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Abstract We investigate the structure of the minimal left-
right symmetric model that enables precise predictions in
the gauge, scalar and neutrino sector. We revisit the com-
plete set of mass spectra and mixings for the charged and
neutral gauge bosons, would-be-Goldstones and gauge fix-
ing, together with the ghost Lagrangian. In the scalar sector,
we analytically re-derive all the massive states with mix-
ings and devise a non-trivial physical input scheme, express-
ing the model couplings in terms of masses and mixing
angles. Fermion couplings are also determined in closed
form, including the Dirac mixing in the neutrino sector, eval-
uated explicitly using the Cayley–Hamilton theorem. These
analytic developments are implemented in a comprehensive
FeynRules model file. We calculate the one loop QCD cor-
rections and provide a complete UFO file for NLO studies,
demonstrated on relevant hadron-collider benchmarks. We
provide various restricted variants of the model file with dif-
ferent gauges, massless states, neutrino hierarchies and parity
violating gL �= gR gauge couplings.

1 Introduction

Understanding the microscopic nature of forces and the spon-
taneous origin of mass are the two core attributes of the
Standard Model (SM) [1]. Neutrino oscillations have now
firmly established that neutrinos are massive, in contrast to
the SM, and recent significant experimental progress deter-
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mined their mixing properties to unprecedented precision.
Still, the nature of neutrino mass (Dirac vs. Majorana) and
even more importantly its origin, remain an unsolved mys-
tery of particle physics. Contrary to charged fermions, whose
origin is tightly connected to the Higgs mechanism, as the
LHC data keeps confirming [2,3], we do not know which
theoretical framework is responsible for neutrino mass gen-
eration. Another unsolved puzzle in the SM is the glaring
parity asymmetry of weak interactions. With the enduring
SM experimental success, we got used to the chiral nature
of weak interactions and are taking it for given, but the rea-
son behind it remains as unclear as it was at the time of its
discovery.

Left-right (LR) symmetry addresses both of these short-
comings within a single framework by postulating par-
ity invariance of weak interactions via interchangeable
SU (2)L × SU (2)R local symmetries, featuring new right-
handed gauge bosons WR and ZR . The need for anomaly
cancellation automatically brings in three right-handed neu-
trinos Ni=1,2,3, whose mass is tied to the spontaneous break-
ing scale of SU (2)R . Moreover, the U (1) charge assignment
becomes very simple and parity symmetric (or vector-like)
and is given by U (1)B−L .

Gauging lepton number indicates that the Higgs sector
may (and in fact does) lead to lepton number violation
(LNV), if neutrinos couple to the Higgs with a Majorana-type
Yukawa coupling. The original works addressed the issue of
parity restoration [4,5] with soft breaking, but it was soon
realized that spontaneous breaking works with both doublets
[6] and �L ,R triplets [7–10]. The latter option allows for
Majorana mass terms for heavy and light neutrinos, which
led to the celebrated seesaw mechanism [11,12] and features
LNV. We shall refer to it as the minimal left-right symmet-
ric model (LRSM). Unlike GUT-inspired seesaw scenarios
[13,14], the LRSM scale need not be much above the elec-
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troweak scale, since the interactions do not mediate proton
decay.

Indeed, prior to the advent of LHC, the most stringent con-
straints on the LRSM scale came from flavor physics. The
point here is that, as usual in gauge theories, flavor asym-
metry comes from the Yukawa sector when the bi-doublet
φ couples to quark doublets QL ,R . When LR symmetry, in
either P or C form, is imposed on the Lagrangian, Yukawa
couplings are constrained to be nearly hermitian or symmet-
ric. This implies similar flavor mixings in the quark sector
V q
R ∼ V q

L and has led to significant constraints since the
Tevatron era [10,15–17] that pushed the scale beyond direct
detection capabilities of colliders for some time. The increase
of center-of-mass energy at the LHC suffices to probe the
scales beyond the flavor constraints [18–26], which spurred
a number of collider studies, see reviews in [27–30].

Arguably the most fundamental signal one can look for is
the Keung–Senjanović(KS) [31] production of heavy Majo-
rana neutrinos through WR-mediated gauge interactions.
With even a tiny amount of data, the recast of leptoquark
searches led to a significant bound [32] that was extensively
characterized across the MWR − mN plane [33] from well
separated �±�± j j to boosted neutrino jets [34,35] with a
displaced vertex [33,36] and finally invisible N [33]. (Some
of these bounds are relaxed if CKM is different in left-
and right-handed interactions [37–39].) With enough data
it may be possible to characterize the chirality [40,41], dis-
ambiguate production channels [42], look for CP phases in
case of degeneracy [43] and include top final states [44]. At
even smaller masses, decays of hadrons and mesons become
important when a significant amount of decaying states is
available [45–47]. At very high WR masses, off-shell produc-
tion takes place [48]. Looking into the future, the reach of an
FCC-hh was estimated to be around 30 TeV [49], in agree-
ment with other studies [48,50–52]. Similarly, the potential
sensitivity of displaced vertices at lepton collider can probe
the MWR up to ∼ 26 TeV at FCC-ee and ∼ 70 TeV for a
muon collider [53].

At present, many experimental searches by CMS and
ATLAS are targetingW ′ and Z ′ resonances. Here we focus on
WR , which is lighter than ZR and thus sets the most stringent
constraint on the LR breaking scale and we only review the
most recent experimental updates. The KS channel [54,55]
searches are looking for resolved as well as boosted (but
prompt) topologies of N decays. In the low mN regime, the
WR → �N channel is equivalent to W ′ → �ν, because N
becomes long-lived enough to decay outside of the detector.
One can then recast both leptonic (e, μ) [56,57] as well as τ

final states [58–60]. In the LR symmetric case, the CKM in
the left and right-handed sectors are similar and one has direct
limits from dijet [61,62] and tb resonance [63,64] searches.
The final state topologies here are clearly independent of mN

and so is the resulting limit on MWR , apart from the slight

suppression of the Br when N channels open up. Finally, WR

can decay to SM gauge bosons W, Z and Higgs h, leading
to further dedicated searches [65,66].

The imposition of LR-symmetry has important ramifica-
tions in the leptonic sector, such as μ → eγ , which was
the original motivation for seesaw [11]. When the triplet
Yukawa couplings are restricted to a near-hermitian or sym-
metric form, Dirac and Majorana couplings become directly
related. In the case of C [67] this connection allows one to
calculate the Dirac mass in terms of Majorana masses, via a
square root of a matrix. The new analytic solution found in
this work gives a direct insight into the Dirac-Majorana con-
nection from colliders, where Majorana masses may be mea-
sured, and connect it to any Dirac-mediated process. These
processes appear either at colliders [67–70], nuclear 0ν2β

[12,71–74], electron EDMs or radiative decays, and may be
relevant for dark matter searches [75–77]. The connection
becomes rather involved in the case of P [78,79] and one
can resort to numerical algorithms [80] to invert it.

The primary focus of LHC studies has been on the
gauge sector, looking for a massive TeV scale WR reso-
nance in the s-channel and the associated Majorana neu-
trino [20,28,32,33,42]. On the other hand, the Higgs sector
is of fundamental importance for experimentally establish-
ing the spontaneous mass origin of heavy neutrinos from
�R Yukawa coupling to N . The scalar sector was intro-
duced in [6,7] and analyzed in follow-up studies [81–85]
to the more recent works [86–89] with emphasis on pertur-
bativity [90–92], vacuum stability [93–95] and gravitational
waves [96,97]. Our approach is to start from physical quanti-
ties, masses and mixing angles and use them to compute the
potential couplings. We therefore revisit and re-derive the
minimization conditions and compute the spectrum to give a
closed form solution for the potential parameters in terms of
physical inputs.

There are two simplifying assumptions that we make in
the entire analysis. The first regards the vev of �L , which
has to be small for phenomenological reasons, limited to
vL � GeV by the ρ parameter. For the most part of our dis-
cussion we set vL = 0, which simplifies the diagonalization
of the scalar mass spectra without a significant impact on
the eigenvalues and phenomenology. The other assumption
regards the two quartic couplings of the bi-doublet, which
we take to be related by λ2 = 2λ3. This removes a part
of the mixing between the scalar and pseudo-scalar compo-
nents and drastically simplifies the neutral mass matrix, thus
allowing for analytic diagonalization without significant phe-
nomenological impact of additional CP violation in the heavy
scalar sector.

The most fundamental conceptual goal in the Higgs sec-
tor, at least in relation to neutrino mass origin, is to prove the
spontaneous origin of the heavy N masses. In this mechanism
the decay rate of �R → NN is proportional to mN , which
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can be measured kinematically, just like �h→ f f ∝ m2
f in the

SM, where m f are already known. The two scalars h and �R

can mix and we get both h → NN from the 125 GeV reso-
nance [98] and/or a sizeable production of �R → NN at the
unknown m� [93]. Such signals of Majorana Higgses would
finalize the program of determining the neutrino mass origin
and complete the microscopic picture of massive neutrinos.

The rest of the Higgs sector is also conceptually interesting
but phenomenologically challenging [89,90]. The scalar H ,
pseudoscalar A and singly charged H+ from the bi-doublet φ
can all mediate FCNCs at tree level and therefore have to be
quite above the TeV scale. They are unlikely to be accessible
at the LHC but might be visible at future colliders [92]. If WR

were light enough to be seen at the LHC, the entire �L would
be somewhat split [90] and would appear mainly in cascade
decays [99]. The doubly charged �++

R may be produced in
association with WR [100] and would lead to additional LNV
final states [101,102] or long-lived dE/dx signatures [103].

Clearly, there is plenty of rich and conceptually relevant
phenomenology to be studied in the context of the LRSM, at
colliders, low energies (T2K [47], SHiP [104] and FASER
[105]) and in cosmology. To ease such studies it is desir-
able to have a complete analytical model solution and pos-
sibly a consistent implementation in a model file. This is
precisely the purpose of this work, where we solve analyti-
cally the model and provide an implementation within Feyn-
Rules (FR) [106,107] and related UniversalFeynmanOut-
put (UFO) versions [108,109].

We collect and re-derive all the parts of the LRSM,
starting from covariant derivatives and gauge eigen-states,
together with would-be-Goldstones and ghosts, implement-
ing a switch between the Feynman and unitary gauge. A study
of renormalization was performed in the gauge sector [110]
and in the Higgs sector [88] at one loop. An earlier tree-level
implementation of the LRSM can be found in [111] with
arbitrary Yukawa couplings and no mixing in the scalar sec-
tor. In the context of seesaw, there are available model files
at NLO for type I seesaw/singlets [112], type II [113] and
type III [114], as well as effective W ′/Z ′ model [115,116]
and the Weinberg operator [117].

In this work we pay special attention to the scalar sector
and derive anew analytic expressions for masses and mixings,
providing a new physical input scheme and perturbativity
constraints. We take into account the symmetry-imposed fla-
vor structure in the quark sector, leading to symmetric CKM
mixings and calculable Yukawa matrices of the extended
Higgs sector to fermions. In the neutrino sector we focus in
detail on the Majorana–Dirac connection and implement the
heavy-light neutrino mixing by devising an explicit closed
form solution for the root(s) using the Cayley–Hamilton the-
orem. This is the first time that a complete and calculable
heavy-light neutrino mixing is implemented in a model file,
including the current neutrino oscillation data.

