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Abstract: The reduction of the seismic effects on new and existing structures is a relevant topic of the
structural mechanics applied to the civil engineering. Usually, the conceptual aspects related to a
new approach are studied by means of low-dimensional mechanical models able to capture the main
dynamic aspects of the method. The present paper can be framed in this context. Specifically, the
paper investigates the possibility of reducing the seismic response of a frame structure by using a
vibrating mass connected to an inerter device, which interacts through the soil to protect the structure.
The problem is studied by using existing soil–structure interaction (SSI) and structure–soil–structure
interaction (SSSI) models, which describe the actions between the structure and the soil, and among
adjacent structures through linear visco-elastic devices. A seven-degrees-of-freedom mechanical
model is used to describe the problem, where a general multi-story frame structure is mathematically
described by means of an equivalent 2-degrees-of-freedom system. The external vibrating mass
is coupled with the inerter device to increase its inertia without using high real mass. The aim of
the paper is to point out the role of the many parameters that characterize the interaction system.
Particular attention is devoted to the mechanical characteristics of the soil, in order to know the
effectiveness of the SSSI system as a function of the characteristics of the soil. Results show that the
vibrating mass equipped with the inerter device is almost always beneficial for the frame structure
to be protected. However, sufficient good performances justifying the costs of this method can be
reached only in limited ranges of the characterizing parameters.

Keywords: structure–soil–structure interaction; vibrating mass; inerter device; frame structure;
seismic behavior

1. Introduction

The seismic protection of new or existing structures stands as a cornerstone within the
field of Civil Engineering. Numerous possibilities exists for the preliminary assessment
of the effectiveness of new protection techniques. When a proposed technique aims to
influence the behaviour of an entire structure rather than focusing on local interventions,
one viable approach involves evaluating its effectiveness using a simplified archetype
mechanical model. This initial step yields insights that warrant more exhaustive analyses
employing refined models, despite their higher computational costs. The present paper
seamlessly fits into this narrative, employing an archetypal model to explore the feasibility
of implementing a cutting-edge seismic protection system for frame structures.

The use of low-dimensional models to explore methods for mitigating seismic re-
sponses in structures has been extensive. Within scholarly literature, two-degrees-of-
freedom (2-DOF) models have been often employed to study the conceptual aspects related
to seismic protection methodologies. For instance, comprehensive studies on Base Isolation
(BI) have been conducted in [1], while investigations into Tuned Mass Damper (TMD)
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systems have been detailed in [2]. These simplified models have also facilitated the analy-
sis of various modifications and combinations of these techniques. Notably, Tsai [3] and
Taniguchi et al. [4] delved into the reduction of base displacement in base-isolated systems
through the integration of TMDs. Recently, the same objective has been pursued in [5,6]
using TMDIs, i.e., combinations of TMDs and inerter devices. The effectiveness of such
devices in controlling seismic responses has also been investigated using low-dimensional
mechanical models, as demonstrated in [7,8].

More complex low-dimensional mechanical models have been recently employed
to investigate the seismic protection of frame structures by coupling them with external
systems. Noteworthy, a Hysteretic Mass Damper Inerter (HMDI) [9] and an external elastic
structure equipped with an inerter [10] have been used as coupled external systems to
enhance the seismic response of frame structures.

The prevailing trend observed in numerous papers, including those aforementioned,
is the direct attachment of external systems to the target structure for protection. However,
recent studies have investigated the prospect of enhancing structural response by consider-
ing the interaction mediated through the soil between an external system and the structure
under consideration. In essence, this entails a scenario where the structure and the external
system are not directly coupled but interact indirectly through the soil medium.

The topic of structure–soil–structure interaction (SSSI) provides the tools to model
interactions among different structures through the soil medium. The use of vibrating
masses or barriers, enhanced with inerter devices, interacting through the soil with a
target structure for sesimic protection, requires the application of SSSI models found in
the scientific literature. In [11], a comprehensive review of the state of the art in recent
papers addressing the SSSI problem is presented. In [12–14], researchers investigated the
use of vibrating masses or barriers equipped with inerter devices, to improve the seismic
response of structures, and the interaction between the vibrating mass and the structure
was modeled using existing SSSI models.

The analysis method applied in this paper is similar to that in [13,14], where a low-
dimensional model was used to describe the structure–soil–structure interaction between
the vibrating mass and the structure to be protected, both represented by one-dimensional
systems, with only the soil’s horizontal dynamics considered. These studies pioneered the
concept of mitigating seismic responses in structures by leveraging soil interaction with
an external system. In alignment with this approach, the present paper shares a similar
objective and employs a low-dimensional model to represent structure–soil–structure in-
teraction. Specifically, it investigates reducing seismic responses in frame structures by
utilizing soil interaction with a vibrating mass equipped with an inerter device. In this
paper, a mechanical type of inerter device, designed to exert a force that is directly propor-
tional to the relative acceleration between two connection points, or terminals, is considered.
A common design approach involves using a rack-pinion-flywheel assembly [15,16]. It is
pertinent to clarify that this paper does not aim to refine existing soil–structure interaction
(SSI) and structure–soil–structure interaction (SSSI) models. Instead, these models serve as
indispensable tools for modeling the interaction between structures and the soil, as well as
between adjacent structures. Specifically, the models employed in this study characterize
the soil utilizing linear viscoelastic Kelvin–Voigt devices, with their damping and stiffness
properties derived from specific relationships. For further elucidation on the utilized SSI
and SSSI models, readers are directed to Section 2.2.

Compared to [13,14], the original contributions primarily pertain to the following aspects:

• The rotational motion of a portion of soil is accounted for, leading to a dual level of
interaction between structures and the soil.

• The structure to be protected is a frame structure and is modeled using a 2-DOF
dynamically equivalent system. Employing a 2-DOF model, rather than a simpler
1-DOF system, enables the capture of additional information on the behavior of
the structure.
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• The parametric analysis extends to parameters defining the soil properties beneath
both the protected structure and the external system (comprising the vibrating mass
and inerter device). This comprehensive approach allows for the consideration of soil
heterogeneity across different locations.

• The visualization of parametric results through performance maps, constructed by
varying the characteristics of the vibrating mass and inerter, facilitates the identifica-
tion of optimal parameter ranges where the system exhibits superior effectiveness.

