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Abstract: Background: This study aimed to validate a method for characterizing and quantifying
the multi-elemental profiles of different insect flours to enable their distinction, identification, and
quality assessment. The focus was on three insect species: cricket (Acheta domesticus), buffalo worm
(Alphitobius diaperinus), and mealworm (Tenebrio molitor). Methods: Mealworms were powdered
in the laboratory through mechanical processing. Sample analysis involved acid digestion using
a microwave digester, followed by profiling with Inductively Coupled Plasma Mass Spectrometry
(ICP-MS). This technique enabled rapid, multi-elemental analysis at trace levels. Chemometric
methods, including Principal Component Analysis (PCA) for exploratory analysis, Covariance
Selection-Linear Discriminant Analysis (CovSel-LDA), alongside forward stepwise LDA classification
methods, were applied and compared. Results: ICP-MS accurately detected elements at micro trace
levels. Both classification models, based on different variable selection methods and externally
validated on a test set comprising 45% of the available samples, proved effective in classifying
samples based on slightly different pools of trace elements. CovSel-LDA selected Mg and Se, whereas
the stepwise-LDA focused on Mg, K, and Mn. Conclusions: the validated methods demonstrated
high accuracy and generalizability, supporting their potential use in food industry applications. This
model could assist in quality control, facilitating the introduction of insect-based flour into European
and international markets as novel foods.

Keywords: insect flour; cricket flour; ICP-MS; explorative analysis; PCA; discriminant classification;
LDA; variable selection; covariance selection

1. Introduction

In the context of alternative food sources, edible insect flours are playing an increas-
ingly central role in addressing the challenges associated with sustainable nutrition. En-
tomophagy has become quite widespread, as evidenced by information from the FAO
(Food and Agriculture Organization of the United Nations): according to their data, over
2 billion people consume more than 2000 species of insects [1]. Although this practice is still
relatively uncommon in Europe, this practice is traditional in parts of Asia, South America,
and Africa [2]. The consumption of edible insects, and especially of their derivatives such
as flour, can address various environmental and economic issues. According to the United
Nations Educational, Scientific and Cultural Organization (UNESCO) data, the world
population increase is leading to a depletion of available resources; in this context, the
vast availability of edible insects in nature could be a compelling reason to promote their
production and consumption on a large scale [3].

Fiebelkorn and collaborators have shown that in vitro insect farming enables a re-
duction in CO2 emissions, lower water demand, and decreased land use; due to their
sustainability, many companies have already recognized the economic potential of edible
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insects [4]. However, most studies on edible insects focus on their nutritional profile, which
is also highly diverse [5]. Many edible insects can meet the amino acid requirements of
the human diet; in addition to proteins, they are also rich in polyunsaturated fatty acids,
contain high levels of essential minerals (copper, iron, magnesium, manganese, phosphorus,
selenium, and zinc), and include fibers, such as chitin, not found in traditional meats [6].
Insects exhibit a highly variable protein content, ranging from 13% to 77%, depending on
the development stage and order [6]. Edible insects are rich in oleic, linoleic, and linolenic
acids, though their fatty acid profile depends heavily on their diet. Mineral content in
insects is also extremely variable; not all edible insects can meet daily mineral require-
ments [7]. However, it has been shown that in some cases, certain mineral contents in
insects can exceed those found in traditional meats; for example, beef has an average zinc
content of approximately 12.5 mg per 100 g of dry weight, while R. phoenicis larvae contain
26.5 mg per 100 g [6].