Finally, we obtain the QCD one loop counter-terms and
provide, for the first time, the complete LRSM at NLO, which
enhances and simplify future collider studies. We demon-
strate the use of the model file on a number of benchmarks that
exemplify these developments and quantify, in some cases for
the first time, the reduction of uncertainties in LNV signals
at the LHC and beyond.

The paper is organized as follows: in Sect. 2 we intro-
duce the minimal LRSM with the relevant fields. We dis-
cuss each of its sectors in a separate sub-section, going
from gauge bosons and would-be-Goldstones in Sect. 2.1
to scalars Sect.2.2 (including the inversion of couplings
Sect.2.3), fermions Sect.2.4 and finishing with ghosts in
Sect.2.5. The Sect. 3 is dedicated to the variant of the model
with different gauge couplings. The core of the implementa-
tion of the model file is laid out in Sect. 4 and the QCD NLO
corrections are computed in Sect. 4.2. Some phenomenolog-
ically relevant benchmarks are given in Sect. 5, while the
summary and outlook is done in Sect. 6. The Appendix A
explains the Cayley–Hamilton approach used to obtain an
analytic closed form of the square root of a matrix.

2 The minimal left-right symmetric model

The minimal left-right symmetric model is based on a parity
symmetric gauge group

GLR = SU (3)c ⊗ SU (2)L ⊗ SU (2)R ⊗U (1)B−L , (1)

where some discrete symmetry interconnects the two
SU (2)L ,R gauge groups. These two groups are assumed to
have the same gauge couplings at some energy scale. We shall
be somewhat agnostic about this and first take gL = gR = g
for simplicity. Later on we generalize to gL �= gR , which
turns out not to be a very drastic change. The gauge coupling
of the remaining U (1)B−L is g′.

In the minimal LRSM, parity and the gauge symmetry
are broken spontaneously in the scalar sector, featuring a bi-
doublet φ = (1, 2, 2, 0) and two triplets �L = (1, 3, 1, 2),
�R = (1, 1, 3, 2) under GLR ,

φ =
(

φ0∗
1 φ+

2
φ−

1 φ0
2

)
, �L ,R =

(
�+√

2
�++

�0 −�+√
2

)

L ,R

. (2)

The spontaneous symmetry breaking, which leaves unbroken
only the electric charge generator

Q = T3L + T3R + B − L

2
, (3)

follows from the vevs of the neutral components,

〈φ〉 =
(

v1 0
0 −eiαv2

)
, 〈�L ,R〉 =

(
0 0

vL ,R 0

)
, (4)
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where

v2 = v2
1 + v2

2 and 0 ≤ tan β = v2

v1
< 1 , (5)

and we assumed v1 > v2 without loss of generality.
These vevs are quite hierarchical

vL � GeV , v = 174 GeV , vR � TeV , (6)

and generate the masses of all the states: the gauge and Higgs
bosons as well as fermions. The SM-like gauge bosonsWL , Z
are on the order of v and so is the Higgs boson h. The RH
gauge bosons WR, ZLR are heavy, on the order of vR and
so are most of the remaining scalars in �L ,R and the mass
eigenstates H, A, H± from the bi-doublet. Of course, the
photon remains massless, while the Goldstones are initially
massless and then get their unphysical masses from gauge
fixing.

The fermions come in LR symmetric doublet representa-
tions

QL ,R =
(
u
d

)
L ,R

, LL ,R =
(

ν

�

)
L ,R

, (7)

with the usual three family copies. The appealing feature of
this setup is that the three RH neutrinos νR are required by
anomaly cancellation. In the LRSM, all the fermion masses
come from spontaneous breaking of the two SU (2) groups,
meaning their masses are a product of Yukawa couplings and
vevs. For O(1) Yukawa couplings, the Dirac masses are on
the order of v, the Majorana mass for νR is O(vR), while the
light neutrinos νL get their Majorana mass as a combination
of v2/vR and vL terms (combination of type I and type II
seesaw).

In the following Sect. 2.1 we compute the gauge boson
masses and mixings and derive the required gauge fixing
terms. Then we focus on the scalar sector, which includes
the Goldstones and the physical states. We shall calculate
the mass spectra, define an input scheme and compute the
parameters of the potential in terms of masses and mixings.

2.1 Gauge sector

Gauge boson masses and mixings. Let us begin with the cal-
culation of the gauge boson mass spectrum in the LRSM.
The canonical kinetic terms for complex scalar fields are

Lkin = |Dφ|2 + |D�L |2 + |D�R |2 , (8)

with

Dφ = ∂φ − ig (ALφ − φAR) , (9)

D�i = ∂�i − ig [Ai ,�i ] − ig′B�i , (10)

where i = L , R and the gauge and Lorentz indices are
suppressed. The gauge bosons fields in the flavor basis are
Ai = Aa

i σ a/2, A±
i = (A1

i ∓ i A2
i )/

√
2, with implied sum

over the repeated indices a = 1, 2, 3.
The signs of the gauge coupling terms in the covariant

derivatives (9) and (10) are not uniquely defined, as is the case
for the SM [118]. The convention above is chosen to match
the SM-like decoupling limit, such that when tan β → 0,
the φ1 takes on the role of the SM Higgs and has the usual
covariant derivative. One also has to keep a consistent choice
of signs between the bi-doublet φ and �R . None of these
considerations affect the gauge boson mass calculation, they
only come into play when we consider the gauge fixing that
has to remove the mixed generic V ∂φ terms.

Gauge boson masses and mixings. Covariant derivatives
in (9) and (10) generate the gauge boson mass matrices for
charged and neutral gauge bosons

(
A−
L A−

R

)
M2

WLR

(
A+
L

A+
R

)

= (
W−

L W−
R

) (M2
WL

0
0 M2

WR

)(
W+

L

W+
R

)
.

(11)

The hermitian mass matrix M2
WLR

in the gauge basis is

M2
WLR

= g2

2
v2
R

(
ε2 e−iαε2s2β

eiαε2s2β 2 + ε2

)
, (12)

with the short-hands sx = sin(x), cx = cos(x) and tx =
tan(x). We introduced the dimensionless ratio of vevs

ε = v

vR
, (13)

which needs to be small on phenomenological grounds.
We compute the eigenvalues and expand them in ε

MWL � gv√
2

, MWR � gvR

(
1 + ε2

4

)
. (14)

We drop higher order corrections of the order of ε4 in both
the M2

WL
and M2

WR
. Specifically, the ε2 term in M2

WR
is of

the same order as M2
WL

.
To get from the gauge/flavor to the mass basis

(
A+
L

A+
R

)
= UW

(
W+

L
W+

R

)
, (15)

we have the following 2D unitary rotation matrix

UW =
(

cξ sξ e−iα

−sξ eiα cξ

)
, (16)
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with the mixing angle given by

sξ � ε2

2
s2β � M2

WL

M2
WR

s2β . (17)

The W− states get rotated with U∗
W , such that

U †
WM2

WLR
UW =

(
M2

WL
0

0 M2
WR

)
. (18)

We move on to neutral gauge bosons between the follow-
ing bases

(
A3L A3R B

)
M2

ZLR

⎛
⎝A3L

A3R

B

⎞
⎠

= (
A ZL ZR

)⎛⎝0 0 0
0 M2

Z 0
0 0 M2

ZLR

⎞
⎠
⎛
⎝ A
ZL

ZR

⎞
⎠ ,

(19)

where the symmetric mass matrix in the gauge basis is given
by

M2
ZLR

= g2

2
v2
R

⎛
⎝ ε2 −ε2 0

−ε2 4 + ε2 −4r
0 −4r 4r2

⎞
⎠ , r = g′

g
. (20)

This is a real matrix (no CP phases) that does not depend on
tβ , and its eigenvalues can be expanded in ε

MA = 0 , MZ � gv√
1 + 1

1+2r2

, (21)

MZLR � gvR
√

2(1 + r2)

(
1 + ε2

8
(
1 + r2

)2
)

. (22)

One way to define the weak mixing angle is through the ratio
of gauge boson masses at leading order in ε

cw = MWL

MZL

∣∣∣∣O(ε0)

, (23)

which in turn determines the ratio

r = sw√
c2w

�
√√√√ M2

WL

2M2
WL

− M2
ZL

− 1 � 0.63. (24)

From (22) one then recovers the prediction

MZLR

MWR

�
√

2c2
w

c2w

(
1 + ε2

8

c2
2w

c4
w

)
� 1.67. (25)

With these definitions, the real orthogonal matrix OZ that
takes us from the flavor to the mass basis,

⎛
⎝A3L

A3R

B

⎞
⎠ = OZ

⎛
⎝ A
ZL

ZR

⎞
⎠ , (26)

is found at second order in ε to be

OZ =
⎛
⎜⎝

sw −cw 0

sw swtw −
√
c2w

cw√
c2w

√
c2wtw tw

⎞
⎟⎠

+ ε2

4

⎛
⎜⎜⎜⎜⎜⎝

0 0
c3/2

2w

c3
w

0 − c2
2w

c5
w

− c3/2
2w t2w
c3
w

0
c3/2

2w tw
c4
w

− c2
2w tw
c4
w

⎞
⎟⎟⎟⎟⎟⎠

. (27)

This concludes the analysis of the gauge boson spectrum.
Goldstones and gauge fixing. To complete the descrip-

tion of massive gauge bosons with spontaneous symmetry
breaking, we need to address the would-be-Goldstone (wbG)
boson sector. Prior to gauge fixing, these appear as massless
states of the scalar mass matrices. In the SM there is only one
neutral and one charged wbG, however in theories with an
extended scalar sector, like the LRSM, there are more such
states and they typically mix. Thus we get degenerate zeroes
and additional freedom of rotation between massless states.

In the case of the LRSM, we are dealing with two charged
wbG modes for the WL ,R and two neutral ones for Z , ZLR

gauge bosons, thus this freedom comes as one mixing angle
for each sector. These angles are not arbitrary, because the
proper wbG mode has to couple derivatively and in propor-
tion to the corresponding gauge boson mass, i.e. MV (V ∂φ).
In other words, one needs to isolate the proper wbG mode for
each gauge boson. Eventually, we will add the gauge fixing
terms in the mass basis, which cancel the derivative mixed
terms and generate the usual gauge dependent propagators
for vectors and wbGs.

We discuss first the singly charged states and derive their
mass matrix. It comes from the mixed second derivatives of
the potential d2V/(dφ+

i dφ−
j ), evaluated at its minimum. The

minimization is described in the scalar sector section below.
We use the following basis

(
φ−

1 φ−
2 �−

R

)
M2+

⎛
⎝φ+

1
φ+

2
�+

R

⎞
⎠

= (
ϕ−
L H− ϕ−

R

)⎛⎝0 0 0
0 m2

H+ 0
0 0 0

⎞
⎠
⎛
⎝ϕ+

L
H+
ϕ+
R

⎞
⎠ ,

(28)

where we dropped the �±
L , because of the negligible vL .
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The singly charged mass matrix and its only nonzero
eigenvalue are given by

M2+ = α3v
2
R

⎛
⎜⎜⎜⎝

s2
β

c2β
−e−iα t2β

2 −εe−iα sβ√
2

−eiα
t2β

2
c2
β

c2β
ε
cβ√

2
−εeiα

sβ√
2

ε
cβ√

2
ε2 c2β

2

⎞
⎟⎟⎟⎠ , (29)

mH+ �
√

α3

c2β

vR

(
1 + ε2

c3/2
2β

4

)
. (30)

As expected, there are two zero modes in (28) that are eaten
up by the SM-like WL and the new WR .

