
Approximate Distance Sensitivity Oracles in Subquadratic Space
Davide Bilò

Department of Information

Engineering, Computer Science and

Mathematics, University of L’Aquila

L’Aquila, Italy

davide.bilo@univaq.it

Shiri Chechik

Department of Computer Science,

Tel Aviv University

Tel Aviv, Israel

shiri.chechik@gmail.com

Keerti Choudhary

Department of Computer Science and

Engineering, Indian Institute of

Technology Delhi

New Delhi, India

keerti@iitd.ac.in

Sarel Cohen

School of Computer Science, The

Academic College of Tel Aviv-Yaffo

Tel Aviv, Israel

sarelco@mta.ac.il

Tobias Friedrich

Simon Krogmann

Hasso Plattner Institute,

University of Potsdam

Potsdam, Germany

firstname.lastname@hpi.de

Martin Schirneck

Faculty of Computer Science,

University of Vienna

Vienna, Austria

martin.schirneck@univie.ac.at

ABSTRACT
An 𝑓 -edge fault-tolerant distance sensitive oracle (𝑓 -DSO)with stretch
𝜎 ⩾ 1 is a data structure that preprocesses a given undirected, un-

weighted graph𝐺 with𝑛 vertices and𝑚 edges, and a positive integer

𝑓 . When queried with a pair of vertices 𝑠, 𝑡 and a set 𝐹 of at most 𝑓

edges, it returns a 𝜎-approximation of the 𝑠-𝑡-distance in 𝐺 − 𝐹 .
We study 𝑓 -DSOs that take subquadratic space. Thorup and

Zwick [JACM 2015] showed that this is only possible for 𝜎 ⩾ 3. We

present, for any constant 𝑓 ⩾ 1 and 𝛼 ∈ (0, 1
2
), and any 𝜀 > 0, an

𝑓 -DSO with stretch 3 + 𝜀 that takes 𝑂 (𝑛2−
𝛼
𝑓 +1 /𝜀) · 𝑂 (log𝑛/𝜀) 𝑓 +1

space and has an 𝑂 (𝑛𝛼/𝜀2) query time.

We also give an improved construction for graphs with diameter

at most 𝐷 . For any constant 𝑘 , we devise an 𝑓 -DSO with stretch

2𝑘 − 1 that takes 𝑂 (𝐷 𝑓 +𝑜 (1)𝑛1+1/𝑘) space and has 𝑂 (𝐷𝑜 (1)) query
time, with a preprocessing time of 𝑂 (𝐷 𝑓 +𝑜 (1)𝑚𝑛1/𝑘).

Chechik, Cohen, Fiat, and Kaplan [SODA 2017] presented an

𝑓 -DSO with stretch 1+𝜀 and preprocessing time𝑂𝜀 (𝑛5), albeit with
a super-quadratic space requirement. We show how to reduce their

preprocessing time to 𝑂 (𝑚𝑛2) ·𝑂 (log𝑛/𝜀) 𝑓 .

CCS CONCEPTS
• Theory of computation→ Data structures design and anal-
ysis; Shortest paths; • Mathematics of computing→ Graph algo-
rithms.

KEYWORDS
approximate shortest paths, distance sensitivity oracle, fault-tolerant

data structure, subquadratic space

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9913-5/23/06. . . $15.00

https://doi.org/10.1145/3564246.3585251

ACM Reference Format:
Davide Bilò, Shiri Chechik, Keerti Choudhary, Sarel Cohen, Tobias Friedrich,

Simon Krogmann, and Martin Schirneck. 2023. Approximate Distance Sen-

sitivity Oracles in Subquadratic Space. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing (STOC ’23), June 20–23, 2023, Or-
lando, FL, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3564246.3585251

1 INTRODUCTION
Distance Oracles (DOs) are fundamental data structures that store

information about the distances of an input graph 𝐺 = (𝑉 , 𝐸).1
These oracles are used in several applications where one cannot

afford to store the entire input, but still wants to quickly retrieve

the graph distances upon query. Therefore, DOs should provide

reasonable trade-offs between space consumption, query time, and

stretch, that is, the quality of the estimated distance.

We are interested in the design of DOs that additionally can

tolerate multiple failures of edges in 𝐺 . An 𝑓 -edge fault-tolerant
distance sensitivity oracles (𝑓 -DSO) is able to report an estimate

𝑑𝐺−𝐹 (𝑠, 𝑡) of the distance 𝑑𝐺−𝐹 (𝑠, 𝑡) between 𝑠 and 𝑡 in the graph

𝐺 − 𝐹 , where 𝐹 ⊆ 𝐸 is a set of at most 𝑓 failing edges, when queried

with the triple (𝑠, 𝑡, 𝐹). The parameter 𝑓 is the sensitivity of the

DSO. We say that the stretch of the 𝑓 -DSO is 𝜎 ⩾ 1 if 𝑑𝐺−𝐹 (𝑠, 𝑡) ⩽
𝑑𝐺−𝐹 (𝑠, 𝑡) ⩽ 𝜎 ·𝑑𝐺−𝐹 (𝑠, 𝑡) holds for every query (𝑠, 𝑡, 𝐹).

Several 𝑓 -DSOs with different size-stretch-time trade-offs have

been proposed in the last decades, some of which can only deal

with a very small number 𝑓 ∈ {1, 2} of failures [3, 5, 6, 8, 13, 17–
19, 22, 23, 27]. In the following, we focus on 𝑓 -DSOs that deal with

multiple failures 𝑓 ⩾ 3. The Monte Carlo 𝑓 -DSO of Weimann and

Yuster [30] computes exact distances w.h.p.
2
and gives adjustable

trade-offs depending on some parameter 𝛼 ∈ (0, 1). More precisely,

the 𝑓 -DSO can be built in 𝑂 (𝑚𝑛2−𝛼) time, has a query time of

𝑂 (𝑛2−2(1−𝛼)/𝑓), and uses𝑂 (𝑛3−𝛼) space.3 The 𝑓 -DSO of Duan and

Ren [20] requires 𝑂 (𝑓 𝑛4) space, returns exact distances in 𝑓𝑂 (𝑓)

1
Throughout, we assume the graph𝐺 to be undirected and unweighted. We use 𝑛 for

the number of vertices and𝑚 for the number of edges.

2
An event occurs with high probability (w.h.p.) if it has probability at least 1 − 𝑛−𝑐 for

some constant 𝑐 > 0.

3
The space is measured in the number of machine words on 𝑂 (log𝑛) bits. For a
function 𝑔 of the input and parameters, we use𝑂 (𝑔) to denote𝑂 (𝑔 · polylog(𝑛)) .

1396

https://doi.org/10.1145/3564246.3585251
https://doi.org/10.1145/3564246.3585251
https://doi.org/10.1145/3564246.3585251
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585251&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20–23, 2023, Orlando, FL, USA D. Bilò, S. Chechik, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck

query time, but the preprocessing algorithm that builds takes 𝑛Ω (𝑓)

time. The 𝑓 -DSO of Chechik, Cohen, Fiat, and Kaplan [14] can han-

dle up to 𝑓 = 𝑜 (log𝑛/log log𝑛) failures but has a stretch of 1+𝜀, for
any constant 𝜀 > 0. In turn, the oracle is more compact requiring

𝑂𝜀 (𝑛2+𝑜 (1) log𝑊) space, where𝑊 is the weight of the heaviest

edge of 𝐺 , has query time 𝑂𝜀 (𝑓 5 log𝑛 log log𝑊), and can be build

in 𝑂𝜀 (𝑛5+𝑜 (1) log𝑊) preprocessing time. Note that the aforemen-

tioned 𝑓 -DSOs all have a super-quadratic space requirement, that

is, they take up more space than the original input graph, which is

prohibitive in settings where we cannot even afford to store𝐺 . The

𝑓 -DSO of Chechik, Langberg, Peleg, and Roditty [16] addresses this

issue with a space requirement of 𝑂 (𝑓 𝑘𝑛1+1/𝑘 log(𝑛𝑊)), where
𝑘 ⩾ 1 is an integer parameter. Their data structure has a fast query

time of 𝑂 (|𝐹 | log log𝑑𝐺−𝐹 (𝑠, 𝑡)) but guarantees only a stretch of

(8𝑘 − 2) (𝑓 + 1), that is, depending on the sensitivity 𝑓 .

Another way to provide approximate pairwise replacement dis-

tances under edge failures is that of fault-tolerant spanners [26].

An (𝑓 -edge) fault-tolerant 𝜎-spanner is a subgraph 𝐻 of𝐺 such that

𝑑𝐻−𝐹 (𝑠, 𝑡) ⩽ 𝜎 · 𝑑𝐺−𝐹 (𝑠, 𝑡), for every triple (𝑠, 𝑡, 𝐹), with 𝑠, 𝑡 ∈ 𝑉
and 𝐹 ⊆ 𝐸, |𝐹 | ⩽ 𝑓 . There is a simple algorithm by Chechik,

Langberg, Peleg, and Roditty [15] that computes, for any posi-

tive integer 𝑘 , a fault-tolerant (2𝑘−1)-spanner with 𝑂 (𝑓 𝑛1+1/𝑘)
edges. Constructions by Bodwin, Dinitz, and Robelle [10, 11] re-

cently reduced the size to 𝑓 1/2𝑛1+1/𝑘 · poly(𝑘) for even 𝑘 , and
𝑓 1/2−1/(2𝑘)𝑛1+1/𝑘 · poly(𝑘) for odd 𝑘 . They also showed an almost

matching lower bound of Ω(𝑓 1/2−1/(2𝑘)𝑛1+1/𝑘 + 𝑓 𝑛) for 𝑘 > 2, and

Ω(𝑓 1/2𝑛3/2) for 𝑘 = 2, assuming the Erdős girth conjecture [21].

The space is also the main problem with this approach as it trans-

lates to a high query time. Currently, the most efficient way to

retrieve the approximate distance between a given pair of vertices

is to compute the single-source distance from one of them in time

that is at least linear in the size of the spanner.

All the results above for multiple failures either require Ω(𝑛2)
space, have a stretch depending on 𝑓 , or superlinear query time. If

we want a truly constant stretch for every (constant) sensitivity 𝑓

and fast query time simultaneously, one currently has to pay Ω(𝑛2)
space. A natural question is whether we can break the quadratic

barrier. In this paper, we answer this question affirmatively.

Theorem 1.1. Let 𝑓 ⩾ 2 be a positive integer and 0 < 𝛼 < 1/2
a constant. For any undirected, unweighted graph 𝐺 with unique
shortest paths and any 𝜀 > 0, there is a (3+𝜀)-approximate 𝑓 -DSO
for 𝐺 that takes space 𝑂 (𝑛2−

𝛼
𝑓 +1 /𝜀) ·𝑂 (log𝑛/𝜀) 𝑓 +1, has query time

𝑂 (𝑛𝛼/𝜀2), and preprocessing time𝑂 (𝑛2−
𝛼
𝑓 +1 (𝑚𝜀 +

1

𝜀2
)) ·𝑂 (log𝑛/𝜀) 𝑓 .

The assumption of unique shortest paths in the base graph 𝐺

can be achieved by perturbing the edge weights of the input. For

unweighted graphs, this results in weighted graphs where every

edge weight is very close to 1, which is a sufficient alternative

condition for all the places in the paper where we assume that the

graph is unweighted. Alternatively, we can compute a set of unique

paths via lexicographic pertubation [12] in time 𝑂 (𝑚𝑛 + 𝑛2 log2 𝑛).
To obtain Theorem 1.1, we develop several new techniques. For

the remainder of this section, we highlight the novelties. A more

detailed overview of our construction can be found in Section 2.

Tree Sampling for Short Paths. It is a common approach in

the design of fault-tolerant data structures to first give a solution

for short paths and then combine them to one for all distances,

see [13, 22, 23, 25, 27, 30]. We also focus first on 𝑓 -DSOs for short

paths. Let 𝐿 be the cut-off parameter.
4
We say a path is short if it has

at most 𝐿 edges. An 𝑓 -DSO for short paths only needs to report the

correct answer for a query (𝑠, 𝑡, 𝐹) if𝐺 − 𝐹 contains a shortest path

from 𝑠 to 𝑡 with at most 𝐿 edges. Designing such an oracle with

good query-space-preprocessing trade-offs is the first step towards

improving general 𝑓 -DSOs. Let 𝑑⩽𝐿
𝐺−𝐹 (𝑠, 𝑡) be the minimum length

over all 𝑠-𝑡-paths in 𝐺 − 𝐹 with at most 𝐿 edges; if there are none,

then 𝑑⩽𝐿
𝐺−𝐹 (𝑠, 𝑡) = +∞. Note that 𝑑⩽𝐿

𝐺−𝐹 (𝑠, 𝑡) = +∞ may hold for

pairs (𝑠, 𝑡) that are connected in 𝐺 − 𝐹 .

Theorem 1.2. Let 𝑓 , 𝑘 be positive integers. There exists a data struc-
ture that, when given an undirected, unweighted graph 𝐺 = (𝑉 , 𝐸),
and a positive integer 𝐿 (possibly dependent 𝑛 and𝑚), preprocesses𝐺
and answers queries (𝑠, 𝑡, 𝐹) for vertices 𝑠, 𝑡 ∈ 𝑉 and sets of edges 𝐹 ⊆
𝐸 with |𝐹 | ⩽ 𝑓 . W.h.p. over all queries, the returned value 𝑑⩽𝐿 (𝑠, 𝑡, 𝐹)
satisfies 𝑑𝐺−𝐹 (𝑠, 𝑡) ⩽ 𝑑⩽𝐿 (𝑠, 𝑡, 𝐹) ⩽ (2𝑘−1) ·𝑑⩽𝐿𝐺−𝐹 (𝑠, 𝑡, 𝐹). The data
structure takes space 𝑂 (𝐿𝑓 +𝑜 (1) 𝑛1+1/𝑘), has query time 𝑂 (𝐿𝑜 (1)),
and preprocessing time 𝑂 (𝐿𝑓 +𝑜 (1)𝑚𝑛1/𝑘).

We compare Theorem 1.2 with previous work on 𝑓 -DSOs for

short paths.Weimann and Yuster [30] presented a constructionwith

𝑂 (𝐿𝑓𝑚𝑛) preprocessing time, 𝑂 (𝐿𝑓 𝑛2) space, and 𝑂 (𝐿𝑓) query
time. It laid the foundation for many subsequent works, see [2, 7, 9,

25, 27]. When using the fault-tolerant trees described in Appendix A

of [14], one can reduce the query time of the oracle to𝑂 (𝑓 2). How-
ever, storing all of these fault-tolerant trees still requires Ω(𝐿𝑓 𝑛2)
space. For small enough 𝐿, sub-quadratic space suffices for our data

structure, while still providing a better query time then [30].

In order to prove Theorem 1.2, we extend the sampling technique

by Weimann and Yuster [30]. It consists of first constructing𝑂 (𝐿𝑓)
copies of 𝐺 and then, in each one, remove edges with probability

1/𝐿. One can show that w.h.p. each short replacement path survives

in one of the copies, where a replacement path is the respective

shortest path after at most 𝑓 edge failures. Instead of having all

those graphs be independent of each other, we develop hierarchical

tree sampling. This allows us to quickly find the copies that are

relevant for a given query, reducing the query time to𝑂 (𝐿𝑜 (1)). We

further sparsify the resulting graphs for a better space complexity.

From Theorem 1.2, we immediately get an 𝑓 -DSO for graphs

with bounded diameter. Afek, Bremler-Barr, Kaplan, Cohen, and

Merritt [1] proved that for undirected, unweighted graphs 𝐺 any

shortest path in 𝐺 − 𝐹 is a concatenation of up to |𝐹 | + 1 shortest
paths in𝐺 . If𝐺 has diameter at most 𝐷 and |𝐹 | ⩽ 𝑓 , the diameter of

𝐺−𝐹 is thus bounded by (𝑓 +1)𝐷 . This gives the following corollary.

Corollary 1.3. Let 𝑓 and 𝑘 be positive integers. There exists a
(2𝑘−1)-approximate 𝑓 -DSO for undirected, unweighted graphs with
diameter bounded by 𝐷 , that takes space 𝑂 (𝐷 𝑓 +𝑜 (1) 𝑛1+1/𝑘), has
query time 𝑂 (𝐷𝑜 (1)), and preprocessing time 𝑂 (𝐷 𝑓 +𝑜 (1)𝑚𝑛1/𝑘).

Fault-Tolerant TreeswithGranularity.Weemploy fault-tolerant

trees
5
(FT-trees) introduced by Chechik et al. [14] to combine the

solutions for short paths. Those are trees in which every node is

4
The cut-off point will eventually turn out to be 𝐿 = 𝑛𝛼/(𝑓 +1) , where 𝛼 ∈ (0, 1

2
) is

the parameter from Theorem 1.1.

5
FT-trees are not related to the tree sampling mentioned before.

1397

Approximate Distance Sensitivity Oracles in Subquadratic Space STOC ’23, June 20–23, 2023, Orlando, FL, USA

associated with a path in a subgraph 𝐺 − 𝐴 where 𝐴 ⊆ 𝐸 is a

set of edges, but possibly much more than the sensitivity 𝑓 . Each

path is partitioned into segments whose sizes increase exponen-

tially towards the middle. This is done to encode the paths more

space efficient than edge-by-edge. We have to take some additional

compression steps to fit them in subquadratic space. For example,

instead of building a tree 𝐹𝑇 (𝑠, 𝑡) for every pair of vertices 𝑠, 𝑡 , we

only do so if one of them is from a set of randomly selected pivots.
But even this gives only a sub-linear query time. To improve it

further to𝑂𝜀 (𝑛𝛼) for an any constant 𝛼 ∈ (0, 1
2
), we generalize the

FT-trees by adding what we call granularity 𝜆 ⩾ 0.
6
That means

the first and last 𝜆 edges of each path are their own segment and

do not fall into the regime of exponential increase. The original

construction in [14] corresponds to granularity 0. Intuitively, the

larger the value of 𝜆, the better the fault-tolerant tree 𝐹𝑇𝜆 (𝑢, 𝑣)
with granularity 𝜆 approximates the shortest distance from 𝑢 to 𝑣

in 𝐺 − 𝐹 , but the larger the size of each node of the tree becomes.

The idea to answer a query (𝑠, 𝑡, 𝐹) is to scan balls of a certain

radius around 𝑠 and 𝑡 in𝐺−𝐹 for pivots and query the respective FT-
tree together with the oracle for short paths in Theorem 1.2. W.h.p.

one of the pivots hits the replacement path from 𝑠 to 𝑡 ensuring that

this gives (an approximation of) the right distance. The bottleneck

is the case when there are too many vertices in the vicinity of both

𝑠 and 𝑡 since then these balls also receive many pivots. Instead,

we sample a second type of much more scarce pivots, which are

used to hit the dense neighbourhoods. In that case, we can find

a scarce pivot 𝑏𝑠 near 𝑠 and a scarce pivot 𝑏𝑡 near 𝑡 , but we can

no longer assume that they hit the sought replacement path. The

fault-tolerant tree 𝐹𝑇𝜆 (𝑏𝑠 , 𝑏𝑡) with granularity 𝜆, however, allows

us to get a good approximation, as long the starting points 𝑏𝑠 and

𝑏𝑡 are at distance at most 𝜆 from the real endpoints.

