) Trace of G

at t ≈ 101 years

Figure 3.34: Eigenvalues and trace of G at the initial and �nal time

Comparing Fig.s 3.33-c and 3.33-f with Fig.s 3.34-c and 3.34-f, a substantial
di�erence in terms of the extent of the area subjected to tension is observed.
In the rectangular case, a signi�cant portion of the domain, particularly at the
base, is found to be in tension (trG > 0). The dam case exhibits a markedly
di�erent response: Fig.s 3.34-c and 3.34-f reveal only a negligible region near the
bottom-left corner with spurious positive values, likely attributable to numerical
round-o� errors.
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Chapter 4

Miscellaneous

This dissertation presents a novel numerical model for simulating a creep be-
haviour and a non-linear approach to study the seismic event (with a particular
focus on the 2009 L'Aquila earthquake).

Creep, traditionally associated with time-dependent deformation of materi-
als under constant stress, is a phenomenon characterized by a time-dependent
reduction in sti�ness under constant load, here called apparent because in this
simulation the deformations (that are elastic) are consequence of the reduction in
sti�ness is attributed to �uid-induced degradation, extending it to a more general
framework that accounts for the in�uence of �uid-body interactions that produce
degradation on the domain. While the classical view of creep is rooted in ma-
terial properties, the concept of apparent creep emphasizes the role of external
factors, such as �uid pressure or chemical reactions, in inducing time-dependent
deformation.

The L'Aquila earthquake provides a compelling case study for exploring the
implications of non-linear behaviour in seismic analysis. The region's complex ge-
ological structure, characterized by signi�cant stratigraphic heterogeneity, high-
lights the limitations of linear models in capturing the full spectrum of seismic
response. Our �ndings reveal that the neglect of non-linear e�ects, particularly in
regions with pronounced stratigraphic variations, can lead to substantial errors in
the estimation of seismic energy and peak ground accelerations. These results un-
derscore the importance of developing more sophisticated numerical models that
can capture the complex interplay between geological heterogeneity and seismic
loading.

4.1 Creep phenomenon

Creep is a phenomenon of critical importance in various engineering disciplines.
In aeronautical engineering, where gas turbines operate under extreme tempera-
tures, creep is a primary consideration in the design of turbine blades and other
components. In nuclear engineering, the exceptionally high operating tempera-
tures within reactors render creep a signi�cant challenge for ensuring the safety
and structural integrity of reactor components. In civil engineering, bridges,
buildings, and other structures are susceptible to creep over time due to the sus-
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tained loads imposed by their own weight and other permanent forces. Creep is a
slow and inescapable deformation. In engineering, the term creep describes a per-
manent deformation phenomenon that occurs in materials subjected to constant
loads over long periods of time, generally at high temperatures. It's as if the ma-
terial slowly yields under prolonged stress, deforming gradually and inexorably.
This phenomenon should not be confused with elastic deformation, which is tem-
porary and disappears when the load is removed. Creep, on the other hand, is a
plastic deformation, or permanent, that remains imprinted on the material even
after the load ceases. To fully comprehend creep, it is essential to examine the
underlying physical mechanisms. Several factors collectively in�uence the creep
rate. Temperature plays a pivotal role, as elevated temperatures energize atomic
vibrations, weakening atomic bonds and facilitating dislocation motion, a pro-
cess that underpins plastic deformation. Typically, creep becomes pronounced at
temperatures exceeding approximately half the material's melting point. Concur-
rently, the magnitude of applied stress signi�cantly impacts the creep rate, with
a critical stress level below which creep is imperceptible. Moreover, the temporal
aspect is crucial, as creep is a time-dependent process where deformation accumu-
lates progressively under sustained load. Finally, the material's microstructure,
characterized by grain size, porosity, and inclusions, profoundly a�ects creep re-
sistance. A re�ned microstructure, with smaller grains and precipitates, generally
exhibits enhanced creep resistance compared to coarser-grained materials. The
creep process, easily recognizable in the Fig. 4.1 (from [106]), can be divided into
three stages:

� Primary creep: in this initial stage, the creep rate decreases over time due to
the hardening of the material caused by the rearrangement of dislocations.

� Secondary creep: in this stage, the creep rate becomes constant and the ma-
terial deforms at a nearly uniform rate. This phase is of greatest engineering
interest as it represents the long-term behaviour of the material.

� Tertiary creep: in this �nal stage, the creep rate increases rapidly due to
grain breakage and cavity formation within the material, leading to struc-
tural failure.

Figure 4.1: Generic creep behaviour: the three stages are clearly observable
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4.1.1 Mathematical model

In order to describe the apparent creep phenomenon the same approach shown
in the Sec. 3 is used. The mathematical model is the same shown in Sec. 3.1 and
3.2. So the total deformation energy is:

E =

∫

B

[(

λ

2
+ µ

)

(

G2
11 +G2

22

)

+ λG11G22 + 2µG2
12

]
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+

∫
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11,1 +G2
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]

dA

−

∫

∂B

[

f (u · n) + bextc c
]

ds

(4.1)

Where, as in Sec. 3.2, (i) KDIF is the di�usivity parameter, (ii) KF is the
�uid elasticity of the body B, (iii) Kω0 represents the damage threshold, (iv)
Kcω is the concentration-damage coupling term, (v) Kω is the resistance to the
damage and (vi) bextc is the external distributed aging in�ux pressure. Given its
negligible density, the mass of the beam is not included in the analysis. From the
hemivariational principle shown in Sect. 3.3, by means the Karush�Kuhn�Tucker
conditions, the damage is obtained:
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(4.2)

Clearly, remembering that

∂ω

∂t
g 0 ∀X ∈ B (4.3)

in order to obtain the monolateral behaviour of ω, numerically, the following
condition is imposed:

˙̃ω < 0 =⇒ ˙̃ω = 0 (4.4)

Or, equivalently:

ω̃ (X1, X2, Ti) < ω̃ (X1, X2, Ti−1) =⇒ ω̃ (X1, X2, Ti) = ω̃ (X1, X2, Ti−1) (4.5)

Where X1 and X2 are the spatial coordinates and Ti represent the i-th time
instant.

4.1.2 Numerical Investigation

The beam is supposed constrained on three boundaries. In the fourth boundary
no constrains are applied but only a distributed external tensile force f , as shown
in Fig. 4.2
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f(t)

bc

bc

H X1
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Figure 4.2: 2-D beam model

where L is the length of the beam and H is its height. The imposed external load
is represented by a time-dependent external load f(t) whose behaviour in time is
shown in Fig. 4.3

f [kN/m]

t [s]

f0

10 100900

Figure 4.3: Evolution of the distributed external force f(t)

The parameters employed in the numerical simulation are presented in Tab. 4.1
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L = 1 m KDIFF = 1012 m6

kg·s2

H = 0.1 m b̄extc = 108m
2

s2

th = 0.1 m cc = 1016m
4

kg

f0 = 1000N
m

KF = 1012 m4

kg·s2

E = 4 · 109 N
m2 Kcω = −1.25 · 103 m2

s2

ν = 0.2 K̄ω0 = 4.5 · 10−3 N
m

n = 0 Kω = 4.5 · 10−2 N
m

Table 4.1: Parameters for numerical investigation

The Lamè coe�cient, λ0 and µ0 are calculated from the 2-D Young's modulus
E2-D, obtained as E2-D = thE. Finally:

λ0 =
νE2-D

(1 + ν)(1− 2ν)
µ0 =

E2-D

2(1 + ν)
(4.6)

where th is the thickness of the specimen. In light of the applied boundary condi-
tions, only the horizontal component of the displacement is shown. Notably, the
horizontal displacement at the midpoint of the loaded boundary, with coordinates
(L, 0) is highlighted (red point in Fig. 4.4)

X1

X2

L

Figure 4.4: Midpoint of the loaded boundary

It is clearly observable how the concentration of the �uid c, by means the
damage ω, produce an increasing displacement.
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Figure 4.5: Horizontal displacement u1 of the midpoint with coordinates (L, 0)

In the Figs. 4.6 and 4.7 the domain is plotted in its deformed con�guration in
order to make the evolution of the horizontal displacement easly visible. The force
has an increasing ramp during the �rsts 10s then it remains constant until the
instant t = 90s and, �nally its value decreases vanishing at instant time t = 100s.
During the analysis the concentration increases as it is shown in Fig. 4.6.

