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Abstract
We present an effective construction of non-Kähler supersymmetric mirror pairs in the
sense of Lau, Tseng and Yau (Commun. Math. Phys. 340:145–170, 2015) starting from
left-invariant affine structures on Lie groups. Applying this construction we explicitly find
SYZ mirror symmetric partners of all known compact 6-dimensional completely solvable
solvmanifolds that admit a semi-flat type IIA structure.
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1 Introduction

The Strominger-Yau-Zaslow (SYZ) conjecture (see [24]) tries to describe mirror symmetry
of Calabi-Yau manifolds in terms of dual Lagrangian torus fibrations.

In this paper we deal with a non-Kähler version of SYZ mirror symmetry where the
correspondence between symplectic and complex structures of the partners is made explicit
through Fourier-Mukai transform. The SU(n)-structures involved are type IIA and type IIB
structures (see subsection 2.2 for the definition for n = 3). The role of the Dolbeault coho-
mology is replaced by the Bott-Chern cohomology on the complex side and by a refined
version of the Tseng-Yau cohomology on the symplectic side. The procedure is thouroghly
explained in [21]. Here we will mainly stick to the case of manifolds of real dimension 6,
which is the ambient where originally mirror symmetry made its appearance.
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One of the aims of the present paper is to show that, unlike in the Kähler case, it is
possible to find many interesting mirror pairs of compact 6-manifolds without the need of
singularities in the fibrations. The first and only example of this kind known so far is the
nilmanifold featured in [21].

Nilmanifolds and more generally solvmanifolds are of course a natural ambient to look at
in the seek of such structures. For example there are plenty of explicit symplectic structures
on non-abelian nilmanifolds and none of these can be Kähler.

Moreover an important special case of type IIA structure is given by symplectic half-flat
structures and all 6-dimensional solvable Lie algebras admitting such structures are classified
(see [14]).

Compact quotients of the corresponding simply connected Lie groups are the best known
explicit examples of compact manifolds carrying a type IIA structure.

While reinterpreting the example given in [21], the aim of the present paper is to explic-
itly find SYZ mirror symmetric partners (in the sense of [21]) of all known compact
6-dimensional symplectic half-flat completely solvable solvmanifolds that admit a semi-flat
structure.

The starting observation is that all such examples are indeed quotients of Lie groups having
a particular structure of semi-direct product. This semi-direct product structure is intimately
related to a left invariant affine structure on 3-dimensional solvable Lie groups, hence to a
Lagrangian torus bundle on suitable quotients of it.

It is this semi-direct product structure that allows us to explicitly find the non-singular
(i.e. semi-flat) dual torus fibrations, hence the mirror partner. This is explained in section 4.

The first main result is summarized in the following

Theorem 1 Let (X , ω,�) be a compact solvmanifold endowed with a semi-flat left-invariant
IIA structure. Then its SYZ mirror partner (X̌ , ω̌, �̌) is a compact solvmanifold endowed
with a semi-flat left-invariant IIB structure.

In table 2 we list all the IIBmirror partners of completely solvable semi-flat 6-dimensional
IIA Lie algebras.

The second main result is the explicit construction of all the mirror pairs and the relevant
structures coming from left-invariant affine structures on completely solvable 3-dimensional
unimodular Lie groups. This is carried out in section 6.

In table 2 we also write down the Tseng-Yau and Bott-Chern numbers of the algebras
involved that realize the mirror symmetric non-Kähler Hodge diamonds.

As an upshot of our constructions we find a compact type IIA manifold X admitting
two inequivalent Lagrangian torus fibrations giving rise to two non-isomorphic semi-flat
mirror pairs: the complex IIB partners X̌ and X̌ ′ are not even diffeomorphic (see 6.1.2 and
6.2.2).

As a by-product we also find a new balanced metric on a nilmanifold which is missing
from the classification given in [20], see subsection 6.3.2, Remark 15.

A systematic study of all the semi-flat SU(3)-mirror pairs coming from left-invariant affine
structures using the classification of [16] is carried over in a forthcoming paper.

Several related results should be mentioned. Firstly in [7] invariant symplectic structures
on T ∗G are constructed on a Lie groupG carrying an invariant affine structure. The analogous
construction of invariant complex structures for TG can be found in [5].

Moreover in [9] the authors list all the pairs of nilpotent 6-dimensional Lie algebras
constructed via dual semi-direct product and show that they have isomorphic differential
Gerstenhaber algebras realizing a sort of algebraic weak mirror symmetry.
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2 Preliminaries

2.1 Affine structures and dual torus bundles

For details about affine structures see [18, 25], here we will just recall the notions relevant
to our construction.

An affine structure on a n-manifold is an atlas whose transition functions are restrictions
of affine maps.

Any affine structure on a n-manifold M defines a developing map D : ˜M → R
n , where

˜M → M is the universal covering, and a holonomy representation h : π1(M) → Aff(Rn)

(for the precise definition see [25] or [18]).
The affine structure is said to be complete if the developing map is a homeomorphism.
Viceversa starting from a pair (D, h) where h : π1(M) → Aff(Rn) is a homomorphism and
D : ˜M → R

n is a homeomorphism equivariant with respect to the π1(M) and h(π1(M))

actions one can recover a unique complete affine structure on M such that D is the induced
developing map and h is the induced holonomy representation.

An affine structure is integral if the linear part of transition functions is integral (i.e. takes
values in GL(n, Z)). Any integral affine structure A on a manifold B defines a Lagrangian
bundle X → B over B in the following way. Let r1, . . . , rn be local affine coordinates on
U ⊆ B. Then for every q ∈ U we can define �∗

q to be the integral lattice of T ∗
q B generated

by dr1, . . . , drn . This definition does not depend on the choice of the local affine chart. The
manifold T ∗B/�∗ will be an n-torus bundle over B. Furthermore the canonical symplectic
structure of T ∗B passes to the quotient and the fibers are indeed Lagrangian with respect to
it.

Viceversa every Lagrangian torus bundle X → B induces an integral affine structure
on B. Over the affine coordinate charts the torus bundle is locally isomorphic to one of
the form T ∗B/�∗ → B: this is a consequence of the famous Arnol’d-Liouville Theorem
in classical mechanics which in particular establishes the existence of the so-called action-
angle coordinates. We remark here that the action coordinates are exactly the coordinates
associated to the developing map of the integral affine structure.

Again for details about Lagrangian torus bundles we refer to the classical paper of Duis-
termaat [13]. See also [8, section 3] for a good presentation of this topic.

Given any Lagrangian torus bundle X → B together with its action-angle coordinates
r1, . . . , rn, θ1, . . . , θn we can define the dual torus bundle X̌ → B simply by dualizing the
transition functions. Locally this is isomorphic to the torus bundle T B/� → B obtained by
considering the fiberwise lattice � ⊂ T B locally generated by ∂

∂r1
, . . . , ∂

∂rn
. If we denote

by θ̌k the fiber coordinates corresponding to the action coordinates rk , we get local complex
coordinates zk = θ̌k + irk on T B/� hence on X̌ . With respect to this complex structure the
fibers of X̌ → B are totally real.

