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Abstract
We consider the one dimensional boundary driven harmonic model and its continuous ver-
sion, both introduced in (Frassek et al. in J Stat Phys 180: 135–171, 2020). By combining
duality and integrability the authors of (Frassek and Giardiná in J Math Phys 63: 103301,
2022) obtained the invariant measures in a combinatorial representation. Here we give an
integral representation of the invariant measures which turns out to be a convex combination
of inhomogeneous product of geometric distributions for the discrete model and a convex
combination of inhomogeneous product of exponential distributions for the continuous one.
The mean values of the geometric and of the exponential variables are distributed according
to the order statistics of i.i.d. uniform random variables on a suitable interval fixed by the
boundary sources. The result is obtained solving exactly the stationary condition written
in terms of the joint generating function. The method has an interest in itself and can be
generalized to study other models. We briefly discuss some applications.
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1 Introduction

Stationary non equilibrium states (SNS) have a rich and complex structure. A natural way
to generate a SNS using stochastic interacting particle systems is to put the system, that is
evolving on a lattice, in contactwith external sources. This is a toymodel for a thermodynamic
systemwith external reservoirs. TheMarkov process obtainedwith this procedure is typically
non-reversible when the reservoirs have different parameters and its invariant measure is the
SNS. Due to the non reversibility, such measure is typically difficult to be computed and has
long range correlations [3, 8].

From amacroscopic point of view, for a few one dimensional solvablemodels it is possible
to get a description of the fluctuations of the SNS by an exact computation of the density large
deviations rate functional. This is obtained either by using combinatorial representation of
the invariant measure [8] or by the variational dynamic approach of Macroscopic Fluctuation
Theory (MFT) [3]. Among the solvable models there are the symmetric exclusion process
(SEP) and the Kipnis-Marchioro-Presutti (KMP) model [4, 20] and more generally all the
models having a constant diffusion and a quadratic mobility in the hydrodynamic scaling
limit. Due to the presence of long range correlations, the rate functionals are non-local and
can be written in terms of the maximization (for SEP) or minimization (for KMP) of an
auxiliary function. A problem of interest is the interpretation of the auxiliary function. In
the case of the KMP model it has been conjectured in [2] that the auxiliary function can be
interpreted as a hidden temperature and the minimization as a contraction principle. This
conjecture is solved in [7] where a joint energy-temperature dynamics has been constructed;
as a consequence the invariant measure of the boundary driven case is written as a convex
combination of inhomogeneous product of exponential distributions whose mean values are
distributed according to the invariant measure of an auxiliary opinion model.

From amicroscopic point of view, before themost recent developments, to our knowledge,
there were essentially a few models with long-range correlations for which the description
of the stationary measure was explicit. This is the class of open exclusion type processes,
for which it is available a matrix product ansatz (see [10, 22]). It was exactly this explicit
knowledge that made possible to obtain the density large deviation function by a microscopic
computation [11] and then to verify the agreement with the variational structure of MFT
[1]. Since MFT is believed to have a large degree of universality, as the theory describing
fluctuations in diffusive systems, it is therefore important to have additional models of which
the SNS is known. Furthermore, for stationary non-equilibrium states a general structure
does not exist as it is the case for equilibrium, where one has instead the Boltzmann-Gibbs
distribution.

