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Abstract

Context. At the beginning of the 21st century, the presence of embedded systems increased significantly.
Their diffusion allowed the collection of large volumes of data to facilitate human activities, even in near
real-time. Embedded systems have been widely adopted in various domains, and this has had an impact on
embedded system requirements, which may be restrictive in certain circumstances (for example, in the case
of safety critical systems). Embedded Systems complexity has also grown in the last twenty years, making
the traditional embedded systems design flow ineffective.
Goal. In this thesis, we provide a novel design methodology called V&V-based HW/SW Co-Design, which
main goal is to cope with design complexity. Our methodology is based on the principles of HW/SW Co-
Design and uses a platform-agnostic model at the beginning of the design process to reduce complexity
and facilitate the comparison of different HW/SW implementations. In V&V-based HW /SW Co-Design,
the platform-agnostic model is subject to two formal verification and validation (V&V) at the beginning
of the design flow. These two steps aim to verify functional correctness and validate the extra-functional
requirements of the system. The model is optimized through formal V&V and then used for Design Space
Exploration (DSE). The thesis covers the creation of the platform-agnostic model, Co-V&V, and Co-Analysis.
Moreover, we provide methods and metrics for performance and energy consumption estimation for use during
DSE.
Method. We built the platform-agnostic model using UML/MARTE, which is structured in three views:
Application, Communication, and Time View. The Application View describes the logical structure and the
behavior of systems elements. The Communication View outlines the communication protocol used by system
elements. Instead, the Time View includes the time constraints of the systems. The UML/MARTE model is
converted to multiple formalisms for verification and validation. During Co-V&V, the model is transformed
into a network of timed automata for functional verification and timing validation. Instead, for Co-Analysis,
we employed a closed-form model for reliability analysis and Layered Queuing Networks for performance
optimization. Moreover, we implemented three approaches to evaluate a system prototype during DSE.
We outlined an ML-based technique for performance estimation, a metric called J4CS to compare different
HW/SW solutions according to their energy consumption, and an approach combining performance models
and experimentation to optimize a system prototype toward energy consumption and performance.
Results. This thesis shows that using formal methods in an HW/SW Co-Design flow can improve overall
design quality. In addition, the abstraction level of the platform-specific model may be appropriate to
enable verification and validation at the beginning of the design flow. During Co-V&V, we found the
scenarios that invalidated system-level timing requirements of the source UML/MARTE model. Instead,
thanks to Co-Analysis, we obtained a set of model alternatives that are better in terms of performance and
reliability. Promising results were obtained, as well as a roadmap for future research to evaluate performance
and energy usage during DSE. Among the ML models tested for performance estimation, those based on
regression trees resulted the most accurate. Instead, the results of J4CS validation provided large error
ranges, indicating the need for additional refinement of the metric. Finally, we saw that combining the
adoption of models and experimentation can reduce experimentation time and still provide good energy
consumption and performance estimation accuracy.
Conclusions. This thesis can be the basis for HW/SW Co-Design methodologies integrating formal methods
in the early stages. We explored how to include rigor in an embedded systems design methodology without
renouncing the convenience of using non-formal models. We investigated three highly discussed research
topics in the embedded systems design domain that need further validation and exploration: (i) setting the
right level of abstraction in the early stages of the design, (ii) proving the effectiveness of formal analysis,
and (iii) ease formal methods adoption to practitioners.
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Chapter 1

Introduction

The end of the 20st century witnessed the birth of Personal Computers and Internet as major
innovations, while the first two decades of the 2000s saw the diffusion of embedded systems and
Artificial Intelligence (AI). Consumer electronics, medical devices, cars, and home appliances are just
a few examples of embedded systems intertwined with our daily life in the last couple of decades. The
main difference between embedded systems and other computing systems is that the former ones are
included in other electronic systems or objects. As reported by Frank Vahid and Tony Givargis [188],
it is difficult to give a precise definition of an embedded system, we can simplistically define them
as systems working within bigger systems. Thus, they are tightly constrained to their application
domain that influences, for example, size, power, and performance of an embedded system. The
benefits introduced by embedded systems are many. Their ubiquity enabled to collect huge amounts
of data in real-time and optimize daily activities. Today, we can monitor our performance during a
jog, or house temperature to reduce heating energy expenditure. Besides the benefits, the unbridled
desire to automate and optimize has led to inevitable downsides. By exploiting embedded systems,
we can generate huge amounts of data that need additional computational power to be processed
and stored in continuously powered devices. Carbon dioxide (CO2) emissions from Information and
Communication Technologies (ICT) become more significant as energy demand increases. Estimates
provided by Belkhir et al. stated that ICT devices will produce 14% of global CO2 emissions by 2040
[41]. While improving the quality of embedded systems by adding, for example, more computational
power and memory, their diffusion has covered ever new functional requirements. As early as 2009,
Christof Ebert and Capers Jones [81] emphasize substantial growth in the size of embedded systems
software in several domains. The automotive domain is exemplar for this phenomenon, as software
code grew from about a million lines to over 100 million during the period 2000-2010 [205].