The trees 𝐹𝑇𝜆 (𝑏𝑠 , 𝑏𝑡) are much larger than their classical coun-

terparts 𝐹𝑇 (𝑠, 𝑡). This is compensated by the fact that we require

much fewer of those. We verify that several of the key lemmas

from [14] transfer to fault-tolerant trees with granularity 𝜆 > 0.

Efficient Computation of Expaths. Since fault-tolerant trees are
crucial for our work, we revisit the approach used by Chechik et al.

[14] to construct them (with granularity 0). It turns out that their

algorithm can be improved. The preprocessing in [14] invokes many

calls to all-pairs shortest path computations (APSP) in different

subgraphs𝐺−𝐹 , each of which is associated with a node of the fault-
tolerant trees. They also invoke 𝑂 (𝑛) calls to Dijkstra’s algorithm

on suitable dense graphs with 𝑂 (𝑓 𝑛2) edges. We prove that many

of those APSP calls can be avoided by instead re-using the distances

in the original graph 𝐺 , which can be obtained by a single APSP

computation. More precisely, the paths associated with the nodes

of the fault-tolerant trees (later referred as (2𝑓 + 1)-expaths) are
the concatenation of 𝑂 (𝑓 log(𝑛𝑊)) original shortest paths. The
distances in 𝐺 can be integrated into a single Dijkstra run on a

specially built graph with𝑂 (𝑓𝑚) edges to compute such an expath

in time 𝑂 (𝑓𝑚). This technique implies an improved preprocessing

time for our own subquadratic 𝑓 -DSO. Moreover, when plugged in

the preprocessing algorithm in [14], it improves the overall time

complexity from 𝑂𝜀 (𝑓 𝑛5+𝑜 (1)) to 𝑂𝜀 (𝑓𝑚𝑛2+𝑜 (1)).

6
In the proof of Theorem 1.1, we set 𝜆 = 𝜀𝐿/𝑐 , for an ad-hoc constant 𝑐 > 1.

Due to space reasons, the details of the improved expath compu-

tation are omitted from this extended abstract.

Theorem 1.4. Let 𝐺 be an undirected weighted graph with maxi-
mum edge weight𝑊 = poly(𝑛), and unique shortest paths. For any
positive integer 𝑓 = 𝑜 (log𝑛/log log𝑛), and 𝜀 ⩾ 1/𝑛𝑊 , there exists an

(1+𝜀)-approximate 𝑓 -DSO for𝐺 that takes space𝑂 (𝑓 𝑛2)𝑂
(
log(𝑛𝑊)

𝜀

) 𝑓
= 𝑂 (𝑓 𝑛2+𝑜 (1)/𝜀 𝑓), has query time 𝑂 (𝑓 5 log𝑛), and preprocessing

time 𝑂 (𝑓𝑚𝑛2) ·𝑂
(
log(𝑛𝑊)

𝜀

) 𝑓
= 𝑂 (𝑓𝑚𝑛2+𝑜 (1)/𝜀 𝑓).

Open Problems. As an open question, we ask whether one can

further improve the query time from𝑂𝜀 (𝑛𝛼) to poly-logarithmic in

𝑛 and
1/𝜀 while keeping the space truly subquadratic. The converse

open problem is to further reduce the space without affecting the

query time. Finally, we can only handle unweighted graphs cur-

rently where the length of the path corresponds to the number of

edges. Some of the sampling-based ideas break down if long paths

can consist of only a few heavy edges. For all the open problems

the bottleneck is the case of long paths. For short path distances

we have an 𝑓 -DSO of asymptotically almost optimal size and very

low query time that can easily be adapted to the weighted case.

2 OVERVIEW
Fault-tolerant Trees. Our distance sensitivity oracle is built on

the concept of fault-tolerant trees [14]. This is a data structure that

reports, for a fixed pair of vertices 𝑠, 𝑡 ∈ 𝑉 and any set 𝐹 ⊆ 𝐸 of up

to 𝑓 edge failures, the replacement distance 𝑑𝐺−𝐹 (𝑠, 𝑡). Consider a
shortest path 𝑃 from 𝑠 to 𝑡 in the original graph 𝐺 . FT-trees draw

from the fact that only failures on 𝑃 can influence the distance

from 𝑠 to 𝑡 . In its simplest form, the tree 𝐹𝑇 (𝑠, 𝑡) consists of a root
node that stores the path 𝑃 and the distance 𝑑 (𝑠, 𝑡) = |𝑃 |. It has a
child for each edge 𝑒 ∈ 𝐸 (𝑃) which in turn holds a shortest 𝑠-𝑡-path

in 𝐺 − 𝑒 . Iterating this construction until depth 𝑓 ensures that all

relevant failure sets for the pair (𝑠, 𝑡) are covered. If some set of edge

failures disconnect the two vertices, this is represented by a leaf

node that does not store any path. Let 𝑃𝜈 denote the path in some

node 𝜈 . Given a failure set 𝐹 , the algorithm checks in each node 𝜈

starting with the root whether it is a leaf or 𝐹 ∩ 𝐸 (𝑃𝜈) = ∅, with
the latter meaning that the path 𝑃𝜈 exists in 𝐺 − 𝐹 . If so, its length
|𝑃𝜈 | is reported; otherwise, the search recurses on the child node

corresponding to an (arbitrary) edge 𝑒 ∈ 𝐹 ∩ 𝐸 (𝑃𝜈). Let 𝐹𝑇 (𝑠, 𝑡, 𝐹)
be the reported distance. It is equal to 𝑑𝐺−𝐹 (𝑠, 𝑡) and the query

time is 𝑂 (𝑓 2) since at most 𝑓 +1 vertices are visited and computing

the intersection takes time 𝑂 (𝑓).
The problem is, these trees are huge. Preprocessing them for all

pairs of vertices takes total space𝑂 (𝑛𝑓 +3). The main technical con-

tribution of [14] is to reduce the space without sacrificing too much

of their performance, that is, the stretch of the reported distance

and the query time. In the first step, the number of vertices in the

tree is decreased by introducing an approximation parameter 𝜀 > 0.

Each path 𝑃𝜈 is split into𝑂 (log𝑛/𝜀) segments. Now node 𝜈 only has

a child for each segment and the search procedure recursing on that

child corresponds to failing the whole segment instead of only a

single edge. This reduces the total size of all trees to𝑂 (𝑛3 (𝑐 log𝑛
𝜀)

𝑓)
for some constant 𝑐 > 0. However, it leads to some inaccuracies in

the answer of the tree. The failed segments may contain edges that

1398

STOC ’23, June 20–23, 2023, Orlando, FL, USA D. Bilò, S. Chechik, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck

are actually present in𝐺 −𝐹 and thus the path 𝑃𝜈∗ stored in the last

visited node 𝜈∗ may take unnecessary detours. It is proven in [14]

that 𝐹𝑇 (𝑠, 𝑡, 𝐹) = |𝑃𝜈∗ | = 𝑑𝐺−𝐹 (𝑠, 𝑡) is correct if all failing edges are
“far away”

7
from the true replacement path 𝑃 (𝑠, 𝑡, 𝐹) in𝐺−𝐹 , where

the required safety distance depends on the distance 𝑑𝐺−𝐹 (𝑠, 𝑡). To
also answer queries for which this condition is violated, they con-

sult multiple FT-trees. An auxiliary graph 𝐻𝐹
is constructed on the

endpoints 𝑉 (𝐹) of all failing edges, that is, 𝑉 (𝐻𝐹) = {𝑠, 𝑡} ∪𝑉 (𝐹).
For each pair of vertices 𝑢, 𝑣 ∈ 𝑉 (𝐻𝐹), the edge {𝑢, 𝑣} is weighted
with the reported distance 𝐹𝑇 (𝑢, 𝑣, 𝐹). While not all edge weights

may be the correct 𝑢-𝑣-replacement distance, the distance of 𝑠 and

𝑡 in 𝐻𝐹
can be shown to be a (1+𝜀)-approximation of 𝑑𝐺−𝐹 (𝑠, 𝑡).

The idea is that, when going from 𝑠 to 𝑡 , one can always find a

next vertex in 𝑉 (𝐻𝐹) that is not too far off the shortest path and

such that the subpath to that vertex is “far away” from all failures.

Computing the weights for 𝐻𝐹
increases the query time to 𝑂 (𝑓 4).

The next step is more involved and is concerned with the size

of the nodes in the FT-trees. Originally, each of them stores all

edges of a path in (a subgraph of) 𝐺 and therefore may take 𝑂 (𝑛)
space. Afek et al. [1] showed that every shortest path in𝐺−𝐹 , for
|𝐹 | ⩽ 𝑓 , is 𝑓 -decomposable, that is, a concatenation of at most

𝑓 shortest paths in 𝐺 . Chechik et al. [14] extend this notion to

so-called expaths. For a positive integer ℓ , a path is said to be an

ℓ-expath if it is the concatenation of (2 log
2
(𝑛) +1) ℓ-decomposable

paths such that the 𝑖th ℓ-decomposable path has length at most

min{2𝑖 , 22 log2 (𝑛)−𝑖 }. Consider a node 𝜈 in the tree 𝐹𝑇 (𝑢, 𝑣). Instead
of storing the shortest 𝑢-𝑣-path 𝑃𝜈 edge by edge, one would like to

represent it by the endpoints of the constituting shortest paths (in

𝐺) and edges. However, the collection 𝐴𝜈 of edges in all segments

that were failed while descending from the root to 𝜈 may be much

larger than 𝑓 and 𝑃𝜈 may not be 𝑓 -decomposable. Instead, the node

𝜈 now holds the shortest (2𝑓 +1)-expath from𝑢 to 𝑣 in𝐺−𝐴𝜈 . It can

be represented by 𝑂 (𝑓 log𝑛) endpoints, bringing the total space of

the trees to 𝑂 (𝑓 𝑛2 (log𝑛) (𝑐 log𝑛
𝜀)

𝑓). It is described in [14] how to

navigate the new representation to obtain a (1+𝜀)-approximation

of 𝑑𝐺−𝐹 (𝑠, 𝑡) in time 𝑂 (𝑓 5 log𝑛).
In this work, we advance the space reduction further into the

subquadratic regime. Recall that 𝐿 is the number of edges up to

which a path is called short. When sampling a set 𝐵 of 𝑂𝜀 (𝑛/𝐿)
pivots uniformly at random, then w.h.p. every long replacement

path contains a pivot. Restricting the FT-trees 𝐹𝑇 (𝑢, 𝑣) to only those
pairs𝑢, 𝑣 for which at least one vertex is in 𝐵 brings the total number

of trees to 𝑜 (𝑛2). Unfortunately, it deprives us of the replacement

distances for pairs that are joined by a short path.

Short Paths. To make up for this deficit, we design an approximate

𝑓 -DSO for vertex pairs with short replacement paths. We extend a

technique by Weimann and Yuster [30] from exact to approximate

distances while also reducing the required space and query time.

When sampling 𝑂 (𝐿𝑓) spanning subgraphs of 𝐺 by, in each one,

removing any edge independently with probability
1/𝐿, it is shown

in [30] that w.h.p. for each set 𝐹 of at most 𝑓 edges and each pair

of vertices connected by a short path in 𝐺 − 𝐹 , there are 𝑂 (1)
subgraphs that contain the path but none of 𝐹 . Such a collection of

7
More formally, a path 𝑃 being “far away” from 𝐹 means that, for every vertex 𝑥 on 𝑃

except for 𝑠 and 𝑡 and every endpoint 𝑦 of a failing edge in 𝐹 , the distance from 𝑥 to

𝑦 is more than
𝜀
9
· min(|𝑃 [𝑠, 𝑥] |, |𝑃 [𝑥, 𝑡] |) , see Definition 5.2.

graphs is called an (𝐿, 𝑓)-replacement path covering (RPC) [25]. For

any two vertices 𝑠 and 𝑡 that have a replacement path on at most 𝐿

edges, the minimum 𝑠-𝑡-distance of the 𝑂 (1) suitable graphs of the
RPC is the correct replacement distance.

We cannot use that approach directly in subquadratic space. The

subgraphs have total size Ω(𝐿𝑓𝑚), which is already too large if𝐺 is

dense. Also, it is expensive to find the correct members of the RPC

for a given query. In [30], the solution was to go over all graphs and

explicitly check whether they have the set 𝐹 removed, dominating

the query time (for short paths). Karthik and Parter [25] deran-

domized this construction and thereby reduced the time needed to

find the correct subgraphs to 𝑂 (𝐿). Both approaches break down

in subquadratic space, since we cannot even store all edges of the

graphs. However, we are only seeking approximate replacement

distances. We exploit this fact in a new way of constructing and

approximate (𝐿, 𝑓)-replacement path coverings. We do so by turn-

ing the sampling technique upside down and combining it with the

distance oracle of Thorup and Zwick [29].

Instead of sampling the subgraphs directly by removing edges,

we construct them in a hierarchical manner by adding connections.

We build a tree in which each node is associated with a subset of

the edges of𝐺 , this set stands for the “missing” edges. We start with

the full edge set 𝐸 in the root, that is, the graph in the root is empty.

The height of the tree is ℎ and each node has 𝐿𝑓 /ℎ children. The

associated set of a child node contains any edge of its parent with

probability 𝐿−1/ℎ . This corresponds to adding any missing edge

with probability 1 − 𝐿−1/ℎ . Knowing the missing edges up front

benefits the query algorithm. At each node starting with the root, if

we were to expand all children in which all failures of 𝐹 are missing,

we would find the suitable subgraphs. The hierarchical sampling

creates some dependencies among the subgraphs associated with

the leaves of the tree, while the graphs in [30] were independent.

We tackle this issue by always recursing only on one child node and

therefore querying a single leaf. We repeat the process in several

independent trees in order to amplify the success probability. We

prove that there exists a constant 𝑐 > 0 such that 𝑂 (𝑐ℎ) trees
together ensure the property we need from an (𝐿, 𝑓)-replacement

path covering w.h.p. Optimizing the height ℎ gives an 𝑂 (𝐿𝑜 (1))
query time (assuming constant 𝑓).

The main challenge is to bring down the size of this construction

by reducing the number of edges in the graphs associated with

the nodes of the trees. Thorup and Zwick [29] devised, for any

positive integer 𝑘 , a (2𝑘−1)-approximate distance oracle together

with a compatible spanner of size 𝑂 (𝑘𝑛1+1/𝑘), i.e., the stretched
distance returned by the oracle is the length of a shortest path in

the spanner. Therefore, we can use the oracles in the leaves of the

trees to report distances, giving a low query time, and employ the

spanners as proxies for the graphs associated with the intermediate

nodes. However, for this to work, we have to carefully tweak the

computation of the spanners and interleave it with the sampling

process in order to not blow up the size too much (or the stretch).

Long Paths.We return to the fault-tolerant trees. By the use of the

pivots, we reduced the required number of trees to 𝑂𝜀 (𝑛2/𝐿). But
even in the most compact version of FT-trees, this is not enough to

reach subquadratic space all together. The issue is with the repre-

sentation of expaths as a sequence of 𝑂 (𝑓 log𝑛) components, each

1399

Approximate Distance Sensitivity Oracles in Subquadratic Space STOC ’23, June 20–23, 2023, Orlando, FL, USA

of which is implicitly represented by its two endpoints. In [14] this

was implemented by storing the original graph distance 𝑑 (𝑥,𝑦) and
the predecessor pred(𝑥,𝑦) of𝑦 on the shortest 𝑥-𝑦-path for all pairs
𝑥,𝑦. This information is used to expand the implicit representation

of an expath when needed. However, the space is again Ω(𝑛2). The
key observation to overcome this is that, in our case, we do not

need to encode arbitrary expaths but only those with a particular

structure, e.g., at least one endpoint is a pivot. This allows us to

forgo the need of a quadratic database of all distances.

We also devise a new procedure to obtain an approximation

of 𝑑𝐺−𝐹 (𝑠, 𝑡) by combining the values from the FT-trees with the

𝑓 -DSO for short paths. Recall that we build one FT-tree for each

pair of vertices (𝑢, 𝑣) where 𝑢 or 𝑣 are pivots. The main open issue

is to find the weight of the edge {𝑢, 𝑣} in the auxiliary graph 𝐻𝐹

(see above) if neither 𝑢 nor 𝑣 are pivots and they also do not have a

short path between them in 𝐺 − 𝐹 . Then, w.h.p. at least one pivot
𝑏 hits the 𝐿-edge prefix of that replacement path. Therefore, it is

sufficient to estimate its length as the sum of an approximation for

𝑑⩽𝐿
𝐺−𝐹 (𝑢,𝑏) via the 𝑓 -DSO for short paths, and an approximation

for 𝑑𝐺−𝐹 (𝑏, 𝑣) via the FT-trees. However, since we do not know the

right pivot 𝑏, we have to scan all of them. We prove that this results

in a stretch of 3 + 𝜀 and a sublinear query time.

While this is already faster than all previous works (for a stretch

independent of 𝑓), it is still not very efficient. In Section 6, we

improve the query time to 𝑂𝜀 (𝑛𝛼) for any constant 0 < 𝛼 < 1/2.
We provide an efficient way to check whether the number of pivots

in 𝐵 that are close to 𝑢 and 𝑣 in𝐺 − 𝐹 are below the threshold value

of 𝐿𝑓 −1 and, if so, find them all. If only a small number of pivots

are around 𝑢 (or 𝑣), we can afford to scan them as described above.

The complementary case of many pivots around both endpoints

is solved by precomputing a set of𝑂𝜀 (𝑛/𝐿𝑓) new pivots, much fewer

than before, and generalizing the FT-trees to granularity 𝜆 > 0. This

ensures that, in any node 𝜈 , the first and last 𝜆 edges of the corre-

sponding path 𝑃𝜈 each form their own segment. High granularity

thus makes the generalized trees much larger. For comparison, the

maximum granularity 𝜆 = 𝑛 would unwind all of the efforts taken
in [14] to reduce their size, as summarized at the beginning of this

section. We can still fit the trees in subquadratic space by building

𝐹𝑇𝜆 (𝑏, 𝑏′) only for pairs 𝑏, 𝑏′ of new pivots.

The 𝑢-𝑣-distance in 𝐺 − 𝐹 in the case of many original pivots
around 𝑢 and 𝑣 is approximated as follows. We compute two new
pivots 𝑏𝑢 , 𝑏𝑣 , with 𝑏𝑢 close to 𝑢 in 𝐺 − 𝐹 and 𝑏𝑣 close to 𝑣 . The

approximate length of the shortest path from 𝑢 to 𝑣 in 𝐺 − 𝐹 is

computed by the overall sum of (i) an approximation of the distance

from 𝑢 to 𝑏𝑢 in 𝐺 − 𝐹 , (ii) an approximation of the distance from

𝑏𝑢 to 𝑏𝑣 in 𝐺 − 𝐹 computed by visiting 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣), and (iii) an

approximation of the distance from 𝑏𝑣 to 𝑣 in𝐺 − 𝐹 . We make sure

to have a granularity 𝜆 ⩽ 𝐿 so as to compute the approximations

(i) and (iii) using our 𝑓 -DSO for short paths.

