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Abstract

The aim of this thesis is to investigate the asymptotic behavior of solutions to opinion
formation and �ocking models and to abstract evolution equations. Most of the models we
will deal with involve time delay e�ects. Time delays, even arbitrarily small, may induce
instability phenomena. Hence, the stability analysis for delayed systems is an important
issue to deepen.

In this thesis, we will establish consensus results for the Hegselmann-Krause opinion
formation model and the Cucker-Smale �ocking model, investigating di�erent scenarios.
Namely, we will analyze situations where lack of connections, non-universal interactions
or repulsive dynamics may occur among the system's agents.

Also, we will provide suitable decay estimates for solutions to linear evolution equations
with time-dependent time delays and to semilinear evolution equations with memory and
time-dependent time delay feedback.
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Introduction

This thesis is devoted to the study of the asymptotic behavior of solutions to multiagent
systems, namely the Hegselmann-Krause opinion formation and its second-order version,
the Cucker-Smale �ocking model, and to abstract evolution equations.

In particular, we investigate the convergence to consensus for solutions to Hegselmann-
Krause type models and the asymptotic �ocking for solutions to Cucker-Smale type mod-
els.

On the other hand, we establish exponential decay estimates for solutions to some
abstract evolution equations and for the correspondent energies.

Most of the models we deal with involve time delay e�ects. The analysis of time
delays both in multiagent systems and in evolution equations has aroused a substantial
interest in the scienti�c community. Indeed, time delays often appear in many biological,
sociological, and engineering applications.

In many cases, even when the time delay is arbitrarily small, the presence of time
delays may destabilize the system. Therefore, the stability for systems with time lags is
an important issue to deal with.

For a detailed insight into delay di�erential equations, we refer to [61, 62]. Also,
we refer to [73] for the discussion of several applications of delay di�erential equations,
especially to population dynamics.

0.1 Multiagent systems

In these last years, multiagent systems have caught the attention of many researchers,
due to their wide application to several scienti�c disciplines, such as biology [23, 46],
economics [2, 67], robotics [21, 68], control theory [14, 20, 105, 94, 93, 8], social sciences
[16, 99, 29, 3, 74].

Among them, there is the celebrated Hegselmann-Krause model [66], proposed by
Hegselmann and Krause in 2002. Later on, the second-order version of the Hegselmann-
Krause model was introduced by Cucker and Smale in [46] for the description of �ocking
phenomena (for instance, �ocking of birds, schooling of �sh or swarming of bacteria).
Typically, for the solution of such models, the convergence to consensus, in the case of
the Hegselmann-Krause model, and the exhibition of asymptotic �ocking, in the case of
the Cucker-Smale model, are investigated.

In the analysis of such models, it is important to introduce time delay e�ects. Indeed,
one has to take into account certain time lags due to the propagation of the information

vi



0.1. MULTIAGENT SYSTEMS vii

or to reaction times.
The presence of a delay makes the models more di�cult to deal with since a delay,

even small, can destroy some geometric features typical of the undelayed models. In
particular, for Hegselmann-Krause models with always positive symmetric interactions,
it is easy to show that the system converges to consensus due to symmetry reasons. If we
add a delay in such models, then the symmetry is broken and, in turn, the asymptotic
analysis requires �ner arguments. On the other hand, despite mathematical di�culties to
overcome, the presence of time delays, which naturally appear in applications, allows us
to better describe the real features of the models.

The analysis of the Hegselmann-Krause model and the Cucker-Smale model in presence
of time delays (that can be constant or, more realistically, time-dependent), has been
carried out by many authors, [35, 36, 37, 38, 53, 63, 64, 65, 76, 77, 87, 98]. Most of them
require a smallness condition on the time delay size in order to prove the asymptotic
consensus. However, very recently, Rodriguez Cartabia proved in [101] the asymptotic
�ocking for the Cucker-Smale model with constant time delay without assuming any
restrictions on the time delay size (see also [64] for a consensus result for the Hegselmann-
Krause model).

In this thesis, we will present some results taken from recent papers ([41, 40, 42, 39])
in which �rst and second-order Cucker-Smale models involving time delay e�ects are
considered. In particular, generalizing and extending the arguments in [101], we are able to
establish the exponential consensus for the Hegselmann-Krause model with time-variable
time delay and the exponential �ocking for the Cucker-Smale model with time-variable
(see [41, 40]), without assuming the time delay size to be small. Smallness conditions on
the time delay size are not required either in the results from [42, 39].

For the two aforementioned systems, we will examine di�erent scenarios. First of all,
we will investigate the situation in which the agents involved in the opinion formation
or �ocking process suspend their interaction at certain times. Namely, weight functions
that are pair-dependent and that can eventually degenerate are included in the considered
models. Then, it is important to �nd conditions ensuring the convergence to consensus
despite the lack of connection among the agents. Particular attention has been paid
in these last times to the analysis of the asymptotic behavior of solutions to �rst and
second-order Cucker-Smale models under communication failures (see [19, 12]).

Also, it could happen that the agents are not able to exchange information with all the
other components of the system. In this case, we are in the presence of a non-universal
interaction, so that the agents are able to in�uence only the opinions or the velocities of
the particles they are linked to. To deal with this kind of interaction, a graph topology
over the structure of the model has to be considered (see [27]).

In this thesis, we will establish consensus estimates for �rst and second-order align-
ment models with time delay, non-universal interaction, and communication failures by
assuming that the digraph describing the interaction among the agents is strongly con-
nected and that the weight functions satisfy a so-called Persistence Excitation Condition.
These results are mainly contained in [39].

Another scenario we will consider is the one in which the agents involved in the opin-
ion formation or �ocking process have positive-negative interaction, namely the system's
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particles attract each other in certain time intervals and repeal each other in other ones.
Of course, the fact that the agents repeal each other at certain prevents the asymptotic
consensus for solutions to the Hegselmann-Krause model and to the Cucker-Smale model.

In this case, in order to get the asymptotic consensus or the asymptotic �ocking,
one has to compensate the behavior of the solutions to the considered model in the bad
intervals, i.e. the intervals in which the agents repeal each other, with the good behavior of
the solutions in the intervals in which the in�uence among the agents is positive. Under
suitable assumptions, we will establish the asymptotic consensus for both models with
attractive-repulsive interaction. To this aim, some restrictions on the length of the bad
time intervals will be required. The consensus results related to �rst and second-order
Cucker-Smale models with attractive-repulsive interaction are contained in [43].

Finally, in all the results we will present, on the in�uence function, that describes
the interactions among the agents involved in the opinion formation or �ocking process,
monotonicity assumptions, which are usually required when dealing with such models,
are removed, namely the in�uence function is assumed to be just positive bounded and
continuous.

0.1.1 The Hegselmann-Krause model

Consider a �nite set of N ∈ N agents, with N ≥ 2. Let xi(t) ∈ IRd be the opinion of
the i-th agent at time t. Then, the undelayed Hegselmann-Krause model reads as follows:

d

dt
xi(t) =

∑
j:j ̸=i

bij(t)(xj(t)− xi(t)), t > 0, ∀i = 1, . . . , N. (0.1.1)

Generally, the communication rates bij are of the form

bij(t) :=
1

N − 1
ψ(|xi(t)− xj(t)|), ∀t > 0, ∀i, j = 1, . . . , N, (0.1.2)

where the in�uence function ψ : IR → IR is a nonnegative continuous function that is
required to be nonincreasing. In this way, each agent is able to in�uence only the opinion
of particles that belong to a certain radius of con�dence.
However, in this thesis we will be able to deal with more general in�uence functions,
namely the communication rates bij are given by the following expression

bij(t) :=
1

N − 1
ψ(xi(t), xj(t)), ∀t > 0, ∀i, j = 1, . . . , N, (0.1.3)

and the in�uence function ψ : IRd × IRd → IR is a positive continuous and bounded
function and

K := ∥ψ∥∞. (0.1.4)

So, the in�uence function does not depend anymore on the distance among the agents'
opinions but can be a generic function of the opinions. Moreover, monotonicity assump-
tions on the in�uence functions are no longer required. By doing so, a larger class of
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in�uence functions is included in our analysis, for instance of type gaussian or oscillatory
(see Chapter 1 for some numerical simulations involving not monotonic in�uence func-
tions).
In this thesis, we will deal with di�erent Hegselmann-Krause type models. First of all,
we will focus on a Hegselmann-Krause model with time-variable time delays:

d

dt
xi(t) =

∑
j:j ̸=i

bij(t)(xj(t− τ(t))− xi(t)), t > 0, ∀i = 1, . . . , N, (0.1.5)

where the communication rates are de�ned as follows

bij(t) :=
1

N − 1
ψ(xi(t), xj(t− τ(t))), ∀t > 0, ∀i, j = 1, . . . , N, (0.1.6)

and the time delay function τ : [0,+∞) → [0,+∞) is continuous and satis�es

0 ≤ τ(t) ≤ τ̄ , ∀t ≥ 0, ∀i, j = 1, . . . , N, (0.1.7)

for some positive constant τ̄ .
We will also analyze a Hegselmann-Krause type model with pair-dependent and time-

dependent time delay, communication failures and non-universal interaction:

d

dt
xi(t) =

∑
j:j ̸=i

χijαij(t)bij(t)(xj(t− τij(t))− xi(t)), t > 0, ∀i = 1, . . . , N. (0.1.8)

where the time delay functions τij : [0,+∞) → [0,+∞) are continuous and satisfy

0 ≤ τij(t) ≤ τ̄ , ∀t ≥ 0, ∀i, j = 1, . . . , N, (0.1.9)

for some positive constant τ̄ .
Here, the communication rates bij are of the form

bij(t) :=
1

N − 1
ψ(xi(t), xj(t− τij(t))), ∀t > 0, ∀i, j = 1, . . . , N. (0.1.10)

The terms χij are so de�ned

χij =

{
1, if j transmits information to i,

0, otherwise.
(0.1.11)

Thus, there could be agents that could never communicate among themselves and, in this
case, the interaction will be non-universal.
The weight functions αij : [0,+∞) → [0, 1] are L1-measurable and satisfy the following
Persistence Excitation Condition (cf. [19, 12]):

(PE) there exist two positive constants T and α̃ such that∫ t+T

t

αij(s)ds ≥ α̃, ∀t ≥ 0, (0.1.12)

for all i, j = 1, . . . , N such that χij = 1. Without loss of generality, we can assume
that α̃K ≤ 1 and that T ≥ τ̄ .
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So, the interaction is missing not only among agents that are not connected but also among
agents that can generally communicate. Let us note that (0.1.12) becomes relevant when
T is large and α̃ is small. In this case, the agents could eventually suspend their interaction
for long enough. We also point out that, in the case in which αij(t) = 1, for a.e. t ≥ 0
and for any i, j = 1, . . . , N , i.e. in the case in which the agents do not interrupt their
exchange of information, the condition (0.1.12) is of course satis�ed.

To deal with the non-universal interaction, we will consider a graph topology over the
model structure. Let G = (V , E) be a digraph consisting of a �nite set V = {1, ..., N} of
vertices and a set E ⊂ V×V of arcs. We assume that the agents are located at the vertices
and interact with each other via the underlying network topology. For each vertex i, we
denote by Ni the set of vertices that directly in�uence the vertex i, namely

Ni := {j = 1, . . . , N : χij = 1}. (0.1.13)

The set Ni can also be de�ned in the following way: j ∈ Ni if and only if (i, j) ∈ E . Also,
we denote with

Ni := |Ni|. (0.1.14)

We will exclude self loops, i.e. we assume that i /∈ Ni for all 1 ≤ i ≤ N. We also denote
the network topology via its (0, 1)-adjacency matrix (χij)ij. A path in a digraph G from
i0 to ip is a �nite sequence i0, i1, . . . , ip of distinct vertices such that each successive pair
of vertices is an arc of G. The integer p is called length of the path. If there exists a path
from i to j, then vertex j is said to be reachable from vertex i and we de�ne the distance
from i to j, in notation dist(i, j), as the length of the shortest path from i to j. A digraph
G is said to be strongly connected if each vertex is reachable from any other vertex. We
assume that our digraph G is strongly connected. We de�ne the depth γ of the digraph
as follows:

γ := max
i,j=1,...,N

dist(i, j). (0.1.15)

Thus, any particle can be connected to the other individuals of the system via no more
than γ intermediate agents. By de�nition, since i /∈ Ni, for all i = 1, . . . , N , we have that
γ ≤ N − 1. Also, since the digraph is strongly connected, the depth γ ≥ 1.

Due to the presence of the time delay, the initial conditions for both systems (0.1.5)
and (0.1.8) are functions de�ned in the time interval [−τ̄ , 0]. The initial conditions

xi(s) = x0i (s), ∀s ∈ [−τ̄ , 0], ∀i = 1, . . . , N, (0.1.16)

are assumed to be continuous functions.
Finally, we will consider the following Hegselmann-Krause model with attractive-

repulsive interaction:

d

dt
xi(t) =

∑
j:j ̸=i

α(t)aij(t)(xj(t)− xi(t)), t > 0, ∀i = 1, . . . , N. (0.1.17)

with initial conditions
xi(0) = x0i ∈ Rd, ∀i = 1, . . . , N. (0.1.18)
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The communication rates are as in (0.1.3). Moreover, the weight function α : [0,+∞) →
{−1, 1} is de�ned as follows

α(0) = 1, α(t) =

{
1, t ∈ (t2n, t2n+1) , n ∈ N0,

−1, t ∈ [t2n+1, t2n+2] , n ∈ N0,
(0.1.19)

where {tn}n is a sequence of nonnegative numbers such that t0 = 0, tn → ∞ as n → ∞
and

t2n+2 − t2n+1 <
ln 2

K
, ∀n ∈ N0. (0.1.20)

In this thesis, we will establish the convergence to consensus for the aforementioned
Hegselmann-Krause type models. To this aim, we de�ne the diameter d(·) of the solution
as

d(t) := max
i,j=1,...,N

|xi(t)− xj(t)|.

De�nition 0.1.1. We say that a solution {xi}i=1,...,N to system (0.1.1), (0.1.5), (0.1.8)
or (0.1.17) converges to consensus if

lim
t→+∞

d(t) = 0.

0.1.2 The Cucker-Smale model

Consider a �nite set ofN ∈ N particles, withN ≥ 2. Let (xi(t)) ∈ IRd and (vi(t)) ∈ IRd

denote the position and the velocity of the i-th particle at time t, respectively. Then, the
undelayed Cucker-Smale model takes the following form:

d
dt
xi(t) = vi(t), t > 0, ∀i = 1, . . . , N,

d
dt
vi(t) =

∑
j:j ̸=i

aij(t)(vj(t)− vi(t)), t > 0, ∀i = 1, . . . , N, (0.1.21)

where the communication rates aij of the form

aij(t) :=
1

N − 1
ψ̃(|xi(t)− xj(t− τ(t))|), ∀t > 0, ∀i, j = 1, . . . , N, (0.1.22)

and the in�uence function ψ̃ : IR → IR is a nonnegative continuous nonincreasing function.
Also in this case, we will be able to remove monotonicity assumptions on the in�uence
function. Indeed, we will require the in�uence function to be only positive and bounded.
However, in order to establish the asymptotic �ocking for solutions to the Cucker-Smale
model, the in�uence function must depend on the distance among the agents' positions.
We will denote by

K̃ := ∥ψ̃∥∞. (0.1.23)

As for the �rst-order model, we will investigate a Cucker-Smale model with time
variable time delays:

d
dt
xi(t) = vi(t), t > 0, ∀i = 1, . . . , N,

d
dt
vi(t) =

∑
j:j ̸=i

aij(t)(vj(t− τ(t))− vi(t)), t > 0, ∀i = 1, . . . , N, (0.1.24)
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where the weights aij of the form

aij(t) :=
1

N − 1
ψ̃(|xi(t)− xj(t− τ(t))|), ∀t > 0, ∀i, j = 1, . . . , N, (0.1.25)

and the time delay function τ : [0,∞) → [0,∞) is continuous and satis�es (0.1.7). More-
over, we will focus on a Cucker-Smale model with pair-dependent and time-dependent
time delay, communication failures and non-universal interaction:

d
dt
xi(t) = vi(t), t > 0, ∀i = 1, . . . , N,

d
dt
vi(t) =

∑
j:j ̸=i

χijαij(t)aij(t)(vj(t− τij(t))− vi(t)), t > 0, ∀i = 1, . . . , N, (0.1.26)

where the time delay functions τij : [0,+∞) → [0,+∞) are continuous and satisfy (0.1.9),
the terms χij are as in (0.1.11) and the weight functions αij : [0,+∞) → [0, 1] are
L1-measurable and satisfy the Persistence Excitation Condition (PE). Moreover, the
communication rates aij are of the form

aij(t) :=
1

N − 1
ψ̃(|xi(t)− xj(t− τij(t)|), ∀t > 0, ∀i, j = 1, . . . , N. (0.1.27)

Due to the non-universal interaction, also in this case a graph topology will be considered
over the structure of the model.
Furthermore, both for systems (0.1.24) and (0.1.26), since time delays are involved, the
initial conditions

xi(s) = x0i (s), vi(s) = v0i (s), ∀s ∈ [−τ̄ , 0], ∀i = 1, . . . , N, (0.1.28)

are assumed to be continuous functions.
Finally, a Cucker-Smale model with attractive repulsive interaction will be considered:

d
dt
xi(t) = vi(t), t > 0, ∀i = 1, . . . , N,

d
dt
vi(t) =

∑
j:j ̸=i

α(t)aij(t)(vj(t)− vi(t)), t > 0, ∀i = 1, . . . , N, (0.1.29)

with initial conditions {
xi(0) = x0i ∈ Rd, ∀i = 1, . . . , N,

vi(0) = v0i ∈ Rd, ∀i = 1, . . . , N.
(0.1.30)

Here, the communication rates are as in (0.1.22). Furthermore, the weight function α :
[0,+∞) → {−1, 1} is de�ned as in (0.1.19), where the sequence of nonnegative numbers
{tn} satis�es

t2n+2 − t2n+1 <
ln 2

K̃
, ∀n ∈ N0. (0.1.31)

For the second-order model, in order to study the exhibition of asymptotic �ocking,
we de�ne the space and velocity diameters

dX(t) := max
i,j=1,...,N

|xi(t)− xj(t)|,

dV (t) := max
i,j=1,...,N

|vi(t)− vj(t)|.
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De�nition 0.1.2. (Unconditional �ocking) We say that a solution {(xi, vi)}i=1,...,N to
system (0.1.21), (0.1.24), (0.1.26) or (0.1.29) exhibits asymptotic �ocking if it satis�es the
two following conditions:

1. there exists a positive constant d∗ such that

sup
t≥0

dX(t) ≤ d∗,

in the case of the undelayed systems (0.1.21) and (0.1.29), or

sup
t≥−τ̄

dX(t) ≤ d∗,

in the case of the delayed systems (0.1.24) and (0.1.26);

2. lim
t→∞

dV (t) = 0.

0.2 Abstract evolution equations

The study of evolution equations in presence of delay or memory terms attracted,
in recent years, the interest of many researchers. The presence of a time delay makes
the problems more di�cult to deal with and, of course, it is important to include in the
models time delays/memory terms to take into account time lags, such as reaction times,
maturation times, times needed to receive some information, etc., commonly present in
real life phenomena.

On the other hand, it is well-known that a time delay may induce instability phenom-
ena. In particular, for the damped wave equation, it has been proven that an arbitrarily
small delay can make the model unstable even if it is uniformly asymptotically stable in
absence of delay e�ects (see e.g. [49, 50, 81, 106]). Nevertheless, suitable feedback laws
can ensure the delayed model has the same stability properties as the undelayed one (see
[81, 106]).

Stability results for abstract evolution equations with delay have been already studied
in [83, 84, 72]. In [83, 84] it is analyzed the case of a single constant delay and also the
delay damping coe�cient is assumed to be constant. The analysis has then been extended
in [72] by considering, as here, (multiple) time-dependent time delays.

However, in this thesis we will work in a more general setting. Indeed, in [72], the
classical set of assumptions usually employed to deal with wave-type equations in presence
of time variable time delays (see e.g. [85, 33, 55] ) is used. In particular, it is required
that the time delay function τ ∈ W 1,∞(0,+∞) and that τ ′(t) ≤ c < 1. On the contrary,
in the results we will present in this thesis, that are taken from [44] and [45], we will only
assume that the time delay function is continuous and bounded from above.

Also, in the case of semilinear wave equations with memory damping, usually an extra
frictional not delayed damping is needed (see also [72, 83, 84]). In this thesis, we will
consider wave-type equations with viscoelastic damping, delay feedback and source term,
establishing well-posedness and stability, for small initial data, without adding any extra
frictional not delayed dampings.
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0.2.1 Linear evolution equations

Let us consider the following abstract model:

U ′(t) = AU(t) + k(t)BU(t− τ(t)), t ∈ (0,∞),
U(t) = f(t) t ∈ [−τ̄ , 0], (0.2.32)

where the operatorA generates an exponentially stable C0-semigroup (S(t))t≥0 in a Hilbert
space H, and B is a continuous linear operator of H into itself. The time delay function
τ : [0,+∞) → (0,+∞) belongs to C(0,+∞) and we assume that

0 ≤ τ(t) ≤ τ̄ , ∀ t ≥ 0, (0.2.33)

for some positive constant τ̄ . Moreover, the delay damping coe�cient k : [−τ̄ ,+∞) → IR
belongs to L1

loc([−τ̄ ,+∞); IR). We denote with U0 := f(0).
By the assumptions on the operator A, there exist two positive constants M and ω such
that

∥S(t)∥L(H) ≤Me−ωt, ∀t ≥ 0. (0.2.34)

Moreover, on the delay feedback coe�cient, we assume that the integrals on intervals of
length τ̄ are uniformly bounded, namely,∫ t

t−τ̄
|k(s)|ds ≤ K, ∀ t ≥ 0, (0.2.35)

for some K > 0.
In this thesis, under some mild assumptions on the involved functions and parameters,

we will establish the well-posedness of the problem (0.2.32), and we will obtain exponential
decay estimates for its solutions.

A concrete model that can be rewritten in the form (0.2.32) is, e.g., the wave equation
with frictional damping and delay feedback. In the case of constant delay feedback coe�-
cient and constant time delay, this model has been �rst studied in [95]. Under a suitable
smallness condition on the delay term coe�cient, an exponential decay estimate has been
proven. This result has then been extended to linear wave equations with internal delay
feedback and boundary dissipative condition in [11]. In [7, 58] it is instead analyzed the
case of the wave equations with delay feedback and viscoelastic damping.

For other stability estimates in the presence of time delay e�ects, for speci�c models,
mainly in the case of constant time delay and constant delay damping coe�cient, we
quote, among the others, [1, 10, 13, 9, 47, 86, 102, 79]. We mention also the recent papers
[71] and [26] dealing with delayed Korteweg-de Vries-Burgers and higher-order dispersive
equations, respectively.
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0.2.2 Semilinear evolution equations with memory and time delay

Let H be a Hilbert space and let A be a positive self-adjoint operator with dense
domain D(A) in H. Let us consider the system:

utt(t) + Au(t)−
∫ +∞

0

β(s)Au(t− s)ds+ k(t)BB∗ut(t− τ(t)) = ∇ψ(u(t)),

t ∈ (0,+∞),
u(t) = u0(t), t ∈ (−∞, 0],
ut(t) = g(t), t ∈ [−τ̄ , 0],

(0.2.36)
where τ̄ is a �xed positive constant and the function τ : [0,+∞) → [0,+∞) represents
the time dependent time delay. We assume that the time delay is a continuous function
satisfying

τ(t) ≤ τ̄ , ∀ t ≥ 0. (0.2.37)

In (0.2.36), B is a bounded linear operator of H into itself, B∗ denotes its adjoint. Let us
denote

∥B∥L(H) = ∥B∗∥L(H) = b. (0.2.38)

Also, (u0(·), g(·)) are the initial data taken in suitable spaces and we denote with u1 :=
g(0).

Moreover, on the delay damping coe�cient k : [−τ̄ ,+∞) → IR we assume that k(·) ∈
L1
loc([−τ̄ ,+∞)) and the integral on time intervals of length τ̄ is uniformly bounded, i.e.

there exists a positive constant K such that∫ t

t−τ̄
|k(s)|ds < K, ∀t ≥ 0. (0.2.39)

The memory kernel β : [0,+∞) → [0,+∞) satis�es the following classical assumptions:

(i) β ∈ C1(IR+) ∩ L1(IR+);

(ii) β(0) = β0 > 0;

(iii)
∫ +∞
0

β(t)dt = β̃ < 1;

(iv) β′(t) ≤ −δβ(t), for some δ > 0.

On the nonlinear term, as in [6, 89], we assume that ψ : D(A
1
2 ) → IR is a functional

having Gâteaux derivative Dψ(u) at every u ∈ D(A
1
2 ).Moreover, we assume the following

hypotheses:

(H1) For every u ∈ D(A
1
2 ), there exists a constant c(u) > 0 such that

|Dψ(u)(v)| ≤ c(u)||v||H ∀v ∈ D(A
1
2 ).

Then, ψ can be extended to the whole H and we denote by ∇ψ(u) the unique vector
representing Dψ(u) in the Riesz isomorphism, i.e.

⟨∇ψ(u), v⟩H = Dψ(u)(v), ∀v ∈ H;
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(H2) for all r > 0 there exists a constant L(r) > 0 such that

||∇ψ(u)−∇ψ(v)||H ≤ L(r)||A
1
2 (u− v)||H ,

for all u, v ∈ D(A
1
2 ) satisfying ||A 1

2u||H ≤ r and ||A 1
2v||H ≤ r.

(H3) ψ(0) = 0, ∇ψ(0) = 0 and there exists a strictly increasing continuous function h
such that

||∇ψ(u)||H ≤ h(||A
1
2u||H)||A

1
2u||H , (0.2.40)

for all u ∈ D(A
1
2 ).

In this thesis, we will study well-posedness and exponential stability, for small initial
data, for model (0.2.36). The results we will establish extend the ones in [89], where the
time delay is assumed to be constant (see also [31] for the constant delay case). The
extension is not trivial since the classical step-by-step argument, often used to deal with
time delay models, does not work in this case.

Other models with memory damping and time delay e�ects have been studied in the
recent literature. The �rst result is due to [69], in the linear setting. In that paper, a
standard frictional damping, not delayed, is included in the model to compensate for the
destabilizing e�ect of the delay feedback. As later understood, the viscoelastic damping
alone can counter the destabilizing delay e�ect, under suitable assumptions, without the
need for any arti�cial extra dampings. This has been shown, e.g., in [7, 47, 58, 107]. The
case of intermittent delay feedback has been studied in [87] while the paper [80] analyzes
a plate equation with memory, source term, delay feedback and, in the same spirit of [69],
an extra not delayed frictional damping. Models for wave-type equations with memory
damping have been previously studied by several authors in the undelayed case (see e.g.
[5, 6, 28]). See also [4] for results on the Timoshenko model, also in the undelayed case,
and extensions to the time delay framework (see e.g. [102, 13]).

More rich is the literature in the case of frictional/structural damping, instead of
a memory term, which compensates for the destabilizing e�ect of time delays and, for
speci�c models, various stability results have been quite recently obtained under suitable
assumptions (see e.g. [1, 10, 13, 34, 22, 81, 86, 72, 26, 96, 106]).

0.3 Outline

This thesis is organized as follows. In Chapter 1 we prove the exponential convergence
to consensus for the Hegselmann-Krause model with time-variable time delays. The con-
sensus result we establish in this chapter improves several previous related works, due to
the very general setting we consider. Indeed, no smallness assumptions are required on
the time delay size. Moreover, the in�uence function is a generic function of the agents'
opinions which is assumed to be only positive, bounded and continuous, and no symme-
try or monotonicity requirements have to be satis�ed. Then, we introduce the continuum
model associated with the particle system under consideration, obtained as the mean-�eld
limit of the particle system when the number of agents goes to in�nity, and we state a
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consensus theorem for the PDE model. Finally, extensions of the results presented in the
chapter to a Hegselmann-Krause model with distributed delay are provided.

In Chapter 2, we establish the exponential �ocking for the Cucker-Smale model with
time-variable time delays. Again, the main result of this chapter is proved without as-
suming any restrictions on the time delay size and without requiring any monotonicity
properties on the in�uence function.

In Chapter 3, we focus on �rst and second-order Cucker-Smale models with non-
universal interaction, pair and time-dependent time delays and communication failures.
Due to the presence of a non-universal interaction, we consider a network topology over
the structure of the model. The asymptotic consensus is established for both systems
by assuming that the digraph that describes the interaction among the agents is strongly
connected and that the weight functions, that are related to the possible lack of connection
among the agents, satisfy a Persistence Excitation condition.

In Chapter 4, we still deal with a Hegselmann-Krause model with time delay and
communication failures. With respect to Chapter 3, we work in the case of all-to-all
interaction, namely each agent can exchange information with all the other components
of the system, and we assume that the time delay functions and the weight functions are
not pair-dependent. Although the analysis we carry out in this chapter is less general
with respect to the one in Chapter 3, the consensus result we establish in this chapter
improves the one in Chapter 3 in the case of universal interaction. Indeed, we provide
exponential decay estimates for solutions to the considered Hegselmann-Krause model
that are independent of the number of agents, whereas in Chapter 3 the constants that
appear in the proof of the consensus result depend on the number of agents. This allows
us to obtain consensus estimates for the related PDE model.

In Chapter 5, we deal with �rst and second-order Cucker-Smale models with attrac-
tive repulsive interaction. We provide conditions ensuring that both models achieve the
asymptotic consensus. The asymptotic consensus is proven by compensating for the bad
behavior of the solutions in the intervals of negative interaction with the behavior of the
solutions in the intervals of positive interaction.

In Chapter 6, we consider a linear evolution equation with time-dependent time delay.
We establish well-posedness and exponential stability for the considered abstract model.
This is done by dealing with a very general time delay function, namely the time delay
function is just a continuous function bounded from above. The results that hold for the
linear model are then extended to a nonlinear model. Finally, applications of the results
established in this chapter are provided.

Finally, in Chapter 7 a semilinear evolution equation with memory and time-dependent
time delay feedback is analyzed. Under suitable assumptions on the delay feedback coef-
�cient and on the nonlinear term, we prove well-posedness and exponential stability for
solutions to the considered model corresponding to su�ciently small initial data. Also,
applications to the wave equation with memory and di�erent source terms are discussed.





Chapter 1

The Hegselmann-Krause model with

time variable time delays

In this chapter, we will establish the exponential consensus for solutions to the Hegselmann-
Krause model with time variable time delay (0.1.5). All the results contained in this
chapter are taken from [41].

The consensus result we will prove is the following.

Theorem 1.0.1. Assume that ψ : IRd × IRd → IR is a positive, bounded, continuous
function and that τ : [0,+∞) → [0,+∞) is a continuous functions for which (0.1.7)
holds. Moreover, let x0i : [−τ̄ , 0] → IRd be a continuous function, for any i = 1, . . . , N.
Then, for every solution {xi}i=1,...,N to (0.1.5) under the initial conditions (0.1.16), the
diameter d(·) satis�es the exponential decay estimate

d(t) ≤
(

max
i,j=1,...,N

max
r,s∈[−τ̄ ,0]

|xi(r)− xj(s)|
)
e−γ(t−2τ̄), ∀t ≥ 0, (1.0.1)

for a suitable positive constant γ, independent of N.

1.1 Preliminary results

In order to prove the consensus result 1.0.1, we need some auxiliary lemmas. We
assume that the hypotheses of Theorem 1.0.1 are satis�ed. Let {xi}i=1,...,N be solution to
(0.1.5) under the initial conditions (0.1.16).

The following results generalize and extend the ones developed in [101] in the case of a
Cucker-Smale model with constant time delay. In particular, to deal with time-dependent
time delays, in the next lemma, we combine arguments from [101] with a continuity
argument used in [37] for a Hegselmann-Krause model with time-dependent time delay.

Lemma 1.1.1. For each v ∈ IRd and T ≥ 0, we have that

min
j=1,...,N

min
s∈[T−τ̄ ,T ]

⟨xj(s), v⟩ ≤ ⟨xi(t), v⟩ ≤ max
j=1,...,N

max
s∈[T−τ̄ ,T ]

⟨xj(s), v⟩, (1.1.1)

for all t ≥ T − τ̄ and for all i = 1, . . . , N .

1
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Proof. Fix T ≥ 0. First of all, we note that the inequalities in (1.1.1) are satis�ed for
every t ∈ [T − τ̄ , T ].
Now, given a vector v ∈ IRd, we set

MT = max
j=1,...,N

max
s∈[T−τ̄ ,T ]

⟨xj(s), v⟩.

For all ϵ > 0, let us de�ne

Kϵ :=

{
t > T : max

i=1,...,N
⟨xi(s), v⟩ < MT + ϵ, ∀s ∈ [T, t)

}
.

By continuity, we have that Kϵ ̸= ∅. Thus, denoted with

Sϵ := supKϵ,

it holds that Sϵ > T .
We claim that Sϵ = +∞. Indeed, suppose by contradiction that Sϵ < +∞. Note that by
de�nition of Sϵ it turns out that

max
i=1,...,N

⟨xi(t), v⟩ < MT + ϵ, ∀t ∈ (T, Sϵ), (1.1.2)

and
lim
t→Sϵ−

max
i=1,...,N

⟨xi(t), v⟩ =MT + ϵ. (1.1.3)

For all i = 1, . . . , N and t ∈ (T, Sϵ), we compute

d

dt
⟨xi(t), v⟩ =

1

N − 1

∑
j:j ̸=i

ψ(xi(t), xj(t− τ(t)))⟨xj(t− τ(t))− xi(t), v⟩.

Notice that, being t ∈ (T, Sϵ), then t− τ(t) ∈ (T − τ̄ , Sϵ) and

⟨xj(t− τ(t)), v⟩ < MT + ϵ, ∀j = 1, . . . , N. (1.1.4)

Moreover, (1.1.2) implies that
⟨xi(t), v⟩ < MT + ϵ,

so that
MT + ϵ− ⟨xi(t), v⟩ ≥ 0.

Combining this last fact with (1.1.4), we can write

d

dt
⟨xi(t), v⟩ ≤

1

N − 1

∑
j:j ̸=i

ψ(xi(t), xj(t− τ(t)))(MT + ϵ− ⟨xi(t), v⟩)

≤ K(MT + ϵ− ⟨xi(t), v⟩), ∀t ∈ (T, Sϵ).

(1.1.5)



1.1. PRELIMINARY RESULTS 3

Then, from Gronwall's inequality we get

⟨xi(t), v⟩ ≤ e−K(t−T )⟨xi(T ), v⟩+K(MT + ϵ)

∫ t

T

e−K(t−s)ds

= e−K(t−T )⟨xi(T ), v⟩+ (MT + ϵ)e−Kt(eKt − eKT )

= e−K(t−T )⟨xi(T ), v⟩+ (MT + ϵ)(1− e−K(t−T ))

≤ e−K(t−T )MT +MT + ϵ−MT e
−K(t−T ) − ϵe−K(t−T )

=MT + ϵ− ϵe−K(t−T )

=MT + ϵ− ϵe−K(Sϵ−T ),

for all t ∈ (T, Sϵ). We have so proved that, ∀i = 1, . . . , N,

⟨xi(t), v⟩ ≤MT + ϵ− ϵe−K(Sϵ−T ), ∀t ∈ (T, Sϵ).

Thus, we get

max
i=1,...,N

⟨xi(t), v⟩ ≤MT + ϵ− ϵe−K(Sϵ−T ), ∀t ∈ (T, Sϵ). (1.1.6)

Letting t→ Sϵ− in (1.1.6), from (1.1.3) we have that

MT + ϵ ≤MT + ϵ− ϵe−K(Sϵ−T ) < MT + ϵ,

which is a contradiction. Thus, Sϵ = +∞, which means that

max
i=1,...,N

⟨xi(t), v⟩ < MT + ϵ, ∀t > T.

From the arbitrariness of ϵ we can conclude that

max
i=1,...,N

⟨xi(t), v⟩ ≤MT , ∀t > T,

from which
⟨xi(t), v⟩ ≤MT , ∀t > T, ∀i = 1, . . . , N,

which proves the second inequality in (1.1.1). Now, to prove the other inequality, let
v ∈ IRd and de�ne

mT = min
j=1,...,N

min
s∈[T−τ̄ ,T ]

⟨xj(s), v⟩.

Then, for all i = 1, . . . , N and t > T , by applying the second inequality in (1.1.1) to the
vector −v ∈ IRd, we get

−⟨xj(t), v⟩ = ⟨xi(t),−v⟩ ≤ max
j=1,...,N

max
s∈[T−τ̄ ,T ]

⟨xj(s),−v⟩

= − min
j=1,...,N

min
s∈[T−τ̄ ,T ]

⟨xj(s), v⟩ = −mT ,

from which
⟨xj(t), v⟩ ≥ mT .

Thus, also the �rst inequality in (1.1.1) is ful�lled.
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We now introduce some notation.

De�nition 1.1.1. We de�ne

D0 = max
i,j=1,...,N

max
s,t∈[−τ̄ ,0]

|xi(s)− xj(t)|,

and, in general, we de�ne the sequence

Dn := max
i,j=1,...,N

max
s,t∈[nτ̄−τ̄ ,nτ̄ ]

|xi(s)− xj(t)|, ∀n ∈ N. (1.1.7)

Let us denote with N0 := N ∪ {0}.

Lemma 1.1.2. For each n ∈ N0 and i, j = 1, . . . , N , we get

|xi(s)− xj(t)| ≤ Dn, ∀s, t ≥ nτ̄ − τ̄ . (1.1.8)

Proof. Fix n ∈ N0 and i, j = 1, . . . , N . Given s, t ≥ nτ̄ − τ̄ , if |xi(s)− xj(t)| = 0 then of
course Dn ≥ 0 = |xi(s)− xj(t)|. Thus, we can assume |xi(s)− xj(t)| > 0 and we set

v =
xi(s)− xj(t)

|xi(s)− xj(t)|
.

It turns out that v is a unit vector and, by using (1.1.1) with T = nτ̄ and the Cauchy-
Schwarz inequality, we can write

|xi(s)− xj(t)| = ⟨xi(s)− xj(t), v⟩ = ⟨xi(s), v⟩ − ⟨xj(t), v⟩

≤ max
l=1,...,N

max
r∈[nτ̄−τ̄ ,nτ̄ ]

⟨xl(r), v⟩ − min
l=1,...,N

min
r∈[nτ̄−τ̄ ,nτ̄ ]

⟨xl(r), v⟩

≤ max
l,k=1,...,N

max
r,σ∈[nτ̄−τ̄ ,nτ̄ ]

⟨xl(r)− xk(σ), v⟩

≤ max
l,k=1,...,N

max
r,σ∈[nτ̄−τ̄ ,nτ̄ ]

|xl(r)− xk(σ)||v| = Dn,

which proves (1.1.8).

Remark 1.1.3. Let us note that from (1.1.8), in particular, it follows that

|xi(s)− xj(t)| ≤ D0, ∀s, t ≥ −τ̄ . (1.1.9)

Moreover, for the sequence {Dn}n de�ned in (1.1.7), it holds

Dn+1 ≤ Dn, ∀n ∈ N0. (1.1.10)

With an analogous argument, one can �nd a bound on |xi(t)|, uniform with respect
to t and i = 1, . . . , N. Indeed, we have the following lemma.
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Lemma 1.1.4. For every i = 1, . . . , N, we have that

|xi(t)| ≤M0, ∀t ≥ −τ̄ , (1.1.11)

where
M0 := max

i=1,...,N
max
s∈[−τ̄ ,0]

|xi(s)|.

Proof. Given i = 1, . . . , N and t ≥ −τ̄ , if |xi(t)| = 0 then trivially M0 ≥ 0 = |xi(t)|. On
the contrary, if |xi(t)| > 0, we de�ne

v =
xi(t)

|xi(t)|
,

which is a unit vector for which we can write

|xi(t)| = ⟨xi(t), v⟩.

Then, by applying (1.1.1) for T = 0 and by using the Cauchy-Schwarz inequality we get

|xi(t)| ≤ max
j=1,...,N

max
s∈[−τ̄ ,0]

⟨xj(s), v⟩ ≤ max
j=1,...,N

max
s∈[−τ̄ ,0]

|xj(s)||v|

= max
j=1,...,N

max
s∈[−τ̄ ,0]

|xj(s)| =M0,

which proves (1.1.11).

Remark 1.1.5. From the estimate (1.1.11), since the in�uence function ψ is continuous,
we deduce that

ψ(xi(t), xj(t− τ(t))) ≥ ψ0 := min
|y|,|z|≤M0

ψ(y, z) > 0, (1.1.12)

for all t ≥ 0, for all i, j = 1, . . . , N.

The following lemma extends and improves an analogous result in [101] for the Cucker-
Smale model with constant time delay.

Lemma 1.1.6. For all i, j = 1, . . . , N , unit vector v ∈ IRd and n ∈ N0 we have that

⟨xi(t)− xj(t), v⟩ ≤ e−K(t−t0)⟨xi(t0)− xj(t0), v⟩+ (1− e−K(t−t0))Dn, (1.1.13)

for all t ≥ t0 ≥ nτ̄ , where Dn is as in (1.1.7). Moreover, for all n ∈ N0, we get

Dn+1 ≤ e−Kτ̄d(nτ̄) + (1− e−Kτ̄ )Dn. (1.1.14)

Proof. Fix n ∈ N0 and v ∈ IRd such that |v| = 1. We set

Mn = max
i=1,...,N

max
t∈[nτ̄−τ̄ ,nτ̄ ]

⟨xi(t), v⟩,
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mn = min
i=1,...,N

min
t∈[nτ̄−τ̄ ,nτ̄ ]

⟨xi(t), v⟩.

Then, it is easy to see that Mn−mn ≤ Dn. Now, for all i = 1, . . . , N and t ≥ t0 ≥ nτ̄ we
have that

d

dt
⟨xi(t), v⟩ =

∑
j:j ̸=i

bij(t)⟨xj(t− τ(t))− xi(t), v⟩

=
1

N − 1

∑
j:j ̸=i

ψ(xi(t), xj(t− τ(t)))(⟨xj(t− τ(t)), v⟩ − ⟨xi(t), v⟩)

≤ 1

N − 1

∑
j:j ̸=i

ψ(xi(t), xj(t− τ(t)))(Mn − ⟨xi(t), v⟩).