One can diagonalize M2+ in (29) by two subsequent rota-
tions. However, this is not enough: after this diagonaliza-
tion and after performing the UW rotation among WL ,R , the
mixed derivative terms, coming from (9) and (10), are still
off-diagonal. In particular, while both W−

L ,R∂H+ terms van-

ish as they should, the other four combinations W−
L ,R∂ϕ+

L ,R

between incompletely rotated ϕ+
L ,R are all there. We need to

perform one final rotation between wbGs to get rid off the
two off-diagonal terms, which finally extracts the canonical
would-be-Goldstone modes.

Combining all the rotations, we get the complete transfor-
mation of the charged scalars

⎛
⎝φ+

1
φ+

2
�+

R

⎞
⎠ = U+

⎛
⎝ϕ+

L
H+
ϕ+
R

⎞
⎠ , (31)

where the unitary matrix U+ is given by three subsequent
rotations and can also be expanded in ε,

U+ =
⎛
⎝ cβ −e−iαsβ 0
eiαsβ cβ 0

0 0 1

⎞
⎠
⎛
⎜⎜⎝

1 0 0

0 −1 + 1
4 ε2c2

2β

εc2β√
2

0 − εc2β√
2

−1 + 1
4 ε2c2

2β

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

1 − 1
4 ε2s2

2β 0
εs2β√

2
0 1 0

− εs2β√
2

0 1 − 1
4 ε2s2

2β

⎞
⎟⎟⎠ �

⎛
⎝ cβ e−iαsβ 0
eiαsβ −cβ 0

0 0 −1

⎞
⎠

+ ε√
2

⎛
⎝ 0 0 e−iαsβ

0 0 cβ
eiαs2β −c2β 0

⎞
⎠

+ ε2

2

⎛
⎜⎝

−4cβ s
4
β −e−iαsβc

2
2β 0

−4eiαsβc
4
β cβc

2
2β 0

0 0 1

⎞
⎟⎠ , (32)

which is unitary up to O(ε2).
After performing all the rotations with UW and U+, we

end up with canonical wbGs that have derivative couplings
proportional to the corresponding gauge boson masses

Lkin � −i
∑

i=L ,R

MWiW
−
i ∂ϕ+

i . (33)

The final step is to add the gauge fixing terms, which come
in the usual form, written in the mass basis

Lgf � −
∑

i=L ,R

1

ξWi

F+
i F−

i , (34)

F+
i = ∂W+

i + iξWi MWi ϕ
+
i . (35)

After expanding all the terms in Lgf and integrating by parts,
the mixed V ∂ϕ terms in (33) cancel away. The remaining
terms in (34) give the standard Rξ propagators for the W ’s
and wbGs.

In the neutral sector, the procedure of setting up the wbG
rotations and fixing the gauge goes along the same lines. The
major additional complication is that there are more neutral
states that mix and computing their eigenvalues and mixings
becomes a bit more tedious. However, it is fairly simple to
isolate the wbG modes away from the massive scalars and
complete all the rotations in the gauge-wbG sector. The fol-
lowing field substitution in (2) gets the job done

φ10 = v1 + 1√
2

(
cβϕ10 + sβe

−iαϕ20

)
, (36)

φ20 = −v2e
iα + 1√

2

(
cβϕ20 − sβe

iαϕ10

)
. (37)

With this rotation, the �(ϕ10) and �(�0
R) decouple from the

other neutral scalars and they both have a zero eigenvalue.
However, their derivative couplings are still off-diagonal, so
we need to perform one final 2D rotation to get to the diagonal
neutral wbG states

(�(ϕ10)

�(�0
R)

)
= Oϕ

(
ϕ0
L

ϕ0
R

)
, (38)

Oϕ = I2 − iσ2

2
(
1 + r2

)ε − I2

8
(
1 + r2

)2 ε2. (39)

Here, I2 is the 2D identity matrix and σ2 is the usual Pauli
matrix. The resulting mixed derivative terms are now diago-
nal and proportional to the neutral gauge boson masses

Lkin � −
∑

i=L ,R

MZi Zi∂ϕ0
i . (40)

Again, they get cancelled by the terms that complete the
gauge fixing

Lgf � −
∑

i=L ,R

1

2ξZi
F2
Zi , FZi = ∂Zi + ξZi MZi ϕ

0
i , (41)

which also give the canonical Rξ propagators for the neutral
gauge bosons and wbGs.
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2.2 Scalar sector

The scalar potential of the LRSM comprises all possible bi-
linear and quartic terms of the scalar fields, obeying the gauge
symmetry, and one discrete LR symmetry, either P or C:

V = −μ2
1

[
φ†φ

]
− μ2

2

([
φ̃φ†

]
+
[
φ̃†φ

])

− μ2
3

([
�

†
L�

†
L

]
+
[
�

†
R�

†
R

])

+ λ1

[
φ†φ

]2 + λ2

([
φ̃φ†

]2 +
[
φ̃†φ

]2
)

+ λ3

[
φ̃φ†

] [
φ̃†φ

]
+ λ4

[
φ†φ

] ([
φ̃φ†

]
+
[
φ̃†φ

])

+ ρ1

([
�

†
L�

†
L

]2 +
[
�

†
R�

†
R

]2
)

+ ρ2

([
�

†
L�

†
L

] [
�

†
L�

†
L

]
+
[
�

†
R�

†
R

] [
�

†
R�

†
R

])

+ ρ3

[
�

†
L�

†
L

] [
�

†
R�

†
R

]

+ ρ4

([
�

†
L�

†
L

] [
�

†
R�

†
R

]
+
[
�

†
L�

†
L

] [
�

†
R�

†
R

])

+ α1

[
φ†φ

] ([
�

†
L�

†
L

]
+
[
�

†
R�

†
R

])

+
(
α2

([
φ̃φ†

] [
�

†
L�

†
L

]
+
[
φ̃†φ

] [
�

†
R�

†
R

])
+ h.c.

)

+ α3

([
φφ†�

†
L�

†
L

]
+
[
φ†φ�

†
R�

†
R

])

+ β1

([
φ�

†
Rφ†�

†
L

]
+
[
φ†�

†
Lφ�

†
R

])

+ β2

([
φ̃�

†
Rφ†�

†
L

]
+
[
φ̃†�

†
Lφ�

†
R

])

+ β3

([
φ�

†
R φ̃†�

†
L

]
+
[
φ†�

†
L φ̃�

†
R

])
, (42)

where φ̃ = σ2φ
∗σ2 and the square brackets imply the trace

over field components. In the following, we set for simplicity
βi � 0, which sets vL = 0 and remains small; this is a
technically natural assumption.

The P or C discrete symmetries further constrain the cou-
pling constants.

The case of P . With this choice, the scalars transform as

P : φ → φ† , �L ↔ �R, (43)

and all the couplings in the potential must be real except for
α2, which carries a phase eiδ2 .

The minimization conditions can be interpreted as deter-
mining the μi in terms of the vevs and quartic couplings:

μ2
1 = 2

(
λ1 + s2βcαλ4

)
v2 +

(
α1 − α3

s2
β

c2β

)
v2
R , (44)

μ2
2 = (

s2β (2c2αλ2 + λ3) + λ4
)
v2

+ 1

2cα

(
2cα+δ2α2 + α3

t2β

2cα

)
v2
R , (45)

μ2
3 =

(
α1 +

(
2cα+δ2α2s2β + α3s

2
β

))
v2 + 2ρ1v

2
R . (46)

where vL is neglected, since vL � v � vR . In fact, one has

vL = ε2vR(
1 + t2

β

)
(2ρ1 − ρ3)

(
−β1tβ cos(α − θL)

+ β2 cos(θL) + β3t
2
β cos(2α − θL)

)
.

(47)

The derivative with respect to α connects it to the only CP
phase δ2:

α2sδ2 = sα
4

(
α3t2β + 4 (λ3 − 2λ2) s2βε2

)
. (48)

The case of C. This acts as

C : φ → φT , �L ↔ �∗
R . (49)

This choice allows for additional complex phases in the
potential. In particular, the couplings μ2, λ2, λ4, ρ4 and βi are
now complex, introducing seven new CP violating phases.
The minimization conditions described above also change
accordingly.

However, for collider studies, these additional phases do
not lead to relevant new features, while spoiling the exact
solvability of the scalar spectrum that we achieve below.
Therefore, in the present work we retain the single CP phase
δ2 as in the case of P . Similarly, we can consider the limit of
vanishing vL , and accordingly we set βi → 0.

2.2.1 Doubly charged �++
R and the entire �L triplet

In the vL → 0 limit, the doubly charged �++
R and �L triplet

of states do not mix with other scalars, and their mass matrix
is diagonal to begin with. The simplest is

m2
�++

R
= v2

R

(
4ρ2 + c2β

c4
β

α3ε
2

)
, (50)

and the �L triplet masses are given by

m2
�0

L
= v2

R

[
ρ3 − 2ρ1 + ε2α3 s2β t2β s2

α

]
= m2

χ0
L
, (51)

m2
�+

L
= v2

R

[
ρ3 − 2ρ1 + ε2α3

(
s2β t2β s2

α + c2β

2

) ]
, (52)

m2
�++

L
= v2

R

[
ρ3 − 2ρ1 + ε2α3

(
s2β t2β s2

α + c2β

) ]
, (53)

where clearly the four states within the �L triplet are degen-
erate up to ε2 corrections. These relations can be readily
solved for e.g. ρ2 and ρ3 in terms of two masses, m�++

R
,

m�L , as we do below. The remaining three masses within
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the �L triplet are then predicted and follow the known sum
rule [99]

m2
�++

L
− m2

�+
L

= m2
�+

L
− m2

�0
L

= v2α3
c2β

2
. (54)

2.2.2 Singly charged states (H+ and the Goldstones of
WL ,R)

From the three singly charged states �+
1 , �+

2 , �+
R , one finds

two Goldstones relative to W+
L and W+

R , and only one mas-
sive singly charged state, with mass

m2
H+ = v2

R
α3

c2β

(
1 + c2

2β

2
ε2

)
. (55)

The unitary rotation from the unphysical to the physical basis
was described in (28) and (32).

2.2.3 Neutral states (h, �, H, A plus the two Goldstones of
ZL , ZR)-restriction λ3 = 2λ2

After the tβ demixing in (36), the neutral goldstone bosons
are decoupled from the neutral massive states {�ϕ10,��R,

�ϕ20,�ϕ20}. Their mass matrix is then diagonalized to yield
the mass eigenstates {h,�, H, A}.

It is convenient to restrict to λ3 = 2λ2, which removes a
tiny and phenomenologically irrelevant CP-violating mixing
between the H and A states, and allows for almost exact
diagonalization. The 4 × 4 squared mass matrix becomes, in
units of v2

R ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4ε2
(

λ1 + 4tcα
(
λ4
(
t2+1

)+4λ2tcα
)

(t2+1)
2

)
2ε

(
α1 − t X

(
t3+t−2η2cα

)
(t2+1)

2

)
4ε2

(
t2c2α−1

)(
λ4
(
t2+1

)+8λ2tcα
)

(t2+1)
2

4t2ε2s2α

(
λ4
(
t2+1

)+8λ2tcα
)

(t2+1)
2

2ε

(
α1 − t X

(
t3+t−2η2cα

)
(t2+1)

2

)
Y

2Xε
(
t2c2α−1

)
η2

(t2+1)
2

2t2Xεs2αη2

(t2+1)
2

4ε2
(
t2c2α−1

)(
λ4
(
t2+1

)+8λ2tcα
)

(t2+1)
2

2Xε
(
t2c2α−1

)
η2

(t2+1)
2 X + 16λ2ε

2
(
t2c2α−1

)2
(t2+1)

2
16λ2t2ε2s2α

(
t2c2α−1

)
(t2+1)

2

4t2ε2s2α

(
λ4
(
t2+1

)+8λ2tcα
)

(t2+1)
2

2t2Xεs2αη2

(t2+1)
2

16λ2t2ε2s2α

(
t2c2α−1

)
(t2+1)

2 X + 16λ2t4ε2s2
2α

(t2+1)
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(56)

where for compactness we defined X ≡ 1+t2

1−t2
α3, Y ≡ 4ρ1,

t ≡ tβ , and η2 ≡ t sin(α + δ2)/ sin δ2.