3 PRELIMINARIES
We let𝐺 = (𝑉 , 𝐸) denote the undirected and unweighted base graph
with 𝑛 vertices and𝑚 edges. We tacitly assume𝑚 = Ω(𝑛). For any
undirected (multi-)graph 𝐻 , which may differ from the input 𝐺 ,

we denote by 𝑉 (𝐻) and 𝐸 (𝐻) the set of its vertices and edges,

respectively. Let 𝑃 be a path in 𝐻 from a vertex 𝑠 ∈ 𝑉 (𝐻) to 𝑡 ∈

𝑉 (𝐻), we say that 𝑃 is an 𝑠-𝑡-path in 𝐻 . We denote by |𝑃 | = |𝐸 (𝑃) |
the length of 𝑃 . For vertices 𝑢, 𝑣 ∈ 𝑉 (𝑃), we let 𝑃 [𝑢..𝑣] denote the
subpath of 𝑃 from𝑢 to 𝑣 . Let 𝑃 = (𝑢1, . . . , 𝑢𝑖) and𝑄 = (𝑣1, . . . , 𝑣 𝑗) be
two paths in𝐻 . Their concatenation is 𝑃 ◦𝑄 = (𝑢1, . . . , 𝑢𝑖 , 𝑣1, . . . , 𝑣 𝑗),
which is well-defined if 𝑢𝑖 = 𝑣1 or {𝑢𝑖 , 𝑣1} ∈ 𝐸 (𝐻). For 𝑠, 𝑡 ∈ 𝑉 (𝐻),
the distance 𝑑𝐻 (𝑠, 𝑡) is the minimum length of any 𝑠-𝑡-path in 𝐻 ; if

𝑠 and 𝑡 are disconnected, we set 𝑑𝐻 (𝑠, 𝑡) = +∞. When talking about

the base graph 𝐺 , we drop the subscripts.

A spanning subgraph of a graph 𝐻 is one with the same vertex

set as 𝐻 but possibly any subset of its edges. This should not be

confused with a spanner. A spanner of stretch 𝜎 ⩾ 1, or 𝜎-spanner,
is a spanning subgraph 𝑆 ⊆ 𝐻 such that additionally for any two

vertices 𝑠, 𝑡 ∈ 𝑉 (𝑆) = 𝑉 (𝐻), it holds that 𝑑𝐻 (𝑠, 𝑡) ⩽ 𝑑𝑆 (𝑠, 𝑡) ⩽
𝜎 · 𝑑𝐻 (𝑠, 𝑡). A distance oracle (DO) for 𝐻 is a data structure that

reports, upon query (𝑠, 𝑡), the distance 𝑑𝐻 (𝑠, 𝑡). It has stretch 𝜎 ⩾ 1,

or is 𝜎-approximate, if the reported value 𝑑 (𝑠, 𝑡) satisfies 𝑑𝐻 (𝑠, 𝑡) ⩽
𝑑 (𝑠, 𝑡) ⩽ 𝜎 · 𝑑𝐻 (𝑠, 𝑡) for any admissible query.

For a set 𝐹 ⊆ 𝐸 of edges, let 𝐺−𝐹 be the graph obtained from 𝐺

by removing all edges in 𝐹 . For any two 𝑠, 𝑡 ∈ 𝑉 , a replacement path
𝑃 (𝑠, 𝑡, 𝐹) is a shortest path from 𝑠 to 𝑡 in𝐺−𝐹 . Its length 𝑑𝐺−𝐹 (𝑠, 𝑡)
is the replacement distance. Let 𝐿 be a positive integer. We call

a path in (a subgraph of) 𝐺 short if it has at most 𝐿 edges, and

long otherwise. Let 𝑑⩽𝐿
𝐺−𝐹 (𝑠, 𝑡) be the minimum length of any short

𝑠-𝑡-paths in 𝐺 − 𝐹 , or +∞ if no such path exists.

For a positive integer 𝑓 , an 𝑓 -distance sensitivity oracle (DSO) an-
swers queries (𝑠, 𝑡, 𝐹) with |𝐹 | ⩽ 𝑓 with the replacement distance

𝑑𝐺−𝐹 (𝑠, 𝑡). The stretch of a DSO is defined as for DOs. The maxi-

mum number 𝑓 of supported failures is called the sensitivity. We

measure the space complexity of any data structure in the number

of 𝑂 (log𝑛)-bit machine words. The size of the input graph 𝐺 does

not count against the space, unless it is stored explicitly.

Some proofs and even sections are omitted due to space reasons.

4 HANDLING SHORT PATHS
We develop here our (2𝑘−1)-approximate solution for short re-

placement paths, which will in turn be used for the general distance

sensitivity oracle. To do so, we first review (and slightly modify)

the distance oracle and spanner in [29] to an extent that is needed

to present our construction.

4.1 The Distance Oracle and Spanner of
Thorup and Zwick

For any positive integer 𝑘 , 8 Thorup and Zwick [29] devised a

DO that is computable in time 𝑂 (𝑘𝑚𝑛1/𝑘), has size 𝑂 (𝑘𝑛1+1/𝑘),
query time 𝑂 (𝑘), and a stretch of 2𝑘 − 1. We first review their

construction before discussing our changes. First, a family of vertex

subsets 𝑉 = 𝑋0 ⊇ 𝑋1 ⊇ · · · ⊇ 𝑋𝑘−1 ⊇ 𝑋𝑘 = ∅ is computed. Each

𝑋𝑖 is obtained by sampling the elements of 𝑋𝑖−1 independently

with probability 𝑛−1/𝑘 . We keep this family fixed and apply the

construction to a variety of subgraphs of 𝐺 .

Let 𝐻 be such a subgraph for which the oracle needs to be com-

puted. For any 𝑣 ∈ 𝑉 and 0 ⩽ 𝑖 < 𝑘 , let 𝑝𝑖,𝐻 (𝑣) be the closest

vertex
9
to 𝑣 in 𝑋𝑖 in the graph 𝐻 , ties are broken in favor of the

8
In principle, 𝑘 could depend on 𝑛 or𝑚, but for 𝑘 = Ω (log𝑛) we do not get further

space improvements. We assume 𝑘 to be a constant in this work.

9
We have 𝑝𝑖,𝐻 (𝑣) = 𝑣 for all 𝑖 small enough so that 𝑋𝑖 still contains 𝑣.

1400

STOC ’23, June 20–23, 2023, Orlando, FL, USA D. Bilò, S. Chechik, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck

Algorithm 1: Original query algorithm of the distance

oracle for pair (𝑠, 𝑡).
1 𝑤 ← 𝑠;

2 𝑖 ← 0;

3 while𝑤 ∉
⋃𝑘−1

𝑗=0 𝑋 𝑗,𝐻 (𝑡) do
4 𝑖 ← 𝑖 + 1;
5 (𝑠, 𝑡) ← (𝑡, 𝑠);
6 𝑤 ← 𝑝𝑖,𝐻 (𝑠);
7 return 𝑑𝐻 (𝑠,𝑤) + 𝑑𝐻 (𝑤, 𝑡);

Algorithm 2: Modified query algorithm of the distance

oracle for pair (𝑠, 𝑡).

1 𝑑 ←∞;
2 for 𝑖 = 0 to 𝑘 − 1 do
3 if 𝑝𝑖 (𝑠) ∈

⋃𝑘−1
𝑗=0 𝑋𝑖,𝐻 (𝑡) then

4 𝑑 ← min

{
𝑑, 𝑑𝐻 (𝑠, 𝑝𝑖 (𝑠)) + 𝑑𝐻 (𝑝𝑖 (𝑠), 𝑡)

}
5 if 𝑝𝑖 (𝑡) ∈

⋃𝑘−1
𝑗=0 𝑋𝑖,𝐻 (𝑠) then

6 𝑑 ← min

{
𝑑, 𝑑𝐻 (𝑡, 𝑝𝑖 (𝑡)) + 𝑑𝐻 (𝑝𝑖 (𝑡), 𝑠)

}
7 return 𝑑 ;

vertex with smaller label. The distances from 𝑣 to all elements in

𝑋𝑖,𝐻 (𝑣) = {𝑥 ∈ 𝑋𝑖 | 𝑑𝐻 (𝑣, 𝑥) < min𝑦∈𝑋𝑖+1 𝑑𝐻 (𝑣,𝑦)} ∪ {𝑝𝑖,𝐻 (𝑣)}
are stored in a hash table. In other words, 𝑋𝑖,𝐻 (𝑣) contains those
vertices of𝑋𝑖\𝑋𝑖+1 that are closer to 𝑣 then any vertex of𝑋𝑖+1. Note
that the set 𝑋𝑖,𝐻 (𝑣) and vertices 𝑝𝑖,𝐻 (𝑣) may differ for the various

subgraphs of 𝐺 . This completes the construction of the DO for 𝐻 .

The oracle is accompanied by a (2𝑘−1)-spanner with𝑂 (𝑘𝑛1+1/𝑘)
edges. It stores all those edges of 𝐻 that lie on a shortest path be-

tween 𝑣 and a vertex in
⋃

0⩽𝑖<𝑘 𝑋𝑖,𝐻 (𝑣), again ties between shortest
paths are broken using the edge labels.

Algorithm 1 shows how the oracle handles the query (𝑠, 𝑡). The
returned distance can be shown to overestimate𝑑𝐻 (𝑠, 𝑡) by atmost a

factor 2𝑘−1. We instead use a slightly modified version as presented

in Algorithm 2. Observe that the estimate𝑑 produced by our version

is at most the value returned by the original one and at least the

actual distance between 𝑠 and 𝑡 . Further, as before, for any 𝑠 and 𝑡 ,

the path corresponding to the new estimate is a concatenation of at

most two original shortest paths in 𝐻 . The interconnecting vertex

is either 𝑝𝑖,𝐻 (𝑠) or 𝑝𝑖,𝐻 (𝑡) for some 𝑖 , we denote it as 𝑢𝑠,𝑡,𝐻 , and

the (2𝑘−1)-approximate shortest path as 𝑃𝑠,𝑡,𝐻 . The reason why

we adapt the query algorithm is a crucial inheritance property.

Lemma 4.1 (Inheritance property). Let 𝐻 ⊆ 𝐺 ′ ⊆ 𝐺 be two
spanning subgraphs of𝐺 , 𝑠, 𝑡 ∈ 𝑉 two vertices, and 𝑃𝑠,𝑡,𝐺 ′ the approx-
imate shortest path underlying the value returned by the (modified)
distance oracle for 𝐺 ′. If 𝑃𝑠,𝑡,𝐺 ′ also exists in 𝐻 , then 𝑃𝑠,𝑡,𝐻 = 𝑃𝑠,𝑡,𝐺 ′ ,
Moreover, the oracle for 𝐻 returns |𝑃𝑠,𝑡,𝐺 ′ | upon query (𝑠, 𝑡).

Proof. Recall that 𝑃𝑠,𝑡,𝐺 ′ is a concatenation of two shortest

paths in 𝐺 ′, say, 𝑃 (𝑠,𝑢) and 𝑃 (𝑢, 𝑡), where 𝑢 = 𝑢𝑠,𝑡,𝐺 ′ is the inter-

connecting vertex in

⋃
𝑗<𝑘 𝑋 𝑗,𝐺 ′ (𝑠) ∪

⋃
𝑗<𝑘 𝑋 𝑗,𝐺 ′ (𝑡) that minimizes

the sum of distances 𝑑𝐺 ′ (𝑠,𝑢) + 𝑑𝐺 ′ (𝑢, 𝑡). Without loosing general-

ity, we have 𝑢 = 𝑝𝑖,𝐺 ′ (𝑠) for some 0 ⩽ 𝑖 < 𝑘 ; otherwise, we swap
the roles of 𝑠 and 𝑡 . Let 0 ⩽ 𝑗 < 𝑘 be such that 𝑢 ∈ 𝑋 𝑗,𝐺 ′ (𝑡).

For any spanning subgraph𝐻 ⊆ 𝐺 ′ that contains the path 𝑃𝑠,𝑡,𝐺 ′ ,
it holds that 𝑢 = 𝑝𝑖,𝐻 (𝑠) and 𝑢 ∈ 𝑋 𝑗,𝐻 (𝑡). Here, we use that the
tie-breaking for the 𝑝𝑖,𝐻 (𝑠) does not depend on the edge set of 𝐻 .

Moreover, the shortest 𝑠-𝑢-path and 𝑢-𝑡-path in the spanner for 𝐻

are the same as in𝐺 , that is, 𝑃 (𝑠,𝑢) and 𝑃 (𝑢, 𝑡). As a result, we have
𝑢 = 𝑢𝑠,𝑡,𝐻 and 𝑃𝑠,𝑡,𝐺 ′ = 𝑃𝑠,𝑡,𝐻 . The second assertion of the lemma

follows from 𝑑𝐻 (𝑠,𝑢) = |𝑃 (𝑠,𝑢) | and 𝑑𝐻 (𝑢, 𝑡) = |𝑃 (𝑢, 𝑡) |. □

4.2 Tree Sampling
We present our fault-tolerant oracle construction for short paths.

Recall that a path in 𝐺 is short if it has at most 𝐿 edges, and that

𝑑⩽𝐿
𝐺−𝐹 (𝑠, 𝑡) is the minimum distance over short 𝑠-𝑡-paths in 𝐺 − 𝐹 .
Note that, while we assume 𝑓 and 𝑘 to be constants, 𝐿 may depend

on𝑚 and 𝑛. We prove Theorem 1.2 in the remainder of the section.

We first compute the vertex sets 𝑋0, . . . , 𝑋𝑘 . Define ℎ =
√︁
𝑓 ln𝐿,

𝐾 =
⌈
((2𝑘−1)𝐿) 𝑓 /ℎ

⌉
, 𝑝 = 𝐾−1/𝑓 , and 𝐼 = 𝐶 · 11ℎ ln𝑛 for some

sufficiently large constant𝐶 > 0 (independent of 𝑓 and 𝑘). We build

𝐼 rooted trees 𝑇1, . . . ,𝑇𝐼 , each of height ℎ, such that any internal

node has𝐾 children. For the following description, we fix some tree

𝑇𝑖 and use 𝑥 to denote a node in 𝑇𝑖 . Let 𝑦 be the parent of 𝑥 in case

𝑥 is not the root. We associate with each 𝑥 a subset of edges𝐴𝑥 ⊆ 𝐸
and a spanning subgraph 𝑆𝑥 ⊆ 𝐺 in recursive fashion. For the root

of 𝑇𝑖 , set 𝐴𝑥 = 𝐸; otherwise 𝐴𝑥 is obtained by selecting each edge

of 𝐴𝑦 independently with probability 𝑝 . The random choices here

and everywhere else are made independently of all other choices.

Let 𝑟 be the depth of 𝑥 in 𝑇𝑖 (where the root has depth 𝑟 = 0).

Define 𝐽𝑟 = 4 · 𝐾ℎ−𝑟
for 𝑟 < ℎ, and 𝐽ℎ = 1. The graph 𝑆𝑥 is

constructed in 𝐽𝑟 rounds. In each round, we sample a subset𝐴 ⊆ 𝐴𝑥
by independently selecting each edge with probability 𝑝ℎ−𝑟 . We

then compute the Thorup-Zwick spanner of 𝑆𝑦 −𝐴 using the family

𝑋0, . . . , 𝑋𝑘 . Slightly abusing notation, if 𝑥 is the root, we define

𝑆𝑦 = 𝐺 here. We set 𝑆𝑥 to be the union of all those spanners. Note

that, for a leaf 𝑥 at depth 𝑟 = ℎ, then 𝐴 = 𝐴𝑥 with probability 1, so

indeed only 𝐽ℎ = 1 iteration is needed.

For each node, we store a dictionary of the edge sets 𝐸 (𝑆𝑥) and
(except for the root) 𝐴𝑥 ∩ 𝐸 (𝑆𝑦). We use the static construction

of Hagerup, Bro Miltersen, and Pagh [24] that, for a set 𝑀 , has

space 𝑂 (|𝑀 |), preprocessing time 𝑂 (|𝑀 |), and query time 𝑂 (1).
For each leaf of a tree, we store the (modified) distance oracle

𝐷𝑥 . At depth 0 ⩽ 𝑟 ⩽ ℎ, the tree 𝑇𝑖 has 𝐾
𝑟
nodes. The largest

dictionary at depth 𝑟 is the one for 𝐴𝑥 ∩ 𝐸 (𝑆𝑦) of size 𝑂 (𝐽𝑟−1 ·
𝑘𝑛1+1/𝑘) = 𝑂 (𝐾ℎ−𝑟+1𝑛1+1/𝑘) (using that 𝑘 is constant). Due to 𝐾 =

𝑂 ((2𝑘−1) 𝑓 /ℎ𝐿𝑓 /ℎ) and ℎ =
√︁
𝑓 ln𝑛, we have 𝐾ℎ+1 = 𝑂 (𝐿𝑓 +𝑜 (1))

(using that 𝑓 is constant as well). In total, our data structure requires

𝑂 (𝐼 ·ℎ ·𝐾ℎ+1𝑛1+1/𝑘) = 𝑂 (𝐿𝑓 +𝑜 (1) 𝑛1+1/𝑘) space and can be prepro-

cessed in time𝑂 (𝐼 ·ℎ·𝐾ℎ+1 (𝑘𝑚𝑛1/𝑘+𝑘𝑛1+1/𝑘)) = 𝑂 (𝐿𝑓 +𝑜 (1)𝑚𝑛1/𝑘).

4.3 Query Algorithm
Algorithm 3 presents the query algorithm to report approximate

distances. Fix a query (𝑠, 𝑡, 𝐹) where 𝑠, 𝑡 ∈ 𝑉 are two vertices and

𝐹 ⊆ 𝐸 is a set of at most 𝑓 edges. For each of the 𝐼 trees, we start at

1401

Approximate Distance Sensitivity Oracles in Subquadratic Space STOC ’23, June 20–23, 2023, Orlando, FL, USA

Algorithm 3: Algorithm to answer query (𝑠, 𝑡, 𝐹). 𝐷𝑦 is

the distance oracle associated with the leaf 𝑦.

1 𝑑 ←∞;
2 for 𝑖 = 1 to 𝐼 do
3 𝑦 ← root of 𝑇𝑖 ;

4 while 𝑦 is not leaf do
5 foreach child 𝑥 of 𝑦 do
6 if 𝐹 ∩ 𝐸 (𝑆𝑦) ⊆ 𝐴𝑥 then
7 𝑦 ← 𝑥 ;

8 continue while-loop;

9 break while-loop;

10 if 𝑦 is leaf then 𝑑 ← min

{
𝑑, 𝐷𝑦 (𝑠, 𝑡)

}
;

11 return 𝑑 ;

the root and recurse on an arbitrary child, computed in the inner for-

loop, that satisfies 𝐹 ∩𝐸 (𝑆𝑦) ⊆ 𝐴𝑥 , where𝑦 is parent of 𝑥 . Note that
the set 𝐴𝑥 is not stored as it may be too large. (We have |𝐴𝑥 | =𝑚
in the root.) The test is equivalent to 𝐹 ∩ 𝐸 (𝑆𝑦) ⊆ 𝐴𝑥 ∩ 𝐸 (𝑆𝑦)
and can be performed in time 𝑂 (𝑓) using the stored dictionaries.