In a series of recent works [15–17], two new integrable models have been introduced.
These are the family of harmonic models, a class of interacting particle systems, and a
suitable continuous version, that can be interpreted as a model for heat conduction. The latter
is obtained as a scaling limit of the discrete one. Both families of models are parametrized by
a (spin) value s > 0. The integrability of the systems relies on an algebraic description of the
generator and the link with integrable systems in quantum spin chains, as is the case also for
the class of exclusion processes (see e.g. [22]).Besides sharing the same algebraic description,
these twomodels are also in a duality relation via amoment duality function [15]. Bothmodels
are of zero range type, i.e., the rate at which particles or energy is transferred from one site to
another depends just on the number of particles or amount of energy present on the departure
site. However, differently from the classic zero range models, here there are transitions of
multiple particles and the boundary driven SNS are not of product type. In Corollary 2.9 of
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[16] a closed formula1 of combinatorial nature for the stationary measure has been obtained
for the class of harmonic models. The derivation relies on techniques inspired by integrable
systems and is based on a direct mapping between non-equilibrium and equilibrium [18, 21].
A similar study has been done in [15] for the family of integrable heat conduction models,
for which moments of the stationary measure have been found via stochastic duality. For
both classes of models an explicit description of the long-range correlations has been shown.
As shown in [5] all these models have constant diffusion and quadratic mobility and are
therefore good candidates for having a mixture of product distribution as invariant measure.

In this paper we provide the probabilistic description of the SNS of these two models
from a microscopic perspective. We consider the special case s = 1/2 for the (spin) value.
We prove that for this pair of models the invariant measure can be written, like for the KMP
model, as a mixture of products of inhomogeneous distributions. Furthermore, for the models
considered here, the mixing measure can be explicitly characterized in terms of the order
statistics of i.i.d. uniform random variables. This probabilistic interpretation sheds light on
how the structure of long-range correlations of the SNS is rooted in the correlated structure
of the mixing measure.

In the harmonic model of parameter s = 1/2 considered here, at each site of a graph
there is a non-negative integer number of particles. When on a vertex x there are ηx particles,
then k ≤ ηx particles can jump across each edge exiting from x with rate 1/k. We consider
a one-dimensional lattice with left and right extrema coupled to reservoirs having densities
0 < ρA ≤ ρB < +∞. When ρA = ρB the model is reversible and its invariant measure
is of product type with each marginal being geometric with mean equal to the density of
the external reservoirs. When ρA < ρB we prove that the invariant measure is a mixture
of inhomogeneous product of geometric distributions. The law of the mean values of the
inhomogeneous geometric distributions is the order statistics of independent uniform random
variables in the interval [ρA, ρB ]. This is a natural representation, since the computation
of the integral over the hidden parameters does not give a transparent expression, being
written in terms of hypergeometric functions. For the continuous model we have a similar
representation, the heat baths attached at the end points of the bulk have temperatures 0 <

TA ≤ TB < +∞ and the geometric distributions have to be substituted by the exponential
ones.

Concerning the methodology, our result is proved writing the stationarity condition of the
master equation in terms of the joint generating function. This allows a direct verification of
the mixed structure of the SNS via a telescopic property. In this paper we apply the method
just to two models in order to give a direct and clear presentation. We plan to give a system-
atic study in the future. We believe the mixed structure with random temperatures/chemical
potentials of the stationary measure to be common to several open models of interacting
particles, like for example the exclusion process. This is related also to the fact that the cor-
responding large deviations rate functionals can be written equivalently in terms of infimum
(see [2, 9, 12]). See [14] for results in this direction for the symmetric exclusion process.

Note added: After this article was submitted reference [6] appeared on the arXiv. It
contains the mixed measure for the harmonic model with general spin s, which is obtained
by a constructive approach that allows to identify the ordered Dirichlet process as the mixing
measure. It further contains a direct proof that the measure for s=1/2 derived here coincides
with the one derived in [16] (see Appendix A of [6] for the comparison).

1 When constructing the mixed measures of this paper, we used this formula to check that a product of
geometric with mixing measure given by the ordered statistics of i.i.d. uniforms was indeed reproducing the
correlation functions in [16].
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2 The Discrete Harmonic Model with Parameter s = 1/2

2.1 TheModel

We consider a one-dimensional lattice consisting of N sites (the bulk) �N := {1, . . . , N }
and two ghost lattice sites (the boundaries) ∂�N := {0, N + 1} to which we associate two
parameters 0 < βA < βB < 1, respectively. On each lattice site we can have an arbitrarily
large number of particles and we denote by ηx ∈ N0 the number (possibly zero) of particles
at x ∈ �N . We consider a continuous-time Markov chain {η(t), t ≥ 0} whose state space
is the set �N = N