The system under investigation comprises two foundation platforms. One of these
platforms supports the vibrating mass, which is connected to the platform via a viscoelastic
device and to an inerter device [17]; consequently, the two terminals of the inerter are
linked with the vibrating mass and directly with the ground. Positioned atop the second
platform is the frame structure intended for protection. Both the horizontal displacements
and rotations of the platforms, along with the horizontal displacement of the vibrating
mass, are considered Lagrangian parameters. Conversely, the multi-story frame structure
to be protected is modeled using a 2-degree-of-freedom equivalent system, employing
two Lagrangian parameters. Hence, to describe the interaction system, a seven-degree-of-
freedom mechanical system is employed.

Two distinct series of parametric analyses are undertaken. The initial series involves
the systematic variation of the stiffness of the device linking the vibrating mass to the
foundation platform and the virtual mass provided by the inerter device. The results
are presented in performance maps, which illustrate the performance metrics across the
parameter space. These metrics are the ratios between two specific displacements of the
structure interacting with the vibrating mass and the corresponding displacements of the
standalone structure, i.e., the structure without the seismic protection system. The two
displacements are that of the first-story drift and the total drift of the structure. The second
series of parametric analyses explores the influence on the dynamics of the structure of
parameters characterizing the soil and certain geometrical characteristics of the foundation
platforms. Such influence is analyzed by examining the alterations in specific sections of
the performance maps resulting from variations in the aforementioned parameters.

2. Mechanical Model

As outlined in the introduction, the primary objective of this investigation is to assess
the feasibility of enhancing the seismic performances of frame structures through the
integration of a vibrating mass coupled with an inerter device, which interacts with the
frame via the soil medium (Figure 1). The problem under investigation can be categorized
within the domain of SSI and SSSI. Oftentimes, models used for SSI and SSSI assume that the
soil–structure and inter-structural interactions can be described by suitable equivalent linear
dash-pots and elastic springs [18,19]. In this paper, an established model of SSSI, widely
accepted within the scientific community, is employed [20]. Particular attention is devoted
to assess the sensitivity of the dynamics of the protected structure to the geometrical and
mechanical parameters that characterize such an SSSI model.

2.1. Model of the Frame Structure Connected to Vibrating Mass and an Inerter Device

The SSSI problem is investigated using a low-dimensional mechanical model de-
signed to capture the fundamental dynamics of the actual structure. This low-dimensional
model, termed the archetype model (see Figure 2a), comprises two primary components:
(i) the external system acting as a protection device and (ii) the system to be protected
against earthquakes.

The external system consists of a foundation platform with a mass me, upon which is
situated the vibrating mass Mr interacting with the inerter device having a virtual mass MI
(referred to as inertance). Withing the external system, the parameters kM and cM define
the linear elastic connection between the vibrating mass Mr and the foundation platform.
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Mr gu (t)

MI

me

ms

Figure 1. Interaction through the soil between vibrating mass with inerter and frame structure.

The system to be seismically protected consists of a foundation platform with a mass
ms supporting the frame structure. The multi-degree-of-freedom (M-DOF) structure is
represented by a dynamically equivalent 2-degree-of-freedom (2-DOF) shear-type model
with masses m1 and m2. The definition of such equivalent 2-DOF model exploits the
dynamic equivalence proposed in [21,22]. This dynamic equivalence provides the mass
mi, stiffness ki, and damping ci (i = {1, 2}) associated with each of the two degrees of
freedom. More specifically, the 2-DOF equivalent system is constructed such that the degree
of freedom associated with m1 models the displacement of the first story of the real M-DOF
frame structure, whereas the second degree of freedom associated with m2 models the
displacement of the final story of the real structure.

The connection between the two platforms and the soil is represented by Kelvin–Voigt
devices characterized by linear and rotational stiffness coefficients k j and kθ j, along with
the corresponding damping coefficients cj and cθ j, where j = {e, s}. Subscript j = e denotes
parameters pertaining to the external platform, whereas those with subscript j = s pertain
to the platform supporting the frame structure. Additionally, the interaction between the
external system and the frame structure occurring through the soil is modeled through an
additional Kelvin–Voigt device characterized by the four coefficients kes, kθes, ces, and cθes.
The two coefficients with subscript θ refer to rotational components of the Kelvin–Voigt
devices, essential for capturing the rotational dynamics of the two platforms. However,
for the sake of simplicity, these rotational components are omitted from the graphical
representation in Figure 2a.

Overall, the archetype system is described by seven Lagrangian parameters, whose
positive directions are shown in Figure 2b. Specifically, uj and θj, where j = {e, s}, describe
the displaced configuration of the two foundation platforms, whereas uM, u1, and u2 are
the relative displacements of the vibrating mass Mr and the 2-DOF equivalent frame system
with respect to the corresponding foundation platforms.

The equations of motion are derived through a Lagrangian approach. The displace-
ment components of the masses defining the system, expressed as functions of the La-
grangian parameters according to Equation (1):

xe(t) = ue(t) + ug(t),

xMr (t) = ue(t) + uM(t)− θe(t)he + ug(t),

xs(t) = us(t) + ug(t),

x1(t) = us(t) + u1(t)− θs(t)h1 + ug(t),

x2(t) = us(t) + u2(t)− θs(t)h2 + ug(t).

(1)
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Such displacements are needed to write the kinetic energy possessed by the system accord-
ing to Equation (2):

T =
1
2
(Ie + IM)θ̇2

e (t) +
1
2
(Is + I1 + I2)θ̇

2
s (t) +

1
2

me ẋ2
e (t) +

1
2

Mr ẋ2
Mr

(t)+

1
2

MI ẋ2
MI

(t) +
1
2

ms ẋ2
s (t) +

1
2

m1 ẋ2
1(t) +

1
2

m2 ẋ2
2(t),

(2)

where ẋMi (t) = u̇e(t) + u̇M(t)− θ̇e(t)he represents the relative velocity between the two
terminals of the inerter device, characterized by the virtual mass MI , the quantities Ie and
Is denote the polar inertia of the foundation platforms, and their masses, me and mi, also
account for the virtual contribution of the soil below the platforms. The explicit definition
of these four quantities is provided in Section 2.2. The polar inertia of the oscillating mass
(IM) and the two stories of the 2-DOF equivalent system (I1 and I2) are deemed negligible
(IM = I1 = I2 = 0). The potential energy, needed to apply the Lagrangian approach, reads
based on Equation (3):