The diagonalization proceeds in two steps.

• We first notice that the 2-1 entry, driving the mixing θ

of the SM higgs with the unphysical � (i.e. h–��R) is
constrained by exotic and invisible Higgs decay searches
to be phenomenologically small: | sin θ | < 20% [119].
The two lower entries are also small, ∼ ε2. Thus, all three
entries can be cleaned with rotations at leading order. This
isolates the Higgs eigenvalue, which can be expressed in
terms of the h–��R mixing angle θ (reported below)

m2
h = v2

(
4λ1 + 64λ2t2c2

α(
t2 + 1

)2 + 16λ4tcα

t2 + 1
− Y θ̃2

)
, (57)

where we use the shorthand θ̃ ≡ θ/ε � O(1).
• Then, remarkably thanks to the λ3 = 2λ2 restriction, the

remaining 3 × 3 block is diagonalized exactly by two
rotations, in the 3 − 4 and 2 − 3 planes, instead of three.
This isolates the last three mass eigenvalues, in terms of
the 3 − 4 rotation.

The simplest eigenvalue belongs to the pseudoscalar,
which we used to compactify the notation

m2
A = v2

R X , X ≡ 1 + t2

1 − t2 α3. (58)

It is clearly degenerate with H+, see (55), up to ε2 terms.

The remaining states, after this and the SM Higgs in (57),
are the neutral triplet and the heavy scalar
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m2
� = v2

R

[
Y + sec(2η)

[
(Y − X)s2

η + ε2

(
Y θ̃2c2

η − 16λ2
(
t4 − 2c2αt2 + 1

)
(
t2 + 1

)2 s2
η

)]]
, (59)

m2
H = v2

R

[
X − sec(2η)

[
(Y − X)s2

η + ε2

(
Y θ̃2s2

η − 16λ2
(
t4 − 2c2αt2 + 1

)
(
t2 + 1

)2 c2
η

)]]
. (60)

Here we list the subsequent orthogonal rotations, comple-
menting the neutral GB rotations defined in (39):

θ ≡ ε θ̃ ≡ θ21 = ε

2 α1 − 2 X t

(
t

1+t2
− 2 η2 cα

(t2+1)
2

)

Y − 4 ε2
(
λ1 + 16λ2

t2 c2
α

(t2+1)2 + 4λ4
t cα
t2+1

) (61)

φ ≡ ε2φ̃ ≡ θ31 = ε2

(
t2c2α − 1

)
(t2 + 1)2

[
32 t cαλ2 + 4 λ4(t2 + 1)

X
− 2 θ̃ η2

]
, (62)

θ41 = ε2 t2s2α(
t2 + 1

)2
[

32 t cαλ2 + 4 λ4(t2 + 1)

X
− 2 θ̃ η2

]
, (63)

θ34 = tan−1
(

t2s2α

t2c2α − 1

)
, (64)

η ≡ θ23 = −1

2
tan−1

⎡
⎢⎢⎣ 4 X ε

√
t4 − 2c2αt2 + 1 η2(

t2 + 1
)2 (

Y θ̃2ε2 − 16(t4−2c2α t2+1)λ2ε2

(t2+1)
2 − X + Y

)
⎤
⎥⎥⎦ . (65)

The combined rotation for neutral scalars that relates the
unphysical to the mass basis is thus⎛
⎜⎜⎝

�ϕ10

��R

�ϕ20

�ϕ20

⎞
⎟⎟⎠ = ON

⎛
⎜⎜⎝
h
�

H
A

⎞
⎟⎟⎠ , (66)

with ON = O21O31O41O34O23, where each

Oi j =
(
cθi j −sθi j
sθi j cθi j

)
(67)

acts in the (i, j) subspace, with angle θi j from (61)–(65).
The first angle has to be small by Higgs decay constraints.

This implies e.g. a small α1. In case one considers a light m�

to the EW scale or below, Y � ε2, the ε2 correction in the
denominator of Eq. (61) becomes important. The numerator
has clearly to be even smaller.

The last angle η instead can be O(1), provided X − Y are
degenerate to O(ε), which corresponds to a H − A degener-
acy of the order of 500 GeV or less.

In the next section all previous expressions for mixings
and for masses are inverted so that couplings are expressed
in terms of chosen physical quantities.

In particular, with the above convention, the interesting
angles can be defined as

h part of ��R : θ ≡ θ21 � −(ON )2,1 , (68)

H part of ��R : η ≡ θ23 = arcsin[(ON )2,3/cθ ] , (69)

h part of �φ20 : φ ≡ θ31 � −(ON )3,1 , (70)

which we will use as physical inputs. Notice that if �, H , A
are left around the scale of vR , one has the following scalings
η ∼ 1, θ ∼ ε, φ ∼ ε2.

It is nice to check the case of vanishing tβ → 0: in this
limit, λ2 governs the A-H mass splitting, λ4 governs the φ

mixing and α1 sets the θ mixing. On the other hand, the
CP-violating (A-h and A-H ) mixings θ41 and θ34 vanish as
expected. The mixing η is governed by η2, which in this limit
can remain nonzero, see below.

Finally, comparing the heavy scalar masses in Eqs. (58)
and (55), we find another sum rule like the one in (54):

m2
H+ − m2

A = v2α3
c2β

2
∼ O(150 GeV)2 . (71)

It implies, recalling that A, H have to be as heavy as
20 TeV[18–26], and also that the splitting with H+ becomes
rather tiny, 1–10 GeV.
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2.3 Inversion: couplings in terms of physical masses and
mixings

Equations (57–58) together with (61), (62) and (65) can be
solved for the relevant couplings of the potential, in terms of
four masses (m2

h,m
2
�,m2

H ,m2
A) and the three mixings θ , η

and φ. Collecting all the previous expressions one finds:

1 + t2

1 − t2 α3 ≡ X → m2
A

v2
R

, (72)

4ρ1 ≡ Y → m2
� + (

m2
H − m2

�

)
s2
η

v2
R

, (73)

ρ2 →
m2

�++
R

4v2
R

− ε2X
(
t2 − 1

)2
4
(
t2 + 1

)2 , (74)

ρ3 → m2
�L

v2
R

+ Y

2
− 4ε2Xt2s2

α(
t2 + 1

)2 , (75)

λ1 → m2
h

4v2 + Y

4
θ̃2 − 4 tcα

(
λ4

t2 + 1
+ 4tcαλ2(

t2 + 1
)2
)

, (76)

λ2 → m2
H − m2

A − (
m2

H − m2
�

)
s2
η

16 v2

(
t2 + 1

)2
(
t4 − 2c2αt2 + 1

) ,

(77)

λ3 → 2λ2 , (78)

λ4 → φ̃
X
(
t2 + 1

)
4
(
t2c2α − 1

) + θ̃
Xη2

2
(
t2 + 1

) − 8
tcαλ2(
t2 + 1

) (79)

η2 → (m2
H − m2

�)
(
t2 + 1

)2
sin(2η)

4m2
Aε
√
t4 − 2c2αt2 + 1

(80)

δ2 → tan−1
(

tsα
η2 − tcα

)
, (81)

α1 → Y θ̃

2
+ t

(
t X

t2 + 1
+ (Y − X)cαt2η

2 ε
√
t4 − 2c2αt2 + 1

)
, (82)

α2 → X

2

(η2 − tcα)(
t2 + 1

)
√

t2s2
α

(η2 − tcα)2 + 1 . (83)

These expressions have been written by ensuring that no
singularity develops for t → 0 and/or α → 0.

On the other hand, a few comments are in order about the
perturbativity of the couplings obtained, while referring to
[90] for a thorough study of perturbativity limits, including
loop corrections. Raising the scalar masses too much beyond
vR , like for instancemA in (72), produces couplings that enter
in a non-perturbative regime. But also, a few couplings are
sensitive to scalar mass splittings in relation to mixing angles.
In particular, λ2 becomes large in case |m2

H −m2
A| > 16v2, or

in case |m2
H −m2

�| is similarly large while demanding large η

mixing. Similar considerations apply to α1, if (m2
H −m2

�)/ε

becomes too large. Next, it is obviously difficult to have a

large h −� mixing θ near its phenomenological limit 0.2, if
m� becomes too large. One runs towards non-perturbativity
in α1 ∼ θY/2ε ∼ m�/10 v. Namely, one expectedly can not
have a large h-� mixing if � is heavier than circa 1–2 TeV.

For all these reasons, a check on couplings shall be per-
formed while varying input parameters, to avoid unphysical
situations.

For testing purposes, a function that performs the inversion
along with this check is provided along with the model pack-
age. The inversion above together with the other coupling
constants solved previously, is implemented as a Mathemat-
ica function LRSMEVAL[expr,inputs], and provided
as additional material [120,121]. Here, inputs is a set of
rules for the relevant needed input parameters, where input
masses are to be expressed in TeV (or as a function of other
known masses). For instance,

inputs = {
MWR → 10, mH → 1.1MWR,

mA → 1.1MWR + 0.1MW, m� → MWR,

m�Rpp → 1.5MWR, m�L → 2.5MWR,

θ → 0.05, η → 0.01, φ → 0.0001,

t → 0.01, α → 0.1, ρ4 → 0.5
}
.

(84)

The functionLRSMEVAL evaluates the givenexpr, function
of couplings and masses, for the given physical inputs, while
checking for perturbativity. It prints out a warning for each
scalar coupling that may turn out to be larger than 3. The
function was checked against exact numerical diagonaliza-
tion of the relevant mass matrices. A further implementation
in Python is also provided, see below.

2.4 Fermion sector

The LRSM fermions transform (in the interaction basis)
under SU (2)L × SU (2)R ×U (1)B−L as

Q′
Li =

(
u′
L

d ′
L

)
i
∼
(
2, 1,

1
3

)
, (85)

Q′
Ri =

(
u′
R

d ′
R

)
i
∼
(
1, 2,

1
3

)
, (86)

L ′
Li =

(
ν′
L

�′
L

)
i
∼ (2, 1,−1) , (87)

L ′
Ri =

(
ν′
R

�′
R

)
i
∼ (1, 2,−1) , (88)

and gauge invariant Yukawa terms are written as

Lq
Y = Q̄′

L

(
Yq φ + Ỹq φ̃

)
Q′

R + H.c. , (89)
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L�
Y = L̄ ′

L

(
Y� φ + Ỹ� φ̃

)
L ′
R

+ L̄ ′c
L iσ2�LY

M
L L ′

L + L̄ ′c
Riσ2�RY

M
R L ′

R + H.c..
(90)

All fermions thus get their masses exclusively from sponta-
neous symmetry breaking.