�N
0 of configurations η = (η1, . . . , ηN ), with ηx ∈ N0 being the number

of particles at site x ∈ �N . The stochastic dynamics has a bulk and a boundary part which
are described in terms of the generator LN defined below. For any x ∈ �N , we denote by
δx ∈ �N the configuration defined by δx (y) = 0 when y �= x and δx (x) = 1. We have

LN := Lbulk
N + Lbound

N . (2.1)

The bulk generator applied to bounded functions reads:

Lbulk
N f (η) =

∑

x,y∈�N|x−y|=1

ηx∑

k=1

1

k

[
f (η − kδx + kδy) − f (η)

]
.

Furthermore, the boundary part which encodes the interaction with the reservoirs is given
by:

Lbound
N f (η) =

η1∑

k=1

1

k
[ f (η − kδ1) − f (η)] +

∞∑

k=1

βk
A

k
[ f (η + kδ1) − f (η)]

+
ηN∑

k=1

1

k
[ f (η − kδN ) − f (η)] +

∞∑

k=1

βk
B

k
[ f (η + kδN ) − f (η)] .

2.2 Invariant Measure

For a generic measure μ on �N the stationarity condition μLN = 0 reads as follows:

μ(η)

[ ∞∑

k=1

βk
A

k
+

N∑

x=1

ηx∑

k=1

2

k
+

∞∑

k=1

βk
B

k

]

=
η1∑

k=1

μ(η − kδ1)
βk
A

k
+

∞∑

k=1

μ(η + kδ1)
1

k

+
N−1∑

x=1

ηx+1∑

k=1

μ(η + kδx − kδx+1)
1

k
+

N∑

x=2

ηx−1∑

k=1

μ(η + kδx − kδx−1)
1

k

+
ηN∑

k=1

μ(η − kδN )
βk
B

k
+

∞∑

k=1

μ(η + kδN )
1

k
. (2.2)

Let Gm(k) = 1
1+m

(
m

1+m

)k
, k = 0, 1, . . . , be a geometric distribution of mean m. Given

m = (m1, . . . ,mN ) and k = (k1, . . . , kN ) we denote by Gm(k) := ∏N
x=1 Gmx (kx ). Given
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0 < βA < βB < 1 we call ρA := βA
1−βA

, ρB := βB
1−βB

and introduce OρA,ρB
N ⊆ [ρA, ρB ]N as

the set defined by

OρA,ρB
N := {

m : ρA ≤ m1 ≤ · · · ≤ mN ≤ ρB
}
.

The Lebesgue volume is given by |OρA,ρB
N | = (ρB−ρA)N

N ! . Our result is the following:

Theorem 2.1 The invariant measure of the process with generator (2.1) is given by

μ
ρA,ρB
N (η) = 1

|OρA,ρB
N |

∫

O
ρA ,ρB
N

dm Gm(η). (2.3)

In the above statement we make explicit the dependence of the invariant measure on the
parameters ρA, ρB , N , while in the rest of the paper we omit such dependence. For simplicity
of notation we used the symbol η for a configuration of particles but in order to be compatible
with our notation for vectors we remark that in (2.3) η ≡ η should be interpreted as a vector.

In order to better illustrate the result we first give the proof for the case of only one site
(Sect. 3.1) and then generalize it for the case of N sites in Sect. 3.2. The basic telescoping
mechanism is active already in the N = 1 case.

3 Proof of Theorem 2.1

We introduce the moment generating function of the geometric distribution Gm :

Fm(λ) :=
∞∑

k=0

Gm(k)λk = [1 + (1 − λ)m]−1 , 0 ≤ λ <
1 + m

m
.

Like before, given m and λ, we define Fm(λ) := ∏N
x=1 Fmx (λx ).