Note that, being t ≥ nτ̄ , ⟨xi(t), v⟩ ≤ Mn from (1.1.1). Therefore, we have that Mn −
⟨xi(t), v⟩ ≥ 0 and we can write

d

dt
⟨xi(t), v⟩ ≤

1

N − 1
K
∑
j:j ̸=i

(Mn − ⟨xi(t), v⟩) = K(Mn − ⟨xi(t), v⟩).

Thus, from the Gronwall's inequality it comes that

⟨xi(t), v⟩ ≤ e−K(t−t0)⟨xi(t0), v⟩+
∫ t

t0

KMne
−K(t−t0)+K(s−t0)ds

= e−K(t−t0)⟨xi(t0), v⟩+ e−K(t−t0)Mn(e
K(t−t0) − 1),

that is
⟨xi(t), v⟩ ≤ e−K(t−t0)⟨xi(t0), v⟩+ (1− e−K(t−t0))Mn. (1.1.15)

On the other hand, for all i = 1, . . . , N and t ≥ t0 ≥ nτ̄ it holds that

d

dt
⟨xi(t), v⟩ =

1

N − 1

∑
i:j ̸=i

ψ(xi(t), xj(t− τ(t)))(⟨xj(t− τ(t)), v⟩ − ⟨xi(t), v⟩)

≥ 1

N − 1

∑
j:j ̸=i

ψ(xi(t), xj(t− τ(t)))(mn − ⟨xi(t), v⟩).

Note that, from (1.1.1), ⟨xi(t), v⟩ ≥ mn since t ≥ nτ̄ . Thus, mn − ⟨xi(t), v⟩ ≤ 0 and, by
recalling that ψ is bounded, we get

d

dt
⟨xi(t), v⟩ ≥ K(mn − ⟨xi(t), v⟩).

Hence, by using Gronwall's inequality, it turns out that

⟨xi(t), v⟩ ≥ e−K(t−t0)⟨xi(t0), v⟩+ (1− e−K(t−t0))mn. (1.1.16)
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Therefore, for all i, j = 1, . . . , N and t ≥ t0 ≥ nτ̄ , by using (1.1.15) and (1.1.16) and by
recalling that Mn −mn ≤ Dn, we �nally get

⟨xi(t)− xj(t), v⟩ = ⟨xi(t), v⟩ − ⟨xj(t), v⟩

≤ e−K(t−t0)⟨xi(t0), v⟩+ (1− e−K(t−t0))Mn

−e−K(t−t0)⟨xj(t0), v⟩ − (1− e−K(t−t0))mn

= e−K(t−t0)⟨xi(t0)− xj(t0), v⟩+ (1− e−K(t−t0))(Mn −mn)

≤ e−K(t−t0)⟨xi(t0)− xj(t0), v⟩+ (1− e−K(t−t0))Dn,

i.e. (1.1.13) holds true.
Now, we prove (1.1.14). Given n ∈ N0, let i, j = 1, . . . , N and s, t ∈ [nτ̄ , nτ̄ + τ̄ ] be such
that Dn+1 = |xi(s)− xj(t)|. Note that, if |xi(s)− xj(t)| = 0, then obviously

0 = Dn+1 ≤ e−Kτ̄d(nτ̄) + (1− e−Kτ̄ )Dn.

So, we can assume |xi(s)− xj(t)| > 0. Let us de�ne the unit vector

v =
xi(s)− xj(t)

|xi(s)− xj(t)|
.

Hence, we can write

Dn+1 = ⟨xi(s)− xj(t), v⟩ = ⟨xi(s), v⟩ − ⟨xj(t), v⟩.

Now, by using (1.1.15) with t0 = nτ̄ , we have that

⟨xi(s), v⟩ ≤ e−K(s−nτ̄)⟨xi(nτ̄), v⟩+ (1− e−K(s−nτ̄))Mn

= e−K(s−nτ̄)(⟨xi(nτ̄), v⟩ −Mn) +Mn.

Thus, since s ≤ nτ̄ + τ̄ and ⟨xi(nτ̄), v⟩ −Mn ≤ 0 from (1.1.1), we get

⟨xi(s), v⟩ ≤ e−Kτ̄ (⟨xi(nτ̄), v⟩ −Mn) +Mn

≤ e−Kτ̄ ⟨xi(nτ̄), v⟩+ (1− e−Kτ̄ )Mn.
(1.1.17)

Similarly, by taking into account (1.1.1) and (1.1.16), we have that

⟨xj(t), v⟩ ≥ e−Kτ̄ ⟨xj(nτ̄), v⟩+ (1− e−Kτ̄ )mn. (1.1.18)

Therefore, combining (1.1.17) and (1.1.18), we can write

Dn+1 ≤ e−Kτ̄ ⟨xi(nτ̄), v⟩+ (1− e−Kτ̄ )Mn − e−Kτ̄ ⟨xj(nτ̄), v⟩ − (1− e−Kτ̄ )mn

= e−Kτ̄ ⟨xi(nτ̄)− xj(nτ̄), v⟩+ (1− e−Kτ̄ )(Mn −mn).

Then, by recalling that Mn −mn ≤ Dn and by using the Cauchy-Schwarz inequality, we
can conclude that

Dn+1 ≤ e−Kτ̄ |xi(nτ̄)− xj(nτ̄)||v|+ (1− e−Kτ̄ )Dn

≤ e−Kτ̄d(nτ̄) + (1− e−Kτ̄ )Dn.
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1.2 Proof of the consensus estimate

Finally, we need the following crucial result.

Lemma 1.2.1. There exists a constant C ∈ (0, 1), independent of N ∈ N, such that

d(nτ̄) ≤ CDn−2, (1.2.1)

for all n ≥ 2, and the sequence {Dn}n is as in (1.1.7).

Proof. Trivially, if d(nτ̄) = 0, then of course inequality (1.2.1) holds for any constant C ∈
(0, 1). So, suppose d(nτ̄) > 0. Let i, j = 1, . . . , N be such that d(nτ̄) = |xi(nτ̄)−xj(nτ̄)|.
We set

v =
xi(nτ̄)− xj(nτ̄)

|xi(nτ̄)− xj(nτ̄)|
.

Then, v is a unit vector for which we can write

d(nτ̄) = ⟨xi(nτ̄)− xj(nτ̄), v⟩.

Let us de�ne
Mn−1 = max

l=1,...,N
max

s∈[nτ̄−2τ̄ ,nτ̄−τ̄ ]
⟨xl(s), v⟩,

mn−1 = min
l=1,...,N

min
s∈[nτ̄−2τ̄ ,nτ̄−τ̄ ]

⟨xl(s), v⟩.

So, Mn−1 −mn−1 ≤ Dn−1. Now, we distinguish two di�erent situations.
Case I. Assume that there exists t0 ∈ [nτ̄ − 2τ̄ , nτ̄ ] such that

⟨xi(t0)− xj(t0), v⟩ < 0.

Then, from (1.1.13) with nτ̄ ≥ t0 ≥ nτ̄ − 2τ̄ , we have that

d(nτ̄) ≤ e−K(nτ̄−t0)⟨xi(t0)− xj(t0), v⟩+ (1− e−K(nτ̄−t0))Dn−2

≤ (1− e−K(nτ̄−t0))Dn−2 ≤ (1− e−2Kτ̄ )Dn−2.

Case II. Suppose that

⟨xi(t)− xj(t), v⟩ ≥ 0, ∀t ∈ [nτ̄ − 2τ̄ , nτ̄ ]. (1.2.2)

Then, for every t ∈ [nτ̄ − τ̄ , nτ̄ ] we have that

d

dt
⟨xi(t)− xj(t), v⟩ =

1

N − 1

∑
l:l ̸=i

ψ(xi(t), xl(t− τ(t)))⟨xl(t− τ(t))− xi(t), v⟩

− 1

N − 1

∑
l:l ̸=j

ψ(xi(t), xl(t− τ(t)))⟨xl(t− τ(t))− xj(t), v⟩

=
1

N − 1

∑
l:l ̸=i

ψ(xi(t), xl(t− τ(t)))(⟨xl(t− τ(t)), v⟩ −Mn−1 +Mn−1 − ⟨xi(t), v⟩)

+
1

N − 1

∑
l:l ̸=j

ψ(xi(t), xl(t− τ(t)))(⟨xj(t), v⟩ −mn−1 +mn−1 − ⟨xl(t− τ(t)), v⟩)

:= S1 + S2.
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Now, being t ∈ [nτ̄ − τ̄ , nτ̄ ], it holds that t − τ(t) ∈ [nτ̄ − 2τ̄ , nτ̄ ]. Therefore, both
t, t− τ(t) ≥ nτ̄ − 2τ̄ and from (1.1.1) we have that

mn−1 ≤ ⟨xk(t), v⟩ ≤Mn−1, mn−1 ≤ ⟨xk(t− τ(t)), v⟩ ≤Mn−1, ∀k = 1, . . . , N. (1.2.3)

Therefore, using (1.1.11), we get

S1 =
1

N − 1

∑
l:l ̸=i

ψ(xi(t), xl(t− τ(t)))(⟨xl(t− τ(t)), v⟩ −Mn−1)

+
1

N − 1

∑
l:l ̸=i

ψ(xi(t), xl(t− τ(t)))(Mn−1 − ⟨xi(t), v⟩)

≤ 1

N − 1
ψ0

∑
l:l ̸=i

(⟨xl(t− τ(t)), v⟩ −Mn−1) +K(Mn−1 − ⟨xi(t), v⟩),

and

S2 =
1

N − 1

∑
l:l ̸=j

ψ(xi(t), xl(t− τ(t)))(⟨xj(t), v⟩ −mn−1)

+
1

N − 1

∑
l:l ̸=j

ψ(xi(t), xl(t− τ(t)))(mn−1 − ⟨xl(t− τ(t)), v⟩)

≤ K(⟨xj(t), v⟩ −mn−1) +
1

N − 1
ψ0

∑
l:l ̸=j

(mn−1 − ⟨xl(t− τ(t)), v⟩).

Combining this last fact with (1.2.3), it comes that

d

dt
⟨xi(t)− xj(t), v⟩ ≤ K(Mn−1 −mn−1 − ⟨xi(t)− xj(t), v⟩)

+
1

N − 1
ψ0

∑
l:l ̸=i,j

(⟨xl(t− τ(t)), v⟩ −Mn−1 +mn−1 − ⟨xl(t− τ(t)), v⟩)

+
1

N − 1
ψ0(⟨xj(t− τ(t)), v⟩ −Mn−1 +mn−1 − ⟨xi(t− τ(t)), v⟩)

= K(Mn−1 −mn−1)−K⟨xi(t)− xj(t), v⟩+
N − 2

N − 1
ψ0(−Mn−1 +mn−1)

+
1

N − 1
ψ0(⟨xj(t− τ(t)), v⟩ −Mn−1 +mn−1 − ⟨xi(t− τ(t)), v⟩).
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Therefore, since from (1.2.2) ⟨xi(t− τ(t))− xj(t− τ(t)), v⟩ ≥ 0, we get

d

dt
⟨xi(t)− xj(t), v⟩ ≤ K(Mn−1 −mn−1)−K⟨xi(t)− xj(t), v⟩

+
N − 2

N − 1
ψ0(−Mn−1 +mn−1) +

1

N − 1
ψ0(−Mn−1 +mn−1)

− 1

N − 1
ψ0⟨xi(t− τ(t))− xj(t− τ(t)), v⟩

≤ K(Mn−1 −mn−1)−K⟨xi(t)− xj(t), v⟩+ ψ0(−Mn−1 +mn−1)

= (K − ψ0) (Mn−1 −mn−1)−K⟨xi(t)− xj(t), v⟩.

Hence, from Gronwall's inequality it comes that

⟨xi(t)− xj(t), v⟩ ≤ e−K(t−nτ̄+τ̄)⟨xi(nτ̄ − τ̄)− xj(nτ̄ − τ̄), v⟩

+(K − ψ0) (Mn−1 −mn−1)

∫ t

nτ̄−τ̄
e−K(t−s)ds,

for all t ∈ [nτ̄ − τ̄ , nτ̄ ]. In particular, for t = nτ̄ it comes that

d(nτ̄) ≤ e−Kτ̄ ⟨xi(nτ̄ − τ̄)− xj(nτ̄ − τ̄), v⟩+ K − ψ0

K
(Mn−1 −mn−1)(1− e−Kτ̄ )

≤ e−Kτ̄ |xi(nτ̄ − τ̄)− xj(nτ̄ − τ̄)||v|+ K − ψ0

K
(Mn−1 −mn−1)(1− e−Kτ̄ )

≤ e−Kτ̄d(nτ̄ − τ̄) +
K − ψ0

K
(Mn−1 −mn−1)(1− e−Kτ̄ ).

Then, by recalling that Mn−1 −mn−1 ≤ Dn−1 we get

d(nτ̄) ≤ e−Kτ̄d(nτ̄ − τ̄) +
K − ψ0

K
Dn−1(1− e−Kτ̄ )

≤ e−Kτ̄d(nτ̄ − τ̄) +
K − ψ0

K
Dn−1(1− e−Kτ̄ ).

Finally, by using (1.1.8) and (1.1.10) we have that that

d(nτ̄) ≤ e−Kτ̄Dn +
K − ψ0

K
Dn−1(1− e−Kτ̄ )

≤ e−Kτ̄Dn−2 +
K − ψ0

K
Dn−2(1− e−Kτ̄ )

=

[
1− ψ0

K
(1− e−Kτ̄ )

]
Dn−2.

(1.2.4)

Now, we set

C = max

{
1− e−2Kτ̄ , 1− ψ0

K
(1− e−Kτ̄ )

}
∈ (0, 1). (1.2.5)

Then, taking into account (1.2.4), we can conclude that C is the constant for which
inequality (1.2.1) holds.
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Proof of Theorem 1.0.1. Let {xi}i=1,...,N be solution to (0.1.5), (0.1.16). We claim that

Dn+1 ≤ C̃Dn−2, ∀n ≥ 2, (1.2.6)

for some constant C̃ ∈ (0, 1). Indeed, given n ≥ 2, from (1.1.10), (1.1.14) and (1.2.1) we
have that

Dn+1 ≤ e−Kτ̄d(nτ̄) + (1− e−Kτ̄ )Dn

≤ e−Kτ̄CDn−2 + (1− e−Kτ̄ )Dn

≤ e−Kτ̄CDn−2 + (1− e−Kτ̄ )Dn−2

≤ (1− e−Kτ̄ (1− C))Dn−2,

where the constant C is de�ned in (1.2.5). So, setting

C̃ = 1− e−Kτ̄ (1− C),

we can conclude that C̃ ∈ (0, 1) is the constant for which (1.2.6) holds true.
This implies that

D3n ≤ C̃nD0, ∀n ≥ 1. (1.2.7)

Indeed, by induction, if n = 1 we know from (1.2.6) that

D3 ≤ C̃D0.

So, assume that (1.2.7) holds for n ≥ 1 and we prove it for n+ 1. By using again (1.2.6)
and from the induction hypothesis it comes that

D3(n+1) ≤ C̃D3n ≤ C̃C̃nD0 = C̃n+1D0,

i.e. (1.2.7) is ful�lled.
Notice that (1.2.7) can be rewritten as

D3n ≤ e−3nγτ̄D0, ∀n ∈ N0, (1.2.8)

with

γ =
1

3τ̄
ln

(
1

C̃

)
.

Now, �x i, j = 1, . . . , N and t ≥ 0. Then, t ∈ [3nτ̄ − τ̄ , 3nτ̄ + 2τ̄ ], for some n ∈ N0.
Therefore, by using (1.1.8) and (1.2.8), it turns out that

|xi(t)− xj(t)| ≤ D3n ≤ e−3nγτ̄D0.

Thus, being t ≤ 3nτ̄ + 2τ̄ , then −3nτ̄ ≤ −t+ 2τ̄ and we get

|xi(t)− xj(t)| ≤ e−γ(t−2τ̄)D0.

Therefore,
d(t) ≤ e−γ(t−2τ̄)D0, ∀t ≥ 0,

and (1.0.1) is proved.
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1.3 The continuum model

In this section, we consider the continuum model obtained as the mean-�eld limit of
the particle system when N → ∞. Let M(IRd) be the set of probability measures on the
space IRd. Then, the continuum model associated with the particle system (0.1.5) is given
by

∂tµt + div (F [µt−τ(t)]µt) = 0, t > 0,
µs = gs, x ∈ IRd, s ∈ [−τ̄ , 0], (1.3.1)

where the velocity �eld F is de�ned as

F [µt−τ(t)](x) =

∫
IRd
ψ(x, y)(y − x) dµt−τ(t)(y), (1.3.2)

and gs ∈ C([−τ̄ , 0];M(IRd)).
We assume that the potential ψ(·, ·) in (1.3.2) is Lipschitz continuous, namely there

exists L > 0 such that, for any (x, y), (x′, y′) ∈ IR2d ,

|ψ(x, y)− ψ(x′, y′)| ≤ L(|y − y′|+ |x− x′|).

De�nition 1.3.1. Let T > 0. We say that µt ∈ C([0, T );M(IRd)) is a measure-valued
solution to (1.3.1) on the time interval [0, T ) if for all φ ∈ C∞

c (IRd × [0, T )) we have:∫ T

0

∫
IRd

(
∂tφ+ F [µt−τ(t)](x) · ∇xφ

)
dµt(x)dt+

∫
IRd
φ(x, 0)dg0(x) = 0. (1.3.3)

Before stating the consensus result for solutions to model (1.3.1), we recall some basic
tools on probability spaces and measures.

De�nition 1.3.2. Let µ, ν ∈ M(IRd) be two probability measures on IRd. We de�ne the
1-Wasserstein distance between µ and ν as

d1(µ, ν) := inf
π∈Π(µ,ν)

∫
IRd×IRd

|x− y|dπ(x, y),

where Π(µ, ν) is the space of all couplings for µ and ν, namely all those probability
measures on IR2d having as marginals µ and ν:∫

IRd×IRd
φ(x)dπ(x, y) =

∫
IRd
φ(x)dµ(x),

∫
IRd×IRd

φ(y)dπ(x, y) =

∫
IRd
φ(y)dν(y),

for all φ ∈ Cb(IRd).

Let us introduce the space P1 of all probability measures with �nite �rst-order moment.
It is well-known that (P1(IR

d), d1(·, ·)) is a complete metric space.
Now, we de�ne the position diameter for a compactly supported measure g ∈ P1(IR

d)
as follows:

dX [g] := diam(supp g).
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Since the consensus result for the particle model (0.1.5) holds without any upper
bounds on the time delay τ(·), one can improve the consensus theorem for the PDE
model (1.3.1) obtained in [37] removing the smallness assumption on the time delay τ(t).
We omit the proof since, once we have the result for the particle system (0.1.5), the
consensus estimate for the continuum model is obtained with arguments analogous to the
ones in [37] and [88].

Theorem 1.3.1. Let µt ∈ C([0, T ];P1(IR
d)) be a measure-valued solution to (1.3.1) with

compactly supported initial datum gs ∈ C([−τ̄ , 0];P1(IR
d)) and let F as in (1.3.2). Then,

there exists a constant C > 0 such that

dX(µt) ≤
(

max
s∈[−τ̄ ,0]

dX(gs)

)
e−Ct, ∀t ≥ 0.

1.4 The distributed time delay case

Now, we extend the results obtained for the Hegselmann-Krause model with a point-
wise time delay to a model with distributed time delay. In particular, we consider the
system

d

dt
xi(t) =

1

h(t)

∑
j:j ̸=i

∫ t−τ1(t)

t−τ2(t)
β(t− s)bij(t; s)(xj(s)− xi(t))ds, t > 0, ∀i = 1, . . . , N,

(1.4.1)
where the time delay functions τ1 : [0,+∞) → [0,+∞), τ2 : [0,+∞) → [0,+∞) are
continuous and satisfy

0 ≤ τ1(t) < τ2(t) ≤ τ̄ , ∀t ≥ 0, (1.4.2)

for some positive constant τ̄ .
The communication rates bij(t; s) are of the form

bij(t; s) :=
1

N − 1
ψ(xi(t), xj(s)), ∀t ≥ 0, ∀i, j = 1, . . . , N, (1.4.3)

where the in�uence function ψ : IRd × IRd → IR is positive, continuous and bounded.
Moreover, β : [0, τ̄ ] → (0,+∞) is a continuous weight function and

h(t) :=

∫ τ2(t)

τ1(t)

β(s)ds, ∀t ≥ 0. (1.4.4)

Note that, since we assume τ1(t) < τ2(t) and β(t) > 0, ∀t ≥ 0, then the function h(t) is
always positive.

As in Section 1.1, one can prove the following crucial lemma.

Lemma 1.4.1. Let {xi}i=1,...,N be a solution to system (1.4.1) with the continuous initial
conditions (0.1.16). Then, for each vector v ∈ IRd and for any T ≥ 0, we have that

min
j=1,...,N

min
s∈[T−τ̄ ,T ]

⟨xj(s), v⟩ ≤ ⟨xi(t), v⟩ ≤ max
j=1,...,N

max
s∈[T−τ̄ ,T ]

⟨xj(s), v⟩, (1.4.5)

for all t ≥ T − τ̄ and for all i = 1, . . . , N .
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Proof. First of all, we note that, for each v ∈ IRd and T ≥ 0, the inequalities in the
statement are satis�ed for every t ∈ [T − τ̄ , T ].
Now, �x T ≥ 0, a vector v ∈ IRd and a positive constant ϵ. De�ne the constant MT and
the set Kϵ as in the proof of Lemma 1.1.1. Then, denoted as before Sϵ := supKϵ, it holds
that Sϵ > T .
We claim that Sϵ = +∞. Indeed, suppose by contradiction that Sϵ < +∞. Note that by
de�nition of Sϵ it turns out that

max
i=1,...,N

⟨xi(t), v⟩ < MT + ϵ, ∀t ∈ (T, Sϵ), (1.4.6)

and
lim
t→Sϵ−

max
i=1,...,N

⟨xi(t), v⟩ =MT + ϵ. (1.4.7)

For all i = 1, . . . , N and t ∈ (T, Sϵ), we compute

d

dt
⟨xi(t), v⟩ =

1

h(t)

∑
j:j ̸=i

∫ t−τ1(t)

t−τ2(t)
α(t− s)aij(t; s)⟨xj(s)− xi(t), v⟩ds

=
1

N − 1

1

h(t)

∑
j:j ̸=i

∫ t−τ1(t)

t−τ2(t)
α(t− s)ψ(xi(t), xj(s))(⟨xj(s), v⟩ − ⟨xi(t), v⟩)ds.

Notice that, being t ∈ (T, Sϵ), then t− τ2(t), t− τ1(t) ∈ (T − τ̄ , Sϵ) and

⟨xj(s), v⟩ < MT + ϵ, ∀s ∈ [t− τ2(t), t− τ1(t)], ∀j = 1, . . . , N. (1.4.8)

Moreover, (1.4.6) implies that

⟨xi(t), v⟩ < MT + ϵ, ∀t ∈ (T, Sϵ).

so that
MT + ϵ− ⟨xi(t), v⟩ ≥ 0, ∀t ∈ (T, Sϵ).

Combining this last fact with (1.4.8) and by recalling of (1.4.4), we can write

d

dt
⟨xi(t), v⟩ ≤

1

N − 1

1

h(t)

∑
j:j ̸=i

∫ t−τ1(t)

t−τ2(t)
α(t− s)ψ(xi(t), xj(s))(MT + ϵ− ⟨xi(t), v⟩)ds

≤ K

N − 1

1

h(t)
(MT + ϵ− ⟨xi(t), v⟩)

∑
j:j ̸=i

∫ t−τ1(t)

t−τ2(t)
α(t− s)ds

= K
1

h(t)
(MT + ϵ− ⟨xi(t), v⟩)

∫ t−τ1(t)

t−τ2(t)
α(t− s)ds

= K(MT + ϵ− ⟨xi(t), v⟩),

for all t ∈ (T, Sϵ). Then, Gronwall's Lemma allows us to conclude the proof of the second
inequality arguing analogously to the proof of Lemma 1.1.1. Also, the proof of the �rst
inequality is obtained similarly with respect to the pointwise time delay case. We omit
the details.
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As before, one can de�ne the quantities Dn, n ∈ N0, and prove the analogous, for
solutions to the model with distributed time delay (1.4.1), of the lemmas in Section 1.1
and in Section 1.2. Then, the following exponential convergence to consensus holds.

Theorem 1.4.2. Assume that ψ : IRd × IRd → IR is a positive, bounded, continuous
function and that the time delay functions τ1 : [0,+∞) → [0,+∞), τ2 : [0,+∞) →
[0,+∞) are continuous functions and satisfy (1.4.2). Let α : [0, τ̄ ] → (0,+∞) be a
continuous function. Moreover, let x0i : [−τ̄ , 0] → IRd be a continuous function, for
any i = 1, . . . , N. Then, every solution {xi}i=1,...,N to (1.4.1), with the initial conditions
(0.1.16) satis�es the exponential decay estimate

d(t) ≤
(

max
i,j=1,...,N

max
r,s∈[−τ̄ ,0]

|xi(r)− xj(s)|
)
e−γ(t−2τ̄), ∀t ≥ 0,

for a suitable positive constant γ, independent of N.

The related PDE model is now:

∂tµt + div

(
1

h(t)

∫ t−τ1(t)

t−τ2(t)
α(t− s)F [µs]ds µt

)
= 0, t > 0,

µs = gs, x ∈ IRd, s ∈ [−τ̄ , 0],
(1.4.9)

where the velocity �eld F is given by

F [µs](x) =

∫
IRd
ψ(x, y)(y − x) dµs(y), (1.4.10)

and gs ∈ C([−τ̄ , 0];M(IRd)).
As before, we assume that the potential ψ(·, ·) in (1.4.10) is also Lipschitz continuous

with respect to the two arguments.

De�nition 1.4.1. Let T > 0. We say that µt ∈ C([0, T );M(IRd)) is a measure-valued
solution to (1.4.9) on the time interval [0, T ) if for all φ ∈ C∞

c (IRd × [0, T )) we have:∫ T

0

∫
IRd

(
∂tφ+

1

h(t)

∫ t−τ1(t)

t−τ2(t)
α(t− s)F [µs](x)ds · ∇xφ

)
dµt(x)dt+

∫
IRd
φ(x, 0)dg0(x) = 0.

Since the consensus result for the particle model (1.4.1) holds without any upper
bounds on the time delays τ1(·), τ2(·), one can improve the consensus theorem for the
PDE model (1.4.9) of [87]. Indeed, in [87], where the author concentrates in the case
τ1(t) ≡ 0, the consensus estimate is obtained under a smallness condition on the time
delay. The proof is analogous, then we omit it.

Theorem 1.4.3. Let µt ∈ C([0, T ];P1(IR
d)) be a measure-valued solution to (1.4.9) with

compactly supported initial datum gs ∈ C([−τ̄ , 0];P1(IR
d)) and let F as in (1.4.10). Then,

there exists a constant C > 0 such that

dX(µt) ≤
(

max
s∈[−τ̄ ,0]

dX(gs)

)
e−Ct, ∀t ≥ 0.
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1.5 Numerical tests

In this section, we present some numerical tests for the particle system (0.1.5) with
weights bij in (0.1.3) de�ned via functions

ψ(r, r′) = ψ̃(|r − r′|) ,

always positive but nonmonotonic.
In particular, we consider an oscillatory function

ψ̃(r) = sin2 r +
1

1 + r2
, r ∈ [0,+∞), (1.5.1)

and a translated gaussian function like

ψ̃(r) = e−(r−1)2 , r ∈ [0,+∞). (1.5.2)

These are signi�cant examples since, besides the more studied case with ψ̃ monotonic,
it is important to consider some oscillatory behaviors in the agents' interaction or interac-
tions which are more relevant when the distance between the agents is close to a certain
value.

In Figure 1.1 we see the evolution of agents' opinions in the case of the interaction
potential of an oscillatory type de�ned in (1.5.1), respectively for N = 4 (in the top) and
N = 7 (in the bottom), considering time delays τ = 3 and τ = 10. We see that, after
an initial oscillatory behavior, the system tends towards consensus. In case of the larger
time delay, in order to observe the consensus behavior we have to wait a larger time (we
take the time t ∈ [0, 60] in the case τ = 10 while t ∈ [0, 40] is enough for τ = 3.).

In Figure 1.2 we observe the opinions' evolution in the case of the potential function
(1.5.2). We consider di�erent time delays and, as in the previous case, N = 4 or N = 7.
Also in such a case, we can see that the system converges to consensus after an initial
oscillatory behavior. In the case of a larger delay, the convergence to consensus can be
observed after a larger time. In particular, in the case of N = 7 agents, we �rst observe
the formation of two clusters. This is related to the form of the in�uence function.
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Figure 1.1: Communication rates (1.5.1): time evolution of solutions with di�erent time
delays and number N of agents; τ = 3, N = 4 (top left), τ = 10, N = 4 (top right),
τ = 3, N = 7 (bottom left), τ = 10, N = 7 (bottom right).
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Figure 1.2: Communication rates (1.5.2): time evolution of solutions with di�erent time
delays and number N of agents; τ = 3, N = 4 (top left), τ = 6, N = 4 (top right),
τ = 1, N = 7 (bottom left), τ = 6, N = 7 (bottom right).



Chapter 2

The Cucker-Smale model with time

variable time delays

In this chapter, we will prove the exponential �ocking for the Cucker-Smale model
with time variable time delay (0.1.24). All the results we will present in this chapter are
contained in [40].

Theorem 2.0.1. Assume that ψ̃ : IR → IR is a positive, bounded, continuous function
that satis�es ∫ +∞

0

min
r∈[0,x]

ψ̃(r)dx = +∞. (2.0.1)

Assuma that τ : [0,+∞) → [0,+∞) is a continuous functions for which (0.1.7) holds.
Moreover, let x0i , v

0
i : [−τ̄ , 0] → IRd be continuous functions, for any i = 1, . . . , N . Then,

for every solution {(xi, vi)}i=1,...,N to (0.1.24) with the initial conditions (0.1.28), there
exists a positive constant d∗ such that

sup
t≥−τ̄

dX(t) ≤ d∗, (2.0.2)

and there exists another positive constant C, independent of N , for which the following
exponential decay estimate holds

dV (t) ≤
(

max
i,j=1,...,N

max
r,s∈[−τ̄ ,0]

|vi(r)− vj(s)|
)
e−C(t−2τ̄), ∀t ≥ −τ̄ . (2.0.3)

Remark 2.0.2. Let us note that, if the in�uence function ψ is nonincreasing, then the
assumption (2.0.1) reduces to ∫ +∞

0

ψ̃(x)dx = +∞. (2.0.4)

The condition (2.0.4) is the one assumed in [101] in order to achieve the unconditional
�ocking for solutions of the Cucker-Smale model.

18
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2.1 Preliminaries

We now present some auxiliary lemmas that generalize and extend the analogous
results in [101]. We omit some of their proof since they can obtained with analogous
arguments to the ones employed in Chapter 1. We assume that the hypotheses of Theorem
2.0.1 are satis�ed. Let {xi, vi}i=1,...,N be solution to (0.1.24) under the initial conditions
(0.1.28).

Lemma 2.1.1. For each v ∈ IRd and T ≥ 0, we have that

min
j=1,...,N

min
s∈[T−τ̄ ,T ]

⟨vj(s), v⟩ ≤ ⟨vi(t), v⟩ ≤ max
j=1,...,N

max
s∈[T−τ̄ ,T ]

⟨vj(s), v⟩, (2.1.1)

for all t ≥ T − τ̄ and i = 1, . . . , N .

We now introduce some notation.

De�nition 2.1.1. We de�ne

D0 = max
i,j=1,...,N

max
s,t∈[−τ̄ ,0]

|vi(s)− vj(t)|,

and in general, ∀n ∈ N,

Dn := max
i,j=1,...,N

max
s,t∈[nτ̄−τ̄ ,nτ̄ ]

|vi(s)− vj(t)|.

Notice that inequality (2.0.3) can be written as

dV (t) ≤ D0e
−C(t−2τ̄), ∀t ≥ −τ̄ .

Lemma 2.1.2. For each n ∈ N0 we have that

Dn+1 ≤ Dn. (2.1.2)

Also, one can �nd a bound on |vi(t)|, uniform with respect to t and i = 1, . . . , N .

Lemma 2.1.3. For every i = 1, . . . , N , we have that

|vi(t)| ≤ R0
V , ∀t ≥ −τ̄ , (2.1.3)

where
R0
V := max

i=1,...,N
max
s∈[−τ̄ ,0]

|vi(s)|.

The previous lemma does not allow us to deduce a bound from below for the commu-
nication rates, as we did in Chapter 1. Indeed, in the case of the Cucker-Smale model,
the communication rates depend on the distance between the agents' positions. To �nd
a bound from below for the in�uence function, we need instead the following estimate.
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Lemma 2.1.4. For every i, j = 1, . . . , N , we get

|xi(t− τ(t))− xj(t)| ≤ 2τ̄R0
V + 4M0

X + dX(t− τ̄), ∀t ≥ 0, (2.1.4)

where
M0

X := max
i=1,...,N

max
s∈[−τ̄ ,0]

|xi(s)|.

Proof. Given i, j = 1, . . . , N and t ≥ 0, we have

|xi(t− τ(t))− xj(t)| ≤ |xi(t− τ(t))− xi(t− τ̄)|
+ |xi(t− τ̄)− xj(t− τ̄)|+ |xj(t− τ̄)− xj(t)|

≤ |xi(t− τ(t))− xi(t− τ̄)|+ dX(t− τ̄)|xj(t− τ̄)− xj(t)|.
(2.1.5)

Now, assume t > τ̄ . Then both t− τ̄ , t− τ(t) > 0 and from inequality (2.1.3) we get

|xi(t− τ(t))− xi(t− τ̄)| =

∣∣∣∣∣
∫ t−τ(t)

t−τ̄
vi(s) ds

∣∣∣∣∣ ≤
∫ t−τ(t)

t−τ̄
|vi(s)|ds

≤ R0
V (t− τ(t)− t+ τ̄) ≤ τ̄R0

V ,

and

|xj(t− τ̄)− xj(t)| =
∣∣∣∣−∫ t

t−τ̄
vj(s) ds

∣∣∣∣ ≤ ∫ t

t−τ̄
|vj(s)|ds ≤ τ̄R0

V .

Thus, (2.1.5) becomes

|xi(t− τ(t))− xj(t)| ≤ 2τ̄R0
V + dX(t− τ̄).

On the contrary, assume that t ≤ τ̄ . Then t− τ̄ ≤ 0 and from (2.1.3) we get

|xj(t− τ̄)− xj(t)| =
∣∣∣∣xj(t− τ̄)− xj(0)−

∫ t

0

vj(s) ds

∣∣∣∣
≤ |xj(t− τ̄)− xj(0)|+

∫ t

0

|vj(s)|ds

≤ 2M0
X + tR0

V ≤ 2M0
X + τ̄R0

V .

Note that our assumption, t ≤ τ̄ , does not imply that t− τ(t) ≤ 0. So we can distinguish
two cases.
If t− τ(t) > 0, then

|xi(t− τ(t))− xi(t− τ̄)| =

∣∣∣∣∣xi(0) +
∫ t−τ(t)

0

vi(s) ds− xi(t− τ̄)

∣∣∣∣∣
≤ |xi(0)− xi(t− τ̄)|+

∫ t−τ(t)

0

|vi(s)|ds

≤ 2M0
X + (t− τ(t))R0

V ≤ 2M0
X + tR0

V ≤ 2M0
X + τ̄R0

V ,
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and (2.1.5) becomes

|xi(t− τ(t))− xj(t)| ≤ 4M0
X + 2τ̄R0

V + dX(t− τ̄).

On the other hand, if t− τ(t) ≤ 0, we have

|xi(t− τ(t))− xi(t− τ̄)| ≤ 2M0
X ,

and we can write

|xi(t− τ(t))− xj(t)| ≤ 4M0
X + τ̄R0

V + dX(t− τ̄).

We have so proved that, in all cases,

|xi(t− τ(t))− xj(t)| ≤ 4M0
X + 2τ̄R0

V + dX(t− τ̄),

which proves (2.1.4).

In the following, given t ≥ −τ̄ , i, j = 1, . . . , N and a vector v ∈ IRd, we shall denote
with

d
(ij)v
V (t) := ⟨vi(t)− vj(t), v⟩.

Lemma 2.1.5. For all i, j = 1, . . . , N , unit vector v ∈ IRd and n ∈ N0, we have that

d
(ij)v
V (t) ≤ e−K̃(t−t0)d

(ij)v
V (t0) + (1− e−K̃(t−t0))Dn, (2.1.6)

for all t ≥ t0 ≥ nτ̄ . Moreover, for each n ∈ N0 it holds

Dn+1 ≤ e−K̃τ̄dV (nτ̄) + (1− e−K̃τ̄ )Dn. (2.1.7)

Proof. Given n ∈ N0, for each v ∈ IRd unit vector, let denote with

M = max
l=1,...,N

max
s∈[nτ̄−τ̄ ,nτ̄ ]

⟨vl(s), v⟩,

m = min
l=1,...,N

min
s∈[nτ̄−τ̄ ,nτ̄ ]

⟨vl(s), v⟩.

Then M −m ≤ Dn. We claim that, for all i, j = 1, . . . , N , t ≥ t0 ≥ nτ̄ ,

⟨vi(t), v⟩ ≤ e−K̃(t−t0)⟨vi(t0), v⟩+ (1− e−K̃(t−t0))M,

⟨vj(t), v⟩ ≥ e−K̃(t−t0)⟨vj(t0), v⟩+ (1− e−K̃(t−t0))m.
(2.1.8)

So, �x i, j = 1, . . . , N and t ≥ t0 ≥ nτ̄ . Then, being t ≥ 0, we have

d

dt
⟨vi(t), v⟩ =

∑
l:l ̸=i

ail(t)⟨vl(t− τ(t))− vi(t), v⟩

=
∑
l:l ̸=i

ail(t)(⟨vl(t− τ(t)), v⟩ − ⟨vi(t), v⟩)
(2.1.9)
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We recall that ail(t) =
1

N−1
ψ̃(|xi(t) − xl(t − τ(t))|). Thus, being ψ̃ a bounded function,

we can write ail(t) ≤ K̃
N−1

. Furthermore, t ≥ nτ̄ , which implies that t − τ(t) ≥ nτ̄ − τ̄ .
Then, by virtue of (2.1.1), we have that

m ≤ ⟨vk(t− τ(t)), v⟩ ≤M, m ≤ ⟨vk(t), v⟩ ≤M, ∀k = 1, . . . , N.

So, combining all these facts, (2.1.9) becomes

d

dt
⟨vi(t), v⟩ =

∑
l:l ̸=i

ail(t)(⟨vl(t− τ(t)), v⟩ −M +M − ⟨vi(t), v⟩)

≤
∑
l:l ̸=i

ail(t)(M − ⟨vi(t), v⟩)

≤ K̃

N − 1

∑
l:l ̸=i

(M − ⟨vi(t), v⟩)

= K̃(M − ⟨vi(t), v⟩).

Then, from the Gronwall's inequality with t ≥ t0 we get

⟨vi(t), v⟩ ≤ e
−

∫ t
t0
K̃ds⟨vi(t0), v⟩+

∫ t

t0

K̃Me
−(

∫ t
t0
K̃dv−

∫ s
t0
K̃dv)

ds

= e−K̃(t−t0)⟨vi(t0), v⟩+Me−K̃(t−t0)(eK̃(t−t0) − 1)

= e−K̃(t−t0)⟨vi(t0), v⟩+ (1− e−K̃(t−t0))M.

Hence, it holds

⟨vi(t), v⟩ ≤ e−K̃(t−t0)⟨vi(t0), v⟩+ (1− e−K̃(t−t0))M, (2.1.10)

for every i = 1, . . . , N , t ≥ t0 ≥ nτ̄ and unit vector v ∈ IRd, which proves the �rst
inequality in (2.1.8).
Now, to prove the second inequality in (2.1.8), let j = 1, . . . , N , t ≥ t0 ≥ nτ̄ and a unit
vector v ∈ IRd. Then, we can apply (2.1.10) to the unit vector −v ∈ IRd and we get

⟨vj(t),−v⟩ ≤ e−K̃(t−t0)⟨vj(t0),−v⟩+ (1− e−K̃(t−t0))

(
max
l=1,...,N

max
s∈[nτ̄−τ̄ ,nτ̄ ]

⟨vl(s),−v⟩
)
,

from which

⟨vj(t), v⟩ ≥ e−K̃(t−t0)⟨vj(t0), v⟩+ (1− e−K̃(t−t0))

(
− max

l=1,...,N
max

s∈[nτ̄−τ̄ ,nτ̄ ]
⟨vl(s),−v⟩

)
= e−K̃(t−t0)⟨vj(t0), v⟩+ (1− e−K̃(t−t0))m.
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Therefore (2.1.8) holds true.
Now, from (2.1.8), for each i, j = 1, . . . , N , v ∈ IRd unit vector and t ≥ t0 ≥ nτ̄ , we have

d
(ij)v
V (t) = ⟨vi(t)− vj(t), v⟩ = ⟨vi(t)(t), v⟩ − ⟨vj(t), v⟩

≤ e−K̃(t−t0)⟨vi(t0), v⟩+ (1− e−K̃(t−t0))M − e−K̃(t−t0)⟨vj(t0), v⟩ − (1− e−K̃(t−t0))m

= e−K̃(t−t0)⟨vi(t0)− vj(t0), v⟩+ (1− e−K̃(t−t0))(M −m)

= e−K̃(t−t0)d
(ij)v
V (t0) + (1− e−K̃(t−t0))(M −m).

Then, by recalling that M −m ≤ Dn, we �nally get

d
(ij)v
V (t) ≤ e−K̃(t−t0)d

(ij)v
V (t0) + (1− e−K̃(t−t0))Dn,

which proves (2.1.6).
Finally, we prove (2.1.7). Let i, j = 1, . . . , N and t1, t2 ∈ [nτ̄ , nτ̄ + τ̄ ] be such that

Dn+1 = |vi(t1)− vj(t2)|.

Note that, if Dn+1 = 0, then trivially

e−K̃τ̄dv(nτ̄) + (1− e−K̃τ̄ )Dn ≥ 0 = Dn+1.