While most studies focus on the protein and fatty acid profiles in insect flours, there
are not numerous examples in the literature where flours can be characterized by assessing
their multi-element profile, which, as noted above, is nutritionally significant. Indeed, some
insect flours have been analyzed by infrared spectroscopy (IR). Benes and collaborators [8]
have shown that it is possible to accurately differentiate and identify flour from seven insect
species mixed with wheat flour; this study employed near-infrared spectrophotometry
(NIR) coupled with chemometric classification methods. Another study [9], conducted by
Foschi et al., aimed to use an IR spectrometer to establish a procedure for detecting potential
adulterations in cricket flour through spectral comparison. Using Inductively Coupled
Plasma Mass Spectrometry (ICP-MS) in studies on insect flours represents an innovative
and effective alternative for their classification. The originality of this approach is evidenced
by the fact that it is commonly applied to plant-based flours, such as rice flour [10], while
studies on insect flours remain relatively limited. Its effectiveness, on the other hand,
stems from its significant advantages in terms of precision and sensitivity. In light of
this, the present study aims at validating a method for characterizing and quantifying the
multi-elemental profiles of different insect flours to enable their distinction, identification,
and quality assessment. The focus was on three insect species: cricket (Acheta domesticus),
buffalo worm (Alphitobius diaperinus), and mealworm (Tenebrio molitor). This exploits the
sensitivity of ICP-MS, coupled with advanced chemometric methods, to provide a robust
framework for the classification and quality assessment of insect flours. By identifying
trace elements critical for discrimination, this research represents a novel application of
ICP-MS to a burgeoning area of sustainable food science.

2. Results and Discussion
2.1. ICP-MS Analysis and Validation

The ICP-MS analysis has been run as described in Section 3.2.
Table 1 presents the isotopes of the elements analyzed, the lower and upper concen-

trations, expressed in µg/L, of the respective calibration curves, and the coefficients of
determination (R2).

The calibration curves and independent measurements of blank samples were em-
ployed to determine the limit of detection (LOD) and the limit of quantification (LOQ).
Table 2 presents the validation parameters assessed according to Eurachem guidelines [11].
Specifically, it includes the relative standard deviation (RSD) of the method, estimated
from five replicates of unfortified samples, the recovery rates for two matrices (crickets and
buffalo worms), also calculated from five replicates for each class, as well as the LOD and
LOQ expressed in µg/g of dried samples.

The average concentrations (expressed in µg/g of dried sample) of the quantified
elements in the different classes, based on 24 samples for crickets (C) and buffalo worms
(B) and 28 samples for mealworms (W), are reported in Table 2.
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Table 1. The isotopes of the analyzed elements, the minimum (LLOQ) and maximum (HLOQ) concen-
trations in µg/L, defining the extremes of the calibration lines, and the coefficients of determination
(R2) are reported.

Isotope LLOQ (µg/L) HLOQ (µg/L) R2

10B 0.5 400 0.9970
23Na 150 3000 0.9980
24Mg 75 3000 0.9930
27Al 0.2 160 0.9980
31P 300 8000 0.9980
39K 300 8000 0.9999

44Ca 50 1000 0.9960
52Cr 0.1 80 0.9980

55Mn 0.2 40 0.9980
57Fe 2 400 0.9990
59Co 0.05 40 0.9990
60Ni 0.1 80 0.9990
64Zn 0.5 400 0.9999
65Cu 0.1 80 0.9999
80Se 0.5 400 0.9990
88Sr 0.25 20 0.9810

98Mo 0.25 20 0.9999
111Cd 0.05 40 0.9999
138Ba 0.2 160 0.9999

Table 2. Validation parameters of the method for each analyzed isotope and mean concentrations of
the element in the different classes of flours (crickets (C) and buffalo worms (B) and 28 samples for
mealworms (W)).

Parameters 10B 23Na 24Mg 27Al 31P

RSD (%) X 0.4 1 6 1
RecoveryB (%) X 99 96 103 105
RecoveryG (%) X 99 96 104 93

mean B class (ppm) <LOD 1760 550 220 7200
mean G class (ppm) <LOD 2900 464 260 8400
mean W class (ppm) <LOD 560 1160 80 6800

LOD (ppm) 5 3 4.5 0.8 0.2
LOQ (ppm) 17 9 15 3 0.7

Parameters 39K 44Ca 52Cr 55Mn 56Fe

RSD (%) 1 1 6 2 3
RecoveryB (%) 95 102 93 95 96
RecoveryG (%) 107 109 93 101 102

mean Bclass (ppm) 11400 680 0.4 6.6 52
mean Gclass (ppm) 10000 1220 0.2 46.6 60
mean Wclass (ppm) 9800 380 <LOQ 13.4 56

LOD (ppm) 23 120 0.02 0.3 0.0002
LOQ (ppm) 73 393 0.07 1 0.0007

Parameters 57Fe 59Co 60Ni 64Zn 65Cu

RSD (%) 3 4 7 3 3
RecoveryB (%) 101 120 101 103 100
RecoveryG (%) 101 120 102 107 106

mean Bclass (ppm) 68 0.06 0.6 130 38
mean Gclass (ppm) 80 0.04 0.6 320 38
mean Wclass (ppm) 78 0.06 0.6 140 22

LOD (ppm) 0.004 0.004 0.15 3 0.07
LOQ (ppm) 0.013 0.013 0.50 9 0.2
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Table 2. Cont.