If at some point no child satisfies the condition, the algorithm

resumes with the next tree. Once a leaf 𝑦 is reached, we query the

associated (modified) distance oracle 𝐷𝑦 with the pair (𝑠, 𝑡). Finally,
the algorithm returns the minimum of all oracle answers. The query

time is 𝐼 ·𝑂 (𝑓 ℎ𝐾 + 𝑘) = 𝑂 (𝐿𝑜 (1)).
We are left to prove correctness. That means, we claim that w.h.p.

the returned estimate is at least as large as the replacement distance

𝑑 (𝑠, 𝑡, 𝐹) and, if 𝑠 and 𝑡 are joined by a short path in𝐺 − 𝐹 , then this

estimate is also at most (2𝑘−1)𝑑⩽𝐿
𝐺−𝐹 (𝑠, 𝑡). Consider the Thorup-

Zwick spanner for 𝐺 − 𝐹 and in it the approximate shortest path

𝑃𝑠,𝑡,𝐺−𝐹 (as defined ahead of Lemma 4.1). If 𝑠 and 𝑡 have a short

path in 𝐺 − 𝐹 , then 𝑃𝑠,𝑡,𝐺−𝐹 has at most (2𝑘−1)𝐿 edges.

Let 𝑥 be a node at depth 𝑟 in the tree𝑇𝑖 and let 𝑆𝑦 be the spanner

associated to its parent (or 𝑆𝑦 = 𝐺 if 𝑥 is the root). We say 𝑥 is well
behaved if it satisfies the following three properties.

(1) 𝐹 ∩ 𝐸 (𝑆𝑦) ⊆ 𝐴𝑥 .
(2) Either 𝑥 is a root or |𝐸 (𝑃𝑠,𝑡,𝐺−𝐹) ∩𝐴𝑥 | < 𝐾

ℎ−𝑟
𝑓
.

(3) The path 𝑃𝑠,𝑡,𝐺−𝐹 is contained in 𝑆𝑥 .

Our query algorithm follows a path from the root to a leaf node

such that at each node Property 1 is satisfied. We show in the

following lemma that any child 𝑥 of a well-behaved node 𝑦 that

fulfills Property 1 is itself well behaved with constant probability.

Lemma 4.2. The following statements hold for any non-leaf node
𝑦 in the tree 𝑇𝑖 .

(i) If 𝑦 satisfies Property 1, then with probability at least 1− 1

𝑒 there
exists a child of 𝑦 that satisfies Property 1.

(ii) If 𝑦 satisfies Property 2, then any child of 𝑦 satisfies Property 2

with probability at least 1

4
.

(iii) If 𝑦 is well behaved and a child 𝑥 of 𝑦 satisfies Properties 1 and 2,
then the probability of 𝑥 being well behaved is at least 1 − 1

𝑒 .

The root of 𝑇𝑖 is well behaved with probability at least 1 − 1

𝑒 .

The next lemma shows that the distance oracle computed for a

well-behaved leaf reports a (2𝑘−1)-approximation of the distance

in 𝐺 − 𝐹 for short paths.

Lemma 4.3. Let 𝑠, 𝑡 ∈ 𝑉 be two vertices and 𝐹 ⊆ 𝐸 a set of at most
𝑓 edges. Let further 𝑥 be a leaf in𝑇𝑖 and 𝐷𝑥 be the (modified) distance
oracle associated with 𝑥 . If 𝑥 satisfies Property 1with respect to 𝐹 , then
𝐷𝑥 (𝑠, 𝑡) ⩾ 𝑑 (𝑠, 𝑡, 𝐹). Moreover, if 𝑥 is well behaved with respect to the
approximate shortest path 𝑃𝑠,𝑡,𝐺−𝐹 , then𝐷𝑥 (𝑠, 𝑡) ⩽ (2𝑘−1) 𝑑 (𝑠, 𝑡, 𝐹).

Proof. As 𝑥 is a leaf node, 𝑆𝑥 is the spanner of the graph 𝑆𝑦 −
𝐴𝑥 and 𝐷𝑥 reports the distances in 𝑆𝑥 . By Property 1, we have

𝐹 ∩ 𝐸 (𝑆𝑦) ⊆ 𝐴𝑥 whence 𝑆𝑥 ⊆ 𝑆𝑦 − 𝐴𝑥 ⊆ 𝐺 − 𝐹 . This implies

that 𝐷𝑥 (𝑠, 𝑡) = 𝑑𝑆𝑥 (𝑠, 𝑡) ⩾ 𝑑𝐺−𝐹 (𝑠, 𝑡) = 𝑑 (𝑠, 𝑡, 𝐹). If 𝑥 is even well

behaved then, by Property 3, the path 𝑃𝑠,𝑡,𝐺−𝐹 lies in 𝑆𝑥 and thus

by inheritance, 𝐷𝑥 (𝑠, 𝑡) ⩽ |𝑃𝑠,𝑡,𝐺−𝐹 | ⩽ (2𝑘−1) · 𝑑 (𝑠, 𝑡, 𝐹). □

Our algorithm only ever queries leaves that fulfill Property 1, it

therefore never underestimates the distance 𝑑 (𝑠, 𝑡, 𝐹). Now addi-

tionally assume that 𝑠 and 𝑡 are connected in𝐺 − 𝐹 via a path with

at most 𝐿 edges. To complete the proof of Theorem 1.2, we need

to show that, under this condition and with high probability over

all queries, our algorithm queries at least one well-behaved leaf. If

there is a short 𝑠-𝑡-path in𝐺 −𝐹 then 𝑃𝑠,𝑡,𝐺−𝐹 has at most (2𝑘 −1)𝐿
edges. Lemma 4.2 shows that the root of each tree 𝑇𝑖 , for 1 ⩽ 𝑖 ⩽ 𝐼 ,
is well behaved with probability 1 − 1

𝑒 , and that in each stage the

query algorithm finds a well-behaved child node with constant

probability. More precisely, we arrive at a well-behaved leaf with

probability at least (1 − 1

𝑒) ·
(
(1 − 1

𝑒)
2 1

4

)ℎ
⩾ 1

2
· 11−ℎ . Since there

are 𝐼 = 𝑐 · 11ℎ ln𝑛 independent trees, the query algorithms fails for

any fixed query with probability at most (1 − 1

2·11ℎ)
𝐼 ⩽ 𝑛−𝑐/2. We

choose the constant 𝑐 > 0 large enough to ensure a high success

probability over all 𝑂 (𝑛2𝑚𝑓) = 𝑂 (𝑛2+2𝑓) possible queries.

5 SUBLINEAR QUERY TIME FOR LONG PATHS
Let 0 < 𝛼 < 1/2 be a constant, where the approximation parameter

𝜀 > 0may depend on𝑚 and𝑛. As awarm up, we construct a distance

sensitivity oracle with the same stretch and space as in Theorem 1.1,

but only a sublinear query time of the form 𝑂𝜀 (𝑛1−𝑔 (𝛼,𝑓)), for
some function 𝑔. In Section 6, we then show how to reduce the

query time to𝑂𝜀 (𝑛𝛼). The intermediate solution serves to highlight

many of the key ideas needed to implement the classical FT-trees

in subquadratic space, but does not yet involve the granularity 𝜆.

Recall that we assume that, for every two vertices 𝑢 and 𝑣 of 𝐺 ,

there is a unique shortest path from 𝑢 to 𝑣 in 𝐺 . Since the short

replacement paths are handled by Theorem 1.2, we focus on long

paths. The structure of this section is as follows. We first describe

the interface of an abstract data structure FT and show how to use

it to get a (3+𝜀)-approximation of the replacement distances. We

then implement FT using FT-trees.

Lemma 5.1. Let 𝑓 be a positive integer and 0 < 𝛼 < 1/2 a constant.
For any undirected, unweighted graph with unique shortest paths and
any 𝜀 > 0, there exists a (3+𝜀)-approximate 𝑓 -DSO that takes space
𝑂 (𝑛2−𝛼/(𝑓 +1)) ·𝑂 (log𝑛/𝜀) 𝑓 +1, has query time 𝑛1−

𝛼
𝑓 +1+𝑜 (1)/𝜀, and

preprocessing time 𝑂 (𝑛2−𝛼/(𝑓 +1) (𝑚 + 1/𝜀)) ·𝑂 (log𝑛/𝜀) 𝑓 .

1402

STOC ’23, June 20–23, 2023, Orlando, FL, USA D. Bilò, S. Chechik, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck

5.1 Trapezoids and Expaths
For the interface of FT, we need a bit of terminology from the

work by Chechik et al. [14]. Recall the high-level description of

the original FT-trees in Section 2. We now make precise what we

mean by all failures in 𝐹 being “far away” from a given path. Let

0 < 𝜀 < 3; moreover, it is bounded away from 3 (𝜀 may depend on

the input). We use 𝑉 (𝐹) for the set of endpoints of failing edges.

Definition 5.2 (𝜀
9
-trapezoid). Let 𝐹 ⊆ 𝐸 a set of edges, 𝑢, 𝑣 ∈ 𝑉 ,

and 𝑃 a 𝑢-𝑣-path in 𝐺 − 𝐹 . The 𝜀
9
-trapezoid around 𝑃 in 𝐺 − 𝐹 is

tr
𝜀/9
𝐺−𝐹 (𝑃) =

{
𝑧 ∈ 𝑉 \{𝑢, 𝑣} | ∃𝑦 ∈ 𝑉 (𝑃) : 𝑑𝐺−𝐹 (𝑦, 𝑧)

⩽
𝜀

9

·min(|𝑃 [𝑢..𝑦] |, |𝑃 [𝑦..𝑣] |)
}
.

𝑃 is far away10 from 𝐹 if it exists in𝐺 −𝐹 and tr
𝜀/9
𝐺−𝐹 (𝑃) ∩𝑉 (𝐹) = ∅.

The endpoints𝑢, 𝑣 of 𝑃 are removed from the trapezoid to exclude

trivialities when applying it to paths between vertices contained in

the failing edges. Finally, note that, due to 𝜀/9 < 1, the distance from

𝑢 to any vertex in the trapezoid is strictly smaller than 𝑑𝐺 ′ (𝑢, 𝑣) (by
symmetry, this also holds for 𝑣). The idea is that either the path 𝑃 is

already far away from all failures, or we can reach our destination

via a vertex 𝑧 ∈ tr𝜀/9
𝐺−𝐹 (𝑃) ∩𝑉 (𝐹) such that the shortest 𝑢-𝑧-path

in𝐺 − 𝐹 is far away from 𝐹 and only a slight detour. An illustration

is given in ??.

Lemma 5.3 (Lemma 2.6 in [14]). Let𝑢, 𝑣 ∈ 𝑉 (𝐹) and 𝑃 = 𝑃 (𝑢, 𝑣, 𝐹)
be their replacement path. If tr𝜀/9

𝐺−𝐹 (𝑃) ∩ 𝑉 (𝐹) ≠ ∅, then there are

vertices 𝑥 ∈ {𝑢, 𝑣}, 𝑦 ∈ 𝑉 (𝑃), and 𝑧 ∈ tr𝜀/9
𝐺−𝐹 (𝑃) ∩𝑉 (𝐹) satisfying

(i) |𝑃 [𝑥 ..𝑦] | ⩽ |𝑃 |/2;
(ii) 𝑑𝐺−𝐹 (𝑦, 𝑧) ⩽ 𝜀

9
· 𝑑𝐺−𝐹 (𝑥,𝑦);

(iii) tr
𝜀/9
𝐺−𝐹 (𝑃 [𝑥 ..𝑦] ◦ 𝑃 (𝑦, 𝑧, 𝐹)) ∩𝑉 (𝐹) = ∅.

In particular, the path 𝑃 [𝑥 ..𝑦] ◦𝑃 (𝑦, 𝑧, 𝐹) is far away from all failures
and has length at most (1 + 𝜀

9
) · 𝑑𝐺−𝐹 (𝑥,𝑦).

We now turn to expaths. Afek et al. [1] showed that shortest

paths in𝐺 − 𝐹 are 𝑓 -decomposable, that is, each of them is obtained

by concatenating at most 𝑓 + 1 shortest paths in𝐺 (for weighted𝐺

those shortest paths may be interleaved with up to 𝑓 edges). One

would like to represent replacement paths by the𝑂 (𝑓) endpoints of
those shortest paths (and edges), but during the construction of the

FT-trees much more than 𝑓 edges may fail, so this is not directly

possible. We will see that expath offer a suitable alternative.

Definition 5.4 (ℓ-decomposable path). Let 𝐴 ⊆ 𝐸 be a set of edges

and ℓ a positive integer. An ℓ-decomposable path in𝐺 −𝐴 is a path

which is the concatenation of at most ℓ + 1 shortest paths of 𝐺 .
Definition 5.5 (ℓ-expath). Let 𝐴 ⊆ 𝐸 be a set of edges and ℓ a

positive integer. An ℓ-expath in𝐺−𝐴 is a path that is a concatenation

of (2 log
2
(𝑛) +1) ℓ-decomposable paths such that, for every 0 ⩽ 𝑖 ⩽

2 log
2
𝑛, the length of the 𝑖-th path is at most min(2𝑖 , 22 log2 (𝑛)−𝑖).

Since 𝑛 − 1 is an upper bound on the diameter of any connected

subgraph of𝐺 , the middle level 𝑖 = log
2
𝑛 is large enough to accom-

pany any (decomposable) path. Levels may be empty. Therefore, for

10
Our definition relaxes the one in [14] in that we allow tr

𝜀/9
𝐺−𝐹 (𝑃) ∩ {𝑠, 𝑡 } ≠ ∅ if

{𝑠, 𝑡 } ⊈ 𝑉 (𝐹) . This makes the definition independent of the vertices 𝑠 and 𝑡 in the

query. The proof of Lemma 5.3 remains the same using𝑉 (𝐹) instead of𝑉 (𝐻𝐹) .

any ℓ′ ⩾ ℓ , an ℓ-decomposable path is also both ℓ′-decomposable

and an ℓ′-expath. Also, an arbitrary subpath of an ℓ-decomposable

path (respectively, ℓ-expath) is again ℓ-decomposable (respectively,

an ℓ-expath). This gives the following intuition why it is good

enough to work with expaths. Suppose some replacement path

𝑃 (𝑢, 𝑣, 𝐹) survives in𝐺−𝐴 albeit 𝐴 ⊇ 𝐹 may be much larger than 𝐹 ,

then the shortest 𝑢-𝑣-path in 𝐺 −𝐴 is indeed 𝑃 (𝑢, 𝑣, 𝐹) and thus 𝑓 -

decomposable. The length of the shortest (2𝑓 +1)-expath between

𝑢 and 𝑣 in 𝐺−𝐴 is the actual replacement distance |𝑃 (𝑢, 𝑣, 𝐹) | =
𝑑𝐺−𝐹 (𝑢, 𝑣). The reason for the choice ℓ = 2𝑓 + 1 will become appar-

ent in the proof of Lemma 5.6. The difficulties of working merely

with (2𝑓 +1)-decomposable paths are described in Lemma 5.11.

Finally, we define a set 𝐵 of special vertices of 𝐺 that we call

pivots. Recall that we are mainly interested in paths with more than

𝐿 edges. Suppose 𝐿 = 𝜔 (log𝑛). We construct the set 𝐵 by sampling

any vertex from 𝑉 independently with probability 𝐶′ 𝑓 log
2
(𝑛)/𝐿

for some sufficiently large constant 𝐶′ > 0. With high probability,

we have |𝐵 | = 𝑂 (𝑛/𝐿) and any replacement path with more than

𝐿/2 edges in any of the graphs𝐺 − 𝐹 with |𝐹 | ⩽ 𝑓 contains a pivot
as can be seen by standard Chernoff bounds, see e.g. [22, 28, 30].

Interface of Data Structure FT. For a positive integer ℓ and ver-

tices 𝑢, 𝑣 ∈ 𝑉 , define 𝑑 (ℓ)
𝜀/9 (𝑢, 𝑣, 𝐹) to be the minimum length over

all ℓ-decomposable paths between 𝑢 and 𝑣 in 𝐺 − 𝐹 that are far

away from 𝐹 . If there are no such paths, we set 𝑑
(ℓ)
𝜀/9 (𝑢, 𝑣, 𝐹) = +∞.

The data structure FT can only be queried with triples (𝑢, 𝑣, 𝐹) for
which𝑢 or 𝑣 is a pivot in 𝐵. Its returned value satisfies 𝑑𝐺−𝐹 (𝑢, 𝑣) ⩽
𝐹𝑇 (𝑢, 𝑣, 𝐹) ⩽ 3 · 𝑑 (2𝑓 +1)

𝜀/9 (𝑢, 𝑣, 𝐹). We let 𝑞𝐹𝑇 denote its query time.

5.2 Querying the Distance Sensitivity Oracle
We show how to use the black box FT to get a (3+𝜀)-approximate

𝑓 -DSO. Fix a query (𝑠, 𝑡, 𝐹) that we want to answer on the top level.

Let 𝑢, 𝑣 ∈ 𝑉 be any two vertices. Recall that we use 𝑑⩽𝐿
𝐺−𝐹 (𝑢, 𝑣) for

the minimum length over all short𝑢-𝑣-paths in the graph𝐺−𝐹 , and
𝑑⩽𝐿 (𝑢, 𝑣, 𝐹) for its (2𝑘−1)-approximation by the 𝑓 -DSO for short

paths described in Theorem 1.2. We instantiate that oracle with

𝑘 = 2. The time to obtain the estimate is 𝑂 (𝐿𝑜 (1)).
To answer (𝑠, 𝑡, 𝐹), we build the complete graph 𝐻𝐹

on the ver-

tex set 𝑉 (𝐻𝐹) = {𝑠, 𝑡} ∪ 𝑉 (𝐹) and assign weights to its edges.

For a pair {𝑢, 𝑣} ∈
(𝑉 (𝐻𝐹)

2

)
, let 𝑤𝐻𝐹 (𝑢, 𝑣) denote the weight of

the edge {𝑢, 𝑣}. Since 𝐺 is undirected,𝑤𝐻𝐹 (·, ·) is symmetric. We

allow possibly infinite edge weights instead of removing the re-

spective edge in order to simplify notation. If 𝑢 or 𝑣 is a pivot, we

set𝑤𝐻𝐹 (𝑢, 𝑣) to the minimum of 𝑑⩽𝐿 (𝑢, 𝑣, 𝐹) and 𝐹𝑇 (𝑢, 𝑣, 𝐹). Oth-
erwise, if {𝑢, 𝑣} ∩ 𝐵 = ∅, we set it to the minimum of 𝑑⩽𝐿 (𝑢, 𝑣, 𝐹)
and 𝑤 ′

𝐻𝐹 (𝑢, 𝑣) = min𝑏∈𝐵 {𝐹𝑇 (𝑢,𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑣, 𝐹)}. The eventual
answer to the query (𝑠, 𝑡, 𝐹) is the distance 𝑑𝐻𝐹 (𝑠, 𝑡).