So we can assume Dn+1 > 0 and we de�ne the unit vector

v =
vi(t1)− vj(t2)

|vi(t1)− vj(t2)|
.

By applying (2.1.8) with t0 = nτ̄ ≤ t1, t2, we get

⟨vi(t1), v⟩ ≤ e−K̃(t1−nτ̄)⟨vi(nτ̄), v⟩+ (1− e−K̃(t1−nτ̄))M

= e−K̃(t1−nτ̄)(⟨vi(nτ̄), v⟩ −M) +M

≤ e−K̃τ̄ (⟨vi(nτ̄), v⟩ −M) +M

= e−K̃τ̄ ⟨vi(nτ̄), v⟩+ (1− e−K̃τ̄ )M,

where we used the fact that t1 ≤ nτ̄ + τ̄ and ⟨vi(nτ̄), v⟩ −M ≤ 0, and

⟨vj(t2), v⟩ ≥ e−K̃(t2−nτ̄)⟨vj(nτ̄), v⟩+ (1− e−K̃(t2−nτ̄))m

= e−K̃(t2−nτ̄)(⟨vj(nτ̄), v⟩ −m) +m

≥ e−K̃τ̄ (⟨vj(nτ̄), v⟩ −m) +m

= e−K̃τ̄ ⟨vj(nτ̄), v⟩+ (1− e−K̃τ̄ )m,
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where we used the fact that t2 ≤ nτ̄ + τ̄ and ⟨vj(nτ̄), v⟩ −m ≥ 0.
As a consequence, it holds

Dn+1 = ⟨vi(t1)− vj(t2), v⟩ = ⟨vi(t1), v⟩ − ⟨vj(t2), v⟩

≤ e−K̃τ̄ ⟨vi(nτ̄), v⟩+ (1− e−K̃τ̄ )M − e−K̃τ̄ ⟨vj(nτ̄), v⟩ − (1− e−K̃τ̄ )m

= e−K̃τ̄ ⟨vi(nτ̄)− vj(nτ̄), v⟩+ (1− e−K̃τ̄ )(M −m)

≤ e−K̃τ̄ |vi(nτ̄)− vj(nτ̄)||v|+ (1− e−K̃τ̄ )(M −m)

≤ e−K̃τ̄dV (nτ̄) + (1− e−K̃τ̄ )Dn,

which concludes our proof.

2.2 Proof of the �ocking estimate

Now, we give the following de�nition.

De�nition 2.2.1. We de�ne

ϕ̃(t) := min

{
e−K̃τ̄ ψ̃t,

e−2K̃τ̄

τ̄

}
,

where

ψ̃t = min

{
ψ̃(r) : r ∈

[
0, 2τ̄R0

V + 4M0
X + max

s∈[−τ̄ ,t]
dX(s)

]}
,

for all t ≥ −τ̄ .

By de�nition, being ψ̃ a positive function, we have that ψ̃t > 0, for all t ≥ −τ̄ . Thus,
the function ϕ̃ is positive too.

Remark 2.2.1. Let us note that from estimate (2.1.4), for all t ≥ 0 and i, j = 1, . . . , N ,
it holds that

ψ̃(|xi(t)− xj(t− τ(t))|) ≥ ψ̃t−τ̄ ,

from which
ψ̃(|xi(t)− xj(t− τ(t))|) ≥ eKτ̄ ϕ̃(t− τ̄). (2.2.1)

Lemma 2.2.2. For each integer n ≥ 2, we have that

Dn+1 ≤
(
1− e−Kτ̄

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

)
Dn−2. (2.2.2)

Proof. We �rst show that, for each n ≥ 2,

dV (nτ̄) ≤
(
1−

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

)
Dn−2. (2.2.3)
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To this aim, let n ≥ 2. Note that, if dV (nτ̄) = 0, by de�nition of ϕ we have that(
1−

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

)
Dn−2 ≥

(
1−

∫ nτ̄−τ̄

nτ̄−2τ̄

e−2K̃τ̄

τ̄
ds

)
Dn−2

=

(
1− e−2K̃τ̄

τ̄
(nτ̄ − τ̄ − nτ̄ + 2τ̄)

)
Dn−2

=
(
1− e−2K̃τ̄

)
Dn−2 ≥ 0 = dV (nτ̄).

So we can assume dV (nτ̄) > 0. Moreover, let i, j = 1, . . . , N be such that

dV (nτ̄) = |vi(nτ̄)− vj(nτ̄)|.

We set

v =
vi(nτ̄)− vj(nτ̄)

|vi(nτ̄)− vj(nτ̄)|
.

Then v is a unit vector for which we can write

dV (nτ̄) = ⟨vi(nτ̄)− vj(nτ̄), v⟩ = d
(ij)v
V (nτ̄).

At this point, we distinguish two cases.

Case I. Assume that there exists t0 ∈ [nτ̄ − 2τ̄ , nτ̄ ] such that d
(ij)v
V (t0) < 0. Note that(

1−
∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

)
≥ 1− e−2Kτ̄ .

Then, by using (2.1.6) with nτ̄ ≥ t0 ≥ nτ̄ − 2τ̄ , we have

d
(ij)v
V (nτ̄) ≤ e−K̃(nτ̄−t0)d

(ij)v
V (t0) + (1− e−K̃(nτ̄−t0))Dn−2

< (1− e−K̃(nτ̄−t0))Dn−2 ≤ (1− e−2K̃τ̄ )Dn−2 ≤
(
1−

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

)
Dn−2.

Case II. Assume that d
(ij)v
V (t) ≥ 0, for every t ∈ [nτ̄ − 2τ̄ , nτ̄ ]. We set

M = max
l=1,...,N

max
s∈[nτ̄−2τ̄ ,nτ̄−τ̄ ]

⟨vl(s), v⟩,

m = min
l=1,...,N

min
s∈[nτ̄−2τ̄ ,nτ̄−τ̄ ]

⟨vl(s), v⟩.

Then, M −m ≤ Dn−1. Notice that, from (2.2.1), for each l, k = 1, . . . , N and t ≥ 0,

alk(t) ≥
eK̃τ̄ ϕ̃(t− τ̄)

N − 1
. (2.2.4)
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Thus, for every t ∈ [nτ̄ − τ̄ , nτ̄ ], it comes that

d

dt
d
(ij)v
V (t) =

∑
l:l ̸=i

ail(t)⟨vl(t− τ(t))− vi(t), v⟩+
∑
l:l ̸=i

ajl(t)⟨vj(t)− vl(t− τ(t)), v⟩

=
∑
l:l ̸=i

ail(t)(⟨vl(t− τ(t)), v⟩ −M +M − ⟨vi(t), v⟩)

+
∑
l:l ̸=i

ajl(t)(⟨vj(t), v⟩ −m+m− ⟨vl(t− τ(t)), v⟩)

:= S1 + S2.

We recall that ψ is bounded and that, from (2.1.1),

m ≤ ⟨vk(s), v⟩ ≤M, ∀s ≥ nτ̄ − 2τ̄ ,∀k = 1, . . . , N.

Combining these facts with (2.2.4), for every t ∈ [nτ̄ − τ̄ , nτ̄ ], it holds that t, t − τ(t) ≥
nτ̄ − 2τ̄ and we can write

S1 =
∑
l:l ̸=i

ail(t)(⟨vl(t− τ(t)), v⟩ −M) +
∑
l:l ̸=i

ail(t)(M − ⟨vi(t), v⟩)

≤ eK̃τ̄ ϕ̃(t− τ̄)

N − 1

∑
l:l ̸=i

(⟨vl(t− τ(t)), v⟩ −M) +
K̃

N − 1

∑
l:l ̸=i

(M − ⟨vi(t), v⟩)

=
eK̃τ̄ ϕ̃(t− τ̄)

N − 1

∑
l:l ̸=i

(⟨vl(t− τ(t)), v⟩ −M) + K̃(M − ⟨vi(t), v⟩),

and

S2 =
∑
l:l ̸=j

ajl(t)(⟨vj(t), v⟩ −m) +
∑
l:l ̸=j

ajl(t)(m− ⟨vl(t− τ(t)), v⟩)

≤ K̃

N − 1

∑
l:l ̸=j

(⟨vj(t), v⟩ −m) +
eK̃τ̄ ϕ̃(t− τ̄)

N − 1

∑
l:l ̸=j

(m− ⟨vl(t− τ(t)), v⟩)

= K̃(⟨vj(t), v⟩ −m) +
eK̃τ̄ ϕ̃(t− τ̄)

N − 1

∑
l:l ̸=j

(m− ⟨vl(t− τ(t)), v⟩).
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Hence, we get

S1 + S2 ≤ K̃(M − ⟨vi(t), v⟩+ ⟨vj(t), v⟩ −m)

+
eK̃τ̄ ϕ̃(t− τ̄)

N − 1

∑
l:l ̸=i,j

(⟨vl(t− τ(t)), v⟩ −M +m− ⟨vl(t− τ(t)), v⟩)

+
eK̃τ̄ ϕ̃(t− τ̄)

N − 1
(⟨vj(t− τ(t)), v⟩ −M +m− ⟨vi(t− τ(t)), v⟩)

= K̃(M −m− d
(ij)v
V (t)) +

eK̃τ̄ ϕ̃(t− τ̄)

N − 1
(N − 2)(m−M)

+
eK̃τ̄ ϕ̃(t− τ̄)

N − 1
(m−M − d

(ij)v
V (t− τ(t))).

Note that, being t ∈ [nτ̄ − τ̄ , nτ̄ ], it holds that t − τ(t) ∈ [nτ̄ − 2τ̄ , nτ̄ ]. Therefore, from

our assumption, we have d
(ij)v
V (t− τ(t)) ≥ 0, from which follows that

eK̃τ̄ ϕ̃(t− τ̄)

N − 1
(m−M − d

(ij)v
V (t− τ(t)) ≤ eK̃τ̄ ϕ̃(t− τ̄)

N − 1
(m−M).

Thus, taking into account of the fact that M −m ≤ Dn−1, we get

d

dt
d
(ij)v
V (t) ≤ K̃(M −m− d

(ij)v
V (t)) +

eK̃τ̄ ϕ̃(t− τ̄)

N − 1
(N − 2)(m−M) +

eK̃τ̄ ϕ̃(t− τ̄)

N − 1
(m−M)

= K̃(M −m− d
(ij)v
V (t)) + eK̃τ̄ ϕ̃(t− τ̄)(m−M)

= (K̃ − eK̃τ̄ ϕ̃(t− τ̄))(M −m)− K̃d
(ij)v
V (t)

≤ (K̃ − eK̃τ̄ ϕ̃(t− τ̄))Dn−1 − K̃d
(ij)v
V (t),

for every t ∈ [nτ̄ − τ̄ , nτ̄ ]. Then, from the Gronwall's inequality, for every t ∈ [nτ̄ − τ̄ , nτ̄ ],
we have

d
(ij)v
V (t) ≤ e−

∫ t
nτ̄−τ̄ K̃dsd

(ij)v
V (nτ̄ − τ̄) +Dn−1

∫ t

nτ̄−τ̄
(K̃ − eK̃τ̄ ϕ̃(s− τ̄))e−(

∫ t
nτ̄−τ̄ K̃dv−

∫ s
nτ̄−τ̄ K̃dv)ds

= e−K̃(t−nτ̄+τ̄)d
(ij)v
V (nτ̄ − τ̄) +Dn−1

∫ t

nτ̄−τ̄
(K̃ − eKτ̄ )ϕ̃(s− τ̄)e−K̃(t−s)ds

= e−K̃(t−nτ̄+τ̄)d
(ij)v
V (nτ̄ − τ̄) +Dn−1

(
e−K̃t[eK̃s]tnτ̄−τ̄ − eK̃τ̄

∫ t

nτ̄−τ̄
e−K̃(t−s)ϕ̃(s− τ̄)ds

)
= e−K̃(t−nτ̄+τ̄)d

(ij)v
V (nτ̄ − τ̄) +Dn−1

(
1− e−K̃(t−nτ̄+τ̄) − eK̃τ̄

∫ t

nτ̄−τ̄
e−K̃(t−s)ϕ̃(s− τ̄)ds

)
.
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In particular, for t = nτ̄ it holds

d
(ij)v
V (nτ̄) ≤ e−K̃τ̄d

(ij)v
V (nτ̄ − τ̄) +Dn−1

(
1− e−K̃τ̄ − eK̃τ̄

∫ nτ̄

nτ̄−τ̄
e−K̃(nτ̄−s)ϕ̃(s− τ̄)ds

)
≤ e−K̃τ̄d

(ij)v
V (nτ̄ − τ̄) +Dn−1

(
1− e−K̃τ̄ − eK̃τ̄

∫ nτ̄

nτ̄−τ̄
ϕ̃(s− τ̄)ds

)
.

Notice that d
(ij)v
V (nτ̄ − τ̄) ≤ Dn−1 and that

eK̃τ̄
∫ nτ̄

nτ̄−τ̄
ϕ̃(s− τ̄)ds ≥

∫ nτ̄

nτ̄−τ̄
ϕ̃(s− τ̄)ds.

So we can write

d
(ij)v
V (nτ̄) ≤ e−K̃τ̄Dn−1 +Dn−1

(
1− e−K̃τ̄ −

∫ nτ̄

nτ̄−τ̄
ϕ̃(s− τ̄)ds

)
= Dn−1

(
1−

∫ nτ̄

nτ̄−τ̄
ϕ̃(s− τ̄)ds

)
.

Then, with a change of variable, we get

d
(ij)v
V (nτ̄) ≤ Dn−1

(
1−

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

)
,

and, being Dn−1 ≤ Dn−2, we can conclude that

d
(ij)v
V (nτ̄) ≤

(
1−

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

)
Dn−2.

Therefore, (2.2.3) holds true.
Now, we are able to prove (2.2.2). Indeed, for each n ≥ 2, from (2.1.7) and (2.2.2), it
immediately follows that

Dn+1 ≤ e−K̃τ̄dV (nτ̄) + (1− e−K̃τ̄ )Dn

≤ e−K̃τ̄
(
1−

∫ nτ1−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

)
Dn−2 + (1− e−K̃τ̄ )Dn−2

=

(
1− e−K̃τ̄

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

)
Dn−2.

Proof of Theorem 2.0.1. Let {(xi, vi)}i=1,...,N be solution to (0.1.24) under the initial con-
ditions (0.1.28). Following [101], we introduce the function D : [−τ̄ ,∞) → [0,∞), de�ned
as

D(t) :=

D0, t ∈ [−τ̄ , 2τ̄ ]

D(nτ̄)
(
1− e−K̃τ̄

∫ t
nτ̄
ϕ̃(s)ds

) 1
3
, t ∈ (nτ̄ , nτ̄ + τ̄ ], n ≥ 2

.
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By construction, D is continuous and nonincreasing. Moreover, we claim that

Dn ≤ D(t), (2.2.5)

for all n ∈ N0 and t ∈ [−τ̄ , nτ̄ ]. To prove this, we �rst show that, for each n ≥ 3,

1− e−K̃τ̄
∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds ≤ D(nτ̄ + τ̄)

D(nτ̄ − 2τ̄)
. (2.2.6)

So, let n ≥ 3. We split

1− e−K̃τ̄
∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

=

(
1− e−K̃τ̄

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

) 1
3
(
1− e−K̃τ̄

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

) 1
3
(
1− e−K̃τ̄

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

) 1
3

.

Now, it is easy to see that ϕ̃ is a nonincreasing function. Thus, for each m ≥ n,∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds ≥
∫ mτ̄−τ̄

mτ̄−2τ̄

ϕ̃(s)ds.

So we can write

1− e−K̃τ̄
∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

≤
(
1− e−K̃τ̄

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

) 1
3
(
1− e−K̃τ̄

∫ nτ̄

nτ̄−τ̄
ϕ̃(s)ds

) 1
3
(
1− e−K̃τ̄

∫ nτ̄+τ̄

nτ̄

ϕ̃(s)ds

) 1
3

=
D(nτ̄ − τ̄)

D(nτ̄ − 2τ̄)

D(nτ̄)

D(nτ̄ − τ̄)

D(nτ̄ + τ̄)

D(nτ̄)
=

D(nτ̄ + τ̄)

D(nτ̄ − 2τ̄)
,

from which (2.2.6) holds true.
At this point, we are able to prove (2.2.5). By induction, if n ≤ 2, from Lemma 2.1.2 we
can immediately say that

Dn ≤ D0 = D(t),

for all t ∈ [−τ̄ , 2τ̄ ]. So we can assume that (2.2.5) holds for each 2 < m ≤ n and prove it
for n+ 1. From the induction hypothesis and by using again Lemma 2.1.2, we have

Dn+1 ≤ Dn ≤ D(t),

for all t ∈ [−τ̄ , nτ̄ ]. On the other hand, for all t ∈ (nτ̄ , nτ̄ + τ̄ ], being n > 2, from (2.2.2)
we get

Dn+1 ≤
(
1− e−K̃τ̄

∫ nτ̄−τ̄

nτ̄−2τ̄

ϕ̃(s)ds

)
Dn−2.
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From the induction hypothesis or from the base case, Dn−2 ≤ D(t), for each t ∈ [−τ̄ , nτ̄ −
2τ̄ ] So, in particular, Dn−2 ≤ D(nτ̄ − 2τ̄). Therefore, combining this with (2.2.6) and
with the fact that D is nonincreasing, we have that

Dn+1 ≤
D(nτ̄ + τ̄)

D(nτ̄ − 2τ̄)
Dn−2 ≤

D(nτ̄ + τ̄)

D(nτ̄ − 2τ̄)
D(nτ̄ − 2τ̄) = D(nτ̄ + τ̄) ≤ D(t),

for all t ∈ (nτ̄ , nτ̄ + τ̄ ], which proves (2.2.5).
Now, notice that, for almost all time

d

dt
max
s∈[−τ̄ ,t]

dX(s) ≤
∣∣∣∣ ddtdX(t)

∣∣∣∣ ,
since maxs∈[−τ̄ ,t] dX(s) is constant or increases like dX(t). Moreover, for almost all time∣∣∣∣ ddtdX(t)

∣∣∣∣ ≤ dV (t).

To see this, let i, j = 1, . . . , N be such that dX(t) = |xi(t)−xj(t)|. Obviously, if
∣∣ d
dt
dX(t)

∣∣ =
0, then ∣∣∣∣ ddtdX(t)

∣∣∣∣ = 0 ≤ dV (t).

So we can assume
∣∣ d
dt
dX(t)

∣∣ > 0. Notice that

d

dt
(dX(t))

2 =
d

dt
|xi(t)− xj(t)|2 = 2|xi(t)− xj(t)|

d

dt
|xi(t)− xj(t)|

= 2|xi(t)− xj(t)|
d

dt
dX(t),

with |xi(t)− xj(t)| > 0, since otherwise dX(·) wouldn't be di�erentiable at t. Also,

d

dt
(dX(t))

2 = 2⟨vi(t)− vj(t), xi(t)− xj(t)⟩,

so that

|xi(t)− xj(t)|
d

dt
dX(t) = ⟨vi(t)− vj(t), xi(t)− xj(t)⟩.

Thus,

|xi(t)− xj(t)|
∣∣∣∣ ddtdX(t)

∣∣∣∣ = |⟨vi(t)− vj(t), xi(t)− xj(t)⟩| ≤ |vi(t)− vj(t)||xi(t)− xj(t)|,

from which, dividing by |xi(t)− xj(t)|, we get∣∣∣∣ ddtdX(t)
∣∣∣∣ ≤ |vi(t)− vj(t)| ≤ dV (t).
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Therefore, for almost all time

d

dt
max
s∈[−τ̄ ,t]

dX(s) ≤
∣∣∣∣ ddtdX(t)

∣∣∣∣ ≤ dV (t). (2.2.7)

Next, let L : [−τ̄ ,∞) → [0,∞) be the function given by

L(t) := D(t) +
e−K̃τ̄

3

∫ 2τ̄R0
V +4M0

X+ max
s∈[−τ̄ ,t]

dX(s)

0

min

{
e−K̃τ̄ min

σ∈[0,r]
ψ̃(σ),

e−2K̃τ̄

τ̄

}
dr,

for all t ≥ −τ̄ . By de�nition, L is continuous. In addition, for each n ≥ 2 and for
a. e. t ∈ (nτ̄ , nτ̄ + τ̄), we have that

d

dt
L(t) = d

dt
D(t) +

e−K̃τ̄

3
min

{
e−K̃τ̄ ψ̃t,

e−2K̃τ̄

τ̄

}
d

dt
max
s∈[−τ̄ ,t]

dX(s)

=
d

dt
D(t) +

e−K̃τ̄

3
ϕ̃(t)

d

dt
max
s∈[−τ̄ ,t]

dX(s),

and from (2.2.7) we get

d

dt
L(t) ≤ d

dt
D(t) +

e−K̃τ̄

3
ϕ̃(t)dV (t).

Now, for a. e. t ∈ (nτ̄ , nτ̄ + τ̄), with n ≥ 2, we compute

d

dt
D(t) = −1

3
D(nτ̄)

(
1− e−K̃τ̄

∫ t

nτ̄

ϕ̃(s)ds

)− 2
3

e−K̃τ̄ϕ(t).

Thus, for each n ≥ 2 and for a. e. t ∈ (nτ̄ , nτ̄ + τ̄),

d

dt
L(t) ≤ e−K̃τ̄

3
ϕ̃(t)

dV (t)− D(nτ̄)(
1− e−K̃τ̄

∫ t
nτ̄
ϕ̃(s)ds

) 2
3


≤ e−K̃τ̄

3
ϕ̃(t)(dV (t)−D(nτ̄)).

Lastly, we can note that dV (t) ≤ D(nτ̄), since dV (t) ≤ Dn+1 and Dn+1 ≤ D(nτ̄) from
inequality (2.2.5). Then, we get

d

dt
L(t) ≤ 0, (2.2.8)

for a. e. t ∈ (nτ̄ , nτ̄ + τ̄) and for each n ≥ 2. Integrating (2.2.8) over (2τ̄ , t) for t > 2τ̄ it
comes that

L(t) ≤ L(2τ̄). (2.2.9)
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Therefore, from (2.2.9), it holds

e−K̃τ̄

3

∫ 2τ̄R0
V +4M0

X+ max
s∈[−τ̄ ,t]

dX(s)

0

min

{
e−K̃τ̄ min

σ∈[0,r]
ψ̃(σ),

e−2K̃τ̄

τ̄

}
dr ≤ L(2τ̄), (2.2.10)

for all t ≥ 2τ̄ . Letting t→ ∞ in (2.2.10), we �nally get

e−K̃τ̄

3

∫ 2τ̄R0
V +4M0

X+ sup
s∈[−τ̄ ,∞)

dX(s)

0

min

{
e−K̃τ̄ min

σ∈[0,r]
ψ̃(σ),

e−2K̃τ̄

τ̄

}
dr ≤ L(2τ̄). (2.2.11)

Finally, since the function ψ̃ satis�es property (2.0.1), from (2.2.11), we can conclude that
there exists a positive constant d∗ such that

2τ̄R0
V + 4M0

X + sup
s∈[−τ̄ ,∞)

dX(s) ≤ d∗. (2.2.12)

Indeed, assume by contradiction that

2τ̄R0
V + 4M0

X + sup
s∈[−τ̄ ,∞)

dX(s) = +∞. (2.2.13)

Then, equation (2.2.11) reads as∫ +∞

0

min

{
e−K̃τ̄ min

σ∈[0,r]
ψ̃(σ),

e−2K̃τ̄

τ̄

}
dr ≤ L(2τ̄) (2.2.14)

Now, two di�erent situations can occur.
Case I) Assume that, for all r ∈ [0,+∞),

e−2K̃τ̄

τ̄
≤ e−K̃τ̄ min

σ∈[0,r]
ψ̃(σ).

Thus, ∫ +∞

0

min

{
e−K̃τ̄ min

σ∈[0,r]
ψ̃(σ),

e−2K̃τ̄

τ̄

}
dr =

∫ +∞

0

e−2K̃τ̄

τ̄
dr = +∞,

which is in contradiction with (2.2.14).
Case II) Assume that there exists r1 ∈ [0,+∞) such that

e−K̃τ̄ min
σ∈[0,r1]

ψ̃(σ) <
e−2K̃τ̄

τ̄
.

Note that, for all r ≥ r1, it holds that

min
σ∈[0,r]

ψ̃(σ) ≤ min
σ∈[0,r1]

ψ̃(σ),
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from which

e−K̃τ̄ min
σ∈[0,r]

ψ̃(σ) <
e−2K̃τ̄

τ̄
, ∀r ≥ r1.

Thus, using (2.0.1) we can write∫ +∞

0

min

{
e−K̃τ̄ min

σ∈[0,r]
ψ̃(σ),

e−2K̃τ̄

τ̄

}
dr ≥

∫ +∞

r1

min

{
e−K̃τ̄ min

σ∈[0,r]
ψ̃(σ),

e−2K̃τ̄

τ̄

}
dr

= e−K̃τ̄
∫ +∞

r1

min
σ∈[0,r]

ψ̃(σ)dr = +∞.

Hence, also in this case we get a contradiction.
As a consequence, in all the two possible situations we get a contradiction and we deduce
the existence of a positive constant d∗ for which inequality (2.2.12) is ful�lled.
Finally, we de�ne

ϕ∗ := min

{
e−K̃τ̄ψ∗,

e−2K̃τ̄

τ̄

}
,

where
ψ∗ = min

r∈[0,d∗]
ψ̃(r).

Note that ϕ∗ > 0, being ψ̃ a positive function. Also, from (2.2.12), it comes that

ψ∗ ≤ min

{
ψ̃(r) : r ∈

[
0, 2τ̄R0

V + 4M0
X + max

s∈[−τ̄ ,t]
dX(s)

]}
= ψ̃t,

for all t ≥ −τ̄ . Thus, we get
ϕ∗ ≤ ϕ̃(t), ∀t ≥ −τ̄ .

This implies that, for each n ≥ 2(
1− e−K̃τ̄

∫ nτ̄+τ̄

nτ̄

ϕ̃(s)ds

) 1
3

≤
(
1− e−K̃τ̄

∫ nτ̄+τ̄

nτ̄

ϕ∗ds

) 1
3

=
(
1− e−K̃τ̄ϕ∗τ̄

) 1
3
,

(2.2.15)

with
(
1− e−K̃τ̄ϕ∗τ̄

) 1
3
< 1.

Next, we set

C =
1

3τ̄
ln

(
1

1− e−K̃τ̄ϕ∗τ̄

)
> 0.

Notice that C is a constant independent of N . Moreover, we have(
1− e−K̃τ̄ϕ∗τ̄

) 1
3
= e−Cτ̄ ,
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so that (2.2.15) becomes(
1− e−K̃τ̄

∫ nτ̄+τ̄

nτ̄

ϕ̃(s)ds

) 1
3

≤ e−Cτ̄ , ∀n ≥ 2. (2.2.16)

Now we claim that, for each n ≥ 2, it holds

D(nτ̄) ≤ D0e
−C(n−2)τ̄ . (2.2.17)

Indeed, by induction, if n = 2 then trivially D(2τ̄) = D0 and the claim holds. So suppose
(2.2.17) holds true for n ≥ 2 and prove it for n + 1. From the induction hypothesis and
by recalling of (2.2.16), we can write

D(nτ̄ + τ̄) = D(nτ̄)

(
1− e−K̃τ̄

∫ nτ̄+τ̄

nτ̄

ϕ̃(s)ds

) 1
3

≤ D0e
−C(n−2)τ̄e−Cτ̄ = D0e

−C(n+1−2)τ̄ .

Hence, from (2.2.5) and (2.2.17) it follows that, for each t > 2τ̄ , if t ∈ (nτ̄ , nτ̄ + τ̄), for
some n ≥ 2,

dV (t) ≤ Dn+1 ≤ D(nτ̄ + τ̄) ≤ D0e
−C(n+1−2)τ̄ ≤ D0e

−C(t−2τ̄).

Thus, combining this with the fact that, for all [−τ̄ , 2τ̄ ],

dV (t) ≤ D0 ≤ D0e
−C(t−2τ̄),

we can conclude that estimate (2.0.3) holds too.



Chapter 3

First and second-order Cucker-Smale

models with non-universal interaction,

time delay and communication failures

In this chapter, we will investigate the asymptotic behavior of solutions to the �rst
and second-order Cucker-Smale model (0.1.8) and (0.1.26). The aim of the analysis we
will carry out is to �nd conditions ensuring the asymptotic consensus for both models
(0.1.8) and (0.1.26), although the agents involved in the opinion formation or �ocking
process could not communicate with all the other components of the system and could
suspend the interaction also with the agents to whom they are linked. As already pointed
out in the introduction, to deal with the non-universal interaction, we will consider a
network topology over the structure of the model. Moreover, consensus estimate will be
established for the two aforementioned systems under a Persistence Excitation Condition.
The results we will present in this chapter are contained in [39].

3.1 The �rst-order model

We start dealing with the �rst-order model. The consensus result we will prove for
system (0.1.8) is the following.

Theorem 3.1.1. Assume that the digraph G is strongly connected. Let ψ : IRd × IRd →
IR be a positive, bounded, continuous function. Assume that the weight functions αij :
[0,+∞) → [0, 1] are L1-measurable and satisfy (PE). Moreover, suppose that the time
delay functions τij : [0,+∞) → [0,+∞) are continuous and satisfy (0.1.9). Let x0i :
[−τ̄ , 0] → IRd be a continuous function, for any i = 1, . . . , N . Then, every solution
{xi}i=1,...,N to (0.1.8) with the initial conditions (0.1.16) satis�es the following exponential
decay estimate

d(t) ≤
(

max
i,j=1,...,N

max
r,s∈[−τ̄ ,0]

|xi(r)− xj(s)|
)
e−C(t−γ(T+τ̄)−τ̄), ∀t ≥ 0, (3.1.1)

where γ > 0 is the depth of the digraph, T is the positive constant in (0.1.12) and C is a
suitable positive constant.

35
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3.1.1 Preliminary lemmas

Let {xi}i=1,...,N be solution to (0.1.8) under the initial conditions (0.1.16). We assume
that the hypotheses of Theorem 3.1.1 are satis�ed. We present some auxiliary lemmas.

De�nition 3.1.1. Given a vector v ∈ Rd, for all n ∈ N0 we de�ne

In := [n(γ(T + τ̄) + τ̄)− τ̄ , n(γ(T + τ̄) + τ̄)]

mv
n := min

i=1,...,N
min
s∈In

⟨xi(s), v⟩,

M v
n := max

j=1,...,N
max
s∈In

⟨xj(s), v⟩.

Also, we de�ne, for all n ∈ N0,

m̃v
n := min

i=1,...,N
⟨xi(n(γ(T + τ̄) + τ̄)), v⟩,

M̃ v
n := max

j=1,...,N
⟨xj(n(γ(T + τ̄) + τ̄)), v⟩.

Lemma 3.1.2. For each vector v ∈ IRd and for all n ∈ N0, we have that

mv
n ≤ ⟨xi(t), v⟩ ≤M v

n , (3.1.2)

for all t ≥ n(γ(T + τ̄) + τ̄)− τ̄ and for any i = 1, . . . , N .

Proof. The proof follows using analogous arguments to the ones employed in Lemma 1.1.1.
However, in this case, with respect to Lemma 1.1.1 the weight functions αij and the terms
χij appear in the problem's formulation. Nevertheless, one can still obtain an estimate
like (1.1.5) by using the fact that both χij, αij,≤ 1.

Now, we de�ne the following quantities.

De�nition 3.1.2. For all n ∈ N, we de�ne

Dn := max
i,j=1,...,N

max
r,s∈In

|xi(r)− xj(s)|.

Let us note that, for n = 0,

D0 := max
i,j=1,...,N

max
r,s∈I0

|xi(r)− xj(s)| = max
i,j=1,...,N

max
r,s∈[−τ̄ ,0]

|xi(r)− xj(s)|.

So, the exponential decay estimate in (3.1.1) can be written as

d(t) ≤ e−C(t−γ(T+τ̄)−τ̄)D0, ∀t ≥ 0.

As in Chapter 1, from the previous Lemma, the following estimates can be derived.

Lemma 3.1.3. For each n ∈ N0, we have that

|xi(s)− xj(t)| ≤ Dn, (3.1.3)

for all s, t ≥ n(γ(T + τ̄) + τ̄)− τ̄ and for any i, j = 1, . . . , N .
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Remark 3.1.4. Note that (3.1.3) yields

d(t) ≤ Dn, ∀t ≥ n(γ(T + τ̄) + τ̄)− τ̄ . (3.1.4)

Moreover, from (3.1.3) it comes that

Dn+1 ≤ Dn, ∀n ∈ N0. (3.1.5)

Also, the agents' opinions are bounded by a constant that depends on the initial data
and, as a consequence, the communication rates are bounded from below.

Lemma 3.1.5. For every i = 1, . . . , N, we have that

|xi(t)| ≤ C0, ∀t ≥ −τ̄ , (3.1.6)

where
C0 := max

i=1,...,N
max
s∈[−τ̄ ,0]

|xi(s)|. (3.1.7)

In particular,

ψ(xi(t), xj(t− τij(t))) ≥ ψ0, ∀t ≥ 0,∀i, j = 1, . . . , N, (3.1.8)

where
ψ0 := min

|y|,|z|≤C0

ψ(y, z). (3.1.9)

3.1.2 Consensus estimate

In order to prove the consensus result, we need the following crucial proposition,
inspired by a previous argument in [64].

Proposition 3.1.6. For all v ∈ Rd, it holds

mv
0 + Γ(M̃ v

0 −mv
0) ≤ ⟨xi(t), v⟩ ≤M v

0 − Γ(M v
0 − m̃v

0), (3.1.10)

for all t ∈ I1 and for all i = 1, . . . , N , where Γ is the positive constant de�ned as follows

Γ := e−K( 1
2
(γ2+3γ)(T+τ̄)+τ̄)

(
ψ0α̃

N − 1

)γ
. (3.1.11)

Remark 3.1.7. Let us note that, from (PE), Γ ∈ (0, 1) since α̃ψ0 ≤ α̃K ≤ 1.

Proof. Fix v ∈ Rd. Let L = 1, . . . , N be such that ⟨xL(0), v⟩ = m̃v
0. Note that from

(3.1.2), M v
0 ≥ m̃v

0. Then, for a.e. t ∈ [0, γ(T + τ̄) + τ̄ ], using (3.1.2) we have

d

dt
⟨xL(t), v⟩ =

∑
j:j ̸=L

χLjαLj(t)bLj(t)(⟨xj(t− τLj(t)), v⟩ − ⟨xL(t), v⟩)

≤
∑
j:j ̸=L

χLjαLj(t)bLj(t)(M
v
0 − ⟨xL(t), v⟩)

≤ K

N − 1

∑
j:j ̸=L

(M v
0 − ⟨xL(t), v⟩) = K(M v

0 − ⟨xL(t), v⟩).
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Thus, the Gronwall's inequality yields

⟨xL(t), v⟩ ≤ e−Kt⟨xL(0), v⟩+M v
0 (1− e−Kt)

= e−Ktm̃v
0 +M v

0 (1− e−Kt)

=M v
0 − e−Kt(M v

0 − m̃v
0)

≤M v
0 − e−K(γ(T+τ̄)+τ̄)(M v

0 − m̃v
0).

Hence,

⟨xL(t), v⟩ ≤M v
0 − e−K(γ(T+τ̄)+τ̄)(M v

0 − m̃v
0), ∀t ∈ [0, γ(T + τ̄) + τ̄ ]. (3.1.12)

Now, let i1 = 1, . . . , N \ {L} be such that χi1L = 1. Such an index i1 exists since the
digraph is strongly connected. Then, for a.e. t ∈ [τ̄ , γ(T + τ̄) + τ̄ ], from (3.1.12) we get

d

dt
⟨xi1(t), v⟩ =

∑
j ̸=i1,L

χi1jαi1j(t)bi1j(t)(⟨xj(t− τi1j(t)), v⟩ − ⟨xi1(t), v⟩)

+αi1L(t)bi1L(t)(⟨xL(t− τi1L(t)), v⟩ − ⟨xi1(t), v⟩)

≤
∑
j ̸=i1,L

αi1j(t)χi1jbi1j(t)(M
v
0 − ⟨xi1(t), v⟩)

+αi1L(t)bi1L(t)
(
M v

0 − e−K(γ(T+τ̄)+τ̄)(M v
0 − m̃v

0)− ⟨xi1(t), v⟩
)

= (M v
0 − ⟨xi1(t), v⟩)

∑
j ̸=i1,L

χi1jαi1j(t)bi1j(t)

+αi1L(t)bi1L(t)
(
M v

0 − e−K(γ(T+τ̄)+τ̄)(M v
0 − m̃v

0)− ⟨xi1(t), v⟩
)
.

Note that ∑
j ̸=i1,L

χi1jαi1j(t)bi1j(t) =
∑
j ̸=i1

χi1jαi1j(t)bi1j(t)− αi1L(t)bi1L(t)

≤ K

N − 1

∑
j ̸=i1

χi1j − αi1L(t)bi1L(t) =
KNi1

N − 1
− αi1L(t)bi1L(t).

Thus, it comes that

d

dt
⟨xi1(t), v⟩ ≤

KNi1

N − 1
(M v

0 − ⟨xi1(t), v⟩)− αi1L(t)bi1L(t)(M
v
0 − ⟨xi1(t), v⟩)

+αi1L(t)bi1L(t)
(
M v

0 − e−K(γ(T+τ̄)+τ̄)(M v
0 − m̃v

0)− ⟨xi1(t), v⟩
)

=
KNi1

N − 1
(M v

0 − ⟨xi1(t), v⟩)− e−K(γ(T+τ̄)+τ̄)(M v
0 − m̃v

0)αi1L(t)bi1L(t)

≤ KNi1

N − 1
(M v

0 − ⟨xi1(t), v⟩)− e−K(γ(T+τ̄)+τ̄)(M v
0 − m̃v

0)αi1L(t)
ψ0

N − 1

=
KNi1

N − 1
M v

0 − e−K(γ(T+τ̄)+τ̄)(M v
0 − m̃v

0)αi1L(t)
ψ0

N − 1
− KNi1

N − 1
⟨xi1(t), v⟩).
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Hence, the Gronwall's estimate yields

⟨xi1(t), v⟩ ≤ e−
KNi1
N−1

(t−τ̄)⟨xi1(τ̄), v⟩) +M v
0 (1− e−

KNi1
N−1

(t−τ̄))

−e−K(γ(T+τ̄)+τ̄)(M v
0 − m̃v

0)
ψ0

N − 1

∫ t

τ̄

αi1L(s)e
−
KNi1
N−1

(t−s)ds

≤ e−
KNi1
N−1

(t−τ̄)M v
0 +M v

0 (1− e−
KNi1
N−1

(t−τ̄))

−e−K(γ(T+τ̄)+τ̄)(M v
0 − m̃v

0)e
−Kγ(T+τ̄) ψ0

N − 1

∫ t

τ̄

αi1L(s)ds

=M v
0 − e−K(2γ(T+τ̄)+τ̄)(M v

0 − m̃v
0)

ψ0

N − 1

∫ t

τ̄

αi1L(s)ds,

for all t ∈ [τ̄ , γ(T + τ̄) + τ̄ ]. In particular, for t ∈ [T + τ̄ , γ(T + τ̄) + τ̄ ], we �nd

⟨xi1(t), v⟩ ≤M v
0 − e−K(2γ(T+τ̄)+τ̄)(M v

0 − m̃v
0)

ψ0

N − 1
α̃, (3.1.13)

where here we have used the fact that, from (0.1.12),∫ t

τ

αi1L(s)ds ≥
∫ T+τ̄

τ̄

αi1L(s)ds ≥ α̃.

Let us note that, if γ = 1, estimate (3.1.13) holds for each agent. If γ > 1, let us consider
an index i2 ∈ {1, . . . , N}\{i1} such that χi2i1 = 1. Then, for a.e. t ∈ [T+2τ̄ , γ(T+ τ̄)+ τ̄ ],
from (3.1.13) it comes that

d

dt
⟨xi2(t), v⟩ =

∑
j ̸=i1,i2

χi2jαi2j(t)bi2j(t)(⟨xj(t− τi2j(t)), v⟩ − ⟨xi2(t), v⟩)

+αi2i1(t)bi2i1(t)(⟨xi1(t− τi2i1(t)), v⟩ − ⟨xi2(t), v⟩)

≤ (M v
0 − ⟨xi2(t), v⟩)

∑
j ̸=i1,i1

χi2jαi2j(t)bi2j(t)

+αi2i1(t)bi2i1(t)

(
M v

0 − e−K(2γ(T+τ̄)+τ̄)(M v
0 − m̃v

0)
ψ0

N − 1
α̃− ⟨xi2(t), v⟩

)
.
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Thus, arguing as above,

d

dt
⟨xi2(t), v⟩ ≤

KNi2

N − 1
(M v

0 − ⟨xi2(t), v⟩)− αi2i1(t)bi2i1(t)(M
v
0 − ⟨xi2(t), v⟩)

+αi2i1(t)bi2i1(t)

(
M v

0 − e−K(2γ(T+τ̄)+τ̄)(M v
0 − m̃v

0)
ψ0

N − 1
α̃− ⟨xi2(t), v⟩

)
=

KNi2

N − 1
(M v

0 − ⟨xi1(t), v⟩)− αi2i1(t)bi2i1(t)e
−K(2γ(T+τ̄)+τ̄)(M v

0 − m̃v
0)

ψ0

N − 1
α̃

≤ KNi2

N − 1
(M v

0 − ⟨xi1(t), v⟩)− αi2i1(t)e
−K(2γ(T+τ̄)+τ̄)(M v

0 − m̃v
0)

(
ψ0

N − 1

)2

α̃

=
KNi2

N − 1
M v

0 − αi2i1(t)e
−K(2γ(T+τ̄)+τ̄)(M v

0 − m̃v
0)

(
ψ0

N − 1

)2

α̃− KNi2

N − 1
⟨xi2(t), v⟩).