Parameters 80Se 88Sr 98Mo 111Cd 138Ba

RSD (%) 4 2 2 1 3
RecoveryB (%) X X 95 91 98
RecoveryG (%) 93 98 95 92 96

mean Bclass (ppm) <LOQ <LOQ 0.78 0.032 0.52
mean Gclass (ppm) 0.54 4.2 0.8 0.032 2.88
mean Wclass (ppm) 0.28 3.24 1.42 0.048 3.3

LOD (ppm) 0.07 0.5 0.04 0.01 0.04
LOQ (ppm) 0.25 2 0.13 0.03 0.12

The results obtained in this study are generally in agreement with those reported by
Sikora et al. [12], considering that they mainly analyzed insect-based products (i.e., insect
flours mixed with other food ingredients), while our study focuses specifically on pure
insect flours. The RSD values for all quantifiable analytes fall within an acceptable range,
indicating the method’s robustness [13]. Notably, boron could not be quantified across all
tested classes. For other elements, including chromium (Cr), selenium (Se), and strontium
(Sr), accurate quantification was not achievable in some of the three classes. Furthermore,
nickel (Ni), selenium (Se), and cadmium (Cd) were found close to the quantification limits;
however, it was demonstrated that this low concentration did not lead to unacceptable RSD
or recovery values for Cd and Ni.

Regarding recoveries, they were found to be close to 100%, with few exceptions (such
as Co, which is slightly above the accepted limits), and they were very similar between the
two matrices (crickets and buffalo worms), indicating both the accuracy and stability of the
method. Based on RSD values and recovery rates, this method can be deemed acceptable
in terms of precision and accuracy.

2.2. Explorative Analysis

After preprocessing data by autoscaling, Principal Component Analysis was used to
assess potential patterns or outliers in the analyzed flour samples. The Principal Component
Analysis (PCA) model enables the creation of biplots, i.e., a graphical representation of the
projection of samples and variables onto the space of the first two principal components
(PCs). From the plot, it is possible to derive that cricket flour (yellow dots) is richer in
elements such as Mn, Zn, and Se, with respect to the other two classes. In contrast, elements
like Mg, Cd, and Mo are in higher quantities in mealworm flour. The second principal
component is dominated by other elements, such as K, found in greater quantities in buffalo
worm flour (green downward triangle), or Sr and Ba, which are prevalent in mealworms.
In general, mealworms are richer in heavy metals like Cd and Mo but poor in essential
minerals, which are abundant in buffalo worms and crickets. This may stem from the fact
that the analyzed mealworms come from a sample not intended for human consumption,
unlike cricket and buffalo worm flour. The exploratory analysis was conducted using all
available variables without any prior selection based on method validation parameters or
statistical analysis. The variables, represented as black dots, are labeled according to the
instrumental analysis mode and the specific isotope.

2.3. Classification

A cross-validation procedure was combined with two different variable selection
methods: Covariance Selection (CovSel) and Forward Stepwise Selection based on Wilks’
lambda statistics. To determine the optimal number of original variables using CovSel, a
7-fold cross-validation procedure was applied. Through this cross-validation, the optimal
variables identified were magnesium (Mg) and selenium (Se). The orthogonality of the
vector rays of Mg and Se, which account for their low correlation, can be observed and
easily verified in the biplot reported in Figure 1 and confirmed by the correlation coefficient
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of −0.22. Graphical results for CovSel-LDA, as a projection of samples onto the space
spanned by CVs, are shown in Figure 2.

Figure 1. Biplot with the first two principal components. The percentage in brackets is the vari-
ance explained by each PC. Legend: Black dots represent the diverse quantified elements. Green
downward triangles depict buffalo worms; yellow circles for house crickets; and red squares repre-
sent mealworms.