If we assume that the integral affine structure of X is special, that is the linear part of the
transition functions lies in SL(n, Z), the complex (n, 0)-form on X̌

dz1 ∧ · · · ∧ dzn

is globally defined. We will call it �̌.
A symplectic manifold (X , ω) together with a Lagrangian torus fibration and its complex

dual endowed with the holomorphic volume (X̌ , �̌) are said to form a semi-flat mirror pair
in [21].
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2.2 Non-Kähler SYZmirror symmetry

Here we briefly describe the non Kähler version of SYZ mirror symmetry as presented in
[21]. First recall that an SU(n)-structure is determined on a real 2n-manifold X by a pair of
differential forms (ω,�), where

(1) � is a nowhere vanishing decomposable complex n-form such that setting

T 0,1X = {v ∈ T X ⊗ C : ιv� = 0}
and T 1,0X = T 0,1X we have a splitting

T X ⊗ C = T 1,0X ⊕ T 0,1X

inducing an almost complex structure J .
(2) ω is a positive (1, 1)-form with respect to J .

We will denote by F the conformal factor defined by

� ∧ �̄ = in F
ωn

n! .

It is easy to prove that the almost complex structure J defined by � is integrable if and
only if � is closed.

In the 3-dimensional case we have the following

Definition 2 An SU(3)-manifold (X , ω,�) is said to be supersymmetric of type IIA if dω =
0 and d Re� = 0.

Definition 3 An SU(3)-manifold (X , ω,�) is said to be supersymmetric of type IIB if
d(ω2) = 0 and d� = 0.

Note that type IIB manifolds are balanced complex manifolds with holomorphically trivial
canonical bundle while type IIA manifolds with constant F are often called symplectic half-
flat manifolds.

Let π : (X , ω) → B be a Lagrangian torus bundle
and let π̌ : (X̌ , �̌) → B be its dual so that (X , ω) and (X̌ , �̌) form a semi-flat mirror

pair.
We denote by Ak

B(X , C) the space of complex-valued k-forms on X which depend only
on the base, also called semi-flat forms. An element φ ∈ Ak

B(X , C) is locally written as

φ =
∑

I ,J

aI J (r)dθI ∧ drJ

where I = (i1, . . . , i p), J = ( j1, . . . , jq) are multi-indices and p + q = k, (ri , θi ) are
action-angle coordinates and aI J (r) are complex-valued functions on B.

Analogously we will denote by Ap,q
B (X̌) the semi-flat (p, q)-forms on the SYZ-dual X̌

which are locally written as:
φ̌ =

∑

I ,J

aI J (r)dzI ∧ dz̄ J

In the 3-dimensional case of we can refine the previous definition of SU(3)-structures:

Definition 4 An SU (3)-manifold (X , ω,�) is said to be semi-flat supersymmetric of type
IIA if dω = 0 and d Re� = 0 and both ω and � are in A•

B(X , C)
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Definition 5 An SU (3)-manifold (X , ω,�) is said to be semi-flat supersymmetric of type
IIB if d(ω2) = 0 and d� = 0 and both ω and � are in A•

B(X , C).

We further define the polarization switch operator P on A•,•
B (X̌) in the following way:

φ̌ =
∑

I ,J

aI J (r)dzI ∧ dz̄ J �→ P · φ̌ =
∑

I ,J

aI J (r)d θ̌I ∧ drJ .

2.3 The Fourier-Mukai transform

Let (X , ω) and (X̌ , �̌) be a semi-flat mirror pair on a n-dimensional base B. Consider their
fiber product over B:

X ×B X̌

X X̌

B

p p̌

π π̌

On the Poincaré line bundle over X ×B X̌ there is a universal connection which locally is
written as d + i

(

θ̌kdθk + θkd θ̌k
)

. Its curvature form is

F = 2i
3

∑

i

d θ̌i ∧ dθi . (1)

Let φ ∈ A•
B(X) and φ̌ ∈ A•

B(X̌). Their Fourier-Mukai transforms are defined as

FT · φ̌ := p∗
(

( p̌∗(P · φ̌)) ∧ exp
F

2i

)

FT · φ := P−1 ·
(

p̌∗
(

(p∗φ) ∧ exp
−F

2i

)

)

,

(2)

where the pushforward maps p∗, p̌∗ are just the integration along the fibers.
The main results by Lau, Tseng, and Yau exploiting the Fourier-Mukai transform involve

a refined version of the symplectic cohomology developed by Tseng and Yau in [26, 27].
Let
 ⊂ T M be the Lagrangian distribution coming from the Lagrangian bundle structure

of (X , ω) → B. In the presence of a metric we have also its orthogonal 
⊥. This choice
allows us to decompose the space of differential forms:

A•(X) =
⊕

p+q

Ap,q
B (X)

where Ap,q
B ranges over p 
-directions and over q 
⊥-directions.

The 
-refined Tseng-Yau cohomology of (X , ω) is

H p,q
B,TY (X) := Ker(d + d�) ∩ Ap,q

B (X)

Im(dd�) ∩ Ap,q
B (X)

where d� = d� − �d and � is the adjoint of the Lefschetz operator L = ω ∧ ·.
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We also recall that the (semi-flat) Bott-Chern cohomology of (X̌ , �̌) is

H p,q
B,BC (X̌) := Ker d ∩ Ap,q

B (X̌)

Im(∂∂̄) ∩ Ap,q
B (X̌)

.

Theorem 6 (Theorem4.5 andTheorem6.7 [21])Fourier-Mukai transform is an isomorphism
of double complexes

(

A•
B(X , C),

(−1)ni

2
d,

(−1)ni

2
d�

)

�
(

A•
B(X̌ , C), ∂̄, ∂

)

and at level of cohomologies gives

Hn−p,q
B,TY (X , C) � H p,q

B,BC (X̌) . (3)

Theorem 7 (Theorem 5.1 [21]) Let (X , ω) and (X̌ , �̌) be a 3-dimensional semi-flat mirror
pair. Let ω̌ be a real (1, 1)-form in A1,1

B (X̌) and set � = FT (e2ω̌). Then

(1) The triple (X̌ , ω̌, �̌) defines a SU(3)-structure if and only if (X , ω,�) defines a SU(3)-
structure.

(2) (X , ω,�) is supersymmetric of type IIA if and only if (X̌ , ω̌, �̌) is supersymmetric of
type IIB.

Note that we stated the last Theorem in the 3-dimensional case since in this paper we are
not dealing with general type IIA and type IIB SU(n)-structures.

3 Known type IIAmanifolds

Few non-Kähler type IIA manifolds are known. Main examples are symplectic half-flat
nilmanifolds and solvmanifolds.

Thefirst nilpotent examplewas found in [6], the case of nilpotent Lie algebras is considered
in [10], while the case of solvable non-nilpotent Lie algebras is treated in [14]. Important
contributions with explicit examples are [11], [12] and [28]. As far as we know there is still
no classification up to isomorphism of symplectic half flat structures on any solvable Lie
algebra.

In table 1 we give the complete list of non-abelian unimodular solvable Lie algebras
admitting invariant symplectic half flat structures. For each of them we also provide an
example of type IIA structure. At present to our knowledge it is not known if any of these
Lie algebras admits a type IIA structure inequivalent to those in table 1.

We also specify if the algebras are completely solvable.
Following the usual convention we present a Lie algebra choosing a left-invariant coframe

e1, . . . , e6 and listing their differential. As usual ei j stands for ei ∧ e j .
More compact examples are provided by twistor spaces of compact 4-dimensional self-

dual Einstein manifolds of negative scalar curvature, see [29]. For interesting non-compact
examples see [22, 23].

In section 6wewill apply the construction of section 4 in order to obtain themirror partners
of the compact type IIA solvmanifolds arising from the completely solvable algebras of table
1 except case 3.