2.4.1 Quarks: Yukawa terms, masses and mixings

After the bi-doublet acquires its vevs, see Eq. (4), the mass
matrices of the quarks can be written as

Mu = Yq v1 − Ỹq e
−iαv2 , (91)

Md = −Yq e
iαv2 + Ỹq v1 . (92)

In general, these are arbitrary complex 3 × 3 mass matrices
that can be diagonalised with a bi-unitary transformation

Mu = UuL mu U
†
uR , Md = UdL md U

†
dR , (93)

where mu and md are diagonal with positive eigenvalues and
UxU

†
x = 1. What enters into the physical charged current

interactions are the usual CKM matrixV CKM
L ≡ U †

uLUdL and

its right-handed analog VR = U †
uRUdR , which in principle

has different angles and five extra phases. The additional CP
phases can be extracted as

VR = Ku V
CKM
R Kd , (94)

where VCKM
R is the right-handed analog of the CKM matrix

and Ku,d are diagonal matrices of complex phases

Ku = diag
(
eiθu , eiθc , eiθt

)
, (95)

Kd = diag
(
eiθd , eiθs , eiθb

)
, (96)

out of which only five are physical. The quark Yukawa cou-
plings that enter in the Lagrangian can be re-written in terms
of the physical masses and mixings:

Yq = 1

v2
1 − v2

2

(
Mu v1 + Md e

−iαv2

)
, (97)

Ỹq = − 1

v2
1 − v2

2

(
Md v1 + Mu e

iαv2

)
. (98)

Already from the third generation, one understands from here
that the region of tβ � 0.5 leads to large non-perturbative
couplings and should be excluded, see Eq. (2.14) in [77] and
the Appendix A of [20] for details.

2.4.2 Leptons: Yukawa terms, Dirac and Majorana masses
and mixings

In the lepton sector, after the bi-doublet and the scalar triplets
acquire their respective vevs, we have the usual Dirac mass
for the charged leptons and a type I + II seesaw mechanism in
the neutrino sector. The charged lepton masses and the Dirac-
Yukawa term between the left- and right-handed neutrinos
can be cast as

MD = Y�v1 − Ỹ�e
−iαv2 , (99)

M� = −Y�e
iαv2 + Ỹ�v1 . (100)

In the same way, we can also rewrite the lepton Yukawa
couplings in terms of the charged lepton masses and the Dirac
mass term for the neutrinos

Y� = 1

v2
1 − v2

2

(
MD v1 + M� e

−iαv2

)
,

Ỹ� = − 1

v2
1 − v2

2

(
M� v1 + MD eiαv2

)
.

(101)

Similarly to the quark masses, the charged lepton mass term
can be diagonalised via a bi-unitary transformation

M� = U�L m� U
†
�R . (102)

In the neutrino sector on the other hand, one has to write
the mass-matrix as

Lν-mass = −1

2
n̄′
LMnn

′c
L

= −1

2

(
ν̄′
L ν̄′c

R

) (ML MD

MT
D MR

)(
ν′c
L

ν′
R

)
+ H.c. ,

(103)

in which n′
L = (

ν̄′
L ν̄′c

R

)
and ML = vLY M

L and MR = vRY M
R .

This 6×6 Majorana mass matrix is by construction (complex)
symmetric and can be diagonalised via an Autonne-Takagi
factorisation.

The full mass-matrix can be perturbatively (block-) diag-
onalised with a unitary rotation

W̃ T MnW̃ =
(
mlight 0
0 mheavy

)
, (104)

in which the rotation matrix can be defined as

W̃ =
(√

1 − BB† B
−B†

√
1 − B†B

)
. (105)

The light and heavy mass eigenstates are up to leading order
in M−1

R given by

Mν � ML − MDM
−1
R MT

D , MN � MR . (106)
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The light and heavy mass matrices are then diagonalised via
unitary rotations as

V T
ν MνVν = diag(mν1 ,mν2 ,mν3) , (107)

V †
N MNV

∗
N = diag(mN1,mN2 ,mN3) , (108)

in which the light states are identified with mostly active
neutrinos. The full rotation matrix can be written as

W = W̃

(
Vν 0
0 V ∗

N

)
. (109)

We can further expand the unitary matrix W (and the matrix
B) in inverse powers of MR , resulting in

√
1 − BB† � 1 − 1

2
B1B

†
1 − 1

2

(
B1B

†
2 + B2B

†
1

)
, (110)

which is valid up to O(M−4
R ), with

B1 = M†
DM

−1†
R , B2 = M†

LM
T
DM

−1T
R M−1†

R , (111)

see [122] for further details of the perturbative expansion.
Up to leading order in M−1

R , the full neutrino mixing matrix
is then given by

W =
(√

1 − BB†Vν BV ∗
N

−B†Vν

√
1 − B†BV ∗

N

)

�
(

Vν B1V ∗
N

−B†
1Vν V ∗

N

)
.

(112)

The higher order corrections to the blocks of W̃ become
numerically relevant for the “off-diagonal” blocks, i.e. for the
“light-heavy” mixing terms. With the neutrino and charged
lepton mixing matrices we can now write the charged current
interactions in the physical basis

L�
cc = gL√

2
�̄Lγ μULnLW

μ
L + gR√

2
�̄Rγ μURnRW

μ
R , (113)

where the physical neutrino mass eigenstates are n =
(ν1, ν2, ν3, N1, N2, N3)

T , and where we defined the semi-
unitary 3 × 6 matrices

(UL)αi =
3∑

k=1

(V †
�L)αkWki , (114)

(UR)αi =
3∑

k=1

(V †
�L)αkW(k+3)i . (115)

The first 3 × 3 block of UL can be identified as the “would-
be” PMNS matrix (which is in general no longer exactly
unitary) and the second 3×3 block of UR as its right-handed

analog that can be directly accessed by experiments sensitive
to right-handed currents.

Parametrising MD in the case of C. In the case of C-
invariance as the manifest LR symmetry, the scalars trans-
form as φ ↔ φT and �L ↔ �∗

R , leading to convenient
relations of the Yukawa couplings

Y� = Y T
� , Ỹ� = Ỹ T

� , Y M
L = Y M

R , (116)

and consequently for the mass matrices

MD = MT
D , ML = vL

vR
MR . (117)

This allows us to invert Eq. (106) in order to obtain an expres-
sion of MD , fully determined by physical parameters, in con-
trast to the additional freedom present in the general case. The
Dirac mass matrix is then given by

MD = MN

√
vL

vR
1 − M−1

N Mν . (118)

The square root of a matrix is in general quite a complicated
expression, however it can be simplified to a relatively simple
form

√
A = c0 1 + c1 A + c2 A.A, (119)

which holds for any (also non-symmetric) complex 3 × 3
matrix A. The ci coefficients are calculated in terms of the
three invariants of A and are given in appendix A below.1

2.5 Ghost sector

To complete the Faddeev–Popov gauge fixing procedure we
have to deal with the ghosts, as in the case of the SM [118,124,
125]. In the LRSM we are dealing with an extended gauge
group and gauge bosons that mix, therefore the procedure is
slightly more involved. We need to introduce a set of ghost
fields ci that are associated with the gauge parameters αi in
the following way

ci = {
c+
L , c−

L , c+
R , c−

R , cZL , cZR , cA
}
, (120)

αi = {
α+
L , α−

L , α+
R , α−

R , αZL , αZR , αA
}
. (121)

1 In the case of no manifest left-right symmetry, MD may still be
parametrised via an analogue of the Casas-Ibarra parametrisation,
uncovering the additional free parameters (see e.g. [123]). In the case of
P as the manifest left-right symmetry, additional relations and restric-
tions apply and the parametrisation of the lepton sector becomes sig-
nificantly more complicated (see e.g. [80]).
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These ghosts are written in the mass basis and enter the ghost
Lagrangian in the usual way

Lghost =
∑
i, j

ci
∂ (δFi )

∂α j
c j , (122)

Fi = {
F+
L , F−

L , F+
R , F−

R , FZL , FZR , FA
}
, (123)

where the sums run over the gauge parameters in the mass
basis. The variations of the Fs are given by

δF+
i = ∂δW+

i + iξWi MWi δϕ
+
i , (124)

δFZi = ∂δZi + ξZi MZi δϕ
0
i , (125)

δFA = ∂δA , (126)

and depend on the variations of the wbGs δϕ and the gauge
fields δV . We get those by considering an infinitesimal expan-
sion of the gauge transformations

φ → Uφ = φ + δφ , (127)

Dφ → U (Dφ) = Dφ + δ(Dφ) . (128)

The first term gives us the variations of the wbG and Higgs
fields with respect to αi . The second term gives the variation
of the gauge fields, needed to restore gauge invariance of
covariant derivatives. The bi-doublet and the triplet transform
in the following way

φ → UL φU †
R , �R → UR�R U

†
R UB−L , (129)

UL ,R = eigα
a σa

2 , UB−L = eig
′ B−L

2 α7
. (130)

The σ matrices in UL ,R run over their respective group
indices, setting a = 1, 2, 3 (a = 4, 5, 6) for the SU (2)L(R)

group parameters in the gauge basis; α7 parametrizes the
U (1)B−L Abelian part. The field variations from (2) are

δφ =
(

δφ0∗
1 δφ+

2
δφ−

1 δφ0
2

)
, δ�R =

⎛
⎝

δ�+
R√
2

0

δ�0
R − δ�+

R√
2

⎞
⎠ , (131)

where we focus only on the variations of the wbG, i.e.
δϕ±

L ,R, δϕ0
L ,R . We can ignore variations of all the other fields

(δ�L multiplet, δ�++
R , δH+, as well as the variations of

the neutral scalars) which do not enter in Fi . Expanding the
gauge transformations for small αi and multiplying the gen-
erator and field matrices, we get the following variations for
the bi-doublet and the triplet

δφ = i
g

2
(�Lφ − φ�R) , (132)

δ�R = i
g

2
(�R�R − �R�R) + ig′�Rα7 . (133)

with

�L =
(

α3 α1 − iα2

α1 + iα2 −α3

)
,

�R =
(

α6 α4 − iα5

α4 + iα5 −α6

)
.

(134)

We now perform all the rotations of the fields using U+
and Oϕ to go to the mass basis. We then define the αi and
ci as the gauge parameters and ghost fields in the same mass
basis as the gauge bosons. Specifically, we use the following
relations

√
2 α̃±

L = α1 ∓ iα2 ,√
2 α̃±

R = α4 ∓ iα5 ,

(
α̃+
L

α̃+
R

)
= UW

(
α+
L

α+
R

)
, (135)

to reparametrize the ’charged’ gauge parameters (and the
same for ghosts when ci → c±

L ,R). Likewise, we utilize the
neutral gauge rotations for the remaining

⎛
⎝α3

α6

α7

⎞
⎠ = OZ

⎛
⎝ αA

αZL

αZR

⎞
⎠ . (136)

To get the gauge variations δVi in the mass basis, we pro-
ceed along similar lines. We start by deriving δVi in the flavor
basis by demanding that the covariant derivatives, defined
in (9) and (10), transform like the corresponding fields φ and
�R

Dφ → UL (Dφ)U †
R , (137)

D�R → UR (D�R)U †
R UB−L . (138)

We use the same expansions inα of the gauge transformations
UL ,R,B−L as above and apply the same rotationsUW and OZ

for δW, δZ , as we did for the W and Z . With both δφ and
δV , we now have all the δFi written as linear functions of
the αi . It is thus trivial to take the derivatives ∂δFi/∂αi over
the group parameters and plug them into (122) to finalize the
ghost Lagrangian.