3.1 The Case N = 1

In the case that our lattice is composed by one single node which is in contact with two
external reservoirs, the state space of the process�1 is the set of natural numbers. We denote
by η1 ∈ N0 a generic element of the state space and the generator L1 (from (2.1) for N = 1)
is given by

L1 f (η1) =
η1∑

k=1

2

k
[ f (η1 − k) − f (η1)] +

∞∑

k=1

βk
A + βk

B

k
[ f (η1 + k) − f (η1)],

where 0 < βA < βB < 1 are the parameters associated to the two external reservoirs. The
stationarity condition for the invariant measure μ is

μ(η1)

[ ∞∑

k=1

βk
A + βk

B

k
+

η1∑

k=1

2

k

]

=
∞∑

k=1

μ(η1 + k)
2

k
+

η1∑

k=1

μ(η1 − k)
βk
A + βk

B

k
, (3.1)
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which must be satisfied for all η1 ∈ N0. Theorem 2.1 says that for N = 1 the invariant
measure is a mixture of geometric distributions, i.e.,

μ(η1) = 1

ρB − ρA

∫ ρB

ρA

dm Gm(η1). (3.2)

Note that in the limit ρA → ρB we recover the special equilibrium case, where the invariant
measure is just a geometric distribution of mean ρB .

Instead of checking the validity of (3.1) for each η1 ∈ N0, it will be convenient to multiply
both sides of (3.1) by λ

η
1 and sum over η1. In this way, we get an equality between generating

functions for each value of λ which is equivalent to the whole set of conditions (3.1). In the
sequel we will use the following elementary formulas:

∞∑

k=0

xk = 1

1 − x
;

∞∑

k=1

xk

k
= log

1

1 − x
;

+∞∑

k=0

xk
k∑

j=1

1

j
= 1

1 − x
log

1

1 − x
|x | < 1. (3.3)

We write separately each one of the terms that are obtained by inserting (3.1) into (3.1) and
computing the generating function. The first term gives

∞∑

η1=0

λη1μ(η1)

∞∑

k=1

βk
A + βk

B

k
= 1

ρB − ρA

∫ ρB

ρA

dm

1 + m

∞∑

η1=0

(
mλ

1 + m

)η1 ∞∑

k=1

βk
A + βk

B

k

= 1

ρB − ρA

∫ ρB

ρA

dm
[
log(1 + ρA) + log(1 + ρB)

]
Fm(λ) .

where we used (3.3). Similarly, exchanging the order of summation, the other terms give

∞∑

η1=0

λη1μ(η1)

η1∑

k=1

2

k
= 1

ρB − ρA

∫ ρB

ρA

dm
[
2 log(1 + m) + 2 logFm(λ)

]
Fm(λ) ,

∞∑

η1=0

λη1

∞∑

k=1

μ1(η1 + k)
2

k
= 1

ρB − ρA

∫ ρB

ρA

dm
[
2 log(1 + m)

]
Fm(λ)

and
∞∑

η1=0

λη1

η1∑

k=1

μ(η1 − k)
βk
A + βk

B

k

= 1

ρB − ρA

∫ ρB

ρA

dm
[
log(1 + ρA) + logFρA (λ) + log(1 + ρB) + logFρB (λ)

]
Fm(λ).

All in all, by adding the terms, we get that the stationarity condition (3.1) is equivalent to
∫ ρB

ρA

dm
[
logFρA (λ) − 2 logFm(λ) + logFρB (λ)

]
Fm(λ) = 0. (3.4)

By adirect computationwehave the following simple relation form 
→ Fm(λ), the antideriva-
tive of m 
→ Fm(λ):

Fm(λ) =
∫ m

0
dm′ Fm′(λ) = 1

(λ − 1)
logFm(λ). (3.5)
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Then, in terms of the antiderivative, (3.4) is rewritten as

(λ − 1)
∫ ρB

ρA

dm
[
FρA (λ) − 2Fm(λ) + FρB (λ)

]
F ′
m(λ) = 0,

where F ′
m(λ) denotes the derivative with respect to the parameterm. Performing the integral,

apart the common (λ − 1) factor, we get

FρA (λ)(FρB (λ) − FρA (λ)) − (F2
ρB

(λ) − F2
ρA

(λ)) + FρB (λ)(FρB (λ) − FρA (λ)),

which is clearly zero. This concludes the proof of Theorem 2.1 for N = 1.