Case 3 is excluded because our construction cannot be applied (see beginning of section
6). We also leave out from our treatment the non-completely solvable cases for reasons
concerning the cohomology of the quotients, see [1] and [2].
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4 Solvmanifolds, semi-direct products and equivariant dual torus
bundles

LetG be a simply connected n-dimensional Lie group endowedwith a complete left-invariant
affine structurewith developingmap D : G → R

n .Without loss of generalitywemay assume
D(1G) = 0.

Note that such a group is necessarily solvable. Indeed left invariant complete affine struc-
tures on Lie groups correspond to simply transitive subgroups of Aff(Rn) (see [16]) and
these are solvable (see [3]).

Let us call α the faithful affine representation α : G → Aff(Rn) given by α(g) =
D ◦ Lg ◦ D−1 where Lg : G → G is the left-multiplication by g. Let ρ : G → GL(n, R) be
its linear part. Of course ρ need not be faithful.

Choosing a lattice (i.e. a co-compact discrete subgroup)� � G whose left multiplications,
read through D, are integral affine gives a well defined integral affine structureA to the set of
right cosets B. (Throughout the paper we will always use the non-customary notation G/�

for the quotient space with respect to action of � on G by left multiplication, that is the set
of right cosets). Of course, for such a � to exist, the group G needs to be unimodular. The
holonomy representation of this structure is the restriction of α to �.

According to the construction defined in section 2.1 we thus have a well defined lattice
�∗ ⊂ T ∗B, a Lagrangian torus fibration X = T ∗B/�∗ → B and its dual torus fibration
X̌ = T B/� → B.

We will work for simplicity on the latter. Let π : G → G/� be the canonical projection.
Let us identify B × R

n with T B via the map

(�h, v) �→ d(π ◦ Lh ◦ D−1)0 v .

Using this identification we define an action of G �ρ R
n on T B by

(g, y)(�h, v) = (�hg−1, y + ρ(g)v).

The lattice � ⊂ T B is defined as follows:

��h = Z{d(π ◦ D−1)D(h)ei : i = 1, . . . , n}
Of course here ei is thought of as an element of ThG = ThR

n = R
n . Note that the lattice is

well defined exactly because ρ(γ ) ∈ GL(n, Z) for every γ ∈ �.
Now we claim that the previous action descends to the quotient T B/�.
In order to prove it we must show that for every g ∈ G, y ∈ R

n , h ∈ G, w ∈ T�h B and
λ ∈ ��h we have

(g, y)(w + λ) − (g, y)w ∈ ��hg−1 .

Now let m = (m1, . . . ,mn) ∈ Z
n :

(g, y)(w + λ) = (g, y)(d(π ◦ Lh ◦ D−1)0 v +
∑

i

mi d(π ◦ D−1)D(h)ei )

= (g, y)(d(π ◦ Lh ◦ D−1)0 (v +
∑

i

mi (d(D ◦ Lh−1 ◦ D−1)D(h)ei ))

= d(π ◦ Lhg−1 ◦ D−1)0(y + ρ(g)v +
∑

i

mi d(α(gh−1))D(hg−1)ei )

= d(π ◦ Lhg−1 ◦ D−1)0(y + ρ(g)v +
∑

i

mi (d(D ◦ Lgh−1 ◦ D−1))D(hg−1)ei )

= (g, y)w +
∑

i

mi d(π ◦ D−1)D(hg−1)ei .
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Finally we note that the action G �ρ R
n

� T B/� is clearly transitive, and the stabilizer at
(�, 0) is exactly � �ρ Z

n .
Dualizing everything we obtain the following

Theorem 8 Let X → G/� be the torus bundle induced by the integral affine structure
defined by the triple (G, �, D). Let X̌ → G/� be its dual. Then

(1) The total space X is acted on transitively by the semidirect product G �ρ∗ (Rn)∗ with
stabilizer � �ρ∗ (Zn)∗, where ρ∗ : G → Aff((Rn)∗) is the dual representation induced
by ρ.

(2) The total space X̌ is acted on transitively by the semidirect product G�ρR
nwith stabilizer

� �ρ Z
n.

Remark 9 From the argument preceding Theorem 8 it is apparent that the same construction
can be applied in the slightly more general case in which α|� lies in the automorphism group
of a lattice � in R

n conjugated to Z
n . In this case the stabilizers mentioned in Theorem 8

will be � �ρ∗ �∗ and � �ρ �.

4.1 SU(n)-manifolds from affine structures

As above we assume that G is a simply connected n-dimensional unimodular Lie group
endowed with a complete left-invariant affine structure with developing map D : G → R

n .
Let us endow T ∗G with the Lie group structure induced by the identification T ∗G =

G �ρ∗ (Rn)∗. Let � � G be a lattice whose left multiplications, read through D, are integral
affine.

The canonical symplectic structure ω on T ∗G passes to the quotient X = T ∗B/�∗ and
the induced projection X → B (that we are going to call again π) becomes a Lagrangian
torus bundle.

In the previous section we proved that X itself is a solvmanifold under the action of
T ∗G = G �ρ∗ (Rn)∗.

Proposition 10 The canonical symplectic form ω on T ∗G = G �ρ∗ (Rn)∗ is left-invariant.

Proof The important fact is that the local action-angle coordinates r1, . . . , rn, θ1, . . . , θn
coming from Arnol’d-Liouville theorem become globally defined functions once lifted to the
universal cover X̃ which coincide with G �ρ R

n .
On X̃ globally ω = ∑

i dθi ∧ dri .
Let h = (g, v) ∈ G�ρ∗ (Rn)∗. LetLg be the n×nmatrix representing (Lg)∗ in the global

frame ∂
∂r1

, . . . , ∂
∂rn

of G = B̃. Now from the definition of the group law on G �ρ∗ (Rn)∗

one gets L∗
h(dri ) = ∑

j (Lg)
−1
j i dr j and L∗

h(dθi ) = ∑

j (Lg)i j dθ j . From this the result
immediately follows since the matrix representing L∗

h w.r.t. dr1, . . . , drn, dθ1, . . . , dθn is of

the kind

[

(AT )−1 0
0 A

]

hence symplectic. ��

Dualizing each ingredient we get a left-invariant holomorphic structure on TG = G�ρ R
n

hence on X̌ = (G �ρ R
n)/(� �ρ Z

n).

Proposition 11 The tangent bundle TG = G�ρ R
n has a canonical left-invariant integrable

complex structure.
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Proof On TG we have the global coordinates r1, . . . , rn, θ̌1, . . . , θ̌n where the θ̌k’s are the
dual coordinates corresponding to the θk’s. The coordinates zk = θ̌k + irk , k = 1, . . . , n give
TG an integrable complex structure. Nowwe prove that the complex volume �̌ = ∧n

k=1 dzk
is left-invariant on G �ρ R

n .
Let ȟ = (g, v̌) ∈ G �ρ R

n . From the definition of the group law on G �ρ∗ R
n one gets

L∗
h(d θ̌i ) = ∑

j (Lg)
−1
j i d θ̌ j . Thus thematrix representing L∗

h w.r.t.dr1, . . . , drn, d θ̌1, . . . , d θ̌n

is of the kind

[

(AT )−1 0
0 (AT )−1

]

hence complex. Moreover this lies in SL(n, C) since every

complete affine structure on a compact solvmanifold is in fact special, that is the linear part
of the transition functions lies indeed in SL(n, Z) (see [17, Theorem 2]). ��

The left-invariant symplectic structure on X and the left-invariant complex structure on
X̌ defined above only depend on the affine structure and not on the choice of D. Though
the choice of the developing map D allows us also to define distinguished left-invariant
SU(n)-structures on X and X̌ .

