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Abstract
We give a complete answer to the local–global divisi-
bility problem for algebraic tori. In particular, we prove
that given an odd prime 𝑝, if 𝑇 is an algebraic torus
of dimension 𝑟 < 𝑝 − 1 defined over a number field 𝑘,
then the local–global divisibility by any power 𝑝𝑛 holds
for 𝑇(𝑘). We also show that this bound on the dimen-
sion is best possible, by providing a counterexample for
every dimension 𝑟 ⩾ 𝑝 − 1. Finally, we prove that under
certain hypotheses on the number field generated by
the coordinates of the 𝑝𝑛-torsion points of 𝑇, the local–
global divisibility still holds for tori of dimension less
than 3(𝑝 − 1).
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1 INTRODUCTION

Let 𝑘 be a number field and let  be a commutative algebraic group defined over 𝑘. We denote by
𝑀𝑘 the set of places of 𝑘 and by 𝑘𝑣 the completion of 𝑘 at 𝑣. In 2001, Dvornicich and Zannier, moti-
vated by a particular case of the Hasse principle for binary quadratic forms, stated the following
problem, which is known as the local–global divisibility problem (see [9]).

Problem 1.1 (Dvornicich and Zannier [9]). Let 𝑞 be a fixed positive integer. If we assume that the
point𝑃 ∈ (𝑘)has the following property: for all but finitelymany 𝑣 ∈ 𝑀𝑘, there exists𝐷𝑣 ∈ (𝑘𝑣)

such that 𝑃 = 𝑞𝐷𝑣; can we conclude that there exists 𝐷 ∈ (𝑘) such that 𝑃 = 𝑞𝐷?

Clearly, it is sufficient to answer the problem when 𝑞 is a power of a prime. The classical
case of the multiplicative group  = 𝔾𝑚 has a complete answer: positive for 𝑞 not divisible by
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2 ALESSANDRÌ et al.

8 (see, e.g., [1, 9]) and negative for 𝑞 divisible by 8 (see [21]). For a general commutative algebraic
group, Dvornicich and Zannier gave in [9] a cohomological interpretation of the problem and suf-
ficient conditions to answer the question (see also [10]). In particular, they showed that such an
answer is linked to the triviality of a subgroup of H1(Gal(𝑘([𝑞])∕𝑘),[𝑞]), where 𝑘([𝑞]) is the
field obtained by adjoining the coordinates of the 𝑞-torsion points of  to 𝑘, called the first local
cohomology group (see Section 2 for further details).
By using these tools, it was possible to give criteria to answer the local–global divisibility prob-

lem for several algebraic groups. In the case of elliptic curves, the problem was long studied.
The answer is affirmative for 𝑞 = 2, 3 and for all powers 𝑞 = 𝑝𝑛, with 𝑝 > 𝐶([𝑘 ∶ ℚ]), where
𝐶([𝑘 ∶ ℚ]) = 3, if 𝑘 = ℚ, and 𝐶([𝑘 ∶ ℚ]) = (3

[𝑘∶ℚ]
2 + 1)2, if 𝑘 ≠ ℚ (see the recent survey [8] for

further details; see also [6]). Instead, for 𝑞 = 𝑝𝑛, with 𝑝 = 2, 3 and 𝑛 ⩾ 2, there are known coun-
terexamples over ℚ and over ℚ(𝜁3) (when 𝑝 = 3) [5, 16]. For each number field 𝑘 linearly disjoint
overℚ (resp. overℚ(𝜁3)) from the 𝑝𝑛-division field of  overℚ (resp. overℚ(𝜁3)), these counterex-
amples also give counterexamples in a finite extension of 𝑘 (see Remark 3.5 for further details).
While there are no explicit counterexamples for𝑝 ⩾ 5 over a number field 𝑘, in [18] necessary con-
ditions on Gal(𝑘([𝑝])∕𝑘) that have to be satisfied in order to have local–global divisibility by 𝑝𝑛
for a prime 𝑝 ⩾ 5 are given. In addition, for elliptic curves, an effective version of the hypotheses
of Problem 1.1 is produced in [7]. For principally polarized abelian surfaces in [12], Gillibert and
Ranieri proved sufficient conditions for the local–global divisibility by any prime power 𝑝𝑛, while
in [13], they generalized these conditions in order to answer the case ofGL2-type varieties (see also
[11]). Furthermore, in [17], the third author produced conditions for the local–global 𝑝-divisibility
for a general commutative algebraic group. In the case of abelian varieties, the problem is also
linked to a classical question posed by Cassels in 1962 on the 𝑝-divisibility of the Tate–Shafarevich
group (see [2–4, 8]).
In this work, we focus on algebraic tori. As mentioned above, for the one-dimensional split

torus 𝔾𝑚, we have a complete answer. Notice that the negative answer for 𝑞 = 2𝑛, with 𝑛 ⩾ 3,
implies that one can find counterexamples in every dimension, just by taking direct products of
copies of 𝔾𝑚. In [9], Dvornicich and Zannier proved that the local–global divisibility by a prime 𝑝
holds for tori of dimension 𝑟 ⩽ max{3, 2(𝑝 − 1)}, but fails for a torus of dimension 𝑟 = 𝑝4 − 𝑝2 + 1.
In this last case, they produced a 𝑘-rational point that is locally 𝑝-divisible for all but finitelymany
places 𝑣 ∈ 𝑀𝑘, but not globally 𝑝-divisible. In [14], Illengo improved the condition 𝑟 ⩽ 2(𝑝 − 1)

given byDvornicich andZannierwith theweaker one 𝑟 < 3(𝑝 − 1). He also proved that this bound
is best possible, by building an example with 𝑟 = 3(𝑝 − 1) for which the local–global divisibility
by 𝑝 fails.
In this work, we prove that the local–global divisibility by any odd power 𝑝𝑛, with 𝑛 ⩾ 1, holds

for an algebraic torus of dimension 𝑟 < 𝑝 − 1. In particular, we prove that if 𝑟 < 𝑝 − 1, then we
have an affirmative answer to Problem 1.1, while for 𝑟 ⩾ 𝑝 − 1, the local–global divisibility by
𝑝𝑛, with 𝑛 ⩾ 2, is no longer assured. For the latter, we construct a counterexample of dimension
𝑝 − 1 for which the local–global divisibility by every 𝑝𝑛 with 𝑛 ⩾ 2 does not hold.We remark that,
starting from this construction, one can build a counterexample for every dimension 𝑟 ⩾ 𝑝 − 1,
by taking the product of the torus that we build in Lemma 3.1 with the split torus of dimension
𝑟 − (𝑝 − 1). We summarize these results in the following theorem, that we prove in Section 3:

Theorem 1.2. Let 𝑝 be an odd prime.