Figure 2. Projection of samples (filled and empty symbols refer to training and test samples, respec-
tively) onto the canonical variates (CVs) obtained by the CovSel-LDA model.

Figure 2 shows that the separation of the three classes of flour, according to the two
directions defined by the canonical variates (CVs), was very efficient, resulting in a total
correct classification rate of 100% in external validation.
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Regardless of the category, the training samples (filled symbols) formed well-defined
classes, confirming the high descriptive capability of the calibration model. Similarly, the
test set samples (empty symbols), located in the same regions as the training samples of
the same class, exhibit similar variability, validating the model’s effectiveness and degree
of generalization.

Crickets’ (yellow dots, at negative values of CV1) and mealworms’ (red squares, at
positive values of CV1) flours can be distinguished along the first canonical variate (CV1),
while samples belonging to the buffalo worm category (green triangles, at negative scores
of CV2) can be discriminated from the other two classes along the second component (CV2).
Notably, the concentration of selenium (Se), quantified using the present analytical method,
is below the LOQ for the buffalo worm class, which exhibits a very narrow dispersion in
the CV1–CV2 space. Although the value used for the multivariate analysis was slightly
below the LOQ and above the LOD, the classification model indicates that the information
provided by selenium concentration may still be helpful in differentiating the considered
classes without broadening buffalo warm class dispersion.

Eventually, a forward stepwise-LDA was conducted using the same cross-validation
procedure. The selected pool of variables, which demonstrated the best classification ability,
included magnesium (Mg), potassium (K), and manganese (Mn), with Mg exhibiting
the highest discriminant power across all seven cancelation groups. Among the selected
variables, Mg and Mn showed a correlation coefficient of −0.45, while Mg and K had a
correlation coefficient of −0.26. The model developed with this set of variables resulted in a
classification model with a 100% correct classification rate for all considered classes, both in
internal and external validation. In conclusion, Mg was selected for its higher concentration
in T. molitor larvae, Mn was highest in house crickets compared to the other classes, and K
was the highest in the buffalo worm class, as shown in Table 2 and graphically confirmed
in Figure 1. These three selected variables, which also demonstrate a good degree of
uncorrelation, contributed to a robust and stable linear discrimination model.

3. Materials and Methods
3.1. Samples

The samples analyzed and classified in this study are obtained from three different
species of insects: cricket (Acheta domesticus, C), buffalo worms (Alphitobius diaperinus, B),
and mealworms (Tenebrio molitor, M). The crickets and buffalo worms were obtained from
their containers already in flour form, while the mealworms were presented in a dried but
still whole larval form. Consequently, part of the laboratory procedure was devoted to
grinding the mealworms to produce flour. Two grinding methods were utilized: a manual
mode using a mortar and pestle and an automatic mode with a batch processing grinder
(Tube-Mill control, IKA, Staufen im Breisgau, Germany), operated for 25 s. The reduction
of mealworms to flour was carried out using two different methods to assess the potential
influence of the grinding process on the ICP-MS analysis data.

According to the indications provided by the producers, crickets used for the prepara-
tion of crickets’ flour were in adult form, whereas buffalo worms were in larval form.

Finally, each sample was obtained by performing several replicates on different
aliquots, obtained by different sampling from the purchased insects’ flour. A total number
of 75 samples (24 samples for cricket flour, 24 for buffalo worm flour, 28 for mealworms)
were obtained and considered for chemometric analysis.