Let us start from the symplectic side X . For i = 1 . . . , n define ei to be the global left-
invariant 1-form on T ∗G = G �ρ∗ (Rn)∗ such that ek |e = dθk |e and ek+n |e = drk |e. Note
that in these coordinates the canonical symplectic form is ω = ∑

k ek ∧ en+k . Now set
� := ∧n

k=1(ek + iek+n). Clearly (ω,�) defines a symplectic SU(n)-structure on X .
The construction is analogous on the complex side. For i = 1 . . . , n define ěi to be the

global left-invariant 1-form on TG = G �ρ R
n such that ěk |e = d θ̌k |e and ěk+n |e = drk |e.

Note that in these coordinates the canonical complex n-form takes the expression �̌ :=
∧n

k=1(ěk + i ěk+n).
Now set ω̌ := ∑n

k=1(ěk ∧ ěk+n). Clearly (ω̌, �̌) defines a complex SU(n)-structure on X̌ .
In dimension 3 we have the following lemma that gives the link with Theorem 7.

Lemma 12 Let (X , ω) and (X̌ , �̌) be the 3-dimensional semi-flat mirror pair induced by
(G, �, D). Let ω̌ be the (1, 1) form on X̌ as above. Then the form � defined above is the
Fourier-Mukai transform of e2ω̌.

Proof It is enough to express the two relevant forms in action-angle coordinates. First set
S = L−TL−1 and η j = ∑

k S jkdrk .
Let us also introduce the following basis of (1, 0)-formsψk = ěk+i ěk+3. They are related

to the differential of complex coordinates via ψk = ∑3
k=1 L−1

k j dz j = ∑3
k=1 L−1

k j (d θ̌ j +
idr j ). Then we have

ω̌ = i

2

3
∑

i=1

ψkk̄ = i

2

3
∑

k=1

(

dzk ∧ Skj d z̄ j
) =

3
∑

k=1

d θ̌k ∧ ηk

� =
∧

k

(dθk + iηk)

Now we can do the following straightforward computation

FT (e2ω̌) = p∗
(

p∗ (

P · e2ω̌
)

∧ e
F
2i

)

= p∗
(

ei
∑3

k=1 d θ̌k∧ηk ∧ e
∑3

k=1 d θ̌k∧dθk
)

= p∗
(

e
∑3

k=1 d θ̌k∧(dθk+iηk )
)

= p∗

(

3
∧

k=1

d θ̌k ∧ (dθk + iηk)

)

=
3

∧

k=1

(dθk + iηk) = � .

��
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5 Affine 3-dimensional solvmanifolds

Up to isomorphisms there are only four simply connected unimodular solvable Lie groups
of dimension 3 (see [4]):

• The abelian Lie group (R3,+);
• The 3-dimensional real Heisenberg groupH3(R), that is the group of upper uni-triangular

3-by-3 real matrices.
• Sol3 = E(1, 1): The group of rigid motions of the Minkowski plane. Explicitly it is R

3

with the product

(x, y, z)�(x ′, y′, z′) = (x + ezx ′, y + e−z y′, z + z′).

The group may also be seen as R �μ R
2 where μ(z)(x ′, y′) = (ezx ′, e−z y′). This is

completely solvable.
A matrix representation is the following

⎛

⎜

⎜

⎝

ez 0 0 x
0 e−z 0 y
0 0 1 z
0 0 0 1

⎞

⎟

⎟

⎠

.

• Ẽ(2): The universal cover of the group of rigid motions of the Euclidean plane. Explicitly
it is R

3 with the product

(x, y, z)�(x ′, y′, z′) = (x + x ′ cos z − y′ sin z, y + y′ cos z + x ′ sin z, z + z′).

Thegroupmayalso be seen asR�μR
2 whereμ(z)(x ′, y′) = (x ′ cos z−y′ sin z, y′ cos z+

x ′ sin z). This is non completely solvable.

The lattices of such solvable groups are classified up to conjugacy in [4].
Complete left-invariant affine structures on 3-dimensional simply connected unimodular

solvable Lie groups are classified in [16].
Now we present the complete left-invariant affine structures giving rise to type IIA com-

pletely solvable solvmanifolds.

5.1 (R3,+)

The standard trivial affine structure of R
3, together with the standard lattice Z

3 ⊂ R
3 gives

rise, via the construction of section 4, to the trivial flat SU(3)- structure on the 6-dimensional
torus T 6. However it is possible to twist the affine structure ofR

3 to get a non-trivial compact
type IIA manifold.

Consider the affine structure A(R3,��) given by the following developing map:

D :
⎛

⎝

x1
x2
x3

⎞

⎠ �−→
⎛

⎝

x1
x2

x3 + x1x2

⎞

⎠ (4)

The corresponding representation α : (R3,+) → Aff(R3) is given by

α

⎛

⎝

x1
x2
x3

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ =
⎛

⎝

1 0 0
0 1 0
x2 x1 1

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ +
⎛

⎝

x1
x2

x3 + x1x2

⎞

⎠ (5)
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Choosing again the standard lattice Z
3 ⊂ R

3 we get the following affine holonomy of
T 3 = R

3/Z
3:

α

⎛

⎝

n1
n2
n3

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ =
⎛

⎝

1 0 0
0 1 0
n2 n1 1

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ +
⎛

⎝

n1
n2

n3 + n1n2

⎞

⎠ (6)

In the next section we will prove that this affine structure gives rise to the type IIA
nilmanifold corresponding to the algebra (0, 0, 0, 0, e12, e13).

5.2 H3(R)

Consider first the developing map

D : H3(R) −→ R
3

⎛

⎝

1 x1 x3
0 1 x2
0 0 1

⎞

⎠ �−→
⎛

⎝

x1
x2
x3

⎞

⎠

(7)

For g =
⎛

⎝

1 x1 x3
0 1 x2
0 0 1

⎞

⎠ and v =
⎛

⎝

v1
v2
v3

⎞

⎠ ∈ R
3 we compute α = D ◦ Lg ◦ D−1:

α(g)(v) =
⎛

⎝

1 0 0
0 1 0
0 x1 1

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ +
⎛

⎝

x1
x2
x3

⎞

⎠ . (8)

Choosing the standard lattice H3(Z) ⊂ H3(R) of matrices with integral entries we get
the following affine holonomy of the Heisenberg manifold H3(R)/H3(Z):

α

⎛

⎝

1 n1 n3
0 1 n2
0 0 1

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ =
⎛

⎝

1 0 0
0 1 0
0 n1 1

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ +
⎛

⎝

n1
n2
n3

⎞

⎠ . (9)

In the next section we will prove that this affine structure, denoted with A(H3(R),0), gives
rise to the type IIA nilmanifold corresponding again to the algebra (0, 0, 0, 0, e12, e13), but
with a choice of Lagrangian fibration different from the one obtained from the twisted affine
structure on the torus.