(a) Let 𝑘 be a number field and let 𝑇 be a torus defined over 𝑘. If 𝑇 has dimension less than 𝑝 − 1,
then the local–global divisibility by 𝑝𝑛 holds for 𝑇(𝑘), for every 𝑛 ⩾ 1.
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LOCAL–GLOBAL DIVISIBILITY ON ALGEBRAIC TORI 3

(b) For every 𝑛 ⩾ 2 and for every 𝑟 ⩾ 𝑝 − 1, there exists a torus 𝑇 defined over 𝑘 = ℚ(𝜁𝑝) of dimen-
sion 𝑟 and a finite extension 𝐿∕𝑘 such that the local–global divisibility by 𝑝𝑛 does not hold for
𝑇(𝐿).

Nevertheless, under certain conditions on the base field 𝑘, satisfied, for example, by adjoining
a primitive 𝑝𝑛th root of unity to 𝑘, we can say something more when 𝑝 − 1 ⩽ dim(𝑇) < 3(𝑝 − 1).
Let 𝑘(𝑇[𝑝𝑛]) be the field obtained by adjoining the coordinates of the 𝑝𝑛-torsion points of 𝑇 to 𝑘.
In Section 4, we prove the following.

Theorem 1.3. Let 𝑝 be an odd prime and let 𝑛 ⩾ 1 be an integer. Suppose that 𝑇 is a torus defined
over 𝑘 with 𝑝 − 1 ⩽ dim(𝑇) < 3(𝑝 − 1) and 𝑝 does not divide the degree [𝑘(𝑇[𝑝𝑛]) ∩ 𝑘(𝜁𝑝𝑛) ∶ 𝑘],
where 𝜁𝑝𝑛 is a 𝑝𝑛th root of unity. Then, the local–global divisibility by 𝑝𝑛 holds for 𝑇(𝑘).

We remark that, since the proof of this theorem is done by induction on the powers of 𝑝, we
need the condition dim(𝑇) < 3(𝑝 − 1) for the base of the induction.

2 PRELIMINARY RESULTS

Asmentioned above, a usefulmethod introduced byDvornicich and Zannier in [9] in dealingwith
this problem is to translate it into cohomological terms. Let us recall some definitions and results.
Let  be a commutative algebraic group, defined over a number field 𝑘. Given a positive integer

𝑞, we denote by [𝑞] the set of 𝑞-torsion points of (𝑘). It is isomorphic to (ℤ∕𝑞ℤ)𝓁 , for some 𝓁
depending only on  (see, e.g., [9, Section 2]).
Let 𝐾 ∶= 𝑘([𝑞]) be the number field generated by adjoining to 𝑘 the coordinates of the 𝑞-

torsion points of . It is a Galois extension of 𝑘 and we denote by 𝐺 its Galois group. Let Σ be the
set of places 𝑣 unramified in𝐾 and let𝐺𝑣 = Gal(𝐾𝑤∕𝑘𝑣), where𝑤 is a place of𝐾 extending 𝑣 ∈ Σ.
In [9], the authors introduce a subgroup of H1(𝐺,[𝑞]) called the first local cohomology group:

H1
loc
(𝐺,[𝑞]) =

⋂
𝑣∈Σ

ker
(
H1(𝐺,[𝑞])

res𝑣
���→ H1(𝐺𝑣,[𝑞])

)
. (1)

By Čebotarev density theorem, the Galois groups𝐺𝑣 run over all cyclic subgroups of𝐺, as 𝑣 varies
in Σ. Therefore, a cocycle {𝑍𝜎}𝜎∈𝐺 in H1(𝐺,[𝑞]) is an element in H1

loc
(𝐺,[𝑞]) if and only if for

every 𝜎 ∈ 𝐺, there exists𝑊𝜎 ∈ [𝑞] such that 𝑍𝜎 = (𝜎 − 1)𝑊𝜎 (see [9] and [8] for further details).
This justifies the following, more general, definition.

Definition 2.1 (Dvornicich and Zannier [9]). Let 𝐺 be a group and let𝑀 be a 𝐺-module. We say
that a cocycle {𝑍g }g∈𝐺 of 𝐺 with values in 𝑀 satisfies the local conditions if there exist 𝑊g ∈ 𝑀

such that 𝑍g = (g − 1)𝑊g for all g ∈ 𝐺. We denote byH1
loc
(𝐺,𝑀) the subgroup ofH1(𝐺,𝑀) of the

classes of these cocycles.

As mentioned, it is sufficient to consider the case when 𝑞 is a prime power, thus from now
on, let 𝑞 = 𝑝𝑛, for some prime number 𝑝 and some positive integer 𝑛. By [9, Proposition 2.1], the
triviality of the first local cohomology group gives a sufficient condition for an affirmative answer
to Problem 1.1.
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4 ALESSANDRÌ et al.

Proposition 2.2 (Dvornicich and Zannier [9]). Assume that H1
loc
(Gal(𝐾∕𝑘),[𝑞]) = 0. Let 𝑃 ∈

(𝑘) be a rational point with the following property: for all but finitely many primes 𝑣 of 𝑘, there
exists 𝐷𝑣 ∈ (𝑘𝑣) such that 𝑃 = 𝑞𝐷𝑣 . Then there exists 𝐷 ∈ (𝑘) such that 𝑃 = 𝑞𝐷.

Furthermore, by [9, Theorem 2.5], it is enough to prove that H1
loc
(𝐺𝑝,[𝑞]) = 0 for a 𝑝-Sylow

subgroup 𝐺𝑝 of 𝐺. Moreover, the converse of Proposition 2.2 is also true over a finite extension of
𝑘, as the following theorem by Dvornicich and Zannier shows.

Theorem 2.3 [10, Theorem 3]. Suppose thatH1
loc
(𝐺,[𝑞]) is not trivial. Then there exists a number

field 𝐿 such that 𝐿 ∩ 𝐾 = 𝑘 and a point 𝑃 ∈ (𝐿) which is divisible by 𝑞 in (𝐿𝑤) for all places 𝑤 of
𝐿 but is not divisible by 𝑞 in (𝐿).

We remark that if in (1), we take all valuations, instead of almost all, then we get a group
isomorphic to the Tate–Shafarevich group Щ(𝑘,[𝑞]). Thus, the vanishing of H1

loc
(𝐺,[𝑞])

implies the vanishing of Щ(𝑘,[𝑞]), which is a sufficient condition to give an affirmative
answer to the local–global divisibility problem in the case when 𝑣 runs over all valuations of 𝑘
(see, e.g., [5]).
Let us now introduce some notation for algebraic tori that we will use in the next sections. We

adopt the samenotation as in [9, Section 4]. Let𝑇 be an algebraic torus defined over a number field
𝑘, of dimension 𝑟. There exists an isomorphism of algebraic groups (defined over 𝑘)𝜙 ∶ 𝑇 ⟶ 𝔾𝑟𝑚.
Let 𝐺𝑘 be the absolute Galois group of 𝑘. For 𝜎 ∈ 𝐺𝑘, we denote by 𝜙𝜎 the twist of 𝜙 by 𝜎, that is,
𝜙𝜎 = 𝜎◦𝜙◦𝜎−1, and we consider the following map:

𝜓 ∶ 𝐺𝑘 ⟶ Aut(𝔾rm) ≃ GL𝑟(ℤ)

𝜎 ⟼ 𝜙◦(𝜙𝜎)−1.