As design complexity grows, traditional embedded systems design methodologies become de-
manding and time-consuming. Figure 1.1a depicts a commonly used methodology for designing
single-functioned 1 embedded systems. The design starts with the requirements specification, which
leads to the definition of the algorithm used to implement the functionalities. Thereafter, at the
beginning of the design loop, designers manually partition the functionalities for deciding what to
implement in hardware or software. The methodology splits into two branches dedicated to hard-
ware and software development. The flow joins after completing the branches. Then, the software is
integrated with the hardware, and the whole system is tested. The loop restarts in case defects are

1An embedded system that repeatedly performs a single operation.
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Figure 1.1: Embedded Systems Design Methodologies [100]

found or improvements are to be applied. Design defects can be caused by both technological choices
and system behavior. Examples of defects can be unexpected deadlock states, exaggerated power
consumption values, or memory overflows. As the complexity of the system grows, the number of
iterations needed to output an acceptable design solution increases.

The integration of Model-Driven Engineering (MDE) practices into embedded systems design
methodologies helped designers to cope with system complexity. Models can be used to represent
only a subset of the system or a part of its characteristics. Moreover, they can be used for per-
formance estimation, functional verification, and code generation. An example of a popular MDE
process for hardware design is high-level synthesis, which consists of the automated generation of
the register-transfer level behavior from a behavioral abstract model, e.g., finite-state machines.

Hardware/Software Co-Design methodologies exploit MDE practices to speed up and automate
part of the DSE. HW/SW Co-Design envisages the adoption of a behavioral model, early in the
design flow, which is independent of any implementation detail, i.e., Hardware/Software charac-
teristics. This model is commonly also referred as platform-agnostic, technology-independent, or
platform-independent model. Figure 1.1b describes the steps typically involved in a HW/SW Co-
Design flow. HW/SW Co-Design introduces Behavior Specification, after the requirements specifi-
cation step, where the above-mentioned platform-independent model is created. During DSE, it is
decided which parts of the modeled behavior to implement in hardware and in software. For exam-
ple, functionalities can be implemented as software and executed by a general-purpose processor or
realized as a piece of hardware behaving as the desired function (i.e., an accelerator).

HW/SW allocation can be evaluated through Co-Simulation, where software is deployed and
executed on a prototype of a hardware platform. The latter can be selected from a repository of pre-
defined prototypes of hardware platforms. In this way, it is possible to evaluate different HW/SW
partitioning solutions before implementing them. Such partitioning can be achieved through the
optimization of a set of design metrics, such as performance, area, cost, and power consumption.

Vincenzo Stoico 3



1.1. Problem Statement

Since the improvement of one metric usually leads to the degradation of another one, the objective
of DSE becomes finding good trade-offs in design metrics, as represented by allocations that lead
to overall improvements in design metrics. The design resulting from a DSE is detailed during
Architecture Fine-Tuning step, and it is subject to a further step of Co-Simulation, depicted in
Figure 1.1b as HW/SW Co-Verification. This additional step is necessary to perform more detailed
verification and validation before the implementation steps, which may include the automated
generation of part of the implementation from the artifacts processed in the design steps (i.e.,
HW/SW Synthesis).

1.1 Problem Statement

HW/SW Co-Design methodologies have proven that the integration of MDE approaches into the
design flow brings multiple benefits [183]. HW/SW Co-Design takes advantage from the high level
of abstraction of a technology-independent model to make DSE semi-automatic, and to introduce
concurrency in the hardware and software design. Thus, the analyses done during the DSE rely
on the quality of the technology-independent model supplied as input. Errors made during the
modeling step could easily bring to misleading analyses, and thus erroneous design decisions.

Raising the level of abstraction increases the likelihood of producing unrealistic models that can
be uncompliant with technology details. This may create a gap, i.e., reality gap [96], between the
model and the implementation. However, accurately reproducing an entire system or its components
is typically intricate and futile. Highly detailed models can lose their effectiveness and they can be
as complex to interpret as the actual object they represent. Seeking a sufficient level of abstraction
is a process that requires experience in the modeling activity and complete knowledge of the domain
and properties to be represented [47].