3 Left-right asymmetric case

In the previous sections we assumed that parity is manifestly
respected in the gauge sector by imposing gL = gR . Such an
equality should hold at the scale of parity restoration, which
may happen at a high scale, such that the two couplings gL ,R

run differently and gL �= gR at a low scale. Although the
running leads to a quite small splitting of gauge couplings,
other extensions of the LRSM may lead to different gL ,R

with no other appreciable variations. It is thus interesting to
generalize the results to this possibility.
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Let us then set gL = g, gR = ζg and g′ = rgR = rζg.
This change only affects the various covariant derivatives and
does not enter in the potential, such that the expressions for
scalar masses and mixing (including the Goldstones) remain
the same.

Charged gauge bosons. The mass matrix for charged
gauge bosons now becomes

M2
WLR

= g2

2
v2
R

(
ε2 e−iαε2s2βζ

eiαε2s2βζ
(
2 + ε2

)
ζ 2

)
. (139)

The light eigenvalue remains the same MWL � gv/
√

2, but
the heavier one gets multiplied with ζ , such that MWR �
gvR

(
1 + ε2/4

)
ζ . The mixing angle is also different and is

given by

sξ � ε2

2ζ
s2β � M2

WL

M2
WR

s2βζ . (140)

Up to the relevant order O(ε2), the Goldstone rotations in
Eq. (32) are not affected by a change in gR , such that U+
remains the same as in the parity conserving case. Of course
the ζ dependence enters in the actual terms, but the solution
for the rotation angle is ζ independent. The same holds for the
gauge fixing F±

i terms, once the ζ dependence is absorbed
in MWR .

Neutral gauge bosons. With explicit parity breaking, the
neutral gauge boson mass matrix is

M2
ZLR

= g2

2
v2
R

⎛
⎝ ε2 −ε2ζ 0

−ε2ζ
(
4 + ε2

)
ζ 2 −4rζ

0 −4rζ 4r2

⎞
⎠ . (141)

and the modified eigenvalues are

MZ � gv√
2

√
1 + r2ζ 2

r2 + ζ 2 , (142)

MZLR � gvR
√

2(ζ 2 + r2)

[
1 + ε2ζ 4

8
(
ζ 2 + r2

)2
]

. (143)

The definition of the weak mixing angle also impacts the
r -parameter

r = tw√
ζ 2 − t2

w

ζ→1−−−→ sw√
c2w

, (144)

and the gauge boson rotation matrix gets updated to

OZ =

⎛
⎜⎜⎝

sw −cw 0
sw
ζ

sw tw
ζ

−
√

ζ 2−t2w
ζ

cw
√

ζ 2−t2w
ζ

sw
√

ζ 2−t2w
ζ

tw
ζ

⎞
⎟⎟⎠

Table 1 FeynRules files included in the mLRSM package

mLRSM.fr Main file (full)

mLRSM_UG.fr Main file (unitary gauge)

LRSM_all_parameters.fr External inputs (w/o masses)

LRSM_potential.fr Scalar Potential

LRSM_lepton_yukawa.fr Lepton Yukawa definitions

LRSM_quark_yukawa.fr Quark Yukawa definitions

LRSM_matrices.fr Matrix utilities

LRSM_ONdef.fr Scalar mixing matrix

LRSM_Massless_5f.rst Restriction mu,d,s,c,b,e,μ = 0

LRSM_Massless_5f_nu.rst Restriction mu,d,s,c,b,e,μ,νi = 0

+ ε2

4

⎛
⎜⎜⎜⎜⎜⎝

0 0
(
ζ 2−t2w

) 3
2

ζ 4

0 −
(
ζ 2−t2w

)2
cwζ 5 − t2w

(
ζ 2−t2w

) 3
2

ζ 5

0
sw
(
ζ 2−t2w

) 3
2

c2
wζ 5 − tw

(
ζ 2−t2w

)2
ζ 5

⎞
⎟⎟⎟⎟⎟⎠

. (145)

As with the singly charged Goldstones, also the neutral
ones are rotated with the same matrix like in the parity con-
serving case at the ε2 order. In particular, the Oϕ remains the
same as it was in (38). All the other parts of the Lagrangian
(fermions, scalars) remain the same, except for the ghosts.
The Lagrangian terms of the ghost sector are updated with
gL = g, gR → ζg and g′ → rζg, and their rotations are
ζ -dependent, being the same as those of the gauge bosons.

As a final notice, the argument inside the square roots in
the last expressions should always be positive, correspond-
ing to the physical constraint, stemming from the symmetry
breaking relations,

gR
gL

≡ ζ > tw � 0.535. (146)

4 The FeynRules implementation

The model file is split for cleanliness into a main model
file plus various auxiliary files, reported in Table 1. In
particular, the file LRSM_all_parameters.fr contains
all external parameter definitions, as well all the expres-
sions for the internal parameters calculated from the inver-
sion described in Sect. 2.3. The lepton mass and mix-
ing computations and the extraction of the square root
are included in the files LRSM_lepton_yukawa.fr and
LRSM_matrices.fr, and similarly for the quark matri-
ces. The quite lengthy expression of the neutral scalars mix-
ings (66) are included in LRSM_ONdef.fr.

In the full model mLRSM.fr we implemented both the
Feynman and the Unitary gauge (Table 2). Either option
can be adopted (e.g. before UFO generation) by defining
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the switch variable FeynmanGauge=True(False). For
usual unitary gauge studies, a simplified model file without
ghosts and wbGs is provided as mLRSM_UG.fr. On the
other hand, Feynman-gauge models are highly convenient
for CalcHEP/CompHEP [126], where computations can
become 10–100 times faster.

In Table 3 we list all the particles with their chosen masses
for the benchmark point. Widths are also reported, as calcu-
lated from the leading decay diagrams, with the chosen mass
spectrum. In case one or more masses are changed, the rele-
vant widths have clearly to be recalculated for consistency.

Table 4 lists the other external parameters, including ini-
tial benchmark values, with the LHA blocks and counters.
They include the important dimensionless parameters like
tβ , α and scalar field mixings, as well as the mixing matrices
for quarks (CKM) and leptons (PMNS). Finally, the light-
neutrino mass parameters are defined as inputs, including
the unknown lightest-neutrino mass and the binary choice
between normal and inverted hierarchy.

Inside the model file a number of unphysical fields are
defined, in order to hold fields in gauge multiplets, flavor
multiplets, collection of Majorana neutrino fields, collec-
tions of neutral or charged scalars. The triplet fields �L ,R

are arranged in two index (2, 2̄) representations, and the
covariant derivative definition in FeynRules were general-
ized accordingly for them to work on reducible representa-
tions.

For collider studies, the “light” (dynamic) quarks u, d, s, c,
b and leptons e, μ, as well as the light neutrinos νi can usually
be considered massless for all kinematical purposes. Setting
to zero also the Dirac neutrino couplings leads to a consid-
erable reduction of the complexity of model parameters and
interactions, especially welcome at NLO order. Thus, along
with the full model file, we provide two restriction files for
such purpose, see Table 1.

4.1 UFO, parallelization and speedup

The FR model file can be used to produce the UFO pack-
age by using FeynRules; in this work we used the ver-
sionFeynrules-2.3.49. The complexity of the present model
largely exceeds that of previous ones and requires the highest
possible level of parallelization. This was not fully present
in the current version of FeynRules, where a number of
issues prevents optimal running in parallel. A patched ver-
sion is then provided as Feynrules-2.3.49_fne. With this
patched version the time required to generate the LO UFO
decreases from circa 1 week toO(1)hour on 10 cores. Similar
speedup patches had to be applied to the MoGRe package
[127], which is also provided as MoGRe_v1.1_fne.m, as
well as to the Feynarts interface within FR. These speedup
patches are essential for the generation of the NLO version,
even with no neutrino Dirac parameters, see next subsection.

Table 2 UFOs included in the mLRSM package, with various restric-
tions. Here, the first three lines list UFO models in Feynman gauge; the
last three instead list models (-ug) where unitary gauge was enforced,
stripping off ghosts and wbGs. While e, μ are always massless, we pro-
vide -4f and -5f massless flavor schemes, and -nu stands for further
simplifications with zero light neutrino masses and Dirac couplings. On
the other hand, -full stands for models where all fermions are mas-
sive. Finally, -loop stands for NLO, requiring massless light quarks.
(∗) Notice that unitary gauge NLO UFOs are not correctly supported
by Madgraph at the moment

UFO @ LO UFO @ NLO

mlrsm mlrsm-loop

mlrsm-nu mlrsm-nu-loop

mlrsm-full

mlrsm-ug mlrsm-ug-loop (∗)
mlrsm-ug-nu mlrsm-ug-nu-loop (∗)
mlrsm-ug-full

The Mathematica notebooks used to generate the UFOs
as well as the patched packages are available along with the
model files as supplementary material, and uploaded to [120,
121].

4.2 NLO and restrictions

UFO packages at NLO in the QCD coupling can be gen-
erated from the above model files, by feeding first the rel-
evant (QCD) subset of the Lagrangian into MoGRe [127].
The MoGRe package calculates the needed one-loop QCD
couterterms, which are then processed with FeynArts [128]
and NLOCT [129] to generate the one loop amplitudes, and
these are used into FeynRules to generate the UFO at NLO.

We generated UFOs for a number of relevant model
restrictions and cases, as listed in Table 2. The first three
lines list models in the Feynman gauge, and the last three
lines the models in the unitary gauge, devoid of ghosts and
wbGs. The UG models should be sufficient for collider event
generation at LO, while at NLO only Feynman gauge should
be used with Madgraph, because loop diagrams are not cor-
rectly evaluated in the unitary gauge, at the moment [130].

Also, at NLO the u, d, s, c, b quarks are always restricted
to be massless, which is required for numerical stability of the
renormalization procedure. In case the light neutrino masses,
as well as the Dirac couplings, are not needed, one may
use the mlrsm-nu-loop model, where they were set to
zero, retaining only masses for heavy Ni . Themlrsm-loop
NLO model permits otherwise nonzero neutrino masses,
parametrized by mixing and oscillation parameters, as well
as lightest neutrino mass scale MNU0 and neutrino hierar-
chy NUH. We recall that in the model neutrino masses drive
the Dirac mass matrix and Yukawa couplings, via Eqs. (118)
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Table 3 Physical particle fields in the LRSM, with their masses, widths, and PDG IDs

Name Spin Self-Conj. FR name FR mass Value [GeV] FR width Value [GeV] PDG ID

G 1 Yes g MG 0 0 21

A 1 Yes A MA 0 0 22

ZL 1 Yes Z MZ 91.19 WZ 2.495 23

W±
L 1 No W+/W- MW 80.4 WW 2.085 24

ZR 1 Yes ZR MZR internal WZR 334.0 33

W±
R 1 No WR+/WR- MWR 6000 WWR 190.5 34

h 0 Yes H MH 125.1 WH 0.004115 25

� 0 Yes DD MDD 500 WDD 0.011 45

H 0 Yes HH MHH 20000 WHH 2667.9 35

A 0 Yes AA MAA 20010 WAA 2019.2 55

H+ 0 No H+/H- MHP internal WHP 2012.4 37

�++
R 0 No DR + +/DR- MDRPP 500 WDRPP 25.4 9000001

�++
L 0 No DL + +/DL- MDLPP internal WDLPP 32.4 9000002

�+
L 0 No DL+/DL- MDLP internal WDLP 28.8 9000003

�0
L 0 Yes DL0 MDL 500 WDL 25.5 9000004

χ0
L 0 Yes CHIL0 MCHIL0 internal WCHIL0 25.5 9000005

d 1
2 No d/d∼ MD 0.00504 0 1

u 1
2 No u/u∼ MU 0.00255 0 2

s 1
2 No s/s∼ MS 0.101 0 3

c 1
2 No c/c∼ MC 1.27 0 4

b 1
2 No b/b∼ MB 4.7 0 5

t 1
2 No t/t∼ MT 172 WT 1.508 6

e 1
2 No e-/e+ ME 0.511 × 10−3 0 11

μ 1
2 No mu-/mu+ MMU 0.1057 0 13

τ 1
2 No ta-/ta+ MTA 1.777 0 15

ν1
1
2 Yes ve MNU1 1. × 10−12 0 12

ν2
1
2 Yes vm MNU2 8.9 × 10−12 0 14

ν3
1
2 Yes vt MNU3 50.4 × 10−12 0 16

N1
1
2 Yes N1 MN1 100 WN1 3.4 × 10−10 9900012

N2
1
2 Yes N2 MN2 2000 WN2 5.4 × 10−4 9900014

N3
1
2 Yes N3 MN3 10000 WN3 85.9 9900016

and (101). Finally, in the NLO UFOs we removed the four-
scalars interactions.