Notice that 𝜓 is a 1-cocycle, but since the action of 𝐺𝑘 on Aut(𝔾𝑟𝑚) is trivial, 𝜓 is actually a
group homomorphism.
The isomorphism 𝜙 is defined over some number field, thus ker 𝜓 has finite index in 𝐺𝑘

and we can identify Δ ∶= 𝜓(𝐺𝑘) with a finite subgroup of GL𝑟(ℤ). We denote by 𝐿 the field
fixed by ker 𝜓; it is a normal extension of 𝑘 and Δ ≃ Gal(𝐿∕𝑘). The field 𝐿 is also the splitting
field of the torus 𝑇. Let 𝜁 ∶= 𝜁𝑝𝑛 be a primitive 𝑝𝑛th root of unity and let 𝜒 be the cyclotomic
character

𝜒 ∶ 𝐺𝑘 ⟶ (ℤ∕𝑝𝑛ℤ)×

𝜎 ⟼ 𝑗𝜎,

where 𝑗𝜎 is such that 𝜎(𝜁) = 𝜁𝑗𝜎 . Let 𝑇[𝑝𝑛] be the group of the 𝑝𝑛-torsion points of 𝑇.
We have 𝑇[𝑝𝑛] = 𝑇(𝑘)[𝑝𝑛] ≃ {(𝜁𝑗1 , … , 𝜁𝑗𝑟 ) ∈ (𝑘

×
)𝑟 ∣ 𝑗ℎ ∈ ℤ∕𝑝𝑛ℤ} and we fix the following

isomorphism:

𝑇[𝑝𝑛] ⟶ (ℤ∕𝑝𝑛ℤ)𝑟

(𝜁𝑗1 , … , 𝜁𝑗𝑟 ) ⟼ (𝑗1, … , 𝑗𝑟).
(2)

By this isomorphism, the natural action of𝐺𝑘 on 𝑇[𝑝𝑛] induces the following action on (ℤ∕𝑝𝑛ℤ)𝑟:
𝜎 ⋅ 𝑣 = 𝑗𝜎𝜓(𝜎)𝑣 for all 𝑣 ∈ (ℤ∕𝑝𝑛ℤ)𝑟, where the tilde denotes the reduction mod 𝑝𝑛. Therefore,
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LOCAL–GLOBAL DIVISIBILITY ON ALGEBRAIC TORI 5

we have the homomorphism

𝜉 ∶ 𝐺𝑘 ⟶ GL𝑟(ℤ∕𝑝
𝑛ℤ)

𝜎 ⟼ 𝑗𝜎𝜓(𝜎).
(3)

It is easy to check that the field fixed by ker 𝜉 is 𝐾 ∶= 𝑘(𝑇[𝑝𝑛]); thus, the image 𝐺 of 𝜉 in
GL𝑟(ℤ∕𝑝

𝑛ℤ) is a finite subgroup isomorphic to 𝐺𝑘∕ ker 𝜉 ≃ Gal(𝐾∕𝑘). Let 𝐺𝑘(𝜁) be the subgroup

Gal(𝑘∕𝑘(𝜁)) of 𝐺𝑘. We have 𝐿 = 𝑘
ker 𝜓

and 𝐾 = 𝑘
ker 𝜉

, since ker 𝜉 ⊇ ker 𝜓 ∩ 𝐺𝑘(𝜁), we also get
𝐾 ⊆ 𝐿(𝜁). The kernel of the restriction of 𝜉 to 𝐺𝑘(𝜁) is contained both in ker 𝜉 and in ker 𝜓.
It follows that the image of 𝐺𝑘(𝜁) via 𝜉 is a normal subgroup 𝐺′ of 𝐺, which is also a normal
subgroup of the reduction Δ̃ modulo 𝑝𝑛 of Δ. In particular, we have the following tower of
extensions:

We have obtained that 𝐺 and Δ̃ have a common normal subgroup 𝐺′, with [𝐺 ∶ 𝐺′] ∣ 𝑝𝑛−1(𝑝 −

1) and [Δ̃ ∶ 𝐺′] ∣ 𝑝𝑛−1(𝑝 − 1). In [9], the authors can easily conclude that 𝐺 and Δ̃ also have the
same 𝑝-Sylow subgroups (since in their situation both [𝐺 ∶ 𝐺′] and [Δ̃ ∶ 𝐺′] are coprime with 𝑝),
and thus, they reduce themselves to study only the𝑝-Sylow subgroups in Δ̃. Instead, in our general
setting for the divisibility by 𝑝𝑛 problem, we have to distinguish two cases: either 𝑝 ∣ [𝐺 ∶ 𝐺′] or
𝑝 ∤ [𝐺 ∶ 𝐺′].
The following theorem (see [19, Theorem 6.1.16]) will be a precious tool in proving part (a) of

Theorem 1.2.

Theorem 2.4. A subgroup of a quotient is a 𝑝-Sylow subgroup if and only if it is the image through
the canonical projection homomorphism of a 𝑝-Sylow subgroup.

In the proof of Theorem 1.3, we will also need the following well-known result (see p. 197 of
[15]) whose proof we include for the reader’s convenience (for a more general result, see [20]).

Lemma 2.5. Let 𝑝 be an odd prime and let 𝜋 ∶ GL𝑟(ℤ)⟶ GL𝑟(ℤ∕𝑝ℤ) be the reduction modulo
𝑝. Then 𝜋 is injective on finite subgroups of GL𝑟(ℤ).
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6 ALESSANDRÌ et al.

Proof. It is enough to show that if 𝐴 ∈ ker 𝜋 and 𝐴 has finite order𝑚, then 𝐴 = Id. Suppose that
instead, 𝐴 ≠ Id. If 𝑝 ∤ 𝑚, then write 𝐴 = 1 + 𝑝𝑘𝐵, with 𝑘 ⩾ 1 and 𝐵 ∈ Mat𝑟(ℤ) such that 𝑝 does
not divide at least one of the entries of 𝐵. We have

1 = 𝐴𝑚 =

𝑚∑
𝑗=0

(
𝑚

𝑗

)
𝑝𝑗𝑘𝐵𝑗 = 1 + 𝑚𝑝𝑘𝐵 +

𝑚∑
𝑗=2

(
𝑚

𝑗

)
𝑝𝑘𝑗𝐵𝑗.

Thus, 𝑚𝑝𝑘𝐵 = −𝑝𝑘+1𝐶, for some 𝐶 ∈ Mat𝑟(ℤ) and so 𝑚𝐵 = −𝑝𝐶, which is a contradiction. On
the other hand, if 𝑝 ∣ 𝑚, then𝐴 ∶= 𝐴𝑚∕𝑝 has order 𝑝 and lies in ker 𝜋. We have𝐴 = 1 + 𝑝𝑘𝐵with
𝑘 ⩾ 1 and 𝐵 ∈ Mat𝑟(ℤ) such that 𝑝 does not divide at least one of the entries of 𝐵. We have

1 = 𝐴
𝑝
=

𝑝∑
𝑗=0

(
𝑝

𝑗

)
𝑝𝑗𝑘𝐵

𝑗
= 1 + 𝑝𝑘+1𝐵 +

𝑝−1∑
𝑗=2

(
𝑝

𝑗

)
𝑝𝑘𝑗𝐵

𝑗
+ 𝑝𝑝𝑘𝐵

𝑝
.