The modeling language could also contribute to inaccuracies. Modeling languages are generally
partitioned in formal and informal 2 [165]. A modeling language is formal when its semantics and
syntax are rigorously defined, for example, using a mathematical Model of Computation (MoC). A
MoC describes how the result of a mathematical function is obtained given an element of its domain.
Famous examples of formal models are Timed Automata, Petri nets, and Queuing Networks. These
models are generally used for verification and validation of embedded systems, as it is possible to
mathematically prove system correctness or to quantitatively estimate extra-functional attributes
of the system. However, their use remains limited due to the high-learning curve of formal mod-
eling languages and tools. On the other hand, informal modeling languages are highly used. The
majority of embedded system designers rely on UML and its extensions, such as SysML or MARTE
[118]. Informal models are usually flexible and easy to use. UML, for example, can be easily ex-
tended to represent domain-specific concerns, and it is supported by a plethora of tools. However,
the semantics of informal languages may not be precisely defined. For example, the semantics of
MARTE presents variation points, which are pieces of the language semantics whose interpretation
is delegated to the user. Figure 1.2 depicts one of the semantic variation points in MARTE, i.e.,
when a component port has multiple delegation associations. A delegation association is labeled
with «delegate» and represents the situation in which the port delegates the handling of a request

2Literature classifies some modeling languages as semi-formal (e.g. Unified Modeling Language (UML)) [131],
due to their well-defined syntax. However, semi-formal languages lack of a rigorous semantics as informal languages.
For this reason, in this thesis we refer to semi-formal languages as informal.
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(a) Activity diagram describing the semantics of a
delegation association 1.2a.

(b) Component diagram with two delegation
associations outgoing from the same port.

Figure 1.2: Semantic Variation Point of MARTE when multiple «delegate» dependencies originate from
the same port.

to elements inside the component [152]. The component diagram in Figure 1.2b shows the routing
of a request to the internals of a bigger component, while Figure 1.2 a describes what happens when
a request is received on a port. A request is lost when none of the internals can handle it or directly
forwarded when only a single internal component can handle it. Instead, the behavior is undefined
when multiple internals can handle the request.

We believe that, by improving the model used for the DSE, we can reduce the amount of defects
found in later stages, thus shortening the design loop and making better design decisions. As a
technology-independent model lacks of implementation details, we must evaluate which analyses
are significant to be conducted at such a high level of abstraction and if they are meaningful for
later stages. We can verify the functional correctness of the model or anticipate the estimation of
some quality attributes, such as performance.

Extra-functional attributes can be quantified at various levels of abstraction. Before the DSE,
by using a technology-independent model as just described, or during the DSE to evaluate different
implementations of the system, thus different HW/SW technologies. In the first case, these analyses
are based on the structure and MoC of the model (as it lacks of implementation details), while in
the second case it is necessary to fix a candidate implementation of the system and test or simulate
it. However, defining and thoroughly evaluating a system prototype is burdensome due to the
numerous implementation details involved in DSE. Task scheduling, memory allocation, interfacing
protocols, and processors are few examples of the elements composing the design space of embedded
systems. Consequently, to speed up DSE and consider a satisfactory amount of implementation
details, metrics and approaches for comparing different HW/SW technologies are needed, along
with strategies for testing a specific system prototype.

A plethora of existing embedded systems design methodologies leverage Formal Methods (FMs)
for V&V [161, 168]. Indeed, the benefits of integrating FMs at design time have been highlighted
by both researchers and industry practices [196]. However, the adoption of FMs during design,
especially in the early stages, is still a poorly used and unrecognized practice [96, 118, 196]. Some
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of the most important causes are an insufficient evidence of FMs effectiveness and, as already
mentioned for formal languages, the lack of training among practitioners. Furthermore, the scarce
adoption of FMs is exacerbated by the necessity of integrating multiple formal methods to examine
different characteristics of the system (e.g., energy, performance).

This thesis aims at improving HW/SW Co-Design through the analysis of a technology-independent
model that guides the DSE in the process. We investigate if enhancing the quality of the initial
model can improve the overall quality of the design. We considered FMs due to the potential for
V&V and the need for a more rigorous design methodology. However, FMs adoption at this level
of abstraction is still scarce. The main goals of this thesis can be the summarized as follows:

G1. Introduce formal V&V in HW/SW Co-Design. This should enhance modeling precision and
lead to early discovering model defects; these improvements on the model lead to better
designs.

G2. Identify functional and extra-functional aspects of the system that can be early evaluated in
the methodology. This goal involves finding methods and metrics to quantify these aspects at
a higher level of abstraction.

G3. Define a method to ease FM adoption to practitioners.