Consider now the following family of developing maps parametrised by λ ∈ R \ {0, 1}:

D : H3(R) −→ R
3

⎛

⎝

1 x1 x3
0 1 x2
0 0 1

⎞

⎠ �−→
⎛

⎝

x1
λx2

(λ − 1)x3 + x1x2

⎞

⎠

(10)

In this case for the affine representation α we get:

α(g)(v) =
⎛

⎝

1 0 0
0 1 0
x2 x1 1

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ +
⎛

⎝

x1
λx2

(λ − 1)x3 + x1x2

⎞

⎠ (11)
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Choosing again the standard latticeH3(Z) ⊂ H3(R)weget the following affine holonomy
of the Heisenberg manifold H3(R)/H3(Z):

α

⎛

⎝

1 n1 n3
0 1 n2
0 0 1

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ =
⎛

⎝

1 0 0
0 1 0
n2 n1 1

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ +
⎛

⎝

n1
λn2

(λ − 1)n3 + n1n2

⎞

⎠ (12)

In the next section we will prove that this family of affine structures, denoted with
A(H3(R),λ), gives rise to three inequivalent type IIA nilmanifolds, all of themwith underlying
algebra (0, 0, 0, e12, e13, e23).

5.3 E(1, 1)

Choose as developing map

D : E(1, 1) −→ R
3

⎛

⎜

⎜

⎝

ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

⎞

⎟

⎟

⎠

�−→
⎛

⎝

x1
x2
x3

⎞

⎠

(13)

Thus for g =

⎛

⎜

⎜

⎝

ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

⎞

⎟

⎟

⎠

and v =
⎛

⎝

v1
v2
v3

⎞

⎠ ∈ R
3 we have

α(g)(v) =
⎛

⎝

1 0 0
0 ex1 0
0 0 e−x1

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ +
⎛

⎝

x1
x2
x3

⎞

⎠ (14)

Let t be a real number such that et + e−t is an integer bigger than 2. We call �t the
subgroup of E(1, 1) made by the elements of the form

γ =

⎛

⎜

⎜

⎝

etn1 0 0 n2 + etn3
0 e−tn1 0 n2 + e−t n3
0 0 1 tn1
0 0 0 1

⎞

⎟

⎟

⎠

,

with n1, n2, n3 ∈ Z. It is easy to verify that �t is a lattice of E(1, 1). If we compute again
the integral affine representation α(γ )(v) we get

⎛

⎝

1 0 0
0 etn1 0
0 0 e−tn1

⎞

⎠

as linear part which does not lie in GL(3, Z). Nevertheless it is conjugate to an element of
GL(3, Z) as the following identity shows

⎛

⎝

1 0 0
0 et 0
0 0 e−t

⎞

⎠ =
⎛

⎝

1 0 0
0 1 et

0 1 e−t

⎞

⎠

⎛

⎝

1 0 0
0 0 −1
0 1 et + e−t

⎞

⎠

⎛

⎝

1 0 0
0 1 et

0 1 e−t

⎞

⎠

−1

. (15)
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Therefore, though the linear part has not integer entries, it represents an automorphism of
the lattice

�t =
〈

⎛

⎝

1
0
0

⎞

⎠ ,

⎛

⎝

0
1
1

⎞

⎠ ,

⎛

⎝

0
et

e−t

⎞

⎠

〉

Z

inside R
3. This is exactly the situation described in Remark 9.

In the next section we will prove that this affine structure, denoted with A(E(1,1),0), gives
rise to the type IIA solvmanifold corresponding to the algebra (15,−25,−35, 45, 0, 0) (see
[14]).

5.3.1 Twisted developing map for E(1, 1)

Take now as developing map

D : E(1, 1) −→ R
3

⎛

⎜

⎜

⎝

ex1 0 0 x2
0 e−x1 0 x3
0 0 1 x1
0 0 0 1

⎞

⎟

⎟

⎠

�−→
⎛

⎝

x1 + x2x3
x2
x3

⎞

⎠

(16)

Again we compute

α(g)(v) =
⎛

⎝

1 x3ex1 x2e−x1

0 ex1 0
0 0 e−x1

⎞

⎠

⎛

⎝

v1
v2
v3

⎞

⎠ +
⎛

⎝

x1 + x2x3
x2
x3

⎞

⎠ (17)

Take γ ∈ �t . If we compute α(γ )(v) we obtain as linear part
⎛

⎝

1 etn1(n2 + e−t n3) e−tn1(n2 + etn3)
0 etn1 0
0 0 e−tn1

⎞

⎠ (18)

which, again, does not lie in GL(3, Z). Nevertheless the following identities on the generators
of �t

⎛

⎝

1 0 0
0 et 0
0 0 e−t

⎞

⎠ =
⎛

⎝

1 0 0
0 1 et

0 1 e−t

⎞

⎠

⎛

⎝

1 0 0
0 0 −1
0 1 et + e−t

⎞

⎠

⎛

⎝

1 0 0
0 1 et

0 1 e−t

⎞

⎠

−1

⎛

⎝

1 1 1
0 1 0
0 0 1

⎞

⎠ =
⎛

⎝

1 0 0
0 1 et

0 1 e−t

⎞

⎠

⎛

⎝

1 2 et + e−t

0 1 0
0 0 1

⎞

⎠

⎛

⎝

1 0 0
0 1 et

0 1 e−t

⎞

⎠

−1

⎛

⎝

1 et e−t

0 1 0
0 0 1

⎞

⎠ =
⎛

⎝

1 0 0
0 1 et

0 1 e−t

⎞

⎠

⎛

⎝

1 et + e−t e2t + e−2t

0 1 0
0 0 1

⎞

⎠

⎛

⎝

1 0 0
0 1 et

0 1 e−t

⎞

⎠

−1

(19)

show that we can interpret the matrix (18) as an automorphism of the lattice �t .
In the next section we will prove that this affine structure, denoted with A(E(1,1),��),

gives rise to the type IIA solvmanifold corresponding to the algebra (16 + 35,−25 +
45, 36,−46, 0, 0) (see [14]).
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Remark 13 For the purpose of this paper we just considered the completely solvable case,
nevertheless the construction of section 4 can be successfully applied to the complete left-
invariant affine structures of E(2). This will be the subject of a forthcoming paper.

6 Semi-flat six-dimensional mirror pairs

In this section we apply Theorem 8 to build the six-dimensional Lie groups G(A) = G �ρ∗

(R3)∗ and Ǧ(A) = G �ρ R
3 where A is one of the affine structures presented in section 5.

We describe the group law and its Lie (co)algebra. Also we relate the algebras obtained with
the ones from the various classifications.

Note that we recover all of the type IIA completely solvable Lie algebras listed in table 1
except case 3. The corresponding Lie group (which is isomorphic to E(1, 1)× E(1, 1)) does
not admit a semidirect product decomposition G � R

3 giving rise to a Lagrangian fibration
with respect to the relevant symplectic structure.

We will not consider

6.1 Twisted affine structure ofT
3

6.1.1 G(A(R3,��))

The six-dimensional Lie group G(A(R3,��)) associated to the twisted affine structure of the
abelian R

3 is R
6 with the multiplication

(x1, x2, x3, y1, y2, y3)(x
′
1, x

′
2, x

′
3, y

′
1, y

′
2, y

′
3)

= (x1 + x ′
1, x2 + x ′

2, x3 + x ′
3, y1 + y′

1 − x2y
′
3, y2 + y′

2 − x1y
′
3, y3 + y′

3)

which gives the following basis of left-invariant 1-forms

e1 = dy1 + x2dy3, e2 = dy2 + x1dy3, e3 = dy3

e4 = dx1, e5 = dx2, e6 = dx3
(20)

with
de1 = −e35, de2 = −e34, de3 = 0

de4 = 0, de5 = 0, de6 = 0
(21)

The algebra obtained is isomorphic to (0, 0, 0, 0, 12, 13), see table 1.
The action-angle coordinates are

⎧

⎪

⎨

⎪

⎩

r1 = x1
r2 = x2
r3 = x3 + x1x2

,

⎧

⎪

⎨

⎪

⎩

θ1 = y1
θ2 = y2
θ3 = y3

(22)
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In these coordinates the coframe of left-invariant 1-forms rewrites as

e1 = dθ1 + r2dθ3

e2 = dθ2 + r1dθ3

e3 = dθ3

e4 = dr1

e5 = dr2

e6 = dr3 − r2dr1 − r1dr2

(23)

The induced left-invariant symplectic structure is ω = e14 + e25 + e36 = ∑3
i=1 dθi ∧dri .