(a) t = 0s (b) t = 10s

(c) t = 90s (d) t = 100s

Figure 4.6: Concentation c at several time instant: (a) at the beginning of the
analysis, (b) at the end of the increasing ramp of the force, (c) at the beginning
of the decreasing ramp of the force and (d) at the end of the analysis

For the same time instant in Fig. 4.6 the evolution of the damage ω is shown in
the following:
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(a) t = 0s (b) t = 10s

(c) t = 90s (d) t = 100s

Figure 4.7: Damage ω at several time instant: (a) at the beginning of the analysis,
(b) at the end of the increasing ramp of the force, (c) at the beginning of the
decreasing ramp of the force and (d) at the end of the analysis

Similarly to the dam case, the damage evolution in this instance also resembles
that of the concentration following the coupling of the two kinematic descriptors.
It should also be noted that there is a localized damage concentration at the
right-hand corners. This result is reasonable considering that at these points,
with coordinates (X1, X2) =

(

L,±H
2

)

, a double solicitation acts: that due to the
external force f applied to the right edge and that related to the presence of bextc

applied to the upper and lower edges. The softening e�ect caused by the �uid-
induced damage, which reduces the local sti�ness. Consequently, the external
load results in enhanced horizontal displacements, leading to a positive loop of
damage propagation. The temporal pro�les of concentration c and damage ω are
plotted for the cross-section at the loaded edge (see Fig. 4.9), speci�cally for all
points with coordinates (L,X2) (with X2 f ±H

2
), red line in Fig. 4.8.

The softening e�ect caused by the �uid-induced damage, which reduces the
local sti�ness. Consequently, the external load results in enhanced horizontal
displacements, leading to a positive loop of damage propagation
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X1

X2

L

H/2

H/2

Figure 4.8: Cross-section in which the time-dependent evolution of concentration
and damage is tracked

(a) c(L,X2, t) (b) ω(L,X2, t)

Figure 4.9: Evolution in time of (a) concentration c(L,X2, t) and (b) damage
ω(L,X2, t)

Additionally, in Fig. 4.10, the evolution in time of the aforementioned kine-
matic descriptor at the midpoint (with coordinates (L, 0)) at the corner (with
coordinates (L, H

2
)) of the loaded boudary (see the red points in Fig. 4.11)

Figure 4.10: Damage ω at the corner and at the middle point of the loaded
boundary
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X1

X2

Figure 4.11: Points where the evolution in time of damage ω(X1, X2, t) is com-
puted and shown in Fig. 4.10

In Fig.s 4.9 and 4.10, the damage distribution is more clearly visible than in Fig.
4.7, providing a more plausible explanation for the higher displacements observed
at the corners compared to the midpoint.

4.2 Non-linear earthquake

The current paradigm, usually accepted in geophysics, assumes that linear mod-
els can be used for describing the wave propagation consequent to tectonic or
volcanics energy release, in what is called an earthquake. This paradigm is per-
sistent, albeit more sophisticated non-linear studies in two and three dimensional
domains, are widely present in the literature and deal with a wide class of me-
chanical phenomena (e.g. see [1, 54, 70, 84, 87, 88, 90, 91, 128]) also related to the
waves propagation (see [6, 89, 217]). For these types of applications of non-linear
continuum mechanics , parameter identi�cation represents a delicate point in the
modelling process [2, 49, 65, 96, 97]. In the present paper will will not try to get
such an identi�cation in the context of earthquakes modelling: instead we will
explore the models potentialities by means of a qualitative and semiquantitative
analysis, establishing the conceptual bases for further investigations. While the
linearised approach to earthquake dynamics and wave propagation, often linked
to the forcing and free vibration of the structures, (see e.g. [38, 100, 129, 133, 214,
215]) has produced very interesting and useful results, we claim that non-linear
continuum mechanics gives a logical evidence that, in some speci�c instances, this
approach cannot be accepted and must be modi�ed. In particular we state that
when the medium in which the waves are propagating is strongly inhomogeneous,
so that the �elds of sti�nesses are su�ering high gradients, and when the earth-
quake energy release is su�ciently high, then non-linear behaviour may become
not negligible [51, 117, 161, 188], also in the simplest case of purely geometrical
non-linearities: to be more precise we remark here that, in the case examined
in the numerical simulations of this paper, the released energy is estimated to
be equivalent to the energy of an earthquake with a moment magnitude of 6, as
described in [66]. As a consequence of our results, we urge for the introduction of
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more sophisticated non-linear models and numerical techniques, in order to get
the required precise predictions of the earthquakes e�ects, especially when their
energy is large. In this paper the analysis is restricted to a two-dimensional case
in order to get qualitative and preliminary quantitative information about the
properties of considered mechanical systems and in order to prepare the more re-
alistic three-dimensional analysis, which is needed to face the modelling problem
arising when dealing with seismic propagation in the Aterno River Valley, where
the city of L'Aquila is located. To make clearer the modelling challenges to be
confronted we shortly recall, in what follow, the basic phenomenology whose mod-
elling we intend to develop here and in our future planned investigations. The city
of L'Aquila is located in the central part of the Apennine chain (central Italy),
in a seismic area characterized by normal fault earthquakes [66, 209]. This area
(called "aquilano") has been struck in the past by numerous earthquakes such as
those of 1315, 1349, 1461, 1703 and the recent one on 6 April 2009 (Mw6.3, [52]
which macroseismic intensities up to XI on the Mercalli-Cancani-Sieberg scale
(MCS), corresponding to an Ms close to 7 and causing deaths and damage; the
Fig. 4.12 shows the macroseismic intensities relating to the city of L'Aquila [179,
180].

 

Figure 4.12: Macroseismic intensities relating to the city of L'Aquila plotted as
time(years) vs intensity

Before the 2009 event, the presence of seismic ampli�cation in the city of L'Aquila
was already known (within its historic walls) [67] and since then numerous work
were published on seismic microzonation (see e.g. [31, 42, 81, 98, 99, 172, 189,
206] ), on strong motion data ( see e.g. [8, 10, 33, 116, 127, 219]), on earthquake
engineering (see e.g. [18, 50, 61, 134, 181, 200, 205]), on damage distribution ( see
e.g. [83, 204, 205, 222]), on geological works (see e.g. [35, 39, 56, 148, 196, 202]),
on geotechnical works ( see e.g. [127, 145, 207]) and on numerical modeling ( see
e.g. [82, 102, 130, 149�151, 192, 219]). We remark that in [67] one can �nd a �rst
attempt aimed to explain the observed seismic wave ampli�cation e�ect (up to 10)
in the 0.4 - 0.8 Hz frequency range . Of course, the 2009 L'Aquila earthquake has
been largely discussed in the literature (see e.g.[33, 52, 67, 82, 102, 130, 135]) and
it is well-established that this geographic area shows di�erent geological layers,
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as it was exposed already in [67], some years before of the seismic event that
occurred in the city of L'Aquila in 2009. Always in [67]: i) some preliminary
1-D and 2-D linear continuum models for the super�cial crust under the city
of L'Aquila were introduced and it was proven that, also by using such linear
models, it can be forecast that the discontinuity of sti�nesses must greatly a�ect
the ground accelerations, the frequency ratios and the seismic wave propagation
velocities; ii) some interesting experimental investigations in the urban area of
the city were presented: in particular weak-motion data from earthquakes and
ambient noise data were collected and analyzed. This experimental evidence
given by weak-motion data share the same characteristics as the strong-motion
records and shows clearly the presence of the ampli�cation e�ect in the city.
The geophysical model on which [67] is based proves that the ground-motion
ampli�cation in the city of L'Aquila is related to the presence of a sedimentary
basin, �lled by lacustrine sediments, with a maximum depth of about 250 m. Such
area, situated in central Italy, is formed by NW-SE-dipping normal faults which
produced rift valleys features typical to the intermontane basins ( see e.g. [19,
44, 45, 60]). Several of these faults are still active and they may be responsible
for further future earthquakes ( see e.g. [37, 80, 101, 170]) .