1.2 Thesis Contribution

We envisage an evolution of the classical HW/SW Co-Design flow that integrates, before DSE,
several steps of formal V&V. Figure 1.3 shows our proposal for a V&V-based HW/SW Co-Design.
As in the classical HW/SW Co-Design, in Figure 1.1b, our variant starts with the construction of a
technology-independent model. This step, called Co-Specification, unlike the Behavioral Specifica-
tion in traditional methodology, involves a more detailed model. The technology-independent model
is structured into three views: Application, Communication, and Time. The separation of design
concerns in different views provides reusability of design solutions and helps reducing complexity
[199]. The Application View embodies the logical structure and the behavioral aspects of the ap-
plication. The Communication View describes the exchange of information among components and
was first introduced by Enrici et al. [84]. The main reason behind the adoption of the Communica-
tion View is to overcome communication mismatch in the later stages of the design. As highlighted
by Enrici et al., communication logic is usually embedded in the application and platform descrip-
tion, but it is actualized by using different models of computation. Therefore, the designer may
encounter inconsistency issues during the mapping stage. Finally, the Time View represents timing
requirements as time domain(s) of the system, occurrence of events, and duration of behaviors.
A duration is expressed as a constraint on the time that elapses between the occurrence of two
events. As described in Section 1.1, embedded system designers pursue the need for formality into
the design flow but, at the same time, they struggle with the high learning curve of formal methods.
By creating a correlation between informal and formal languages, designers can take advantage of
the strengths of both types of languages. The former, that are expressive and easy to learn, can be
used to describe the system, while formal languages can be used to verify and validate the prop-
erties of the system. The technology-independent model serves, within the V&V-based HW/SW
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DSE

Application View

Time View

Communication View

Low-level 

stages

Figure 1.3: V&V-based Hardware/Software Co-Design flow

Co-Design flow, as a sole source of system design information that encompasses multiple views to
delineate diverse facets of the system. Basing on Model-To-Model (M2M) transformations, various
V&V tasks can be performed by deriving different formal models from the technology-independent
model. Therefore, we exploit M2M transformations to perform functional verification and timing
validation in the Co-V&V, as well as a preliminary performance and reliability estimation during
Co-Analysis. The target formal models are generated by combining structural and behavioral con-
cerns. For this reason, the source model views are defined according to design concerns orthogonal
to structure and behavior, such as communication and time. Particularly, the communication con-
cern illustrates how a view encompasses both structure and behavior. As mentioned before, the
communication view describes the communication protocol of system components, which is part of
the behavior of the system. But on the other hand, the structure defines which components are
communicating and the number of links.

As previously stated, the spread of MDE practices has enabled the adoption of models for a range
of formal analyses, such as verifying functional correctness and quantitative estimation. Therefore,
all the steps involved in the V&V-based HW/SW Co-Design are implemented by exploiting MDE
practices. We used a subset of UML/MARTE [152] to model the three views mentioned above.
This model works as source of several M2M transformations. During Co-V&V, we transformed
the UML/MARTE model into a network of Timed Automata to check design correctness and sat-
isfiability of time constraints. These analysis have been carried by UPPAAL model checker [74].
In addition, during Co-Analysis, the UML/MARTE model is transformed into Layered Queuing
Network (LQN) models [89] for performance evaluation, while for reliability we used a closed-form
model [71]. Therefore, after defining how to evaluate system extra-functional attributes, it be-
comes easy to refactor the UML/MARTE model, and assess if the modifications led to improved
design. During Co-Analysis, we systematically apply a set of refactoring actions to a UML/MARTE
model to generate several model alternatives. Subsequently, performance and reliability of model
alternatives are estimated and compared with those of the initial model, as well as the architec-
tural distance, which quantifies the effort to obtain a model alternative from the initial one. Thus,
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Co-Analysis is formulated as a multi-objective optimization problem that exploits NSGA-II ge-
netic algorithm to search optimal Pareto frontiers. After Co-Analysis, the UML/MARTE model is
supplied to the DSE.

HW/SW Co-Design aims to identify metrics and methods for comparing different HW/SW tech-
nologies during DSE. Thus, techniques to quantitatively evaluate a prototype of the system, which
consists of a candidate HW/SW partitioning, are needed. This thesis investigates the assessment
of energy consumption and performance given a system prototype. We investigate two techniques
for quantifying energy consumption. We study the potential of MDE approaches for estimating the
energy consumption of a system prototype. Moreover, we define a metric called J4CS to compare
different processors according to their energy expense to execute a given software. The former refers
to an approach to compute the energy usage of an application based on its performance, in situ-
ations where energy and performance exhibit a linear relationship. Because technological factors,
such as the selected hardware platform and programming language, greatly affect energy consump-
tion, the study is conducted using a bottom-up approach. After defining a target application, it
is run on a reference hardware platform, and its execution is observed under a certain workload.
We created an LQN that models the behavior of an application during the experiment. The LQN
is used to produce the energy and performance estimates by scaling the input workload. Instead,
the J4CS metric quantifies the average energy consumed by a processor in relation to the ratio be-
tween executed C statements and assembly instructions. J4CS is connected to a processor and the
software that is executed by the processor. Therefore, J4CS is useful to compare different HW/SW
implementations of the system prototype. In addition to energy consumption, performance can also
serve as a basis for comparing various HW/SW technologies. We defined a method that produces
performance predictions, given a HW/SW prototype, and that reduces estimation time. We ex-
ecuted a set of software (micro-)benchmarks on several processors to obtain a dataset containing
the execution time of each benchmark. We used the dataset to train a machine learning model
which predicts the execution time of any input C-code function on a specific target processor. The
machine learning model can be used during DSE to evaluate the performance of different software,
given an HW prototype, and to reduce the overall DSE time.