U =
1
2

keue(t)2 +
1
2

ksus(t)2 +
1
2

kθeθe(t)2 +
1
2

kθsθs(t)2 +
1
2

kMuM(t)2+

1
2

k1u1(t)2 +
1
2

k2(u2(t)− u1(t))2 +
1
2

kes(us(t)− ue(t))2 +
1
2

kθes(θs(t)− θe(t))2,
(3)

where the stiffness of the Kelvin–Voigt devices representing the soil are defined in Section 2.2.
Furthermore, to take into account the viscous non-conservative forces, the effect of such forces
has to be considered. This effect, denoted as W, is formulated according to Equation (4):

W = −[ceu̇e(t)ue(t) + csu̇s(t)us(t) + cθe θ̇e(t)θe(t) + cθs θ̇s(t)θs(t) + cMu̇M(t)uM(t)+

c1u̇1(t)u1(t) + c2(u̇2(t)− u̇1(t))(u2(t)− u1(t)) + ces(u̇s(t)− u̇e(t))(us(t)− ue(t))+

cθes(θ̇s(t)− θ̇e(t))(θs(t)− θe(t))],

(4)

where, c1, c2, and cM are the damping coefficients that refer to the 2-DOF system and the
oscillating mass. The other coefficients provide the viscous damping of the Kelvin–Voigt
devices representing the soil and are defined in Section 2.2.

By introducing the Lagrangian function L = T −U and letting {q1, q2, q3, q4, q5, q6, q7} =
{ue, θe, uM, us, θs, u1, u2}, the seven Lagrangian equations of motion are obtained according
to Equation (5):[

δ

δt

(
δL
δq̇i

)
− δU

δqi
− δW

δqi

]
dqi = 0, ∀dqi ̸= 0, (i = 1, . . . , 7). (5)

Such equations of motion read based on Equation (6):

me(üe + üg) + MR(üe + üM − θ̈ehe + üg) + MI(üe + üM − θ̈ehe)+

ceue − ces(u̇s − u̇e) + keue − kes(us − ue) = 0,

(Ie + IM)θ̈e − MR(üe + üM − θ̈ehe + üg)he − MI(üe + üM − θ̈ehe)he+

cθe θ̇e − cθes(θ̇s − θ̇e) + kθeθe − cθes(θs − θe) = 0,

MR(üe + üM − θ̈ehe + üg) + MI(üe + üM − θ̈ehe) + cMu̇M + kMuM = 0,

ms(üs + üg) + m1(üs + ü1 − θ̈sh1 + üg) + m2(üs + ü2 − θ̈sh2 + üg)+

csu̇s + ces(u̇s − u̇e) + ksus + kes(us − ue) = 0,

(Is + I1 + I2)θ̈s − m1(üs + ü1 − θ̈sh1 + üg)h1 − m2(üs + ü2 − θ̈sh2 + üg)h2+

cθs θ̇s + cθes(θ̇s − θ̇e) + kθsθs + kθes(θs − θe) = 0,

m1(üs + ü1 − θ̈sh1 + üg) + c11u̇1 + c12u̇2 + k1u1 − k2(u2 − u1) = 0,

m2(üs + ü2 − θ̈sh2 + üg) + c21u̇1 + c22u̇2 − k2u1 + k2u2 = 0.

(6)
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It worth observing that, contrarily to the oscillating mass Mr, the virtual mass of the
inerter device MI responds only to the relative acceleration between its two terminals,
üe + üM − θ̈ehe. As a consequence, the external seismic acceleration ẍg does not influence
the virtual mass MI as it does to the real mass Mr. In Equation (6), cij, where {i, j} = {1, 2},
represents the coefficients of the symmetric Rayleigh damping matrix of the standalone
frame structure on rigid soil. The Rayleigh damping matrix is obtained according to
Equation (7): [

c11 c12
c21 c22

]
= α

[
m1 0
0 m2

]
+ β

[
k1 + k2 −k2
−k2 k2

]
, (7)

where coefficients α and β are derived under the assumption of identical relative damping
coefficients for both modes of the standalone frame structure, denoted by ξ = 0.05. Finally,
the damping cM is determined by modeling the moving mass M as a 1-DOF system with a
relative damping of ξM = 0.05. Specifically, cM = 2MξMωM, where ωM =

√
kM/M and

M = Mr + MI .

gu (t)

m1

k , c1 1

k , ke qe

c , ce qe

k , c2 2

m2

kM

cM
k , ks qs

c , cs qs

2a

he

h1

h2

2a

k , kes qes

c , ces qes

MI

d

ms

us

qs

(a)

(b)

ue

qe

uM u1

u2

me

Mr

ms

Figure 2. Archetype low-dimensional mechanical model. (a) Geometrical and mechanical characteris-
tics of the system. (b) Positive Lagrangian parameters.
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2.2. Structure–Soil–Structure Interaction Model

The SSSI model used in the present paper is borrowed from [20]. This model is a
simplification of the comprehensive model derived in [18,19]. A notable simplification
concerns the dimensions of the foundation platforms. Specifically, in the model proposed
in [20], the platforms are assumed to be square-shaped with equal sides of length 2a
(see Figure 2).

Given the equivalence in the dimensions of the foundation platforms, their masses and
polar inertia coincide (ms = me and Is = Ie). These parameters are adjusted to incorporate
contributions from the underlying soil. To derive such quantities, virtual contributions
attributable to the soil (mve, mvs, Ive, and Ivs) are added to the initial masses (m f e = m f s)
and polar moments of inertia (I f e = I f s) of the foundation platforms. Specifically, the total
mass me and the total polar inertia Ie are determined according to Equation (8):

me = m f e + mve,

Ie = I f e + Ive.
(8)

The initial mass m f e and polar moment of inertia I f e only depend on the geometrical
and mechanical properties of the foundation platforms, and thus, they are known quantities,
defined according to Equation (9):

m f e = 2a × 2a × t × ρp,

I f e = m f e ×
[

t2

12
+

(2a)2

12

]
,

(9)

where t and ρp are the thickness and mass density of the foundation platform, respectively.
The virtual contributions (mve and Ive) are provided as fractional proportions of m f e and
I f e and are formulated according to Equation (10):

mve =
0.095m f e

βe
; βe =

(1 − νmax)m f e

4ρr3
0

;

Ive =
0.095I f e

βθe
; βθe =

3(1 − νmax)m f e

8ρr5
0

;

(10)

where r0 = 2a
/
(3π)1/4 and ρ is the mass density of the soil.