4.3 Use in Madgraph

The models were tested in Madgraph 3.5.3 both at LO
and NLO order, and results for benchmark processes were
obtained as reported in the next section. As a basic example
one can generate the KS process at the NLO level:

import model mlrsm-loop

define l = l+ l-

define n = n1 n2 n3

generate p p > l n [QCD].

This generates pp → �N events, including processes medi-
ated byWR , by LR gauge boson mixing, and Dirac couplings,
at NLO order in QCD.

A few technical notes are useful:

• In case the chosen physical inputs lead to non-perturbative
couplings,Madgraphmay issue aWARNING: Failed
to update dependent parameter. and results
will probably be invalid. We recommend checking the
ranges of chose physical inputs with the LRSMEVAL
function described above, or with the equivalent Python
code. The python code is shipped with a jupyter
notebook in which its usage is explained. Apart from
providing input parameters in the form of a dictionary,
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Table 4 All external parameters (other than particle masses)

FR Name Default LHA block LHA code Description

tb 0.1 LRSMINPUTS 1 Bidoublet VEVs ratio tβ

alp 0.1 LRSMINPUTS 2 Bidoublet VEV v2 phase α

thetamix 0.01 LRSMINPUTS 3 h − ��R mixing angle θ

etamix 0.00001 LRSMINPUTS 4 H − ��R mixing angle η

phimix 0 LRSMINPUTS 5 h − �φ20 mixing angle φ

r4 0 LRSMINPUTS 6 ρ4 scalar coupling

zetaLR 1 LRSMINPUTS 7 Ratio of Left/Right gauge couplings

aS 0.1184 SMINPUTS 1 Strong coupling

gw 0.65 SMINPUTS 2 Weak coupling gL

aEWM1 127.9 SMINPUTS 3 Inverse of electromagnetic coupling

Gf 11.66/TeV2 SMINPUTS 4 Fermi coupling

MU_R 91.19 GeV LOOP 1 NLO renormalization scale

CKMlam 0.2245 CKMBLOCK 1

CKMA 0.836 CKMBLOCK 2 Left CKM mixing entries

CKMrho 0.122 CKMBLOCK 3

CKMeta 0.355 CKMBLOCK 4

CKMRs12 0.2245 CKMBLOCK 5

CKMRs13 0.0036 CKMBLOCK 6 Right CKM mixing entries

CKMRs23 0.0421 CKMBLOCK 7

CKMRdel 1.2404 CKMBLOCK 8

PMNSLs12 0.544 PMNSBLOCK 1

PMNSLs23 0.756 PMNSBLOCK 2 Left PMNS mixing entries

PMNSLs13 0.148 PMNSBLOCK 3

PMNSLdel 3.437 PMNSBLOCK 4

PMNSRs12 0.544 PMNSBLOCK 11

PMNSRs23 0.756 PMNSBLOCK 12 Right PMNS mixing entries

PMNSRs13 0.148 PMNSBLOCK 13

PMNSRdel 3.437 PMNSBLOCK 14

PMNSLphi1 0 PMNSBLOCK 15 Left Majorana CP phases

PMNSLphi2 0 PMNSBLOCK 16

PMNSRphi1 0 PMNSBLOCK 17

PMNSRphi2 0 PMNSBLOCK 18 Right Majorana CP phases

PMNSRphi3 0 PMNSBLOCK 19

MNU0 0.05 eV PMNSBLOCK 20 Lightest neutrino mass

DMsol 7.41 × 10−5 eV2 PMNSBLOCK 21 �m2
sol

DMatm 2.51 × 10−3 eV2 PMNSBLOCK 22 �m2
atm

NUH 1 PMNSBLOCK 23 Neutrino Hierarchy (≥ 0 Normal, < 0 Inverted)

it also includes a “param_card reader” that automat-
ically converts the parameters stored in a Madgraph
param_card.dat to the internal syntax.

• For the full model files at NLO, or if neutrinos masses and
Dirac couplings are not restricted to zero, update of card
parameters in Madgraph hits a time constraint and the
following warning is issued: WARNING: The model
takes too long to load so we bypass
the updating of dependent parameter

..... In this case the user should insert an “update
dependent” command just after card edition, before
event generation.

• The coupling orders of all interactions are just QED or
QCD, with usual hierarchy QED=2, QCD=1.
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Fig. 1 Production cross-sections for WR and ZR at LO and NLO for√
s = 14, 27 and 100 TeV. The lower part shows the K -factor, in which

the shaded regions denote the scale- and pdf-uncertainties added in

quadrature. Note that MZR is shown on the top x axis and explains the
kinematic suppression of pp → ZR for large MZR

Fig. 2 Inclusive production cross-sections for pp → �±N (�± = e±, μ±, τ±, N = N1, N2, N3) and pp → NN at LO and NLO for
√
s =

14, 27, 100 TeV. The lower part shows the K -factor in which the shaded regions denote the scale- and pdf-uncertainties added in quadrature

5 Benchmarks

In this section we give an overview of a few example pro-
cesses that can be consistently studied at NLO in QCD with
the new model file. For all processes considered we use the
following computational setup:

• We use the mlrsm-nu-loop version of the model file
(5 dynamical flavours, charged lepton and light neutrino
masses/yukawas have been set to zero).

• All parameters are fixed to their default values as shown
in Table 4 unless otherwise indicated.

• We only compute the fixed-order cross sections without
hadron shower at LO and NLO.

• We useMadGraph5_aMC_v3.5.3 [130] with LHAPDF
6.5.4 [131] with default settings.

• The pdfsets are NNPDF40_nlo_as_01190 [132]
(lhaid=334100).

• For the factorization and renormalization scales we use
the default dynamical scale scheme, e.g. for leading order
processes dynamical scale scheme #4 (μF = μR = √

ŝ);
pdf and scale uncertainties are added in quadrature.

In order to estimate the impact of NLO QCD corrections,
we define the K -factor as

K = σ ± δσ

σLO
, (147)

in which δσ denotes the uncertainty due to pdf uncertainties
(estimated from the pdf replicas) and scale variation. The
factorization scale μF and the renormalization scale μR are
taken dynamical as μF,R = SF,R

√
ŝ, where ŝ is the partonic

center of mass energy and SF,R is a scale factor. The residual
scale dependence is estimated by varying the scale factors
SF,R independently on the interval [ 1

2 , 1, 2] leading to 9 dif-
ferent values of the cross-section. As the central value one
takes SF = SR = 1, while the scale variation is quoted as
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Fig. 3 Production cross-sections for H , A and H± (together with a
(anti-)top quark) for

√
s = 100 TeV. The lower part shows the K -factor

in which the shaded regions denote the pdf and scale uncertainties added
in quadrature

the envelope of the largest negative/positive deviation. Gener-
ally, one can expect that NLO corrections lead to a decrease
of this residual scale dependence due to an order-by-order
absorption of the involved scale-dependent terms.

Let us begin by studying the Drell–Yan production cross
sections of the new massive gauge bosons. In Fig. 1 we show
the 2 → 1 cross-sections of pp → W±

R and pp → ZR for√
s = 14, 27 and 100 TeV for a wide range of masses MW±

R
and MZR ≈ 1.67MW±

R
(cf. Equation (25)). Note that the mass

MZR is given in secondary x-axis on top. In the lower parts
of the plots we show the LO and NLO K -factors in which the
shaded regions denote the uncertainty due to pdf uncertainties
and scale variation. The NLO corrections lead to an increase
of the cross-section of order O(10–20%) (except for MZR

close to the kinematic threshold) and lead to a reduction of the
scale dependence from O(10–15%) to O(2–5%). For larger
masses MZR , close to the kinematic threshold, the ZR pro-
duction cross-section strongly decreases while the size of the
NLO corrections (and therefore the k-factors) and also scale
dependence strongly increase. The production cross section
strongly increases with center of mass energy by three orders
of magnitude between

√
s = 14 TeV and

√
s = 100 TeV.

In Fig. 2 we show our results for the inclusive produc-
tion cross sections pp → �±N and pp → NN , in which
�± = e± , μ± and τ±, while N = N1 , N2 and N3 (except
for pp → NN at

√
s = 14 TeV, since only N1 and N2

are kinematically accessible). Since the �±N (NN ) pro-
duction is dominantly mediated via the Drell–Yan process

Fig. 4 Production cross-sections for gg → � (blue), gg → ��

(orange) and gg → h� (green) for
√
s = 14, 27, 100 TeV (solid,

dashed and dotted boundaries respectively). The shaded region denotes
the pdf and scale uncertainty added in quadrature, while the vertical red
lines denote the Higgs mass threshold (M� = Mh

2 ) and the top mass
threshold (M� = 2Mt ). All cross sections are calculated for θ = 0.1

pp → W±
R (ZR) → �±N (NN ), we observe a very similar

impact of the NLO corrections as for the pp → W±
R , ZR

production cross-sections for most values of MWR and MZR .
For larger MZR , such that the on-shell production of ZR as
a resonance is suppressed (see also Fig. 1), the cross-section
is dominated by non-resonant NN -production, leading to a
different behavior of the cross-sections. With our choice of
the heavy neutrino masses (cf. Table 4), both cross sections
are dominated by having N1 in the final state.

The Drell–Yan production cross-sections for heavy (pseudo-
) scalars A and H as well as the heavy charged scalar H±
(with an additional (anti-) top quark in the final state) pro-
ceeds mostly via initial state b-quarks and a gluon, while
gluon initiated processes give a 2–3 order of magnitude
smaller contribution. In Fig. 3 we show our results for the
pp → H± t̄(t) production cross-sections for

√
s = 100 TeV.

The masses MH and MA are set equal, while the mass MH±
is degenerate with MA up to order ε2 corrections.

Firstly, we notice that for pp → A, H the NLO correc-
tions lead to a significant decrease of the cross section by
30–40%, due to reduced high scale top Yukawa, while the
scale dependence slightly increases. The NLO corrections
pp → H± t̄(t) lead to a mild increase of the cross section
and a significant reduction of the scale variation from O(15–
20%) to O(1–2%).