In this paper we investigate the wave propagation in a two-dimensional contin-
uous Cauchy medium caused by a forcing excitation, modelling the e�ects of high
energy earthquakes (moment magnitude higher than 6) originated at hypocen-
ters far from the modelled region, where the seismic wave propagation is studied.
In fact, the source of the seismic excitation in 2009 L'Aquila Earthquake was
located 10km below the modelled region, whose thickness is about 1km: we ex-
plicitly remark that cannot use here the expression "deeper hypocenter", as the
usual geological meaning of the term "deeper" in this context indicates that the
hypocenter is located in the mantel under the crust. We consider, at �rst, lin-
ear models, that are models in which the deformation energy is assumed to be
isotropic and quadratic in the linear deformation measure (i.e. the so-called in-
�nitesimal strain tensor). Our aim, in this paper, is to prove that linear models
are not fully capable to describe the phenomena occurring when it is necessary to
consider continuous models featuring sti�ness �elds with high spatial gradients:
this being the case when strongly-non-homogeneous seismic wave propagation re-
gions are to be considered ( see e.g. [14, 27, 132]). In order to consider the simplest
non-linear model, we introduce what is usually called a geometric non-linearity,
by assuming that the isotropic deformation energy depends quadratically but on
the �nite strain tensor instead of depending on the linearised deformation measure
[113]. We prove, with numerical simulations, that, the predictions of non-linear
models dramatically di�er from those obtained with linear models. These results
seem to indicate, in particular in the case of the earthquakes propagating in the
Aterno River Valley, that more sophisticated analyses are needed, if one wants
to predict in a reliable way the e�ects of seismic waves on buildings and infras-
tructures. In fact, in the Aterno Valley, it is well-established that (see [67] and
the references there cited) the ratio between the average sti�nesses observed in
the soft alluvial sand or silt deposits layers and in the hard bedrock or calcare-
ous breccia layer is, at least, one to four, so that high gradients of the sti�ness
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�elds are concentrated at the interface regions between these di�erent layers or
between the bedrock and the soft materials. It has to be remarked that in the
literature also di�erent modelling approaches have been attempted when consid-
ering linear or non-linear waves propagation. In fact, some discrete models based
on lattice dynamics methods could be applied: see e.g. [164, 166, 191] where
transmission, refraction and leakage of wave in the vicinity of surface defect were
considered. Moreover, some surface-related phenomena in layered structures have
been studied recently in [137], where other references could be found. We believe,
however, that the numerical implementation of continuum models, also in pres-
ence of non-linearities, is so well-established and reliable that, at the moment,
the approach which we used must be preferred. Because of the numerical simu-
lations which we have performed, we have observed that the �eld of deformation
(and kinetic) energy density di�erence between the linear and non-linear predic-
tions, normalised with respect to the average deformation (and kinetic) energy in
the non-linear case, starts being concentrated in the hard/soft interfaces at the
beginning of the dynamic load (modelling the earthquake) and then propagates
in both the soft and hard region: the amplitude of this propagating �eld may
reach the values higher than 100% in a large region of the domain. Because of
their applicative importance, the linear and non-linear acceleration �eld in several
points close to the boundaries and their di�erences are calculated and discussed.
The accelerations are normalised with respect to the gravity acceleration g and
the di�erence between these two quantities can reach values around 0.77g. We
can conclude that the numerical evidence, which we have obtained, demands the
development of more re�ned non-linear models for describing, in particular, the
phenomenology observed in the city of L'Aquila during large energy earthquakes.
Albeit for the numerical simulations we have used the standard package included
in COMSOL, some non trivial encoding solutions have been used: i) the same
�nite elements procedure has been used for solving simultaneously the linear and
non-linear problem, ii) a purely variational approach has been implemented, using
suitable Hamilton conservative and Rayleigh dissipation functionals in the coding
procedure, iii) in order to avoid the re�ection back inside the region of interest
of the passing wave at its boundaries, we have chosen suitable optimal boundary
conditions implementing viscoelastic displacement-force relationships at the lat-
eral boundaries of the considered wave propagating region, while at its bottom
a spherical displacement wave, originated in the hypocenter is imposed: the fact
that the forcing action is originated by a far hypocenter is modelled by imposing
at the basis of the bedrock a displacement calculated with a spherical wave trans-
porting the required earthquake energy [16, 119]. The very preliminary results,
which we announce here, require the development of a more sophisticated analysis
in which: i) isotropy hypothesis is relaxed; ii) the material elastic non-linearities
are included in the modelling scheme; iii) the creep, damage and plasticity ef-
fects are suitably accounted for; iv) the second gradient deformation energy is
postulated, for giving a better description of the boundary layers formed at the
interfaces ( see e.g. [11, 59, 64, 77, 169, 171, 177, 194, 227]), also accounting for
the change of the microstructure [109, 110, 152, 203] and of the granular (and
porous) nature of the soils ([24, 139, 155, 186, 210, 218]) due to which strong
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local and macro-to-micro scale di�erences can be highlighted; v) the complete
three-dimensional problem for the Aterno Valley is considered, in order to fully
account for the peculiar behaviour experimentally observed in [67].

4.2.1 Geological setting of L'Aquila basin

In this section we motivate our modelling assumptions on the basis of what we
know about the geological structure of the crust immediately under the city of of
L'Aquila. It is located in a tectonic basin (Aterno river) bounded by a northwest-
southeast-active normal fault (https : //diss.ingv.it/new− in− diss− 3− 3− 0)
and it was founded in 1245, so that we have somehow detailed records about the
seismic activity in its basic since then. The current tectonic setting of central Italy
is due to the superposition of a previous a compressive phase (middle Oligocene -
lower Pliocene, 28-3.6 Myr) during which the Apennine chain was created and the
subsequent the post-orogenic extensional phase characterized by the origin of in-
termontane basins scattered in the central Apennine chain (such as L'Aquila basin
- henceforth LAB in which is placed L'Aquila city) in the Messinian-Quaternary
(7 Myr till now) [35, 44, 45, 60]. LAB is placed in a NW-SE trending Plio-
Quaternary intermontane tectonic basin bounded by SW dipping active normal
fault accountable for the current and historical seismicity. [101, 179]. LAB is
�lled up by lacustrine, slope and alluvial deposits dated back from the upper
Pliocene to the present (3.6 Myr till now) and laying via an unconformity surface
onto the Messinian (7.2-5.3 Myr) terrigenous units and Meso-Cenozoic (100-70
and 20-12 Myr) carbonate units. LAB oldest post-orogenic deposits, made up
by slope breccias and alluvial conglomerates, belong to the Colle Cantaro-Cave
Formation (CCF) (upper Piacenzian-Gelasian 3.0-1.8 Myr) [60, 147, 148]. The
Madonna della Strada Synthem (MDS), (in this study the soft layer) which is
separated from the underlying CCF by an unconformity boundary, is made up by
clayey-sandy silts and sands of Calabrian age (1.8-0.8 Myr) and referred to an al-
luvial meandering system within a wide and swampy �oodplain [60]. Above MDS,
separated by an unconformity boundary, the Middle Pleistocene (0.8-0.12 Myr)
Fosso Genzano Synthem (FGS) is placed. It consists of gravels and sands referred
to alluvial fans and plains [202]. The hill, where the L'Aquila historic downtown
stands, is mainly made up by late Middle Pleistocene (0.3-0.12 Myr) calcareous
breccias (in this study the hard layer) which, via an erosive boundary, are su-
perimposed on the underlying MDS and FGS deposits and the Meso-Cenozoic
bedrock [13]. In fact, the historical part of the city (within the ancient walls) is
placed on a �uvial terrace in the left bank of the Aterno River. The elevation of
the terrace reaches 900 m a.s.l. (above mean sea level) in the NE part of the city
and slopes down to 675 m in the SW direction. The terrace ends at the Aterno
River which �ows 50 m below yet. The terrace is made up of alluvial deposits
created in the lower Quaternary age and is composed of breccias with limestone
boulders and clasts in a marly matrix. The dimensions of these clasts can range
from centimeters to some meters. This deposit is common in the Abruzzo region
and may be related to catastrophic alluvial events associated with landslides (
see e.g. [36]). These terrace were studied by Demageout [40], who named them
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"megabrecce". The "megabrecce" (called "mega breaches" in English) represents
a well-de�ned geological unit with a thickness of some tens of meters. These de-
posits (megabrecce) are placed on the lacustrine sediments composed mainly of
silty and sandy layers and minor gravel beds that can generate earthquakes with
maximum expected magnitudes up to 6.5-7 [101]. The lacustrine sediments have
their maximum thickness (around 300 m) in the center of the city of L'Aquila.
In contrast, in the Aterno River valley, at north of L'Aquila, the thickness of the
sediments is never greater than 100 m.

Further information about geological setting of L'Aquila basin will be ex-
ploited in future modelling e�orts: in particular when 3D models will be used for
getting the required predictions.