In accordance with [20], the stiffness and damping coefficients of the Kelvin–Voigt
devices used to model the interaction between the two foundation platforms and the soil,
illustrated in Figure 2, are specified based on Equation (11):

ke = χ
9.2Gmaxa
2 − νmax

; kθe = χ
4.0Gmaxa3

1 − νmax
; ce =

0.163a
Vs

ke; cθe =
0.6a
Vs

kθe

ks =
9.2Gmaxa
2 − νmax

; kθs =
4.0Gmaxa3

1 − νmax
; cs =

0.163a
Vs

ks; cθs =
0.6a
Vs

kθs.
(11)

Moreover, the stiffness and damping of the devices decribing the structure–soil–
structure interaction (see Figure 2) are defined according to Equation (12):

kes =
[
3.7561 × 10−0.18995( d

a )
] Gmaxa

2 − νmax
; kθes = −

(
0.04234 − 0.2396Log

(
d
a

))
Gmaxa3

1 − νmax

ces = 13.2875
Gmaxa2

Vs(2 − νmax)
; cθes =

(
7.3823 − 6.775Log

(
d
a

))
Gmaxa4

Vs(1 − νmax)
;

(12)

where Gmax = V2
s ρ is the maximum shear modulus of the soil under small strains, Vs is

the shear wave velocity, and νmax the Poisson coefficient of the soil under small strains.
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The parameters referring to the external system, ke and kθe, are scaled by a factor χ ⩽ 1. Such
factor is introduced to model the effect of the application of Geotechnical Seimic Isolation
(GSI) [23,24] to the external system. In general, the application of the GSI produces a
reduction of the stiffness of the soil. It is worth remarking that the paper does not refer to
a specific GSI model, but aims to investigate the role of the soil characteristics below the
external protection device, simply scaling the stiffness of the soil. Although the application
of the GSI also modifies the damping of the soil, in this paper, this aspect is not taken into
account. As can be observed in Equation (12), the stiffness and the damping depend on
the ratio d/a, where d is the distance between the two foundation platforms and 2a is the
dimension of such platforms (see Figure 2).

Finally, it is important to highlight the assumptions used to build the model, which
may limit the investigation of actual structural systems. Specifically:

• The interaction between the foundation platforms and the soil, as well as between
the two structures through the soil, is studied by modeling the soil with linear
Kelvin–Voigt devices. Although commonly used in SSSI problems, this assumption
considers the soil as functioning in both tension and compression.

• The adopted SSSI model assumes equal dimensions for the foundation platforms,
a hypothesis that may be difficult to prove in practical applications. However, since
this paper presents a preliminary parametric study based on the use of simplified
mechanical models, its aim is to offer general insights into this approach rather than
specific design guidelines.

• Using a low-dimensional mechanical model that captures only the primary dynamics
of actual structures provides preliminary insights into the effectiveness of this protec-
tion method. For the application to real structures, a more comprehensive analysis
should be performed.

• The inerter device is assumed to be connected to an infinitely stiff soil and to the
vibrating mass. This assumption would require the use of a deep foundation to connect
the inerter to the bedrock, ensuring that one of its terminals directly experiences the
earthquake acceleration.

3. Definition of the Characteristics of the System Used in the Analyses

To examine the efficacy of the interaction between the external protection device and a
frame structure through the soil, an in-depth parametric analysis is conducted. Among all
the parameters that influence the dynamic behavior of the SSSI system, this section clarifies
which parameters are considered the most relevant for this study and, consequently, treated
as variables, and which are held constant throughout the analyses. While this approach
focuses on the most relevant parameters, further insights could be gained by varying some
of the parameters currently fixed. Expanding the set of variable parameters presents a
compelling direction for future studies where a specific tuning of the protection method is
needed to address specific case studies.

3.1. Variable Parameters

The variable parameters under consideration encompass the characteristics of the
external protection device, the SSSI model, the soil, and the frame structures. Specifically,
they include:

• The stiffness kM and the virtual mass MI provided by the inerter device. These
two mechanical quantities are parameterized in relation to the stiffness k1 and the
mass m1 of the 2-DOF model associated with the degree of freedom u1, according
to Equation (13):

kM = ηk1,

MI = γm1.
(13)
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• The ratio between the distances d and a, the shear wave velocity Vs of the soil, and the
scaling coefficient χ (see Equation (11)). For clarity, the ratio d/a that appears ex-
plicitly in Equation (12) has been renamed introducing the parameter α, as defined
in Equation (14):

α =
d
a

. (14)

• The characteristics of the frame structure. Two distinct structures are considered
in the analyses. It is assumed that these structures are sufficiently regular to be
effectively modeled by M-DOF shear-type systems. Furthermore, equal mass and
stiffness distribution are considered at each story. The main characteristics of the two
systems are presented in Table 1.

Table 1. Geometrical and mechanical characteristics of the two reference frame structures.

Stories Area Mass Stiffness Height Period 2a
[m2] [kg] [Nm−1] [m] [s] [m]

Frame 1 4 250 301.5 × 103 4.22 × 108 3.0 0.48 16.0
Frame 2 5 350 422.1 × 103 6.29 × 108 3.0 0.57 19.0

Table 1 presents the number of stories for each structure, as well as the area, mass,
stiffness, and height assigned to each story. Additionally, Table 1 includes the main vibration
period of the structure (Period) and the base dimension of the square foundation platforms
2a. Table 2 displays the geometrical and mechanical quantities that characterize the 2-DOF
systems (refer to Figure 2). The heights h1 and h2 provide the vertical position of the mass
centers associates to the two DOF (i.e., the mass of the first story and the lumped mass of all
of the other stories) with respect to the mass center of the foundation platform. Specifically,
since the first level of the equivalent 2-DOF system always corresponds to the first story
of the actual frame structure, h1 is the height of the first story. The height h2 of the second
level represents the vertical position of the center of mass of all the stories above the first.