3.2. ICP-MS Analysis

After the grinding process, all weighed samples were placed in an oven and subjected
to a drying process at a constant temperature of 105 ◦C for 24 h. After drying, the samples
were stored in graduated centrifuge tubes for preservation. In total, 50 mg of the dried
samples were weighed using the analytical balance and placed in vials to initiate acid
digestion. For the acid digestion, 2 mL of HNO3 (Sigma-Aldrich, St. Louis, MO, USA, 65%),
5 mL of H2O2 (Sigma-Aldrich, St. Louis, MO, USA, 30%), and 3 mL of (deionized and
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demineralized, 18.2 MΩ conductivity) H2O Suprapur (Millipore, Bedford, MA, USA), were
introduced into the vials. The mineralization process was assisted by a microwave digester
(Ethos One, Milestone, Bergamo, Italy). The microwave allowed for the acceleration
of the process, minimized the risk of contamination, and improved the quality of the
analytical results. After introducing the vials into the instrument, a specific thermal program
for mineralization was set: in the first 10 min, the temperature was raised to 180 ◦C,
maintained constant for 1 h, and then returned to room temperature for 1 h. At the end of
the mineralization process, the samples were allowed to rest for 24 h to enable the escape
of gas bubbles (CO2, SO2 and NOX) resulting from the oxidation of organic matter, which
could potentially interfere during the sample introduction phase. Eventually, the samples
were brought to volume in 100 mL flasks with H2O Suprapur. During this phase, a standard
solution of In (Inorganic Ventures, Christiansburg, VA, USA) at a final concentration of
10 µg/L was introduced as an internal standard, useful in estimating and correcting matrix
effects. The obtained samples were transferred and sealed in vials for ICP-MS (iCATM TQe,
Thermo Fisher Scientific, Waltham, MA, USA).

The following parameters were set:

• Power: 1500 W
• auxiliary gas (Ar 99.999%, Nippon Gases, Madrid, Spain): 0.8 L/min
• plasma gas: 14 L/min
• nebulizer gas: 1.02 L/min
• extraction lens: −87 V
• focusing lens: 1.45 V
• peristaltic pump: 40 rpm

The proposed method was validated following the Eurachem guidelines [11].
The recovery tests were carried out on fortified samples, which were obtained using

the same procedure as for pure samples but with fixed and known aliquots of the analytes
at a level of the same order of magnitude as the native analyte concentrations. From the
analysis of fortified and corresponding pure samples, recoveries were estimated using the
following formula:

Recovery(%) =
C(x+a) − Cx

Ca
∗ 100 (1)

where C(x+a) is the concentration of the analyte after addition, Cx is the analyte concentration
before addition, and Ca is the concentration of the added analyte.

Model validation was performed considering two different sample classes, i.e., two
slightly different sample matrices (crickets and buffalo worms). Additions were performed
before the acid digestion process. To determine the amounts to be added, the average
concentration of each element for the two classes was estimated based on data from
preliminary analyses conducted in order to set the optimal operating conditions (sample
weight, dilutions, calibration range). Working standards solutions with known, increasing
concentrations of the target analytes were analyzed for the quantitative analysis. LOD
and LOQ were obtained from the calibration curves. By combining information from the
analysis of multiple and independent blank samples (n = 6) and the calibration curves,
these two parameters were estimated using the following formulas:

LOD =
3 ∗ SDblank

a
(2)

LOD =
10 ∗ SDblank

a
(3)

where SDblank represents the standard deviation associated with experimental measure-
ments of the replicated blank samples, simulating the sample matrix at the same percentage
of nitric acid in samples and standards, and a represents the slope of the calibration curve.

Working standard solutions were obtained by appropriate dilution of a multi-elemental
commercial standard (multi-element reference solution 4 for ICP, TraceCERT®, in 10% ni-
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tric acid, Merck KGaA, Darmstadt, Germany) and mono-elemental standards (Inorganic
Ventures, Christiansburg, VA, USA).

3.3. Chemometric Modeling and Validation

Explorative data analysis is a crucial step in chemometrics, as it helps uncover patterns,
relationships, and the underlying structure of complex datasets. Principal Component
Analysis (PCA) [14,15] is a powerful multivariate technique commonly employed to reduce
data dimensionality. By transforming the original variables into orthogonal principal
components, PCA facilitates data visualization and highlights dominant trends. Once
the data structure is better understood, classification methods can be applied to assign
observations to predefined groups. Linear Discriminant Analysis (LDA) [16] is a widely
used technique for this purpose, projecting data onto a linear combination of variables
(CVs) to maximize the separation between classes.