4.2.2 Modelling and coding assumption

In this section we de�ne univocally both the linear and non-linear models on
the basis of which the analyses will be performed. The soil is modelled as a 2-
dimensional domain and each of its material particles will be characterised with
the coordinate X = Xiêi (where ∥êi∥ = 1 and i = 1, 2) in a given reference
con�guration. The set of the kinematical descriptors, which depend upon the
coordinates X and the time t, is composed of (i) the horizontal displacement
u1 (X1, X2, t) and (ii) the vertical displacement u2 (X1, X2, t). Let u(X, t) = uiêi

be the displacement vector of the generic point with Xi coordinates, Φ (X, t)
be the placement function, F be the deformation gradient tensor and G be the
�nite strain tensor. We will indicate with x = xiêi the coordinates in the cur-
rent con�guration, of the material point having coordinates X in the reference
con�guration. In formulae,

x = Φ (X, t) = X+ u, F = ∇Φ, G =
1

2

(

F
T
F− I

)

(4.7)

or, in index notation:

Φi = Xi + ui, Fij =
∂Φi

∂Xj

= ui,j + δij, Gij =
1

2
(FkiFkj − δij) (4.8)

where

ui,j =
∂ui

∂Xj

and δij =

{

1 i = j
0 i ̸= j

(4.9)

4.2.2.1 Deformation and kinetic energies and Rayleigh functional

Let Wel and K be, respectively, the elastic internal deformation and the kinetic
energies, respectively, and let ∂fB be a subdomain of the boundary ∂B of the
body B (see the Fig. 4.14)

Wel =

∫

B

[

1

2
λ (trG)2 + µtr

(

G
2
)

]

dA+

∫

∂fB

1

2
Ku · uds (4.10)

K =

∫

B

1

2
ρu̇ · u̇dA (4.11)
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where λ and µ are the 2-D Lamè coe�cients and ρ is the mass density (per unit
area) of the 2D domain, listed in Tab. 4.2, and K is the elastic sti�ness per
unit line of the bed of springs applied at the vertical boundaries ∂fB, also listed
in Tab. 4.2 (and shown in Fig. 4.14). The dot between two vectors a and b,
denoted by a · b, is their scalar product. Let the dissipation energy be:

Wdis =

∫

B

RBdA+

∫

∂fB

Rfds (4.12)

and the two integrands have the following expression,

RB =
1

2
λv

(

trĠ
)2

+ µvtr
(

Ġ
2
)

(4.13)

Rf =
1

2
cu̇ · u̇ (4.14)

here, λv is a coe�cient of viscosity and µv is the shear viscosity of the 2D domain,
listed in Tab. 4.2 and c is the damping coe�cient per unit line of the bed of
dashpots applied at the vertical boundaries ∂fB, also listed in Tab. 4.2. The
linear approximation the non-linear deformation de�ned at the third place of
(4.7) is given by

G =
1

2

(

∇u+∇u
T +∇u

T∇u
)

−→ E =
1

2

(

∇u+∇u
T
)

. (4.15)

So that in index notation we have

Eij =
1

2
(ui,j + uj,i) (4.16)

From the virtual work principle [103], indicating with t1 and t2 two di�erent in-
stants of time where the displacements u(X, t1) and u(X, t2) are known, the
action is de�ned as a functional of the displacement function u(X, t) as follows:

A (u1, u2) =

∫ t2

t1

[

Wel −K
]

dt (4.17)

its �rst variation is:

δA = A (u1 + δu1, u2 + δu2)−A (u1, u2) (4.18)

The variation (4.18), by separately analyzing the two terms of (4.17) can be
thought of as the sum of the following quantities

∫ t2

t1

δWel =

∫ t2

t1

∂Wel

∂Gij

δGijdt =

∫ t2

t1

∫

B

[λGiiδGjj + 2µGijδGij] dAdt+

∫ t2

t1

∫

∂fB

Kuiδuidsdt

(4.19)
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and
∫ t2

t1

δKdt =

∫ t2

t1

∫

B

ρu̇ · δu̇dAdt (4.20)

Integrating (4.19) by parts, some spatial boundary terms are naturally obtained as
a consequence one obtains an equivalent representation for (4.19). It is important
to note that, following integration by parts, only on the boundary denoted by ∂fB
(see Fig. 4.14) natural boundary conditions need to be added. This is because on
the bottom blue boundary (also Fig. 4.14), displacements (i.e. essential boundary
conditions) are imposed, and therefore their variation is zero. Instead, integrating
(4.20) by parts in time, we obtain

∫ t2

t1

δKdt =

∫ t2

t1

∫

B

∂

∂t
[ρu̇ · δu] dAdt−

∫ t2

t1

∫

B

ρü · δudAdt

=

∫

B

[ρu̇ · δu]t2t1 dA−

∫ t2

t1

∫

B

ρü · δudAdt

(4.21)

If the displacement at the times t1 and t2 are known and their variation δu, for
those instants of time, are equal to 0, then from (4.21) we have,

∫ t2

t1

δKdt = −

∫ t2

t1

∫

B

[ρü · δu] dAdt (4.22)

The variation of the dissipative term Wdis in the (4.12) is de�ned as δ̃Wdis.
The symbol of the variation operator we used for this quantity is di�erent with
respect total one present in (4.18) because such term is not a classic variation.
The variation of the dissipative term is de�ned by the following expression:

δ̃Wdis =

∫ t2

t1

[

∫

B

∂RB

∂Ġij

δGijdA+

∫

∂fB

∂Rf

∂u̇i

δuids

]

dt (4.23)

Also for (4.23) the integration by parts provides naturally the boundaries terms
on ∂fB, where no kinematical restrictions are imposed. Finally, the variational
principle is formulated as follows:

δA+ δ̃Wdis = 0 (4.24)

for any admissible variation of the kinematic descriptors. On the red lateral
boundaries (Fig. 4.14) two di�erent conditions are imposed: (i) a boundary
damping constrain (as it is prescribed in the (4.14)) modeled as a bed of dashpots
to avoid non-realistic re�ections of the wave at the boundaries of the model. Some
dissipation phenomena [32] may essentially change the wave propagation, see e.g.
[85]. Insertion of (4.14) into (4.23) yields from (4.24) a standard dissipative force
at the vertical boundary,

∫

∂B

cu̇ · δuds. (4.25)

and (ii) a distributed force, modeled by means a bed of springs with sti�ness
equal to K and prescribed in the last boundary term of (4.10), to simulate the
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reaction of the lateral ground. Insertion of the last term of (4.10) into (4.17)
yields from (4.24) a standard elastic force at the vertical boundary,

∫

∂B

Ku · δuds (4.26)

4.2.2.2 The sti�ness �elds in the soft and hard region and kinematic

boundary conditions

Based on the evidence made available e.g. by [67], the region where seismic waves
propagate is supposed to be constituted by two di�erent materials, characterised
by two di�erent sti�nesses (the Young's moduli of the softest and the sti�est layers
exhibit a 1/4 ratio as shown in the Tab. 4.2) and the 2-D Lamè parameters were
determined (the justi�cation of the whole modelling procedure is similar to what
done in [23], to which we refer) using the following relationships for the plane
stress case:

λ =
Y ν

(1 + ν)(1− 2ν)
, µ =

Y

2(1 + ν)
(4.27)

where Y represents the 2-D Young's modulus and ν is the 2-D Poisson coe�cient.
In the Tab. 4.2 we use the index s and h to denote that the parameter is linked
either to the softer or to harder layers. The softer layer is located between the
two harder layers as it is shown in the Fig. 4.14.

10 km

2 km

Figure 4.13: 2-D model: the body is modeled as a domain that consists of three
main parts, in which two of these are harder then the other one. The seis-
mic excitation starts at the hypocenter having coordinates H ≡ (XH1, XH2) =
(−2km,−10km).

Clearly the distance r of the generic point of the bottom boundary (blue part of
the boundary in Fig. 4.14), with coordinates (X1, 0) (with X1 ∈ [0, 7] km), from
the hypocenter is:
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r =

√

(X1 −XH1)
2 + (X2 −XH2)

2 =

√

(X1 −XH1)
2 +X2

H2 (4.28)

Soft layer

Hard layer

¶ B¶ B

Figure 4.14: Boundary conditions: three boundary conditions were taken into
account. On the two red lateral boundaries, indicating as ∂fB, are imposed a
damping condition, derived from (4.25), and an elastic one, derived from (4.26).
On the blue bottom boundary one has a boundary condition in terms of the
displacements, see (4.38) and (4.39).

In the Fig. 4.14 one can see how on the blu boundary at the bottom, the displace-
ment ū is imposed for modelling the seismic action. The excitation originates from
the hypocenter (point H in Fig. 4.13), spreads into the ground until it reaches
the "inhomogeneous super�cial region" where wave propagation is analysed. The
seismic excitation is assumed to last 3 seconds. Roughly speaking the imposed
displacement is the result of the compositions of several waves (3 longitudinal and
3 shear ones). To be more precise, the seismic excitation is modelled by means
of the following simplifying assumptions: i) it propagates as a spheric wave that
di�uses, under the studied region of propagation, from an hypocenter H (see Fig.
4.13), with coordinates (XH1, XH2) = (−2km,−10km), situated below the region
bottom boundary (the blu boundary in the Fig. 4.14); ii) it interacts with the
inhomogeneous super�cial region through the blu boundary by "imposing" its
displacement; iii) it does not a�ect the lateral boundary of the inhomogeneous
super�cial region, where only linear elastic conservative and dissipative interac-
tions occur between the neighboring parts of crust. This last modelling choice,
of course, limits the quantitative predictability of the introduced model, but we
believe that it does not a�ect the qualitative features of the calculated solutions
and makes reasonable the computing burden: it will be improved in future inves-
tigations, where more powerful computing tools will be used.