3.2 The General Case

In this section we give the proof of Theorem 2.1 for general N . We now consider the full
stationarity condition (2.2) which also contains the bulk terms. With computations similar
to the ones done in the previous section we obtain that the stationarity condition (2.2) is
equivalent to

N∑

x=1

∫

O
ρA ,ρB
N

dm
[
logFmx−1(λx ) − 2 logFmx (λx ) + logFmx+1(λx )

]
Fm(λ) = 0,

where we have defined

Fm0(λ1) ≡ FρA (λ1), and FmN+1(λN ) ≡ FρB (λN ).

Using (3.5) the above condition can be also written as

N∑

x=1

(λx − 1)
∫

O
ρA ,ρB
N

dm
[
Fmx−1(λx ) − 2Fmx (λx ) + Fmx+1(λx )

]
F ′
m(λ) = 0 ,

where, as usual in this paper, we denote F ′
m(λ) = ∏N

x=1 F
′
mx

(λx ). One can check that the

integrals are vanishing for each x ∈ {1, 2, . . . , N }. To verify this, let us call OρA,ρB
N−1,x the

collection of N − 1 ordered variablesmy , with y �= x , i.e., where the variablemx is missing;
we call mx a generic element of OρA,ρB

N−1,x . Then, by applying Fubini theorem, we get
∫

O
ρA ,ρB
N

dm
[
Fmx−1(λx ) − 2Fmx (λx ) + Fmx+1(λx )

]
F ′
m(λ)

=
∫

O
ρA ,ρB
N−1,x

dmx
∫ mx+1

mx−1

dmx

[
Fmx−1(λx )F

′
mx

(λx )

− 2Fmx (λx )F
′
mx

(λx )

+ Fmx+1(λx )F
′
mx

(λx )
]
F ′
mx (λ

x ) ,

where again λx is obtained from the vector λ by removing the component λx . The integral
over the variable mx on the right hand side of the above equation can now be performed and
we are left with

∫

O
ρA ,ρB
N−1,i

dmx
[
Fmx−1(λx )(Fmx+1(λx ) − Fmx−1(λx ))

− (F2
mx+1

(λx ) − F2
mx−1

(λx ))
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+ Fmx+1(λx )(Fmx+1(λx ) − Fmx−1(λx ))
]
F ′
mx (λ

x )

which is clearly zero since the term inside the squared parenthesis is identically zero. This
concludes the proof of Theorem 2.1.

4 Integrable Heat ConductionModel With Parameter s = 1/2

4.1 TheModel

In this section we show that the same approach based on a direct computation of the joint
generating function holds for a related model. The model was introduced in [17] as a scaling
limit of the harmonic model and further generalized in [15]. The setting is as in the previous
section, namely a one dimensional lattice �N with two extra ghost sites representing the
reservoirs. Here we denote by zx ∈ R+ the arbitrary quantity of energy at site x ∈ �N , and
by z = (z1, . . . , zN ) a generic configuration in�N = R

�N+ , i.e., the state space. The generator
of the stochastic dynamics is given as the superposition of a bulk part and a boundary part,
described below:

LN := Lbulk
N + Lbound

N , (4.1)

whose action on functions f : �N → R that are bounded and Lipschitz is

Lbulk
N f (z) =

∑

x,y∈�N|x−y|=1

∫ zx

0

dα

α

[
f
(
z − αδx + αδy

) − f (z)
]

and

LboundN f (z) =
∫ z1

0

dα

α
[ f (z − αδ1) − f (z)] +

∫ ∞
0

dα

α
e−α/TA [ f (z + αδ1) − f (z)]

+
∫ zN

0

dα

α

[
f (z − αδN ) − f (z)