Forward Stepwise LDA is a commonly used variable selection method in linear dis-
criminant analysis; it is based on an iterative procedure through which relevant predictors
can be se selected, improving model interpretability and performance [17]. In this work,
the selection of the most discriminant variables was based on the likelihood ratio test
statistic (known as Wilks’ statistic) and the F-statistic (which was employed to test the
significant decrease in Wilk’s Lambda after variable addition) and was coupled with the
cross-validation procedure. Thus, it was possible to evaluate predictive performance in
cross-validation as an additional criterion to select the best number of variables to retain in
the optimal model. A brief insight into the iterative method is provided below. For each
variable, the Wilk’s Lamba is computed as follows:

Λ =
SSW

SSTOT
(4)

where SSW is the intra-category sum-of-squares, and SSTOT the total sum-of-squares. At
this stage, the variable with the lowest lambda value is selected.

The following step is based on the sequential introduction of the variables that lead to
a decrease in the multivariate Wilk’s lambda, when more than one variable is involved [18].

Λ′′′′ =
(I − G) |P|
(I − 1)|V| (5)

Multivariate Wilk’s lambda is the ratio between the determinants of the pooled
variance–covariance matrix, P, and of the generalized variance–covariance matrix, V ,
normalized for the degrees of freedom (I the number of samples, G the number of classes).

In each cancelation group, the variable selection was performed as explained before.
The classification errors in cross-validation were inspected for each newly inserted vari-
able, which was the main criterion for stopping stepwise addiction. According to each
sub-training set’s slightly different characteristics, a more or less different ensemble of
variables could be selected in each cancelation group. For the final model, the chosen
original variables were the predictors most frequently selected over the cancelation groups,
producing the highest classification ability in cross-validation.

In chemometrics, variable selection is essential to ensure robust models, reduce noise,
and focus on the most chemically meaningful features. Covariance selection [19] is another
approach applied in this study to achieve this, focusing on identifying a subset of variables
that best capture the covariance structure of the data. This method helps balance complexity
and interpretability, aiding in the development of models that are both accurate and
scientifically insightful.

4. Conclusions

This study validated a robust and sensitive method for the characterization and classi-
fication of insect flours using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
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combined with advanced chemometric techniques. By examining the multi-elemental
profiles of cricket, buffalo worm, and mealworm flours, the approach demonstrated the
potential of ICP-MS for accurate and sensitive detection of elements. Principal Compo-
nent Analysis (PCA) revealed distinctive patterns in elemental composition among the
three insect species, while linear discriminant analysis models using Covariance Selection
(CovSel-LDA) and Forward Stepwise Selection achieved 100% classification accuracy in
both internal and external validations. Key elements such as magnesium, selenium, man-
ganese, and potassium were highlighted as pivotal for species differentiation. The findings
underscore the potential of ICP-MS for routine application in food quality control and regu-
latory frameworks, particularly in the emerging sector of edible insects as sustainable food
sources. The results align with prior research on insect flours’ nutritional and compositional
diversity, such as the work by [5], which emphasized the significance of mineral content in
differentiating edible insect species. Similarly, this study builds on insights from Benes and
collaborators [8] and Foschi et al. [9], extending the applicability of chemometric tools to
multi-elemental analysis, thus, enriching the methodological toolkit for food authenticity
studies. The study also contributes to the broader dialog on sustainable nutrition and novel
food production. Given the increasing demand for alternative protein sources, the ability to
rigorously assess and classify insect-based products will enhance consumer confidence and
facilitate market expansion. In general, this study represents a significant advancement
in the analytical characterization of insect flours by employing ICP-MS combined with
chemometric modeling. Unlike existing approaches, which primarily focus on protein
or fatty acid profiles, this method underscores the importance of multi-elemental profil-
ing as a discriminatory tool. The selection of critical variables not only ensures robust
classification of insect flours but also provides valuable insights into their nutritional and
safety attributes. These findings highlight the potential of the approach to address critical
gaps in the regulatory and quality control frameworks for novel foods. By bridging the
methodological gap between insect and plant-based products, our work lays the foundation
for broader applications of ICP-MS in sustainable food innovation. Future research could
explore applying this approach to other insect species or flour matrices and investigate
the impact of environmental and processing variables on elemental profiles. Such efforts
would further cement ICP-MS coupled with chemometrics as a cornerstone methodology
in the sustainable food industry. Nevertheless, it can be noted that, despite its effectiveness,
the method presents some limitations—for instance, a lengthy sample preparation process
and the use of significant quantities of chemicals.
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