Again, using Gronwall's estimate it comes that

⟨xi2(t), v⟩ ≤ e−
KNi2
N−1

(t−T−2τ̄)⟨xi2(T + 2τ̄), v⟩) +M v
0 (1− e−

KNi2
N−1

(t−T−2τ̄))

−e−K(2γ(T+τ̄)+τ̄)(M v
0 − m̃v

0)

(
ψ0

N − 1

)2

α̃

∫ t

T+2τ̄

αi2i1(s)e
−
KNi2
N−1

(t−s)ds

≤M v
0 − e−K(3γ(T+τ̄)−T )(M v

0 − m̃v
0)

(
ψ0

N − 1

)2

α̃

∫ t

T+2τ̄

αi2i1(s)ds,

for all t ∈ [T +2τ̄ , γ(T + τ̄)+ τ̄ ]. In particular, for t ∈ [2T +2τ̄ , γ(T + τ̄)+ τ̄ ], the condition
(0.1.12) yields

⟨xi2(t), v⟩ ≤M v
0 − e−K(3γ(T+τ̄)−T )(M v

0 − m̃v
0)

(
ψ0

N − 1

)2

α̃2. (3.1.14)

Finally, iterating the above procedure along the path i0, i1, . . . , ir, r ≤ γ, that starts from
i0 = L we �nd the following upper bound

⟨xik(t), v⟩ ≤M v
0 − e−K((k+1)γ(T+τ̄)−(

∑k−1
l=0 l)(T+τ̄)+τ̄)(M v

0 − m̃v
0)

(
ψ0α̃

N − 1

)k
, (3.1.15)

for all 1 ≤ k ≤ r and for all t ∈ [k(T + τ̄), γ(T + τ̄) + τ̄ ]. In particular, if the path has

length γ, for k = γ, since
∑γ−1

l=0 l =
γ(γ−1)

2
, inequality (3.1.15) reads as

⟨xiγ (t), v⟩ ≤M v
0 − e−K( 1

2
(γ2+3γ)(T+τ̄)+τ̄)(M v

0 − m̃v
0)

(
ψ0α̃

N − 1

)γ
, (3.1.16)

for all t ∈ [γ(T + τ̄), γ(T + τ̄) + τ̄ ].
Let us note that (3.1.16) holds for every agent in the path starting from i0 = L for
t ∈ [γ(T + τ̄), γ(T + τ̄) + τ̄ ]. Then, from the arbitrariness of the path and since the
digraph is strongly connected, (3.1.16) holds for all the agents.
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Now, let R = 1, . . . , N be such that M̃ v
0 = ⟨xR(0), v⟩. Then, arguing as before, we get

⟨xR(t), v⟩ ≥ mv
0(1 + e−K(γ(T+τ̄)+τ̄)(M̃ v

0 −mv
0)), ∀t ∈ [0, γ(T + τ̄) + τ̄ ]. (3.1.17)

Employing the same arguments used above, we can conclude that

⟨xi(t), v⟩ ≥ mv
0 + e−K( 1

2
(γ2+3γ)(T+τ̄)+τ̄)(M̃ v

0 −mv
0)

(
ψ0α̃

N − 1

)γ
,

for all t ∈ [γ(T + τ̄), γ(T + τ̄) + τ̄ ] and for all i = 1, . . . , N . Finally, we can deduce that
estimate (3.1.10) holds.

The following proposition generalizes the previous one in successive time intervals. Its
proof is analogous to the previous one, so we omit it.

Proposition 3.1.8. Let v ∈ Rd. For any n ∈ N0, it holds

mv
n + Γ(M̃ v

n −mv
n) ≤ ⟨xi(t), v⟩ ≤M v

n − Γ(M v
n − m̃v

n), (3.1.18)

for all t ∈ In+1 and for all i = 1, . . . , N , where Γ is the positive constant in (3.1.11).

Now, we are able the consensus Theorem 3.1.1.

Proof of Theorem 3.1.1. Let {xi}i=1,...,N be solution to (0.1.8) under the initial condi-
tions (0.1.16). Fix v ∈ IRd. Let us de�ne the quantities

Dv
n :=M v

n −mv
n, ∀n ∈ N0,

where M v
n , m

v
n are the constants introduced in De�nition 3.1.1. Note that, for all n ∈ N0,

we have Dv
n ≥ 0, being M v

n ≥ mv
n.

Let Γ ∈ (0, 1) be the constant in (3.1.11). We claim that

Dv
n+1 ≤ (1− Γ)Dv

n, ∀n ∈ N0. (3.1.19)

Indeed, �x n ∈ N0. Let i, j = 1, . . . , N and s, t ∈ In+1 be such that ⟨xi(s), v⟩ =M v
n+1 and

⟨xj(t), v⟩ = mv
n+1. Then, applying Lemma 3.1.8, we can write

Dv
n+1 =M v

n+1 −mv
n+1 = ⟨xi(s), v⟩ − ⟨xj(t), v⟩

≤M v
n −mv

n − Γ(M v
n − m̃v

n)− Γ(M̃ v
n −mv

n).
(3.1.20)

Now, we distinguish four cases.
Case I) Assume that M v

n − m̃v
n = 0 and M̃ v

n −mv
n = 0. Then, since from (3.1.2)

mv
n ≤ m̃v

n ≤ M̃ v
n = mv

n,

we get
mv
n = m̃v

n =M v
n .
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As a consequence, (3.1.20) becomes

Dv
n+1 ≤ 0 = (1− Γ)Dv

n.

Case II) Assume that M v
n − m̃v

n = 0 and M̃ v
n −mv

n > 0. Then, since from (3.1.2)

m̃v
n ≤ M̃ v

n ≤M v
n = m̃v

n,

we can write
M̃ v

n =M v
n .

As a consequence, (3.1.20) becomes

Dv
n+1 ≤M v

n −mv
n − ΓM̃ v

n + Γmv
n = (1− Γ)(M v

n −mv
n) = (1− Γ)Dv

n.

Case III) Assume that M v
n − m̃v

n > 0 and M̃ v
n −mv

n = 0. Then, from (3.1.2) we have

mv
n ≤ m̃v

n ≤ M̃ v
n = mv

n,

from which
m̃v
n = mv

n.

As a consequence, (3.1.20) becomes

Dv
n+1 ≤M v

n −mv
n − ΓM v

n + Γm̃v
n = (1− Γ)(M v

n −mv
n) = (1− Γ)Dv

n.

Case IV) Assume that M v
n − m̃v

n > 0 and M̃ v
n −mv

n > 0. In this case, using the fact that
M̃ v

n ≥ m̃v
n, from (3.1.20) we get

Dv
n+1 ≤ (1− Γ)(M v

n −mv
n)− ΓM̃ v

n + Γm̃v
n ≤ (1− Γ)(M v

n −mv
n) = (1− Γ)Dv

n.

Hence, (3.1.19) is ful�lled.
As a consequence, since the positive constant Γ in (3.1.19) does not depend on the choice
of the vector v, we �nd the following estimate:

Dn+1 ≤ (1− Γ)Dn, ∀n ∈ N0. (3.1.21)

To see this, �x n ∈ N. Let i, j = 1, . . . , N and s, t ∈ In+1 be such that

Dn+1 = |xi(s)− xj(t)|.

Let us de�ne the unit vector

v =
xi(s)− xj(t)

|xi(s)− xj(t)|
.

Then, using (3.1.2) and (3.1.19),

Dn+1 = ⟨xi(s)− xj(t), v⟩ = ⟨xi(s), v⟩ − ⟨xj(t), v⟩

≤M v
n+1 −mv

n+1 = Dv
n+1

≤ (1− Γ)Dv
n = (1− Γ)(M v

n −mv
n)

≤ (1− Γ) max
k,l=1,...,N

max
r,w∈In

|xk(r)− xl(w)| = (1− Γ)Dn.
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Thus, (3.1.21) holds true.
Now, from (3.1.21) it comes that

Dn ≤ (1− Γ)nD0, ∀n ∈ N0. (3.1.22)

Let us note that (3.1.22) can be rewritten as

Dn ≤ e−nC(γ(T+τ̄)+τ̄)D0, ∀n ∈ N0, (3.1.23)

where

C =
1

γ(T + τ̄) + τ̄
ln

(
1

1− Γ

)
.

Now, let t ≥ 0. Thus, t ∈ [n(γ(T + τ̄)+ τ̄), (n+1)(γ(T + τ̄)+ τ̄)], for some n ∈ N0. Then,
using (3.1.4) and (3.1.23), it comes that

d(t) ≤ Dn ≤ e−nC(γ(T+τ̄)+τ̄)D0 ≤ e−C(t−γ(T+τ̄)−τ̄)D0,

which concludes our proof.

3.2 The second-order model

Now, we focus on the second-order model (0.1.26). We will prove the following �ocking
result.

Theorem 3.2.1. Assume that the digraph G is strongly connected. Let ψ̃ : IR → IR be a
positive, bounded, continuous function that satis�es∫ +∞

0

(
min
r∈[0,t]

ψ̃(r)

)γ
dt = +∞, (3.2.1)

where γ is the depth of the digraph. Assume that the weight functions αij : [0,+∞) → [0, 1]
are L1-measurable and satisfy (PE). Moreover, suppose that the time delay functions
τij : [0,+∞) → [0,+∞) are continuous and satisfy (0.1.9). Let x0i , v

0
i : [−τ̄ , 0] → IRd be

continuous functions, for any i = 1, . . . , N . Then, for every solution {(xi, vi)}i=1,...,N to
(0.1.26) with the initial conditions (0.1.28), there exists a positive constant d∗ such that

sup
t≥−τ̄

dX(t) ≤ d∗, (3.2.2)

and there exists a positive constant µ for which the following exponential decay estimate
holds

dV (t) ≤
(

max
i,j=1,...,N

max
r,s∈[−τ̄ ,0]

|vi(r)− vj(s)|
)
e−µ(t−γ(T+τ̄)−τ̄), ∀t ≥ 0. (3.2.3)
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Remark 3.2.2. Let us note that, if the function ψ̃ is nonincreasing and the interaction
is universal, i.e. γ = 1, then the condition (3.2.1) reduces to∫ +∞

0

ψ̃(t)dt = +∞,

which is the classical assumption to obtain the unconditional �ocking (see e.g. [101]).
Since here we deal with an in�uence function not necessarily monotonic and the interaction
is not universal, we require the stronger assumption (3.2.1) (cf. [40] for the case of
universal interaction).

3.2.1 Preliminary lemmas

Let {xi, vi}i=1,...,N be solution to (0.1.26) under the initial conditions (0.1.28). We
assume that the hypotheses of Theorem 3.2.1 are satis�ed. The following lemmas hold.
We omit their proofs since they can be proved using the same arguments employed in
Chapter 1 and in the previous section.

De�nition 3.2.1. Given a vector v ∈ Rd, for all n ∈ N0 we de�ne

rvn := min
j=1,...,N

min
s∈In

⟨vj(s), v⟩,

Rv
n := max

j=1,...,N
max
s∈In

⟨vj(s), v⟩,

where, as in the previous section,

In = [n(γ(T + τ̄) + τ̄)− τ̄ , n(γ(T + τ̄) + τ̄)].

Also, we de�ne, for all n ∈ N0,

r̃vn := min
j=1,...,N

⟨vj(n(γ(T + τ̄) + τ̄)), v⟩,

R̃v
n := max

j=1,...,N
⟨vj(n(γ(T + τ̄) + τ̄)), v⟩.

Lemma 3.2.3. For each vector v ∈ IRd and for any n ∈ N0, we have that

rvn ≤ ⟨vi(t), v⟩ ≤ Rv
n, (3.2.4)

for all t ≥ n(γ(T + τ̄) + τ̄)− τ̄ and for any i = 1, . . . , N .

De�nition 3.2.2. For all n ∈ N0, we de�ne

Fn := max
i,j=1,...,N

max
r,s∈In

|vi(r)− vj(s)|.

Remark 3.2.4. Let us note that

F0 := max
i,j=1,...,N

max
r,s∈I0

|vi(r)− vj(s)| = max
i,j=1,...,N

max
r,s∈[−τ̄ ,0]

|vi(r)− vj(s)|.

Then, the exponential decay estimate in (3.2.3) can be written as

dV (t) ≤ e−µ(t−γ(T+τ̄)−τ̄)F0, ∀t ≥ 0.
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Lemma 3.2.5. For each n ∈ N0, we have that

|vi(s)− vj(t)| ≤ Fn, (3.2.5)

for all s, t ≥ n(γ(T + τ̄) + τ̄)− τ̄ and for any i, j = 1, . . . , N .

Remark 3.2.6. Let us note that (3.2.5) yields

dV (t) ≤ Fn, ∀t ≥ n(γ(T + τ̄) + τ̄)− τ̄ . (3.2.6)

Furthermore, from (3.2.5) it follows that

Fn+1 ≤ Fn, ∀n ∈ N0. (3.2.7)

Also, we can �nd a bound on the velocities |vi(t)|, which is uniform with respect to t
and i = 1, . . . , N , and that depends on the initial velocities.

Lemma 3.2.7. For every i = 1, . . . , N, we have that

|vi(t)| ≤ CV
0 , ∀t ≥ −τ̄ , (3.2.8)

where
CV

0 := max
i=1,...,N

max
s∈[−τ̄ ,0]

|vi(s)|. (3.2.9)

Now, we provide the following result in which an estimate for the position diameters
is established. Since this result can be proved with analogous arguments to the ones
employed in Lemma 2.1.4 of Chapter 2, we omit its proof.

Lemma 3.2.8. For every i, j = 1, . . . , N , we get

|xi(t)− xj(t− τij(t))| ≤ τ̄CV
0 +MX

0 + dX(t), ∀t ≥ 0, (3.2.10)

where CV
0 is the positive constants in (3.2.9) and

MX
0 := max

i=1,...,N
max

s,t∈[−τ̄ ,0]
|xi(s)− xi(t)|. (3.2.11)

3.2.2 Flocking estimate

To prove the �ocking result we need, as before, a crucial proposition. First of all, we
give the following de�nition.

De�nition 3.2.3. We de�ne

ϕ̃(t) := min

{
ψ(r) : r ∈

[
0, τ̄CV

0 +M0
X + max

s∈[−τ̄ ,t]
dX(s)

]}
,

for all t ≥ −τ̄ .
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Remark 3.2.9. Let us note that from (3.2.10)

ψ̃(|xi(t)− xj(t− τij(t))|) ≥ ϕ̃(t), ∀t ≥ 0, ∀i, j = 1, . . . , N.

from which

aij(t) ≥
1

N − 1
ϕ̃(t), ∀t ≥ 0, ∀i, j = 1, . . . , N. (3.2.12)

Proposition 3.2.10. For all v ∈ Rd, it holds

rv0 + Γ1(R̃
v
0 − rv0) ≤ ⟨vi(t), v⟩ ≤ Rv

0 − Γ1(R
v
0 − r̃v0), (3.2.13)

for all t ∈ I1 and for all i = 1, . . . , N , where Γ1 is the positive constant de�ned as follows

Γ1 := e−K̃( 1
2
(γ2+3γ)(T+τ̄)+τ̄)

(
ϕ̃(γ(T + τ̄) + τ̄)α̃

N − 1

)γ

. (3.2.14)

Remark 3.2.11. Let us note that, from (PE), Γ1 ∈ (0, 1) since α̃K̃ ≤ 1.

Proof. Fix v ∈ Rd. Let L = 1, . . . , N be such that ⟨vL(0), v⟩ = r̃v0 . Note that from (3.2.4),
Rv

0 ≥ r̃v0 . Then, for a.e. t ∈ [0, γ(T + τ̄) + τ̄ ], from (3.2.4)

d

dt
⟨vL(t), v⟩ =

∑
j:j ̸=L

χLjαLj(t)aLj(t)(⟨vj(t− τLj(t)), v⟩ − ⟨vL(t), v⟩)

≤
∑
j:j ̸=L

χLjαLj(t)aLj(t)(R
v
0 − ⟨vL(t), v⟩)

≤ K

N − 1

∑
j:j ̸=L

(Rv
0 − ⟨vL(t), v⟩) = K̃(Rv

0 − ⟨vL(t), v⟩).

Thus, the Gronwall's inequality yields

⟨vL(t), v⟩ ≤ e−K̃t⟨vL(0), v⟩+Rv
0(1− e−K̃t)

= Rv
0 − e−K̃t(Rv

0 − r̃v0)

≤ Rv
0 − e−K̃(γ(T+τ̄)+τ̄)(Rv

0 − r̃v0).

Therefore, we have

⟨vL(t), v⟩ ≤ Rv
0 − e−K̃(γ(T+τ̄)+τ̄)(Rv

0 − r̃v0), ∀t ∈ [0, γ(T + τ̄) + τ̄ ]. (3.2.15)

Now, let i1 = 1, . . . , N \ {L} be such that χi1L = 1. Such an index i1 exists since the
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digraph is strongly connected. Then, for a.e. t ∈ [τ̄ , γ(T + τ̄) + τ̄ ], from (3.2.15) we get

d

dt
⟨vi1(t), v⟩ =

∑
j ̸=i1,L

χi1jαi1j(t)ai1j(t)(⟨vj(t− τi1j(t)), v⟩ − ⟨vi1(t), v⟩)

+αi1L(t)ai1L(t)(⟨vL(t− τi1L(t)), v⟩ − ⟨vi1(t), v⟩)

≤
∑
j ̸=i1,L

αi1j(t)χi1jai1j(t)(R
v
0 − ⟨vi1(t), v⟩)

+αi1L(t)ai1L(t)
(
Rv

0 − eK̃(γ(T+τ̄)+τ̄)(Rv
0 − r̃v0)− ⟨vi1(t), v⟩

)
= (Rv

0 − ⟨vi1(t), v⟩)
∑
j ̸=i1,L

χi1jαi1j(t)ai1j(t)

+αi1L(t)ai1L(t)
(
Rv

0 − e−K̃(γ(T+τ̄)+τ̄)(Rv
0 − r̃v0)− ⟨vi1(t), v⟩

)
.

Note that ∑
j ̸=i1,L

χi1jαi1j(t)ai1j(t) =
∑
j ̸=i1

χi1jαi1j(t)ai1j(t)− αi1L(t)ai1L(t)

≤ K̃

N − 1

∑
j ̸=i1,L

χi1j − αi1L(t)ai1L(t) =
K̃Ni1

N − 1
− αi1L(t)ai1L(t).

Thus, from (3.2.12) it comes that

d

dt
⟨vi1(t), v⟩ ≤

K̃Ni1

N − 1
(Rv

0 − ⟨vi1(t), v⟩)− αi1L(t)ai1L(t)(R
v
0 − ⟨vi1(t), v⟩)

+αi1L(t)ai1L(t)
(
Rv

0 − e−K̃(γ(T+τ̄)+τ̄)(Rv
0 − r̃v0)− ⟨vi1(t), v⟩

)
≤ K̃Ni1

N − 1
(Rv

0 − ⟨vi1(t), v⟩)− αi1L(t)
ϕ̃(t)

N − 1
e−K̃(γ(T+τ̄)+τ̄)(Rv

0 − r̃v0)

=
K̃Ni1

N − 1
Rv

0 − αi1L(t)
ϕ̃(t)

N − 1
e−K̃(γ(T+τ̄)+τ̄)(Rv

0 − r̃v0)−
K̃Ni1

N − 1
⟨vi1(t), v⟩).
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Hence, the Gronwall's estimate yields

⟨vi1(t), v⟩ ≤ e−
K̃Ni1
N−1

(t−τ̄)⟨vi1(τ̄), v⟩) +Rv
0(1− e−

K̃Ni1
N−1

(t−τ̄))

−e−K̃(γ(T+τ̄)+τ̄)(Rv
0 − r̃v0)

1

N − 1

∫ t

τ̄

ϕ̃(s)αi1L(s)e
−
K̃Ni1
N−1

(t−s)ds

≤ e−
K̃Ni1
N−1

(t−τ̄)Rv
0 +Rv

0(1− e−
K̃Ni1
N−1

(t−τ̄))

−e−K̃(γ(T+τ̄)+τ̄)(Rv
0 − r̃v0)e

−K̃γ(T+τ̄) 1

N − 1

∫ t

τ̄

ϕ̃(s)αi1L(s)ds

= Rv
0 − e−K̃(2γ(T+τ̄)+τ̄)(Rv

0 − r̃v0)
1

N − 1

∫ t

τ̄

ϕ̃(s)αi1L(s)ds,

for all t ∈ [τ̄ , γ(T + τ̄) + τ̄ ]. Note that, since ϕ̃ is a nonincreasing function,

ϕ̃(t) ≥ ϕ̃(γ(T + τ̄) + τ̄), ∀t ∈ [0, γ(T + τ̄) + τ̄ ]. (3.2.16)

Then, we can write

⟨vi1(t), v⟩ ≤ Rv
0 − e−K̃(2γ(T+τ̄)+τ̄)(Rv

0 − r̃v0)
ϕ̃(γ(T + τ̄) + τ̄)

N − 1

∫ t

τ̄

αi1L(s)ds,

for all t ∈ [τ̄ , γ(T + τ̄) + τ̄ ]. In particular, for t ∈ [T + τ̄ , γ(T + τ̄) + τ̄ ], we �nd

⟨vi1(t), v⟩ ≤ Rv
0 − e−K̃(2γ(T+τ̄)+τ̄)(Rv

0 − r̃v0)
ϕ̃(γ(T + τ̄) + τ̄)

N − 1
α̃, (3.2.17)

where here we have used the fact that (0.1.12) implies the following inequality∫ t

τ̄

αi1L(s)ds ≥
∫ T+τ̄

τ̄

αi1L(s)ds ≥ α̃.

Now, if γ = 1, (3.2.17) holds true for each agent. On the other hand, if γ > 1, let
us consider an index i2 ∈ {1, . . . , N} \ {i1} such that χi2i1 = 1. Then, for a.e. t ∈
[T + 2τ̄ , γ(T + τ̄) + τ̄ ], from (3.2.17) it comes that

d

dt
⟨vi2(t), v⟩ =

∑
j ̸=i1,i2

χi2jαi2j(t)ai2j(t)(⟨vj(t− τi2j(t)), v⟩ − ⟨vi2(t), v⟩)

+αi2i1(t)ai2i1(t)(⟨vi1(t− τi2i1(t)), v⟩ − ⟨vi2(t), v⟩)

≤ (Rv
0 − ⟨vi2(t), v⟩)

∑
j ̸=i1,i2

χi2jαi2j(t)ai2j(t)

+αi2i1(t)ai2i1(t)

(
Rv

0 − e−K̃(2γ(T+τ̄)+τ̄)(Rv
0 − r̃v0)

ϕ̃(γ(T + τ̄) + τ̄)

N − 1
α̃− ⟨vi2(t), v⟩

)
.
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Hence, arguing as above we obtain

d

dt
⟨vi2(t), v⟩ ≤

K̃Ni2

N − 1
(Rv

0 − ⟨xi2(t), v⟩)− αi2i1(t)ai2i1(t)(R
v
0 − ⟨vi2(t), v⟩)

+αi2i1(t)ai2i1(t)

(
Rv

0 − e−K̃(2γ(T+τ̄)+τ̄)(Rv
0 − r̃v0)

ϕ̃(γ(T + τ̄) + τ̄)

N − 1
α̃− ⟨xi2(t), v⟩

)

≤ K̃Ni2

N − 1
(Rv

0 − ⟨vi2(t), v⟩)− αi2i1(t)e
−K̃(2γ(T+τ̄)+τ̄)(Rv

0 − r̃v0)
ϕ̃(γ(T + τ̄) + τ̄)

(N − 1)2
ϕ̃(t)α̃.

Again, using Gronwall's estimate it comes that

⟨vi2(t), v⟩ ≤ e−
K̃Ni2
N−1

(t−T−2τ̄)⟨vi2(T + 2τ̄), v⟩) +Rv
0(1− e−

K̃Ni2
N−1

(t−T−2τ̄))

−e−K̃(2γ(T+τ̄)+τ̄)(Rv
0 − r̃v0)

ϕ̃(γ(T + τ̄) + τ̄)

(N − 1)2
α̃

∫ t

T+2τ̄

ϕ̃(s)αi2i1(s)e
−
K̃Ni2
N−1

(t−s)ds

≤ Rv
0 − e−K̃(3γ(T+τ̄)−T )(Rv

0 − r̃v0)
ϕ̃(γ(T + τ̄) + τ̄)

(N − 1)2
α̃

∫ t

T+2τ̄

ϕ̃(s)αi2i1(s)ds,

for all t ∈ [T +2τ̄ , γ(T + τ̄)+ τ̄ ]. In particular, for t ∈ [2T +2τ̄ , γ(T + τ̄)+ τ̄ ], the condition
(0.1.12) and the inequality (3.2.16) imply that

⟨vi2(t), v⟩ ≤ Rv
0 − e−K̃(3γ(T+τ̄)−T )(Rv

0 − r̃v0)

(
ϕ̃(γ(T + τ̄) + τ̄)

N − 1

)2

α̃2. (3.2.18)

Finally, iterating the above procedure along the path i0, i1, . . . , ir, with r ≤ γ, starting
from i0 = L we �nd the following upper bound

⟨vik(t), v⟩ ≤ Rv
0 − e−K̃((k+1)γ(T+τ̄)−(T+τ̄)(

∑k−1
l=0 l)+τ̄)(Rv

0 − r̃v0)

(
ϕ̃(γ(T + τ̄) + τ̄)α̃

N − 1

)k

,

(3.2.19)
for all 1 ≤ k ≤ r and for all t ∈ [k(T + τ̄), γ(T + τ̄) + τ̄ ]. In particular, if the path has

length γ, for k = γ, since
∑γ−1

l=0 l =
γ(γ−1)

2
, inequality (3.2.19) reads as

⟨viγ (t), v⟩ ≤ Rv
0 − e−K̃( 1

2
(γ2+3γ)(T+τ̄)+τ̄)(Rv

0 − r̃v0)

(
ϕ̃(γ(T + τ̄) + τ̄)α̃

N − 1

)γ

, (3.2.20)

for all t ∈ [γ(T + τ̄), γ(T + τ̄) + τ̄ ]. Arguing as in Proposition 3.1.6, we can say that
(3.2.20) holds for every i = 1, . . . , N .
Now, let R = 1, . . . , N be such that R̃v

0 = ⟨vR(0), v⟩. Then, arguing as before, we get

⟨vR(t), v⟩ ≥ rv0 + e−K̃(γ(T+τ̄)+τ̄)(R̃v
0 − rv0), ∀t ∈ [0, γ(T + τ̄) + τ̄ ]. (3.2.21)
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Employing the same arguments used above, we can conclude that

⟨vi(t), v⟩ ≥ rv0 + e−K̃( 1
2
(γ2+3γ)(T+τ̄)+τ̄)(R̃v

0 − rv0))

(
ϕ̃(γ(T + τ̄) + τ̄)α̃

N − 1

)γ

,

for all t ∈ [γ(T + τ̄), γ(T + τ̄) + τ̄ ] and for all i = 1, . . . , N . Finally, we can deduce that
estimate (3.2.13) holds.

The following proposition extends the previous one in successive time intervals. We
omit its proof since it is analogous to the previous one.

Proposition 3.2.12. Let v ∈ Rd. For any n ∈ N, it holds

rvn + Γn+1(R̃
v
n − rvn) ≤ ⟨vi(t), v⟩ ≤ Rv

n − Γn+1(R
v
n − r̃vn), (3.2.22)

for all t ∈ In+1 and for all i = 1, . . . , N , where Γn+1 is the positive constant de�ned as

Γn+1 := e−K̃( 1
2
(γ2+3γ)(T+τ̄)+τ̄)

(
ϕ̃((n+ 1)(γ(T + τ̄) + τ̄))α̃

N − 1

)γ

. (3.2.23)

Remark 3.2.13. Let us note that from (3.2.22) it comes that

Rv
n+1 − rvn+1 ≤ (1− Γn+1)(R

v
n − rvn), ∀n ∈ N0. (3.2.24)

where Γn+1 ∈ (0, 1) is the constant in (3.2.23).
Indeed, given n ∈ N0, let i, j = 1, . . . , N and s, t ∈ In+1 be such that ⟨vi(s), v⟩ = Rv

n+1

and ⟨vj(t), v⟩ = rvn+1. Then, applying Lemma 3.2.12, we can write

Rv
n+1 − rvn+1 = ⟨vi(s), v⟩ − ⟨vj(t), v⟩

≤ Rv
n − rvn − Γn+1(R

v
n − r̃vn)− Γn+1(R̃

v
n − rvn).

(3.2.25)

Then, arguing as in the proof of Theorem 3.1.1, we get that estimate (3.2.24) holds true.

Also, setting C∗ := e−K̃( 1
2
(γ2+3γ)(T+τ̄)+τ̄)

(
α̃

N−1

)γ
, it holds that

Γn+1 = C∗(ϕ̃((n+ 1)(γ(T + τ̄) + τ̄)))γ, ∀n ∈ N0. (3.2.26)

As a consequence, (3.2.24) can be written as

Rv
n+1 − rvn+1 ≤ (1− C∗(ϕ̃((n+ 1)(γ(T + τ̄) + τ̄)))γ)(Rv

n − rvn), ∀n ∈ N0. (3.2.27)

In particular, from (3.2.24) and (3.2.27), arguing as in Theorem 3.1.1, it comes that

Fn+1 ≤ (1− Γn+1)Fn, ∀n ∈ N0, (3.2.28)

or, equivalently,

Fn+1 ≤ (1− C∗(ϕ̃((n+ 1)(γ(T + τ̄) + τ̄)))γ)Fn, ∀n ∈ N0, (3.2.29)
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Now, we are able to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Let {(xi, vi)}i=1,...,N be solution to (0.1.26) under the initial con-
ditions (0.1.28). Let us de�ne

Γ̃n+1 =
Γn+1

γ(T + τ̄) + τ̄
, ∀n ∈ N0.

Let us introduce the function E : [−τ̄ ,+∞) → [0,+∞),

E(t) :=


F0, t ∈ [−τ̄ , γ(T + τ̄) + τ̄ ],

E(n(γ(T + τ̄) + τ̄))
(
1− Γ̃n+1(t− n(γ(T + τ̄) + τ̄))

)
,

t ∈ (n(γ(T + τ̄) + τ̄), (n+ 1)(γ(T + τ̄) + τ̄)], n ≥ 1.

By de�nition, E is continuous, positive and nonincreasing. Moreover, we claim that

Fn ≤ E(t), ∀t ∈ [−τ̄ , n(γ(T + τ̄) + τ̄)], ∀n ∈ N0. (3.2.30)

We prove this by induction. For n = 1, from (3.2.7) we can immediately say that

F1 ≤ F0 = E(t), ∀t ∈ [−τ̄ , γ(T + τ̄) + τ̄ ].

Now, assume that (3.2.30) holds for some n ≥ 1. We have to show that (3.2.30) is true
also for n+ 1. From the induction hypothesis and by using again (3.2.7), we have that

Fn+1 ≤ Fn ≤ E(t),

for all t ∈ [−τ̄ , n(γ(T + τ̄) + τ̄)]. It lasts to prove that Fn+1 ≤ E(t), for all t ∈ (n(γ(T +
τ̄) + τ̄), (n+ 1)(γ(T + τ̄) + τ̄)]. From (3.2.28), it comes that

E(t) ≥ E((n+ 1)(γ(T + τ̄) + τ̄)) = E(n(γ(T + τ̄) + τ̄))(1− Γ̃n+1(γ(T + τ̄) + τ̄))

= (1− Γn+1)Fn ≥ Fn+1,

for all t ∈ (n(γ(T + τ̄) + τ̄), (n + 1)(γ(T + τ̄) + τ̄)], where in the above inequalities we
have used the fact that E is nonincreasing. Hence, (3.2.30) is proven.
Now, for almost all time (see Chapter 2 for further details)

d

dt
max
s∈[−τ̄ ,t]

dX(s) ≤
∣∣∣∣ ddtdX(t)

∣∣∣∣ ≤ dV (t). (3.2.31)

Next, let us de�ne the function W : [−τ̄ ,+∞) → [0,+∞),

W(t) := (γ(T + τ̄) + τ̄)E(t) + C∗
∫ τ̄CV0 +MX

0 + max
s∈[−τ̄ ,t+γ(T+τ̄)+τ̄ ]

dX(s)

0

(
min
σ∈[0,r]

ψ̃(σ)

)γ
dr,
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for all t ≥ −τ̄ . By construction, W is continuous. Also, for each n ≥ 1 and for a.e.
t ∈ (n(γ(T + τ̄) + τ̄), (n+ 1)(γ(T + τ̄) + τ̄), from (3.2.6), (3.2.30) and (3.2.31) it follows
that

d

dt
W(t) = (γ(T + τ̄) + τ̄)

d

dt
E(t) + C∗(ϕ̃(t+ γ(T + τ̄) + τ̄))γ

d

dt
max

s∈[−τ̄ ,t+(γ(T+τ̄)+τ̄)]
dX(s)

≤ −E(nγ(T + τ̄) + τ̄)C∗(ϕ̃((n+ 1)(γ(T + τ̄) + τ̄)))γ

+C∗(ϕ̃(t+ γ(T + τ̄) + τ̄))γdV (t+ (γ(T + τ̄) + τ̄))

≤ C∗Fn(−(ϕ̃((n+ 1)(γ(T + τ̄) + τ̄)))γ + (ϕ̃((n+ 1)(γ(T + τ̄) + τ̄))γ)) = 0.

Then,
d

dt
W(t) ≤ 0, a.e. t > γ(T + τ̄) + τ̄ , (3.2.32)

which implies
W(t) ≤ W(γ(T + τ̄) + τ̄), ∀t ≥ γ(T + τ̄) + τ̄ . (3.2.33)

Now, by de�nition of W , being E a nonnegative function, we have

C∗
∫ τ̄CV0 +MX

0 + max
s∈[−τ̄ ,t+γ(T+τ̄)+τ̄ ]

dX(s)

0

(
min
σ∈[0,r]

ψ̃(σ)

)γ
dr ≤ W(γ(T + τ̄) + τ̄),

for all t ≥ γ(T + τ̄) + τ̄ . Letting t→ ∞ in the above inequality, we can conclude that

C∗
∫ τ̄CV0 +MX

0 + sup
s∈[−τ̄ ,+∞)

dX(s)

0

(
min
σ∈[0,r]

ψ̃(σ)

)γ
dr ≤ W(γ(T + τ̄) + τ̄)). (3.2.34)

Finally, since the function ψ̃ satis�es property (3.2.1), from (3.2.34), we can conclude that
there exists a positive constant d∗ such that

τ̄CV
0 +MX

0 + sup
s∈[−τ̄ ,+∞)

dX(s) ≤ d∗. (3.2.35)

Now, let us de�ne
ϕ̂ := min

r∈[0,d∗]
ψ̃(r).

Note that ϕ̃∗ > 0. Also, (3.2.35) yields

ϕ̂ ≤ ϕ̃(t), ∀t ≥ −τ̄ . (3.2.36)

Then, from (3.2.29) and (3.2.36) we have

Fn+1 ≤ (1− C∗ϕ̂γ)Fn, ∀n ∈ N0. (3.2.37)

Thus, thanks to an induction argument, we can write

Fn ≤ (1− C∗ϕ̂γ)nF0, ∀n ∈ N0.
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Note that the above inequality can be rewritten as

Fn ≤ e−nµ(γ(T+τ̄)+τ̄)F0, ∀n ∈ N0, (3.2.38)

where

µ =
1

γ(T + τ̄) + τ̄
ln

(
1

1− C∗ϕ̂γ

)
.

Finally, let t ≥ 0. Then, t ∈ [n(γ(T + τ̄) + τ̄), (n + 1)(γ(T + τ̄) + τ̄)], for some n ∈ N0.
Then, using (3.2.6) and (3.2.38)

dV (t) ≤ Fn ≤ e−nµ(γ(T+τ̄)+τ̄)F0 ≤ e−µ(t−γ(T+τ̄)−τ̄)F0,

which concludes our proof.



Chapter 4

The Hegselmann-Krause model with

time delay and communication case:

the all-to-all interaction case

In this chapter, we deal again with the Hegselmann-Krause model (0.1.8). In partic-
ular, we consider the case in which χij = 1, for all i, j = 1, . . . , N , namely the case of
all-to-all interaction. Note that, in this case, γ = 1. Moreover, we suppose that τij = τ(t),
for a.e. t ≥ 0 and for all i, j = 1, . . . , N , where τ(·) is a suitable time delay function that
satis�es (0.1.9), i.e.

0 ≤ τ(t) ≤ τ̄ , ∀t ≥ 0. (4.0.1)

Also, we assume that αij(t) = α(t), for a.e. t ≥ 0 and for all i, j = 1, . . . , N , where
α : [0,+∞) → [0, 1] is a suitable weight function that satis�es the Persistence Excitation
Condition (PE), that now reads as

(PE) there exist two positive constants T and α̃ such that∫ t+T

t

α(s)ds ≥ α̃, ∀t ≥ 0. (4.0.2)

Without loss of generality, we can assume that α̃K ≤ 1 and that T ≥ τ̄ τ .

In this situation, the results in Chapter 3 for the �rst-order model can be improved.
Indeed, we have seen in the proof of Theorem 3.1.1 that the constant C in the exponential
decay estimate depends on the number of agents N . Although the result 3.1.1 is very
general, the dependence of the number of agents in the decay estimate satis�ed by the
solution's diameter is not so good, especially when the number of agents becomes too
large.

So, in this chapter we will show that, in the case of universal interaction, the C constant
in the exponential decay estimate (3.1.1) can be chosen independent of N , whenever the
time delay and the weight functions are not pair-dependent. The results in this chapter
are the analogous in [42].

The consensus result we will prove now is the following.

54



4.1. PROOF OF THE CONSENSUS ESTIMATE 55

Theorem 4.0.1. Assume χij = 1, for all i, j = 1, . . . , N . Let ψ : IRd× IRd → IR be a pos-
itive, bounded, continuous function. Assume that the weight function α : [0,+∞) → [0, 1]
is L1-measurable and satis�es (4.0.2) and that the time delay function τ : [0,+∞) →
[0,+∞) is continuous and satis�es (4.0.1). Let x0i : [−τ̄ , 0] → IRd be a continuous func-
tion, for any i = 1, . . . , N . Then, every solution {xi}i=1,...,N to (0.1.8) with the initial
conditions (0.1.16) satis�es the exponential decay estimate

d(t) ≤
(

max
i,j=1,...,N

max
r,s∈[−τ̄ ,0]

|xi(r)− xj(s)|
)
e−C(t−3T+τ̄), ∀t ≥ 0, (4.0.3)

where T is the positive constant in (0.1.12) and C is a suitable positive constant, inde-
pendent of N .

4.1 Proof of the consensus estimate

Let {xi}i=1,...,N be solution to (0.1.8) under the initial conditions (0.1.16). We as-
sume that the hypotheses of Theorem 4.0.1 are satis�ed. Let us �rst give the following
de�nitions.

De�nition 4.1.1. Given a vector v ∈ IRd, for all n ∈ N0, we de�ne

mv
n := min

i=1,...,N
min

s∈[nT−τ̄ ,nT ]
⟨xi(s), v⟩,

M v
n := max

j=1,...,N
max

s∈[nT−τ̄ ,nT ]
⟨xj(s), v⟩.

De�nition 4.1.2. For all n ∈ N0, we de�ne

Dn := max
i,j=1,...,N

max
r,s∈[nT−τ̄ ,nT ]

|xi(r)− xj(s)|.

Let us note that
D0 = max

i,j=1,...,N
max

r,s∈[−τ̄ ,0]
|xi(r)− xj(s)|.

So, the exponential decay estimate (4.0.3) can be rewritten as

d(t) ≤ D0e
−C(t−3T+τ̄), ∀t ≥ 0.

In this chapter, we won't prove the asymptotic consensus with the method provided in
Chapter 3, namely we won't re�ne the estimate in Lemma 3.1.2 to obtain an estimate like
(3.1.18).

We will rather use a similar approach to the one employed in Chapter 1. In particular,
we need the following fundamental results. Since they are analogous to the correspondent
results in Chapter 1 and Chapter 3, we omit their proofs.

Lemma 4.1.1. For each vector v ∈ IRd and for all n ∈ N0, we have that

mv
n ≤ ⟨xi(t), v⟩ ≤M v

n , (4.1.1)

for all t ≥ nT − τ̄ and for any i = 1, . . . , N .
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Lemma 4.1.2. For each n ∈ N0, we have that

|xi(s)− xj(t)| ≤ Dn, (4.1.2)

for all s, t ≥ nT − τ̄ and for any i, j = 1, . . . , N . In particular,

d(t) ≤ Dn, ∀t ≥ nT − τ̄ . (4.1.3)

Remark 4.1.3. Let us note that from (4.1.2) it comes that

Dn+1 ≤ Dn, ∀n ∈ N0. (4.1.4)

Lemma 4.1.4. For every i = 1, . . . , N, we have that

|xi(t)| ≤ C0 := max
i=1,...,N

max
s∈[−τ̄ ,0]

|xi(s)|, ∀t ≥ −τ̄ . (4.1.5)

In particular,

ψ(xi(t), xj(t− τij(t))) ≥ ψ0 := min
|y|,|z|≤C0

ψ(y, z), ∀t ≥ 0, ∀i, j = 1, . . . , N. (4.1.6)

Lemma 4.1.5. For all i, j = 1, . . . , N , unit vector v ∈ IRd and n ∈ N0, we have

⟨xi(t)− xj(t), v⟩ ≤ e−K(t−t̄)⟨xi(t̄)− xj(t̄), v⟩+ (1− e−K(t−t̄))Dn, (4.1.7)

for all t ≥ t̄ ≥ nT .
Moreover, for all n ∈ N0, we get

Dn+1 ≤ e−KTd(nT ) + (1− e−KT )Dn. (4.1.8)

Now, we prove Theorem 4.0.1.

Proof of Theorem 4.0.1. Let {xi}i=1,...,N be solution to (0.1.8) under the initial conditions
(0.1.16). We �rst claim that there exist a positive constant C∗ ∈ (0, 1), independent of
N ∈ N, such that

d(nT ) ≤ C∗Dn−2, ∀n ≥ 2. (4.1.9)

Indeed, let n ≥ 2. Note that inequality (4.1.9) is trivially satis�ed if d(nT ) = 0. So, we
can assume d(nT ) > 0. Let i, j = 1, . . . , N be such that d(nT ) = |xi(nT )− xj(nT )|. We
de�ne the unit vector

v =
xi(n(T )− xj(nT )

|xi(nT )− xj(nT )|
.

Then,
d(nT ) = ⟨xi(nT )− xj(nT ), v⟩.