Starting from the meaning of the symbol used in Fig. 4.13 the unit vector r̂
indicates the direction of the vector r and its orthogonal unit vector t̂ (they are
needed to determine, respectively, the longitudinal and the shear waves oscillation
direction) can be written as:
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r̂ =cosϑê1 + sinϑê2 (4.29)

t̂ =− sinϑê1 + cosϑê2 (4.30)

The vector displacement (see e.g. [133] for a similar analysis), assuming that the
discrete spectrum includes 3 di�erent frequencies, is the real part of:

ū = Σ3
j=1

[

Ajl

r
r̂ei(ωjlt−kjlr) +

Ajs

r
t̂ei(ωjst−kjsr)

]

(4.31)

where

ωj =ωjl = ωjs for j = 1, 2, 3 (4.32)

Aj =Ajl = Ajs for j = 1, 2, 3 (4.33)

where (i) ωjl and ωjs are the frequencies of the longitudinal (index l) and shear
(index s) waves which are equal to each other in the analysed example (4.32),
(ii) Ajl and Ajs represented the source of the longitudinal and the shear waves
respectively, (iii) kjl and kjs are the wavenumber of the longitudinal and the
shear waves respectively and the ratios between those terms and the frequency
ωj represent the velocities of the waves (principal and shear waves), so that

kjl =
ωj

vwl

for j = 1, 2, 3 (for the longitudinal waves) (4.34)

kjs =
ωj

vws

for j = 1, 2, 3 (for the shear waves) (4.35)

It is possible to prove that the velocities are related to the Lamè constants as
follows,

vwl =

√

λ+ 2µ

ρ
(4.36)

vws =

√

µ

ρ
(4.37)

Manipulating (4.29) and (4.30) by means the (4.28), the displacements imposed
at the bottom boundary, by the (4.31), are:

ū1 (X1) = an1(t)Σ
3
h=1

[

X1 −XH1

r2
Ah sin (ωht− khlr)−

XH2

r2
Ah sin (ωht− khsr)

]

(4.38)

ū2 (X1) = an1(t)Σ
3
h=1

[

−XH2

r2
Ah sin (ωht− khlr)−

X1 −XH1

r2
Ah sin (ωht− khsr)

]

(4.39)
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where we have pre-multiplied the (4.38) and the (4.39) with an1 that is a window
function that allow to consider only the signals into a speci�c time interval. Note
that the amplitude of the imposed waves near the lower blue boundary (which
is farther from the hypocenter where the waves originate and propagate through
the ground) is on the order of millimeters.

Soft domain Hard domains Boundary
Ys = 10GPa Yh = 40GPa c = 108Ns

2

m2

νs = 0.1 νh = 0.25 K = 4.5 N
m2

λvs = 5.2 · 107Nms2 λvh = 2 · 105Nms2

µvs = 1.44 · 108Nms2 µvh = 4 · 105Nms2

ρs = 1500 kg

m3 ρh = 2700 kg

m3

Table 4.2: Material parameters that are used on the simulations. The indices s
and h are linked with the layer in which the parameter is de�ned, respectively
softer and harder one in Fig. 4.14. Boundary parameters are also de�ned

The three-dimensional Young's moduli Ys, Yh, presented in Tab. 4.2, are mul-
tiplied by an assumed out of plane depth of d = 1m to derive the analogous
quantities for the bi-dimensional domain, Y 2D

s = Ysd and Y 2D
h = Yhd. Then, the

Lamè coe�cients employed in Eq. (4.10) for both the softer and harder layers
are determined by Eq. (4.27), under the following assumptions:

Y =Y 2D
s , ν = νs for the softer layer (4.40)

Y =Y 2D
h , ν = νh for the harder layers (4.41)

Also the mass densities ρs and ρh are multiplied for the same assumed out of
plane depth d = 1m to yield the density for the two-dimensional domain under
investigation to insert into the (4.11) under the following assumption:

ρ =ρ2Ds for the softer layer (4.42)

ρ =ρ2Dh for the harder layers (4.43)

The waves' parameters are shown in Tab. 4.3

Wave 1 Wave 2 Wave 3
ω1 = 1.571 rad

s
ω2 = 3.142 rad

s
ω3 = 15.708 rad

s

vwl = 4216.4m
s

vwl = 4216.4m
s

vwl = 4216.4m
s

vws = 2434.3m
s

vws = 2434.3m
s

vws = 2434.3m
s

k1l = 3.726 · 10−4 1
m

k2l = 7.451 · 10−4 1
m

k3l = 3.726 · 10−3 1
m

k1s = 6.453 · 10−4 1
m

k2s = 7.451 · 10−4 1
m

k3s = 6.453 · 10−3 1
m

A1 = 320m2 A2 = 240m2 A3 = 160m2

Table 4.3: Waves paramters we used on the simulations. The indices l and s refer
to the longitudinal and shear waves, respectively.
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4.2.2.3 Description of the COMSOL code

The analysis described in this work was conducted using COMSOL, a multi-
physics �nite element software; by means this software we were able to carry
out a more re�ned analysis with respect that one in [67]. The model has 30456
degrees of freedom and 3690 triangular elements, into which it has been divided.
The size of the elements varies depending on the area of the model: it is re-
duced near the boundary sharing two subregion with di�erent sti�nesses. The
used shape functions are Lagrangian of quadratic order. The implicit methods
are more complicated than the explicit ones, in which it is possible to �nd the
solution at the next step by means the only that at the current step, because it is
necessary to solve an equation for each time step that depend for both the states
of the system (the current one and the next one). So, mathematically, if s(t) is
the state of the system at the current time t and s(t + ∆t) is the state of the
system at the later instant t+∆t, one has:

s(t+∆t) = F (s(t)) for the explicit methods

H (s(t), s(t+∆t)) = 0 for the implicit methods
(4.44)

The solver we used for calculate the results is based on the implicit method
called generalized-α method. Those methods are similar to the second-order BDF
(backward di�erentiation formulas) solver, also based on an implicit method.
Unlike this latter method, the generalized-α is a method that allows to control
better the degree of damping of high frequencies in the solution and it is more
accurate. So that if a solution with sharp gradients is expected, one does not get
a very smooth solution due to the damping in the backward method. It is worth
to note that, for those same reasons it is also less stable. We used a dynamic load
characterised by a discrete spectrum and a time step t = (800Hz)−1.
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Figure 4.15: Triangular �nite elements
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4.2.3 Analysis of results

In this section the comparison between the deformation and the kinetic energy
�elds and the horizontal and vertical components of the acceleration vector, for
the linear and non-linear cases, is shown to emphasyse how the non-linear con-
tribution should be taken into consideration when a seismic analysis is carried
out. As it is shown in the following subsections the di�erences, in suitable rel-
ative terms, are very large. In the following the superscript nl indicates that
the corresponding quantity is calculated with the non-linear �nite strain tensor
G, the third quantity in (4.7) and with the general non-linear evolution equa-
tions. Moreover, the superscript l indicates that the corresponding quantity is
calculated with the linearised version of the strain tensor: i.e. (4.16) and with
the linearised evolution equations. Hence, the deformation energies for non-linear
and linear cases are denoted as follows,

Wnl for the non-linear case (4.45)

W l for the linear case (4.46)

In the same way, the kinetic energies for non-linear and linear cases are denoted
as follows,

Knl for the non-linear case (4.47)

Kl for the linear case (4.48)

Hence, the relative non-linear/linear energies are calculated in the following way:

W̃ =
Wnl −W l

W̄nl
(4.49)

K̃ =
Knl −Kl

K̄nl
(4.50)

where the symbols W̄nl and K̄nl represent the average, on the domain, of the
non-linear deformation and kinetic energy respectively. The accelerations (and
their di�erence between the non-linear and linear case) are normalized by the
gravity acceleration g. Taking into account that the displacements are denoted
as ui for the linear case and as vi for the non-linear case, the horizontal and
vertical accelerations for each point for the linear and for the non-linear cases are
denoted, respectively, as follows,

˜̈ui =
üi

g
for the linear case (4.51)

˜̈vi =
v̈i
g

for the non-linear case (4.52)

and the comparison has been obtained by the di�erence:
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ãi = ˜̈vi − ˜̈ui (4.53)

Clearly the index i takes on values equal to 1 (horizontal acceleration) or 2 (ver-
tical acceleration).