Lastly, we consider several production mechanisms of
the neutral scalar �. Since � mostly comes from the real
part of the neutral component of the right-handed triplet
�R , it couples to quarks only through mixing with with the
SM-like scalar h. Therefore, its largest quark coupling is to
the top quark, making different type of gluon fusion pro-
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Table 5 Example cross sections for the set of input parameters given in Table 4. The (super)sub-scripts denote the (upper)lower envelope due to
pdf and scale uncertainties. We also quote the central K -factor

Process σLO [fb] σNLO [fb] K
√
s [TeV]

0.636+16%
−13% 0.806+4.4%

−5.4% 1.27 14

pp → W±
R 38.21+11%

−9.4% 46.0+2.6%
−3.2% 1.20 27

1572+3.2%
−3.0% 1791+1.2%

−1.2% 1.14 100

7.0+26%
−20% ×10−5 10.6+10%

−10% ×10−5 1.52 14

pp → ZR 0.16+14%
−12% 0.20+3.5%

−4.4% 1.25 27

59.9+5.7%
−5.2% 68.6+1.5%

−1.6% 1.15 100

0.29+10%
−8% 0.34+2.3%

−3.0% 1.17 14

pp → �±N 2.79+11%
−9% 3.22+1.8%

−2.7% 1.15 27

271.0+3.0%
−2.9% 303.3+1.2%

−1.1% 1.12 100

3.72+5.0%
−4.5% ×10−3 4.24+1.7%

−1.8% ×10−3 1.14 14

pp → NN 6.7+8%
−7% ×10−2 7.75+1.8%

−2.4% ×10−2 1.15 27

6.8+5.6%
−5.1% 7.59+1.1%

−1.3% 1.11 100

pp → H 8.1+21%
−16% ×10−12 7.2+2.2%

−5.2% ×10−12 0.89 27

1.11+2.9%
−3.2% ×10−2 7.0+5.7%

−6.0% ×10−3 0.63 100

pp → A 8.0+21%
−16% ×10−12 7.1+2.2%

−5.2% ×10−12 0.89 27

1.10+2.9%
−3.2% ×10−2 7.0+5.7%

−6.0%10−3 0.63 100

pp → H± t̄(t) 8.0+36%
−25% ×10−13 1.0+7%

−10% ×10−12 1.35 27

3.8+18%
−14% ×10−3 4.0+1.2%

−2.3% ×10−3 1.06 100

0.19+26%
−20% − − 14

gg → � 0.84+21%
−17% − − 27

8.6+25%
−20% − − 100

3.7+31%
−22% ×10−9 − − 14

gg → �� 2.7+26%
−19% ×10−8 − − 27

5.1+17%
−14% ×10−7 − − 100

3.2+29%
−21% × 10−4 − − 14

gg → �h 1.7+23%
−18% × 10−3 − − 27

2.4+20%
−16% × 10−2 − − 100

cesses the dominant production mechanisms. Since gluon
fusion is a loop-induced process, we can only consider the
leading order cross-sections within the scope of Madgraph
and this model file. In particular, we consider single- and
pair production via gluon fusion gg → �,�� as well as
“Higgs-�-strahlung” gg → h� which proceeds both via
gg → h → h�, as well as gg → � → h� in addi-
tion to box-topologies. In Fig. 4 we show our results for
these production mechanisms for m� ∈ (50, 3000) GeV
for

√
s = 14 , 27 and 100 TeV. In addition, we set here

θ = 0.1 to attain sizeable production cross sections. Firstly,
we notice that for M� � 2mt (denoted by the right vertical
red line) the gg → � cross section increases due to threshold
effects in the corresponding “top-triangle”, before it drops
off for larger masses. Next, for M� � Mh/2 (denoted by the
left vertical red line), the gg → �� production cross sec-

tion becomes large due to an on-shell intermediate Higgs in
gg → h → ��. Above threshold, the cross-section strongly
decreases and becomes somewhat subdominant. Lastly, the
process gg → h� has a sizeable cross section for a wide
range of masses M� ∈ (Mh/2,∼ 500) GeV, competing with
gg → � for larger masses.

In addition to the aforementioned “benchmark processes”,
we also checked several SM processes with the LRSM model
file, such as pp → t t̄ and gg → h → t t̄ production cross-
sections, as well as pp → VV (V = W±, Z ), finding per-
fect agreement with the built-in Madgraph models. Finally,
in Table 5 we summarize our results for the choice of param-
eters given in Table 4 as a representative benchmark point.
This phenomenological study is by no means complete and
rather serves as a proof of concept. We would like to empha-
size that with our model file fully consistent collider stud-
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ies (cross-section calculation and event generation) are now
possible with NLO QCD corrections as well as the study of
loop-induced processes at LO. The NLO corrections gener-
ally lead to a significant decrease of the scale dependence
and therefore to a significant reduction of signal modelling
uncertainties for collider studies.

6 Summary and outlook

The main purpose of this work was to provide an implemen-
tation of the LRSM, which is as complete as possible and can
be used for a variety of collider and other phenomenological
studies. The collider frontier in the near future will mostly be
focused on the HL-LHC, but in the less near future we may
expect to see lepton colliders FCC-ee, ILC, CLIC or muon
colliders, and finally high energetic scatterings of protons in
FCC-eh or FCC-hh at few tens of TeV (30 or 100 TeV). With
the present model file, the NLO QCD corrections can be reli-
ably calculated for any process within the LRSM, properly
including the mixings of scalars, gauge bosons and fermions
in different gauges, too. Not all the parts of the model are
necessarily needed for simulations, even very precise ones,
therefore we provide a number of restricted versions, which
may be faster and easier to use.

Perhaps the most significant analytical developments in
this work are the explicit calculation of heavy-light neutrino
mixing and the solution of the scalar spectrum. For neutri-
nos, the Majorana-Dirac connection was found some time
ago [67], but with the help of the Cayley–Hamilton theorem,
we managed to come up with a closed form solution for a
general complex matrix in terms of its invariants. This rela-
tion may become very useful to clarify the flavor relations in
the leptonic sector, e.g. how the Dirac induced transitions (in
eEDMs, 0ν2β, collider of N1 → νγ ) are related to the fla-
vor structure of VR and the mN mass spectrum. The explicit
result allows for a direct insight by taking certain expansions
(small angles or masses) or correction to limits, like type II
(sub)dominance.

In the scalar sector, the mass spectrum was derived for
the first time without extra assumptions of small mixing
angles, thus performing an exact diagonalization. The only
phenomenologically required assumption was that the Higgs
field h has a limited admixture with heavy scalars. Remark-
ably, we were able to derive exact expressions for the model
couplings in terms of scalar masses and mixings, which can
cover both the standard regime of heavy scalars as well as
the regime of light �. The latter case is relevant for the
Majorana–Higgs program, but the provided solution covers
the regimes of quasi-degeneracy, too. Criteria for perturba-
tivity of the chosen inputs were explicitly identified, and pro-
vided as an implemented routine.

The model capabilities were demonstrated with a num-
ber of benchmarks concerning the single production of
heavy resonances, pp → WR, ZR , various scalars pp →
�, H, A, H± and production of heavy neutrinos pp → �N ,
pp → NN , calculated at the NLO level in QCD.

Another foreseeable improvement might be the inclusion
of electroweak corrections. These could be used to autom-
atize the computation of electroweak precision observables
and calculate one-loop processes, like radiative production
and decays at one loop. Such an analysis may not be impos-
sible but it would require going beyond the current state of the
art, given the complexity of the model. We shall leave it for a
future study. The payoff might be having precise and autom-
atized control over rare processes that might be possible to
explore at future colliders.
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Appendix A: Square root(s) of a 3× 3 matrix

We calculate the closed form analytic expression for the 8
square roots of a general complex 3 × 3 matrix using the
Cayley–Hamilton theorem. For some of the previous work,
see [133–135].

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 1306 Page 22 of 25 Eur. Phys. J. C          (2024) 84:1306 

We start by writing the invariants of A and
√
A

T = tr A , T1/2 = tr
√
A , (A1)

T2 = tr A.A , T2,1/2 = tr
√
A.

√
A = T , (A2)

� = det A , �1/2 = det
√
A = √

�, (A3)

where the trace of the square of
√
A and its determinant

are trivially related to the invariants of A. Cayley–Hamilton
theorem states that matrices themselves are solutions to their
characteristic polynomial equations, which can be written in
terms of invariants

A3 − T A2 + T̃ A − �1 = 0 , T̃ = 1

2

(
T 2 − T2

)
. (A4)

The same holds for the square root that obeys a polynomial
with its own invariants (two of which are directly related to
the invariants of A)

(√
A
)3 − T1/2

(√
A
)2 + T̃1/2

√
A − √

�1 = 0 , (A5)

T̃1/2 = 1

2

(
T 2

1/2 − T
)

, (A6)

A
√
A − T1/2A + T̃1/2

√
A − √

�1 = 0 . (A7)

We can get to a linear equation for
√
A by multiplying (A7)

with
√
A

A2 − T1/2A
√
A + T̃1/2A − √

�
√
A = 0 , (A8)

A2 − T1/2

(
T1/2A − T̃1/2

√
A + √

�1
)

+
+ T̃1/2A − √

�
√
A = 0 , (A9)

which finally gives

√
A = ±

A2 +
(
T̃1/2 − T 2

1/2

)
A − √

� T1/2 1√
� − T1/2T̃1/2

. (A10)

This is already a striking result, where we know the off-
diagonal flavor structure of the root directly from a power
expansion of A, terminating at the second order (as expected
for 3 × 3 matrices from the Cayley–Hamilton theorem).

All the non-linearity is hidden in the equation for the
remaining invariant T1/2, which we get by taking the trace
of (A9) and using (A6), such that

T 4
1/2 − 2T T 2

1/2 − 8
√

� T1/2 + 2T2 − T 2 = 0 . (A11)

This is a depressed quartic with four possible solutions

T1/2 = ±ηs + s χ

2
√

6ξ
, s = ± , (A12)

which in turn give four corresponding T̃1/2 via (A6).
The shorthands ξ , χ , η±, are only functions of the invari-

ants of A and are found from these expressions:

ξ3 = −32
(

5T 3 − 9T T2 − 54�
)

+ 96
√

3
(
T 2 − 2T2

) (
T 2 − T2

)2 + 12T
(
9T2 − 5T 2

)
�

+324�2 , (A13)

χ2 = −16 3
√

2 T 2 + 48 3
√

2 T2 + 8T ξ + 3
√

4 ξ2 , (A14)

η2± = 16 3
√

2
(
T 2 − 3T2

)

+ ξ
(

16T − 3
√

4 ξ ± 96
√

6 χ−1
√

�ξ
)

, (A15)

where one assumes positive roots only. Together with the
overall sign in (A10), we get the total of 8 matrix roots.

With an explicit expression for
√
A, it is also easy to get

the inverse root, by multiplying (A7) with A−1/2,

A − T1/2
√
A + T̃1/2 1 − √

� A−1/2 = 0 , (A16)

so that the inverse root is found as

(√
A
)−1 = 1√

�

(
A − T1/2

√
A + T̃1/2 1

)
. (A17)

Again, there are eight possible branches and also the form of
this solution is a matrix power expansion up to A2.
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arXiv:1112.3061 [hep-ph]

73. J. Barry, W. Rodejohann, J. High Energy Phys. 2013, 153 (2013).
https://doi.org/10.1007/JHEP09(2013)153

74. J. de Vries, G. Li, M.J. Ramsey-Musolf, J.C. Vasquez,
JHEP 2022(11), 056 (2022). https://doi.org/10.1007/
JHEP11(2022)056. arXiv:2209.03031 [hep-ph]

75. M. Nemevšek, G. Senjanović, Y. Zhang, JCAP 2012(07),
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