Now, we distinguish two di�erent situations.
Case I. Assume that there exists t̄ ∈ [(n− 1)T − τ̄ , nT ] such that

⟨xi(t̄)− xj(t̄), v⟩ < 0.
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Note that, being T ≥ τ̄ , it holds nT ≥ t̄ ≥ (n− 1)T − τ̄ ≥ (n− 2)T . Then, we can apply
(4.1.7) and we get

d(nT ) ≤ e−K(nT−t̄)⟨xi(t̄)− xj(t̄), v⟩+ (1− e−K(nT−t̄))Dn−2

≤ (1− e−K(nT−t̄))Dn−2

≤ (1− e−K(T+τ̄))Dn−2.

(4.1.10)

Case II. Assume it rather holds

⟨xi(t)− xj(t), v⟩ ≥ 0, ∀t ∈ [(n− 1)T − τ̄ , nT ]. (4.1.11)

Then, arguing as in Lemma 1.2.1 we get

d

dt
⟨xi(t)− xj(t), v⟩ ≤ (K − ψ0α(t)) (M

v
n−1 −mv

n−1)−K⟨xi(t)− xj(t), v⟩,

for a.e. t ∈ [(n− 1)T, nT ]. Hence, Gronwall's inequality yields

⟨xi(t)− xj(t), v⟩ ≤ e−K(t−(n−1)T )⟨xi((n− 1)T )− xj((n− 1)T ), v⟩

+(M v
n−1 −mv

n−1)

∫ t

(n−1)T

(K − ψ0α(s)) e
−K(t−s)ds,

for all t ∈ [(n− 1)T, nT ]. In particular, for t = nT , it comes that

d(nT ) ≤ e−KT ⟨xi((n− 1)T )− xj((n− 1)T ), v⟩

+(M v
n−1 −mv

n−1)

∫ nT

(n−1)T

(K − ψ0α(s)) e
−K(nT−s)ds

≤
(
e−KT +K

∫ nT

(n−1)T

e−K(nT−s)ds

−ψ0

∫ nT

(n−1)T

α(s)e−K(nT−s)ds

)
Dn−1

≤
(
1− ψ0e

−KT
∫ nT

(n−1)T

α(s)ds

)
Dn−1.

Then, since from the Persistence Excitation Condition (4.0.2) we have that∫ nT

(n−1)T

α(s)ds ≥ α̃,

we get
d(nT ) ≤

(
1− ψ0e

−KT α̃
)
Dn−1 ≤

(
1− ψ0e

−K((T+2τ̄))α̃
)
Dn−2.

Now, we set
C∗ := max

{
1− e−K(T+τ̄), 1− ψ0e

−KT α̃
}
. (4.1.12)
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Then, recalling of (4.1.10), we deduce C∗ ∈ (0, 1) is the constant for which (4.1.9) holds.
Finally, let us de�ne

C =
1

3T
ln

(
1

1− e−KT (1− C∗)

)
. (4.1.13)

Then, arguing as in Theorem 1.0.1, we can conclude that C, that does not depend on N ,
is the positive constant for which the exponential decay estimate (4.0.3) is ful�lled.

4.2 The continuum model

Now, the continuum model associated with the particle system (0.1.8) is given by

∂tµt + div (F [µt−τ(t)]µt) = 0, t > 0,
µs = gs, x ∈ IRd, s ∈ [−τ̄ , 0], (4.2.14)

where the velocity �eld F is de�ned as

F [µt−τ(t)](x) =

∫
IRd
α(t)ψ(x, y)(y − x) dµt−τ(t)(y), (4.2.15)

and gs ∈ C([−τ̄ , 0];M(IRd)).
As in Chapter 1, we assume that the potential ψ(·, ·) in (4.2.15) is Lipschitz continuous.

De�nition 4.2.1. Let T > 0. We say that µt ∈ C([0, T );M(IRd)) is a measure-valued
solution to (4.2.14) on the time interval [0, T ) if for all φ ∈ C∞

c (IRd × [0, T )) we have:∫ T

0

∫
IRd

(
∂tφ+ F [µt−τ(t)](x) · ∇xφ

)
dµt(x)dt+

∫
IRd
φ(x, 0)dg0(x) = 0. (4.2.16)

Since the consensus result for the particle model (0.1.8) holds without any upper
bounds on the time delay τ , one can deduce the following consensus theorem for the PDE
model (4.2.14) without requiring a smallness assumption on the time delay τ. We omit
the proof since, once we have the result for the particle system (0.1.8) with estimates
independent of the number of agents, the consensus estimate for the continuum model is
obtained with arguments analogous to the ones used in [37] and [88]. On the other hand,
we formulate the theorem since the ones stated in [37, 88] require an upper bound on the
time delay size inherited from the result for the particle system. Now, the more general
result for the ODE system (0.1.8) allows us to extend the applicability of the convergence
result for the continuum model (4.2.14).

Theorem 4.2.1. Let µt ∈ C([0, T ];P1(IR
d)) be a measure-valued solution to (1.3.1) with

compactly supported initial datum gs ∈ C([−τ̄ , 0];P1(IR
d)) and let F as in (1.3.2). Then,

there exists a constant C > 0 such that

dX(µt) ≤
(

max
s∈[−τ̄ ,0]

dX(gs)

)
e−Ct, ∀t ≥ 0.



Chapter 5

Opinion formation and �ocking models

with attractive-repulsive interaction

In this chapter, we analyze �rst and second-order Cucker-Smale models with attractive-
repulsive interaction. We will �nd conditions ensuring the asymptotic consensus for both
models (0.1.17) and (0.1.29), despite the agents repeal each other in the intervals of neg-
ative interaction, i.e. in which α(t) = 1. Compensating the behaviour of the solutions to
the considered models in the bad intervals, i.e. the intervals in which the agents repeal
each other, with the good behavior in the intervals in which the in�uence among the agents
is positive, we establish the convergence to consensus for the Hegselmann-Krause model
with attractive-repulsive interaction (0.1.17) and the exhibition of asymptotic �ocking for
the Cucker-Smale model with attractive-repulsive interaction (0.1.29) under quite general
assumptions. The results contained in this chapter are taken from [43].

5.1 The Hegselmann-Krause model

In this Section, we deal with the �rst-order model (0.1.17). For solutions to (0.1.17),
the following consensus result holds.

Theorem 5.1.1. Let ψ : IRd × IRd → IR be a positive, bounded, continuous function.
Assume that the sequence {tn}n of de�nition (0.1.19) satis�es (0.1.20). Assume also that
the following conditions hold:

∞∑
p=0

ln

(
eK(t2p+2−t2p+1)

2− eK(t2p+2−t2p+1)

)
< +∞, (5.1.1)

∞∑
p=0

ln

(
max

{
1− e−K(t2p+1−t2p), 1− ψ0

K
(1− e−K(t2p+1−t2p))

})
= −∞, (5.1.2)

where
ψ0 := min

|y|,|z|≤M0
ψ(y, z), (5.1.3)

59
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being
M0 = eK

∑∞
p=0(t2p+2−t2p+1) max

i=1,...,N
|xi(0)|. (5.1.4)

Then, every solution {xi}i=1,...,N to (0.1.17) with the initial conditions (0.1.18) converges
to consensus.

Remark 5.1.2. Let us note that condition (5.1.1) implies that

+∞∑
p=0

(t2p+2 − t2p+1) < +∞, (5.1.5)

so that the quantity M0 in (5.1.4) is �nite and it makes sense to consider the minimum
given by (5.1.3). Indeed, being eK(t2p+2−t2p+1) > 1, it turns out that

2− eK(t2p+2−t2p+1) < 1.

Then, using (0.1.20), from the above inequality it comes that

1 <
1

2− eK(t2p+2−t2p+1)
,

from which

eK(t2p+2−t2p+1) <
eK(t2p+2−t2p+1)

2− eK(t2p+2−t2p+1)
.

Hence,

K
∞∑
p=0

(t2p+2 − t2p+1) ≤
∞∑
p=0

ln

(
eK(t2p+2−t2p+1)

2− eK(t2p+2−t2p+1)

)
.

So, (5.1.1) implies (5.1.5). As a consequence, from (5.1.5) we deduce that t2p+2−t2p+1 → 0,
as p→ ∞.

Remark 5.1.3. Assume that

t2n+1 − t2n >
1

K
ln

(
1 +

K

ψ0

)
, ∀n ∈ N0. (5.1.6)

Note that ln
(
1 + K

ψ0

)
> ln 2, so that

t2p+2 − t2p+1 < t2q+1 − t2q, ∀p, q ∈ N0.

Then, in this situation the condition (5.1.2) can be simpli�ed. Indeed, for all p ∈ N0,
from (5.1.6) we have that

K(t2p+1 − t2p) > ln

(
1 +

K

ψ0

)
,

which implies

e−K(t2p+1−t2p) <
1

1 + K
ψ0

.
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Then, (
1 +

ψ0

K

)
e−K(t2p+1−t2p) <

ψ0

K
,

and this gives
ψ0

K

(
e−K(t2p+1−t2p) − 1

)
< −e−K(t2p+1−t2p).

Thus,

1− ψ0

K

(
1− e−K(t2p+1−t2p)

)
< 1− e−K(t2p+1−t2p),

and

max

{
1− e−K(t2p+1−t2p), 1− ψ0

K
(1− e−K(t2p+1−t2p))

}
= 1− e−K(t2p+1−t2p).

So, (5.1.2) becomes
+∞∑
p=0

ln
(
1− e−K(t2p+1−t2p)

)
= −∞. (5.1.7)

However, the above condition (5.1.7) is automatically satis�ed. Indeed, we can assume
that

t2n+2 − t2n+1 ≤ T, ∀n ∈ N0,

for some T > 0, eventually splitting the intervals of positive interaction into subintervals
of length at most T . Then,

∞∑
p=0

ln
(
1− e−K(t2p+1−t2p)

)
≤

∞∑
p=0

ln
(
1− e−KT

)
= −∞,

from which (5.1.7) is ful�lled. Thus, (5.1.6) implies (5.1.2).

5.1.1 Preliminary estimates

Let {xi}i=1,...,N be solution to (0.1.17) under the initial conditions (0.1.18). In this
section, we present some preliminary lemmas. We �rst give some results that are related
to the behavior of the solution {xi}i=1,...,N in the intervals of positive interaction.

Lemma 5.1.4. For each v ∈ IRd and n ∈ N0, we have that

min
j=1,...,N

⟨xj(t2n), v⟩ ≤ ⟨xi(t), v⟩ ≤ max
j=1,...,N

⟨xj(t2n), v⟩, (5.1.8)

for all t ∈ [t2n, t2n+1] and i = 1, . . . , N .

Proof. The proof follows using similar arguments to the ones employed in Lemma 1.1.1
of Chapter 1.

As in Chapter 1, from the above Lemma one can deduce the following estimates.
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Lemma 5.1.5. For each n ∈ N0 and i, j = 1, . . . , N , we get

|xi(s)− xj(t)| ≤ d(t2n), ∀s, t ∈ [t2n, t2n+1]. (5.1.9)

Remark 5.1.6. Let us note that from (1.1.8), in particular, it follows that

d(t2n+1) ≤ d(t2n), ∀n ∈ N0. (5.1.10)

Now, we deal with the intervals in which the agents repeal each other.

Lemma 5.1.7. For each v ∈ IRd and n ∈ N0, we have that

min
j=1,...,N

⟨xj(t2n+2), v⟩ ≤ ⟨xi(t), v⟩ ≤ max
j=1,...,N

⟨xj(t2n+2), v⟩, (5.1.11)

for all t ∈ [t2n+1, t2n+2] and i = 1, . . . , N .

Proof. The proof follows using similar arguments to the ones employed in Lemma 1.1.1
of Chapter 1.

As in Chapter 1, from the previous lemmas one can prove the following estimates.

Lemma 5.1.8. For each n ∈ N0 and i, j = 1, . . . , N , we get

|xi(s)− xj(t)| ≤ d(t2n+2), ∀s, t ∈ [t2n+1, t2n+2]. (5.1.12)

Remark 5.1.9. Let us note that from (5.1.12), in particular, it follows that

d(t2n+2) ≥ d(t2n+1), ∀n ∈ N0. (5.1.13)

Also, in the intervals in which the particles attract each other, the solutions of the
system under consideration have a bound that is uniform with respect to i = 1, . . . , N ,
but that depends on the maximum value assumed by the opinions of the agents at the
left end point of the good interval. To this aim, let us de�ne

M0
n := max

i=1,...,N
|xi(tn)|, ∀n ∈ N0. (5.1.14)

Let us note that, in particular, for n = 0

M0
0 := max

i=1,...,N
|xi(0)|,

which is the same constant that appears in (5.1.4).

Lemma 5.1.10. For every i = 1, . . . , N, we have that

|xi(t)| ≤M0
2n, ∀t ∈ [t2n, t2n+1], (5.1.15)

where M0
2n is the positive constant de�ned as in (5.1.14).
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Proposition 5.1.11. For all i, j = 1, . . . , N , unit vector v ∈ IRd and n ∈ N0 we have
that

⟨xi(t)− xj(t), v⟩ ≤ e−K(t−t̄)⟨xi(t̄)− xj(t̄), v⟩+ (1− e−K(t−t̄))d(t2n), (5.1.16)

for all t2n+1 ≥ t ≥ t̄ ≥ t2n.

Now, we �nd a bound from below for the in�uence function ψ. As in the previous
chapters, this will be crucial to prove the asymptotic consensus. However, in this case,
the bound from below on the in�uence function requires �ner arguments with respect to
the analysis carried out in the previous chapters. Indeed, in the previous chapters the
fact that the agents' opinions had a bound, uniform with respect to t and i, allowed us
to immediately deduce the existence of a bound from below on the in�uence function.
Here, the bound on the agents' opinions depends on the values assumed by the agents
opinions at some points (see estimate (5.1.15)) and holds only on the intervals of positive
interaction.

Proposition 5.1.12. Assume (5.1.5). Then, for all t ≥ 0, we have that

ψ(xi(t), xj(t)) ≥ ψ0, ∀i, j = 1, . . . , N, (5.1.17)

where ψ0 is the positive constant in (5.1.3).

Remark 5.1.13. Let us note that the previous result holds in particular under assumption
(5.1.1), which implies (5.1.5) as already pointed out.

Proof of Proposition 5.1.12. From (5.1.15), it follows that

max
i=1,...,N

|xi(t)| ≤M0, ∀t ≥ 0. (5.1.18)

To see this, �x t ≥ 0. Then, there exists n ∈ N0 such that t ∈ [t2n, t2n+2]. Thus, if
t ∈ [t2n, t2n+1], from (5.1.15) we have that

|xi(t)|≤M0
2n = max

i=1,...,N
|xi(t2n)|, ∀i = 1, . . . , N. (5.1.19)

On the other hand, assume that t ∈ (t2n+1, t2n+2). Given i = 1, . . . , N , if |xi(t)|> 0, we
de�ne the unit vector

v =
xi(t)

|xi(t)|
.

Then,
|xi(t)|= ⟨xi(t), v⟩.

Now, for all s ∈ [t2n+1, t), it holds that

d

ds
⟨xi(s), v⟩ = − 1

N − 1

∑
j:j ̸=i

ψ(xi(s), xj(s))(⟨xj(s), v⟩ − ⟨xi(s), v⟩)

=
1

N − 1

∑
j:j ̸=i

ψ(xi(s), xj(s))(⟨xi(s), v⟩ − ⟨xj(s), v⟩).
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Thus, denoted with
mt2n+2 = min

l=1,...,N
⟨xl(t2n+2), v⟩,

the �rst inequality in (5.1.11) implies that

⟨xl(s), v⟩ ≥ mt2n+2 , ∀s ∈ [t2n+1, t], ∀l = 1, . . . , N.

As a consequence, we get

d

ds
⟨xi(s), v⟩ ≤

1

N − 1

∑
j:j ̸=i

ψ(xi(s), xj(s))(⟨xi(s), v⟩ −mt2n+2)

≤ K(⟨xi(s), v⟩ −mt2n+2).

So, the Gronwall's inequality yields

⟨xi(s), v⟩ ≤ eK(s−t2n+1)⟨xi(t2n+1), v⟩ −Kmt2n+2

∫ s

t2n+1

eK(s−r)dr

= eK(s−t2n+1)⟨xi(t2n+1), v⟩+mt2n+2(1− eK(s−t2n+1)),

for all s ∈ [t2n+1, t]. In particular, for s = t it comes that

⟨xi(t), v⟩ ≤ eK(t−t2n+1)⟨xi(t2n+1), v⟩+mt2n+2(1− eK(t−t2n+1))

= eK(t−t2n+1)(⟨xi(t2n+1), v⟩ −mt2n+2) +mt2n+2

≤ eK(t2n+2−t2n+1)(⟨xi(t2n+1), v⟩ −mt2n+2) +mt2n+2

= eK(t2n+2−t2n+1)⟨xi(t2n+1), v⟩+mt2n+2(1− eK(t2n+2−t2n+1))

≤ eK(t2n+2−t2n+1)⟨xi(t2n+1), v⟩

≤ eK(t2n+2−t2n+1)|xi(t2n+1)|.

Thus, using (5.1.15) we get

|xi(t)| = ⟨xi(t), v⟩ ≤ eK(t2n+2−t2n+1)M0
2n.

Of course, the above inequality is satis�ed also if |xi(t)| = 0. Thus, combining this last
inequality with (5.1.19), being eK(t2n+2−t2n+1) > 1, we can conclude that

|xi(t)| ≤ eK(t2n+2−t2n+1)M0
2n, ∀n ∈ N0, t ∈ [t2n, t2n+2], i = 1, . . . , N. (5.1.20)

Now, let us note that, using an induction argument, from (5.1.20) it follows that

M0
2n+2 = max

i=1,...,N
|xi(t2n+2)| ≤M0

0

n∏
p=0

eK(t2p+2−t2p+1), ∀n ≥ 0.
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As a consequence, for all t ≥ 0, it holds

|xi(t)| ≤M0
0

n∏
p=0

eK(t2p+2−t2p+1) = eK
∑n
p=0(t2p+2−t2p+1)M0

0 .

Then, for all t ≥ 0,
|xi(t)| ≤M0

0 e
K

∑∞
p=0(t2p+2−t2p+1),

which proves (5.1.18).
Finally, from (5.1.18), we deduce that

ψ(xi(t), xi(t)) ≥ ψ0,

for all t ≥ 0.

5.1.2 Asymptotic consensus

Now, before moving to the proof of Theorem 5.1.1, we provide some estimates on the
sequence of diameters {d(tn)}n. First of all, thanks to the presence of a uniform bound
from below on the in�uence function ψ, the following fundamental result holds in the
intervals of positive interaction.

Proposition 5.1.14. Assume (5.1.5). Then, for all n ∈ N0, there exists a constant
C2n ∈ (0, 1), independent of N ∈ N0, such that

d(t2n+1) ≤ C2nd(t2n). (5.1.21)

Proof. Let n ∈ N0. Trivially, if d(t2n+1) = 0, then of course inequality (5.1.21) holds
for any positive constant. So, suppose d(t2n+1) > 0. Let i, j = 1, . . . , N be such that
d(t2n+1) = |xi(t2n+1)− xj(t2n+1)|. We set

v =
xi(t2n+1)− xj(t2n+1)

|xi(t2n+1)− xj(t2n+1)|
.

Then, v is a unit vector for which we can write

d(t2n+1) = ⟨xi(t2n+1)− xj(t2n+1), v⟩.

Let us de�ne
Mt2n = max

l=1,...,N
xl(t2n), v⟩,

mt2n = min
l=1,...,N

⟨xl(t2n), v⟩.

Then Mt2n −mt2n ≤ d(t2n).
Now, we distinguish two di�erent situations.

Case I. Assume that there exists t̄ ∈ [t2n, t2n+1) such that

⟨xi(t̄)− xj(t̄), v⟩ < 0.
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Then, from (5.1.16) with t2n+1 ≥ t̄ ≥ t2n, we have

d(t2n+1) ≤ e−K(t2n+1−t̄)⟨xi(t̄)− xj(t̄), v⟩+ (1− e−K(t2n+1−t̄))d(t2n)

≤ (1− e−K(t2n+1−t̄))d(t2n)

≤ (1− e−K(t2n+1−t2n))d(t2n).

(5.1.22)

Case II. Assume it rather holds

⟨xi(t)− xj(t), v⟩ ≥ 0, ∀t ∈ [t2n, t2n+1). (5.1.23)

Then, for every t ∈ [t2n, t2n+1), we have that

d

dt
⟨xi(t)− xj(t), v⟩ =

1

N − 1

∑
l:l ̸=i

ψ(xi(t), xl(t))⟨xl(t)− xi(t), v⟩

− 1

N − 1

∑
l:l ̸=j

ψ(xi(t), xl(t))⟨xl(t)− xj(t), v⟩

=
1

N − 1

∑
l:l ̸=i

ψ(xi(t), xl(t))(⟨xl(t), v⟩ −Mt2n +Mt2n − ⟨xi(t), v⟩)

+
1

N − 1

∑
l:l ̸=j

ψ(xi(t), xl(t))(⟨xj(t), v⟩ −mt2n +mt2n − ⟨xl(t), v⟩)

:= S1 + S2.

Now, being t ∈ [t2n, t2n+1), from (5.1.8) we have that

mt2n ≤ ⟨xk(t), v⟩ ≤Mt2n , ∀k = 1, . . . , N. (5.1.24)

Therefore, using (5.1.24), we get

S1 =
1

N − 1

∑
l:l ̸=i

ψ(xi(t), xl(t−))(⟨xl(t), v⟩ −Mt2n)

+
1

N − 1

∑
l:l ̸=i

ψ(xi(t), xl(t))(Mt2n − ⟨xi(t), v⟩)

≤ 1

N − 1
ψ0

∑
l:l ̸=i

(⟨xl(t), v⟩ −Mt2n) +K(Mt2n − ⟨xi(t), v⟩),

and

S2 =
1

N − 1

∑
l:l ̸=j

ψ(xi(t), xl(t))(⟨xj(t), v⟩ −mt2n)

+
1

N − 1

∑
l:l ̸=j

ψ(xi(t), xl(t))(mt2n − ⟨xl(t), v⟩)

≤ K(⟨xj(t), v⟩ −mt2n) +
1

N − 1
ψ0

∑
l:l ̸=j

(mt2n − ⟨xl(t), v⟩).
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Combining this last fact with (5.1.24) it comes that

d

dt
⟨xi(t)− xj(t), v⟩ ≤ K(Mt2n −mt2n − ⟨xi(t)− xj(t), v⟩)

+
1

N − 1
ψ0

∑
l:l ̸=i,j

(⟨xl(t), v⟩ −Mt2n +mt2n − ⟨xl(t), v⟩)

+
1

N − 1
ψ0(⟨xj(t), v⟩ −Mt2n +mt2n − ⟨xi(t), v⟩)

= K(Mt2n −mt2n)−K⟨xi(t)− xj(t), v⟩+
N − 2

N − 1
ψ0(−Mt2n +mt2n)

+
1

N − 1
ψ0(⟨xj(t), v⟩ −Mt2n +mt2n − ⟨xi(t2n), v⟩).

Now, from (5.1.23) we get

d

dt
⟨xi(t)− xj(t), v⟩ ≤ K(Mt2n −mt2n)−K⟨xi(t)− xj(t), v⟩

+
N − 2

N − 1
ψ0(−Mt2n +mt2n) +

1

N − 1
ψ0(−Mt2n +mt2n)

− 1

N − 1
ψ0⟨xi(t)− xj(t), v⟩

≤ K(Mt2n −mt2n)−K⟨xi(t)− xj(t), v⟩+ ψ0(−Mt2n +mt2n)

= (K − ψ0) (Mt2n −mt2n)−K⟨xi(t)− xj(t), v⟩.
Hence, from Gronwall's inequality it comes that

⟨xi(t)− xj(t), v⟩ ≤ e−K(t−t2n)⟨xi(t2n)− xj(t2n), v⟩

+(Mt2n −mt2n)

∫ t

t2n

(K − ψ0) e
−K(t−s)ds,

for all t ∈ [t2n, t2n+1). In particular, for t = t2n+1, it comes that

d(t2n+1) ≤ e−K(t2n+1−t2n)⟨xi(t2n)− xj(t2n), v⟩+ (Mt2n −mt2n)

∫ t2n+1

t2n

(K − ψ0)e
−K(t2n+1−s)ds

≤ e−K(t2n+1−t2n)|xi(t2n)− xj(t2n)|+ (Mt2n −mt2n)

∫ t2n+1

t2n

(K − ψ0)e
−K(t2n+1−s)ds

≤
(
e−K(t2n+1−t2n) +K

∫ t2n+1

t2n

e−K(t2n+1−s)ds− ψ0

∫ t2n+1

t2n

e−K(t2n+1−s)ds

)
d(t2n)

=

(
e−K(t2n+1−t2n) + 1− e−K(t2n+1−t2n) − ψ0

K
(1− e−K(t2n+1−t2n))

)
d(t2n)

=

(
1− ψ0

K
(1− e−K(t2n+1−t2n))

)
d(t2n).
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So, if we set

C2n := max

{
1− e−K(t2n+1−t2n), 1− ψ0

K
(1− e−K(t2n+1−t2n))

}
, (5.1.25)

C2n ∈ (0, 1) is the constant for which (5.1.21) holds.

In the bad intervals, the previous estimate is not valid, being the diameter of the solu-
tion evaluated at t2n+2 larger than the diameter evaluated at t2n+1. However, the growth
of the diameter in the intervals of negative interaction can be in some way controlled, as
the following lemma shows.

Proposition 5.1.15. Assume (0.1.20). Then, for all n ∈ N0, we have that

d(t2n+2) ≤
eK(t2n+2−t2n+1)

2− eK(t2n+2−t2n+1)
d(t2n+1). (5.1.26)

Proof. Let n ∈ N0. Let all i, j = 1, . . . , N be such that

d(t2n+2) = |xi(t2n+2)− xj(t2n+2)|.

If d(t2n+2) = 0, then from (5.1.13) also d(t2n+1) = 0 and of course inequality (5.1.26) is
ful�lled. So, we can assume that d(t2n+2) > 0. In this case, let v ∈ Rd be the so de�ned
unit vector

v =
xi(t2n+2)− xj(t2n+2)

|xi(t2n+2)− xj(t2n+2)|
.

Then,
d(t2n+2) = ⟨xi(t2n+2)− xj(t2n+2), v⟩.

Moreover, we set
Mt2n+2 = max

k=1,...,N
⟨xk(t2n+2), v⟩,

mt2n+2 = min
k=1,...,N

⟨xk(t2n+2), v⟩.

Thus, from (5.1.11), for all t ∈ [t2n+1, t2n+2], it holds

mt2n+2 ≤ ⟨xk(t), v⟩ ≤Mt2n+2 , ∀k = 1, . . . , N. (5.1.27)

Now, for all t ∈ [t2n+1, t2n+2), using the �rst inequality in (5.1.27) and the fact that
α(t) = −1, we have that

d

dt
⟨xi(t), v⟩ = − 1

N − 1

∑
l:l ̸=i

ψ(xi(t), xl(t))(⟨xl(t), v⟩ − ⟨xi(t), v⟩)

≤ − 1

N − 1

∑
l:l ̸=i

ψ(xi(t), xl(t))(mt2n+2 − ⟨xi(t), v⟩)

=
1

N − 1

∑
l:l ̸=i

ψ(xi(t), xl(t))(⟨xi(t), v⟩)−mt2n+2)

≤ K(⟨xi(t), v⟩)−mt2n+2).
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Therefore, the Gronwall's inequality yields

⟨xi(t), v⟩ ≤ eK(t−t2n+1)⟨xi(t2n+1), v⟩ −Kmt2n+2

∫ t

t2n+1

eK(t−s)ds

= eK(t−t2n+1)⟨xi(t2n+1), v⟩+mt2n+2(1− eK(t−t2n+1)).

(5.1.28)

On the other hand, using the second inequality in (5.1.27), we get

d

dt
⟨xi(t), v⟩ = − 1

N − 1

∑
l:l ̸=j

ψ(xj(t), xl(t))(⟨xl(t), v⟩ − ⟨xj(t), v⟩)

≥ − 1

N − 1

∑
l:l ̸=j

ψ(xj(t), xl(t))(Mt2n+2 − ⟨xj(t), v⟩)

=
1

N − 1

∑
l:l ̸=j

ψ(xj(t), xl(t))(⟨xj(t), v⟩)−Mt2n+2)

≥ K(⟨xj(t), v⟩)−Mt2n+2).

Hence, using the Gronwall's inequality, we can write

⟨xj(t), v⟩ ≥ eK(t−t2n+1)⟨xj(t2n+1), v⟩ −KMt2n+2

∫ t

t2n+1

eK(t−s)ds

= eK(t−t2n+1)⟨xj(t2n+1), v⟩+Mt2n+2(1− eK(t−t2n+1)).

(5.1.29)

Thus, combining (5.1.28) and (5.1.29), we can conclude that, for all t ∈ [t2n+1, t2n+2], it
holds

⟨xi(t)− xj(t), v⟩ = ⟨xi(t), v⟩ − ⟨xj(t), v⟩

≤ eK(t−t2n+1)⟨xi(t2n+1), v⟩+mt2n+2(1− eK(t−t2n+1))

−eK(t−t2n+1)⟨xj(t2n+1), v⟩ −Mt2n+2(1− eK(t−t2n+1))

≤ eK(t−t2n+1)⟨xi(t2n+1)− xj(t2n+1), v⟩+ (mt2n+2 −Mt2n+2)(1− eK(t−t2n+1))

= eK(t−t2n+1)⟨xi(t2n+1)− xj(t2n+1), v⟩+ (Mt2n+2 −mt2n+2)(e
K(t−t2n+1) − 1)

≤ eK(t−t2n+1)d(t2n+1) + d(t2n+2)(e
K(t−t2n+1) − 1).

For t = t2n+2, we obtain

d(t2n+2) = ⟨xi(t2n+2)−xj(t2n+2), v⟩ ≤ eK(t2n+2−t2n+1)d(t2n+1)+d(t2n+2)(e
K(t2n+2−t2n+1)−1),

from which
d(t2n+2)(2− eK(t2n+2−t2n+1)) ≤ eK(t2n+2−t2n+1)d(t2n+1).

Thus, since 2− eK(t2n+2−t2n+1) > 0 from (0.1.20), we have that

d(t2n+2) ≤
eK(t2n+2−t2n+1)

2− eK(t2n+2−t2n+1)
d(t2n+1),

i.e. (5.1.26) is proven.
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Proof of Theorem 5.1.1. Let {xi}i=1,...,N be solution to (0.1.17), (0.1.18). Then, for all
n ∈ N0, using (5.1.21), (5.1.25) and (5.1.26)we have that

d(t2n+2) ≤
eK(t2n+2−t2n+1)

2− eK(t2n+2−t2n+1)
d(t2n+1)

≤ eK(t2n+2−t2n+1)

2− eK(t2n+2−t2n+1)
max

{
1− e−K(t2n+1−t2n), 1− ψ0

K
(1− e−K(t2n+1−t2n))

}
d(t2n).

Thus, using an induction argument, we get

d(t2n+2) ≤
n∏
p=0

(
eK(t2p+2−t2p+1)

2− eK(t2p+2−t2p+1)
max

{
1− e−K(t2p+1−t2p), 1− ψ0

K
(1− e−K(t2p+1−t2p))

})
d(0)

= e
∑∞
p=0 ln

(
e
K(t2p+2−t2p+1)

2−eK(t2p+2−t2p+1)
max{1−e−K(t2p+1−t2p),1−ψ0

K
(1−e−K(t2p+1−t2p))}

)
d(0)

= e
∑∞
p=0

[
ln

(
e
K(t2p+2−t2p+1)

2−eK(t2p+2−t2p+1)

)
+ln(max{1−e−K(t2p+1−t2p),1−ψ0

K
(1−e−K(t2p+1−t2p))})

]
d(0).

Now,
∑∞

p=0 ln
(

eK(t2p+2−t2p+1)

2−eK(t2p+2−t2p+1)

)
< +∞ from (5.1.1). Then, the solution {xi}i=1,...,N con-

verges to consensus since the following condition is satis�ed from (5.1.2):

∞∑
p=0

ln

(
max

{
1− e−K(t2p+1−t2p), 1− ψ0

K
(1− e−K(t2p+1−t2p))

})
= −∞.

5.1.3 Exponential consensus

We conclude this Section with another consensus result for the Hegselmann-Krause
model (0.1.17). Namely, under a stronger condition than (5.1.2) on the sequence {tn}n,
we are able to prove that the consensus is achieved exponentially fast.

Theorem 5.1.16. Let ψ : IRd × IRd → IR be a positive, bounded, continuous function.
Assume that the sequence {tn}n of de�nition (0.1.19) satis�es (0.1.20). Assume (5.1.5)
and that the following condition holds:

sup
n∈N

(
eK(t2n+2−t2n+1)

2− eK(t2n+2−t2n+1)
max

{
1− e−K(t2n+1−t2n), 1− ψ0

K
(1− e−K(t2n+1−t2n))

})
= c < 1.

(5.1.30)
Then, every solution {xi}i=1,...,N to (0.1.17) with the initial conditions (0.1.18) satis�es
the following exponential decay estimate

d(t) ≤ e−γ(t−
ln 2
K

−T)d(0), ∀t ≥ 0, (5.1.31)

for two suitable positive constants γ and T , independent of N .
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Remark 5.1.17. The assumption (5.1.30) implies (5.1.2). Indeed, if (5.1.30) holds,

∞∑
p=0

ln

(
eK(t2p+2−t2p+1)

2− eK(t2p+2−t2p+1)
max

{
1− e−K(t2p+1−t2p), 1− ψ0

K
(1− e−K(t2p+1−t2p))

})

≤
∞∑
p=0

ln c = −∞,

i.e.

∞∑
p=0

ln

(
eK(t2p+2−t2p+1)

2− eK(t2p+2−t2p+1)
max

{
1− e−K(t2p+1−t2p), 1− ψ0

K
(1− e−K(t2p+1−t2p))

})
= −∞.

(5.1.32)

Therefore, being eK(t2p+2−t2p+1)

2−eK(t2p+2−t2p+1)
> 1, it comes that

∞∑
p=0

ln

(
max

{
1− e−K(t2p+1−t2p), 1− ψ0

K
(1− e−K(t2p+1−t2p))

})

≤
∞∑
p=0

ln

(
eK(t2p+2−t2p+1)

2− eK(t2p+2−t2p+1)
max

{
1− e−K(t2p+1−t2p), 1− ψ0

K
(1− e−K(t2p+1−t2p))

})
.

Then, the condition (5.1.2) is satis�ed.

Proof of Theorem 5.1.16. Let {xi}i=1,...,N be solution to (0.1.17), (0.1.18). Then, since
(5.1.5) holds, for all n ∈ N0,

d(t2n+2) ≤
eK(t2n+2−t2n+1)

2− eK(t2n+2−t2n+1)
max

{
1− e−K(t2n+1−t2n), 1− ψ0

K
(1− e−K(t2n+1−t2n))

}
d(t2n).

Therefore, using (5.1.30), we get

d(t2n+2) ≤ cd(t2n), (5.1.33)

with c ∈ (0, 1). As a consequence, using an induction argument,

d(t2n) ≤ cnd(0), ∀n ∈ N0. (5.1.34)

Now, let t ≥ 0. Then, there exists n ∈ N0 such that t ∈ [t2n, t2n+2). Thus, if t ∈ [t2n, t2n+1],
using (5.1.9),

d(t) ≤ d(t2n).

On the other hand, if t ∈ (t2n+1, t2n+2), from (5.1.12) and (5.1.33) we get

d(t) ≤ d(t2n+2) ≤ cd(t2n).

Therefore, being c < 1, in both cases

d(t) ≤ d(t2n).
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So, using (5.1.34), we can write

d(t) ≤ cnd(0) = e−n ln( 1
c)d(0).

At this point, we distinguish two di�erent situations.
Case I) Assume that

T := sup
n∈N0

(t2n+1 − t2n) < +∞.

So setting

γ := ln

(
1

c

)
1

ln 2
K

+ T
,

it comes that
d(t) ≤ e−nγ(

ln 2
K

+T)

Now, using (0.1.20), it holds that t2n+2 ≤ (n + 1)
(
ln 2
K

+ T
)
. Thus, being t ≤ t2n+2, we

can conclude that
d(t) ≤ e−γ(t−

ln 2
K

−T)d(0),

which proves (5.1.31).
Case II) Assume that

sup
n∈N

(t2n+1 − t2n) = +∞.

We pick T̃ > 0. Without loss of generality, eventually splitting the intervals in which the
weight function α = 1 in subintervals of length at most T̃ , we can assume that

t2n+1 − t2n ≤ T̃ , ∀n ∈ N0. (5.1.35)

Then, setting

γ := ln

(
1

c

)
1

ln 2
K

+ T̃
.

Then, reasoning as in the previous case, we get that

d(t) ≤ e−γ(t−
ln 2
K

−T̃)d(0),

which proves (5.1.31).

5.2 The Cucker-Smale model

In this Section, we deal with the second-order model (0.1.29). The �ocking result we
will prove is the following.

Theorem 5.2.1. Let ψ̃ : IR → IR be a positive, bounded, continuous function satisfying∫ ∞

0

min
r∈[0,x]

ψ̃(r)dx = +∞. (5.2.1)
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Assume that the sequence {tn}n of de�nition (0.1.19) satis�es (0.1.31) and

(5.2.2)

Moreover, assume that the following condition hold:

∞∑
p=0

ln

(
eK̃(t2p+2−t2p+1)

2− eK̃(t2p+2−t2p+1)

)
< +∞, (5.2.3)

∞∑
p=0

ln

(
max

{
1− e−K̃(t2p+1−t2p), 1− ψ̃0

K̃
(1− e−K̃(t2p+1−t2p))

})
= −∞, (5.2.4)

where
ψ̃0 := min

|y|≤M0
ψ̃(y), (5.2.5)

being

M0 := e

∑∞
p=0 ln

(
e
K̃(t2n+2−t2n+1)

2−eK̃(t2n+2−t2n+1)

)
dV (0). (5.2.6)

Then, every solution {xi, vi}i=1,...,N to (0.1.29) with the initial conditions (0.1.30) exhibits
asymptotic �ocking.

Remark 5.2.2. Let us note that (5.2.3) implies (5.1.5). This follows from the same
arguments used in Remark 5.1.2. In particular, from (5.1.5) we have t2p+2 − t2p+1 → 0,
as p→ +∞.

5.2.1 Preliminary estimates

Let {(xi, vi)}i=1,...,N be solution to (0.1.29) under the initial conditions (0.1.30). We
present some auxiliary lemmas that will be needed for the proof of Theorem 5.2.1. We
omit some proofs of these preliminary results, since they are analogous to the proofs of
correspondent results in Chapter 1 and in the previous section. In the intervals of positive
interaction, we have the following estimates.

Lemma 5.2.3. For each v ∈ IRd and n ∈ N0, we have that

min
j=1,...,N

⟨vj(t2n), v⟩ ≤ ⟨vi(t), v⟩ ≤ max
j=1,...,N

⟨vj(t2n), v⟩, (5.2.7)

for all t ∈ [t2n, t2n+1] and i = 1, . . . , N .

Lemma 5.2.4. For each n ∈ N0 and i, j = 1, . . . , N , we get

|vi(s)− vj(t)| ≤ dV (t2n), ∀s, t ∈ [t2n, t2n+1]. (5.2.8)

Remark 5.2.5. Let us note that from (5.2.8), in particular, it follows that

dV (t2n+1) ≤ dV (t2n), ∀n ∈ N0. (5.2.9)
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In the intervals on negative interaction, we have rather the following estimates on the
velocity diameters.

Lemma 5.2.6. For each v ∈ IRd and n ∈ N0, we have that

min
j=1,...,N

⟨vj(t2n+2), v⟩ ≤ ⟨vi(t), v⟩ ≤ max
j=1,...,N

⟨vj(t2n+2), v⟩, (5.2.10)

for all t ∈ [t2n+1, t2n+2] and i = 1, . . . , N .

Lemma 5.2.7. For each n ∈ N0 and i, j = 1, . . . , N , we get

|vi(s)− vj(t)| ≤ dV (t2n+2), ∀s, t ∈ [t2n+1, t2n+2]. (5.2.11)

Remark 5.2.8. Let us note that from (5.2.11), in particular, it follows that

dV (t2n+2) ≥ dV (t2n+1), ∀n ∈ N0. (5.2.12)

Now, in the intervals of positive interaction, the agents' velocities are bounded uni-
formly with respect to i = 1, . . . , N by a positive constant that depends on the maximum
value assumed by velocities at the left end point of good intervals. To this aim, let us
de�ne

M̃0
n := max

i=1,...,N
|vi(tn)|, ∀n ∈ N0. (5.2.13)

Lemma 5.2.9. For every i = 1, . . . , N, we have that

|vi(t)| ≤ M̃0
2n, ∀t ∈ [t2n, t2n+1], (5.2.14)

where M̃0
2n is the positive constant in (5.2.13).

Now, we prove that the agents' velocities are uniformly bounded by a positive constant
that depends on the initial data, as we did in the previous section. Indeed, estimate
(5.2.14) provide us a bound on the agents' velocities which is uniform with respect to
i = 1, . . . , N but that is not uniform with respect to t, since the constant M̃0

2n depends
on the sequence {tn}. To �nd a uniform bound on the velocities we have to employ �ner
arguments, that are the analogous we used to prove estimate (5.1.18) for the �rst-order
model. The following result holds.

Lemma 5.2.10. Assume (5.2.3). Then, for all t ≥ 0, we have that

max
i=1,...,N

|vi(t)| ≤ M̃0, (5.2.15)

where
M̃0 := eK̃

∑∞
p=0(t2p+2−t2p+1)M̃0

0 (5.2.16)

Remark 5.2.11. Let us note that, in the case of the second-order model (0.1.29), estimate
(5.2.15) does not allow us to deduce the existence of a lower bound on the in�uence
function ψ̃, as we did in the previous Section. This is due to the fact that now the
in�uence function depends on the distance between the agents' positions. So, to get a
bound from below on the in�uence function ψ̃ we will have to prove that the position
diameters are bounded. The boundedness of the position diameters will follow from the
introduction of a suitable Lyapunov functional.
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Also, the following fundamental result holds.