Summarizing, we contribute to the following aspects of the current state of the art:

C1. A novel HW/SW Co-Design methodology that envisages multiple steps of formal V&V early
in the design flow, including verifying functional correctness, as well as validating timing
constraints and performance. The objective of these preliminary analyses is to remove eventual
defects related to system behavior (e.g., deadlock state, bottlenecks, unexpected output).

C2. A view model made by three views (i.e., Application, Communication, and Time) is defined
on a subset of UML/MARTE. The views describe the logical structure, behavior, and timing
constraints of a system through a technology-independent model.

C3. A set of M2M transformations to integrate different FMs in the methodology. The source UM-
L/MARTE model is converted to a network of Time Automata for functional correctness and
timing validation, and to LQNs for performance validation. Therefore, the insights gathered
during the V&V steps are used to improve the source model.

C4. A method for design optimization that exploits model refactoring. We systematically apply
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a set of refactoring actions on a source UML/MARTE model to generate a set of design
alternatives that are evaluated according to their performance and reliability. The design
loop is implemented as a multi-objective optimization problem, which outputs the design
alternatives leading to substantial improvements on the source model.

C5. A method that uses performance models to predict energy consumption. The method exploits
a low effort experiment to create and parameterize an LQN, which is then employed to predict
the energy consumption of the system subject to scaled workloads.

C6. A metric called J4CS to compare HW/SW technologies according to their energy consumption.

C7. A method based on a machine learning model to predict the execution time of a software
running on a target processor.

G1

Integrate FMs in
HW/SW Co-Design

methodology

G2

Early Evaluation of
Functional and

Extra-Functional aspects

G3

Ease FMs transfer to
practioners

C1

V&V-Based
HW/SW Co-Design

C2

View Model

C3

M2M
Transformations

C4

Design Optimization
Driven by Model

Refactoring

C6

J4CS

C5

Software Performance
Prediction using

Machine Learning
Models

CH2 CH3 CH4CH1

C7

Energy Consumption
Estimation using

Performance Models

CH5 CH6

Figure 1.4: Goal (G) achieved through corresponding contributions (C), which are described in the asso-
ciated chapters (CH).

Figure 1.4 shows how the goals stated in Section 1.1 are realized through the above listed
contributions. G1 is achieved through the definition of the V&V-based HW/SW Co-Design and
the implementation of the methodology. Thus, G1 comprises the definition of the view model (C2),
the M2M transformations to convert the UML/MARTE model to the formalism enabling V&V
(C3), and the refactoring-based optimization of the UML/MARTE defined for the Co-Analysis
(C4). The view model and M2M transformations are the artifacts to ease designers access to formal
methods, thus they contribute to G3. Each view of the source model embeds all the information to
derive a subset of the features of the target model, for example, structure or behavior. This aspect
facilitates the remapping of the improvements obtained from the formal analysis. For instance,
the structure of the network of Timed Automata used for Co-V&V is created based on the logical
structure defined in the Application View of the UML/MARTE model. Instead, each automaton
is derived from the behavioral description of each element of the source model. Instead, thanks to
M2M transformations, the designers can effortlessly acquire the formal models for V&V. Finally, we
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realized G2 during Co-Analysis, which provides a method to evaluate the performance and reliability
of a UML/MARTE model, and through C5, C6, and C7, contributing with methods and metrics
for performance and energy consumption analysis given a system prototype.

1.3 Related Work

The main motivations for using HW/SW Co-Design are to cope with increasing complexity systems,
to reduce design time and, at the same time, to produce correct and efficient implementations. To
address the mentioned challenges, the V&V-based HW/SW Co-Design, along with existing Co-
Design methodologies, follow a divide-and-conquer approach that involves analyzing functional and
extra-functional aspects of the system using an abstract model, which is systematically refined until
system implementation. This philosophy is also embraced by ForSyDe [168] and S3D [105], which
are two Co-Design methodologies similar to our V&V-based HW/SW Co-Design.