Lemma 5.6. W.h.p. the query time is 𝑂 (𝐿𝑜 (1) + 𝑛
𝐿
· 𝑞𝐹𝑇) and it

holds that 𝑑𝐺−𝐹 (𝑠, 𝑡) ⩽ 𝑑𝐻𝐹 (𝑠, 𝑡) ⩽ (3+𝜀)𝑑𝐺−𝐹 (𝑠, 𝑡).

Proof. The graph 𝐻𝐹
has 𝑂 (𝑓 2) = 𝑂 (1) edges, and assigning a

weight takes 𝑂 (𝐿𝑜 (1) + |𝐵 | · 𝑞𝐹𝑇) per edge. The distance from 𝑠 to

𝑡 can be computed using Dijkstra’s algorithm in time 𝑂 (𝑓 2).
We prove the seemingly stronger assertion that for each pair

𝑢, 𝑣 ∈ 𝑉 (𝐻𝐹), we have 𝑑𝐺−𝐹 (𝑢, 𝑣) ⩽ 𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ (3+𝜀)𝑑𝐺−𝐹 (𝑢, 𝑣).

1403

Approximate Distance Sensitivity Oracles in Subquadratic Space STOC ’23, June 20–23, 2023, Orlando, FL, USA

The first inequality is immediate from the fact that the values

𝑑⩽𝐿 (𝑢, 𝑣, 𝐹), 𝐹𝑇 (𝑢, 𝑣, 𝐹), and 𝐹𝑇 (𝑢,𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑣, 𝐹) for any 𝑏 ∈ 𝐵
are all at least 𝑑𝐺−𝐹 (𝑢, 𝑣).

We prove the second inequality by induction over𝑑𝐺−𝐹 . The case
𝑢 = 𝑣 is trivial. Assume the inequality holds for all pairs of vertices

with replacement distance strictly smaller than 𝑑𝐺−𝐹 (𝑢, 𝑣). We

distinguish three cases. In the first case, the (unique) replacement

path 𝑃 = 𝑃 (𝑢, 𝑣, 𝐹) has at most 𝐿 edges. Theorem 1.2 then implies

𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑑⩽𝐿 (𝑢, 𝑣, 𝐹) ⩽ 3 · 𝑑⩽𝐿
𝐺−𝐹 (𝑢, 𝑣) = 3 · |𝑃 |,

which is 3𝑑𝐺−𝐹 (𝑢, 𝑣) as 𝑃 is a replacement path.

If the path 𝑃 is long instead, it contains a pivot 𝑏 ∈ 𝐵 w.h.p.

(possibly 𝑢 = 𝑏 or 𝑣 = 𝑏). For the second case, assume 𝑃 has

more than 𝐿 edges and is far away from all failures in 𝐹 . Note that

then the subpaths 𝑃 [𝑢..𝑏] and 𝑃 [𝑏..𝑣] are the replacement paths

for their respective endpoints, and therefore both 𝑓 -decomposable

(and also (2𝑓 +1)-decomposable). Moreover, they are far away from

all failures as their trapezoids are subsets of tr
𝜀/9
𝐺−𝐹 (𝑃). It holds that

𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 𝐹𝑇 (𝑢,𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑣, 𝐹)

⩽ 3 · 𝑑 (2𝑓 +1)
𝜀/9 (𝑢,𝑏, 𝐹) + 3 · 𝑑 (2𝑓 +1)

𝜀/9 (𝑏, 𝑣, 𝐹)
= 3 · |𝑃 [𝑢..𝑏] | + 3 · |𝑃 [𝑏..𝑣] | = 3 · 𝑑𝐺−𝐹 (𝑢, 𝑣).

Finally, for the third case suppose the replacement path 𝑃 is long

but not far away from 𝐹 . Lemma 5.3 states the existence of three

vertices 𝑥 ∈ {𝑢, 𝑣}, 𝑦 ∈𝑉 (𝑃), and 𝑧 ∈ tr
𝜀/9
𝐺−𝐹 (𝑃) ∩ 𝑉 (𝐹) such that

𝑑𝐺−𝐹 (𝑧,𝑦) ⩽ 𝜀
9
·𝑑𝐺−𝐹 (𝑥,𝑦). The path 𝑃 ′ = 𝑃 [𝑥 ..𝑦]◦𝑃 (𝑦, 𝑧, 𝐹) is far

away from all failures and has length at most (1 + 𝜀
9
) · 𝑑𝐺−𝐹 (𝑥,𝑦).

In the remainder, we assume 𝑥 = 𝑢; the argument for 𝑥 = 𝑣 is

symmetric. If the concatenation 𝑃 ′ has at most 𝐿 edges, we get

𝑤𝐻𝐹 (𝑢, 𝑧) ⩽ 𝑑⩽𝐿 (𝑢, 𝑧, 𝐹) ⩽ 3 |𝑃 ′ | ⩽ 3

(
1 + 𝜀

9

)
𝑑𝐺−𝐹 (𝑢,𝑦).11 The

latter is equal to (3 + 𝜀
3
) 𝑑𝐺−𝐹 (𝑢,𝑦).

Note that 𝑃 [𝑢..𝑦] is in fact the unique replacement path 𝑃 (𝑢,𝑦, 𝐹).
So, if 𝑃 ′ has more than 𝐿 edges, one of its subpaths 𝑃 [𝑢..𝑦] or
𝑃 (𝑦, 𝑧, 𝐹) has more than 𝐿/2 edges. Thus, there exists a pivot 𝑏 on

𝑃 ′. Here, we actually use the uniqueness of shortest paths in𝐺 since

replacing, say, 𝑃 [𝑢..𝑦] with another shortest 𝑢-𝑦-path in 𝐺 − 𝐹 to

ensure a pivot may result in a concatenation that is no longer far

away from all failures. Similar to the second case, we arrive at

𝑤𝐻𝐹 (𝑢, 𝑧) ⩽ 𝐹𝑇 (𝑢,𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑧, 𝐹)

⩽ 3 · 𝑑 (2𝑓 +1)
𝜀/9 (𝑢,𝑏, 𝐹) + 3 · 𝑑 (2𝑓 +1)

𝜀/9 (𝑏, 𝑧, 𝐹)

⩽ 3 · |𝑃 ′ [𝑢..𝑏] | + 3 · |𝑃 ′ [𝑏..𝑧] | ⩽
(
3 + 𝜀

3

)
𝑑𝐺−𝐹 (𝑢,𝑦).

It is important that FT approximates 𝑑
(2𝑓 +1)
𝜀/9 because 𝑃 ′ may not be

𝑓 -decomposable, but it is the concatenation of two 𝑓 -decomposable

paths and thus (2𝑓 +1)-decomposable; so are 𝑃 ′ [𝑢..𝑏] and 𝑃 ′ [𝑏..𝑧].
Now that we have an upper bound on𝑤𝐻𝐹 (𝑢, 𝑧) we can conclude

the third case. Since
𝜀
9
< 1 and 𝑧 ∈ tr

𝜀/9
𝐺𝐹
(𝑃) (where 𝑃 is the 𝑢-𝑣-

replacement path), the distance 𝑑𝐺−𝐹 (𝑧, 𝑣) is strictly smaller than

𝑑𝐺−𝐹 (𝑢, 𝑣). By induction,𝑑𝐻𝐹 (𝑧, 𝑣) ⩽ (3+𝜀) ·𝑑𝐺−𝐹 (𝑧, 𝑣). Recall that
vertex 𝑦 lies on 𝑃 , whence 𝑑𝐺−𝐹 (𝑢,𝑦) + 𝑑𝐺−𝐹 (𝑦, 𝑣) = 𝑑𝐺−𝐹 (𝑢, 𝑣).
Due to 𝜀 ⩽ 3, we have (2+ 𝜀

3
) 𝜀
9
⩽ 𝜀

3
. Also, recall that 𝑑𝐺−𝐹 (𝑧,𝑦) ⩽

11
We do mean 𝑑𝐺−𝐹 (𝑢, 𝑦) here and not 𝑑𝐺−𝐹 (𝑢, 𝑧) .

𝜀
9
𝑑𝐺−𝐹 (𝑢,𝑦) by the definition of 𝑧 and 𝑥 = 𝑢. Putting everything

together, we estimate the 𝑢-𝑣-distance in the graph 𝐻𝐹
.

𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑤𝐻𝐹 (𝑢, 𝑧) + 𝑑𝐻𝐹 (𝑧, 𝑣)

⩽
(
3 + 𝜀

3

)
𝑑𝐺−𝐹 (𝑢,𝑦) + (3 + 𝜀)𝑑𝐺−𝐹 (𝑧, 𝑣)

= 3

((
1 + 𝜀

9

)
𝑑𝐺−𝐹 (𝑢,𝑦) +

(
1 + 𝜀

3

)
(𝑑𝐺−𝐹 (𝑧,𝑦) + 𝑑𝐺−𝐹 (𝑦, 𝑣))

)
⩽ 3

((
1 + 𝜀

9

)
𝑑𝐺−𝐹 (𝑢,𝑦) +

(
1 + 𝜀

3

) (𝜀
9

𝑑𝐺−𝐹 (𝑢,𝑦) + 𝑑𝐺−𝐹 (𝑦, 𝑣)
))

= 3

(
𝑑𝐺−𝐹 (𝑢,𝑦) + 𝑑𝐺−𝐹 (𝑦, 𝑣) +

(
2+ 𝜀

3

)𝜀
9

𝑑𝐺−𝐹 (𝑢,𝑦) +
𝜀

3

𝑑𝐺−𝐹 (𝑦, 𝑣)
)

⩽ 3

(
𝑑𝐺−𝐹 (𝑢, 𝑣) +

𝜀

3

𝑑𝐺−𝐹 (𝑢,𝑦) +
𝜀

3

𝑑𝐺−𝐹 (𝑦, 𝑣)
)
.

The last expression is equal to (3+𝜀)𝑑𝐺−𝐹 (𝑢, 𝑣). □

5.3 Fault-Tolerant Trees
We now describe the implementation of the FT data structure via

fault-tolerant trees. We compute all-pairs shortest distances in the

original graph 𝐺 (if required, with perturbed edge weights for

unique shortest paths), and, for each pivot 𝑏 ∈ 𝐵, a shortest path
tree of𝐺 rooted in 𝑏 in𝑂 (𝑚𝑛) time. We turn each of those trees into

an data structure that reports the lowest common ancestor (LCA)

in constant time with the algorithm of Bender and Farach-Colton

[4]. This takes time and space 𝑂 (|𝐵 |𝑛) = 𝑂 (𝑛2/𝐿) w.h.p.
We also assume that we have access to a procedure that, given

any set 𝐴 ⊆ 𝐸 of edges (which may have much more than 𝑓 ele-

ments) and pair of vertices 𝑢, 𝑣 ∈ 𝑉 , computes the shortest (2𝑓 +1)-
expath between 𝑢 and 𝑣 in 𝐺−𝐴. This expath is labeled with its

structure, that means, (a) the start and endpoints of the 2 log
2
(𝑛) +1

constituting (2𝑓 +1)-decomposable subpaths, and (b) inside each

decomposable path the start and endpoint of the constituting short-

est paths (and possibly interleaving edges). We explain in the full

version how to how to achieve this in time 𝑂 (𝑓𝑚), this is also the

key ingredient of the proof of Theorem 1.4.

We build the FT-trees only for pairs of vertices (𝑢,𝑏) for which
𝑏 ∈ 𝐵 is a pivot. On a high level, 𝐹𝑇 (𝑢,𝑏) is a tree of depth 𝑓 that
stores in each node the shortest (2𝑓 +1)-expath between 𝑢 and 𝑏 in

some graph 𝐺−𝐴. We first describe the information that we hold

in a single node 𝜈 . Let 𝑃𝜈 be the stored expath. It is partitioned

first into segments and those into parts. To define the segments, we

need the notion of netpoints.

Definition 5.7 (Path netpoints). Let 𝑃 = (𝑢 = 𝑣1, . . . , 𝑣ℓ = 𝑏) be
a path. Define 𝑝

left
to be all vertices 𝑣 𝑗 , 𝑣 𝑗+1 ∈ 𝑉 (𝑃) such that

|𝑃 [𝑢..𝑣 𝑗] | < (1 + 𝜀
36
)𝑖 ⩽ |𝑃 [𝑢..𝑣 𝑗+1] | for some integer 𝑖 ⩾ 0.

Analogously, let 𝑝
right

be all vertices 𝑣 𝑗 , 𝑣 𝑗−1 ∈ 𝑉 (𝑃) such that

|𝑃 [𝑣 𝑗 ..𝑏] | < (1 + 𝜀
36
)𝑖 ⩽ |𝑃 [𝑣 𝑗−1 ..𝑏] | for some 𝑖 . The netpoints of 𝑃

are all vertices in 𝑝
left
∪ 𝑝

right
∪ {𝑢,𝑏}.

A segment of the path 𝑃 is the subpath between consecutive

netpoints. For an edge 𝑒 ∈ 𝐸 (𝑃), let seg(𝑒, 𝑃) denote the segment of

𝑃 containing 𝑒 . The netpoints cut 𝑃 into segments of exponentially

increasing length, with 1 + 𝜀
36

being the base of the exponential.

However, since we do this from both ends the segments do not get

too large. We make this precise in Lemma 5.10 below.

The segments are further subdivided into parts. An expath 𝑃

consists of decomposable subpaths, which in turn consist of shortest

1404

STOC ’23, June 20–23, 2023, Orlando, FL, USA D. Bilò, S. Chechik, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck

paths (and interleaving edges) in 𝐺 , but they may not be aligned

with the segments. To avoid this, we define a part of 𝑃 to be a

maximal subpath that is completely contained in a shortest path of

a (2𝑓 +1)-decomposable subpath and also does not cross netpoints.

We can find all parts by a linear scan over the labels of the expath

given by the procedure mentioned above. Note that each part is

a shortest path/edge in 𝐺 . By the assumption that shortest paths

are unique, it is enough to represent a part by its two endpoints.

With each part [𝑣,𝑤], for 𝑣,𝑤 ∈ 𝑉 (𝑃), we keep the information

whether one or both endpoints are netpoints, store the original

graph distance 𝑑 (𝑣,𝑤), and a marker whether that part is long, i.e.,

whether it contains more than 𝐿 edges. If so, we additionally store

a pivot 𝑝 ∈ 𝐵 that lies in that part. (The case 𝑝 = 𝑏 is possible if the

respective part lies at the end of the expath 𝑃 , that is, if𝑤 = 𝑏.)

We now describe the whole FT-tree 𝐹𝑇 (𝑢,𝑏) recursively. In some

node 𝜈 , let 𝐴𝜈 be the set of all edges that were failed in the path

from the root to 𝜈 ; with 𝐴𝜈 = ∅ in the root itself. We compute the

shortest (2𝑓 +1)-expath 𝑃𝜈 in 𝐺 −𝐴𝜈 and store the information for

all its parts. For each of its segments 𝑆 , we create a child node 𝜇 in

which we set 𝐴𝜇 = 𝐴𝜈 ∪ 𝐸 (𝑆). That means, the transition from a

parent to a child corresponds to failing the whole segment. Note that
the sets 𝐴𝜈 are only used during preprocessing and never actually

stored. We continue the recursive construction until depth 𝑓 is

reached; if in a node 𝜈 the vertices 𝑢 and 𝑏 become disconnected,

we mark this as a leaf node not storing any path. We build one

FT-tree for each pair of (distinct) vertices in 𝑉 × 𝐵 and additionally

store the LCA data structure for each pivot.

The number of segments of any simple path in a subgraph of

𝐺 is at most 2 log
1+ 𝜀

36

(𝑛) + 1. Therefore, there exists a constant

𝑐 > 0 such that the maximum number of segments of one path is at

most 𝑐 log
2
(𝑛)/𝜀. This is an upper bound on the degree of any node,

so there are at most (𝑐 log
2
(𝑛)/𝜀) 𝑓 nodes in each tree. Moreover,

an (2𝑓 +1)-expath consists of 𝑂 (𝑓 log𝑛) shortest paths. So there

are 𝑂 (𝑓 log2 𝑛/𝜀) parts in one node, for each of which we store a

constant number of machine words. In summary, all FT-trees and

LCA structures together take space

|𝐵 |𝑛 ·𝑂
(
𝑓 log2 𝑛

𝜀

)
·𝑂

(
log𝑛

𝜀

) 𝑓
+𝑂 (|𝐵 |𝑛) = 𝑂

(
𝑛2

𝐿

)
·𝑂

(
log𝑛

𝜀

) 𝑓 +1
.

The time spent in each node is dominated by computing the (2𝑓 +1)-
expath. The total time to precompute FT is |𝐵 |𝑛 · 𝑂

(
𝑓𝑚 + 1

𝜀

)
·

𝑂

(
log𝑛
𝜀

) 𝑓
+𝑂 (|𝐵 |𝑛) = 𝑂

(
𝑛2

𝐿

(
𝑚 + 1

𝜀

))
·𝑂

(
log𝑛
𝜀

) 𝑓
.

5.4 Querying the Data Structure FT
We used in Lemma 5.6 that the returned value 𝐹𝑇 (𝑢,𝑏, 𝐹) is at least
𝑑𝐺−𝐹 (𝑢,𝑏) and most 3𝑑

(2𝑓 +1)
𝜀/9 (𝑢,𝑏, 𝐹), three times the minimum

length of an (2𝑓 +1)-decomposable between 𝑢 and 𝑏 in 𝐺−𝐹 that is

far away from all failures in 𝐹 . We now show how to do this.

The main challenge when traversing the FT-tree is to utilize the

little information that is stored in a node 𝜈 to solve the following

problem. Either find the segment seg(𝑒, 𝑃𝜈) for some failing edge

𝑒 ∈ 𝐹 or verify that 𝐹 ∩ 𝐸 (𝑃𝜈) = ∅. The original solution in [14]

was to compare for each shortest path/interleaving edge [𝑣,𝑤] on
𝑃𝜈 and edge 𝑒 = {𝑥,𝑦} ∈ 𝐹 whether the minimum of 𝑑 (𝑣, 𝑥) +
𝑤 (𝑥,𝑦) + 𝑑 (𝑦,𝑤) and 𝑑 (𝑣,𝑦) +𝑤 (𝑥,𝑦) + 𝑑 (𝑥,𝑤) is equal to 𝑑 (𝑣,𝑤).

If so, 𝑒 must lie on the shortest path 𝑃𝜈 [𝑣 ..𝑤]. Finding the according
segment amounts to computing the two bounding netpoints with a

binary search. The problem is that this approach requires to store

all Ω(𝑛2) original graph distances in 𝐺 , which we cannot afford.

We first prove that we can get a weaker guarantee with our setup.