4.2.3.1 Comparison of the deformation energy �elds in linear and

non-linear cases and formation of energy di�erence boundary

layers

The deformation energy represents an important measure of the deformations
during the seismic action that it is worth to be investigated. In the Fig. 4.16, it
is shown the highest (or lowest) amount of energy (4.49) reached on the domain
for each time instant.
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Figure 4.16: Maximum value of W̃ , de�ned in (4.49), for (a)the whole analyses
and (b) a zooming of the �rst 3 seconds

It is worth to notice that some extreme values are due clearly to numerical errors
that are concentrated only in isolated elements. In Fig. 4.16 the lines corre-
sponding to y = ±1 are highlighted to show how large are the relative errors
between the two methods (clearly the value 1 means di�erences equal to 100%).
Future numerical simulations, with more powerful computing tools, will elimi-
nate these spurious values: we will use �ner �nite elements and some regularising
techniques, as, for instance, the introduction of higher gradient models, which are
more suitable to deal with the discontinuity of sti�nesses �elds. To cut o� the
aforementioned numerical errors [193], in the following contour plots, the color
legend is restricted to represent values within the range [-1, 1]. However, for some
plots (e.g., Fig. 4.17-b), a di�erent range might seem more appropriate. These
choices were made to improve the readability of the plots when the actual range
of values is too small to be e�ectively represented within the wider range [-1, 1].
The contour plots of the deformation energy in the non-linear case Wnl and its
comparison W̃ with respect the linear one are shown for some time instants in
Fig. 4.17, 4.18, 4.19 and 4.20. In the Fig. 4.16-a (and clearer in Fig. 4.16-b)
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notice that, already during the �rst seconds when the seismic action excites the
ground, the relative di�erence W̃ is not negligible (having value much higher then
100%).

(a) Deformation energy Wnl, (4.45) (b) Percentage di�erence W̃ , (4.49)

Figure 4.17: (a) Deformation energyWnl (expressed in units Pa) and (b) percent-
age di�erence W̃ of the deformation energies, between the non-linear and linear
cases, at the instant t = 0.15s

Note that from the very beginning, the (albeit small) di�erences are concentrated
at the material transition, from the bedrock to the softer intermediate layer. In
addiction, the deformation energy (at the Fig. 4.17-a) appears almost uniform
and it is the result of the composition of several spherical waves with di�erent
velocities and wave lengths.

(a) Deformation energy Wnl, (4.45) (b) Percentage di�erence W̃ , (4.49)

Figure 4.18: (a) Deformation energyWnl (expressed in units Pa) and (b) percent-
age di�erence W̃ of the deformation energies, between the non-linear and linear
cases, at the instant t = 0.5s

It has to be observed that from the very outset of the simulation, the rela-
tive di�erence is substantial (Fig.4.18-b). However, while the extreme values
(127% and −134%) in Fig. 4.18-b) may not be representative of any phenomenon
as they are concentrated, each one, in a single element, the extensive region where
the di�erence W̃ exceeds 20% warrants attention.
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(a) Deformation energy Wnl, (4.45) (b) Percentage di�erence W̃ , (4.49)

Figure 4.19: (a) Deformation energy Wnl (expressed in units Pa) and (b) relative
di�erence W̃ of the deformation energies, between the non-linear and linear cases,
at the instant t = 1.5s

Figure 4.19-b reveals signi�cantly larger di�erences. Notably, even after ex-
cluding the extreme values, the energy relative di�erence exceeds 100% close to
the boundary layer.

(a) Deformation energy Wnl, (4.45) (b) Relative di�erence W̃ , (4.49)

Figure 4.20: (a) Deformation energy Wnl (expressed in units Pa) and (b) relative
di�erence W̃ of the deformation energies, between the non-linear and linear cases,
at the instant t = 3s

The whole evolution in time of the deformation energy Wnl (4.45) and its di�er-
ence W̃ with respect the linear case (4.49), is shown in a video, which is included
in the form of supplementary materials.

4.2.3.2 Comparison of the kinetic energy �elds in linear and non-

linear cases and the formation of energy di�erence boundary

layers

Kinetic energy �elds serve as key indicators of velocities within a system under
consideration and deserve thorough investigation. Following Sec. 4.2.3.1, it is
shown the highest (or lowest) value of the di�erence of the kinetic energy, denoted
by K̃ (de�ned in (4.50)), reached in the domain for each instant of time. Then,
the contour plots of both the kinetic energy Knl calculated with our non-linear
model and the di�erence K̃ are presented in 4.22, 4.23, 4.24, 4.25, 4.26 and 4.27.
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Figure 4.21: Maximum value of di�erences K̃ with respect the time between the
two cases (linear and non-linear) for (a) the whole time interval of the performed
analyses and (b) a zooming of the �rst 3 seconds

It can be seen how the two considered models, that is linear and non-linear,
give us a remarkable di�erence near the boundary (Fig. 4.22) where there is the
transition from an harder layer to a softer one, i.e. where the strong material
inhomogeneity occurs. It is worth noting that, just as in the Sec. 4.2.3.1, also for
the kinetic energy we focus on the �rst 3 seconds, i.e. in the time interval when
the seismic waves acts on the domain. As one can see, the di�erence continues to
be not negligible also after the third second.

(a) Kinetic energy Knl, (4.47) (b) Percentage di�erence K̃, (4.50)

Figure 4.22: (a) Kinetic energy Knl (expressed in units Pa) and (b) percentage
di�erence K̃ of the kinetic energies, between the non-linear and linear cases, at
the instant t = 0.15s

Figures 4.22-b and 4.23-b reveal that the largest di�erences in kinetic energy are
initially concentrated near the boundary between the bedrock and the softer layer.
Subsequently, these di�erences propagate through the softer material towards the
rigid top layer. Notably, even during the initial stages of ground excitation by the
seismic action, the relative di�erence is substantial. For example, Figure 4.23-b
shows that the di�erence between the non-linear and linear analyses can exceed
100
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(a) Kinetic energy Knl, (4.47) (b) Relative di�erence K̃, (4.50)

Figure 4.23: (a) Kinetic energy Knl (expressed in units Pa) and (b) percentage
di�erence K̃ of the kinetic energies, between the non-linear and linear cases, at
the instant t = 0.3s

During the �rst fractions of second, period in which the seismic wave acts on the
considered propagation region (remember that the seismic action goes on for 3 s)
the higher di�erences are concentrated at the top of the propagation region, and
exactly where the sti�ness changes and a material non-linearity is activated. The
di�erence propagates from the harder layer, at the top, to the softer one and vice
versa because the re�ection of the seismic wave (Fig. 4.23-b and Fig. 4.24-b).

(a) Kinetic energy Knl, (4.47) (b) Percentage di�erence K̃, (4.50)

Figure 4.24: (a) Kinetic energy Knl (expressed in units Pa) and (b) relative
di�erence K̃ of the kinetic energies, between the non-linear and linear cases, at
the instant t = 1s

During the seismic excitation big di�erences between linear and non-linear models
are calculated. For example at t = 2 s (in Fig. 4.25) one can observe that the
main di�erences are mostly concentrated in the top harder layer and its value
increases noticeably reaching very relevant values as it is shown, for example, at
the Fig. 4.25-b.
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(a) Kinetic energy Knl, (4.47) (b) Percentage di�erence K̃, (4.50)

Figure 4.25: (a) Kinetic energy Knl (expressed in units Pa) and (b) relative
di�erence K̃ of the kinetic energies, between the non-linear and linear cases, at
the instant t = 2s

In Fig. 4.21-b a big peak of relative di�erence is clearly evident. In order to
avoid to comment some values which may be simply due to numerical errors, the
contour plot in the neighboring of that instant of time (speci�cally at t = 2.6 s),
is shown in Fig. 4.26. At this instant the value of the di�erence is very high
a�ecting. Moreover, on the harder top layer a region is clearly visible where
the kinetic energy reaches a high value. This makes the di�erence K̃ (see the
Fig.4.26-b) absolutely non-negligible.

(a) Kinetic energy Knl, (4.47) (b) Percentage di�erence K̃, (4.50)

Figure 4.26: (a) Kinetic energy Knl (expressed in units Pa) and (b) relative
di�erence K̃ of the kinetic energies, between the non-linear and linear cases, at
the instant t = 2.6s

Also after the instant t = 3 s (Fig. 4.27), when the seismic excitation ends,
its e�ects continue to be observable for a long time interval, in the region where
the wave propagation is studied. It is exactly after the instant t = 3 that the
di�erences between the predictions of non-linear and linear models increase con-
siderably as it is shown by the Fig. 4.21. This implies that the kinetic energy (and
therefore the velocities of each material point) calculated by means of a linear
model does not seem to give reliable predictions. It is clear that such di�erences
cannot be overlooked and that more careful modelling assumptions are required.
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(a) Kinetic energy Knl, (4.47) (b) Relative di�erence K̃, (4.50)

Figure 4.27: (a) Kinetic energy Knl (expressed in units Pa) and (b) Relative
di�erence K̃ of the kinetic energies, between the non-linear and linear cases, at
the instant t = 3s

The whole evolution in time of the kinetic energy Knl (4.47) and its relative
di�erence K̃ with respect to the kinetic energy calculated using the linear model
(4.50), is shown with a video included in the form of supplementary materials.

4.2.3.3 Comparison of acceleration �elds

The accelerations (4.51) and (4.52) (either horizontal and vertical) in certain
points have been calculated and their di�erences (4.53) (between the non-linear
and linear models) are seen to be substantial. These results must determine a
chenge in the used approaches used to predict seismic phenomena. The Fig. 4.28
shows the points which we have chosen, on the basis of the evidence gathered in
[67], in order to compare the predictions of linear and non-linear models: recall
that the accelerations di�erence used for getting the presented comparisons is
de�ned in (4.53).