Now consider the distinguished 3-form

� = (e1 + ie4) ∧ (e2 + ie5) ∧ (e3 + ie6)

induced by the choice of the developing map.
One easily verifies that d Re � = 0 and this indeed corresponds to case 1 in table 1.

6.1.2 Ǧ(A(R3,��))

The dual six-dimensional Lie group Ǧ(A(R3,��)) associated to the twisted affine structure of
the abelian R

3 is R
6 with the following multiplication

(x1, x2, x3, y̌1, y̌2, y̌3)(x
′
1, x

′
2, x

′
3, y̌

′
1, y̌

′
2, y̌

′
3)

= (x1 + x ′
1, x2 + x ′

2, x3 + x ′
3, y̌1 + y̌′

1, y̌2 + y̌′
2, y̌3 + y̌′

3 + x2 y̌
′
1 + x1 y̌

′
2)

which gives the following basis of left-invariant 1-forms

ě1 = d y̌1, ě2 = d y̌2, ě3 = d y̌3 − x1d y̌2 − x2d y̌1

ě4 = dx1, ě5 = dx2, ě6 = dx3
(24)

with differentials
dě1 = 0, dě2 = 0, dě3 = ě24 + ě15

dě4 = 0, dě5 = 0, dě6 = 0
(25)

The dual action-angle coordinates are
⎧

⎪

⎨

⎪

⎩

r1 = x1
r2 = x2
r3 = x3 + x1x2

,

⎧

⎪

⎨

⎪

⎩

θ̌1 = y̌1
θ̌2 = y̌2
θ̌3 = y̌3

(26)

In these coordinates the coframe of left-invariant 1-forms rewrites as

ě1 = d θ̌1

ě2 = d θ̌2

ě3 = dθ3 − r2d θ̌1 − r1d θ̌2

ě4 = dr1

ě5 = dr2

ě6 = dr3 − r2dr1 − r1dr2

(27)
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The induced left-invariant complex structure is induced by �̌ = (

ě1 + i ě4
)∧ (

ě2 + i ě5
)∧

(

ě3 + i ě6
) = ∧3

k=1

(

d θ̌k + idrk
)

.
Now consider the distinguished 2-form

ω̌ = ě14 + ě25 + ě36

One easily verifies that dω̌2 = 0. The algebra obtained is listed as h3 = (0, 0, 0, 0, 0, 12+
34) in table 1 of [20].

6.2 Untwisted affine structure ofH3(R)

6.2.1 G(A(H3(R),0))

The six-dimensional Lie group G(A(H3(R),0)) associated to the untwisted affine structure of
the Heisenberg group H3(R) is R

6 with the following multiplication

(x1, x2, x3, y1, y2, y3)(x
′
1, x

′
2, x

′
3, y

′
1, y

′
2, y

′
3)

= (x1 + x ′
1, x2 + x ′

2, x3 + x ′
3 + x1x

′
2, y1 + y′

1, y2 + y′
2 − x1y

′
3, y3 + y′

3)

which gives the following basis of left-invariant 1-forms

e1 = dy1, e2 = dy2 + x1dy3, e3 = dy3

e4 = dx1, e5 = dx2, e6 = dx3 − x1dx2
(28)

with
de1 = 0, de2 = −e34, de3 = 0

de4 = 0, de5 = 0, de6 = −e45 .
(29)

The algebra obtained is isomorphic to (0, 0, 0, 0, 12, 13), see table 1.
The action-angle coordinates are

⎧

⎪

⎨

⎪

⎩

r1 = x1
r2 = x2
r3 = x3

,

⎧

⎪

⎨

⎪

⎩

θ1 = y1
θ2 = y2
θ3 = y3

(30)

In these coordinates the coframe of left-invariant 1-forms rewrites as

e1 = dθ1

e2 = dθ2 + r1dθ3

e3 = dθ3

e4 = dr1

e5 = dr2

e6 = dr3 − r1dr2

(31)

The induced left-invariant symplectic structure is ω = e14 + e25 + e36 = ∑3
i=1 dθi ∧dri .

Now consider the distinguished 3-form

� = (e1 + ie4) ∧ (e2 + ie5) ∧ (e3 + ie6)

induced by the choice of the developing map.
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One easily verifies that d Re � = 0 and this again corresponds to case 1 in table 1.
As type IIAmanifoldsG(A(H3(R),0)) andG(A(R3,��)) are equivariantly isomorphic but the

Lagrangian fibrations are different. In other words the relevant compact six-dimensional type
IIA manifold X admits two inequivalent Lagrangian torus fibrations giving rise to two non-
isomorphic semi-flat mirror pairs. This is also reflected in the refined Tseng-Yau cohomology
of the two cases.

We will see in the next subsection that the two mirror complex partners are even not
diffeomorphic.

6.2.2 Ǧ(A(H3(R),0))

The dual six-dimensional Lie group Ǧ(A(H3(R),0)) associated to the untwisted affine structure
of H3(R) is R

6 with the following multiplication

(x1, x2, x3, y̌1, y̌2, y̌3)(x
′
1, x

′
2, x

′
3, y̌

′
1, y̌

′
2, y̌

′
3)

= (x1 + x ′
1, x2 + x ′

2, x3 + x ′
3 + x1x

′
2, y̌1 + y̌′

1, y̌2 + y̌′
2, y̌3 + y̌′

3 + x1 y̌
′
2)

which gives the following basis of left-invariant 1-forms

ě1 = d y̌1, ě2 = d y̌2, ě3 = d y̌3 − x1d y̌2

ě4 = dx1, ě5 = dx2, ě6 = dx3 − x1dx2
(32)

with
dě1 = 0, dě2 = 0, dě3 = ě24

dě4 = 0, dě5 = 0, dě6 = −ě45 .
(33)

The dual action-angle coordinates are
⎧

⎪

⎨

⎪

⎩

r1 = x1
r2 = x2
r3 = x3

,

⎧

⎪

⎨

⎪

⎩

θ̌1 = y̌1
θ̌2 = y̌2
θ̌3 = y̌3

(34)

In these coordinates the coframe of left-invariant 1-forms rewrites as

ě1 = d θ̌1

ě2 = d θ̌2

ě3 = d θ̌3 − r1d θ̌2

ě4 = dr1

ě5 = dr2

ě6 = dr3 − r1dr2

(35)

The left-invariant complex structure is inducedby �̌ = (

ě1+i ě4
)∧(

ě2+i ě5
)∧(

ě3+i ě6
) =

∧3
k=1

(

d θ̌k + idrk
)

.
Now consider the distinguished 2-form

ω̌ = ě14 + ě25 + ě36 .