Since 𝑝 ≠ 2 and 𝑘 ⩾ 1, we get 𝑝𝑘+1𝐵 = −𝑝𝑘+2𝐶, for some 𝐶 ∈ Mat𝑟(ℤ), so 𝐵 = −𝑝𝐶 and we have
again a contradiction. □

Finally, we state the following lemma by Illengo; this is a key result for the local–global
divisibility in algebraic tori and we will use it in the proof of Theorem 1.2.

Lemma 2.6 [14, Lemma 4]. Let 𝑝 be a prime and let Γ be a 𝑝-group of matrices in SL𝑟(ℚ). If 𝑟 <
𝑝(𝑝 − 1), then Γ is isomorphic to (ℤ∕𝑝ℤ)𝑏, for some 𝑏 ⩽ 𝑟∕(𝑝 − 1).

3 PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2. With the notation as above, we show that:

(a) let 𝑝 be an odd prime number and let 𝑛 ⩾ 1 be an integer, then for every algebraic torus 𝑇
of dimension 𝑟 < 𝑝 − 1, we have H1

loc
(𝐺𝑝, 𝑇[𝑝

𝑛]) = 0, where 𝐺𝑝 is a 𝑝-Sylow subgroup of 𝐺.
Hence, by [9, Proposition 2.5], Problem 1.1 has affirmative answer;

(b) for every odd prime number 𝑝 and every positive integer 𝑛 ⩾ 2, there exists a torus 𝑇 defined
over ℚ(𝜁𝑝) of dimension 𝑝 − 1 such that H1

loc
(𝐺, 𝑇[𝑝𝑛]) ≠ 0. Thus, by Theorem 2.3, there

exists a number field in which the local–global divisibility by 𝑝𝑛 with 𝑛 ⩾ 2 does not hold
in 𝑇.

The counterexample in (b) shows that the bound on the dimension of 𝑇 is best possible.
Since point (b) requires more effort, we start by showing a few results that we will use for its

proof. The first step is building a torus such that 𝐺 is isomorphic to ℤ∕𝑝ℤ × ℤ∕𝑝𝑛−1ℤ.

Lemma 3.1. Let 𝑝 be an odd prime and let 𝑛 ⩾ 2. There exists an algebraic torus 𝑇 of dimension
𝑟 = 𝑝 − 1 defined over 𝑘 = ℚ(𝜁𝑝) such that𝐺 is isomorphic toℤ∕𝑝ℤ × ℤ∕𝑝𝑛−1ℤ. In particular,𝐺 ⊆

GL𝑟(ℤ∕𝑝
𝑛ℤ) is generated by

𝛾1 =

⎛⎜⎜⎜⎜⎜⎝

0 −1

1 0 −1

⋱ ⋱ ⋮
1 0 −1

1 −1

⎞⎟⎟⎟⎟⎟⎠
and 𝛾2 =

⎛⎜⎜⎝
𝑝 + 1

⋱
𝑝 + 1

⎞⎟⎟⎠ .
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LOCAL–GLOBAL DIVISIBILITY ON ALGEBRAIC TORI 7

Proof. Let 𝐿 be a Kummer extension of 𝑘, such that [𝐿 ∶ 𝑘] = 𝑝 and a prime other than 𝑝 ramifies,
for example, take 𝐿 = 𝑘(

𝑝
√
2). Then, 𝐿 ∩ ℚ(𝜁𝑝𝑛) = ℚ and 𝐿∕𝑘 is a cyclic extension of degree 𝑝. Let

𝜎 be a generator of Gal(𝐿∕𝑘). Consider the split torus 𝔾𝑚 = 𝔾𝑚,𝐿 defined over 𝐿. We denote the
group 𝔾𝑚[𝑝

𝑛] by 𝑉 ≃ ℤ∕𝑝𝑛ℤ using additive notation. The Galois action on 𝑉 is given by the
cyclotomic character 𝜒 ∶ 𝐺𝑘 ⟶ (ℤ∕𝑝𝑛ℤ)×. Let 𝑋 = 𝑅𝐿∕𝑘𝔾𝑚 be the Weil restriction of 𝔾𝑚. It is
an algebraic torus defined over 𝑘 of dimension 𝑝, split over 𝐿. The group 𝑋[𝑝𝑛] of the 𝑝𝑛-torsion
points of 𝑋 is a free ℤ∕𝑝𝑛ℤ-module of rank 𝑝 and by properties of the Weil restriction, we have
that

𝑋[𝑝𝑛] ≃

𝑝−1∏
𝑗=0

𝑉𝑗,

where 𝑉𝑗 is an isomorphic copy of 𝑉, for every 𝑗. Let us choose a lifting 𝜎 ∈ 𝐺𝑘 of 𝜎. For every
𝜏 ∈ 𝐺𝐿 = Gal(𝑘∕𝐿) and 0 ⩽ ℎ ⩽ 𝑝 − 1, the action of an element 𝛾 = 𝜏𝜎

ℎ
∈ 𝐺𝑘 on 𝑋[𝑝𝑛] is given

by

𝛾 ⋅ (𝑥0, 𝑥1 … , 𝑥𝑝−1) = 𝜏𝜎
ℎ ⋅ (𝑥0, 𝑥1 … , 𝑥𝑝−1)

= 𝜒(𝛾)(𝑥−ℎ, 𝑥−ℎ+1, … , 𝑥−ℎ−1), (4)

where we are considering the indices of the coordinates modulo 𝑝.

Now let 𝑇 be the norm 1 subtorus of𝑋, that is, 𝑇 = 𝑅(1)
𝐿∕𝑘

𝔾𝑚 = ker(𝑅𝐿∕𝑘𝔾𝑚
𝑁𝐿∕𝑘
⟶ 𝔾𝑚), the kernel

of the (generalized) norm map on 𝑋. It is an algebraic torus over 𝑘 of dimension 𝑟 = 𝑝 − 1, split
over 𝐿. We are going to show that 𝑘(𝑇[𝑝𝑛]) = 𝐿(𝜁𝑝𝑛).
Through the isomorphism (2) applied to 𝑋[𝑝𝑛], we can regard 𝑇[𝑝𝑛] as the submodule𝑊 of

𝑋[𝑝𝑛] of those vectors (𝑥0, 𝑥1 … , 𝑥𝑝−1) such that the sum of all coordinates is equal to zero (we
are using the additive notation here). The Galois action on 𝑇[𝑝𝑛] is given by 𝜉 ∶ 𝐺𝑘 ⟶ Aut(W),

that is, by the action on the points of 𝑋[𝑝𝑛] that lie in𝑊 (see (3)). We have that 𝑘(𝑇[𝑝𝑛]) = 𝑘
ker 𝜉

.
Thus, in order to determine this field, we need to find the elements of 𝐺𝑘 that act trivially on𝑊.
Since 𝑝 ⩾ 3, by (4), we see that 𝛾 = 𝜏𝜎