Table 2. Mechanical characteristics of the 2-DOF equivalent systems.

k1 k2 m1 m2 h1 h2
[Nm−1] [Nm−1] [kg] [kg] [m] [m]

Frame 1 7.93 × 108 2.44 × 108 301.5 × 103 904.5 × 103 3.50 9.50
Frame 2 1.07 × 109 2.55 × 108 422.1 × 103 1688.4 × 103 3.50 11.0

3.2. Fixed Quantities

Certain parameters, deemed less significant for variation, are consistently held con-
stant throughout the paper. Specifically, these parameters include:

• Thickness of the two foundation platforms, t = 0.5 m;
• Mass density of the material of the foundation platforms, ρp = 2400 kg/m3;
• Height from the foundation platform of the mass center of the vibrating mass,

he = 1.5 m;
• Mass density of the soil, ρ = 2100 kg/m3;
• Poisson coefficient of the soil at small strains, νmax = 1/3;
• Vibrating mass, Mr = m1.

4. Parametric Analysis

An initial parametric analysis is performed by varying the parameters that characterize
the components of the SSSI system.
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4.1. Earthquake Records

Three earthquake records are used as excitation. The selection of these records consid-
ers differences in their spectral characteristics. The number of records is limited because the
intention is to qualitatively assess the sensitivity of the protection method to the character-
istics of the earthquake record, rather than to provide a specific design methodology for the
protection system. Figure 3 presents the time histories of the selected records (Figure 3a)
and their corresponding pseudo-acceleration elastic spectra (Figure 3b).

The following earthquake records are considered in this study:

(a) El Centro, 1940 California, Array Sta 9, Imperial Valley Irrigation District, 302 Com-
mercial, component 180, position of the station: 32.7953 N, 115.5335 W;

(b) Kobe, 1995 Japan earthquake, Takarazuka station, 0 deg, ground level, position of the
station: 34.8090 N, 135.3440 W;

(c) San Jose, 1989 Fremont Mission San Jose motion, Loma Prieta earthquake, Califor-
nia USA.

For clarity, each record is denoted by its corresponding underlined name from this
list. The earthquake records were obtained from the ’Center for Engineering Strong Motion
Data’ [25].

It is worth observing that, due to the linearity of the model, the fundamental aspect
that characterizes the response of the mechanical system is closely related to the frequency
content of the seismic excitation.
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Figure 3. Records of El Centro, Kobe, and San Josè seimic events. (a) Time history. (b) Pseudo-
acceleration spectrum (based on [25]).

4.2. The Role of the Parameters Characterizing the Vibrating Mass with Inerter

The first analysis is performed by varying kM and mass MI through η and γ (see
Equation (13)), while maintaining the constants Vs = 500 m/s, α = 1.0, and χ = 1.0. This
analysis focuses on evaluating the displacement u1 and drift ∆u = u2 − u1 of Frame 1
under the Kobe earthquake. The results are displayed as surface plots and contour maps of
u1 (Figure 4b) and ∆u (Figure 4b) across the parameter space defined by γ and η. The plots
elucidate a substantial dependency of the frame structure’s response on both γ and µ,
showcasing specific parameter combinations (or regions within the parameter space),
where u1 and ∆u exhibit relative minimum values. These regions of relative minima offer
valuable insights for the choice of optimal design parameters for the external device, which
could lead to an effective mitigation of the structural response of the frame under seismic
loading conditions.
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Figure 4. Displacement surfaces and maps of the 4-story frame structure under the Kobe earthquake.
(a) Displacement u1. (b) Drift ∆u (Vs = 500 m/s, α = 1.0, χ = 1.0).

4.3. The Role of the Parameters Characterizing the SSSI System

In order to assess the sensitivity of the structural dynamics to the various parameters
defining the SSSI (structure–soil–structure interaction) system, the response of the frame
structure is analyzed with η held constant at a value of η = 50. This specific value
corresponds to the sections delineated by dash-dot lines in Figure 4. Figure 5 juxtaposes
these sections for u1 (on the left) and ∆u (on the right) with analogous curves derived by
individually varying the remaining parameters. All the graphs of Figure 5 are represented in
the same scale, facilitating a direct comparison of the impacts stemming from modifications
in the different parameters. This common scale enables a concise assessment of the influence
of parameter variations on the structural response, aiding in the identification of the key
factors affecting the system dynamics. Figure 5a illustrates the sensitivity analysis with
respect to α (refer to Equation (14)) while maintaining fixed values for Vs = 500 m/s and
χ = 1.0. The bold curve corresponds to the section extracted from the surfaces depicted in
Figure 4, representing the case where α = 1.0. The results indicate that variations in the
parameter α (which corresponds to the separation distance d between the two foundation
platforms) have a negligible impact on the structural response of the frame, as evidenced
by the close proximity of the different curves.
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Figure 5. Section at η = 50 of the maps of the 4-story frame structure under the Kobe earthquake.
(a) Variation of α (Vs = 500 m/s, χ = 1.0). (b) Variation of Vs (α = 0.2, χ = 1.0). (c) Variation of χ

(α = 0.2, Vs = 300 m/s).

Figure 5b demonstrates the impact of the shear wave velocity Vs of the soil on the
structural response. It is important to note that this analysis is not intended to alter the
soil characteristics, but rather to assess the performance of the proposed interaction as a
function of Vs. This approach allows for determining in advance whether the method is
suitable for a specific case and soil type. The various curves in the graphs correspond to
different values of Vs while maintaining fixed values for α = 0.2 and χ = 1.0. The bold
curves coincide with those presented in Figure 5a, representing the case where α = 0.2 and
Vs = 500 m/s. Notably, the curve associated with the highest value of Vs = 800 m/s
exhibits a nearly constant profile compared to the other curves. A decrease in the shear
wave velocity Vs significantly alters the system behavior, leading to notable changes in
the minimum values of both u1 and ∆u. This trend suggests improved performance of
the SSSI system with lower values of Vs. However, for smaller virtual mass parameter γ,
the structural response shows an increase in both displacement and drift. Nevertheless,
such increments are confined to specific ranges of γ, highlighting the complex interplay
between system parameters and structural behaviour.