As it is emphasized in ForSyDe, this thesis highlights the necessity of integrating formal analysis
in the design flow. ForSyDe is a Co-Design methodology that can be divided in two main sections:
the functional and the implementation domain. In the functional domain, a technology-independent
model, created on formal languages, undergoes the application of several design transformations
towards a more detailed implementation model. The source and the resulting model adhere to the
same formal semantics, which allows to execute the same verification and validation methods on
both models. The implementation model is used, in the implementation domain, for Design Space
Exploration, thus the model is mapped to a candidate HW/SW solution. The V&V-based HW/SW
Co-Design differs from ForSyDe in the adoption of an informal language, i.e., UML/MARTE, to
create a technology-independent model. This choice is made to facilitate the adoption of formal
methods in practice, thus to ease the application of the methodology. Another substantial difference
lies in Co-Analysis, which aims at tuning the abstract model according to estimated performance
and reliability. In this way, we provide one or more optimized design solutions to the DSE.

Co-Analysis is also one of the differences that our design flow has with respect to S3D. Our
proposal and the S3D methodology share the adoption of a multi-view UML/MARTE [152] model
that includes the required design information. This model works as a single source for several de-
sign activities, such as schedulability analysis, software synthesis, and simulation. The views of
the UML/MARTE model are hierarchically organized to address various design aspects at different
levels of abstraction. The views are first divided into Design and Verification (D&V) views and
Tool-Specific Views. D&V provides information about system design and those needed for verifica-
tion and validation. The Tool-Specific Views, instead, refer to information needed by design tools.
The D&V views enable three models: Platform-Independent Model (PIM), Platform-Dependent
Model (PDM), Platform-Specific Model (PSM). The PIM describes system functionalities without
providing any information about the implementation. In S3D, the PIM is used to generate platform-
dependent code by using a tool called eSSYN [15]. This tool generates binaries embodying a possible
implementation of system functionalities. Binaries can be directly loaded on the target embedded
system. PDM describes the mapping between PIM and PSM, thus it details the implementation of
the system. Our work has two main similarities with the S3D modeling approach. Firstly, the use
of a UML/MARTE model as a single source of information, and the use of transformations, e.g.,
code generation in the case of eSSYN, to perform further analysis. However, the methodologies
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have different goals. S3D envisages a modeling methodology that contains all information needed
by designers throughout the design phase, thus covering also implementation details. In this thesis,
however, we dwell on the abstraction level of the PIM to investigate which analyses can be antic-
ipated before moving on to DSE. We introduce stages aiming at the qualitative improvement of a
PIM, i.e., Co-V&V and Co-Analysis. Finally, Co-V&V and Co-Analysis exploit additional (formal)
models that keep the same level of abstraction as the source model, thus providing insights about
the flaws of the source model without involving concerns at lower level of abstraction. It is worth
noting that our study can be easily integrated into S3D or ForSyDe and vice versa. For example,
we can employ the subset of UML/MARTE used to create a PIM in S3D to perform Co-V&V and
Co-Analysis.

1.4 Thesis Outline

The thesis is structured in 2 parts. The first part describes Co-Specification, Co-V&V, and Co-
Analysis, which embody the creation of a technology-independent model, functional verification and
timing validation, as well as performance and reliability validation. The second part focuses on DSE
and describes the set of methods and metrics outlined to evaluate a candidate system prototype.
Figure 1.4 illustrates how the set of contributions (C) achieve the defined research goals (G). The
contributions are linked to the chapters (CH) of the thesis that describe them. The main goal and
contribution of the thesis is the V&V-based HW/SW Co-Design methodology (G1 and C1). A
possible implementation of the methodology is outlined along the chapters of the thesis. Chapter
2 delves into Co-Specification and introduces Co-V&V, which consists of (i) a transformation from
UML/MARTE to UPPAAL Timed Automata, and (ii) a preliminary functional verification and
timing validation that exploits the UPPAAL verifier. Co-Specification introduces the view model,
which is made by the Application, Communication, and Time view (C2). Chapter 3 presents Co-
Analysis (C4) that, as described in Section 1.2, exploits a genetic algorithm to optimize a set of
model alternatives. The latter are generated by refactoring a source UML/MARTE model. The
evaluation process involves the quantification of performance and reliability (G2). Performance, for
example, is quantified by using a M2M transformation from UML/MARTE models to LQNs. Thus,
the UML/MARTE model becomes a single source of design information that can be systematically
improved by converting it to Timed Automata and LQN (C3). Designers do not have to be pro-
ficient in Timed Automata and LQN, as the latter models are automatically generated from the
UML/MARTE model (G3). The second part of this thesis introduces techniques and metrics to
evaluate a given system prototype, i.e. a candidate HW/SW partitioning. Chapter 4 and Chapter
5 detail, respectively, a machine learning based performance prediction method (C5) and the J4CS
metric (C6). Chapter 6 describes C7, i.e., how to exploit performance models to predict energy
consumption and reduce experimentation time. The thesis ends with conclusions and future works
in Chapter 7.
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Chapter 2