ℎ fixes every (𝑥0, 𝑥1 … , 𝑥𝑝−1) in 𝑊 if and only if ℎ = 0

and 𝜒(𝛾) = 𝜒(𝜏) = 1, that is, if and only if 𝛾 ∈ 𝐺𝐿 ∩ 𝐺ℚ(𝜁𝑝𝑛 ) = 𝐺𝐿(𝜁𝑝𝑛 ). We therefore conclude that
𝑘(𝑇[𝑝𝑛]) = 𝐿(𝜁𝑝𝑛) as claimed.
Note that 𝐿 ∩ ℚ(𝜁𝑝𝑛) = ℚ(𝜁𝑝) = 𝑘, so the extension 𝑘(𝑇[𝑝𝑛])∕𝑘 has Galois group

Gal(𝑘(𝑇[𝑝𝑛])∕𝑘) and

Gal(𝑘(𝑇[𝑝𝑛])∕𝑘) ∋ 𝜑⟼ (𝜑|𝐿, 𝜑|𝑘(𝜁𝑝𝑛 )) ∈ Gal(𝐿∕𝑘) × Gal
(
𝑘(𝜁𝑝𝑛)∕𝑘

)
(5)

is an isomorphism. Further, it is clear that the last group is isomorphic to ℤ∕𝑝ℤ × ℤ∕𝑝𝑛−1ℤ.
Let 𝜂 ∈ Gal(𝑘(𝜁𝑝𝑛 )∕𝑘) be the automorphism sending 𝜁𝑝𝑛 to 𝜁

𝑝+1
𝑝𝑛

; the two elements 𝜎 and
𝜂 are generators of Gal(𝐿∕𝑘) × Gal(𝑘(𝜁𝑝𝑛 )∕𝑘). As noticed in the previous section, the group
Gal(𝑘(𝑇[𝑝𝑛])∕𝑘) is isomorphic to 𝐺 = 𝜉(𝐺𝑘) ⊆ GL𝑝−1(ℤ∕𝑝

𝑛ℤ). So, we want to represent 𝜎 and
𝜂 as matrices in GL𝑝−1(ℤ∕𝑝𝑛ℤ). We can choose the lifting 𝜎 ∈ 𝐺𝑘 of 𝜎 such that, when restricted
to 𝑘(𝑇[𝑝𝑛]), it corresponds to the pair (𝜎, 1) in the isomorphism (5); in particular, 𝜒(𝜎) = 1. With
respect to the basis 𝑣 = (1, −1, 0, … , 0, 0), 𝜎(𝑣), 𝜎

2
(𝑣), … , 𝜎

𝑝−2
(𝑣) of𝑊, we can write the matrix
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8 ALESSANDRÌ et al.

𝛾1 = 𝜉(𝜎) corresponding to 𝜎, as

𝛾1 =

⎛⎜⎜⎜⎜⎜⎝

0 −1

1 0 −1

⋱ ⋱ ⋮
1 0 −1

1 −1

⎞⎟⎟⎟⎟⎟⎠
.

To conclude the proof, we observe that, with a similar reasoning, we can lift 𝜂 to 𝜂 ∈ 𝐺𝑘 in such
a way that, when restricted to 𝑘(𝑇[𝑝𝑛]), the element 𝜂 corresponds to the pair (1, 𝜂) and, clearly,
𝜒(𝜂) = 𝑝 + 1. Hence, the action of 𝜂 on𝑊 is just by multiplication by 𝑝 + 1; so, if 𝛾2 = 𝜉(𝜂), we
have

𝛾2 =
⎛⎜⎜⎝
𝑝 + 1

⋱
𝑝 + 1

⎞⎟⎟⎠ .
□

Remark 3.2. In the proof, we have explicitly described the homomorphism 𝜉 in (3) of Section 2 in
the particular case where 𝑇 is the norm torus.

Recall from (2) that 𝑇[𝑝𝑛] ≃ (ℤ∕𝑝𝑛ℤ)𝑝−1, hence we have a natural identification of
H1
loc
(𝐺, 𝑇[𝑝𝑛])withH1

loc
(𝐺, (ℤ∕𝑝𝑛ℤ)𝑝−1) by inducing the action of𝐺 on (ℤ∕𝑝𝑛ℤ)𝑝−1 via the same

isomorphism. In the following proposition, we show that these groups are nontrivial.

Proposition 3.3. Let 𝑝 be an odd prime and let 𝑛 ⩾ 2. Consider the action of 𝐺 on (ℤ∕𝑝𝑛ℤ)𝑝−1
induced by the isomorphism 𝑇[𝑝𝑛] ≃ (ℤ∕𝑝𝑛ℤ)𝑝−1 of (2). There exists a (unique) extension of

𝛾1 ⟼ 𝑣1 =

⎛⎜⎜⎜⎜⎜⎝

𝑝𝑛−2(𝑝 − 1)

0

⋮
0

𝑝𝑛−2

⎞⎟⎟⎟⎟⎟⎠
, 𝛾2 ⟼ 𝑣2 =

⎛⎜⎜⎜⎜⎝

𝑝𝑛−1

⋮
𝑝𝑛−1

0

⎞⎟⎟⎟⎟⎠
to a cocycle inH1(𝐺, (ℤ∕𝑝𝑛ℤ)𝑝−1) and it is a nontrivial element ofH1

loc
(𝐺, (ℤ∕𝑝𝑛ℤ)𝑝−1).

Proof. To check that the assigned vectors define a cocycle, we have to prove that in (ℤ∕𝑝𝑛ℤ)𝑝−1

(1 + 𝛾1 +⋯ + 𝛾
𝑝−1
1

)𝑣1 = 0, (6)

(1 + 𝛾2 +⋯ + 𝛾
𝑝𝑛−1−1
2

)𝑣2 = 0, (7)

(1 − 𝛾2)𝑣1 + (𝛾1 − 1)𝑣2 = 0, (8)

where 0 is the vectorwith all coordinates equal to zero; indeed, these conditionsmust be true since
𝛾
𝑝
1
= 𝛾

𝑝𝑛−1

2
= 𝛾1𝛾2𝛾

−1
1
𝛾−1
2

= 1 in 𝐺. A lifting of 𝛾1 to GL𝑝−1(ℚ) is the matrix 𝛾1 itself. It solves the
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LOCAL–GLOBAL DIVISIBILITY ON ALGEBRAIC TORI 9

polynomial 𝑥𝑝 − 1 and it is easy to see that 1 is not an eigenvalue. Thus, the minimal polynomial
of 𝛾1 is 𝑥𝑝−1 + 𝑥𝑝−2 +⋯ + 𝑥 + 1, and so, (6) holds. Using 𝛾2 = (𝑝 + 1)Id, we have that

(1 + 𝛾2 +⋯ + 𝛾
𝑝−1
2

)𝑣2 = (1 + (𝑝 + 1) +⋯ + (𝑝 + 1)𝑝−1)𝑣2 ≡ 0 mod 𝑝𝑛.