Proposition 5.2.12. For all i, j = 1, . . . , N , unit vector v ∈ IRd and n ∈ N0 we have
that

⟨vi(t)− vj(t), v⟩ ≤ e−K̃(t−t̄)⟨vi(t̄)− vj(t̄), v⟩+ (1− e−K̃(t−t̄))dV (t2n), (5.2.17)

for all t2n+1 > t ≥ t̄ ≥ t2n.

Now, from (5.2.12) the velocity diameter is nondecreasing in the intervals of negative
interaction. This prevents the decay of the velocity diameters and, as a consequence, the
asymptotic �ocking. However, we can control the growth of the velocity diameters, as we
did in the previous section for the �rst-order model.

Proposition 5.2.13. Assume (0.1.31). Then, for all n ∈ N0, we have that

dV (t2n+2) ≤
eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)
dV (t2n+1). (5.2.18)

Finally, we prove the following crucial result, that provides a bound on the velocity
diameters.

Proposition 5.2.14. Assume (5.2.3). Then, for all t ≥ 0, it holds that

dV (t) ≤ M̄0, (5.2.19)

where

M̄0 := e

∑∞
p=0 ln

(
e
K̃(t2n+2−t2n+1)

2−eK̃(t2n+2−t2n+1)

)
dV (0). (5.2.20)

Proof. For all n ∈ N0, from (5.2.9) and (5.2.18) we have that

dV (t2n+2) ≤
eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)
dV (t2n+1) ≤

eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)
dV (t2n).

Then,

dV (t2n) ≤
n∏
p=0

(
eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)

)
dV (0) = e

∑n
p=0 ln

(
e
K̃(t2n+2−t2n+1)

2−eK̃(t2n+2−t2n+1)

)
dV (0)

≤ e

∑∞
p=0 ln

(
e
K̃(t2n+2−t2n+1)

2−eK̃(t2n+2−t2n+1)

)
dV (0).

We have so proved that
dV (t2n) ≤ M̄0, ∀n ∈ N0. (5.2.21)

As a consequence, for all t ≥ 0, since t ∈ [t2n, t2n+2), for some n ∈ N0, using (5.1.9) and
(5.1.12) we can conclude that (5.2.19) holds true.
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5.2.2 Asymptotic �ocking

Before moving to the proof of Theorem 5.2.1, we provide an estimate on the velocity
diameters in the intervals of positive interaction, as we did in the previous section.

Now, we pick T > ln 2
K̃
. We can assume, eventually splitting the intervals of positive

interaction into subintervals of length at most T , that

t2n+1 − t2n ≤ T, ∀n ∈ N0. (5.2.22)

As a consequence, from (0.1.31) and (5.2.22), being T > ln 2
K̃
, we can write

tn+1 − tn ≤ T, ∀n ∈ N0. (5.2.23)

De�nition 5.2.1. For all t ≥ 0, we de�ne

ψ̃t := min

{
ψ̃(r) : r ∈

[
0, max

s∈[0,t]
dX(s)

]}
, (5.2.24)

and

ϕ(t) := min

{
e−K̃T ψ̃t,

e−K̃T

T

}
. (5.2.25)

Remark 5.2.15. Let us note that, for all t ≥ 0 and i, j = 1, . . . , N ,

|xi(t)− xj(t)| ≤ max
s∈[0,t]

dX(s).

As a consequence, it holds that

ψ̃(|xi(t)− xj(t)|) ≥ ψ̃t > 0, ∀t ≥ 0, i, j = 1, . . . , N. (5.2.26)

Proposition 5.2.16. For all n ∈ N0,

dV (t2n+1) ≤
(
1−

∫ t2n+1

t2n

ϕ(s)ds

)
dV (t2n). (5.2.27)

Remark 5.2.17. Let us note that∫ t2n+1

t2n

ϕ(s)ds ∈ (0, 1), ∀n ∈ N0,

since from (5.2.25), we have that ϕ(t) < 1/T and from (5.2.22) it holds t2n+1 − t2n ≤ T.
Therefore,

1−
∫ t2n+1

t2n

ϕ(s)ds ∈ (0, 1).

Proof of Proposition 5.2.16. Let n ∈ N0. Trivially, if dV (t2n+1) = 0, then of course in-
equality (5.2.27) holds. So, suppose dV (t2n+1) > 0. Let i, j = 1, . . . , N be such that
dV (t2n+1) = |vi(t2n+1)− vj(t2n+1)|. We set

v =
vi(t2n+1)− vj(t2n+1)

|vi(t2n+1)− vj(t2n+1)|
.
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Then, v is a unit vector for which we can write

dV (t2n+1) = ⟨vi(t2n+1)− vj(t2n+1), v⟩.

Let us de�ne
Mt2n = max

l=1,...,N
vl(t2n), v⟩,

mt2n = min
l=1,...,N

⟨vl(t2n), v⟩.

Then Mt2n −mt2n ≤ dV (t2n).
Now, we distinguish two di�erent situations.

Case I. Assume that there exists t̄ ∈ [t2n, t2n+1] such that

⟨vi(t̄)− vj(t̄), v⟩ < 0.

Then, from (5.2.17) with t2n+1 ≥ t̄ ≥ t2n, we have

dV (t2n+1) ≤ e−K̃(t2n+1−t̄)⟨vi(t̄)− vj(t̄), v⟩+ (1− e−K̃(t2n+1−t̄))dV (t2n)

≤ (1− e−K̃(t2n+1−t̄))dV (t2n)

≤ (1− e−K̃T )dV (t2n)

≤
(
1−

∫ t2n+1

t2n

ϕ(s)ds

)
dV (t2n).

(5.2.28)

Case II. Assume it rather holds

⟨vi(t)− vj(t), v⟩ ≥ 0, ∀t ∈ [t2n, t2n+1]. (5.2.29)

Then, for every t ∈ [t2n, t2n+1], we have that

d

dt
⟨vi(t)− vj(t), v⟩ =

1

N − 1

∑
l:l ̸=i

ψ̃(|xi(t)− xj(t)|)⟨vl(t)− vi(t), v⟩

− 1

N − 1

∑
l:l ̸=j

ψ̃(|xi(t)− xj(t)|)⟨vl(t)− vj(t), v⟩

=
1

N − 1

∑
l:l ̸=i

ψ̃(|xi(t)− xj(t)|)(⟨vl(t), v⟩ −Mt2n +Mt2n − ⟨vi(t), v⟩)

+
1

N − 1

∑
l:l ̸=j

ψ̃(|xi(t)− xj(t)|)(⟨vj(t), v⟩ −mt2n +mt2n − ⟨vl(t), v⟩)

:= S1 + S2.

Now, being t ∈ [t2n, t2n+1], from (5.2.7) we have that

mt2n ≤ ⟨vk(t), v⟩ ≤Mt2n , ∀k = 1, . . . , N. (5.2.30)
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Therefore, we get

S1 =
1

N − 1

∑
l:l ̸=i

ψ̃(|xi(t)− xj(t)|)(⟨vl(t), v⟩ −Mt2n)

+
1

N − 1

∑
l:l ̸=i

ψ̃(|xi(t)− xj(t)|)(Mt2n − ⟨vi(t), v⟩)

≤ 1

N − 1
ψ̃t
∑
l:l ̸=i

(⟨vl(t), v⟩ −Mt2n) + K̃(Mt2n − ⟨vi(t), v⟩),

and

S2 =
1

N − 1

∑
l:l ̸=j

ψ̃(|xi(t)− xj(t)|)(⟨vj(t), v⟩ −mt2n)

+
1

N − 1

∑
l:l ̸=j

ψ̃(|xi(t)− xj(t)|)(mt2n − ⟨vl(t), v⟩)

≤ K̃(⟨vj(t), v⟩ −mt2n) +
1

N − 1
ψ̃t
∑
l:l ̸=j

(mt2n − ⟨vl(t), v⟩).

Combining this last fact with (5.2.30) it comes that

d

dt
⟨vi(t)− vj(t), v⟩ ≤ K̃(Mt2n −mt2n − ⟨vi(t)− vj(t), v⟩)

+
1

N − 1
ψ̃t
∑
l:l ̸=i,j

(⟨vl(t), v⟩ −Mt2n +mt2n − ⟨vl(t), v⟩)

+
1

N − 1
ψ̃t(⟨vj(t), v⟩ −Mt2n +mt2n − ⟨vi(t), v⟩)

= K̃(Mt2n −mt2n)− K̃⟨vi(t)− vj(t), v⟩+
N − 2

N − 1
ψ̃t(−Mt2n +mt2n)

+
1

N − 1
ψ̃t(⟨vj(t), v⟩ −Mt2n +mt2n − ⟨vi(t2n), v⟩).

Now, from (5.2.29) we get

d

dt
⟨vi(t)− vj(t), v⟩ ≤ K̃(Mt2n −mt2n)− K̃⟨vi(t)− vj(t), v⟩

+
N − 2

N − 1
ψ̃t(−Mt2n +mt2n) +

1

N − 1
ψ̃t(−Mt2n +mt2n)

− 1

N − 1
ψ̃t⟨vi(t)− vj(t), v⟩

≤ K̃(Mt2n −mt2n)− K̃⟨vi(t)− vj(t), v⟩+ ψ̃t(−Mt2n +mt2n)

=
(
K̃ − ψ̃t

)
(Mt2n −mt2n)− K̃⟨vi(t)− vj(t), v⟩.
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Hence, from Gronwall's inequality it comes that

⟨vi(t)− vj(t), v⟩ ≤ e−K̃(t−t2n)⟨vi(t2n)− vj(t2n), v⟩

+(Mt2n −mt2n)

∫ t

t2n

(
K̃ − ψ̃s

)
e−K̃(t−s)ds,

for all t ∈ [t2n, t2n+1]. In particular, for t = t2n+1, from (5.2.8) it comes that

dV (t2n+1) ≤ e−K̃(t2n+1−t2n)⟨vi(t2n)− vj(t2n), v⟩+ (Mt2n −mt2n)

∫ t2n+1

t2n

(K̃ − ψ̃s)e
−K̃(t2n+1−s)ds

≤ e−K̃(t2n+1−t2n)|vi(t2n)− vj(t2n)|+ (Mt2n −mt2n)

∫ t2n+1

t2n

(K̃ − ψ̃s)e
−K̃(t2n+1−s)ds

≤
(
e−K̃(t2n+1−t2n) + K̃

∫ t2n+1

t2n

e−K̃(t2n+1−s)ds−
∫ t2n+1

t2n

ψ̃se
−K̃(t2n+1−s)ds

)
dV (t2n)

=

(
e−K̃(t2n+1−t2n) + 1− e−K̃(t2n+1−t2n) −

∫ t2n+1

t2n

ψ̃se
−K̃(t2n+1−s)ds

)
dV (t2n)

=

(
1−

∫ t2n+1

t2n

ψ̃se
−K̃(t2n+1−s)ds

)
dV (t2n)

≤
(
1− e−K̃T

∫ t2n+1

t2n

ψ̃sds

)
dV (t2n)

≤
(
1−

∫ t2n+1

t2n

ϕ(s)ds

)
dV (t2n).

So, taking into account (5.2.28), we can conclude that (5.2.27) holds.

Proof of Theorem 5.2.1. Let {(xi, vi)}i=1,...,N be solution to (0.1.29) under the initial con-
ditions (0.1.30). We de�ne the function D : [0,∞) → [0,∞),

D(t) :=


dV (0), t = 0,(
1−

∫ t
t2n
ϕ(s)ds

)
dV (t2n), t ∈ (t2n, t2n+1], n ∈ N0,(

1−
∫ t
t2n+1

ϕ(s)ds
)
dV (t2n+2), t ∈ (t2n+1, t2n+2], n ∈ N0.

By construction, D is piecewise continuous. Indeed, D is continuous everywhere except
at points tn, n ∈ N0. Moreover, for all n ∈ N, n ≥ 1,

lim
t→t+2n

D(t) = dV (t2n) ≥
(
1−

∫ t2n

t2n−1

ϕ(s)ds

)
dV (t2n) = D(t2n), (5.2.31)
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lim
t→t+2n+1

D(t) = dV (t2n+2) ≤
eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)
dV (t2n+1)

≤ eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)

(
1−

∫ t2n+1

t2n

ϕ(s)ds

)
dV (t2n)

=
eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)
D(t2n+1).

(5.2.32)

Also, D is nonincreasing in all intervals of the form (tn, tn+1], n ∈ N0.
Now, notice that, for almost all times t,

d

dt
max
s∈[0,t]

dX(s) ≤
∣∣∣∣ ddtdX(t)

∣∣∣∣ ,
since maxs∈[0,t] dX(s) is constant or increases like dX(t). Moreover, for almost all times∣∣∣∣ ddtdX(t)

∣∣∣∣ ≤ dV (t).

Therefore, for almost all times

d

dt
max
s∈[0,t]

dX(s) ≤
∣∣∣∣ ddtdX(t)

∣∣∣∣ ≤ dV (t). (5.2.33)

Next, we de�ne the function L : [0,∞) → [0,∞) as follows:

L(t) := D(t) +

∫ max
s∈[0,t]

dX(s)

0

min

{
e−K̃T min

σ∈[0,r]
ψ̃(σ),

e−K̃T

T

}
dr,

for all t ≥ 0. By de�nition, L is piecewise continuous, i.e. L is continuous everywhere
except at points tn, n ∈ N0.
In addition, for each n ∈ N and for all t ∈ (t2n, t2n+1), we have that

d

dt
L(t) = d

dt
D(t) + min

{
e−K̃T ψ̃t,

e−K̃T

T

}
d

dt
max
s∈[0,t]

dX(s)

=
d

dt
D(t) + ϕ(t)

d

dt
max
s∈[0,t]

dX(s),

and from (5.2.33) we get

d

dt
L(t) ≤ d

dt
D(t) + ϕ(t)dV (t)

= −ϕ(t)dV (t2n) + ϕ(t)dV (t)

= ϕ(t)(dV (t)− dV (t2n)).
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Thus, since dV (t) ≤ dV (t2n) from (5.2.8), we can deduce that

d

dt
L(t) ≤ 0, ∀t ∈ (t2n, t2n+1).

As a consequence, for all t2n < s < t ≤ t2n+1, it comes that

L(t) ≤ L(s).

Letting s→ t+2n, we get

L(t) ≤ lim
s→t+2n

L(s) = lim
s→t+2n

D(s) +

∫ max
s∈[0,t2n]

dX(s)

0

min

{
e−K̃T min

σ∈[0,r]
ψ̃(σ),

e−K̃T

T

}
dr,

for all t ∈ (t2n, t2n+1]. Thus, using (0.1.31), (5.2.8) and (5.2.31), we can write

L(t) ≤ dV (t2n) +

∫ max
s∈[0,t2n]

dX(s)

0

min

{
e−K̃T min

σ∈[0,r]
ψ̃(σ),

e−K̃T

T

}
dr

=
1(

1−
∫ t2n
t2n−1

ϕ(s)ds
)D(t2n) +

∫ max
s∈[0,t2n]

dX(s)

0

min

{
e−K̃T min

σ∈[0,r]
ψ̃(σ),

e−K̃T

T

}
dr

≤ 1(
1−

∫ t2n
t2n−1

ϕ(s)ds
) [D(t2n) +

∫ max
s∈[0,t2n]

dX(s)

0

min

{
e−K̃T min

σ∈[0,r]
ψ̃(σ),

e−K̃T

T

}
dr

]

≤ 1(
1−

∫ t2n
t2n−1

ϕ(s)ds
)L(t2n),

for all t ∈ (t2n, t2n+1]. So,

L(t) ≤ 1(
1−

∫ t2n
t2n−1

ϕ(s)ds
)L(t2n), ∀t ∈ [t2n, t2n+1]. (5.2.34)

On the other hand, for all t ∈ (t2n+1, t2n+2), we have that

d

dt
L(t) = d

dt
D(t) + min

{
e−K̃T ψ̃t,

e−K̃T

T

}
d

dt
max
s∈[0,t]

dX(s)

=
d

dt
D(t) + ϕ(t)

d

dt
max
s∈[0,t]

dX(s),

and from (5.2.33) we get

d

dt
L(t) ≤ d

dt
D(t) + ϕ(t)dV (t)

= −ϕ(t)dV (t2n+2) + ϕ(t)dV (t)

= ϕ(t)(dV (t)− dV (t2n+2)).



5.2. THE CUCKER-SMALE MODEL 82

Thus, since dV (t) ≤ dV (t2n+2) from (5.2.11), we can deduce that

d

dt
L(t) ≤ 0, ∀t ∈ (t2n+1, t2n+2).

As a consequence, for all t2n+1 < s < t ≤ t2n+2, it comes that

L(t) ≤ L(s).

Letting s→ t+2n+1, we get

L(t) ≤ lim
s→t+2n+1

L(s) = lim
s→t+2n+1

D(s) +

∫ max
s∈[0,t2n+1]

dX(s)

0

min

{
e−K̃T min

σ∈[0,r]
ψ̃(σ),

e−K̃T

T

}
dr,

for all t ∈ (t2n+1, t2n+2]. Thus, using (5.2.32), we can write

L(t) ≤ eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)
D(t2n+1) +

∫ max
s∈[0,t2n+1]

dX(s)

0

min

{
e−K̃T min

σ∈[0,r]
ψ̃(σ),

e−K̃T

T

}
dr

≤ eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)
L(t2n+1),

for all t ∈ (t2n+1, t2n+2]. Therefore,

L(t) ≤ eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)
L(t2n+1), ∀t ∈ [t2n+1, t2n+2]. (5.2.35)

Now, combining (5.2.34) and (5.2.35), it turns out that

L(t2n+2) ≤
eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)

1(
1−

∫ t2n
t2n−1

ϕ(s)ds
)L(t2n), ∀n ∈ N. (5.2.36)

Thus, thanks to an induction argument, from (5.2.36) it follows that

L(t2n+2) ≤
n∏
p=1

 eK̃(t2p+2−t2p+1)

2− eK̃(t2p+2−t2p+1)

1(
1−

∫ t2p
t2p−1

ϕ(s)ds
)
L(t2), (5.2.37)

for all n ∈ N.
Now, let t ≥ t4. Then, there exists n ≥ 2 such that t ∈ [t2n, t2n+2]. As a consequence, if
t ∈ [t2n, t2n+1], from (5.2.34) and (5.2.37) with n− 1 ≥ 1, we get

L(t) ≤ 1

1−
∫ t2n
t2n−1

ϕ(s)ds
L(t2n) ≤

eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)

1

1−
∫ t2n
t2n−1

ϕ(s)ds
L(t2n)

≤ eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)

1

1−
∫ t2n
t2n−1

ϕ(s)ds

n−1∏
p=1

 eK̃(t2p+2−t2p+1)

2− eK̃(t2p+2−t2p+1)

1(
1−

∫ t2p
t2p−1

ϕ(s)ds
)
L(t2)

=
n∏
p=1

 eK̃(t2p+2−t2p+1)

2− eK̃(t2p+2−t2p+1)

1(
1−

∫ t2p
t2p−1

ϕ(s)ds
)
L(t2).
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On the other hand, if t ∈ [t2n+1, t2n+2], from (5.2.34), (5.2.35) and (5.2.37) it comes that

L(t) ≤ eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)
L(t2n+1) ≤

eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)

1

1−
∫ t2n
t2n−1

ϕ(s)ds
L(t2n)

≤
n∏
p=1

 eK̃(t2p+2−t2p+1)

2− eK̃(t2p+2−t2p+1)

1(
1−

∫ t2p
t2p−1

ϕ(s)ds
)
L(t2).

Thus, for all t ≥ t4,

L(t) ≤
n∏
p=1

 eK̃(t2p+2−t2p+1)

2− eK̃(t2p+2−t2p+1)

1(
1−

∫ t2p
t2p−1

ϕ(s)ds
)
L(t2)

= e

∑n
p=1

ln( e
K̃(t2p+2−t2p+1)

2−eK̃(t2p+2−t2p+1)

)
+ln

 1

1−
∫ t2p
t2p−1

ϕ(s)ds


L(t2).

(5.2.38)

Now, from (5.2.3),
∑+∞

p=1 ln
(

eK̃(t2n+2−t2p+1)

2−eK̃(t2p+2−t2p+1)

)
< +∞. Also,

∑+∞
p=1 ln

(
1

1−
∫ t2p
t2p−1

ϕ(s)ds

)
<

+∞. Indeed, from (5.2.23) it turns out that∫ t2p

t2p−1

ϕ(s)ds ≤ e−K̃T

T
(t2p − t2p−1), ∀p ≥ 1.

Then, since from (5.2.3) we have that t2p − t2p−1 → 0, as p → ∞ (see Remark 5.2.2), we
can write

ln

(
1

1−
∫ t2p
t2p−1

ϕ(s)ds

)
≤ ln

(
1

1− e−K̃T

T
(t2p − t2p−1)

)

= − ln

(
1− e−K̃T

T
(t2p − t2p−1)

)
∼ e−K̃T

T
(t2p − t2p−1).

As a consequence, from (5.1.5) it holds
∑+∞

p=0 ln

(
1

1−
∫ t2p
t2p−1

ϕ(s)ds

)
< +∞.

So, setting

C := e

∑∞
p=0

ln( e
K̃(t2n+2−t2p+1)

2−eK̃(t2p+2−t2p+1)

)
+ln

 1

1−
∫ t2p
t2p−1

ϕ(s)ds


L(t2),

taking into account of (5.2.38), we can conclude that

L(t) ≤ C, ∀t ≥ t4. (5.2.39)

So, for all t ≥ t4, by de�nition of L,∫ max
s∈[0,t]

dX(s)

0

min

{
e−K̃T min

σ∈[0,r]
ψ̃(σ),

e−K̃T

T

}
dr ≤ L(t) ≤ C.
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Letting t→ ∞ in the above inequality, we �nally get∫ sup
s∈[0,∞)

dX(s)

0

min

{
e−K̃T min

σ∈[0,r]
ψ̃(σ),

e−K̃T

T

}
dr ≤ C. (5.2.40)

Then, since the function ψ̃ satis�es (5.2.1), from (5.2.40), there exists a positive constant
d∗ such that

sup
s∈[0,∞)

dX(s) ≤ d∗. (5.2.41)

Now, we de�ne

ϕ∗ := min

{
e−K̃Tψ∗,

e−K̃T

T

}
,

where
ψ∗ = min

r∈[0,d∗]
ψ̃(r).

Note that ϕ∗ > 0, being ψ̃ a positive function. Also, from (5.2.41), it comes that

ψ∗ ≤ min

{
ψ̃(r) : r ∈

[
0, max

s∈[0,t]
dX(s)

]}
= ψ̃t,

for all t ≥ 0. Thus, we get
ϕ∗ ≤ ϕ(t), ∀t ≥ 0.

As a consequence, for all n ∈ N0,∫ t2n+1

t2n

ϕ(s)ds ≥ ϕ∗(t2n+1 − t2n),

from which

1−
∫ t2n+1

t2n

ϕ(s)ds ≤ 1− ϕ∗(t2n+1 − t2n).

So, recalling of inequality (5.2.27), we can write

dV (t2n+1) ≤ (1− ϕ∗(t2n+1 − t2n)) dV (t2n), ∀n ∈ N0. (5.2.42)

Now, using (5.2.18) and (5.2.42), we have that

dV (t2n+2) ≤
eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)
dV (t2n+1) ≤

eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)

(
1−

∫ t2n+1

t2n

ϕ(s)ds

)
dV (t2n)

≤ eK̃(t2n+2−t2n+1)

2− eK̃(t2n+2−t2n+1)
(1− ϕ∗(t2n+1 − t2n)) dV (t2n).
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Thus, using an induction argument, we get

dV (t2n+2) ≤
n∏
p=0

(
eK̃(t2p+2−t2p+1)

2− eK̃(t2p+2−t2p+1)
(1− ϕ∗(t2p+1 − t2p))

)
dV (0)

= e

∑∞
p=0 ln

(
e
K̃(t2p+2−t2p+1)

2−eK̃(t2p+2−t2p+1)
(1−ϕ∗(t2p+1−t2p))

)
dV (0)

= e

∑∞
p=0

[
ln

(
e
K̃(t2p+2−t2p+1)

2−eK̃(t2p+2−t2p+1)

)
+ln(1−ϕ∗(t2p+1−t2p))

]
dV (0).

Now,
∑∞

p=0 ln
(

eK̃(t2p+2−t2p+1)

2−eK̃(t2p+2−t2p+1)

)
< +∞ from (5.2.3). Then, the solution {xi, vi}i=1,...,N

exhibits asymptotic �ocking if the following condition is satis�ed:

∞∑
p=0

ln ((1− ϕ∗(t2p+1 − t2p))) = −∞. (5.2.43)

However, the above condition is guaranteed since, from (5.2.2),

1− ϕ∗(t2p+1 − t2p) ≤ 1− ϕ∗

K̃
∈ (0, 1), ∀p ∈ N0.

Thus,
∞∑
p=0

ln ((1− ϕ∗(t2p+1 − t2p))) ≤
∞∑
p=0

ln

(
1− ϕ∗

K̃

)
= −∞,

from which (5.2.43) is ful�lled.



Chapter 6

Linear evolution equations with

time-dependent time delay

In this chapter, we will study well-posedness and exponential stability for the abstract
model (0.2.32). Also, we will extend the results that hold for the linear model (0.2.32) to
a nonlinear model with a Lipschitz perturbation. Applications to the wave equation and
to an elasticity system will be also provided. All the results contained in this chapter are
taken from [44].

6.1 Well-posedness

In this section, we prove a well-posedness result for the abstract model (0.2.32). Since
we are dealing with time-dependent time delays, so the time delay is not necessarily
constant, we cannot employ the step-by-step procedure that is usually used for delay
equations. Indeed, as we will see in the proof of the well-posedness result, the standard
step-by-step procedure can be used only in the case in which the time delay function is
bounded from below by a positive constant. In the general case, namely in the case in
which the time delay function is a generic continuous function that satis�es (0.2.33), we
have to argue di�erently and we can prove well-posedness through a �xed point approach.

Theorem 6.1.1. Let f : [−τ̄ , 0] → H be a continuous function. Then, the problem
(0.2.32) has a unique (weak) solution given by Duhamel's formula

U(t) = S(t)U0 +

∫ t

0

S(t− s) k(s)BU(s− τ(s)) ds, (6.1.1)

for all t ≥ 0.

Proof. Let f ∈ C([−τ̄ , 0];H). We give two di�erent proofs, the �rst one only valid
under the additional assumption that the time delay is bounded from below by a positive
constant.
Case 1. Assume that

τ(t) ≥ τ0 > 0, ∀t ≥ 0, (6.1.2)

86
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for a suitable positive constant τ0.We can argue step-by-step, as in the proof of Proposition
2.1 of [72], by restricting ourselves each time to time intervals of length τ0.
First we consider t ∈ [0, τ0]. Then, from (6.1.2), t − τ(t) ∈ [−τ̄ , 0]. So, setting F (t) =
k(t)BU(t − τ(t)), t ∈ [0, τ0], we have that F (t) = k(t)Bf(t − τ(t)), t ∈ [0, τ0]. Then,
problem (0.2.32) can be rewritten, in the interval [0, τ0], as a standard inhomogeneous
evolution problem:

U ′(t) = AU(t) + F (t) in (0, τ0),
U(0) = U0.

(6.1.3)

Since k ∈ L1
loc([−τ̄ ,+∞); IR), B is a bounded linear operator and f ∈ C([−τ̄ , 0];H), we

have that F ∈ L1((0, τ0);H). Therefore, applying [92, Corollary 2.2] there exists a unique
solution U ∈ C([0, τ0];H) of (6.1.3) satisfying the Duhamel's formula

U(t) = S(t)U0 +

∫ t

0

S(t− s)F (s)ds, t ∈ [0, τ0].

Therefore,

U(t) = S(t)U0 +

∫ t

0

S(t− s)k(s)BU(s− τ(s))ds, t ∈ [0, τ0].

Next, we consider the time interval [τ0, 2τ0] and also de�ne F (t) = k(t)BU(t− τ(t)), for
t ∈ [τ0, 2τ0]. Note that, if t ∈ [τ0, 2τ0], then t− τ(t) ∈ [−τ̄ , τ0] and so U(t− τ(t)) is known
from the �rst step. Then F|[τ0,2τ0] is a known function and it belongs to L1((τ0, 2τ0);H).
So we can rewrite our model (0.2.32) in the time interval [τ0, 2τ0] as the inhomogeneous
evolution problem

U ′(t) = AU(t) + F (t) for t ∈ (τ0, 2τ0),
U(τ) = U(τ−0 ).

(6.1.4)

Then, by the standard theory of abstract Cauchy problems, we have a unique continuous
solution U : [τ0, 2τ0] → H satisfying

U(t) = S(t− τ0)U(τ
−
0 ) +

∫ t

τ0

S(t− s)F (s)ds, t ∈ [τ0, 2τ0],

and so

U(t) = S(t− τ0)U(τ
−
0 ) +

∫ t

τ0

S(t− s)k(s)BU(s− τ(s))ds, t ∈ [τ0, 2τ0].

Putting together the partial solutions obtained in the �rst and second steps we have a
unique continuous solution U : [0, 2τ0] → IR satisfying the Duhamel's formula

U(t) = S(t)U0 +

∫ t

0

S(t− s)k(s)BU(s− τ(s))ds, t ∈ [0, 2τ0].

Iterating this procedure we can �nd a unique solution U ∈ C([0,+∞);H) satisfying the
representation formula (6.1.1).
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Case 2. Let τ(·) be a continuous function satisfying (0.2.33). In this case, since assump-
tion (6.1.2) does not necessarily hold, we cannot use the step-by-step procedure above, as
we did in Case 1. We have rather to employ a di�erent method, based on the use of the
Banach's �xed point Theorem.
Now, since k ∈ L1

loc([−τ̄ ,+∞); IR), there exists T > 0 such that

∥k∥L1([0,T ];IR) =

∫ T

0

|k(s)|ds < 1

M∥B∥
. (6.1.5)

We de�ne the set

Cf ([−τ̄ , T ];H) := {U ∈ C([−τ̄ , T ];H) : U(s) = f(s), ∀s ∈ [−τ̄ , 0]}.
Let us note that Cf ([−τ̄ , T ];H) ̸= ∅, since it su�ces to take

U(t) =

{
U0, t ∈ (0, T ],

f(t), t ∈ [−τ̄ , 0],

to have that U ∈ Cf ([−τ̄ , T ];H).
It is immediate to see that Cf ([−τ̄ , T ];H) with the norm

∥U∥C([−τ̄ ,T ];H) = max
r∈[−τ̄ ,T ]

∥U(r)∥, ∀U ∈ C([−τ̄ , T ];H),

is a Banach space.
Now, we de�ne the map Γ : Cf ([−τ̄ , T ];H) → Cf ([−τ̄ , T ];H) given by

ΓU(t) =

{
S(t)U0 +

∫ t
0
S(t− s)k(s)BU(s− τ(s)) ds, t ∈ [0, T ],

f(t), t ∈ [−τ̄ , 0).

We claim that Γ is well-de�ned. Indeed, let U ∈ Cf ([−τ̄ , T ];H). Then, from the semi-
group theory, t 7→ S(t)U0 is continuous. Also, since U(·) is continuous in [−τ̄ , T ],
τ(·) is a continuous function and B is a bounded linear operator from H into itself,
[0, T ] ∋ t 7→ BU(t−τ(t)) is continuous. Moreover, k ∈ L1([0, T ]; IR). So k(·)BU(·−τ(·)) ∈
L1([0, T ];H). Hence, the map t 7→

∫ t
0
S(t− s)k(s)BU(s− τ(s))ds is continuous in [0, T ].

Thus, ΓU ∈ C([0, T ];H). Finally, since ΓU = f in [τ̄ , 0] with f ∈ C([−τ̄ , 0];H) and
f(0) = U0, ΓU ∈ Cf ([τ̄ , T ];H) and Γ is well-de�ned.
Now, let U, V ∈ Cf ([τ̄ , T ];H). For all t ∈ [−τ̄ , 0],

∥ΓU(t)− ΓV (t)∥ = 0.

On the other hand, for all t ∈ (0, T ],

∥ΓU(t)− ΓV (t)∥ ≤
∫ t

0

|k(s)|∥S(t− s)∥L(H)∥BU(s− τ(s))−BV (s− τ(s))∥ds

≤M∥B∥
∫ t

0

|k(s)|∥U(s− τ(s))− V (s− τ(s))∥ds

≤M∥B∥∥U − V ∥C([−τ̄ ,T ];H)

∫ T

0

|k(s)|ds

=MB∥k∥L1([0,T ];IR)∥U − V ∥C([−τ̄ ,T ];H).
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Thus,

∥ΓU(t)− ΓV (t)∥ ≤MB∥k∥L1([0,T ];IR)∥U − V ∥C([−τ̄ ,T ];H), ∀t ∈ [−τ̄ , T ],

from which

∥ΓU − ΓV ∥C([−τ̄ ,T ];H) ≤M∥B∥∥k∥L1([0,T ];IR)∥U − V ∥C([−τ̄ ,T ];H).

Now, from (6.1.5) we have that M∥B∥∥k∥L1([0,T ];IR) < 1. Hence, Γ is a contraction. Then,
from the Banach's Theorem, Γ has a unique �xed point U ∈ Cf ([−τ̄ , T ];H), i.e. (0.2.32)
has a unique solution U ∈ C([0, T ];H) given by the Duhamel's formula

U(t) = S(t)U0 +

∫ t

0

S(t− s)k(s)BU(s− τ(s)) ds, ∀t ∈ [0, T ].

Now, let us note that the solution U is bounded. Indeed, for all t ∈ [0, T ],

∥U(t)∥ ≤M∥U0∥+M∥B∥
∫ t

0

|k(s)|∥U(s− τ(s))∥ds

≤M∥U0∥+M∥B∥∥k∥L1([0,T ];IR) max
r∈[−τ̄ ,0]

∥f(r)∥+M∥B∥
∫ t

0

|k(s)| max
r∈[0,s]

∥U(r)∥ds.

Then,

max
r∈[0,t]

∥U(r)∥ ≤M

(
∥U0∥+ ∥B∥∥k∥L1([0,T ];IR) max

r∈[−τ̄ ,0]
∥f(r)∥

)
+M∥B∥

∫ t

0

|k(s)| max
r∈[0,s]

∥U(r)∥ds.

Hence, the Gronwall's estimate yields

max
r∈[0,t]

∥U(r)∥ ≤M

(
∥U0∥+ ∥B∥∥k∥L1([0,T ];IR) max

r∈[−τ̄ ,0]
∥f(r)∥

)
eM∥B∥

∫ t
0 |k(s)|ds,

from which, taking into account of (6.1.5),

∥U(t)∥ ≤ e

(
M∥U0∥+ max

r∈[−τ̄ ,0]
∥f(r)∥

)
, ∀t ∈ [0, T ].

Thus, the solution U is bounded and we can extend it up to some maximal interval [0, δ),
δ > 0. We claim that δ = +∞. Indeed, assume by contradiction that δ < +∞. Then,
being U bounded, we can consider the following problem

V ′(t) = AV (t) + k(t)BV (t− τ(t)), t ∈ (0,∞),
V (t) = U(t) t ∈ [δ − τ̄ , δ),
V (δ) = U(δ−).

(6.1.6)

Arguing as before, there exists T ′ > 0 such that

∥k∥L1([δ,T ′],IR) =

∫ T ′

δ

|k(s)|ds < 1

M∥B∥
. (6.1.7)
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We then set

CU([δ− τ̄ , T ′];H) = {V ∈ C([δ− τ̄ , T ′];H) : V (s) = U(s),∀s ∈ [δ− τ̄ , δ), V (δ) = U(δ−)},

which is a nonempty closed subset of C([δ − τ̄ , T ′];H).
Next, we de�ne the map Γ : CU([−τ̄ , T ];H) → CU([−τ̄ , T ];H) given by

ΓV (t) =

{
S(t− δ)U(δ−) +

∫ t
δ
S(t− s)k(s)BV (s− τ(s)), t ∈ [δ, T ′],

U(t), t ∈ [δ − τ̄ , δ).

We have that Γ is well-de�ned and, using the same arguments employed at the beginning
of Case 2, (6.1.7) implies that Γ is a contraction. So, Γ has a unique �xed point, i.e.
(6.1.6) has a unique continuous V solution given by the Duhamel formula

V (t) = S(t− δ)U(δ−) +

∫ t

δ

S(t− s)k(s)BV (s− τ(s)), t ∈ [δ, T ′].

Thus, putting together the solutions U , V , we get the existence of a unique continuous
solution to (0.2.32) that satis�es the Duhamel's formula (6.1.1) and that is de�ned in
[0, δ′), with δ′ > δ. This contradicts the maximality of δ. Hence, δ = +∞, i.e. (0.2.32)
has a unique global solution U ∈ C([0,+∞);H) given by (6.1.1).

6.2 Exponential stability

Now, we establish a stability result for the system (0.2.32). Namely, under an ap-
propriate relation between the problem's parameters we prove that the system (0.2.32) is
exponentially stable. In particular, we assume that

M∥B∥eωτ̄
∫ t

0

|k(s)|ds ≤ γ + ω′t, ∀t ≥ 0, (6.2.1)

for suitable constants γ ≥ 0 and ω′ ∈ [0, ω).

Theorem 6.2.1. Assume (6.2.1). Then, for every f ∈ C([−τ̄ , 0];H) the solution U ∈
C([0,+∞);H) to (0.2.32) with the initial datum f satis�es the exponential decay estimate

||U(t)|| ≤Meγ
(
∥U0∥+ eωτ̄K∥B∥ max

s∈[−τ̄ ,0]
{∥eωsf(s)∥}

)
e−(ω−ω′)t, (6.2.2)

for any t ≥ 0.

Proof. Let f ∈ C([−τ̄ , 0];H). Let U ∈ C([0,+∞);H) be the solution to (0.2.32) with the
initial condition f . From Duhamel's Formula, we have that

||U(t)|| ≤Me−ωt||U0||+Me−ωt
∫ t

0

eωs|k(s)| · ||BU(s− τ(s))||ds, ∀t ≥ 0.
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Then, for all t ≥ τ̄ , we deduce that

||U(t)|| ≤Me−ωt||U0||+Me−ωt
∫ τ̄

0

eωs|k(s)| · ||BU(s− τ(s))||ds

+Me−ωt
∫ t

τ̄

eωs|k(s)| · ||BU(s− τ(s))||ds

≤Me−ωt||U0||+M ||B||e−ωteωτ̄
∫ τ̄

0

eω(s−τ(s))|k(s)| · ||U(s− τ(s))||ds

+M ||B||e−ωteωτ̄
∫ t

τ̄

eω(s−τ(s))|k(s)| · ||U(s− τ(s))||ds.

(6.2.3)

Now, observe that∫ τ̄

0

eω(s−τ(s))|k(s)| · ∥U(s− τ(s))∥ds

≤
∫ τ̄

0

|k(s)|
(

max
r∈[−τ̄ ,0]

{eωr∥f(r)∥}+ max
r∈[0,s]

{eωr∥U(r)∥}
)
ds

≤ K max
r∈[−τ̄ ,0]

{eωr∥f(r)∥}+
∫ τ̄

0

|k(s)| max
r∈[0,s]

{eωr∥U(r)∥} ds.

(6.2.4)

Then, using (6.2.4) in (6.2.3), we deduce

||U(t)|| ≤Me−ωt
(
||U0||+ eωτK∥B∥ max

r∈[−τ̄ ,0]
{eωr∥f(r)∥}

)
+M∥B∥e−ωteωτ̄

∫ t

0

|k(s)| max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||} ds,
(6.2.5)

for all t ≥ τ̄ . On the other hand, for all t ∈ [0, τ̄ ], it holds that

||U(t)|| ≤Me−ωt||U0||+M∥B∥e−ωteωτ̄
∫ t

0

eω(s−τ(s))|k(s)| · ||U(s− τ(s))||ds.

Then, arguing as before,∫ t

0

eω(s−τ(s))|k(s)| · ∥U(s− τ(s))∥ds

≤
∫ t

0

|k(s)|
(

max
r∈[−τ ,0]

{eωr∥f(r)∥}+ max
r∈[0,s]

{eωr∥U(r)∥}
)
ds

≤ K max
r∈[−τ̄ ,0]

{eωr∥f(r)∥}+
∫ t

0

|k(s)| max
r∈[0,s]

{eωr∥U(r)∥} ds
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for all t ∈ [0, τ̄ ]. Hence, (6.2.5) holds also for t ∈ [0, τ̄ ]. So, we deduce

eωt||U(t)|| ≤M

(
||U0||+ eωτ̄K∥B∥ max

s∈[−τ̄ ,0]
{∥eωsf(s)∥}

)
+M∥B∥eωτ̄

∫ t

0

|k(s)| max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||} ds, ∀t ≥ 0.

Now, we note that it also holds

max
s∈[t−τ̄ ,t]∩[0,t]

{eωs||U(s)||} ≤M

(
||U0||+ eωτ̄K∥B∥ max

s∈[−τ̄ ,0]
{∥eωsf(s)∥}

)
+M∥B∥eωτ̄

∫ t

0

|k(s)| max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||} ds, ∀t ≥ 0.

Hence, if we denote
ũ(t) := max

s∈[t−τ̄ ,t]∩[0,t]
{eωs||U(s)||} ,

Gronwall's estimate implies

ũ(t) ≤ M̃eM∥B∥eωτ
∫ t
0 |k(s)|ds, ∀t ≥ 0,

where

M̃ :=M

(
∥U0∥+ eωτ̄K∥B∥ max

s∈[−τ̄ ,0]
{∥eωsf(s)∥}

)
.

Then,

eωt∥U(t)∥ ≤ M̃eM∥B∥eωτ̄
∫ t
0 |k(s)|ds, ∀t ≥ 0.

Finally, assumption (6.2.1), yields

∥U(t)∥ ≤ M̃eM∥B∥eωτ̄
∫ t
0 |k(s)|dse−ωt

≤ M̃eγ+ω
′te−ωt = M̃eγe−(ω−ω′)t,

for all t ≥ 0, which proves the exponential decay estimate (6.2.2).