Figure 4.28: Analyzed points

The �rst 6 point are chosen near the boundary between the bedrock layer and
the softer one, while the next 6 ones are taken close to the boundary between
the softer and the top rigid layer. Either the horizontal and vertical accelerations
(˜̈ui and ˜̈vi respectively for the linear and non-linear cases) and the di�erence ãi
(calculated as in (4.51), (4.52) and (4.53)) are plotted in Fig. 4.29, 4.30, 4.31,
4.32, 4.33, 4.34, 4.35, 4.36, 4.37, 4.38, 4.39 and 4.40 for all the points de�ned in
Fig. 4.28. The �gures below (namely 4.29, 4.30, 4.31, 4.32, 4.33, 4.34, 4.35, 4.36,
4.37, 4.38, 4.39 and 4.40) are structured with the following scheme:

� on the left hand side the evolution in time of the accelerations, de�ned as in
(4.51) and (4.52) and scaled by the gravity acceleration g, of the considered
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point (for the linear ˜̈ui and non-linear ˜̈vi case) are shown for each direction
(i.e. for i = 1, 2).

� on the right hand side the di�erences ãi, denoted as in (4.53), are shown.
Notably, these di�erences are plotted as a fraction of the gravitational ac-
celeration g.

In the Fig. 4.29, 4.30, 4.31, 4.32, 4.33 and 4.34 the accelerations of the points
close to the boundary between the bedrock and the softer layer are shown.
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Figure 4.29: Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui cases (pictures on the left) and their di�erences ãi
(pictures on the right), gotten by the (4.51), (4.52) and (4.53) for the Point 1

In the Fig. 4.29 and 4.30 the �rst couple of points is considered (Point 1
and Point 2). Although, for this couple of points, the di�erences ãi in (4.53)
do not reach their highest values, they are also higher then 0.2g that means an
approximative di�erence of 2m

s2
.
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Figure 4.30: Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their di�erences ãi
(picture on the right) gotten by the (4.51), (4.52) and (4.53) for the Point 2
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Analyzing the couple of point that follows (i.e. Point 3 (Fig. 4.31) and 4 (Fig.
4.32)) the di�erence increases a lot (see the di�erences of the vertical accelera-
tions), reaching the important value of about 0.7g. Those clearly are quantities
that must warn the modellers and all those whose decisions depend on their
predictions.
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Figure 4.31: Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their di�erences ãi
(picture on the right) gotten by the (4.51), (4.52) and (4.53) for the Point 3
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Figure 4.32: Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their di�erences ãi
(picture on the right) gotten by the (4.51), (4.52) and (4.53) for the Point 4
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Figure 4.33: Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their di�erences ãi
(picture on the right) gotten by the (4.51), (4.52) and (4.53) for the Point 5
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Figure 4.34: Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their di�erences ãi
(picture on the right) gotten by the (4.51), (4.52) and (4.53) for the Point 6

At the upper boundary, between the softer layer and the harder block, on which
the downtown of L'Aquila is located, the values of the di�erences continue to be
very high, having values higher than 20% of g and, in same case, reaching error
around 70% of g (as in the Fig. 4.38 and 4.40). In the following �gures these
strongly high values of the errors are shown.
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Figure 4.35: Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their di�erences ãi
(picture on the right) gotten by the (4.51), (4.52) and (4.53) for the Point 7
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Figure 4.36: Comparison of the horizontal and vertical accelerations, ween the
non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their di�erences ãi
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Point 9
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Figure 4.37: Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their di�erences ãi
(picture on the right) gotten by the (4.51), (4.52) and (4.53) for the Point 9
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Figure 4.38: Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their di�erences ãi
(picture on the right) gotten by the (4.51), (4.52) and (4.53) for the Point 10
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Figure 4.39: Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their di�erences ãi
(picture on the right) gotten by the (4.51), (4.52) and (4.53) for the Point 11
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Figure 4.40: Comparison of the horizontal and vertical accelerations, between
the non-linear ˜̈vi and linear ˜̈ui case, (pictures on the left) and their di�erences ãi
(picture on the right) gotten by the (4.51), (4.52) and (4.53) for the Point 12

The observed substantial discrepancies in the acceleration �eld impose a paradigm
change in the choices to be accepted when modelling seismic wave propagation.
The non-linear phenomena require a careful consideration due to their proven
potential for signi�cant impact. This emphasis is particularly relevant in the light
of the �ndings presented in this work: moreover, by now, modern theoretical
and numerical tools allow for the development of predictive analyses based on
sophisticated non-linear models.

4.2.4 Final discussions

Having obtained the prediction for seismic accelerations one can calculate, by
means of the fast Fourier transform (using a strong smoothing in order to avoid
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the peaks generated by numerical errors), the spectrum ratios between the hor-
izontal and vertical accelerations spectrum of some speci�cally chosen points in
the considered region (Point 8 and Point 12 in Fig. 4.28) and the horizontal and
vertical accelerations spectrum of a reference point (Point 1 in Fig. 4.28); The
chosen reference point for spectral ratios is the Point 1 because it stays into the
bedrock. These plots are shown at the Fig.s 4.42 and 4.43. Then these ratios
have been compared with the Fig. 4.41 that shows the Fig. 10 (reproduced here
without any change) from [67]. In particular the comparison is carried out with
the Fig. 10-a (for the Point 8 in Fig. 4.42) and the Fig. 10-b (for the Point 12
in Fig. 4.43). The station named AQPK in Fig. 4.41 is located not far from the
Point 8 whereas the station named GDIF in Fig. 4.41 is located not far from the
Point 12.

Figure 4.41: Fig. 10 from [67] (�gure and caption are not modi�ed): "(a)
QUAD4M and BESOIL solutions compared with H/V applied to strong-motion
and microtremor data and S/R applied to weak-motion data at the AQPK site.
(b) QUAD4M and BESOIL solutions compared with H/V applied to microtremor
data at the GDIF site. The line symbol are the same in both (a) and (b)"
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Figure 4.42: The spectral ratio between the horizontal (a) and vertical (b) non-
linear accelerations of the Point 8 and the Point 1 (that is situated into the
bedrock, see Fig. 4.28) compared with the Fig. 10-a from [67]. The spectral are
smoothed with a 50 points moving window.

Comparing the Fig. 4.42 with the Fig. 10-a in [67] it is clear that the non-
linear analysis �ts better with the experimental data than the linear analysis.
In fact, non-linear analysis removes the non-experimentally-observed peaks in
the frequency range higher than 1Hz that were found in [67], which used the
linear codes Besoil and Quad4m. The non-linear approach naturally cuts o�
these peaks. Future analysis will detail the reasons for which this qualitative
property of non-linear models holds and will give stronger motivations for the use
of spectral ratios to validate continuum models for the "seismic wave propagation"
zone studied in the present paper.
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Figure 4.43: The spectral ratio between the horizontal (a) and vertical (b) non-
linear accelerations of the Point 12 and the Point 1 (that is situated into the
bedrock, see Fig. 4.28) compared with the Fig. 10-b from [67]. The spectral are
smoothed with a 50 points moving window.

Future investigations will need to re�ne the just mentioned analysis, by introduc-
ing a careful and more realistic 3D modelling, developing appropriate numerical
method for non-linear system [183, 184], enlarging the region where wave propa-
gation is studied, in order to include the sites where other accelerometer stations
of National Survey Network of Civil Protection were localised. These stations
have been active since the middle of 90ties and have recorded a large number of
earthquakes having di�erent magnitude and hypocenters.
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Chapter 5

Conclusion

Timoshenko Beam

In the above proposed formulation the evolution of the di�usion of the aging �uid,
of damage and the mechanical behavior are described by the energy functional
in (2.2) and by the hemivariational principle. Speci�cally, using the considered
hemivariational principle, it was possible to include damage as a monotonically
increasing function, that goes from 0 (non damaged case) to 1 (complete failure),
which causes the sti�nesses to fall as shown in the Section 2.5. By means of the
term Kcω, which appear in the last row of the (2.2), the damage and the di�usion
of the �uid are coupled; in this way the spreading of the �uid into the beam
causes increasing of the damage and it contributes to the progress to failure. In
the Section 2.5.3 the role of the di�usity term KDIF is shown. The di�usivity
represents a parameter of the material that in�uences the spread, and the spread
rate, of the �uid within the beam. The �uid distributes along the beam and it
is not localized in a small area inducing the decrease of the rate of damage and
delaying the failure of the structure. Clearly, as shown in the Section 2.5.4, the
damage is a�ected not only by the changes of KDIF but also by small changes
of the coupling term Kcω. Increasing Kcω (decrease in the value of its modulus),
the failure of the structure is delayed. The work presented here is a preliminary
step which in the future will be used to develop the hemivariational method
for the study of a 2-D case [168]. It will also take into account the granular
micromechanics approach [12, 163, 210] so as to properly analyze the material of
which the dam is composed, e.g. the concrete. Another future purpose will be
to carry out experimental tests in order to obtain more reasonable values of the
parameters KDIF , Kcω and KF and, then, establish a more realistic distribution
of bext

c
. It is worth to notice that the study of the di�usion of an aging agent

whithin an human made construct is not limited at the case of the dams. That
formulation can have several di�erent �elds of application, for example all those
problems that involve di�usion in pores material [104]. It could help, for example,
in the monitoring and safeguarding of the objects of artistic-cultural heritage and
having, for the future structures, more careful design that tend to protect the
artifacts from the di�usion of slag [111, 208] or pollutants that are abundant
nowadays in our cities.
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2-D case