Lemma 5.8. Let 𝜈 be a node of 𝐹𝑇 (𝑢,𝑏). There exists an algorithm
to check that there is a path between 𝑢 and 𝑏 in𝐺 − 𝐹 that has length
at most 3 |𝑃𝜈 | or find the segment seg(𝑒, 𝑃𝜈) for some 𝑒 ∈ 𝐹 ∩ 𝐸 (𝑃𝜈).
The computation time is 𝑂 (𝐿𝑜 (1)/𝜀).

Proof. Note that one of the alternatives must occur for if 𝐹 ∩
𝐸 (𝑃𝜈) = ∅, then 𝑃𝜈 exists in 𝐺 − 𝐹 . Consider a part [𝑣,𝑤] of 𝑃𝜈 . If
it has more than 𝐿 edges, then we stored a pivot 𝑝 in [𝑣,𝑤]. More

precisely, [𝑣,𝑤] is the concatenation of the unique shortest path

between 𝑣 and 𝑝 and the one between 𝑝 and𝑤 in𝐺 . We have access

to a shortest path tree rooted in 𝑝 . So, for each edge 𝑒 = {𝑥,𝑦} ∈ 𝐹 ,
we can check with a constant number of LCA queries involving 𝑝 , 𝑣 ,

𝑤 , 𝑥 , and𝑦 whether edge 𝑒 is in that concatenation in time𝑂 (𝑓) per
part. If all checks fail, we have 𝑑𝐺−𝐹 (𝑣,𝑤) = 𝑑 (𝑣,𝑤) = |𝑃𝜈 [𝑣 ..𝑤] |.

If [𝑣,𝑤] is short, the oracle from Theorem 1.2 is queried with the

triple (𝑣,𝑤, 𝐹). That oracle was preprocessed anyway and answers

in time 𝑂 (𝐿𝑜 (1)). The return value 𝑑⩽𝐿 (𝑣,𝑤, 𝐹) is compared with

the original distance 𝑑 (𝑣,𝑤) that was stored with the part. If the

former is more than 3 times the latter, it must be that 𝑑𝐺−𝐹 (𝑣,𝑤) >
𝑑 (𝑣,𝑤), so the part contains some edge of 𝐹 .

We either find a part that has a failing edge in total time𝑂 (𝐿𝑜 (1) ·
𝑓
log

2 𝑛
𝜀) = 𝑂 (𝐿

𝑜 (1)/𝜀) or verify that 𝑑𝐺−𝐹 (𝑣,𝑤) ⩽ 3 ·𝑑 (𝑣,𝑤) holds
for all parts. In the latter case, swapping each part [𝑣,𝑤] by its

replacement path 𝑃 (𝑣,𝑤, 𝐹) shows the existence of a path in 𝐺 − 𝐹
of length at most 3|𝑃𝜈 | =

∑
[𝑣,𝑤] 3𝑑 (𝑣,𝑤). Finally, let [𝑣,𝑤] be a

part with 𝐸 ([𝑣,𝑤]) ∩𝐹 ≠ ∅. It is completely contained in a segment,

finding the two closest netpoints on the subpaths 𝑃𝜈 [𝑢..𝑣] and
𝑃𝜈 [𝑤..𝑏] takes only 𝑂 (log𝑛/𝜀) = 𝑂 (1/𝜀) additional time. □

We use the lemma to compute 𝐹𝑇 (𝑢,𝑏, 𝐹). The tree transversal
starts at the root. Once it enters a node 𝜈 , it checks whether there is

a path in𝐺 − 𝐹 of length at most 3 |𝑃𝜈 |. If so, this length is returned.

Otherwise, the algorithm obtains a segment seg(𝑒, 𝑃𝜈) for some

𝑒 ∈ 𝐹 ∩ 𝐸 (𝑃𝜈) and recurses on the corresponding child. Once a leaf

𝜈∗ is encountered, the length |𝑃𝜈∗ | is returned; or +∞ if the leaf

does not store a path. This takes total time 𝑞𝐹𝑇 = 𝑂 (𝐿𝑜 (1)/𝜀) since
at most 𝑓 +1 = 𝑂 (1) nodes are visited. The main argument for the

correctness of this procedure is to show that if a (2𝑓 +1)-expath 𝑃
in 𝐺 − 𝐹 is far away from all failures, it survives in 𝐺 −𝐴𝜈∗ .

Lemma 5.9. Let 𝑃 be the shortest (2𝑓 +1)-decomposable path be-
tween 𝑢 and 𝑏 in 𝐺 − 𝐹 that is far away from all failures in 𝐹 . Let
𝜈∗ be the node of 𝐹𝑇 (𝑢,𝑏) in which a value is returned when queried
with 𝐹 , and let 𝐴𝜈∗ be the set of edges that were failed from the root
to 𝜈∗. Then, 𝑃 exists in the graph 𝐺 − 𝐴𝜈∗ . Moreover, it holds that
𝑑𝐺−𝐹 (𝑢,𝑏) ⩽ 𝐹𝑇 (𝑢,𝑏, 𝐹) ⩽ 3 · 𝑑 (2𝑓 +1)

𝜀/9 (𝑢,𝑏, 𝐹).

We need the following two lemmas for the proof. The first one

states that the segments of a path are not too long, or even only

contain a single edge. The second lemma verifies a certain prefix op-

timality of expaths. This is the crucial property that decomposable

paths are lacking. For some edge set 𝐴 ⊆ 𝐸, let 𝑑 (ℓ) (𝑢, 𝑣, 𝐴) be the

1405

Approximate Distance Sensitivity Oracles in Subquadratic Space STOC ’23, June 20–23, 2023, Orlando, FL, USA

length of the shortest ℓ-decomposable path in 𝐺−𝐴. Compared to

𝑑
(ℓ)
𝜀/9 (𝑢, 𝑣, 𝐹), this definition allows for larger failure sets and drops

the requirement of the path being far away from the failures.

Lemma 5.10 (Lemma 3.2 in [14]). Let 𝑢 ∈ 𝑉 and 𝑏 ∈ 𝐵, 𝑃 be any
path between 𝑢 and 𝑏, 𝑒 ∈ 𝐸 (𝑃), and 𝑦 a vertex of the edge 𝑒 . Then,
𝐸 (seg(𝑒, 𝑃)) = {𝑒} or | seg(𝑒, 𝑃) | ⩽ 𝜀

36
min(|𝑃 [𝑢..𝑦] |, |𝑃 [𝑦..𝑏] |).

Lemma 5.11 (Lemma 3.1 in [14]). Let 𝑢 ∈ 𝑉 and 𝑏 ∈ 𝐵, 𝐴 ⊆ 𝐸 a
set of edges, ℓ a positive integer, and 𝑃 the shortest ℓ-expath between𝑢
and 𝑏 in𝐺 −𝐴. Then, for every 𝑦 ∈ 𝑉 (𝑃), |𝑃 [𝑢..𝑦] | ⩽ 4 ·𝑑 (ℓ) (𝑢,𝑦,𝐴)
and |𝑃 [𝑦..𝑣] | ⩽ 4 · 𝑑 (ℓ) (𝑦, 𝑣, 𝐴) both hold.

Proof of Lemma 5.9. The second assertion is an easy conse-

quence of the first. 𝑃 is the shortest (2𝑓 +1)-decomposable 𝑢-𝑏-path

in 𝐺 − 𝐹 that is far away from all failures in 𝐹 . If 𝑃 also exists in

𝐺 − 𝐴𝜈∗ , then |𝑃𝜈∗ | ⩽ |𝑃 | by the definition of 𝑃𝜈∗ as the shortest

(2𝑓 +1)-expath between 𝑢 and 𝑣 in 𝐺 − 𝐴𝜈∗ and 𝑃 being (2𝑓 +1)-
decomposable (and thus a (2𝑓 +1)-expath). The query algorithm

guarantees 𝐹𝑇 (𝑢,𝑏, 𝐹) ⩽ 3 |𝑃𝜈∗ | ⩽ 3 |𝑃 | = 3 · 𝑑 (2𝑓 +1)
𝜀/9 (𝑢,𝑏, 𝐹). It is

clear that we never underestimate the true distance 𝑑𝐺−𝐹 (𝑢,𝑏).
We show the existence of the path 𝑃 in 𝐺 −𝐴𝜈 for every visited

node 𝜈 by induction over the parent-child transitions of the tree

transversal. It is true for the root where 𝐴𝜈 = ∅. When going

from 𝜈 to a child, 𝐴𝜈 gets increased by the edges 𝐸 (seg(𝑒, 𝑃𝜈)) of
a segment for some 𝑒𝐹 ∈ 𝐹 ∩ 𝐸 (𝑃𝜈). It is enough to prove that 𝑃

does not contain an edge of seg(𝑒, 𝑃𝜈). Intuitively, we argue that
the segments are too short for their removal to influence a path far

away from 𝐹 .

The claim is immediate if 𝐸 (seg(𝑒𝐹 , 𝑃𝜈)) = {𝑒𝐹 }, because 𝑃
exists in 𝐺 − 𝐹 . For the remainder, suppose seg(𝑒𝐹 , 𝑃𝜈) consists
of more than one edge. To reach a contradiction, assume 𝑒𝑃 ∈
𝐸 (𝑃) ∩ 𝐸 (seg(𝑒𝐹 , 𝑃𝜈)) is an edge in the intersection. If seg(𝑒𝐹 , 𝑃𝜈)
contains multiple edges from 𝐹 , we let 𝑒𝐹 be the one closest to 𝑒𝑃 .

This ensures that the subpath of 𝑃𝜈 between the closest vertices in

𝑒𝐹 and 𝑒𝑃 does not contain any other failing edges. More formally,

there are vertices 𝑦 ∈ 𝑒𝑃 and 𝑧 ∈ 𝑒𝐹 such that neither 𝑦 nor 𝑧 are

the endpoints 𝑢 or 𝑏 and the subpath 𝑃𝜈 [𝑦..𝑧] lies entirely both in

seg(𝑒, 𝑃𝜈) and the graph 𝐺 − 𝐹 . Since 𝑦 ∈ 𝑉 (𝑃), 𝑧 ∈ 𝑉 (𝐹), and the

path 𝑃 is far away from all failures, 𝑧 must be outside of the trape-

zoid tr
𝜀/9
𝐺−𝐹 (𝑃), that is, | seg(𝑒𝐹 , 𝑃𝜈) | ⩾ |𝑃𝜈 [𝑦..𝑧] | ⩾ 𝑑𝐺−𝐹 (𝑦, 𝑧) >

𝜀
9
min(|𝑃 [𝑢..𝑦] |, |𝑃 [𝑦..𝑏] |). Conversely, we combine Lemmas 5.10

and 5.11, the fact that edge 𝑒𝑃 lies both on 𝑃 and 𝑃𝜈 , as well as 𝑃𝜈
(with its subpaths) being a (2𝑓 +1)-expath to arrive at

| seg(𝑒𝐹 , 𝑃𝜈) | ⩽
𝜀

36

min(|𝑃𝜈 [𝑢..𝑦] |, |𝑃𝜈 [𝑦..𝑏] |)

⩽
𝜀

36

·min

(
4 · 𝑑 (2𝑓 +1) (𝑢,𝑦, 𝐹), 4 · 𝑑 (2𝑓 +1) (𝑦,𝑏, 𝐹)

)
⩽
𝜀

9

·min(|𝑃 [𝑢..𝑦] |, |𝑃 [𝑦..𝑏] |) . □

5.5 Proof of Lemma 5.1
We derive the parameters of the 𝑓 -DSO with sublinear query time.

The preprocessing consists of two main parts. First, the oracle for

short paths is computable in time 𝑂 (𝐿𝑓 +𝑜 (1)𝑚
√
𝑛) (Theorem 1.2).

Secondly, 𝐹𝑇 has preprocessing time𝑂 ((𝑛2/𝐿) (𝑚+1/𝜀))𝑂 (log𝑛/𝜀) 𝑓 ,
assuming that we can compute expaths in time 𝑂 (𝑓𝑚). We set 𝐿 =

𝑛𝛼/(𝑓 +1) for a constant 0 < 𝛼 < 1/2. The total preprocessing time

is dominated by the FT-trees giving a total time of 𝑂 (𝑛2−
𝛼
𝑓 +1 (𝑚 +

1/𝜀)) ·𝑂 (log𝑛/𝜀) 𝑓 . By Lemma 5.6 with 𝑞𝐹𝑇 = 𝑂 (𝐿𝑜 (1)/𝜀) the query
time of the resulting oracle is𝑂 (𝑛/𝜀𝐿1−𝑜 (1)) = 𝑛1−

𝛼
𝑓 +1+𝑜 (1)/𝜀. The

data structure from Theorem 1.2 requires space 𝑂 (𝐿𝑓 +𝑜 (1)𝑛3/2),
and FT takes 𝑂 (𝑛2/𝐿) · 𝑂 (log𝑛/𝜀) 𝑓 +1. Inserting our choice of 𝐿

gives 𝑛
𝑓

𝑓 +1𝛼+
3

2
+𝑜 (1) +𝑂

(
𝑛
2− 𝛼

𝑓 +1
)
·𝑂

(
log𝑛
𝜀

) 𝑓 +1
. Since 𝛼 < 1/2 is a

constant, the second term dominates.

6 REDUCING THE QUERY TIME
We now reduce the query time to 𝑂𝜀 (𝑛𝛼). The bottleneck of the

query answering is computing the (auxiliary) weight𝑤 ′
𝐻𝐹 (𝑢, 𝑣) of

the edge {𝑢, 𝑣} in the graph 𝐻𝐹
, see the beginning of Section 5.2.

Minimizing 𝐹𝑇 (𝑢,𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑣, 𝐹) over all pivots 𝑏 takes linear

time in |𝐵 |. Let 𝜆 = 𝜆(𝐿, 𝜀) ⩽ 𝐿 be a parameter to be fixed later. We

define ball𝐺−𝐹 (𝑥, 𝜆) = {𝑧 ∈ 𝑉 | 𝑑𝐺−𝐹 (𝑥,𝑢) ⩽ 𝜆}. If we had access

to the graph𝐺 − 𝐹 at query time, we could run Dijkstra’s algorithm

from 𝑢 and from 𝑣 to scan the balls ball𝐺−𝐹 (𝑢, 𝜆) and ball𝐺−𝐹 (𝑣, 𝜆)
of radius 𝜆, and only consider the pivots that are inside these balls.

By carefully adapting the sampling probability of the pivots to

𝑂 (𝑛/𝜆), we ensure at least one of them hits the shortest expath

(replacement path) for from 𝑢 to 𝑣 w.h.p. (more details below). The

problem is that these balls may still contain too many pivots. In

the worst case, we have, say, ball𝐺−𝐹 (𝑢, 𝜆) ∩ 𝐵 = 𝐵 degenerating

again to the need to scan all pivots. Furthermore, we cannot even

afford storing all balls as there are Ω(𝑛𝑚𝑓) different ones, a ball for
each pair (𝑥, 𝐹). Finally, the assumption of access to 𝐺 − 𝐹 itself is

problematic in the subquadratic-space regime.

To handle all these issues, we consider two cases when comput-

ing𝑤 ′
𝐻𝐹 (𝑢, 𝑣). That of sparse balls, where at least one of ball𝐺−𝐹 (𝑢, 𝜆)

and ball𝐺−𝐹 (𝑣, 𝜆) contains less that 𝐿𝑓 vertices, and the case of

dense balls where the two sets both contain more than 𝐿𝑓 vertices.

6.1 The Case of Sparse Balls
Consider the same setup as in Section 5.1, only that the pivots

for 𝐵 are now sampled with probability 𝐶′′ 𝑓 log
2
(𝑛)/𝜆 for some

𝐶′′ > 0. By making the constant 𝐶′′ slightly larger than 𝐶′ in
the original sampling probability (see the end of Section 5.1), we

ensure that w.h.p. every path that is a concatenation of at most

two replacement paths and has more than 𝜆 edges contains a pivot.

(Previously, we only had this for ordinary replacement paths with

at least 𝐿/2 edges.) Note that all statements from Section 5 except

for the space, preprocessing and query time in Lemma 5.1 remain

true. Further, observe that in the case of sparse balls, w.h.p. there

are𝑂 (𝐿𝑓 /𝜆) pivots in ball𝐺−𝐹 (𝑢, 𝜆) or in ball𝐺−𝐹 (𝑣, 𝜆). In this case,
it is sufficient to scan those in the same way as we did above. The

only issue is that we do not have access to ball𝐺−𝐹 (𝑢, 𝜆) at query
time, so we precompute a proxy.

Let 𝐺1, . . . ,𝐺𝜅 be all the subgraphs of 𝐺 in the leaves of the

sampling trees introduced in Section 4.2. Recall that they form an

(𝐿, 𝑓)-replacement path covering w.h.p. During preprocessing, we

compute and store the sets 𝐵𝐺𝑖
(𝑥, 𝜆) = 𝐵 ∩ ball𝐺𝑖

(𝑥, 𝜆) for all the
sparse balls ball𝐺𝑖

(𝑥, 𝜆), that is, if |ball𝐺𝑖
(𝑥, 𝜆) | ⩽ 𝐿𝑓 . Otherwise,

1406

STOC ’23, June 20–23, 2023, Orlando, FL, USA D. Bilò, S. Chechik, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck

we store a marker that ball𝐺𝑖
(𝑥, 𝜆) is dense.12 As 𝜅 = 𝐿𝑓 +𝑜 (1) and

w.h.p. |𝐵𝐺𝑖
(𝑥, 𝜆) | = 𝑂 (𝐿𝑓 /𝜆) for sparse balls, storing all of these

sets requires 𝑂 (𝑛𝐿2𝑓 +𝑜 (1)/𝜆) space. One can compute 𝐵𝐺𝑖
(𝑥, 𝜆)

by running Dijkstra from 𝑥 in 𝐺𝑖 until at most 𝐿𝑓 vertices are

discovered in time 𝑂 (𝐿2𝑓). In total, this takes 𝑂 (𝑛𝐿3𝑓 +𝑜 (1)) time.

Suppose we want to compute the weight𝑤𝐻𝐹 (𝑢, 𝑣) in the sparse

balls case, meaning that there is an 𝑥 ∈ {𝑢, 𝑣} such that the true set

ball𝐺−𝐹 (𝑥, 𝜆) is sparse.13Weuse𝑦 to denote the remaining vertex in

{𝑢, 𝑣}\{𝑥}. Let 𝑖1, . . . , 𝑖𝑟 be the indices of the graphs𝐺𝑖 𝑗 that exclude

𝐹 as computed by Algorithm 3. We showed in Section 4.2 that

𝑟 = 𝑂 (𝐿𝑜 (1)) and that the indices can be found in time proportional

to their number. By definition of 𝑥 , all the proxies ball𝐺𝑖 𝑗
(𝑥, 𝜆) for

1 ⩽ 𝑗 ⩽ 𝑟 are sparse as well. Departing from Section 5.2, we set

𝑤 ′
𝐻𝐹 (𝑢, 𝑣) = min

1⩽ 𝑗⩽𝑟
𝑏∈𝐵𝐺𝑖𝑗

(𝑥,𝜆)

(
𝑑⩽𝐿 (𝑥, 𝑏, 𝐹) + 𝐹𝑇 (𝑏,𝑦, 𝐹)

)
. (1)

The (actual) weight is𝑤𝐻𝐹 (𝑢, 𝑣) = min(𝑤 ′
𝐻𝐹 (𝑢, 𝑣), 𝑑⩽𝐿 (𝑢, 𝑣, 𝐹)).