6.3 A nonlinear model

As an easy generalization of the previous results, we can prove well-posedness and
exponential stability for the following nonlinear model

U ′(t) = AU(t) + k(t)BU(t− τ(t)) +G(U(t)), t ∈ (0,∞),
U(t) = f(t) t ∈ [−τ̄ , 0], (6.3.1)

where A,B, k(·), τ(·) are as before, and we denote U0 := f(0). Moreover, G : H → H is
Lipschitz continuous, namely there exists L > 0 such that

∥G(U1)−G(U2)∥ ≤ L∥U1 − U2∥, ∀ U1, U2 ∈ H, (6.3.2)
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and we assume that G(0) = 0.
Analogously to before, one can �rst give a well-posedness result. See [84] for the proof

in the case of constant time delay.

Theorem 6.3.1. Let f : [−τ̄ , 0] → H be a continuous function. Then, the problem (6.3.1)
has a unique (weak) solution given by Duhamel's formula

U(t) = S(t)U0 +

∫ t

0

S(t− s)[G(U(s)) + k(s)BU(s− τ(s))] ds, (6.3.3)

for all t ≥ 0.

Proof. Let f ∈ C([−τ̄ , 0], H). As before, we can give two di�erent proofs.
Case 1 Assume that (6.1.2) holds tue. We can argue step-by-step, as before, by restricting
ourselves each time to time intervals of length τ0.
First we consider t ∈ [0, τ0]. Then, from (6.1.2), t − τ(t) ∈ [−τ̄ , 0]. So, setting F (t) =
k(t)BU(t − τ(t)), t ∈ [0, τ0], we have that F (t) = k(t)Bf(t − τ(t)), t ∈ [0, τ0]. Then,
problem (6.3.1) can be rewritten, in the interval [0, τ0], as a standard inhomogeneous
evolution problem:

U ′(t) = AU(t) +G(U(t)) + F (t) in (0, τ0),
U(0) = U0.

(6.3.4)

Since k ∈ L1
loc([−τ̄ ,+∞); IR) and f ∈ C([−τ̄ , 0];H), then we have that F ∈ L1((0, τ0);H).

Therefore, applying the standard theory for nonlinear evolution equations (see e.g. [92]),
there exists a unique solution U ∈ C([0, τ0];H) of (6.3.4) satisfying the Duhamel's formula

U(t) = S(t)U0 +

∫ t

0

S(t− s)[G(U(s)) + F (s)]ds, t ∈ [0, τ0].

Therefore,

U(t) = S(t)U0 +

∫ t

0

S(t− s)[G(U(s)) + k(s)BU(s− τ(s))]ds, t ∈ [0, τ0].

Next, we consider the time interval [τ0, 2τ0] and also de�ne F (t) = k(t)BU(t− τ(t)), for
t ∈ [τ0, 2τ0]. Note that, if t ∈ [τ0, 2τ0], then t− τ(t) ∈ [−τ̄ , τ0] and so U(t− τ(t)) is known
from the �rst step. Then F|[τ0,2τ0] is a known function and it belongs to L1((τ0, 2τ0);H).
So we can rewrite our model (6.3.1) in the time interval [τ0, 2τ0] as the inhomogeneous
evolution problem

U ′(t) = AU(t) +G(U(t)) + F (t) for t ∈ (τ0, 2τ0),
U(τ) = U(τ−0 ).

(6.3.5)

Then, we have a unique continuous solution U : [τ0, 2τ0] → H satisfying

U(t) = S(t− τ0)U(τ
−
0 ) +

∫ t

τ0

S(t− s)[G(U(s)) + F (s)]ds, t ∈ [τ0, 2τ0],
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and so

U(t) = S(t− τ0)U(τ
−
0 ) +

∫ t

τ0

S(t− s)[G(U(s)) + k(s)BU(s− τ(s))]ds, t ∈ [τ0, 2τ0].

Putting together the partial solutions obtained in the �rst and second steps we have a
unique continuous solution U : [0, 2τ0) → IR satisfying the Duhamel's formula

U(t) = S(t)U0 +

∫ t

0

S(t− s)[G(U(s)) + k(s)BU(s− τ(s))]ds, t ∈ [0, 2τ0].

Iterating this procedure we can �nd a unique solution U ∈ C([0,+∞);H) satisfying the
representation formula (6.3.3).
Case 2 Let τ(·) be a continuous function satisfying (0.2.33).
Now, since k ∈ L1

loc([−τ̄ ,+∞); IR), there exists T > 0 su�ciently small such that

LT + ∥B∥∥k∥L1([0,T ];IR) = LT + ∥B∥
∫ T

0

|k(s)|ds < 1

M
, (6.3.6)

where L is the Lipschitz constant in (6.3.2). We de�ne the set

C̃f ([−τ̄ , T ];H) := {U ∈ C([−τ̄ , T ];H) : U(s) = f(s), ∀s ∈ [−τ̄ , 0]}.

Let us note that C̃f ([−τ̄ , T ];H) is a nonempty and closed subset of C([−τ̄ , T ];H). Hence,
(C̃f ([−τ̄ , T ];H), ∥·∥C([−τ̄ ,T ];H)) is a Banach space.

Next, we de�ne the map Γ̃ : C̃f ([−τ̄ , T ];H) → C̃f ([−τ̄ , T ];H) given by

Γ̃U(t) =

{
S(t)U0 +

∫ t
0
S(t− s)[G(U(s)) + k(s)BU(s− τ(s))] ds, t ∈ [0, T ],

f(t), t ∈ [−τ̄ , 0).

Let us note that Γ̃ is well-de�ned.
Moreover, Γ̃ is a contraction. Indeed, let U, V ∈ C̃f ([τ̄ , T ];H). Then, for all t ∈ [−τ̄ , 0],

∥Γ̃U(t)− Γ̃V (t)∥ = 0.

On the other hand, for all t ∈ (0, T ], since G is Lipschitz continuous we get

∥Γ̃U(t)− Γ̃V (t)∥ ≤
∫ t

0

∥S(t− s)∥L(H)∥G(U(s))−G(V (s))∥ds

+

∫ t

0

|k(s)|∥S(t− s)∥L(H)∥BU(s− τ(s))−BV (s− τ(s))∥ds

≤M(LT + ∥B∥∥k∥L1([0,T ];IR))∥U − V ∥C([−τ̄ ,T ];H).

Thus,

∥Γ̃U − Γ̃V ∥C([−τ̄ ,T ];H) ≤M(LT + ∥B∥∥k∥L1([0,T ];IR))∥U − V ∥C([−τ̄ ,T ];H).
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As a consequence, from (6.3.6) Γ̃ is a contraction. Thus, from the Banach's Theorem,
Γ̃ has a unique �xed point U ∈ C̃f ([−τ̄ , T ];H), i.e. (0.2.32) has a unique solution U ∈
C([0, T ];H) given by the Duhamel formula

U(t) = S(t)U0 +

∫ t

0

S(t− s)[G(U(s)) + k(s)BU(s− τ(s))] ds, ∀t ∈ [0, T ].

Now, note that the solution U is bounded. So, arguing as in Case 2 of Theorem 6.1.1,
we can conclude that (6.3.1) has a unique continuous global solution that satis�es the
Duhamel's formula (6.3.3).

As in the previous section, under an appropriate relation between the problem's pa-
rameters, also the system (6.3.1) is exponentially stable.

Theorem 6.3.2. Assume (6.2.1) and L < ω−ω′

M
. Then, for every f ∈ C([−τ̄ , 0];H), the

solution U ∈ C([0,+∞);H) to (6.3.1) with the initial datum f satis�es the exponential
decay estimate

||U(t)|| ≤Meγ
(
∥U0∥+ eωτ̄K∥B∥ max

s∈[−τ̄ ,0]
{∥eωsf(s)∥}

)
e−(ω−ω′−ML)t, (6.3.7)

for any t ≥ 0.

Proof. Let f ∈ C([−τ̄ , 0];H) and let U be the unique global solution to (6.3.1) with initial
datum f . Then, from Duhamel's formula (6.3.3), we have that

||U(t)|| ≤Me−ωt||U0||+Me−ωt
∫ t

0

eωs||G(U(s))||ds

+M∥B∥e−ωt
∫ t

0

eωs|k(s)| · ||U(s− τ(s))||)ds,

for all t ≥ 0. Now, using the same arguments employed in Theorem 6.2.1, we get∫ t

0

eωs|k(s)| · ||U(s− τ(s))|| ds ≤ eωτ̄
∫ τ̄

0

eω(s−τ(s))|k(s)| · ||U(s− τ(s))|| ds

+eωτ̄
∫ t

τ̄

eω(s−τ(s))|k(s)| · ||U(s− τ(s))|| ds

≤ eωτ̄K max
r∈[−τ̄ ,0]

{||eωrf(r)||}+ eωτ̄
∫ t

0

|k(s)| · max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||}ds,

(6.3.8)

for all t ≥ τ̄ . Also, for all t ∈ [0, τ̄ ],∫ t

0

eωs|k(s)| · ||U(s− τ(s))|| ds ≤ eωτ̄
∫ t

0

eω(s−τ(s))|k(s)| · ||U(s− τ(s))|| ds

≤ eωτ̄K max
r∈[−τ̄ ,0]

{||eωrf(r)||}+ eωτ̄
∫ t

0

|k(s)| · max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||}ds,
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i.e. (6.3.8) holds true for all t ≥ 0. Hence, from (6.3.8) we get

||U(t)|| ≤Me−ωt
(
||U0||+ eωτ̄K∥B∥ max

r∈[−τ̄ ,0]
{||eωrf(r)||}

)
+Me−ωteωτ̄ ||B||

∫ t

0

|k(s)| · max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||}ds+Me−ωt
∫ t

0

eωs||G(U(s))||ds.

Now, let us note that, being G(0) = 0 and being G Lipschitz continuous of constant L,∫ t

0

eωs||G(U(s))||ds ≤ L

∫ t

0

eωs||U(s)|| ≤ L

∫ t

0

max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||}ds.

As a consequence, we can write

||U(t)|| ≤Me−ωt(||U0||+ eωτ̄K||B|| max
r∈[−τ̄ ,0]

{||eωrf(r)||})

+Me−ωt
∫ t

0

(eωτ̄ ||B|||k(s)|+ L) · max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||}ds.

Then, we have that

eωt||U(t)|| ≤M

(
||U0||+ eωτ̄K||B|| max

r∈[−τ̄ ,0]
{∥eωrf(r)∥}

)
+M

∫ t

0

(eωτ̄ ||B|||k(s)|+ L) · max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||} ds, ∀t ≥ 0.

Now, we note that

max
r∈[t−τ̄ ,t]∩[0,t]

{eωr||U(r)||} ≤M

(
||U0||+ eωτ̄K||B|| max

s∈[−τ̄ ,0]
{∥eωsf(s)∥}

)
+M

∫ t

0

(eωτ̄ ||B|||k(s)|+ L) · max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||} ds, ∀t ≥ 0.

Hence, if we denote with

ũ(t) := max
r∈[t−τ̄ ,t]∩[0,t]

{eωr||U(r)||} ,

Gronwall's estimate yields

ũ(t) ≤ M̃eM∥B∥eωτ̄
∫ t
0 |k(s)|ds+MLt, ∀t ≥ 0

where

M̃ :=M

(
∥U0∥+ eωτ̄K||B|| max

r∈[−τ̄ ,0]
{∥eωrf(r)∥}

)
.

Then,

eωt∥U(t)∥ ≤ M̃eM∥B∥eωτ̄
∫ t
0 |k(s)|ds+MLt.

Finally, by the assumption (6.2.1) and the assumption on the Lipschitz constant L, we
get the exponential decay estimate (6.3.7).
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6.4 Examples

We conclude this chapter by providing applications of the results established in the
previous sections.

As concrete examples, we will consider the wave equation with localized frictional
damping and delay feedback and an elasticity system with analogous feedback laws.

6.4.1 The damped wave equation

Let Ω be an open bounded subset of IRd, with boundary ∂Ω of class C2, and let O ⊂ Ω
be an open subset which satis�es the geometrical control property in [15]. For instance,
O ⊂ Ω can be a neighborhood of the whole boundary ∂Ω or, denoting by m the standard
multiplier m(x) = x − x0, x0 ∈ IRd, as in [75], O can be the intersection of Ω with an
open neighborhood of the set

Γ0 = {x ∈ Γ : m(x) · ν(x) > 0 } .

Moreover, let Õ ⊂ Ω be another open subset. Denoting by χO and χÕ the characteristic
functions of the sets O and Õ respectively, we consider the following wave equation

utt(x, t)−∆u(x, t) + aχO(x)ut(x, t)

+k(t)χÕ(x)ut(x, t− τ(t)) = 0, (x, t) ∈ Ω× (0,+∞),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞),
u(x, s) = u0(x, s), ut(x, s) = u1(x, s), (x, s) ∈ Ω× [−τ̄ , 0],

(6.4.1)

where a is a positive constant, τ(t) is the time delay function satisfying 0 ≤ τ(t) ≤ τ̄ , and
the delayed damping coe�cient k(·) : [−τ̄ ,+∞) → (0,+∞) is a L1

loc([−τ̄ ,+∞)) function
satisfying (0.2.35). Denoting v(t) = ut(t) and U(t) = (u(t), v(t))T , for any t ≥ 0,, we can
rewrite system (6.4.1) in the abstract form (0.2.32), with H = H1

0 (Ω)× L2(Ω),

A =

(
0 Id
∆ −aχO

)
and

B

(
u
v

)
=

(
0

−χÕv

)
, ∀ t ≥ 0.

We know that A generates an exponentially stable C0-semigroup {S(t)}t≥0 (see e.g. [70]),
namely there exist ω,M > 0 such that

||S(t)||L(H) ≤Me−ωt, ∀ t ≥ 0.

Hence, under the assumption (6.2.1), the stability estimate of Theorem 6.2.1 holds for such
a model. Then, we can deduce an exponential decay estimate for the energy functional

E(t) :=
1

2

∫
Ω

|ut(x, t)|2dx+
1

2

∫
Ω

|∇u(x, t)|2dx+ 1

2

∫ t

t−τ̄

∫
Õ
|k(s)| · |ut(x, s)|2dxds.
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Theorem 6.4.1. Assume (6.2.1). Then, for all initial data (u0, u1) ∈ C([−τ̄ , 0];H1
0 (Ω)×

L2(Ω)), the solution to (6.4.1) satis�es the energy decay estimate

E(t) ≤ C∗e
−βt, t ≥ 0, (6.4.2)

where C∗ is a constant depending on the initial data and β > 0.

Proof. From the energy's de�nition,

E(t) =
1

2
∥U(t)∥2 + 1

2

∫ t

t−τ

∫
Õ
|k(s)| · |ut(x, s)|2dxds

≤ 1

2
∥U(t)∥2 + 1

2

∫ t

t−τ̄
|k(s)|∥U(s)∥2ds.

(6.4.3)

Then, from Theorem 6.2.1,

∥U(t)∥ ≤ C0e
−(ω−ω′)t, ∀t ≥ 0,

for a suitable constant C0 depending on the initial data. So, we can estimate∫ t

t−τ̄
|k(s)|∥U(s)∥2ds ≤ C0Ke

(ω−ω′)τ̄ e−(ω−ω′)t, ∀t ≥ 0.

By using the last two inequalities in (6.4.3), we obtain the exponential decay estimate
(6.4.2).

Remark 6.4.2. As another example, we could consider the damped plate equation (see
e.g. [82] for the model details). The analysis is analogous to the wave case above. Then,
under suitable assumptions, the exponential stability result holds for that model.

6.4.2 A damped elasticity system

Let Ω ⊂ IRd, and let Õ,O ⊂ Ω be as in the previous example. We consider the
following elastodynamic system

utt(x, t)− µ∆u(x, t)− (λ+ µ)∇ div u+ aχO(x)ut(x, t)

+k(t)χÕ(x)ut(x, t− τ(t)) = 0, (x, t) ∈ Ω× (0,+∞),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞),

u(x, s) = u0(x, s), ut(x, s) = u1(x, s), (x, s) ∈ Ω× [−τ̄ , 0],

(6.4.4)

where a is a positive constant, τ(t) is the time delay function satisfying 0 ≤ τ(t) ≤ τ̄ ,
and the delayed damping coe�cient k(·) : [−τ̄ ,+∞) → (0,+∞) is a L1

loc([−τ̄ ,+∞))
function satisfying (0.2.35). Note that, in this case, the function u is vector-valued and
takes values in IRd while λ and µ are positive constants usually called Lamé coe�cients.
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Denoting v(t) = ut(t) and U(t) = (u(t), v(t))T , for any t ≥ 0,, we can rewrite system

(6.4.4) in the abstract form (0.2.32), with H = H1
0 (Ω)

d × L2(Ω)
d
,

A =

(
0 Id

µ∆+ (λ+ µ)∇div −aχO

)
and

B

(
u
v

)
=

(
0

−χÕv

)
, ∀ t ≥ 0.

We know that A generates an exponentially stable C0-semigroup {S(t)}t≥0 (see e.g. [52]),
namely there exist ω,M > 0 such that

||S(t)||L(H) ≤Me−ωt, ∀ t ≥ 0.

Hence, under the assumption (6.2.1), the stability estimate of Theorem 6.2.1 holds for
such a model. Therefore, we can deduce an exponential decay estimate for the energy
functional

E(t) := 1

2

∫
Ω

|ut(x, t)|2dx+
1

2

∫
Ω

[
µ

n∑
i,j=1

( ∂

∂xi
uj(x, t)

)2
+ (λ+ µ)|dvu|

]
dx

+
1

2

∫ t

t−τ̄

∫
Õ
|k(s)| · |ut(x, s)|2dxds.

Theorem 6.4.3. Assume (6.2.1). Then, for all initial data (u0, u1) ∈ C([−τ̄ , 0];H1
0 (Ω)

d×
L2(Ω)d), the solution to (6.4.4) satis�es the energy decay estimate

E(t) ≤ C̄e−β
∗t, t ≥ 0, (6.4.5)

where C̄ is a constant depending on the initial data and β∗ > 0.

Proof. The proof comes analogously to the one of Theorem 6.4.1.



Chapter 7

Semilinear evolution equations with

memory and time-dependent time delay

feedback

In this chapter, we will establish well-posedness and exponential stability for solutions
to system (0.2.36) corresponding to su�ciently small initial data. All the results in this
chapter are contained in [45].

Now, we start our analysis by writing (0.2.36) in abstract form. First of all, in the
spirit of [48], we de�ne an auxiliary function and we give an equivalent formulation of
our model (0.2.36). We introduce the energy of the considered model, that takes into
account the memory damping and of the time-dependent time delay feedback. Due to
the presence of time-variable time delays in the feedback law, we de�ne another auxiliary
energy functional, which is instead not needed in [89] since, there, the constant time delay
case is considered. Then, introducing suitable spaces, we write our model in abstract form.

As in Dafermos [48], we de�ne the function

ηt(s) := u(t)− u(t− s), s, t ∈ (0,+∞), (7.0.1)

so that we can rewrite (0.2.36) in the following way:

utt(t) + (1− β̃)Au(t) +

∫ +∞

0

β(s)Aηt(s)ds+ k(t)BB∗ut(t− τ(t))

= ∇ψ(u(t)), t ∈ (0,+∞),
ηtt(s) = −ηts(s) + ut(t), t, s ∈ (0,+∞),
u(0) = u0(0),
ut(t) = g(t), t ∈ [−τ̄ , 0],
η0(s) = η0(s) = u0(0)− u0(−s) s ∈ (0,+∞).

(7.0.2)

100
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Let us de�ne the energy of the model (0.2.36) (equivalently (7.0.2)) as

E(t) := E(u(t)) =
1

2
||ut(t)||2H +

1− β̃

2
||A

1
2u(t)||2H − ψ(u)

+
1

2

∫ +∞

0

β(s)||A
1
2ηt(s)||2Hds+

1

2

∫ t

t−τ̄
|k(s)| · ||B∗ut(s)||2Hds.

(7.0.3)

Note that, apart from the last term, this is the natural energy for nonlinear wave-type
equations with memory (cf. e.g. [6]). The additional term

1

2

∫ t

t−τ̄
|k(s)| · ∥B∗ut(s)∥2H ds

is crucial in order to deal with the delay feedback in the case of time-varying time delay
(cf. [72, 89] for similar terms).

Moreover, let us de�ne the functional

E(t) := max

{
1

2
max
s∈[−τ̄ ,0]

∥g(s)∥2H , max
s∈[0,t]

E(s)

}
.

In particular, for t = 0,

E(0) := max

{
1

2
max
s∈[−τ̄ ,0]

∥g(s)∥2H , E(0)
}
.

In order to write (7.2.23) as an abstract �rst-order equation, we introduce the follow-

ing Hilbert spaces. Let L2
β((0,+∞);D(A

1
2 )) be the Hilbert space of the D(A

1
2 )−valued

functions in (0,+∞) endowed with the scalar product

⟨φ, ψ⟩
L2
β((0,+∞);D(A

1
2 ))

=

∫ ∞

0

β(s)⟨A
1
2φ,A

1
2ψ⟩Hds

and denote by H the Hilbert space

H = D(A
1
2 )×H × L2

β((0,+∞);D(A
1
2 )),

equipped with the inner product

〈 u
v
w

 ,

 ũ
ṽ
w̃

〉
H

:= (1− β̃)⟨A
1
2u,A

1
2 ũ⟩H + ⟨v, ṽ⟩H +

∫ ∞

0

β(s)⟨A
1
2w,A

1
2 w̃⟩Hds.

(7.0.4)
Setting U = (u, ut, η

t), we can restate (0.2.36) in the abstract form

U ′(t) = AU(t)− k(t)BU(t− τ(t)) + F (U(t)),
U(s) = g̃(s), s ∈ [−τ̄ , 0], (7.0.5)
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where the operator A is de�ned by

A

uv
w

 =

 v

−(1− β̃)Au−
∫ +∞
0

β(s)Aw(s)ds
−ws + v


with domain

D(A) = {(u, v, w) ∈ D(A
1
2 )×D(A

1
2 )× L2

β((0,+∞);D(A
1
2 )) :

(1− β̃)u+

∫ +∞

0

β(s)w(s)ds ∈ D(A), ws ∈ L2
β((0,+∞);D(A

1
2 ))},

(7.0.6)

in the Hilbert space H, and the operator B : H → H is de�ned by

B

 u
v
w

 :=

 0
BB∗v
0

 .

Note that, by (0.2.38), it turns out that ∥B∥L(H) = b2. Moreover, g̃(s) = (u0(0), g(s), η0)
for s ∈ [−τ̄ , 0], and we denote U0 := g̃(0) = (u0(0), u1, η0). Also, F (U) := (0,∇ψ(u), 0)T .

Now, from (H2) and (H3) we deduce that the function F satis�es:

(F1) F (0) = 0;

(F2) for each r > 0 there exists a constant L(r) > 0 such that

||F (U)− F (V )||H ≤ L(r)||U − V ||H (7.0.7)

whenever ||U ||H ≤ r and ||V ||H ≤ r.

It is well-known (see e.g. [57]) that the operatorA in the problem's formulation (7.0.5),
corresponding to the linear undelayed part of the model, generates an exponentially stable
semigroup {S(t)}t≥0, namely there exist two constants M,ω > 0 such that

||S(t)||L(H) ≤Me−ωt, ∀t ≥ 0. (7.0.8)

Our stability results will be obtained under an assumption on the coe�cient k(t) of
the delay feedback. More precisely, we assume (cf. [72]) that there exist two constants
ω′ ∈ [0, ω) and γ ∈ IR such that

b2Meωτ̄
∫ t

0

|k(s)|ds ≤ γ + ω′t, for all t ≥ 0. (7.0.9)

Note that (7.0.9) includes, as particular cases, k integrable or k in L∞ with ∥k∥∞ su�-
ciently small.
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7.1 Local well-posedness and preliminary estimates

In this section, we present some preliminary results that will be crucial to prove global
well-posedness and exponential stability for (0.2.36).

First of all, the following local well-posedness result holds. As we pointed out in Chap-
ter 6, since we are dealing with time-dependent time delays, we cannot argue employing
the classical step-by-step argument that is usually used for delay equations. To establish
local well-posedness, we have rather to use a �xed point approach.

Theorem 7.1.1. Let us consider the system (7.0.5) with initial datum g̃ ∈ C([−τ̄ , 0];H).
Then, there exists a unique local solution U(·) de�ned on a time interval [0, δ).

Proof. Let g̃ ∈ C([−τ̄ , 0];H). We set

C := max

{
2M max

s∈[−τ̄ ,0]
∥g̃(s)∥H, max

s∈[−τ̄ ,0]
∥g̃(s)∥H

}
.

Let ξ > 0 be a su�ciently small time such that

ξL(C) + b2∥k∥L1([0,ξ];IR) <
1

4M
, (7.1.1)

with L(C) as in (7.0.7). Let us denote

Cg̃([−τ̄ , ξ];H) := {U ∈ C([−τ̄ , ξ];H) : U(s) = g̃(s), ∀s ∈ [−τ̄ , 0]}.

Note that Cg̃([−τ̄ , ξ];H) is a nonempty and closed subset of C([−τ̄ , ξ];H). As a conse-
quence, (Cg̃([−τ̄ , ξ];H), ∥·∥C([−τ̄ ,ξ];H)) is a Banach space. Moreover, let us denote

CC
g̃ ([−τ̄ , ξ];H) := {U ∈ Cg̃([−τ̄ , ξ];H) : ∥U(t)∥H ≤ C, ∀t ∈ [−τ̄ , ξ]}.

Let us note that CC
g̃ ([−τ̄ , ξ];H) is nonempty since it su�ces to take

U(s) =

{
U0, s ∈ [0, ξ],

g̃(s), s ∈ [−τ̄ , 0),

to have that U ∈ Cg̃([−τ̄ , ξ];H) and ∥U(t)∥H ≤ ∥g̃∥C([−τ̄ ,ξ];H) ≤ C, for all t ∈ [−τ̄ , ξ].
So, U belongs to CC

g̃ ([−τ̄ , ξ];H). Also, it is easy to see that CC
g̃ ([−τ̄ , ξ];H) is closed in

C([−τ̄ , ξ];H). Hence, (CC
g̃ ([−τ̄ , ξ];H), ∥·∥C([−τ̄ ,ξ];H)) is a Banach space too.

Next, we de�ne the map Γ : CC
g̃ ([−τ̄ , ξ];H) → CC

g̃ ([−τ̄ , ξ];H) given by

ΓU(t) =

{
S(t)U0 +

∫ t
0
S(t− s)[F (U(s)) + k(s)BU(s− τ(s))] ds, t ∈ (0, ξ],

g̃(t), t ∈ [−τ̄ , 0].

We claim that Γ is well-de�ned. Indeed, let U ∈ CC
g̃ ([−τ̄ , ξ];H). Then, from the semigroup

theory, t 7→ S(t)U0 is continuous. Also, since U(·) is continuous in [−τ̄ , ξ], τ(·) is a
continuous function and B is a bounded linear operator from H into itself, [0, ξ] ∋ t 7→
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BU(t−τ(t)) is continuous. Moreover, k ∈ L1([0, ξ]; IR). So k(·)BU(·−τ(·)) ∈ L1([0, ξ];H).
Also, since U(·) is continuous in [−τ̄ , ξ] and F (·) is locally Lipschitz continuous in H from
(F2), the map t → F (U(t)) is continuous in [−τ̄ , ξ]. So, F ((U(·))) ∈ L1([0, ξ];H). As
a consequence, the map t 7→

∫ t
0
S(t − s)[F (U(s)) + k(s)BU(s − τ(s))]ds is continuous in

[0, ξ]. Thus, ΓU ∈ C([0, ξ];H). Furthermore, ΓU = g̃ in [τ̄ , 0]. Finally, for all t ∈ [−τ̄ , 0],

∥ΓU(t)∥H = ∥g̃(t)∥H ≤ C.

On the other hand, for all t ∈ (0, ξ], from (F2) with F (0) = 0 and ∥U∥C([−τ̄ ,ξ];H) ≤ C, we
can write

∥ΓU(t)∥H ≤Me−ωt∥U0∥H +M

∫ t

0

e−ω(t−s)(∥F (U(s))∥H + b2|k(s)|∥U(s− τ(s))∥H)ds

≤M∥U0∥H +M

∫ t

0

(L(C) + b2|k(s)|)(∥U(s)∥H + ∥U(s− τ(s))∥H)ds

≤M∥U0∥H + 2MC(ξL(C) + b2∥k∥L1([0,ξ];IR)).

Thus, using (7.1.1), by de�nition of C we get

∥ΓU(t)∥H ≤ C

2
+ 2MC(ξL(C) + b2∥k∥L1([0,ξ];IR)) ≤

C

2
+ 2MC

1

4M
= C.

Thus,
∥ΓU(t)∥H ≤ C, ∀t ∈ [−τ̄ , ξ].

So, we can conclude that Γ is well de�ned.
Next, we claim that Γ is a contraction. Indeed, let U, V ∈ CC

g̃ ([−τ̄ , ξ];H). Then, for
all t ∈ [−τ̄ , 0],

∥ΓU(t)− ΓV (t)∥H = 0.

On the other hand, for all t ∈ (0, ξ], since ∥U∥C([−τ̄ ,ξ];H), ∥V ∥C([−τ̄ ,ξ];H) ≤ C, from (F2) it
follows that

∥ΓU(t)− ΓV (t)∥H ≤
∫ t

0

∥S(t− s)∥L(H)∥F (U(s))− F (V (s))∥Hds

+

∫ t

0

∥S(t− s)∥L(H)|k(s)|∥BU(s− τ(s))− BV (s− τ(s))∥Hds

≤M(L(C)ξ + b2∥k∥L1([0,ξ];IR))∥U − V ∥C([−τ̄ ,ξ];H).

Thus,

∥ΓU − ΓV ∥C([−τ̄ ,ξ];H) ≤M(L(C)ξ + b2∥k∥L1([0,ξ];IR))∥U − V ∥C([−τ̄ ,ξ];H).

As a consequence, since from (7.1.1) M(L(C)ξ + b2∥k∥L1([0,T ];IR)) <
1
4
< 1, the map Γ

is a contraction. Thus, from the Banach's Theorem, Γ has a unique �xed point U ∈
CC
g̃ ([−τ̄ , ξ];H). So, the �xed point U ∈ CC

g̃ ([−τ̄ , ξ];H) is a local solution to (7.2.23) that
can be extended to some maximal interval [0, δ) since ∥U∥C([0,ξ];H) ≤ C.
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Now, we prove that the �xed point U is the unique local mild solution to (7.0.5).
Indeed, assume that (7.0.5) has another local mild solution V de�ned in a time interval
[0, δ′). Let t0 > 0 be such that both U and V are de�ned in the time interval [0, t0]. We
denote with c := max{∥U∥C([−τ̄ ,t0];H), ∥V ∥C([−τ̄ ,t0];H)}. Then, for every t ∈ [0, t0], we have
that

∥U(t)− V (t)∥H ≤M

∫ t

0

b2|k(s)|∥U(s− τ(s))− V (s− τ(s))∥Hds

+ML(c)

∫ t

0

∥U(s)− V (s)∥Hds

≤M

∫ t

0

(b2|k(s)|+ L(c)) max
r∈[s−τ̄ ,s]

∥U(r)− V (r)∥Hds,

from which

max
r∈[t−τ̄ ,t]

∥U(r)− V (r)∥H ≤M

∫ t

0

(b2|k(s)|+ L(c)) max
r∈[s−τ̄ ,s]

∥U(r)− V (r)∥Hds.

Thus, the Gronwall's estimate yields

max
r∈[t−τ̄ ,t]

∥U(r)− V (r)∥H ≤ 0,

and
∥U(t)− V (t)∥H = 0, ∀t ∈ [0, t0].

So, U and V coincide on every closed interval [0, t0] in which they both exist. Then, δ = δ′

and U is the unique local mild solution to (7.2.23).

Remark 7.1.2. Assume that the time delay function τ(·) is bounded from below by a
positive constant, namely

τ(t) ≥ τ0, ∀t ≥ 0, (7.1.2)

for some τ0 > 0. In this case, Theorem 7.1.1 can be proved in a simpler way. Indeed, in
[0, τ0], we can rewrite the abstract system (7.0.5) as an undelayed problem:

U ′(t) = AU(t)− k(t)Bg̃(t− τ(t)) + F (U(t)), t ∈ (0, τ0),

U(0) = U0.

Then, we can apply the classical theory of nonlinear semigroups (see e.g. [92, 91]) obtain-
ing the existence of a unique solution on a set [0, δ), with δ ≤ τ0.

Now, we present some preliminary estimates.

Lemma 7.1.3. Let u : [0, T ) → IR be a solution of (0.2.36). Assume that

E(t) ≥ 1

4
||ut(t)||2H , ∀t ≥ 0. (7.1.3)

Then,
E(t) ≤ C̄(t)E(0), ∀t ≥ 0, (7.1.4)

where
C̄(t) = e3b

2
∫ t
0 |k(s)|ds. (7.1.5)
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Proof. Di�erentiating the energy, we obtain

dE(t)

dt
= ⟨ut(t), utt(t)⟩H + (1− β̃)⟨A

1
2u(t), A

1
2ut(t)⟩H − ⟨∇ψ(u(t)), ut(t)⟩H

+
1

2
|k(t)| · ||B∗ut(t)||2H − 1

2
|k(t− τ̄)| · ||B∗ut(t− τ̄)||2H

+

∫ +∞

0

β(s)⟨A
1
2ηt(s), A

1
2ηtt(s)⟩Hds.

Then, since from (7.0.2) it holds that

utt(t) = ∇ψ(u(t))− (1− β̃)Au(t)−
∫ +∞

0

β(s)Aηt(s)ds− k(t)BB∗ut(t− τ(t)),

we get

dE(t)

dt
= ⟨ut(t),∇ψ(u(t))⟩H − (1− β̃)⟨ut(t), Au(t)⟩H −

∫ +∞

0

β(s)⟨ut(t), Aηt(s)⟩Hds

−k(t)⟨ut(t), BB∗ut(t− τ(t))⟩H + (1− β̃)⟨A
1
2u(t), A

1
2ut(t)⟩H − ⟨∇ψ(u(t)), ut(t)⟩H

+
1

2
|k(t)| · ||B∗ut(t)||2H − 1

2
|k(t− τ̄)| · ||B∗ut(t− τ̄)||2H

+

∫ +∞

0

β(s)⟨A
1
2ηt(s), A

1
2ηtt(s)⟩Hds.

Let us note that, being A a self-adjoint positive operator, also A
1
2 is self-adjoint. This

together with the second inequality in (7.0.2), i.e. ηtt = −ηts + ut, yields

dE(t)

dt
= −

∫ +∞

0

β(s)⟨ut(t), Aηt(s)⟩Hds− k(t)⟨ut(t), BB∗ut(t− τ(t))⟩H

+
1

2
|k(t)| · ||B∗ut(t)||2H − 1

2
|k(t− τ̄)| · ||B∗ut(t− τ̄)||2H

+

∫ +∞

0

β(s)⟨Aηt(s), ηtt(s)⟩Hds

= −k(t)⟨ut(t), BB∗ut(t− τ(t))⟩H +
1

2
|k(t)| · ||B∗ut(t)||2H

−1

2
|k(t− τ̄)| · ||B∗ut(t− τ̄)||2H −

∫ +∞

0

β(s)⟨Aηt(s), ηts(s)⟩Hds.

Now, we claim that ∫ +∞

0

β(s)⟨ηts, Aηt(s)⟩Hds ≥ 0. (7.1.6)

Indeed, since A
1
2 is self-adjoint, we can write

1

2

d

ds
||A

1
2ηt(s)||2H = ⟨A

1
2ηts, A

1
2ηt(s)⟩H = ⟨ηts, Aηt(s)⟩H .
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Thus, since ηt(0) = 0 and β(t)||A 1
2ηt(s)||2H → 0, as t→ +∞, (see [56] for details) it comes

that ∫ +∞

0

β(s)⟨ηts, Aηt(s)⟩Hds = −1

2

∫ +∞

0

β′(s)||A
1
2ηt(s)||2Hds.

Finally, using again (iv) on the memory kernel β(·), we can say that∫ +∞

0

β(s)⟨ηts, Aηt(s)⟩Hds = −1

2

∫ +∞

0

β′(s)||A
1
2ηt(s)||2Hds

≥ δ

2

∫ +∞

0

β(s)||A
1
2ηt(s)||2Hds ≥ 0,

,

which proves (7.1.6).
Next, from (7.1.6), we can estimate the derivative of the energy in the following way:

dE(t)

dt
≤ −k(t)⟨ut(t), BB∗ut(t− τ(t))⟩H +

1

2
|k(t)| · ||B∗ut(t)||2H − 1

2
|k(t− τ̄)| · ||B∗ut(t− τ̄)||2H

≤ −k(t)⟨ut(t), BB∗ut(t− τ(t))⟩H +
1

2
|k(t)| · ||B∗ut(t)||2H .

Therefore, using the de�nition of adjoint and Young inequality, we get

dE(t)

dt
≤ −k(t)⟨B∗ut(t), B

∗ut(t− τ(t))⟩H +
1

2
|k(t)| · ||B∗ut(t)||2H

≤ 1

2
|k(t)| · ||B∗ut(t)||2H +

1

2
|k(t)| · ||B∗ut(t− τ(t))||2H +

1

2
|k(t)| · ||B∗ut(t)||2H

≤ 3

2
|k(t)| max

s∈[t−τ̄ ,t]
||B∗ut(s)||2H .

Now, let us note that, from (7.1.3), for t ≥ τ̄ it holds that

max
s∈[t−τ̄ ,t]

{||B∗ut(s)||2H} ≤ max
s∈[0,t]

{||B∗ut(s)||2H} ≤ b2 max
s∈[0,t]

{||ut(s)||2H} ≤ 2b2 max
s∈[0,t]

E(s) ≤ 2b2E(t).

On the other hand, if t ∈ [0, τ̄), using again (7.1.3), or

max
s∈[t−τ̄ ,t]

{||B∗ut(s)||2H} = max
s∈[0,t]

{||B∗ut(s)||2H} ≤ 2b2E(t),

or

max
s∈[t−τ̄ ,t]

{||B∗ut(s)||2H} = max
s∈[−τ̄ ,0]

{||B∗ut(s)||2H} ≤ b2 max
s∈[−τ̄ ,0]

{||g(s)||2H} ≤ 2b2E(t).

Therefore,
max

s∈[t−τ̄ ,t]
{||B∗ut(s)||2H} ≤ 2b2E(t), ∀t ≥ 0,

from which
dE(t)

dt
≤ 3b2|k(t)|E(t), ∀t ≥ 0.
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As a consequence, since E(t) is constant or increases like E(t), it turns out that

dE(t)
dt

≤ 3b2|k(t)|E(t), ∀t ≥ 0.

Then, the Gronwall's inequality yields

E(t) ≤ e3b
2
∫ t
0 |k(s)|dsE(0).

By de�nition of E(t), we �nally get

E(t) ≤ E(t) ≤ e3b
2
∫ t
0 |k(s)|dsE(0),

from which
E(t) ≤ e3b

2
∫ t
0 |k(s)|dsE(0),

that ends the proof.

The following lemma allows us to �nd a bound from below on the energy of the model,
provided that a smallness condition is satis�ed by the initial data.

Lemma 7.1.4. Let U(t) = (u(t), ut(t), η
t) be a non-zero solution to (7.0.5) de�ned on

an interval [0, δ), and let T > δ. Let h be the strictly increasing function appearing in
(0.2.40).

1. If h(||A 1
2u0(0)||H) < 1−β̃

2
, then E(0) > 0.

2. Assume that h(||A 1
2u0(0)||H) < 1−β̃

2
and that

h

(
2

(1− β̃)
1
2

C
1
2E

1
2 (0)

)
<

1− β̃

2
, (7.1.7)

for some positive constant C ≥ C̄(T ), with C̄(·) de�ned in (7.1.5). Then

E(t) >
1

4
||ut(t)||2H +

1− β̃

4
||A

1
2u(t)||2H +

1

4

∫ t

t−τ̄
|k(s)| · ||B∗ut(s)||2Hds

+
1

4

∫ +∞

0

β(s)||A
1
2ηt(s)||2Hds,

(7.1.8)

for all t ∈ [0, δ). In particular,

E(t) >
1

4
∥U(t)∥2H, ∀t ∈ [0, δ). (7.1.9)

Remark 7.1.5. Let us note that (7.1.7) implies that

h

(
2

(1− β̃)
1
2

C̄
1
2 (T )E

1
2 (0)

)
<

1− β̃

2
, (7.1.10)

being the positive constant C in (7.1.7) bigger or equal than C̄(T ) and being the function
h strictly increasing.
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Proof. From the assumption (H3) on the function ψ, we can write

|ψ(u)| ≤
∫ 1

0

|⟨∇ψ(su), u⟩H |ds

≤ ||A
1
2u||2H

∫ 1

0

h(s||A
1
2u||H)sds

≤ h(||A
1
2u||H)||A

1
2u||2H

∫ 1

0

sds =
1

2
h(||A

1
2u||H)||A

1
2u||2H ,

(7.1.11)

where we used the fact that h is a strictly increasing function and the fact that ||u||
D(A

1
2 )

=

(1− β̃)||A 1
2u||H with β̃ < 1.

Now, being U a non-zero solution to (7.0.5), the initial datum g̃ satis�es Bg̃ ̸= 0. Indeed,
if the initial datum g̃ is such that Bg̃ ≡ 0, then the unique solution to (7.0.5) is U ≡ 0.
As a consequence B∗g ̸= 0 since, otherwise, being B a linear operator, we would have

0 = BB∗g = Bg̃. Hence, from the assumption h(∥A 1
2u0(0)∥H) < 1−β̃

2
and from (7.1.11),

we have that

E(0) =
1

2
||u1||2H +

1− β̃

2
||A

1
2u0(0)||2H − ψ(u0(0)) +

1

2

∫ 0

−τ̄
|k(s)| · ||B∗g(s)||2Hds

+
1

2

∫ +∞

0

β(s)||A
1
2η0(s)||2Hds

≥ 1

2
||u1||2H +

1− β̃

2
||A

1
2u0(0)||2H − 1

2
h(||A

1
2u0(0)||H)||A

1
2u0(0)||2H

+
1

2

∫ 0

−τ̄
|k(s)| · ||B∗g(s)||2Hds+

1

2

∫ +∞

0

β(s)||A
1
2η0(s)||2Hds

≥ 1

2
||u1||2H +

1− β̃

4
||A

1
2u0(0)||2H +

1

2

∫ 0

−τ̄
|k(s)| · ||B∗g(s)||2Hds

+
1

2

∫ +∞

0

β(s)||A
1
2η0(s)||2Hds > 0.