Finally, Figure 5c investigates the influence of χ (refer to Equation (11)), which rep-
resents the reduction in the soil’s stiffness beneath the foundation of the external device
resulting from the implementation of the GSI (Ground Stiffness Improvement) technique.
The curves in the graphs correspond to varying values of χ while maintaining fixed values
for α = 0.2 and Vs = 300 m/s. The bold curves align with those depicted in Figure 5b,
representing the scenario with χ = 1 and Vs = 300 m/s. Both graphs include the response
of the frame structure in the absence of the external device (standalone structure); such a
response, identified by the dashed straight line, accounts solely for the interaction of the
structure with the soil beneath its foundation platform. The findings indicate that the mini-
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mum values of both u1 and ∆u decrease as χ is reduced. Consequently, lower soil stiffness
beneath the external protection system enhances the performance of the SSSI system. Fur-
thermore, within the scope of small γ, decreasing values of χ lead to an intensified system
response surpassing that of the standalone frame structure. Nevertheless, irrespective of
the values of χ and γ, with a few exceptions, the response of the SSSI system consistently
remains below that of the standalone structure. These results underscore the beneficial
effects of reducing χ in enhancing the structural performance under seismic conditions.
Additionally, they highlight the importance of considering the combined influence of χ and
γ in optimizing the behavior of the SSSI system, ensuring superior performance compared
to the standalone structure.

5. Seismic Performance of the SSSI System

In this section, a parametric analysis is conducted on both Frame 1 and Frame 2 (refer to
Tables 1 and 2) across the range of the selected earthquakes. The analysis focuses on varying
the parameters associated with the vibrating mass, namely kM and MI , while maintaining
fixed values for α = 0.2, Vs = 300 m/s, and χ = 0.2. This systematic exploration allows for
a comprehensive assessment of the structural response under different seismic scenarios,
providing valuable insights into the dynamic behaviour of both Frame 1 and Frame 2.

5.1. Performance Indexes and Maps

To assess the effectiveness of the SSSI system in mitigating the structural response,
two performance indices are introduced according to Equation (16):

α1 =
max|u1(t)|
max|ũ1(t)|

, α2 =
max|∆u(t)|
max

∣∣∆̃u(t)
∣∣ (15)

where ũ1 and ∆̃u = ũ1 − ũ2 denote the displacement and drift of the 2-degree-of-freedom
(2-DOF) model representing the standalone structure. The effectiveness of the SSSI system
improves as the values of α1 and α2 decrease relative to unity.

The parametric analysis involves mapping the values of the performance indices, α1
and α2, onto the parameter plane defined by η and γ using a single earthquake record. This
process generates performance maps, which are contour plots illustrating the distribution of
the indices α1 and α2 across the η − γ parameter space. To enhance readability, the contour
levels are delineated using a specific greyscale scheme, where lighter shades correspond
to smaller values of the performance indices. Optimal performance of the SSSI system is
observed within regions of the maps characterized by clearer greyscale tones. These areas
indicate superior system performance, as denoted by lower values of the performance
indices α1 and α2.

5.2. Performance Maps of the SSSI System

Figure 6 illustrates the performance maps of α1 (left column) and α2 (right column) for
Frame 1 subjected to El Centro (top row), Kobe (middle row), and San Jose (bottom row)
seismic excitations. It is noteworthy that the performance indexes across all parameter
spaces are consistently below unity. Nevertheless, discernible regions within the maps
exhibit enhanced performance of the SSSI system. Notably, these regions demonstrate con-
sistent performance improvements across all three seismic events, suggesting the potential
for identifying parameter values that yield robust performance regardless of the specific
earthquake scenario. While this observation holds promise, its generalizability warrants
further investigation through a comprehensive analysis encompassing a diverse range of
seismic events. However, such an exhaustive study falls beyond the scope of the current
paper. For the specified parameters (α = 0.2, Vs = 300 m/s, and χ = 0.2), the SSSI system
is shown to achieve a notable reduction of approximately 20% in both u1 and ∆u compared
to the performance of the standalone frame structure.
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Figure 6. Performance α1 and α2 maps of the 4-story frame structure under several earthquakes
(α = 0.2, Vs = 300 m/s, χ = 0.2).

Similar results are observed for Frame 2. Figure 7 is constructed similar to Figure 6
and presents the performance maps of α1 (left column) and α2 (right column) for Frame 2
under three selected earthquakes (El Centro in the first row, Kobe in the second, and San
Jose in the third and last row). Consistently across the parameter space, the performance
indexes remain below unity. Notably, distinct regions within these maps exhibit superior
performance of the SSSI system. These regions demonstrate consistent performance en-
hancements across all three seismic scenarios, mirroring the observations made for Frame
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1. However, it is worth highlighting that these performance-improving regions in Frame
2 are situated within parameter ranges different from those identified for Frame 1. This
underscores the influence of the structural properties of the frame on the optimal parameter
selection for ensuring the enhanced performance of the SSSI system. In essence, the identi-
fication of parameters that yield optimal SSSI system performance appears to be related
to the mechanical characteristics of the frame structure being protected. In conclusion,
the comparison between Frame 1 and Frame 2, considering that Frame 2 is larger than
Frame 1 (consisting of 5 stories with an area of 350 m2 compared to 4 stories with an area
of 250 m2 for Frame 1), reveals the following findings:

• Achieving optimal performance of the SSSI system with Frame 2 necessitates higher
values of η and γ compared to those required for Frame 1. This highlights the influ-
ence of the structural dimensions on the parameter settings that yield effective SSSI
system performance.

• The extent of reduction in u1 and ∆u, as quantified by α1 and α2, is comparatively lower
in Frame 2 than in Frame 1. This disparity indicates that, attributable to the greater
mass of Frame 2 relative to Frame 1, the SSSI system exhibits enhanced performance
for the smaller Frame 1.

5.3. Spectral Analysis

This section explores the effectiveness of SSSI system in mitigating the seismic response
of frame structures. Given the linearity of the mechanical system, conducting a spectral
analysis becomes a logical step. Specifically, analyzing the vibration periods and modal
shapes across distinct locations within the parameter space η − γ can yield critical insights
into the system’s functionality.

Figure 8 presents the vibration periods and modal shapes of both the standalone
and SSSI systems. The spectral analysis of the latter is conducted for two configurations
identified by points A and B on the performance maps related to α1 and α2 that have been
obtained for the San Jose earthquake, in Figure 7. Specifically, Figure 8a illustrates the
first two vibration periods and associated modal shapes of the standalone structure. It
should be emphasized that the standalone system is defined by four Lagrangian parameters
(illustrated in the right section of the system in Figure 2b), thereby admitting four modes.
Figure 8b,c display the initial four vibration periods and associated modal shapes of the
SSSI system, which possesses a total of seven modes. The analysis deliberately concentrates
on the initial modes of both systems, based on the assumption that the primary dynamic
effects are predominantly influenced by these modes.