One easily verifies that dω̌2 = 0. The algebra obtained is listed as h6 = (0, 0, 0, 0, 12, 13)
in table 1 of [20].
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Remark 14 Themirror pair arising from this affine structure is special inmany respects. First it
corresponds to the only known six-dimensional example as presented in [21, section 7]. Here
we additionally recognize that the total spaces T ∗B/�∗ and T B/� are both diffeomorphic
to the nilmanifold G/� where G is the group of matrices of the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 x1 x2 x3 0 0
0 1 x4 x5 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 x6
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and � is the lattice given by the same matrices with integral entries.
Moreover as anticipated in subsection 6.2.1 X = G/� provides an example of a type IIA

manifold having two inequivalent torus Lagrangian fibrations with two different IIB partners.

6.3 Twisted affine structure ofH3(R)

6.3.1 G(A(H3(R),��,�))

The six-dimensional Lie group G(A(H3(R),��,λ)) associated to the twisted family of affine
structures of the Heisenberg group H3(R) is R

6 with the following multiplication

(x1, x2, x3, y1, y2, y3)(x
′
1, x

′
2, x

′
3, y

′
1, y

′
2, y

′
3) =

(x1 + x ′
1, x2 + x ′

2, x3 + x ′
3 + x1x

′
2, y1 + y′

1 − x2y
′
3, y2 + y′

2 − x1y
′
3, y3 + y′

3)

A basis of left-invariant 1-forms is given by

f 1 = dy1 + x2dy3, f 2 = dy2 + x1dy3, f 3 = dy3

f 4 = dx1, f 5 = dx2, f 6 = dx3 − x1dx2
(36)

with
d f 1 = − f 35, d f 2 = − f 34, d f 3 = 0

d f 4 = 0, d f 5 = 0, d f 6 = − f 45 .
(37)

The algebra obtained is isomorphic to (0, 0, 0, 12, 13, 23), case 2 in table 1.
The action-angle coordinates are

⎧

⎪

⎨

⎪

⎩

r1 = x1
r2 = λx2
r3 = (λ − 1)x3 + x1x2

,

⎧

⎪

⎨

⎪

⎩

θ1 = y1
θ2 = y2
θ3 = y3

(38)
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In these coordinates the coframe of left-invariant 1-forms rewrites as

f 1 = dθ1 + r2
λ
dθ3

f 2 = dθ2 + r1dθ3

f 3 = dθ3

f 4 = dr1

f 5 = dr2
λ

f 6 = 1

λ − 1
dr3 − r2

λ(λ − 1)
dr1 − r1

λ − 1
dr2

(39)

The induced left-invariant symplectic structure is ωλ = ∑3
i=1 dθi ∧ dri = f 14 + λ f 25 +

(λ − 1) f 36. Note that the frame e1, . . . , e6 of section 4.1 is given by

e1 = f 1 e2 = f 2 e3 = f 3

e4 = f 4 e5 = λ f 5 e6 = (λ − 1) f 6

One easily checks that the distinguished 3-form

�λ = (e1 + ie4) ∧ (e2 + ie5) ∧ (e3 + ie6)

induced by the choice of the developing map has closed real part for every λ ∈ R \ {0, 1}.
This type IIA algebra indeed corresponds to case 2 in table 1 and appears for the first time

in [11]. According to the value of the parameter λ we obtain non-equivalent IIA algebras,
see the discussion in remark 15.

6.3.2 Ǧ(A(H3(R),��,�))

The dual six-dimensional Lie group Ǧ(A(H3(R),��,λ)) associated to the twisted family of
affine structures of the Heisenberg group H3(R) is R

6 with the following multiplication

(x1, x2, x3, y̌1, y̌2, y̌3)(x
′
1, x

′
2, x

′
3, y̌

′
1, y̌

′
2, y̌

′
3)

= (x1 + x ′
1, x2 + x ′

2, x3 + x ′
3 + x1x

′
2, y̌1 + y̌′

1, y̌2 + y̌′
2, y̌3 + y̌′

3 + x1 y̌
′
2 + x2y

′
1)

A basis of left-invariant 1-forms is given by

f̌ 1 = d y̌1, f̌ 2 = d y̌2, f̌ 3 = d y̌3 − x2d y̌1 − x1d y̌2

f̌ 4 = dx1, f̌ 5 = dx2, f̌ 6 = dx3 − x1dx2
(40)

with
d f̌ 1 = 0, d f̌ 2 = 0, d f̌ 3 = f̌ 24 + f̌ 15

d f̌ 4 = 0, d f̌ 5 = 0, d f̌ 6 = −ě45
(41)

The algebra obtained is isomorphic to h4 = (0, 0, 0, 0, 12, 14 + 23) in [20].
The dual action-angle coordinates are

⎧

⎪

⎨

⎪

⎩

r1 = x1
r2 = λx2
r3 = (λ − 1)x3 + x1x2

,

⎧

⎪

⎨

⎪

⎩

θ̌1 = y̌1
θ̌2 = y̌2
θ̌3 = y̌3

(42)
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In these coordinates the coframe of left-invariant 1-forms rewrites as

f̌ 1 = d θ̌1

f̌ 2 = d θ̌2

f̌ 3 = d θ̌3 − r2
λ
d θ̌1 − r1d θ̌2

f̌ 4 = dr1

f̌ 5 = dr2
λ

f̌ 6 = 1

λ − 1
dr3 − r2

λ(λ − 1)
dr1 − r1

λ − 1
dr2

(43)

The induced left-invariant complex structure is �̌λ = ∧3
k=1

(

d θ̌k + idrk
) = (

f̌ 1+ i f̌ 4
)∧

(

f̌ 2 + iλ f̌ 5
) ∧ (

f̌ 3 + i(λ − 1) f̌ 6
)

. Again the frame ě1, . . . , ě6 of section 4.1 is given by

ě1 = f̌ 1 ě2 = f̌ 2 ě3 = f̌ 3

ě4 = f̌ 4 ě5 = λ f̌ 5 ě6 = (λ − 1) f̌ 6
(44)

Now consider the distinguished 2-form

ω̌λ = ě14 + ě25 + ě36

One easily verifies that dω̌2
λ = 0.

Remark 15 According to the value of the parameter λwe obtain non-equivalent IIB algebras.
More precisely the Bott-Chern numbers distinguish 3 different cases:

• λ = −1. This type IIB algebra is missing in the classification of [20].
• λ = 1

2 , 2.
• λ �= −1, 1

2 , 2.

6.4 Untwisted affine structure of E(1, 1)

6.4.1 G(AE(1,1),0))

The six-dimensional Lie group G(AE(1,1),0)) associated to the untwisted affine structure of
the group E(1, 1) is R

6 with the following multiplication

(x1, x2, x3, y1, y2, y3)(x
′
1, x

′
2, x

′
3, y

′
1, y

′
2, y

′
3)

= (x1 + x ′
1, x2 + ex1x ′

2, x3 + e−x1x ′
3, y1 + y′

1, y2

+ e−x1 y′
2, y3 + ex1 y′

3)

which gives the following basis of left-invariant 1-forms

e1 = dy1, e2 = ex1dy2, e3 = e−x1dy3

e4 = dx1, e5 = e−x1dx2, e6 = ex1dx3
(45)

with
de1 = 0, de2 = −e24, de3 = e34

de4 = 0, de5 = −e45, de6 = e46
(46)
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The algebra obtained is isomorphic to (15,−25,−35, 45, 0, 0), see table 1.
The action-angle coordinates are

⎧

⎪

⎨

⎪

⎩

r1 = x1
r2 = x2
r3 = x3

,

⎧

⎪

⎨

⎪

⎩

θ1 = y1
θ2 = y2
θ3 = y3

(47)

In these coordinates the coframe of left-invariant 1-forms rewrites as

e1 = dθ1

e2 = er1dθ2

e3 = e−r1dθ3

e4 = dr1

e5 = e−r1dr2

e6 = er1dr3

(48)

The induced left-invariant symplectic structure is ω = e14 + e25 + e36 = ∑3
i=1 dθi ∧dri .