] +
∫ ∞
0

dα

α
e−α/TB

[
f (z + αδN ) − f (z)

]
,

wherewe recall that, as in the discrete case, for x ∈ �N , δx is the configurationwith δx (y) = 0
for y �= x and δx (x) = 1. Above TA (respectively, TB ) is the temperature associated to the
left (respectively, right) reservoir whose purpose is to destroy the conservation of energy by
imposing heat conduction from one side of the chain to the other. When TA = TB = T there
is no transport of energy, the model is reversible and its invariant measure is of product type
with each marginal being exponential with mean equal to the temperature T of the external
reservoirs. Note that since 1/α is not integrable at zero, this is a jump process with a dense set
of jumps. We do not address here the delicate issues related to the definition of the process.

4.2 Invariant Measure

The stationarity condition imposes that the density μ of the invariant measure satistisfies

0 =
∫ z1

0

dα

α
e
− α

TA [μ(z − αδ1) − μ(z)] + μ(z)
∫ +∞

z1

dα

α
e
− α

TA

+
∫ z1

0

dα

α
[μ(z + αδ1) − μ(z)] +

∫ +∞

z1

dα

α
μ(z + αδ1)
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+
∫ zN

0

dα

α
e
− α

TB [μ(z − αδN ) − μ(z)] + μ(z)
∫ +∞

zN

dα

α
e
− α

TB

+
∫ zN

0

dα

α
[μ(z + αδN ) − μ(z)] +

∫ +∞

zN

dα

α
μ(z + αδN )

+
∑

x,y∈�N|x−y|=1

{∫ zx

0

dα

α

[
μ(z + αδx − αδy) − μ(z)

] +
∫ +∞

zx

dα

α
μ(z + αδx − αδy)

}
.

(4.2)

Let Em(z) = 1
m e

−z/m1{z≥0} be the density of an exponential distribution of mean m > 0.

Given m = (m1, . . . ,mN ) and z = (z1, . . . , zN ) we denote by Em(z) := ∏N
x=1 Emx (zx ). As

before we introduce OTA,TB
N ⊆ [TA, TB ]N as the set defined by

OTA,TB
N := {

m : TA ≤ m1 ≤ · · · ≤ mN ≤ TB
}
.

Our result is the following:

Theorem 4.1 The invariant measure of the process with generator (4.1) is given by

μ
TA,TB
N (z) = 1

|OTA,TB
N |

∫

O
TA ,TB
N

dm Em(z). (4.3)

Here, again, for simplicity of notation we call z a configuration of energies but in order to be
compatible with our vector-notation we remark that in (4.3) z ≡ z should be interpreted as a
vector. The strategy of the proof is similar to the previous one, namely we consider N = 1
first and then we show the result for a general finite chain of N sites. Below, in order to
alleviate the notation for the invariant measure, we drop the dependence on the parameters
TA, TB and N .

5 Proof of Theorem 4.1

We introduce the moment generating function of the exponential distribution Em :

Fm(t) :=
∫ ∞

0
dz Em(z)etz = 1

1 − tm
, t <

1

m

and we define Fm(t) := ∏N
x=1 Fmx (tx ).

5.1 The Case N = 1

If the lattice consists of only one site then the Markov generator simplifies as

L1 f (z1) = 2
∫ z1

0

dα

α
[ f (z − αδ1) − f (z)]

+
∫ ∞

0

dα

α

(
e−α/TA + e−α/TB

)
[ f (z + αδ1) − f (z)] .