Its computation takes time 𝑂 (𝐿𝑓 +𝑜 (1)/𝜀𝜆) as there are 𝑂 (𝐿𝑜 (1))
balls, each with 𝑂 (𝐿𝑓 /𝜆) pivots, the values 𝑑⩽𝐿 can be evaluated

in time 𝐿𝑜 (1) (Theorem 1.2), and we navigate through 𝑂 (𝐿𝑓 /𝜆)
FT-trees with a query time of 𝑞𝐹𝑇 = 𝑂 (𝐿𝑜 (1)/𝜀) each.

Recall the proof of the (3+𝜀)-approximation from Lemma 5.6.

Clearly, if the replacement path 𝑃 (𝑢, 𝑣, 𝐹) is short, then 𝑑𝐻𝐹 (𝑢, 𝑣) ⩽
3 · 𝑑𝐺−𝐹 (𝑢, 𝑣) still holds since the argument is independent of the

definition of𝑤 ′
𝐻𝐹 (𝑢, 𝑣). We make the next step in recovering what

was dubbed the “second case” for sparse balls. (The proof needs the

transition from 𝑂 (𝑛/𝐿) to 𝑂 (𝑛/𝜆) pivots.)

Lemma 6.1. Let 𝑢, 𝑣 ∈ 𝑉 be such that |ball𝐺−𝐹 (𝑢, 𝜆) | ⩽ 𝐿𝑓 or
|ball𝐺−𝐹 (𝑣, 𝜆) | ⩽ 𝐿𝑓 , and the replacement path 𝑃 (𝑢, 𝑣, 𝐹) is long
and far away from all failures in 𝐹 . Then, with high probability
𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 3 · 𝑑𝐺−𝐹 (𝑢, 𝑣) holds.

6.2 The Case of Dense Balls
To transfer the proof of Lemma 5.6,𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 3𝑑𝐺−𝐹 (𝑢, 𝑣) would
have to be true also if both ball𝐺−𝐹 (𝑢, 𝜆) and ball𝐺−𝐹 (𝑣, 𝜆) are
dense and 𝑃 (𝑢, 𝑣, 𝐹) is far away from all failures. If that were our

only concern, Equation (1), would ensure that. However, the query

time is Ω(𝑛/𝜆) since a dense ball may contain too many pivots. We

provide amore efficient query algorithmwhich, however, only gives

a (3 + 𝛿)-approximation for a small 𝛿 > 0 (Lemma 6.6). Therefore,

we have to adapt the proof of Lemma 5.6.

Our changes to the construction are twofold. We define a set B
of new pivots, polynomially sparser than 𝐵, by sampling each vertex

independently with probability 𝐶′ 𝑓 log
2
𝑛/𝜆𝐿𝑓 −1. By a Chernoff

bound and 𝜆𝐿𝑓 −1 ⩽ 𝐿𝑓 , it holds that w.h.p. |B| = 𝑂 (𝑛/𝜆𝐿𝑓 −1)
and all sets ball𝐺−𝐹 (𝑥, 𝜆) with |ball𝐺−𝐹 (𝑥, 𝜆) | > 𝐿𝑓 contain a new

pivot. We build an FT-tree with granularity 𝜆 for each pair in B2
.

FT-Trees with Granularity. Given two new pivots 𝑏𝑢 , 𝑏𝑣 ∈ B, we
denote by 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣) the fault-tolerant tree of 𝑏𝑢 and 𝑏𝑣 with gran-
ularity 𝜆. Granularity affects the netpoints, segments and expaths.

Definition 6.2 (Path netpoints with granularity 𝜆). Let 𝑃 = (𝑏𝑢 =

𝑣1, 𝑣2, . . . , 𝑣ℓ = 𝑏𝑣) be a path. If |𝑃 | ⩽ 2𝜆, then the netpoints of

12
This marker is made more precise in Section 6.2.

13
If this holds for both 𝑢 and 𝑣 the choice of 𝑥 is arbitrary.

𝑃 with granularity 𝜆 are all vertices 𝑉 (𝑃) of the path. Otherwise,
define 𝑝

left
to be all vertices 𝑣 𝑗 , 𝑣 𝑗+1 ∈ 𝑉 (𝑃) with 𝜆 ⩽ 𝑗 ⩽ ℓ − 𝜆

such that |𝑃 [𝑣𝜆 ..𝑣 𝑗] | < (1+ 𝜀
36
)𝑖 ⩽ |𝑃 [𝑣𝜆 ..𝑣 𝑗+1] | for some integer

𝑖 ⩾ 0. Analogously, let 𝑝
right

be all vertices 𝑣 𝑗 , 𝑣 𝑗−1 ∈ 𝑉 (𝑃) such
that |𝑃 [𝑣 𝑗 ..𝑣ℓ−𝜆] | < (1+ 𝜀

36
)𝑖 ⩽ |𝑃 [𝑣 𝑗−1 ..𝑣ℓ−𝜆] | for some 𝑖 . The

netpoints of P with granularity 𝜆 are all vertices in {𝑣0, . . . , 𝑣𝜆} ∪
𝑝
left
∪ 𝑝

right
∪ {𝑣ℓ−𝜆, . . . , 𝑣ℓ }.

For 𝜆 = 0, this is the same as Definition 5.7. Similar as before, we

denote by seg𝜆 (𝑒, 𝑃) for 𝑒 ∈ 𝑃 the set of segment w.r.t. to the new
netpoints that contains 𝑒 . Any path has𝑂 (𝜆)+𝑂 (log

1+𝜀 𝑛) = 𝑂 (𝜆)+
𝑂 (log𝑛/𝜀) netpoints with granularity 𝜆 and thus so many segments.

The number of nodes per tree is now (𝑂 (𝜆) + 𝑂 (log𝑛/𝜀)) 𝑓 =

𝑂 (𝜆𝑓) + 𝑂 (log𝑛/𝜀) 𝑓 In summary, the crucial change is that the

first and last 𝜆 edges are in their own segment and the segment

lengths increase exponentially only in the middle part.

Definition 6.3 (ℓ-expath with granularity 𝜆). Let 𝐴 ⊆ 𝐸 be a set

of edges and ℓ a positive integer. An ℓ-expath with granularity 𝜆 in

𝐺−𝐴 is a path 𝑃𝑎◦𝑃𝑏◦𝑃𝑐 such that 𝑃𝑎 and 𝑃𝑐 contain at most 𝜆 edges

each, while 𝑃𝑏 is a concatenation of (2 log
2
(𝑛)+1) ℓ-decomposable

paths such that, for every 0 ⩽ 𝑖 ⩽ 2 log
2
𝑛, the length of the 𝑖-th

ℓ-decomposable path is at most min(2𝑖 , 22 log2 (𝑛)−𝑖).
The parts of an ℓ-expath with granularity 𝜆 are defined as before.

In each node 𝜈 of 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣), we store the shortest (2𝑓 +1)-expath
𝑃𝜈 with granularity 𝜆 from 𝑏𝑢 to 𝑏𝑣 in 𝐺𝜈 . Note that 𝑃𝜈 now has

𝑂 (𝑓 log(𝑛) · (𝜆 + log(𝑛)/𝜀)) many parts.

Space and Preprocessing Time. Recall the analysis at the end of

Section 5.3, and also that we changed the size of |𝐵 | to𝑂 (𝑛/𝜆). The
number of nodes in 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣) is𝑂 (𝜆𝑓) +𝑂 (log𝑛/𝜀) 𝑓 and we only

need |B|2 = 𝑂 (𝑛2/𝜆2𝐿2𝑓 −2) new trees. With 𝜆 ⩽ 𝐿, this makes for

𝑂

(
𝑛2

𝐿𝑓

)
+𝑂

(
𝑛2

𝜆2𝐿2𝑓 −2

)
𝑂

(
log𝑛
𝜀

) 𝑓
nodes in all new trees. This is less

than the𝑂 (𝑛2/𝜆) ·𝑂 (log𝑛/𝜀) 𝑓 we had for the original FT-trees (that
we still need to preprocess). The more efficient expath computation

transfers to positive granularity, see the full version. We can com-

pute them in time 𝑂 (𝑓𝑚 + 𝜆) = 𝑂 (𝑚). So the preprocessing time

of the new trees is dominated by the one for the old trees. Also, the

additional 𝑂 (𝑛𝐿3𝑓 +𝑜 (1)) term for the sparse/dense balls will turn

out to be negligible. More importantly, for the total size of the new

trees the number of nodes gets multiplied by 𝑂 (𝜆 + 𝑓 log2 (𝑛)/𝜀),
proportional to the number of parts. The result turns out to be

𝑂

(
𝑛2

𝐿𝑓 −1

)
+𝑂

(
𝑛2

𝜆𝐿2𝑓 −2

)
·𝑂

(
log𝑛

𝜀

) 𝑓
+

𝑂

(
𝑛2

𝜀𝐿𝑓

)
+𝑂

(
𝑛2

𝜆2𝐿2𝑓 −2

)
·𝑂

(
log𝑛

𝜀

) 𝑓 +1
.

With 𝑓 ⩾ 2 (see Theorem 1.1), all the terms are at most the𝑂 (𝑛2/𝜆) ·
𝑂 (log𝑛/𝜀) 𝑓 +1 for the old FT-trees. Again, the𝑂 (𝑛𝐿2𝑓 +𝑜 (1)/𝜆) space
to store the regular pivots in the sparse balls will be irrelevant.

A straightforward generalization of Lemma 5.8 shows that eval-

uating 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣) with query set 𝐹 takes time 𝑂 (𝐿𝑜 (1) (𝜆 + 1/𝜀)).

Computing𝑤 ′
𝐻𝐹 (𝑢, 𝑣). Let again 𝐺1, . . . ,𝐺𝜅 be the graphs in the

leaves of the sampling trees (Section 4.2). For every 𝐺𝑖 and ver-

tex 𝑥 ∈ 𝑉 for which |ball𝐺𝑖
(𝑥, 𝜆) | > 𝐿𝑓 , we said we store a

1407

Approximate Distance Sensitivity Oracles in Subquadratic Space STOC ’23, June 20–23, 2023, Orlando, FL, USA

marker. More precisely, we associate with (𝐺𝑖 , 𝑥) a single new pivot

𝑏𝑥 ∈ B∩ball𝐺𝑖
(𝑥, 𝜆). As before, let 𝑖1, . . . , 𝑖𝑟 be the indices of graphs

𝐺𝑖 𝑗 that are relevant for the query (𝑢, 𝑣, 𝐹). Even if ball𝐺−𝐹 (𝑢, 𝜆)
and ball𝐺−𝐹 (𝑣, 𝜆) are dense, it might be that all the ball𝐺𝑖 𝑗

(𝑢, 𝜆) are
sparse or all ball𝐺𝑖 𝑗

(𝑣, 𝜆) are sparse. If so, we compute 𝑤 ′
𝐻𝐹 (𝑢, 𝑣)

(and in turn 𝑤𝐻𝐹 (𝑢, 𝑣)) via Equation (1). Otherwise, there are in-

dices 𝑖𝑢 , 𝑖𝑣 ∈ {𝑖1, . . . , 𝑖𝑟 } such that both |ball𝐺𝑖𝑢
(𝑢, 𝜆) | > 𝐿𝑓 and

|ball𝐺𝑖𝑣
(𝑣, 𝜆) | > 𝐿𝑓 . If there are multiple such indices, the choice is

arbirary. Let 𝑏𝑢 ∈ B ∩ ball𝐺𝑖𝑢
(𝑢, 𝜆) and let 𝑏𝑣 ∈ B ∩ ball𝐺𝑖𝑣

(𝑣, 𝜆)
be the stored new pivots. We define the auxiliary weight as

𝑤 ′
𝐻𝐹 (𝑢, 𝑣) = 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣, 𝐹) + 2𝜆. (2)

This takes time𝑂 (𝐿𝑜 (1) (𝜆 + 1/𝜀)), much less than with sparse balls.

6.3 Approximation Guarantee
Towards Theorem 1.1, we already have that the space and prepro-

cessing time is dominated by the original FT-trees, when accounting

for |𝐵 | = 𝑂 (𝑛/𝜆). We also argued the query time. The plan to prove

the approximation guarantee is the same as in Section 5, which

crucially involved Lemma 5.6. We already discussed how to transfer

its “first case”, as well as the “second case” if both ball𝐺−𝐹 (𝑢, 𝜆) and
ball𝐺−𝐹 (𝑣, 𝜆) are sparse. The “third case” is handled by Lemma 5.3

together with an induction. Due to the restricted space, we focus

here on the secon “second case” also if the balls are dense, and how

to adapt Lemma 5.6. As a first step, we generalize Lemmas 5.10

and 5.11 to FT-trees with granularity 𝜆 > 0.

Lemma 6.4. Let 𝑏𝑢 , 𝑏𝑣 ∈ B, 𝑃 be any path between 𝑏𝑢 and 𝑏𝑣 ,
𝑒 ∈ 𝐸 (𝑃), and 𝑦 a vertex of the edge 𝑒 . Then, 𝐸 (seg𝜆 (𝑒, 𝑃)) = {𝑒} or
| seg𝜆 (𝑒, 𝑃) | ⩽ 𝜀

36

(
min(|𝑃 [𝑏𝑢 ..𝑦] |, |𝑃 [𝑦..𝑏𝑣] |) − 𝜆

)
.

Recall that 𝑑ℓ (𝑢, 𝑣, 𝐴), for some 𝐴 ⊆ 𝐸, is the length of the short-

est ℓ-decomposable path in 𝐺 −𝐴.

Lemma 6.5. Let 𝑢, 𝑣 ∈ 𝑉 be two vertices, 𝐴 ⊆ 𝐸 a set of edges, and
𝑏𝑢 ∈ B ∩ ball𝐺−𝐴 (𝑢, 𝜆) and 𝑏𝑣 ∈ B ∩ ball𝐺−𝐴 (𝑢, 𝜆). Let further
ℓ be a positive integer, and 𝑃 the shortest ℓ-expath with granular-
ity 𝜆 between 𝑏𝑢 and 𝑏𝑣 in 𝐺 − 𝐴. Then, for every 𝑦 ∈ 𝑉 (𝑃) with
|𝑃 [𝑏𝑢 ..𝑦] |, |𝑃 [𝑦..𝑏𝑣] | > 𝜆, it holds that |𝑃 [𝑏𝑢 ..𝑦] | ⩽ 4 ·𝑑 (ℓ) (𝑢,𝑦,𝐴) +
𝜆 and |𝑃 [𝑦..𝑏𝑣] | ⩽ 4 · 𝑑 (ℓ) (𝑦, 𝑣, 𝐴) + 𝜆.

We use the results to show that also Lemma 5.9 transfers to non-

vanishing granularity, but with a slight loss in the approximation.

Again, 𝑑
(2𝑓 +1)
𝜀/9 (𝑢,𝑏, 𝐹) is the length of the shortest (2𝑓 +1)-decom-

posable 𝑢-𝑣-path in 𝐺 − 𝐹 that is far away from all failures.

Lemma 6.6. Define 𝛿 = 8𝜆/𝐿. Let 𝑢, 𝑣 ∈ 𝑉 be such that both
|ball𝐺−𝐹 (𝑢, 𝜆) |, |ball𝐺−𝐹 (𝑢, 𝜆) | > 𝐿𝑓 , and 𝑏𝑢 , 𝑏𝑣 ∈ B the associated
new pivots. Let 𝑃 be any (2𝑓 +1)-decomposable path between 𝑢 and 𝑣
in𝐺−𝐹 that is far away from 𝐹 . Then, 𝑑𝐺−𝐹 (𝑢, 𝑣) ⩽ 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣, 𝐹) +
2𝜆 ⩽ 3|𝑃 | + 𝛿𝐿. Moreover, if the shortest (2𝑓 +1)-decomposable path
between 𝑢 and 𝑣 in 𝐺 − 𝐹 that is far away from 𝐹 has more than 𝐿
edges, then, 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣, 𝐹) + 2𝜆 ⩽ (3 + 𝛿) · 𝑑

(2𝑓 +1)
𝜀/9 (𝑢, 𝑣, 𝐹).

Proof. We prove the survival of 𝑃 all the way to the output

node 𝜈∗ of 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣) when queried with set 𝐹 , as in Lemma 5.9

We have to take care of the fact that 𝑃 and 𝑃𝜈∗ may have different

endpoints. In fact, we argue about a longer path. Let 𝑃 (𝑏𝑢 , 𝑢, 𝐹) be

the replacement path between 𝑏𝑢 and 𝑢 in 𝐺−𝐹 . 𝑃 (𝑏𝑢 , 𝑢, 𝐹) has at
most 𝜆 edges by the choice 𝑏𝑢 ∈ ball𝐺−𝐹 (𝑢, 𝜆), same for 𝑃 (𝑣, 𝑏𝑣, 𝐹).
Also 𝑃 is (2𝑓 +1)-decomposable, thus𝑄 = 𝑃 (𝑏𝑢 , 𝑢, 𝐹) ◦𝑃 ◦𝑃 (𝑣, 𝑏𝑣, 𝐹)
is an (2𝑓 +1)-expath with granularity 𝜆. We argue by induction that

𝑄 exists in the graph 𝐺 −𝐴𝜈 for every visited node 𝜈 . This is clear

for the root. For a non-output node 𝜈 ≠ 𝜈∗, let 𝜈 ′ be its visited child.
To reach a contradiction, assume 𝑄 does not exist in 𝐺 − 𝐴𝜈 ′

Thus, there is a segment of 𝑃𝜈 that contains both a failing edge of 𝐹

and an edge of𝑄 . Without loosing generality, we choose 𝑒𝐹 ∈ 𝐹 and

𝑒𝑄 ∈ 𝐸 (𝑄) such that both 𝑒𝐹 and 𝑒𝑄 are in 𝑃𝜈 and the subpath of

𝑃𝜈 containing both edges contains no other failing edge. Let 𝑦 ∈ 𝑒𝑄
the endpoint closer to 𝑒𝐹 along 𝑃𝜈 , and let 𝑧 ∈ 𝑒𝐹 the endpoint

closer to 𝑒𝑄 . The subpath 𝑃𝜈 [𝑦..𝑧] is entirely in 𝐺 − 𝐹 .
It must be that 𝑒𝐹 ≠ 𝑒𝑄 as 𝑄 lies in 𝐺 − 𝐹 . Segments with more

than one edge only appear in the middle part of the stored expath,

|𝑃𝜈 [𝑏𝑢 ..𝑦] |, |𝑃𝜈 [𝑦..𝑏𝑣] | > 𝜆. By Lemmas 6.4 and 6.5, this means

| seg𝜆 (𝑒𝐹 , 𝑃) | ⩽
𝜀

36

(
min

(
|𝑃 [𝑏𝑢 ..𝑦] |, |𝑃 [𝑦..𝑏𝑣] |

)
− 𝜆

)
⩽

𝜀

36

(
min

(
4𝑑 (2𝑓 +1) (𝑢,𝑦,𝐴𝜈) + 𝜆, 4𝑑 (2𝑓 +1) (𝑦, 𝑣, 𝐴𝜈) + 𝜆

)
− 𝜆

)
=
𝜀

9

min

(
𝑑 (2𝑓 +1) (𝑢,𝑦,𝐴𝜈), 𝑑 (2𝑓 +1) (𝑦, 𝑣, 𝐴𝜈)

)
.