Now consider the distinguished 3-form

� = (e1 + ie4) ∧ (e2 + ie5) ∧ (e3 + ie6)

induced by the choice of the developing map.
One easily verifies that dRe � = 0 and this indeed corresponds to case 4 in table 1

6.4.2 Ǧ(A(E(1,1),0))

The dual six-dimensional Lie group Ǧ(AE(1,1),0)) associated to the untwisted affine structure
of the completely solvable E(1, 1) is R

6 with the following multiplication

(x1, x2, x3, y̌1, y̌2, y̌3)(x
′
1, x

′
2, x

′
3, y̌

′
1, y̌

′
2, y̌

′
3)

= (x1 + x ′
1, x2 + ex1x ′

2, x3 + e−x1x ′
3, y̌1 + y̌′

1, y̌2

+ ex1 y̌′
2, y̌3 + e−x1 y̌′

3)

which gives the following basis of left-invariant 1-forms

ě1 = d y̌1, ě2 = e−x1d y̌2, ě3 = ex1d y̌3

ě4 = dx1, ě5 = e−x1dx2, ě6 = ex1dx3
(49)

with
dě1 = 0, dě2 = ě24, dě3 = −ě34

dě4 = 0, dě5 = −e45, dě6 = ě46
(50)

Note that the algebra obtained is again isomorphic to (15,−25,−35, 45, 0, 0).
The dual action-angle coordinates are

⎧

⎪

⎨

⎪

⎩

r1 = x1
r2 = x2
r3 = x3

,

⎧

⎪

⎨

⎪

⎩

θ̌1 = y̌1
θ̌2 = y̌2
θ̌3 = y̌3

(51)
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In these coordinates the coframe of left-invariant 1-forms rewrites as

ě1 = d θ̌1

ě2 = e−r1d θ̌2

ě3 = er1d θ̌3

ě4 = dr1

ě5 = e−r1dr2

ě6 = er1dr3

(52)

The induced left-invariant complex structure is induced by �̌ = (

ě1 + i ě4
)∧ (

ě2 + i ě5
)∧

(

ě3 + i ě6
) = ∧3

k=1

(

d θ̌k + idrk
)

.
Now consider the distinguished 2-form

ω̌ = ě14 + ě25 + ě36

One easily verifies that dω̌2 = 0 and this case corresponds to g1 in [15, Theorem 2.8].

6.5 Twisted affine structure of E(1, 1)

6.5.1 G(A(E(1,1),��))

The six-dimensional Lie group G(A(E(1,1),��)) associated to the twisted affine structure of
the group E(1, 1) is R

6 with the following multiplication

(x1, x2, x3, y1, y2, y3)(x
′
1, x

′
2, x

′
3, y

′
1, y

′
2, y

′
3)

= (x1 + x ′
1, x2 + ex1x ′

2, x3 + e−x1x ′
3, y1 + y′

1, y2

+ e−x1 y′
2 − x3y

′
1, y3 + ex1 y′

3 − x2y
′
1)

which gives the following basis of left-invariant 1-forms

e1 = dy1, e2 = ex1dy2 + x3e
x1dy1, e3 = e−x1dy3 + x2e

−x1dy1

e4 = dx1, e5 = e−x1dx2, e6 = ex1dx3
(53)

with
de1 = 0, de2 = −e24 − e16, de3 = e34 − e15

de4 = 0, de5 = −e45, de6 = e46
(54)

The algebra obtained is isomorphic to (16 + 35,−26 + 45, 36,−46, 0, 0), see table 1.
The action-angle coordinates are

⎧

⎪

⎨

⎪

⎩

r1 = x1 + x2x3
r2 = x2
r3 = x3

,

⎧

⎪

⎨

⎪

⎩

θ1 = y1
θ2 = y2
θ3 = y3

(55)
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In these coordinates the coframe of left-invariant 1-forms rewrites as

e1 = dθ1

e2 = er1−r2r3dθ2 + r3e
r3−r1r2dθ1

e3 = e−r1+r2r3dθ3 + r2e
−r3+r1r2dθ1

e4 = dr1 − r2dr1 − r1dr2

e5 = e−r1+r2r3dr2

e6 = er1−r2r3dr3

(56)

The induced left-invariant symplectic structure is ω = e14 + e25 + e36 = ∑3
i=1 dθi ∧dri .

Now the distinguished 3-form

� = (e1 + ie4) ∧ (e2 + ie5) ∧ (e3 + ie6)

induced by the choice of the developing map has closed real part. This type IIA algebra
indeed corresponds to case 7 in table 1 and appears for the first time in [28].

6.5.2 Ǧ(A(E(1,1),��))

The dual six-dimensional Lie group Ǧ(A(E(1,1),��)) associated to the twisted affine structure
of the group E(1, 1) is R

6 with the following multiplication

(x1, x2, x3, y̌1, y̌2, y̌3)(x
′
1, x

′
2, x

′
3, y̌

′
1, y̌

′
2, y̌

′
3)

= (x1 + x ′
1, x2 + ex1x ′

2, x3 + e−x1x ′
3, y̌1 + y̌′

1 + x3e
x1 y′

2

+ x2e
−x1 y′

3, y̌2 + ex1 y̌′
2, y̌3 + e−x1 y̌′

3)

which gives the following basis of left-invariant 1-forms

ě1 = d y̌1 − x3d y̌2 − x2d y̌3, ě2 = e−x1d y̌2, ě3 = ex1d y̌3

ě4 = dx1, ě5 = e−x1dx2, ě6 = ex1dx3
(57)

with
dě1 = −ě35 − ě26, dě2 = ě24, dě3 = −ě34

dě4 = 0, dě5 = −ě45, dě6 = ě46
(58)

The dual action-angle coordinates are
⎧

⎪

⎨

⎪

⎩

r1 = x1 + x2x3
r2 = x2
r3 = x3

,

⎧

⎪

⎨

⎪

⎩

θ̌1 = y̌1
θ̌2 = y̌2
θ̌3 = y̌3

(59)

In these coordinates the coframe of left-invariant 1-forms rewrites as

ě1 = d θ̌1 − r3d θ̌2 − r2d θ̌3

ě2 = e−r1+r2r3d θ̌2

ě3 = er1−r2r3d θ̌3

ě4 = dr1 − r2dr1 − r1dr2

ě5 = e−r1+r2r3dr2

ě6 = er1−r2r3dr3

(60)
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The left-invariant complex structure is inducedby �̌ = (

ě1+i ě4
)∧(

ě2+i ě5
)∧(

ě3+i ě6
) =

∧3
k=1

(

d θ̌k + idrk
)

.
Now consider the distinguished 2-form

ω̌ = ě14 + ě25 + ě36

One easily verifies that dω̌2 = 0 and this case corresponds to g5 in [15, Theorem 2.8].

7 Table of mirror pairs

In table 2 we present all the mirror pairs of solvable Lie algebras constructed in the previous
section and the dimension of their (refined) Tseng-Yau and Bott-Chern cohomology groups.
This computation is valid also for all the corresponding compact solvmanifolds except for
the complex side of the pair arising from A(E(1,1),��), see [1, 2] where also the complete
solvability plays a role.
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