From UML/MARTE Specifications to
Functional Verification & Timing
Validation

This chapter describes a possible implementation of Co-Specification and Co-V&V. Co-Specification
is realized using a subset of UML/MARTE for modeling reactive components, message-based com-
munication, and time constraints on the duration of interactions. Co-V&V, instead, involves the
problem of checking UML/MARTE models to assess control-flow correctness and time constraints
satisfiability. These analyses are based (as mentioned in the introduction) on UPPAAL Timed
Automata. The chapter provides a semantic mapping from UML/MARTE to a network of timed
automata to extend the analysis done with UPPAAL to the source model. The transformation
exploits both system architectural and behavioral descriptions as well as the organization in views
of the model. Co-Specification and Co-V&V steps are shown in some details through the FIRGCD
(Finite Impulse Response Greatest Common Divisor) toy example [160]. The verification and vali-
dation conducted with UPPAAL indicate that our approach is particularly effective in discovering
design flaws located in the communication protocol as well as those arising from the internal be-
havior of components. This chapter is organized into the following sections: Section 2.1 describes
UML/MARTE and the main features of UPPAAL, Section 2.2 illustrates the Co-Specification step,
Section 2.3 deepens the semantic mapping between UML/MARTE and timed automata, Section 2.4
reports the properties verified using UPPAAL and the results of the verification on the considered
toy example, Section 2.5 discusses related work while Section 2.6 concludes the chapter.

2.1 Background

2.1.1 UML/MARTE

The Unified Modeling Language (UML) [153] is a general-purpose modeling language, among the
most used in the embedded systems domain [118]. Due to its vast semantics, UML enables the
representation of structural and behavioral aspects at different levels of abstraction. For example,
the UML Component Diagram is often employed to model component-based architectures, while
the UML Activity Diagram is used to represent fine-grained behaviors. However, UML, as a general-
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purpose language, fails to represent domain-specific situations. For example, when modeling real-
time behaviors where a more precise representation of timing properties is needed. For this purpose,
UML can be extended using the Modeling and Analysis of Real-Time and Embedded systems
(MARTE) [152] profile. Indeed, MARTE provides classes such as TimedProcessing to assign a
duration to system entities. Moreover, MARTE includes the Value Specification Language (VSL) to
specify time constants and expressions. For example, the tuple (100,ms) denotes 100 milliseconds.
This tuple can be used to define a duration constraint such as (endEvent - startEvent) <= (100,

ms). This constraint binds the interval between two observed events to last at most 100 milliseconds.

2.1.2 UPPAAL

The UPPAAL model checker [40] aims at the verification of real-time systems represented via a
network of timed automata. Automata execute in parallel and they can be synchronized using
channels. A rendezvous is modeled by labeling two edges of two different automata with c? and c!.
Moreover, UPPAAL automata are specified as parametric templates that may be extended with
discrete and real-valued variables named clocks. A timed automaton is made by a set of locations
and a set of edges. A location may have an invariant that denotes the property held while staying at
that location. An initial location is unique and describes the starting condition of the automaton,
while an urgent one defines a location with no delay. Edges may have guards to allow transitions,
channel synchronizations, and variable assignments.

System properties are expressed using Computational Tree Logic (CTL) [74]. Examples of
properties are deadlock freedom, program termination, and location reachability. A CTL formula
may be defined over the states or the paths of the timed automata network. Properties over paths
are written using two CTL quantifiers: All (A) and Exists (E). A ϕ says that ϕ should hold for all
paths, while E ϕ describes a property valid for one or more paths. In UPPAAL, a path quantifier
should be followed by a linear time operator between Finally (F) ϕ (i.e., ♢) and Globally (G) ϕ
(i.e., □). They express statements specific to a path. Indeed, F ϕ is used when ϕ can eventually
hold in the path, while, using G, ϕ should be satisfied in all the subsequent states.

Timed automata are insufficient for modeling non-deterministic decisions [74]. For this rea-
son, UPPAAL has been extended to support Stochastic Model Checking (SMC) [74]. Probabilistic
branches are defined by labeling outgoing edges of branching points with probabilities. This en-
hancement allows for more fine-grained analyses. It is possible to write properties over a fixed
observation time and number of executions. For example, Pr[<= 100; 200](♢ϕ) returns the proba-
bility to satisfy ϕ in 100 time units, and the expression is evaluated by performing 200 runs. The
precision of the result is proportional to the number of repeated runs. Lastly, the SMC extension
provides an operator to calculate the expected value of an integer clock variable with an interval of
time. Such an expression is written as E[<= 100; 200](max : ϕ) that calculates the average of ϕ by
considering, at each run, the maximum value that ϕ can assume.