So, the claim 1 is proven.
In order to prove the second statement, we argue by contradiction. Let us denote

r := sup{s ∈ [0, δ) : (7.1.8) holds, ∀t ∈ [0, s)}.

We suppose by contradiction that r < δ. Then, by continuity, it holds

E(r) =
1

4
||ut(r)||2H +

1− β̃

4
||A

1
2u(r)||2H +

1

4

∫ r

r−τ̄
|k(s)| · ||B∗ut(s)||2Hds

+
1

4

∫ +∞

0

β(s)||A
1
2ηr(s)||2Hds.

(7.1.12)
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In particular, (7.1.12) implies that

1− β̃

4
∥A

1
2u(r)∥2H ≤ E(r).

Also, by de�nition of r, for all t ∈ [0, r],

E(t) ≥ 1

4
||ut(t)||2H +

1− β̃

4
||A

1
2u(t)||2H

+
1

4

∫ t

t−τ̄
|k(s)| · ||B∗ut(s)||2Hds+

1

4

∫ +∞

0

β(s)||A
1
2ηt(s)||2Hds

≥ 1

4
||ut(t)||2H .

Thus, the assumption (7.1.3) of Lemma 7.1.3 is satis�ed and we can write

E(t) ≤ C̄(t)E(0), ∀t ∈ [0, r],

from which, being C̄(t) ≤ C̄(T ), it comes that

E(t) ≤ C̄(T )E(0), ∀t ∈ [0, r].

In particular, for t = r,
E(r) ≤ C̄(T )E(0).

As a consequence,
1− β̃

4
∥A

1
2u(r)∥2H ≤ E(r) ≤ C̄(T )E(0).

Thus, since h is strictly increasing, from (7.1.7) (which implies (7.1.10)) we have that

h(||A
1
2u(r)||H) ≤ h

(
2

(1− β̃)
1
2

C̄
1
2 (T )E

1
2 (0)

)
<

1− β̃

2
. (7.1.13)

Finally, using (7.1.11) and (7.1.13) we can conclude that

E(r) =
1

2
||ut(r)||2H +

1− β̃

2
||A

1
2u(r)||2H − ψ(u(r)) +

1

2

∫ r

r−τ̄
|k(s)| · ||B∗ut(s)||2Hds

+
1

2

∫ +∞

0

β(s)||A
1
2ηr(s)||2Hds

>
1

4
||ut(r)||2H +

1− β̃

4
||A

1
2u(r)||2H +

1

4

∫ r

r−τ̄
|k(s)| · ||B∗ut(s)||2Hds

+
1

4

∫ +∞

0

β(s)||A
1
2ηr(s)||2Hds.

This contradicts the maximality of r. So, r = δ and the proof is completed.
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7.2 Global well-posedness and stability

Now, we prove our main results. First, we give a stability result for the abstract model
(7.0.5) under suitable assumptions. More precisely, we prove an exponential stability
estimate for solutions to (7.0.5) corresponding to small initial data.

Theorem 7.2.1. Assume (7.0.9). Let g̃ ∈ C([−τ̄ , 0];H) and let U be a solution to (7.0.5)
with the initial datum g̃, de�ned in a time interval [0, T ], T > 0, that satis�es

∥U(t)∥H ≤ C, ∀t ∈ [0, T ], (7.2.1)

for some C > 0 such that L(C) < ω−ω′

M
.

Then, U satis�es the exponential decay estimate

∥U(t)∥H ≤Meγ
(
||U0||H + eωτ̄Kb2 max

r∈[−τ̄ ,0]
{eωr||g̃(r)||H}

)
e−(ω−ω′−ML(C))t, (7.2.2)

for all t ∈ [0, T ].

Proof. Let g̃ ∈ C([−τ̄ , 0];H). Let U be a solution to (7.0.5) with the initial datum g̃.
From Duhamel's formula, for all t ∈ [0, T ] we have

U(t) = S(t)U0 +

∫ t

0

S(t− s)[−k(s)BU(s− τ(s)) + F (U(s))]ds.

Thus, using (7.0.8), we get

||U(t)||H ≤ ||S(t)||L(H)||U0||H +

∫ t

0

||S(t− s)||L(H)|k(s)| · ||BU(s− τ(s))||Hds

+

∫ t

0

||S(t− s)||L(H)||F (U(s))||Hds

≤Me−ωt||U0||H +Me−ωt
∫ t

0

eωs|k(s)| · ||BU(s− τ(s))||Hds

+Me−ωt
∫ t

0

eωs||F (U(s))||Hds.

Now, using the assumptions (F1) and (F2) on F and taking into account of (7.2.1), we
can write

||F (U(s))||H = ||F (U(s))− F (0)||H ≤ L(C)||U(s)||H.
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This last fact together with (0.2.37) implies that

||U(t)||H ≤Me−ωt||U0||H +Me−ωt
∫ t

0

eωs|k(s)| · ||BU(s− τ(s))||Hds

+ML(C)e−ωt
∫ t

0

eωs||U(s)||Hds

≤Me−ωt||U0||H +Me−ωteωτ̄
∫ t

0

eω(s−τ(s))|k(s)| · ||BU(s− τ(s))||Hds

+ML(C)e−ωt
∫ t

0

eωs||U(s)||Hds.

(7.2.3)

Now, we assume t ≥ τ̄ . We split∫ t

0

eω(s−τ(s))|k(s)| · ||BU(s− τ(s))||Hds =
∫ τ̄

0

eω(s−τ(s))|k(s)| · ||BU(s− τ(s))||Hds

+

∫ t

τ̄

eω(s−τ(s))|k(s)| · ||BU(s− τ(s))||Hds.

(7.2.4)
We �rst estimate, using (0.2.39) with t = τ̄ ,∫ τ̄

0

eω(s−τ(s))|k(s)| · ||BU(s− τ(s))||Hds

≤ b2
∫ τ̄

0

|k(s)|
(

max
r∈[−τ̄ ,0]

{eωr||g̃(r)||H}+ max
r∈[0,s]

{eωr||U(r)||H}
)
ds

≤ Kb2 max
r∈[−τ̄ ,0]

{eωr||g̃(r)||H}+ b2
∫ τ̄

0

|k(s)| max
r∈[0,s]

{eωr||U(r)||H}ds.

= Kb2 max
r∈[−τ̄ ,0]

{eωr||g̃(r)||H}+ b2
∫ τ̄

0

|k(s)| max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||H}ds.

Also,∫ t

τ̄

eω(s−τ(s))|k(s)| · ||BU(s− τ(s))||Hds ≤ b2
∫ t

τ̄

eω(s−τ(s))|k(s)| · ||U(s− τ(s))||Hds

≤ b2
∫ t

τ̄

|k(s)| max
r∈[s−τ̄ ,s]

{eωr||U(r)||H}ds

= b2
∫ t

τ̄

|k(s)| max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||H}ds.

Therefore, (7.2.4) becomes∫ t

0

eω(s−τ(s))|k(s)| · ||BU(s− τ(s))||Hds ≤ Kb2 max
r∈[−τ̄ ,0]

{eωr||g̃(r)||H}

+

∫ t

0

b2|k(s)| max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||H}ds,
(7.2.5)
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for all t ≥ τ̄ .
On the other hand, if t < τ̄ , using (0.2.39) it rather holds∫ t

0

eω(s−τ(s))|k(s)| · ||BU(s− τ(s))||Hds

≤ b2
∫ t

0

|k(s)| max
r∈[−τ̄ ,0]

{eωr||g̃(r)||H}ds+ b2
∫ t

0

|k(s)| max
r∈[0,s]

{eωr||U(r)||H}ds

= b2
∫ t

0

|k(s)| max
r∈[−τ̄ ,0]

{eωr||g̃(r)||H}ds+ b2
∫ t

0

|k(s)| max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||H}ds

≤ b2
∫ τ̄

0

|k(s)| max
r∈[−τ̄ ,0]

{eωr||g̃(r)||H}ds+ b2
∫ t

0

|k(s)| max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||H}ds

≤ Kb2 max
r∈[−τ̄ ,0]

{eωr||g̃(r)||H}+ b2
∫ t

0

|k(s)| max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||H}ds.

So, (7.2.5) holds for every t ∈ [0, T ]. Putting (7.2.5) in (7.2.3), we can write

||U(t)||H ≤Me−ωt
(
||U0||H + eωτ̄Kb2 max

r∈[−τ̄ ,0]
{eωr||g̃(r)||H}

)
+Me−ωteωτ̄b2

∫ t

0

|k(s)| max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||H}ds+ML(C)e−ωt
∫ t

0

eωs||U(s)||Hds,

≤Me−ωt
(
||U0||H + eωτ̄Kb2 max

r∈[−τ̄ ,0]
{eωr||g̃(r)||H}

)
+e−ωt

∫ t

0

(Meωτ̄b2|k(s)|+ML(C)) max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||H}ds,

from which

eωt||U(t)||H ≤M

(
||U0||H + eωτ̄Kb2 max

r∈[−τ̄ ,0]
{eωr||g̃(r)||H}

)
+

∫ t

0

(Meωτ̄b2|k(s)|+ML(C)) max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||H}ds,

for all t ∈ [0, T ]. Thus,

max
r∈[t−τ̄ ,t]∩[0,t]

{eωr||U(r)||H} ≤M

(
||U0||H + eωτ̄Kb2 max

r∈[−τ̄ ,0]
{eωr||g̃(r)||H}

)
+

∫ t

0

(Meωτ̄b2|k(s)|+ML(C)) max
r∈[s−τ̄ ,s]∩[0,s]

{eωr||U(r)||H}ds.

Hence, denoted with
Ũ(t) := max

r∈[t−τ̄ ,t]∩[0,t]
{eωr||U(r)||H},
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using Gronwall's inequality we get

∥Ũ(t)∥H ≤M

(
||U0||H + eωτ̄Kb2 max

r∈[−τ̄ ,0]
{eωr||g̃(r)||H}

)
eMb2eωτ̄

∫ t
0 |k(s)|ds+ML(C)t.

Finally,

eωt∥U(t)∥H ≤M

(
||U0||H + eωτ̄Kb2 max

r∈[−τ̄ ,0]
{eωr||g̃(r)||H}

)
eMb2eωτ̄

∫ t
0 |k(s)|ds+ML(C)t,

which implies that

∥U(t)∥H ≤M

(
||U0||H + eωτ̄Kb2 max

r∈[−τ̄ ,0]
{eωr||g̃(r)||H}

)
eMb2eωτ̄

∫ t
0 |k(s)|ds+ML(C)te−ωt.

From (7.0.9), we can conclude that

∥U(t)∥H ≤Meγ
(
||U0||H + eωτ̄Kb2 max

r∈[−τ̄ ,0]
{eωr||g̃(r)||H}

)
e−(ω−ω′−ML(C))t,

for all t ∈ [0, T ], which proves the exponential decay estimate (7.2.2).

Now, we prove that, for su�ciently small initial data, the system (0.2.36) has a unique
global solution that satis�es (7.2.1), whenever the coe�cient of the delay feedback k(t)
satis�es (7.0.9).

Theorem 7.2.2. Assume (7.0.9). There exist ρ > 0 and Cρ > 0, with L(Cρ) <
ω−ω′

2M
, for

which, if g̃ = (u0(0), g, η0) is such that

||u1||2H + (1− β̃)||A
1
2u0(0)||2H +

∫ 0

−τ̄
|k(s)| · ||B∗g(s)||2H

+

∫ +∞

0

β(s)||A
1
2η0(s)||2Hds < ρ2

(7.2.6)

and
max
s∈[−τ̄ ,0]

||g(s)||H < ρ, (7.2.7)

then the problem (7.0.2) with the initial datum g̃ has a unique global solution U ∈
C([0,+∞)),H) that satis�es

∥U(t)∥H ≤ Cρ, ∀t ≥ 0. (7.2.8)

Proof. Let us �x a time T su�ciently large, T ≥ τ̄ , such that

CT := 4M2e2γ max
{
(1 +Kb2eωτ̄ ), eωτ̄

} (
1 + e2ωτ̄K2b4

)
e−(ω−ω′)T < 1. (7.2.9)

Also, we set

C∗
T := sup

{
e3b

2
∫ (n+1)T
nT |k(s)|ds : n ∈ N

}
. (7.2.10)
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The assumption (0.2.39) ensures that C∗
T < +∞. Note that C∗

T ≥ C̄(T ), where C̄(T ) is
de�ned in (7.1.5). Now, we pick ρ > 0 in such a way that

ρ ≤ (1− β̃)
1
2

2(C∗
T )

1
2

h−1

(
1− β̃

2

)
. (7.2.11)

Let (u0(0), u1, η0) and g be such that (7.2.6) and (7.2.7) holds true. Then, the initial
datum g̃ satis�es the following smallness condition:

max
s∈[−τ̄ ,0]

||g̃(s)||H ≤
√
2ρ. (7.2.12)

Now, from Theorem 7.1.1 there exists a unique local solution U(·) to (7.0.5) with the
initial datum g̃(s), s ∈ [−τ̄ , 0] which is de�ned on a time interval [0, δ) and that satis�es
the Duhamel's formula

U(t) = S(t)U0 +

∫ t

0

S(t− s)[−k(s)BU(s− τ(s)) + F (U(s))] ds, (7.2.13)

for all t ∈ [0, δ). Without loss of generality, we can suppose that δ ≤ T . Also, we
can assume that U is a non-zero solution to (7.0.5), since, otherwise, (7.2.8) is trivially
satis�ed. Thus, using (7.2.11), the assumption (7.2.6) on the initial data, and recalling
that h is a strictly increasing function, we get

h(||A
1
2u0(0)||H) < h

(
ρ

(1− β̃)
1
2

)
≤ h

(
1

2(C∗
T )

1
2

h−1

(
1− β̃

2

))

≤ h

(
h−1

(
1− β̃

2

))
=

1− β̃

2
,

were in the above inequality we used the fact that 2(C∗
T )

1
2 ≥ 1. Hence, since we have

h(||A 1
2u0(0)||H) < 1−β̃

2
, from Lemma 7.1.4 it follows that E(0) > 0.
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Also, using (7.1.11) and the fact that h(||A 1
2u0(0)||H) < 1−β̃

2
, we can write

E(0) =
1

2
||u1||2H +

1− β̃

2
||A

1
2u0(0)||2H − ψ(u0(0)) +

1

2

∫ 0

−τ̄
|k(s)| · ||B∗ut(s)||2Hds

+
1

2

∫ +∞

0

β(s)||A
1
2η0(s)||2Hds

≤ 1

2
||u1||2H +

1− β̃

2
||A

1
2u0(0)||2H +

1

2
h(||A

1
2u0(0)||H)||A

1
2u0(0)||2H

+
1

2

∫ 0

−τ̄
|k(s)| · ||B∗g(s)||2Hds+

1

2

∫ +∞

0

β(s)||A
1
2η0(s)||2Hds

≤ 1

2
||u1||2H +

1− β̃

2
||A

1
2u0(0)||2H +

1− β̃

4
||A

1
2u0(0)||2H

+
1

2

∫ 0

−τ̄
|k(s)| · ||B∗g(s)||2Hds+

1

2

∫ +∞

0

β(s)||A
1
2η0(s)||2Hds

=
1

2
||u1||2H +

3

4
(1− β̃)||A

1
2u0(0)||2H +

1

2

∫ 0

−τ̄
|k(s)| · ||B∗g(s)||2Hds

+
1

2

∫ +∞

0

β(s)||A
1
2η0(s)||2Hds < ρ2.

The above inequality, together with (7.2.11), implies that

h

(
2

(1− β̃)
1
2

(C∗
T )

1
2E

1
2 (0)

)
< h

(
2

(1− β̃)
1
2

(C∗
T )

1
2ρ

)
≤ h

(
h−1

(
1− β̃

2

))
=

1− β̃

2
.

(7.2.14)
Furthermore, from (7.2.7),

h

(
2

(1− β̃)
1
2

(C∗
T )

1
2 · 1√

2
max
s∈[−τ̄ ,0]

||g(s)||H

)
< h

( √
2

(1− β̃)
1
2

(C∗
T )

1
2ρ

)
≤ 1− β̃

2
. (7.2.15)

Then, from (7.2.14), (7.2.15) and by de�nition of E(0), we have that

h

(
2

(1− β̃)
1
2

(C∗
T )

1
2E

1
2 (0)

)
<

1− β̃

2
. (7.2.16)

Since C∗
T ≥ C̄(T ), the above inequality (7.2.16) allows us to apply Lemma 7.1.4, that

ensures that (7.1.8) is satis�ed for all t ∈ [0, δ). In particular,

E(t) ≥ 1

4
||ut(t)||2H , ∀t ∈ [0, δ).
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Combining (7.1.4) and (7.1.8) with C̄(t) ≤ C̄(T ) ≤ C∗
T , it turns out that

1

4
||ut(t)||2H +

1− β̃

4
||A

1
2u(t)||2H +

1

4

∫ t

t−τ̄
|k(s)| · ||B∗ut(s)||2Hds+

1

4

∫ +∞

0

β(s)||A
1
2ηt(s)||2Hds

< E(t) ≤ C∗
TE(0),

(7.2.17)
for all t ∈ [0, δ). Thus, since the solution U is bounded from (7.2.17), we can extend it in
t = δ and in the whole interval [0, T ]. Moreover, (7.2.17) holds for all t ∈ [0, T ].
Now, using (7.2.16) and (7.2.17) with t = T , we can write

h(||A
1
2u0(T )||H) ≤ h

(
2

(1− β̃)
1
2

(C∗
T )

1
2E

1
2 (0)

)
<

1− β̃

2
. (7.2.18)

Furthermore, from the smallness assumption (7.2.6) on the initial data and from (7.2.17),
it comes that

1

4
||U(t)||2H ≤ E(t) ≤ C∗

Tρ
2,

where here we have used the fact that E(0) < ρ2. Thus,

||U(t)||H ≤ Cρ := 2(C∗
T )

1
2ρ. (7.2.19)

Next, eventually choosing a smaller value of ρ, we can suppose that L(Cρ) <
ω−ω′

2M
. We

have so proved that there exist ρ > 0, Cρ > 0 such that, whenever the initial data
(u0(0), g, η0) satisfy the smallness condition (7.2.6) and (7.2.7), then the system (7.0.5)
with the initial data U0, g̃, has a unique solution U de�ned in the time interval [0, T ] such
that ||U(t)||H ≤ Cρ.
As a consequence, from Theorem 7.2.1, being L(Cρ) <

ω−ω′

2M
, the following estimate holds

∥U(t)∥H ≤Meγ
(
||U0||H + eωτ̄Kb2 max

r∈[−τ̄ ,0]
{eωr||g̃(r)||H}

)
e−

ω−ω′
2

t,

for all t ∈ [0, T ]. Thus, using (7.2.12), we can write

∥U(t)∥H ≤Meγ
(
||U0||H + eωτ̄Kb2

√
2ρ
)
e−

ω−ω′
2

t,

for any t ∈ [0, T ]. Then,

∥U(t)∥2H ≤M2e2γ
(
||U0||H + eωτ̄Kb2

√
2ρ
)2
e−(ω−ω′)t

≤ 2M2e2γ
(
||U0||2H + (eωτ̄Kb2

√
2ρ)2

)
e−(ω−ω′)t

= 2M2e2γ
(
||U0||2H + e2ωτ̄K2b42ρ2

)
e−(ω−ω′)t,

from which, taking into account (7.2.12) with U0 = g̃(0),

∥U(t)∥2H ≤ 4M2e2γρ2
(
1 + e2ωτ̄K2b4

)
e−(ω−ω′)t, (7.2.20)
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for all t ∈ [0, T ].
Also, for all s ∈ [T − τ̄ , T ] ⊆ [0, T ], (1.1.18) yields

||ut(s)||2H ≤ ∥U(s)∥2H

≤ 4M2e2γρ2
(
1 + e2ωτ̄K2b4

)
e−(ω−ω′)s

≤ 4M2e2γρ2
(
1 + e2ωτ̄K2b4

)
e−(ω−ω′)(T−τ̄)

≤ 4M2e2γeωτ̄ρ2
(
1 + e2ωτ̄K2b4

)
e−(ω−ω′)T .

As a consequence, from (0.2.39)∫ T

T−τ̄
|k(s)| · ||B∗ut(s)||2Hds ≤ 4M2e2γeωτ̄b2ρ2

(
1 + e2ωτ̄K2b4

)
e−(ω−ω′)T

∫ T

T−τ̄
|k(s)|ds

≤ 4KM2e2γeωτ̄b2ρ2
(
1 + e2ωτ̄K2b4

)
e−(ω−ω′)T .

This last fact together with (7.2.20) implies that

∥U(T )∥2H +

∫ T

T−τ̄
|k(s)| · ||B∗ut(s)||2Hds

≤ 4M2e2γρ2
(
1 + e2ωτ̄K2b4

) (
1 +Kb2eωτ̄

)
e−(ω−ω′)T ≤ CTρ

2 < ρ2.

(7.2.21)

Moreover, (7.2.20) implies that

max
s∈[T−τ̄ ,T ]

||ut(s)||2H ≤ 4M2e2γeωτ̄ρ2
(
1 + e2ωτ̄K2b4

)
e−(ω−ω′)T ≤ CTρ

2 < ρ2,

from which
max

s∈[T−τ̄ ,T ]
||ut(s)||H < ρ. (7.2.22)

The conditions (7.2.21) and (7.2.22) allow us to apply the same arguments employed
before on the interval [T, 2T ]. Namely, we consider the initial value problem

V ′(t) = AV (t)− k(t)BV (t− τ(t)) + F (V (t)), t ∈ [T, 2T ],
V (s) = U(s), s ∈ [T − τ̄ , T ],

(7.2.23)

where U(·) is the solution to (7.0.5) in the interval [0, T ].
We de�ne now the energy of the solution

Ẽ(t) := Ẽ(v(t)) =
1

2
||vt(t)||2H +

1− β̃

2
||A

1
2v(t)||2H − ψ(v)

+
1

2

∫ +∞

0

β(s)||A
1
2ηt(s)||2Hds+

1

2

∫ t

t−τ̄
|k(s)| · ||B∗vt(s)||2Hds,

(7.2.24)

where ηt(s) = v(t)− v(t− s), and the functional

Ẽ(t) := max

{
1

2
max

s∈[T−τ̄ ,T ]
∥ut(s)∥2H , max

s∈[T,t]
Ẽ(s)

}
. (7.2.25)
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Let us note that Ẽ(T ) = E(T ).
Now, from Theorem 7.1.1, the problem (7.2.23) with the initial datum U(s), s ∈ [T−τ̄ , T ],
has a unique local solution V (·) de�ned on a time interval [T, T+δ) given by the Duhamel's
formula

V (t) = S(t− T )U(T ) +

∫ t

0

S(t− T − s)[−k(s)BV (s− τ(s)) + F (V (s))] ds, (7.2.26)

for all t ∈ [T, T + δ). We can assume that δ ≤ τ̄ and that V is a non-zero solution, since,
otherwise, (7.2.8) is obviously satis�ed for all t ≥ T .
First of all, the inequality (7.2.18) yields Ẽ(T ) > 0.
Let us note that, if Ẽ(t) ≥ 1

4
∥vt(t)∥2H , for all t ∈ [T, T + δ), arguing as in Lemma 7.1.3,

Ẽ(t) ≤ e3b
2
∫ t
T |k(s)|ds Ẽ(T ), ∀t ∈ [T, T + δ). (7.2.27)

Also, using the same arguments employed in Lemma 7.1.4 and observing that

C∗
T ≥ e3b

2
∫ 2T
T |k(s)|ds,

if

h

(
2

(1− β̃)
1
2

(C∗
T )

1
2 Ẽ

1
2 (T )

)
<

1− β̃

2
, (7.2.28)

then

Ẽ(t) >
1

4
||vt(t)||2H +

1− β̃

4
||A

1
2v(t)||2H +

1

4

∫ t

t−τ̄
|k(s)| · ||B∗vt(s)||2Hds

+
1

4

∫ +∞

0

β(s)||A
1
2ηt(s)||2Hds,

(7.2.29)

for all t ∈ [T, T + δ). In particular,

Ẽ(t) >
1

4
∥V (t)∥2H, ∀t ∈ [T, T + δ). (7.2.30)

Now, from (7.2.21), we have Ẽ(T ) < ρ2. This together with (7.2.22) implies that

Ẽ(T ) < ρ2. (7.2.31)

Hence, using (7.2.11) we get

h

(
2

(1− β̃)
1
2

(C∗
T )

1
2 Ẽ(T )

1
2

)
< h

(
2

(1− β̃)
1
2

(C∗
T )

1
2ρ

)
<

1− β̃

2
. (7.2.32)

So, (7.2.28) is satis�ed. As a consequence, inequalities (7.2.29) and (7.2.30) hold for all
t ∈ [T, T + δ). In particular, from (7.2.30) we get

Ẽ(t) ≥ 1

4
∥vt(t)∥2H , ∀t ∈ [T, T + δ).
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Therefore, also inequality (7.2.27) is ful�lled. Combining (7.2.27) and (7.2.29), we �nally
get

1

4
||vt(t)||2H +

1− β̃

4
||A

1
2v(t)||2H +

1

4

∫ t

t−τ̄
|k(s)| · ||B∗vt(s)||2Hds+

1

4

∫ +∞

0

β(s)||A
1
2ηt(s)||2Hds

< Ẽ(t) ≤ e3b
2
∫ 2T
T |k(s)|dsẼ(T ) ≤ C∗

T Ẽ(T ).
(7.2.33)

Thus, the solution V is bounded and we can extend it in t = T + δ and in the whole
interval [T, 2T ]. Moreover, (7.2.33) and (7.2.30) hold true for all t ∈ [T, 2T ]. So, taking
into account of (7.2.31), it holds

∥V (t)∥H ≤ 2(C∗
T )

1
2 Ẽ

1
2 (T ) ≤ 2(C∗

T )
1
2ρ = Cρ. (7.2.34)

Putting together the two partial solutions (7.2.13) and (7.2.26) to (7.0.5) obtained in the
time intervals [0, T ] and [T, 2T ], respectively, we get the existence of a unique solution
U ∈ C([0, 2T ];H) to (7.0.5) that is de�ned in the time interval [0, 2T ] and that satis�es
the Duhamel's formula (7.2.13), for all t ∈ [0, 2T ]. Moreover, from (7.2.19) and (7.2.34),
the solution U satis�es (7.2.1) with C = Cρ. Thus, since L(Cρ) <

ω−ω′

2M
, the exponential

decay estimate (7.2.2) is satis�ed by the solution U , i.e.

∥U(t)∥H ≤Meγ
(
||U0||H + eωτ̄Kb2 max

r∈[−τ̄ ,0]
{eωr||g̃(r)||H}

)
e−

ω−ω′
2

t, ∀t ∈ [0, 2T ].

Again, we deduce that (7.2.20) holds for all t ∈ [0, 2T ]. Furthermore, for all s ∈ [2T −
τ̄ , 2T ],

||ut(s)||2H ≤ ||U(s)||2H ≤ 4M2e2γeωτ̄ρ2
(
1 + e2ωτ̄K2b4

)
e−(ω−ω′)2T .

As a consequence,

∥U(2T )∥2H +

∫ 2T

2T−τ̄
|k(s)| · ||B∗ut(s)||2Hds ≤ 4M2e2γρ2(1 + e2ωτ̄K2b4)e−(ω−ω′)2T

+4M2e2γeωτ̄Kb2ρ2(1 + e2ωτ̄K2b4)e−(ω−ω′)2T

≤ 4M2e2γρ2(1 + e2ωτ̄K2b4)(1 +Kb2eωτ̄ )e−(ω−ω′)2T

≤ 4M2e2γρ2(1 + e2ωτ̄K2b4)(1 +Kb2eωτ̄ )e−(ω−ω′)T

≤ CTρ
2 < ρ2.

(7.2.35)
Also,

max
s∈[2T−τ̄ ,2T ]

||ut(s)||2H ≤ 4M2e2γeωτ̄ρ2
(
1 + e2ωτ̄K2b4

)
e−(ω−ω′)2T

≤ 4M2e2γeωτ̄ρ2
(
1 + e2ωτ̄K2b4

)
e−(ω−ω′)T ≤ CTρ

2 < ρ2,

from which
max

s∈[2T−τ̄ ,2T ]
||ut(s)||H < ρ. (7.2.36)
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The conditions (7.2.35) and (7.2.36) allows us to apply the same arguments employed
before on the interval [2T, 3T ], obtaining the existence of a unique solution to (7.0.5)
de�ned in the time interval [0, 3T ] and that satis�es (7.2.8) for all t ∈ [0, 3T ]. Iterating
this procedure, we �nally get the existence of a unique global solution U ∈ C([0,+∞);H)
to (7.0.5) with the initial datum g̃(s), s ∈ [−τ̄ , 0], that satis�es (7.2.8).

We have then proved that, for suitably small initial data, solutions to problem (7.0.5)
are globally de�ned and bounded by a positive constant Cρ that satis�es LCρ <

ω−ω′

M
(see

Theorem 7.2.2). Thus, solutions to problem (7.0.5) satisfy the exponential decay estimate
(7.2.2). Therefore, we are ready to prove the energy decay for model (7.0.2).

Theorem 7.2.3. Let us consider model (7.0.2) and assume (7.0.9). There exists ρ > 0
such that, if the following smallness conditions on the initial data are satis�ed:

||u1||2H + (1− β̃)||A
1
2u0(0)||2H +

∫ 0

−τ̄
|k(s)| · ||B∗g(s)||2H

+

∫ +∞

0

β(s)||A
1
2η0(s)||2Hds < ρ2,

(7.2.37)

and
max
s∈[−τ̄ ,0]

||g(s)||H < ρ, (7.2.38)

then (7.0.2) has a unique solution globally de�ned. Moreover, the energy satis�es the
exponential decay estimate

E(t) ≤ C̃e−µt, (7.2.39)

where µ := ω − ω′ and C̃ is a constant depending on the initial data.

Proof. Let ρ > 0 be the positive constant in Theorem 7.2.2. Let us consider initial data for
which the smallness conditions (7.2.37) and (7.2.38) hold true. Then, from Theorem 7.2.2,
the problem (7.0.5) has a unique global U(·) solution that satis�es ||U(t)||H < Cρ, with
L(Cρ) <

ω−ω′

2M
, and the exponential decay estimate (7.2.2). From (7.1.11) and (7.2.17), we

have that

E(t) =
1

2
||ut(t)||2H +

1− β̃

2
||A

1
2u(t)||2H − ψ(u(t)) +

1

2

∫ +∞

0

β(s)||A
1
2ηt(s)||2Hds

+
1

2

∫ t

t−τ̄
|k(s)| · ||B∗ut(s)||2Hds

≤ 1

2
||ut(t)||2H +

1− β̃

2
||A

1
2u(t)||2H +

1− β̃

4
||A

1
2u(t)||2H +

1

2

∫ +∞

0

β(s)||A
1
2ηt(s)||2Hds

+
b2

2

∫ t

t−τ̄
|k(s)| · ||ut(s)||2Hds

≤ ||U(t)||2H +
b2

2

∫ t

t−τ̄
|k(s)| · ||U(s)||2Hds
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for any t ≥ τ̄ . Now, applying Theorem 7.2.1, there exists a positive constant Ĉ such that

||U(t)||H ≤ Ĉe−
ω−ω′

2
t, ∀t ≥ 0, (7.2.40)

where here we have used the fact that L(Cρ) <
ω−ω′

2M
. Thus,

E(t) ≤ Ĉ2e−(ω−ω′)t +
Ĉ2b2

2

∫ t

t−τ̄
|k(s)|e−(ω−ω′)sds ≤ Ĉ2e−(ω−ω′)t +

Ĉ2b2

2
Keωτ̄e−(ω−ω′)t,

for all t ≥ τ̄ . Setting

C̃ := max

{
Ĉ2,

Ĉ2b2

2
Keωτ̄

}
,

we can write
E(t) ≤ C̃e−(ω−ω′)t,

from which,
E(t) ≤ C̃e−µt, ∀t ≥ τ̄ ,

where µ = ω − ω′. Hence, (7.2.39) holds true for all t ≥ τ̄ .

7.3 Examples

We conclude this chapter by providing two applications of the previous results. In
both examples, we establish global well-posedness and exponential stability for the wave
equation with memory and di�erent source terms.

7.3.1 The wave equation with memory and source term

Let Ω be a non-empty bounded set in IRn, with boundary Γ of class C2, and let O ⊂ Ω
be a nonempty open subset of Ω. We assume n ≥ 3. The lower dimension cases could be
studied analogously. We consider the following wave equation:

utt(x, t)−∆u(x, t) +

∫ +∞

0

β(s)∆u(x, t− s)ds+ k(t)χOut(x, t− τ(t))

= |u(x, t)|σu(x, t), in Ω× (0,+∞),
u(x, t) = 0, in Γ× (0,+∞),
u(x, t) = u0(x, t) in Ω× (−∞, 0],
ut(x, 0) = u1(x), in Ω,
ut(x, t) = g(x, t), in Ω× [−τ̄ , 0],

(7.3.1)

where the time delay function τ(·) satis�es (0.2.37), β : (0,+∞) → (0,+∞) is a locally
absolutely continuous memory kernel satisfying the assumptions (i)-(iv), σ > 0 and the
damping coe�cient k(·) is a function in L1

loc([−τ̄ ,+∞)) for which (0.2.39) holds. Then,
system (7.3.1) falls in the form (0.2.36) with A = −∆ and D(A) = H2(Ω) ∩ H1

0 (Ω).
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Moreover, D(A
1
2 ) = H1

0 (Ω).
Here, the operator B : L2(Ω) → L2(Ω) is de�ned as

Bu(x) = χOu(x) =

{
u(x), x ∈ O,
0, x ∈ Ω \ O,

for all u ∈ L2(Ω). By de�nition, B is a bounded linear operator from L2(Ω) into itself.
Furthermore, it is easy to see that B∗ = B.
Let us de�ne ηts as in (7.0.1). Then, system (7.3.1) can be rewritten as follows:

utt(x, t)− (1− β̃)∆u(x, t)−
∫ +∞

0

β(s)∆ηt(x, s)ds+ k(t)χOut(x, t− τ)

= |u(x, t)|σu(x, t), in Ω× (0,+∞),
ηtt(x, s) = −ηts(x, s) + ut(x, t), in Ω× (0,+∞)× (0,+∞),
u(x, t) = 0, in Γ× (0,+∞),
ηt(x, s) = 0, in Γ× (0,+∞), for t ≥ 0,
u(x, 0) = u0(x) := u0(x, 0), in Ω,

ut(x, 0) = u1(x) :=
∂u0

∂t
(x, t)

∣∣∣
t=0
, in Ω,

η0(x, s) = η0(x, s) := u0(x, 0)− u0(x,−s), in Ω× (0,+∞),
ut(x, t) = g(x, t), in Ω× [−τ̄ , 0].

(7.3.2)

In order to reformulate (7.3.2) as an abstract �rst order equation, we introduce the Hilbert
space L2

β((0,+∞);H1
0 (Ω)) endowed with the inner product

⟨ϕ, φ⟩L2
β((0,+∞);H1

0 (Ω)) :=

∫
Ω

(∫ +∞

0

β(s)∇ϕ(x, s)∇φ(x, s)ds
)
dx,

and the Hilbert space

H = H1
0 (Ω)× L2(Ω)× L2

β((0,+∞);H1
0 (Ω)),

equipped with the inner product〈 u
v
w

 ,

 ũ
ṽ
w̃

〉
H

:= (1− β̃)

∫
Ω

∇u∇ũdx+
∫
Ω

vṽdx+

∫
Ω

∫ +∞

0

β(s)∇w∇w̃dsdx.

We set U = (u, ut, η
t). Then, (7.3.2) can be rewritten in the form (7.0.5), where

A

uv
w

 =

 v

(1− β̃)∆u+
∫ +∞
0

β(s)∆w(s)ds
−ws + v

 ,

with domain

D(A) = {(u, v, w) ∈ H1
0 (Ω)×H1

0 (Ω)× L2
β((0,+∞);H1

0 (Ω)) :

(1− β̃)u+

∫ +∞

0

β(s)w(s)ds ∈ H2(Ω) ∩H1
0 (Ω), ws ∈ L2

β((0,+∞);H1
0 (Ω))},
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B(u, v, ηt)T := (0, χOv, 0)
T , g̃ = (u0, g, η

0)T , in [−τ̄ , 0], and F (U(t)) = (0, |u(t)|σu(t), 0)T .
Now, we consider the functional

ψ(u) :=
1

σ + 2

∫
Ω

|u(x)|σ+2dx, ∀u ∈ H1
0 (Ω).

By Sobolev's embedding theorem, ψ is well-de�ned for 0 < σ ≤ 4
n−2

. Also, the Gâteaux
derivative of ψ at any point u ∈ H1

0 (Ω) is

Dψ(u)(v) =

∫
Ω

|u(x)|σu(x)v(x)dx,

for all v ∈ H1
0 (Ω). Moreover, as in [6], if 0 < σ ≤ 2

n−2
, then ψ satis�es the assumptions

(H1), (H2), (H3).
Let us de�ne the energy in this way:

E(t) :=
1

2

∫
Ω

|ut(x, t)|2dx+
1− β̃

2

∫
Ω

|∇u(x, t)|2dx− ψ(u(x, t))

+
1

2

∫ t

t−τ̄

∫
O
|k(s)| · |ut(x, s)|2dxds+

1

2

∫ +∞

0

β(s)

∫
Ω

|∇ηt(x, s)|2dxds.

Then, from Theorem 7.2.3 we have that (7.3.1) is well-posed and that, for solutions
corresponding to suitably small initial data, an exponential decay estimate holds provided
that the condition (7.0.9) is satis�ed.

7.3.2 The wave equation with memory and integral source term

Let Ω be a non-empty bounded set in IRn, with boundary Γ of class C2. Moreover,
let O ⊂ Ω be a nonempty open subset of Ω. We consider the following wave equation:

utt(x, t)−∆u(x, t) +

∫ +∞

0

β(s)∆u(x, t− s)ds+ k(t)χOut(x, t− τ(t))

=

(∫
Ω

|u(x, t)|2
) p

2

u(x, t), in Ω× (0,+∞),

u(x, t) = 0, in Γ× (0,+∞),
u(x, t) = u0(x, t) in Ω× (−∞, 0],
ut(x, 0) = u1(x), in Ω,
ut(x, t) = g(x, t), in Ω× [−τ̄ , 0],

(7.3.3)
where the time delay function τ(·) satis�es (0.2.37), β : (0,+∞) → (0,+∞) is a locally
absolutely continuous memory kernel such that the assumptions (i)-(iv) are ful�lled, p ≥ 1,
and the damping coe�cient k(·) is a function in L1

loc([−τ̄ ,+∞)) for which (0.2.39) holds
true. Then, system (7.3.3) falls in the form (0.2.36) with A = −∆, D(A) = H2(Ω)∩H1

0 (Ω)

and D(A
1
2 ) = H1

0 (Ω). Also, the operator B is as in the previous example.
Let us note that system (7.3.3) is analogous to system (7.3.1), with the only di�erence
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given by the nonlinearity. So, arguing as in Example 7.3.1, (7.3.3) can be rewritten as
(7.3.2) and then as an abstract �rst order equation.
Now, consider the functional

ψ(u) :=
1

p+ 2

(∫
Ω

|u(x)|2dx
) p+2

2

=
1

p+ 2
∥u∥p+2

L2(Ω), ∀u ∈ L2(Ω).

Note that ψ is well de�ned. Also, the Gâteaux derivative of ψ at any point u ∈ L2(Ω) is
given by

Dψ(u)(v) =

(∫
Ω

|u(x)|2dx
) p

2
∫
Ω

u(x)v(x)dx,

for any v ∈ L2(Ω). Then, ψ is de�ned in the whole L2(Ω) and

∇ψ(u) =
(∫

Ω

|u(x)|2dx
) p

2

u(x), ∀u ∈ L2(Ω),

is the unique vector representing Dψ(u) in the Riesz isomorphism. So (H1) is trivially
satis�ed. Arguing as in [78], we can �nd a positive constant C > 0 such that

∥∇ψ(u)−∇ψ(v)∥2L2(Ω) ≤ C(∥u∥2p
H1

0 (Ω)
+ ∥v∥2p

H1
0 (Ω)

)∥u− v∥2H1
0 (Ω), (7.3.4)

for all u, v ∈ H1
0 (Ω). Thus, for any r > 0 and for all u, v ∈ H1

0 (Ω) with ∥∇u∥L2(Ω), ∥∇v∥L2(Ω) ≤
r, since from Poincaré inequality ∥·∥H1

0 (Ω) and ∥∇(·)∥L2(Ω) are equivalent norms on H1
0 (Ω),

from (7.3.4) we get

∥∇ψ(u)−∇ψ(v)∥2L2(Ω) ≤ 2r2pC∥∇u−∇v∥2L2(Ω),

from which
∥∇ψ(u)−∇ψ(v)∥L2(Ω) ≤

√
2Crp∥∇u−∇v∥L2(Ω),

Hence, (H2) is satis�ed.
Finally, we prove that (H3) holds true. Note that ψ(0),∇ψ(0) = 0. Also, using (7.3.4)
with v = 0 and Poincaré inequality, for all u ∈ H1

0 (Ω) we can write

∥∇ψ(u)∥2L2(Ω) ≤ C∥∇u∥2pL2(Ω)∥∇u∥
2
L2(Ω),

which implies
∥∇ψ(u)∥L2(Ω) ≤

√
C∥∇u∥pL2(Ω)∥∇u∥L2(Ω)

Thus, (H3) is ful�lled with h(z) =
√
Czp, for all z ≥ 0, which is a continuous and strictly

increasing function.
Let us de�ne the energy as follows:

E(t) :=
1

2

∫
Ω

|ut(x, t)|2dx+
1− β̃

2

∫
Ω

|∇u(x, t)|2dx− ψ(u(x, t))

+
1

2

∫ t

t−τ

∫
O
|k(s)| · |ut(x, s)|2dxds+

1

2

∫ +∞

0

β(s)

∫
Ω

|∇ηt(x, s)|2dxds.

Then, applying Theorem 7.2.3 to this model, we get well-posedness and exponential decay
of the energy for solutions corresponding to suitably small initial data provided that the
condition (7.0.9) is satis�ed.
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