The stationary condition for the invariant measure μ reads
∫ z1

0

dα

α

(
e−α/TA + e−α/TB

)
(μ(z1) − μ(z1 − α)) +

∫ ∞

z1

dα

α

(
e−α/TA + e−α/TB

)
μ(z1)
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= 2
∫ z1

0

dα

α
(μ(z1 + α) − μ(z1)) + 2

∫ ∞

z1

dα

α
μ(z1 + α) ,

which must be satisfied for all z1 ∈ R+. Multiplying both sides by etz1 , using the represen-
tation (4.3) for N = 1 and taking the integral in dz1, we get, as in the previous case, four
different terms which can be compactly written as

∫ TB

TA
dm

∫ ∞

0
dα

eαt − 1

α

[(
e−α/TA − 2e−α/m + e−α/TB

)]
Fm(t) = 0 . (5.2)

The inner integrals can be computed using “Feynman’s trick” which, for a, b > 0, leads to
∫ ∞

0

e−ax − e−bx

x
dx = log

(
b

a

)
,

so that we have
∫ TB

TA
dm

[
logFTA (t) − 2 logFm(t) + logFTB (t)

]Fm(t) = 0. (5.3)

The key observation regarding Fm , the antiderivative of m 
→ Fm(t), is the following

Fm(t) =
∫ m

0
dm′ Fm′(t) = −1

t
log (1 − tm) = 1

t
logFm(t). (5.4)

This allows to write (5.3) as
∫ TB

TA
dm

[
FTA (t) − 2Fm(t) + FTB (t)

]
F ′
m(t) = 0,

where F ′
m(t) denotes the derivative with respect to the parameterm. As before, by inspection

the left hand side of the previous equation is zero and the proof of Theorem 4.1 for N = 1
is concluded.

5.2 The General Case

For general N the stationarity condition is written in equation (4.2). As before, we multiply

both sides by
N∏

x=1

etx zx , we use the representation (4.3) and take the integral. We obtain

∫

O
TA ,TB
N

dm
[ ∫ ∞

0

dα

α

(
e−α/TA +

N∑

x=1

2eαtx e−α/mx + e−α/TB

)
Fm(t)

]
=

∫

O
TA ,TB
N

dm
∫ ∞

0

dα

α

[
e−α/m1 +

N∑

x=1

eαtx
(
e−α/mx−1 + e−α/mx+1

) + e−α/mN

]
Fm(t),

(5.5)

where we have set m0 := TA and mN+1 := TB . At this point it is enough to notice that using
the telescoping cancellation

∫ ∞

0

dα

α

(
e−α/TA − e−α/m1 − e−α/mN + e−α/TB

)
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=
N∑

x=1

∫ ∞

0

dα

α

(
e−α/mx−1 − 2e−α/mx + e−α/mx+1

)

we can rewrite (5.5) in a form analogous to (5.2):

N∑

x=1

∫

O
TA ,TB
N

dm
∫ ∞

0
dα

(
eαtx − 1

α

) [
e−α/mx−1 − 2e−α/mx + e−α/mx+1

]Fm(t) = 0.

Computing the inner integrals, we get

N∑

x=1

∫

O
TA ,TB
N

dm
[
logFmx−1(tx ) − 2 logFmx (tx ) + logFmx+1(tx )

]Fm(t) = 0,

which can be written in terms of the antiderivative Fm using equation (5.4)

N∑

x=1

∫

O
TA ,TB
N

dm
[
Fmx−1(tx ) − 2Fmx (tx ) + Fmx+1(tx )

]
F ′
m(t) = 0 .

We show that each term of the above sum is zero. To this aim we apply Fubini theorem to
the xth term to separate the integral in mx , i.e.,

∫

O
TA ,TB
N

dm
[
Fmx−1(tx ) − 2Fmx (tx ) + Fmx+1(tx )

]
F ′
m(t) =

∫

O
TA ,TB
N−1,x

dmx
∫ mx+1

mx−1

dmx
[
Fmx−1(tx ) − 2Fmx (tx ) + Fmx+1(tx )

]
F ′
mx

(tx )
N∏

y=1
y �=x

F ′
my

(ty),

where OTA,TB
N−1,x has the same meaning as before, namely the collection of N − 1 ordered

variables my with y �= x . Computing the inner integral on the right hand side we obtain zero
and the proof of Theorem 4.1 is concluded.

6 Some Applications

In this last sectionwe discuss some important applications that follow from the representation
of the invariant measure as a mixture.