Since 𝑛 ⩾ 2, we can collect the factor 1 + 𝛾2 +⋯ + 𝛾
𝑝−1
2

on the left-hand side of (7), and hence,
(7) holds. For (8), some simple calculations lead to:

(1 − 𝛾2)𝑣1 + (𝛾1 − 1)𝑣2 ≡

⎛⎜⎜⎜⎜⎜⎝

𝑝𝑛−1

0

⋮
0

−𝑝𝑛−1

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

−𝑝𝑛−1

0

⋮
0

𝑝𝑛−1

⎞⎟⎟⎟⎟⎟⎠
≡ 0 mod 𝑝𝑛.

Thus, we can extend 𝑣1 and 𝑣2 to a cocycle 𝑍 = {𝑍𝛾}𝛾∈𝐺 , with 𝑍𝛾1 = 𝑣1 and 𝑍𝛾2 = 𝑣2. We now
prove that 𝑍 is not trivial. Suppose that it is a coboundary, then there exists 𝑤 ∈ (ℤ∕𝑝𝑛ℤ)𝑝−1

such that 𝑣1 = (𝛾1 − 1)𝑤 and 𝑣2 = (𝛾2 − 1)𝑤. We denote with 𝑤(𝑖) the 𝑖th coordinate of 𝑤. From
𝑣2 = (𝛾2 − 1)𝑤, we have 𝑣2 = 𝑝𝑤, so that 𝑝𝑤(𝑝−1) = 0. On the other hand, from 𝑣1 = (𝛾1 − 1)𝑤,
we have

𝑣1 =

⎛⎜⎜⎜⎜⎜⎝

𝑝𝑛−2(𝑝 − 1)

0

⋮
0

𝑝𝑛−2

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

−1 −1

1 −1 −1

⋱ ⋱ ⋮
1 −1 −1

1 −2

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝑤(1)

𝑤(2)

⋮
⋮

𝑤(𝑝−1)

⎞⎟⎟⎟⎟⎟⎠
. (9)

Thus, we obtain the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−𝑤(1) − 𝑤(𝑝−1) = 𝑝𝑛−2(𝑝 − 1)

𝑤(1) − 𝑤(2) − 𝑤(𝑝−1) = 0

⋮

𝑤(𝑝−3) − 𝑤(𝑝−2) − 𝑤(𝑝−1) = 0

𝑤(𝑝−2) − 2𝑤(𝑝−1) = 𝑝𝑛−2.

(10)

By adding the equations in (10), we get 𝑝𝑛−1 = −𝑝𝑤(𝑝−1), in contradiction with 𝑝𝑤(𝑝−1) = 0.
Therefore, 𝑍 is not a trivial cocycle in H1(𝐺, (ℤ∕𝑝𝑛ℤ)𝑝−1).
We are left to show that 𝑍 satisfies the local conditions. It is easy to see that the elements

𝛾ℎ
2
and 𝛾1𝛾ℎ2 , for ℎ = 0, 1, … , 𝑝𝑛−1 − 1 are generators of all the cyclic subgroups of 𝐺. So, it is

enough to show that there exist 𝑊𝛾ℎ
2
and 𝑊𝛾1𝛾

ℎ
2
in (ℤ∕𝑝𝑛ℤ)𝑝−1 such that 𝑍𝛾ℎ

2
= (𝛾ℎ

2
− 1)𝑊𝛾ℎ

2

and 𝑍𝛾1𝛾ℎ2 = (𝛾1𝛾
ℎ
2
− 1)𝑊𝛾1𝛾

ℎ
2
for all ℎ ∈ {0, 1, … , 𝑝𝑛−1 − 1}. First, since 𝛾2 − 1 = 𝑝Id, we have that

the image of 𝛾2 − 1 is the submodule 𝑀 of (ℤ∕𝑝𝑛ℤ)𝑝−1 of vectors with each coordinate divisi-
ble by 𝑝. The vector 𝑣2 satisfies this condition, so there exists𝑊𝛾2

∈ (ℤ∕𝑝𝑛ℤ)𝑝−1 such that 𝑣2 =
𝑍𝛾2 = (𝛾2 − 1)𝑊𝛾2

. Furthermore, since 𝑍𝛾ℎ
2
= (1 + 𝛾2 +⋯ + 𝛾ℎ−1

2
)𝑣2, we have that 𝑍𝛾ℎ

2
also lies in
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10 ALESSANDRÌ et al.

𝑀 and 𝑍𝛾ℎ
2
= (𝛾ℎ

2
− 1)𝑊𝛾2

. Now we fix ℎ ∈ {0, 1, … , 𝑝𝑛−1 − 1} and define

𝑉 =

⎧⎪⎨⎪⎩
⎛⎜⎜⎝
𝑣(1)

⋮
𝑣(𝑝−1)

⎞⎟⎟⎠ ∈ (ℤ∕𝑝𝑛ℤ)
𝑝−1

|||||
𝑝−1∑
𝑗=1

𝑣(𝑗) ≡ 0 mod 𝑝

⎫⎪⎬⎪⎭
⊆ (ℤ∕𝑝𝑛ℤ)

𝑝−1.

We claim that the image of 𝛾1𝛾ℎ2 − 1 is equal to 𝑉. Since 𝛾ℎ
2
= (𝑝 + 1)ℎId ≡ (1 + 𝑝𝑙)Id mod 𝑝𝑛

for some 𝑙 ∈ ℤ∕𝑝𝑛ℤ, we can rewrite

𝛾1𝛾
ℎ
2 − 1 = (1 + 𝑝𝑙)𝛾1 − 1 =

⎛⎜⎜⎜⎜⎜⎝

−1 −1 − 𝑝𝑙

1 + 𝑝𝑙 −1 −1 − 𝑝𝑙

⋱ ⋱ ⋮
⋱ −1 −1 − 𝑝𝑙

1 + 𝑝𝑙 −2 − 𝑝𝑙

⎞⎟⎟⎟⎟⎟⎠
,

and thus, Im(𝛾1𝛾ℎ2 − 1) ⊆ 𝑉.
With easy calculations, one can check that the determinant of 𝛾1𝛾ℎ2 − 1 is equal to 𝑝 mod-

ulo 𝑝2. Take a lifting of 𝛾1𝛾ℎ2 − 1 to an integer matrix; this integer matrix has still determinant
equal to 𝑝 modulo 𝑝2. Since ℤ is a principal ideal domain, we can consider its Smith nor-
mal form diag(𝛼1, 𝛼2, … , 𝛼𝑝−1), and we get that 𝑝 ∣ 𝛼𝑝−1 while 𝑝2 ∤ 𝛼𝑝−1 and 𝑝 ∤ 𝛼𝑗 for every
𝑗 = 1,… , 𝑝 − 2. Its projection diag(𝛼̃1, 𝛼̃2, … , 𝛼̃𝑝−1)modulo 𝑝𝑛 is such that 𝛼̃𝑗 is invertible, for 𝑗 =
1,… , 𝑝 − 2, and 𝛼̃𝑝−1 ≠ 0 is equal to 0 modulo 𝑝. Therefore, up to basis changes in (ℤ∕𝑝𝑛ℤ)𝑝−1,
the map 𝛾1𝛾ℎ2 − 1 is

⎛⎜⎜⎜⎜⎝

1

⋱
1

𝑝

⎞⎟⎟⎟⎟⎠
.