At Point A, both α1 and α2 exhibit values slightly less than unity. This point is
situated in a region of the performance maps, where the effectiveness of the external
protection system in reducing the response of the frame structure is comparatively lower,
as indicated by the darker shade of gray. Conversely, Point B is located along the locus
(represented by a dotted thick curve) where relative minima of the performance indices
are observed. Consequently, for the selected value of η = 50, Point B corresponds to the
optimal performance of the SSSI system, while Point A demonstrates the least effective
performance. Independently from the chosen combination of parameters, in both A and
B, the SSSI system generally exhibits higher periods for the first modes compared to the
standalone system. This effect can be attributed to the substantial mass of the external
protection system, which can be theoretically increased as desired through the incorporation
of an inerter device. Consequently, the first modes of the SSSI system are shifted towards
spectral regions where seismic activity exhibits reduced power content.
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Figure 7. Performance α1 and α2 maps of the 5-story frame structure under several earthquakes
(α = 0.2, Vs = 300 m/s, χ = 0.2).

The analysis of results for Point A (Figure 8b) reveals that the two foundation platforms
consistently move in phase across all four modes. Furthermore, in the first three modes,
the entire translating mass of the external protection system also moves in phase with the
foundation platform of the frame structure. It is reasonable to hypothesize that the dynamic
contributions from these first three modes enhance the motion intensity at the base of the
frame structure. Conversely, in the fourth mode, the vibrating mass moves in counter-phase
relative to the foundation platform, which may lead to an improvement in the response.
It is also observed that the periods of Mode 2 and Mode 4 in the SSSI system are close to
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the periods of the first two modes of the standalone structure. The modest enhancement
in the response of the SSSI system compared to the standalone system, as indicated by
performance index values slightly less than unity, is primarily attributable to Mode 4. In this
mode, the vibrating mass moves in counter-phase relative to both foundation platforms,
thereby mitigating the dynamic effects transferred to the base of the frame structure.
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Figure 8. Periods and modal shapes of systems labeled in point A and B in Figure 7. (a) Standalone
structure . (b) Point A (η = 50, γ = 37.5, α = 0.2, Vs = 300 m/s, χ = 0.2) . (c) Point B (η = 50,
γ = 137.5, α = 0.2, Vs = 300 m/s, χ = 0.2).

Results obtained for the system designated as Point B (Figure 8c) indicate that the ex-
ternal protection system and the foundation platform of the frame structure move in phase
only in the first two modes. However, these modes exhibit periods longer than the initial pe-
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riod of the standalone structure, generally reducing their dynamic significance. Conversely,
Modes 3 and 4, which have periods closely matching those of the standalone structure,
display either total or partial movement of the external protection system in counter-phase
relative to the foundation platform of the frame structure. Specifically, in Mode 3, the entire
external protection system moves in counter-phase relative to the foundation platform of
the frame structure, whereas in Mode 4, only the vibrating mass moves in counter-phase
relative to both foundation platforms. Therefore, since Modes 3 and 4 of the SSSI system
effectively replace the corresponding modes of the standalone structure due to the proxim-
ity of their periods, the benefit of the SSSI system is greater at Point B compared to Point A.
This is because both the third and fourth modes contribute to a reduction in the dynamic
effects transmitted to the base of the frame structure.

A further confirmation of the previous assertions can be obtained by analyzing the
time histories of the SSSI system. Figure 9 shows the time histories of some referring
displacement of systems characterized by parameters η − γ of Point A, Point B, and Point
C on the San Jose performance maps of Figure 7. Specifically, in Figure 9a, each graph
shows the ue and uM components, whereas in Figure 9b, each graph shows the ue and us
components. Each row of Figure 9 shows graphs whose time histories refer to the three
different points A, B, and C.

Further validation of the previous assertions is provided by the analysis of the time
histories of the SSSI system. Figure 9 displays the time histories of specific displacements
associated with systems characterized by parameters η − γ for Points A, B, and C on the
San Jose performance maps of Figure 7. Specifically, Figure 9a presents the time histories of
the ue and uM displacements, while Figure 9b displays the time histories of ue and us. Each
row of Figure 9 corresponds to the time histories associated with one of the three distinct
points A, B, and C.

Starting from Point A, the comparison of the time histories for the displacements ue
and uM indicates that the displacement of the vibrating mass uM is significantly smaller
than that of the foundation platform of the external protection system ue. Additionally, these
two displacements are substantially in phase with each other. The comparison between
displacements ue and us also shows that these two components are in phase, corroborating
the results from the spectral analysis which indicated that in almost all modal shapes at
Point A, the components of the two foundation platforms are in phase. Consequently,
the benefits of the external protection system in mitigating seismic effects on the frame
structure are minimal, as reflected by the proximity of α1 and α2 to unity. Results pertaining
to Point B continue to demonstrate the relatively small magnitude of uM compared to ue,
with these two displacements remaining in phase with each other. Conversely, the motion
of the two foundation platforms, described by ue and us, is significantly out of phase.
In this scenario, the entire external protection system functions akin to a nearly tuned mass
damper for the foundation platform, effectively reducing the intensity of motion at the base
of the frame structure. This action, thereby, justifies the reduced values of the performance
indices at Point B.

Similar to Point B, Point C is located on the locus of relative minimum values (indicated
by the dotted thick line) of the performance indices. For this combination of parameters,
the displacements ue and uM remain in phase, yet the amplitude of these two displacements
is comparable. The external protection system demonstrates to be effective as, in this
scenario, the motion of the two foundation platforms is out-of-phase with each other. This
alignment ensures effective reduction of seismic effects at the base of the frame structure.

The results obtained at Points B and C, both situated on the locus of relative minimum
values of the performance indices, provide insights into the functionality of the SSSI
(structure–soil–structure interaction) system. The comparison of results highlights that
optimal performance is achieved when the amplitude of uM is significantly smaller than
that of the foundation platform ue, suggesting the requirement for increased stiffness kM.
Furthermore, analysis of the performance maps for the San Jose earthquake in Figure 7,
where Points B and C are located, indicates that optimal performance can be approached
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asymptotically by increasing the stiffness parameter η indefinitely. This suggests that lower
performance indices are achievable by employing a rigid connection between the vibrating
mass and its foundation platform.