First, we deduce a general FKG-type inequality. In particular, we show that when sampled
according to the steady states of Theorem 2.1 and Theorem 4.1, the processes are associated
in the sense of Definition 1.1 [13], which we recall below. To this end we define a partial
ordering in R

�N+ by saying that X ≤ Y if for all i ∈ �N , Xi ≤ Yi . Then a function
g : R�N → R is said non-decreasing if, for all pairs X , Y ∈ R

�N with X ≤ Y , we have
g(X) ≤ g(Y ). A random variable X ∈ R

�N+ is called associated if for all non-decreasing

functions g, h : R�N+ → R,

E[g(X)h(X)] ≥ E[g(X)] · E[h(X)]
and the same terminology is used for the corresponding distribution of the random variable
X .

In the following we show that, thanks to the representation as a mixture of the stationary
measures of the processes, we deduce in few steps the association of those measures relying
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on the well establised association of the ordered statistics of i.i.d random variables given in
[13]. The statement of the following theorem was suggested by an anonymous referee.

Theorem 6.1 The invariant measure μ
ρA,ρB
N of the model defined in Sect.2.1 is associated,

namely for all non-decreasing functions g, h : �N → R, we have

E
μ

ρA ,ρB
N

[g(η)h(η)] ≥ E
μ

ρA ,ρB
N

[g(η)] · E
μ

ρA ,ρB
N

[h(η)] .

The same property holds for the invariant measure μ
TA,TB
N of the process defined in Sect.4.1.

Proof We have to prove that

1

|OρA,ρB
N |

∫

O
ρA ,ρB
N

dm
∑

η

g(η)h(η)Gm(η)

≥ 1

|OρA,ρB
N |

( ∫

O
ρA ,ρB
N

dm
∑

η

g(η)Gm(η)

)

· 1

|OρA,ρB
N |

( ∫

O
ρA ,ρB
N

dm
∑

η

h(η)Gm(η)

)
. (6.1)

First of all we observe that, from Theorem 2.1 in [13], we have that any product measure is
associated thus, for all fixed m,

∑

η

g(η)h(η)Gm(η)

≥
( ∑

η

g(η)Gm(η)

)
·
( ∑

η

h(η)Gm(η)

)
.

We define now the functions g̃, h̃ : R�N+ → R as

g̃(m) :=
∑

η

g(η)Gm(η)

and

h̃(m) :=
∑

η

h(η)Gm(η).

Since m ≤ m′ implies Gm � Gm′ (where the symbol � indicates stochastic domination), it

follows that g̃ and h̃ are non-decreasing functions. As a consequence, in order to prove (6.1)
it is sufficient to show that

∫

O
ρA ,ρB
N

g̃(m) · h̃(m)dm

≥ 1

|OρA,ρB
N |

( ∫

O
ρA ,ρB
N

g̃(m)dm

)
·
( ∫

O
ρA ,ρB
N

h̃(m)dm

)

which follows from the association of ordered statistics of i.i.d. random variables, as shown
in Section 5 of [13]. Notice that also for an exponential distribution of mean m, it holds that
if m ≤ m′ then Em � Em′ and so the statement is also true for the continuous model. �
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We remark that positive correlation inequalities have also been obtained [19] for other
models having convex quadratic mobility, such as the symmetric inclusion process and the
Brownian energy process. It could be interesting to further investigate whether association
is true as well.

Another consequence of the representation of the invariant measure as a mixture of inde-
pendent random variables is the proof of the large deviation principle for the density profile
which can be deduced by a combination of two large deviation principles: one for the order
statistics and another for independent inhomogeneous random variables with an additional
application of the contraction principle. The heuristic argument is outlined in [2], Sect. 3.2. A
rigorous proof is given in [6], where it is computed the pressure, the density large deviation
functional and their additivity principle. This provided a rigorous proof for the expression
of the density large deviation function for the whole class of harmonic models obtaining a
rate function in accordance with the result of the MFT [3] for systems with convex quadratic
mobility and constant diffusion.
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