It follows that Im(𝛾1𝛾ℎ2 − 1) has index equal to 𝑝 in (ℤ∕𝑝𝑛ℤ)𝑝−1. The submodule𝑉 has also index
equal to 𝑝 in (ℤ∕𝑝𝑛ℤ)𝑝−1, and so, from the inclusions Im(𝛾1𝛾ℎ2 − 1) ⊆ 𝑉 ⊆ (ℤ∕𝑝𝑛ℤ)𝑝−1, we get
the equality 𝑉 = Im(𝛾1𝛾

ℎ
2
− 1). To conclude that 𝑍 satisfies the local conditions, it only remains

to verify that 𝑍𝛾1𝛾ℎ2 lies in 𝑉. We have 𝑍𝛾1𝛾ℎ2 = 𝑣1 + 𝛾1𝑍𝛾ℎ
2
, with 𝑣1 ∈ 𝑉 and, as mentioned above,

𝑍𝛾ℎ
2
∈ 𝑀 (and also 𝛾1𝑍𝛾ℎ

2
∈ 𝑀). Since𝑀 is contained in 𝑉, we get that 𝑍𝛾1𝛾ℎ2 ∈ 𝑉. □

We conclude this section with the proof of Theorem 1.2.

Proof of Theorem 1.2. Let 𝑝 be an odd prime.

(a) Let 𝑇 be an algebraic torus of dimension 𝑟 < 𝑝 − 1 defined over a number field 𝑘 and let 𝑛 ⩾ 1

be an integer. With the notation of Section 2, since the inclusion 𝐾 ⊆ 𝐿(𝜁) holds, it is clear
that 𝐺 is isomorphic to the quotient Gal(𝐿(𝜁)∕𝑘)∕Gal(𝐿(𝜁)∕𝐾). Since 𝑝 is an odd prime, any
𝑝-Sylow subgroup of the group Δ ≃ Gal(𝐿∕𝑘) is contained in SL𝑟(ℚ); hence by the condition
𝑟 < 𝑝 − 1 and Lemma 2.6, we have that Δ has no nontrivial 𝑝-Sylow subgroups. Since

Gal(𝐿(𝜁)∕𝑘) ��→ Gal(𝐿∕𝑘) × Gal(𝑘(𝜁)∕𝑘),
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LOCAL–GLOBAL DIVISIBILITY ON ALGEBRAIC TORI 11

we get that any 𝑝-Sylow subgroup ofGal(𝐿(𝜁)∕𝑘) is isomorphic to a subgroup ofGal(𝑘(𝜁)∕𝑘).
The latter is isomorphic to a subgroup of (ℤ∕𝑝𝑛ℤ)×, and hence, it is cyclic. Thus,Gal(𝐿(𝜁)∕𝑘)
contains only one cyclic 𝑝-Sylow subgroup. Now let 𝐺𝑝 be a 𝑝-Sylow subgroup of 𝐺. By The-
orem 2.4, it is the image through the projection to the quotient of the 𝑝-Sylow subgroup of
Gal(𝐿(𝜁)∕𝑘), and hence, it is cyclic too and H1

loc
(𝐺𝑝, 𝑇[𝑝

𝑛]) is trivial.
(b) Let 𝑛 ⩾ 2 be an integer. As mentioned in the Introduction, it is enough to prove the state-

ment for 𝑟 = 𝑝 − 1. By Lemma 3.1 and Proposition 3.3, there exists an algebraic torus defined
over 𝑘 = ℚ(𝜁𝑝) of dimension 𝑝 − 1 such that Gal(𝑘(𝑇[𝑝𝑛]∕𝑘) is isomorphic to ℤ∕𝑝ℤ ×

ℤ∕𝑝𝑛−1ℤ and H1
loc
(𝐺, 𝑇[𝑝𝑛]) ≠ 0. By Theorem 2.3, there exists a number field 𝐿 such that

𝐿 ∩ 𝑘(𝑇[𝑝𝑛]) = 𝑘 and the local–global divisibility by 𝑝𝑛 does not hold for 𝑇(𝐿). □

Remark 3.4. The example built in Lemma 3.1 is defined over the number field 𝑘 = ℚ(𝜁𝑝), but we
can use it to construct an example over ℚ of dimension (𝑝 − 1)2. Indeed, let 𝑇 = 𝑅𝑘∕ℚ(𝑇) be the
Weil restriction of 𝑇. It has dimension dim(𝑇) = [𝑘 ∶ ℚ] dim(𝑇) = (𝑝 − 1)2 and for every number
field 𝐹 containing 𝑘, we have 𝑇(𝐹) = 𝑅𝑘∕ℚ(𝑇)(𝐹) ≃ 𝑇(𝐹)𝑝−1. In particular, if 𝑃 ∈ 𝑇(𝐹) is a point
such that the local–global divisibility fails, we have the failure of the local–global divisibility also
for the corresponding point on 𝑇(𝐹) (given by 𝑝 − 1 copies of 𝑃).

Remark 3.5. Let 𝑇 be a torus defined over a number field 𝑘, with nontrivial
H1
loc
(Gal(𝑘(𝑇[𝑝𝑛])∕𝑘), 𝑇[𝑝𝑛]). If 𝐿 is a finite extension of 𝑘 linearly disjoint from 𝑘(𝑇[𝑝𝑛])

over 𝑘, then

H1
loc(Gal(𝐿(𝑇[𝑝

𝑛])∕𝐿), 𝑇[𝑝𝑛]) ≃ H1
loc(Gal(𝑘(𝑇[𝑝

𝑛])∕𝑘), 𝑇[𝑝𝑛])

is nontrivial too. Thus, by Theorem 2.3, we have a counterexample over a finite extension of
𝐿. In this way, we have counterexamples over infinitely many number fields; in particular, this
applies to 𝑘 = ℚ. Moreover, this argument works not only for tori, but for every commutative
algebraic group.

4 PROOF OF THEOREM 1.3

We are going to prove Theorem 1.3. In the following proof, we will show that H1
loc
(𝐺, 𝑇[𝑝𝑛]) = 0;

in particular, this proves that the local–global divisibility by 𝑝𝑛 holds.