P
o

in
t 

A
P

o
in

t 
B

P
oi

nt
 C

-0.010

-0.005

0.000

0.005

0.010

ue , u  M
[m]

10 12 14 16 18 20
t [s]

10 12 14 16 18 20
t [s]

ue
uM

ue
us

u  , u  e s
[m]

-0.010

-0.005

0.000

0.005

0.010

-0.010

-0.005

0.000

0.005

0.010

-0.010

-0.005

0.000

0.005

0.010

-0.010

-0.005

0.000

0.005

0.010

u  , u  e M
[m]

10 12 14 16 18 20
t [s]

10 12 14 16 18 20
t [s]

ue
uM

ue
us

u  , u  e s
[m]

-0.010

-0.005

0.000

0.005

0.010

-0.010

-0.005

0.000

0.005

0.010

-0.010

-0.005

0.000

0.005

0.010

-0.010

-0.005

0.000

0.005

0.010

u  , u  e M
[m]

10 12 14 16 18 20
t [s]

10 12 14 16 18 20
t [s]

ue
uM

ue
us

u  , u  e s
[m]

-0.010

-0.005

0.000

0.005

0.010

-0.010

-0.005

0.000

0.005

0.010

-0.010

-0.005

0.000

0.005

0.010

(a) (b)

Figure 9. Time-histories of systems with characteristics labeled in points A, B, and C (η = 4, γ = 60.0)
in Figure 7. (a) Displacements ue and uM. (b) Displacements ue and us (α = 0.2, Vs = 300 m/s,
χ = 0.2).

Furthermore, optimal performance of the SSSI system necessitates a specific value of
the virtual mass parameter γ, which corresponds to the vertical asymptote on the locus
of relative minimum values. However, achieving optimal performance typically requires
a considerably high virtual mass. Given the values of the performance indexes at points
B and C (Point B, α1 = 0.83, α2 = 0.82; Point C, α1 = 0.86, α2 = 0.84) and looking at the
time histories of Point C, it can be argued that satisfactory outcomes can be achieved with a
smaller virtual mass, provided that the vibrating mass Mr is allowed to move freely relative
to the foundation platform.

5.4. Acceleration Maps of the SSSI System

The final analysis shifts the focus from the displacements to the accelerations. Specifi-
cally focusing on Frame 2 (refer to the second row of Tables 1 and 2), the absolute accelera-
tions a1 and a2 for both stories of the 2-DOF equivalent system are computed. Subsequently,
two acceleration performance indexes are introduced according to Equation (16):

αa1 =
max|a1(t)|
max|ã1(t)|

, αa2 =
max|a2(t)|
max|ã2(t)|

. (16)

where ã1 and ã2 represent the absolute accelerations of the stories in the 2-degree-of-
freedom (2-DOF) model corresponding to the standalone structure. The effectiveness of
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the SSSI in reducing absolute accelerations improves as the values of αa1 and αa2 decrease
relative to unity. The parametric investigation entails plotting the values of the acceleration
performance indexes, αa1 and αa2, in the η − γ parameter space under a single earthquake
record to generate acceleration performance maps. In these maps, lighter shades of gray
correspond to lower values of the acceleration performance indexes.

Figure 10 shows the acceleration performance maps referring to Frame 2 under the
three selected earthquakes. It is evident that the external system significantly diminishes
the absolute acceleration of the first story, a1. Moreover, the contour patterns observed in
the αa1 maps exhibit notable distinctions from those in the α1 maps. In contrast, the contour
lines in the αa2 maps closely resemble those in the corresponding α2 maps (refer to Figure 7).
Nevertheless, the reduction in absolute acceleration experienced by the second story of the
2-DOF equivalent system in comparison to the standalone frame structure is notably less
than the reduction observed for the first story. Despite this discrepancy, the SSSI system
delivers an overall reduction in absolute acceleration across the entire frame structure.
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Figure 10. Absolute acceleration maps for Frame 2 under several earthquakes (α = 0.2, Vs = 300,
χ = 0.2).

6. Conclusions

This paper studied the reduction in the seismic response of a multi-story frame struc-
ture through the utilization of an external vibrating mass coupled with an inerter device and
their interaction with the soil. The system under study comprised two identical foundation
platforms. The frame structure intended for protection was considered placed on the first
platform. The second platform was considered as support for a vibrating mass connected
to the platform via a visco-elastic device. The studied system also included an inerter
device having one terminal linked the vibrating mass and the other directly to the ground.
Notably, the two platforms were not connected through any device. Both the horizontal dis-
placements and the rotations of the platforms were considered as Lagrangian parameters,
along with the horizontal displacement of the vibrating mass. Given that the multi-degree-
of-freedom frame structure was represented by a 2-degree-of-freedom equivalent system,
two additional Lagrangian parameters were required to fully characterize the complete
system. Consequently, a seven-degrees-of-freedom mechanical model was employed to
model the interacting system. The interactions between the frame structure, the soil,
and the protection system were modeled using linear visco-elastic devices. The damping
and stiffness of these devices were determined by utilizing established soil–structure and
structure–soil–structure interaction models.

An extensive parametric analysis was conducted to investigate the performance of the
system. The obtained results were organized into performance maps, which present contour
plots of performance indexes specifically defined for this study. These indexes capture the
ratios between the displacements and drifts of the frame structure when interacting with
the soil through the vibrating mass, compared to those of the standalone frame structure.
The study focused on examining the influence of parameters related to the vibrating mass
and the inerter, such as the stiffness of their connection with the foundation platform
and the virtual mass of the inerter device. It was observed that the system’s response
is significantly influenced by these parameters. Specifically, within the parameter space
defined by these two factors, a region characterized by relative minimum values of both
performance indexes was consistently identified. This region could be used to define
preliminary optimal design parameters for the system under study.

Further results of the parametric analyses can be summarized as follows:

• The efficacy of the interaction with the external protection system (i.e., the vibrating
mass and the inerter device) is enhanced by reducing the separation distance between
the two foundation platforms.

• The effectiveness of the interaction with the external protection is greater in soils with
low shear wave velocity (Vs).
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• The performance of the interaction with the external protection system is height-
ened by reducing the stiffness of the soil beneath the foundation of the external
protection system, such as through the implementation of a Geotechnical Seismic
Isolation strategy.

In conclusion, optimal attenuation of the seismic response in the frame structure
is achieved when the entire external protection system, encompassing the foundation
platform, undergoes nearly counter-phase movement with the frame structure platform.
This synchronization results in a diminished motion intensity at the base of the frame
structure, thereby ensuring superior seismic performance of the protected structure.
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