Several approaches have been used in litterature in order to study the di�usion of
ions into a body as in [93, 94]. In the above proposed formulation the evolution
of the di�usion of the aging �uid, of damage and the mechanical behavior are
described by the energy functional in (2.2) and by the hemivariational princi-
ple. Speci�cally, using the considered hemivariational principle, it was possible
to include damage as a monotonically increasing function, that goes from 0 (non
damaged case) to 1 (complete failure), which causes the sti�nesses to fall as
shown in the Section 3.5. The second gradient terms contribution is been taken
into account. This contribution enriches either the energy functional and the
Karush-Kuhn-Tucker condiction, allowing a more re�ned model (like the model
investigate in [188] for the 1-D case). By means of the term Kcω, which appear in
the last row of the (2.2), the damage and the di�usion of the �uid (within the body
B) are coupled; in this way the spreading of the �uid into the structure causes
increasing of the damage and it contributes to the progress to failure. In the
Sections 3.5.1.1, 3.5.1.2, 3.5.2.1 and 3.5.2.2 the role of the di�usity terms KDIFF

and the coupling term Kcω are shown. The di�usivity, in particular, represents a
parameter of the material that in�uences the spreading (and the spread rate) of
the �uid within the body. As shown in this paper, the damage is a�ected not only
by the changes of KDIFF but also by small changes of the coupling term Kcω.
Increasing Kcω (decrease in the value of its modulus), the failure of the structure
is delayed. The work here presented is the following step of the monodimen-
sional case and represents the developing of the hemivariational method used in
[168]. A future goal will be to take into account this di�usion theory for the
granular micromechanics approach [12, 163, 210] so as to properly analyze the
material of which the dams are composed, e.g. the concrete. More speci�cally,
the present work is part of a research project regarding the modeling of elastic,
plastic and damaging phenomena in granular materials through hemivariational
inequalities. This project started from thermomechanical analyses of granular
interactions [141�144], before being reformulated through a hemivariational prin-
ciple accounting for elastic, plastic and damaging phenomena [161, 168, 210].
This approach has been applied to many types of systems which can be modeled
as having granular interactions at a local scale, such as reinforced concrete [176]
or masonry structures [211�213], among others. It is worth to notice that the
study of the di�usion of an aging agent whithin an human made construct is not
limited at the case of the dams but it can �nd many application in each �eld of the
civil engineering (for example the major infrastructures and geotechnical works).
That formulation can have several di�erent �elds of application, for example all
those problems that involve di�usion in pores material [104]. It could help, for
example, in the monitoring and safeguarding of the objects of artistic-cultural
heritage and having, for the future structures, more careful design that tend to
protect the artifacts from the di�usion of slag [111, 208] or pollutants that are
abundant nowadays in our cities. Another future purpose will be to carry out
experimental tests in order to obtain more reasonable values of the parameters
K

DIFF , Kcω and KF .
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Apparent creep

The theory described in this thesis, used to model the aging phenomenon in con-
crete dams, allows for the simulation of increasing deformations under constant
loads, a characteristic of creep behaviour. In Sec. 4.1, a speci�c type of creep,
de�ned as apparent creep, has been demonstrated. By utilizing the aforemen-
tioned theory, which associates �uid di�usion within a body, a polymeric beam
has been modelled. This beam undergoes increasing deformations under a con-
stant load due to the di�usion of a �uid within its material. This case study
proves the versatility of the theory presented in this thesis and the wide range
of applications it enables. The interesting results shown in Sec. 4.1 provide a
very accurate description of the phenomenon, opening up future perspectives for
improving this model. In the future, the model could be re�ned by incorporating
plasticity. Furthermore, experimental tests would allow for a better selection of
parameters and provide a model capable of studying creep phenomena (in the
strict sense) more thoroughly. This would enable the prediction of long-term
mechanical responses for engineering structures subjected to this phenomenon,
thus allowing for a better estimation of their deterioration through the study of
damage evolution.

Earthquake

The results of the numerical simulations presented in this work demonstrate that
the thesis on which we have based our investigation is correct: linear contin-
uous models are not suitable to describe the e�ects at ground of large energy
earthquakes (Magnitude larger than 6 Mw), in particular when the super�cial
crust is constituted by inhomogeneous materials. We therefore claim that it is
worth considering non-linearities when conducting the analysis of seismic e�ects
on structures and infrastructures. As it shown at the Section 4.2.3 large dif-
ferences in the predicted values of deformations, velocities and accelerations are
found when using linear or nonlinear models. Moreover, using the non-linear
inhomogeneous model presented here we can predict where the highest values
of accelerations must be expected, and therefore we believe to have supplied an
important guide to future experimental and surveying activities. Moreover the
supplied predictions could change the seismic hazard evaluation, to be incorpo-
rated in the design prescriptions. Aforementioned di�erences can make the linear
seismic study useless, as not only the predicted values of most relevant quantities
are quantitatively di�erent, but also the qualitative features of predicted phe-
nomena may di�er drastically. Albeit a careful description of the phenomenology
observed during the 2009 L'Aquila Earthquake requires a really drastic improve-
ment of the model presented preliminarily here, we must observe that the simplis-
tic nonlinear model we present, seems to �t much better than linear models all
the available experimental evidence. In particular, we remark that with our 2D
geometrically nonlinear isotropic model, in which sti�nesses are piecewise con-
stant, we can predict more carefully, both quantitatively and qualitatively, some
experimental evidence concerning the measured spectral ratios: while this subject
will be carefully described in a future paper, in the present conclusion we will
start reporting about preliminary, but very suggestive, results concerning these
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ratios (as shown in the Fig. 4.42 and Fig. 4.43). Some discrepancies of nonlinear
models with experimental evidence are clearly caused by the chosen boundary
conditions on the lateral sides of the region modelled for non-linear wave prop-
agation. In fact, while at the bottom of this region the imposed displacement
boundary conditions are realistic, those imposed at the lateral sides were chosen
to render the numerical burden less heavy: this choice did reduce the predicted
values of horizontal accelerations, exactly as expected. In the future development
of the nonlinear model this limiting assumption will be removed. We expect that
a predictive modelling for the seismic wave propagation in the Aterno River Valley
must include novel and relevant material non-linearity assumptions, considered
the proven expected high concentration of deformation energy at the disconti-
nuity interfaces and the present knowledge about the mechanical properties of
geo�materials. In fact, only by assuming the simplest geometric nonlinearity be-
haviour, exposed in this work at the Sec. 4.2.2 (particularly at the Sec. 4.2.2.1),
one has shown the highlighted remarkable di�erences in the obtained predictions,
when comparing them with those given by linear models. The results in Sec.
4.2.3.1, relating to the deformation energy, give us important informations about
the evolution of the deformative state of the domain B for each case (either lin-
ear and non-linear) showing as the analysis by a nonlinear approach implies the
possibility to describe relevant and expected phenomena. Also the results show
in the Sec. 4.2.3.2 provides an idea of how much more realistic it is to approach
the seismic problem with a non-linear modelling. Clearly, the most signi�cative
and impactful results for applications are those relating to the accelerations (Sec.
4.2.3.3). These results deserve close attention because high di�erences are visible
and, even more importantly, it clearly shows that the linear approach, almost al-
ways, underestimates this quantity. A quantity is the acceleration that represent
the most important parameter to consider not only during the study of seismic
events but also in anti-seismic structural design. It has to be remarked that a
relevant underestimation of experimentally observed accelerations, in the frame-
work of linear theories, seems to have been already underlined in the literature
(see EarthQuake Spectra in [67]).

Moreover in order to get a careful prediction of origins and onset of the seis-
mic actions, from a geological and mechanical point of view, models of tectonic
dynamic crack propagation must be considered, generalising and adapting the
methods presented in [20, 95, 160, 167, 216]. In this way it will be possible to
extend the regions where wave propagation is predicted, to include also hypocen-
ters. We also expect that the presented results will allow for a more e�ective
design for the new structures (and for the restoration of the damaged one) by ex-
ploiting the also knowledge and the conceptual tools which are already available
and were used, e.g., in [136, 182, 185].
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