Proof of Theorem 1.3. We proceed by induction on 𝑛 ⩾ 1 proving that H1
loc
(𝐺, 𝑇[𝑝𝑛]) = 0. The

base of the induction 𝑛 = 1 is proven in [14]. Thus, suppose 𝑛 ⩾ 2 and H1
loc
(𝐺, 𝑇[𝑝𝑚]) = 0, for

every𝑚 ⩽ 𝑛 − 1.With the notation of Section 2, let𝐹 = 𝐾 ∩ 𝑘(𝜁).Wehave that [𝐹 ∶ 𝑘] = [𝐺 ∶ 𝐺′],
thus it is coprime with 𝑝 by the assumptions of the theorem. Therefore, the 𝑝-Sylow subgroups
of 𝐺 are contained in 𝐺′, hence in Δ̃. For any 𝑗 = 1,… , 𝑛 − 1, using the same construction as
in Section 2, we can define a group 𝐺(𝑗) ⊆ GL𝑟(ℤ∕𝑝

𝑗ℤ) that is isomorphic to Gal(𝑘(𝑇[𝑝𝑗])∕𝑘).
Let 𝜋𝑗 ∶ GL𝑟(ℤ∕𝑝𝑛ℤ)⟶ GL𝑟(ℤ∕𝑝

𝑗ℤ) be the reduction modulo 𝑝𝑗 and let 𝐻(𝑗) be the inter-
section of 𝐺 with ker 𝜋𝑗 . It is easy to prove that 𝐺(𝑗) = 𝜋𝑗(𝐺) ≃ Gal(𝑘(𝑇[𝑝𝑗])∕𝑘) and 𝐻(𝑗) ≃

Gal(𝐾∕𝑘(𝑇[𝑝𝑗])). We claim that 𝐻(1) is trivial. Every ℎ ∈ 𝐻(1) can be written as ℎ = 1 + 𝑝𝐴, for
some 𝐴 ∈ Mat𝑟(ℤ∕𝑝

𝑛ℤ), so we have ℎ𝑝𝑛−1 ≡ Id mod 𝑝𝑛. Hence, the subgroup𝐻(1) is a 𝑝-group,
and thus, it is contained in a 𝑝-Sylow subgroup𝐺𝑝 of𝐺. Since every 𝑝-Sylow subgroup of𝐺 is con-
tained in 𝐺′, we have that𝐻(1) is contained in a 𝑝-Sylow subgroup 𝐺′𝑝 of 𝐺

′ too. Thus,𝐻(1) ⊆ Δ̃𝑝,
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12 ALESSANDRÌ et al.

where Δ̃𝑝 is a 𝑝-Sylow subgroup of Δ̃. Let𝐻 ⊂ GL𝑟(ℤ) be a subgroup of Δ such that its image via
the reduction modulo 𝑝𝑛 is 𝐻(1). Consider 𝜋 ∶ GL𝑟(ℤ)⟶ GL𝑟(ℤ∕𝑝ℤ) the reduction modulo 𝑝.
We have that 𝐻 is contained in ker(𝜋) ∩ Δ. So, by using Lemma 2.5, we find that 𝐻 and, conse-
quently, 𝐻(1) are trivial. Our claim is proved, and we get that also every 𝐻(𝑗) is trivial since they
are all contained in 𝐻(1). Therefore, 𝐺 ≃ 𝐺(𝑛−1) ≃ ⋯ ≃ 𝐺(1) via the relative projections.
Consider the following short exact sequence:

1⟶ 𝑇[𝑝]
𝜄

⟶ 𝑇[𝑝𝑛]
𝜀

⟶ 𝑇[𝑝𝑛−1]⟶ 1,

where 𝜄 is the inclusion and 𝜀 is the 𝑝-power map (here we are using the multiplicative notation
for 𝑇[𝑝], 𝑇[𝑝𝑛−1], and 𝑇[𝑝𝑛]). The group 𝐺 acts on 𝑇[𝑝𝑛] and, via the projections, on 𝑇[𝑝] and
𝑇[𝑝𝑛−1], and by these actions, the above short exact sequence is a sequence of 𝐺-modules. Thus,
we have the following long exact sequence:

1 → 𝑇[𝑝]𝐺 → 𝑇[𝑝𝑛]𝐺 → 𝑇[𝑝𝑛−1]𝐺 → H1(𝐺, 𝑇[𝑝]) → H1(𝐺, 𝑇[𝑝𝑛]) → H1(𝐺, 𝑇[𝑝𝑛−1]) → …

Let 𝐶 be a cyclic subgroup of 𝐺 and for 𝑖 = 1, 𝑛 − 1, 𝑛 let res𝑖 be the restriction H1(𝐺, 𝑇[𝑝𝑖])⟶

H1(𝐶, 𝑇[𝑝𝑖]). We have the following diagram with exact rows:

where the central row is given by the long exact sequence above, the lower row is obtained from
the same exact sequence by restriction to the subgroup 𝐶, whereas the upper one is induced by
the commutativity of the diagram given by the last two rows. Since the group 𝐺 is isomorphic
to 𝐺(1) and to 𝐺(𝑛−1), we have that the cyclic subgroups of 𝐺(1) and 𝐺(𝑛−1) are the images of the
projections of the cyclic subgroups of 𝐺. Therefore, by taking the intersection over all the cyclic
subgroups of 𝐺, from the first row of the diagram, we have the exact sequence

H1
loc
(𝐺, 𝑇[𝑝])⟶ H1

loc
(𝐺, 𝑇[𝑝𝑛])⟶ H1

loc
(𝐺, 𝑇[𝑝𝑛−1]).

Since by inductive hypothesis H1
loc
(𝐺, 𝑇[𝑝]) = H1

loc
(𝐺, 𝑇[𝑝𝑛−1]) = 0, we also have

H1
loc
(𝐺, 𝑇[𝑝𝑛]) = 0. □

Remark 4.1. We remark that in Lemma 3.1, we have 𝑘 = ℚ(𝜁𝑝) and 𝐹 ∶= 𝑘(𝑇[𝑝𝑛]) ∩

𝑘(𝜁𝑝𝑛) = 𝑘(𝜁𝑝𝑛), so [𝐹 ∶ 𝑘] = [𝑘(𝜁𝑝𝑛 ) ∶ 𝑘] = [ℚ(𝜁𝑝𝑛) ∶ ℚ(𝜁𝑝)] = 𝑝𝑛−1. Moreover, we notice that
the automorphism 𝜂 in the proof of Lemma 3.1 is a generator of the subgroup 𝐻(1) ≃

Gal(𝑘(𝑇[𝑝𝑛])∕𝑘(𝑇[𝑝])), defined in the proof of Theorem 1.3 above. In particular, for the torus
defined in Lemma 3.1, we have that𝐻(1) is not trivial.
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LOCAL–GLOBAL DIVISIBILITY ON ALGEBRAIC TORI 13

Remark 4.2. Notice that it is always possible to construct an algebraic torus 𝑇, not split over 𝑘,
that satisfies the conditions of Theorem 1.3. An example is obtained by taking a number field 𝑘
that contains a 𝑝𝑛th root of unity, any finite extension 𝐿∕𝑘 of degree 𝑑, with 𝑝 − 1 ⩽ 𝑑 < 3(𝑝 − 1),
and considering 𝑇 = 𝑅𝐿∕𝑘𝔾𝑚,𝐿, the Weil restriction of the split torus 𝔾𝑚,𝐿 over 𝐿. The torus 𝑇 is
defined over 𝑘, it is split over 𝐿 and it has dimension 𝑑. Thus, 𝐹 = 𝐾 ∩ 𝑘(𝜁) is equal to 𝑘 and the
hypotheses of the theorem are satisfied.
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