Subpaths of expaths with granularity are again expaths with

granularity (the components 𝑃𝑎, 𝑃𝑐 in Definition 6.3 can be empty).

The subpath 𝑃𝜈 [𝑏𝑢 ..𝑦] (resp. 𝑃𝜈 [𝑦..𝑏𝑣]) is the shortest (2𝑓 +1)-expath
with granularity 𝜆 from𝑏𝑢 to𝑦 (from𝑦 to𝑏𝑣) in𝐺−𝐴𝜈 . By induction

𝑄 exists in𝐺 −𝐴𝜈 .𝑄 [𝑏𝑢 ..𝑦] (resp.𝑄 [𝑦..𝑏𝑣]) is some (2𝑓 +1)-expath.
Together with |𝑃𝜈 [𝑏𝑢 ..𝑦] |, |𝑃𝜈 [𝑦..𝑏𝑣] | > 𝜆, this shows that 𝑦 must

also lie in the middle part of 𝑄 , that is, in 𝑃 . Moreover 𝑃 is some

(2𝑓 +1)-decomposable path from 𝑢 to 𝑣 in 𝐺 −𝐴𝜈 . In other words,

𝑑 (2𝑓 +1) (𝑢,𝑦,𝐴𝜈) ⩽ |𝑃 [𝑢,𝑦] | and 𝑑 (2𝑓 +1) (𝑦, 𝑣, 𝐴𝜈) ⩽ |𝑃 [𝑦..𝑣] |.
Since 𝑃 is far away from 𝑒𝐹 , we have | seg𝜆 (𝑒𝐹 , 𝑃) | ⩾ |𝑃𝜈 [𝑦..𝑧] | ⩾

𝑑𝐺−𝐹 (𝑦, 𝑧) > 𝜀
9
min(|𝑃 [𝑢..𝑦] |, |𝑃 [𝑦..𝑏] |), a contradiction.

For the approximation, we prove 𝑑𝐺−𝐹 (𝑢, 𝑣) ⩽ 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣, 𝐹) +
2𝜆 ⩽ (3+𝛿) · 𝑑 (2𝑓 +1)

𝜀/9 (𝑢, 𝑣, 𝐹) with 𝛿 = 8𝜆/𝐿 if 𝑃 is the shortest
(2𝑓 +1)-decomposable path from 𝑢 to 𝑣 in𝐺 − 𝐹 and has more than

𝐿 edges. In particular, we have |𝑃 | = 𝑑
(2𝑓 +1)
𝜀/9 (𝑢, 𝑣, 𝐹). The other

claim is established in passing.

Recall that 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣, 𝐹) = 3|𝑃𝜈∗ | for the output node 𝜈∗, for
which we determined that 3|𝑃𝜈∗ | ⩾ 𝑑𝐺−𝐹 (𝑏𝑢 , 𝑏𝑣). By the trian-

gle inequality, it holds that 𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣, 𝐹) + 2𝜆 ⩾ 𝑑𝐺−𝐹 (𝑏𝑢 , 𝑏𝑣) +
𝑑𝐺−𝐹 (𝑢,𝑏𝑢) + 𝑑𝐺−𝐹 (𝑏𝑣, 𝑣) ⩾ 𝑑𝐺−𝐹 (𝑢, 𝑣). We have seen that 𝑄

survives until 𝜈∗ and that 𝑃𝜈∗ is not longer than 𝑄 . In summary,

𝐹𝑇𝜆 (𝑏𝑢 , 𝑏𝑣, 𝐹) + 2𝜆 ⩽ 3|𝑄 | + 2𝜆 ⩽ 3(|𝑃 | + 2𝜆) + 2𝜆 ⩽ 3|𝑃 | + 8𝜆 =

3|𝑃 | + 𝛿𝐿 < (3 + 𝛿) 𝑑 (2𝑓 +1)
𝜀/9 (𝑢, 𝑣, 𝐹). □

Lastly, we only sketch the necessary changes to Lemma 5.6 to

derive a (3+ 𝜀)-approximation. Recall that we assume Δ = 3− 𝜀 > 0

to be a constant. We define 𝜆 = Δ
96
𝜀𝐿, which in turn implies 𝛿 = Δ

12
𝜀.

In fact, any 𝛿 ⩽ 3−𝜀
9+𝜀 𝜀 would do as this ensures 𝛿 + (6 + 𝛿 + 𝜀) 𝜀

9
⩽ 𝜀.

In Lemma 5.6 we had 𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 3𝑑𝐺−𝐹 (𝑢, 𝑣) if the path was

short (“first case”) or long but far away from all failures (“second

case”). We now only have𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ (3+𝛿) 𝑑𝐺−𝐹 (𝑢, 𝑣) due to the
dense ball case. In the “third case”, we use the the 𝑥-𝑦-𝑧-argument

of Lemma 5.3. A similar reasoning as before gives 𝑤𝐻𝐹 (𝑢, 𝑧) ⩽
(3+𝛿) (1+ 𝜀

9
)𝑑𝐺−𝐹 (𝑢,𝑦) (instead of (3+ 𝜀

3
) 𝑑𝐺−𝐹 (𝑢,𝑦)). The crucial

1408

STOC ’23, June 20–23, 2023, Orlando, FL, USA D. Bilò, S. Chechik, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck

part is the chain of inequalities at the end of the proof:

𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑤𝐻𝐹 (𝑢, 𝑧) + 𝑑𝐻𝐹 (𝑧, 𝑣)

⩽ (3+𝛿)
(
1+ 𝜀

9

)
𝑑𝐺−𝐹 (𝑢,𝑦) + (3+𝜀)𝑑𝐺−𝐹 (𝑧, 𝑣)

= (3+𝛿)
(
1+ 𝜀

9

)
𝑑𝐺−𝐹 (𝑢,𝑦) + (3+𝜀)𝑑𝐺−𝐹 (𝑧,𝑦) + (3+𝜀)𝑑𝐺−𝐹 (𝑦, 𝑣)

⩽ (3+𝛿)
(
1+ 𝜀

9

)
𝑑𝐺−𝐹 (𝑢,𝑦) + (3+𝜀)

𝜀

9

𝑑𝐺−𝐹 (𝑢,𝑦) + (3+𝜀)𝑑𝐺−𝐹 (𝑦, 𝑣)

= 3𝑑𝐺−𝐹 (𝑢,𝑦) + 𝛿 · 𝑑𝐺−𝐹 (𝑢,𝑦) + (6 + 𝛿 + 𝜀)
𝜀

9

· 𝑑𝐺−𝐹 (𝑢,𝑦) +

(3+𝜀)𝑑𝐺−𝐹 (𝑦, 𝑣)
⩽ 3𝑑𝐺−𝐹 (𝑢,𝑦) + 𝜀 · 𝑑𝐺−𝐹 (𝑢,𝑦) + (3+𝜀)𝑑𝐺−𝐹 (𝑦, 𝑣)
= (3+𝜀)𝑑𝐺−𝐹 (𝑢, 𝑣) .
The parameters of Theorem 1.1 follow from the discussion in

this section and the choices 𝜆 = Δ
96
𝜀𝐿 and 𝐿 = 𝑛𝛼/(𝑓 +1) in the same

fashion as in Lemma 5.1. The main difference is the transition from

𝐿 to 𝜆, giving an extra 1/𝜀 factor in the space and preprocessing

time, and (of course) the improved query time.

ACKNOWLEDGMENTS
The authors thank Merav Parter for raising the question of design-

ing distance sensitivity oracles that require only subquadratic space.

This project received fund-

ing from the European Re-

search Council (ERC) under

the European Union’s Hori-

zon 2020 research and innova-

tion program, grant agreement

No. 803118 “The Power of Ran-

domization in Uncertain Environments (UncertainENV)” and grant

agreement No. 101019564 “The Design and Evaluation of Modern

Fully Dynamic Data Structures (MoDynStruct)”.

REFERENCES
[1] Yehuda Afek, Anat Bremler-Barr, Haim Kaplan, Edith Cohen, and Michael Mer-

ritt. 2002. Restoration by Path Concatenation: Fast Recovery of MPLS Paths.

Distributed Computing 15 (2002), 273–283. https://doi.org/10.1007/s00446-002-

0080-6

[2] Noga Alon, Shiri Chechik, and Sarel Cohen. 2019. Deterministic Combinatorial

Replacement Paths and Distance Sensitivity Oracles. In Proceedings of the 46th
International Colloquium on Automata, Languages, and Programming, (ICALP).
12:1–12:14. https://doi.org/10.4230/LIPIcs.ICALP.2019.12

[3] Surender Baswana and Neelesh Khanna. 2013. Approximate Shortest Paths Avoid-

ing a Failed Vertex: Near Optimal Data Structures for Undirected Unweighted

Graphs. Algorithmica 66 (2013), 18–50. https://doi.org/10.1007/s00453-012-9621-

y

[4] Michael A. Bender and Martín Farach-Colton. 2000. The LCA Problem Revis-

ited. In Proceedings of the 4th Latin American Symposium Theoretical Informatics
(LATIN). 88–94. https://doi.org/10.1007/10719839_9

[5] Aaron Bernstein and David R. Karger. 2008. Improved Distance Sensitivity

Oracles via Random Sampling. In Proceedings of the 19th Symposium on Discrete
Algorithms (SODA). 34–43. https://dl.acm.org/doi/abs/10.5555/1347082.1347087

[6] Aaron Bernstein and David R. Karger. 2009. A Nearly Optimal Oracle for Avoiding

Failed Vertices and Edges. In Proceedings of the 41st Symposium on Theory of
Computing (STOC). 101–110. https://doi.org/10.1145/1536414.1536431

[7] Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin

Schirneck. 2022. Deterministic Sensitivity Oracles for Diameter, Eccentric-

ities and All Pairs Distances. In Proceedings of the 49th International Collo-
quium on Automata, Languages, and Programming (ICALP). 22:1–22:19. https:

//doi.org/10.4230/LIPIcs.ICALP.2022.22

[8] Davide Bilò, Sarel Cohen, Tobias Friedrich, and Martin Schirneck. 2021. Near-

Optimal Deterministic Single-Source Distance Sensitivity Oracles. In Proceedings

of the 29th European Symposium on Algorithms (ESA). 18:1–18:17. https://doi.

org/10.4230/LIPIcs.ESA.2021.18

[9] Davide Bilò, Sarel Cohen, Tobias Friedrich, and Martin Schirneck. 2021. Space-

Efficient Fault-Tolerant Diameter Oracles. In Proceedings of the 46th International
Symposium on Mathematical Foundations of Computer Science (MFCS). 18:1–18:16.
https://doi.org/10.4230/LIPIcs.MFCS.2021.18

[10] Greg Bodwin, Michael Dinitz, and Caleb Robelle. 2021. Optimal Vertex Fault-

Tolerant Spanners in Polynomial Time. In Proceedings of the 32nd Symposium on
Discrete Algorithms (SODA). 2924–2938. https://doi.org/10.1137/1.9781611976465.

174

[11] Greg Bodwin, Michael Dinitz, and Caleb Robelle. 2022. Partially Optimal Edge

Fault-Tolerant Spanners. In Proceedings of the 33rd Symposium on Discrete Algo-
rithms (SODA). 3272–3286. https://doi.org/10.1137/1.9781611977073.129

[12] Sergio Cabello, Erin W. Chambers, and Jeff Erickson. 2013. Multiple-Source

Shortest Paths in Embedded Graphs. SIAM J. Comput. 42 (2013), 1542–1571.

https://doi.org/10.1137/120864271

[13] Shiri Chechik and Sarel Cohen. 2020. Distance Sensitivity Oracles with Subcubic

Preprocessing Time and Fast Query Time. In Proccedings of the 52nd Symposium on
Theory of Computing (STOC). 1375–1388. https://doi.org/10.1145/3357713.3384253

[14] Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. 2017. (1+𝜀)-
Approximate 𝑓 -Sensitive Distance Oracles. In Proceedings of the 28th Sympo-
sium on Discrete Algorithms (SODA). 1479–1496. https://doi.org/10.1137/1.

9781611974782.96

[15] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. 2010. Fault

Tolerant Spanners for General Graphs. SIAM J. Comput. 39 (2010), 3403–3423.
https://doi.org/10.1137/090758039

[16] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. 2012. 𝑓 -

Sensitivity Distance Oracles and Routing Schemes. Algorithmica 63 (2012),

861–882. https://doi.org/10.1007/s00453-011-9543-0

[17] Camil Demetrescu and Mikkel Thorup. 2002. Oracles for Distances Avoiding a

Link-Failure. In Proceedings of the 13th Symposium on Discrete Algorithms (SODA).
838–843. https://dl.acm.org/doi/10.5555/545381.545490

[18] Camil Demetrescu, Mikkel Thorup, Rezaul A. Chowdhury, and Vijaya Ramachan-

dran. 2008. Oracles for Distances Avoiding a Failed Node or Link. SIAM J. Comput.
37 (2008), 1299–1318. https://doi.org/10.1137/S0097539705429847

[19] Ran Duan and Seth Pettie. 2009. Dual-Failure Distance and Connectivity Oracles.

In Proceedings of the 20th Symposium on Discrete Algorithms (SODA). 506–515.
https://dl.acm.org/doi/10.5555/545381.545490

[20] Ran Duan and Hanlin Ren. 2022. Maintaining Exact Distances under Multiple

Edge Failures. In Proceedings of the 54th Symposium on Theory of Computing
(STOC). 1093–1101. https://doi.org/10.1145/3519935.3520002

[21] Paul Erdős. 1964. Extremal Problems in Graph Theory. Theory of Graphs and its
Applications (1964), 29–36.

[22] Fabrizio Grandoni and Virginia Vassilevska Williams. 2020. Faster Replacement

Paths and Distance Sensitivity Oracles. ACM Transaction on Algorithms 16 (2020),
15:1–15:25. https://doi.org/10.1145/3365835

[23] Yong Gu and Hanlin Ren. 2021. Constructing a Distance Sensitivity Oracle

in 𝑂 (𝑛2.5794𝑀) Time. In Proceedings of the 48th International Colloquium on
Automata, Languages, and Programming (ICALP). 76:1–76:20. https://doi.org/10.

4230/LIPIcs.ICALP.2021.76

[24] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. 2001. Deterministic

Dictionaries. Journal of Algorithms 41 (2001), 69–85. https://doi.org/10.1006/

jagm.2001.1171

[25] Karthik C.S. and Merav Parter. 2021. Deterministic Replacement Path Covering.

In Proceedings of the 32nd Symposium on Discrete Algorithms (SODA). 704–723.
https://doi.org/10.1137/1.9781611976465.44

[26] Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid. 1998. Efficient

Algorithms for Constructing Fault-Tolerant Geometric Spanners. In Proceedings
of the 30th Symposium on Theory of Computing (STOC). 186–195. https://doi.org/

10.1145/276698.276734

[27] Hanlin Ren. 2022. Improved Distance Sensitivity Oracles with Subcubic Prepro-

cessing Time. J. Comput. System Sci. 123 (2022), 159–170. https://doi.org/10.

1016/j.jcss.2021.08.005

[28] Liam Roditty and Uri Zwick. 2012. Replacement Paths and 𝑘 Simple Shortest

Paths in Unweighted Directed Graphs. ACM Transaction on Algorithms 8, Article
33 (2012), 33:1–33:11 pages. https://doi.org/10.1145/2344422.2344423

[29] Mikkel Thorup and Uri Zwick. 2005. Approximate Distance Oracles. J. ACM 52

(2005), 1–24. https://doi.org/10.1145/1044731.1044732

[30] Oren Weimann and Raphael Yuster. 2013. Replacement Paths and Distance Sen-

sitivity Oracles via Fast Matrix Multiplication. ACM Transactions on Algorithms
9 (2013), 14:1–14:13. https://doi.org/10.1145/2438645.2438646

Received 2022-11-07; accepted 2023-02-06

1409

https://doi.org/10.1007/s00446-002-0080-6
https://doi.org/10.1007/s00446-002-0080-6
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.1007/s00453-012-9621-y
https://doi.org/10.1007/s00453-012-9621-y
https://doi.org/10.1007/10719839_9
https://dl.acm.org/doi/abs/10.5555/1347082.1347087
https://doi.org/10.1145/1536414.1536431
https://doi.org/10.4230/LIPIcs.ICALP.2022.22
https://doi.org/10.4230/LIPIcs.ICALP.2022.22
https://doi.org/10.4230/LIPIcs.ESA.2021.18
https://doi.org/10.4230/LIPIcs.ESA.2021.18
https://doi.org/10.4230/LIPIcs.MFCS.2021.18
https://doi.org/10.1137/1.9781611976465.174
https://doi.org/10.1137/1.9781611976465.174
https://doi.org/10.1137/1.9781611977073.129
https://doi.org/10.1137/120864271
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1137/1.9781611974782.96
https://doi.org/10.1137/1.9781611974782.96
https://doi.org/10.1137/090758039
https://doi.org/10.1007/s00453-011-9543-0
https://dl.acm.org/doi/10.5555/545381.545490
https://doi.org/10.1137/S0097539705429847
https://dl.acm.org/doi/10.5555/545381.545490
https://doi.org/10.1145/3519935.3520002
https://doi.org/10.1145/3365835
https://doi.org/10.4230/LIPIcs.ICALP.2021.76
https://doi.org/10.4230/LIPIcs.ICALP.2021.76
https://doi.org/10.1006/jagm.2001.1171
https://doi.org/10.1006/jagm.2001.1171
https://doi.org/10.1137/1.9781611976465.44
https://doi.org/10.1145/276698.276734
https://doi.org/10.1145/276698.276734
https://doi.org/10.1016/j.jcss.2021.08.005
https://doi.org/10.1016/j.jcss.2021.08.005
https://doi.org/10.1145/2344422.2344423
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1145/2438645.2438646

	Abstract
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Handling Short Paths
	4.1 The Distance Oracle and Spanner of Thorup and Zwick
	4.2 Tree Sampling
	4.3 Query Algorithm

	5 Sublinear Query Time for Long Paths
	5.1 Trapezoids and Expaths
	5.2 Querying the Distance Sensitivity Oracle
	5.3 Fault-Tolerant Trees
	5.4 Querying the Data Structure FT
	5.5 Proof of lem:longpathssublinearquery

	6 Reducing the Query Time
	6.1 The Case of Sparse Balls
	6.2 The Case of Dense Balls
	6.3 Approximation Guarantee

	Acknowledgments
	References