2.2 Co-Specification

As explained in the Introduction, the proposed HW/SW Co-Design flow involves an initial modeling
step called Co-Specification. Section 2.2.1 details the constructs of UML/MARTE used, in each
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view, to describe system structural, behavioral, and time concerns. Instead, Section 2.2.2 presents
the FIRGCD toy example.

2.2.1 UML/MARTE Subset

The three views of the system embed, respectively, the application, the communication protocols,
and the timing constraints. Aspects as structure and behavior are cross-cutting to the views. For
example, system behavior is partly represented in the Application View, for what concerns a system
element internal behavior, and partly represented in the Communication View, for what concerns
the interactions among system elements. This section describes the elements of UML/MARTE
selected to model FIRGCD structure, behavior, and time.

Structure Specification

The description of the logical structure of the system involves system entities and their intercon-
nections. These static aspects are shown using a UML Component Diagram, which consists of a
set of UML Components connected through UML Connectors. Components exchange data over
connectors through one or more UML Ports. Each component may contain sub-components in a
hierarchical fashion. Data are forwarded to sub-components by binding the ports of a component
to those of its sub-components. Data forwarding is modeled annotating a UML association with
«delegate». Figure 2.1 reports the structure specification of FIRGCD, which is described in details
in Section 2.2.2.

Behavior Specification

A designer can leverage the extensive semantics of UML to define fine-grained behaviors. Such a
detailed behavioral specification reproduces the flow of operations executed by system components.
In an activity diagram, the UML CallOperationAction element represents the action of calling of
an operation. Moreover, the execution flow may involve branching points and possible exceptions.
Branching points are denoted by a UML DecisionNode, while exceptions are indicated using the
UML RaiseExceptionAction element.

Since embedded systems are typically reactive [188], it is necessary to model behaviors dealing
with asynchronous events. The action of waiting for an event has been modeled using the UML
AcceptEventAction element. This element has an attribute (i.e., Trigger) defining the kind of
expected event. However, UML lacks semantics for representing the reception of specific types of
messages. We employ the MARTE «DataEvent» stereotype to fill this lack. The «DataEvent»

stereotype extends the UML AnyReceiveEvent element by adding a tag denoting the message type.
After processing, data are written on ports using the UML SendObjectAction element. Instead,
signals reception and sending are modeled, respectively, through UML ReceiveSignalEvent and
SendSignalEvent.

Time Specification

In the time model of UML, time instants correspond to event occurrences. UML provides the
concept of Observation to represent an instant (i.e., UML TimeObservation) during an execu-
tion. Observations can be combined with value specifications to define temporal constraints on
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Figure 2.1: FIRGCD Component Diagram

system behavior. For this purpose, it is useful to exploit the syntax of the Value Specification
Language (VSL) [152], embedded in MARTE, to define time values. For example, the VSL expres-
sion endEvent− startEvent represents the duration between the occurrence of two events. In our
model, endEvent and startEvent are two TimeObservation associated to the occurrence of two
events. Therefore, we define constraints on execution chunks written as event2− event1 ∽ x where
event1, event2 are instances of TimeObservation, ∽∈ {>=, <=, >,<,=}, and x is a real number
or a VSL time value.

2.2.2 Modeling the FIRGCD Toy Example

The features of FIRGCD [160] made it suitable for V&V of reactive and distributed computation.
FIRGCD [160] is made by a network of processes communicating via point-to-point channels. The
processes react upon the reception of data or signals.

Application View

Figure 2.1 shows the structure of FIRGCD. The structure comprises a cluster of components dealing
with the generation of inputs for the Application. This cluster includes two Stimulus (i.e., stim0
and stim1) and a Timer. The stimuli generate a random integer every time they receive signals from
the timer. The generated integers are passed to the FIR filters: fir8 and fir16. The filters execute
whenever an integer shows up at their input port. The GCD component waits until data is ready on
both input ports before starting the processing. GCD receives the data from the filters and sends
the result to a Display instance. The latter component shows the result of the Application. The
behavioral specification of FIRGCD embodies the interactions among system entities (i.e., system-
level behavior) plus the description of their internal behavior. The latter is specified by the class to
which each element belongs to. For example, the fir8 and fir16 components, in Figure 2.1, have
the same behavior since they are instances of the same class (i.e., the FIR class). In system-level
behavior, they can be parameterized differently and associated with different time constraints.

Communication View

The Communication View describes the exchange of information among components and was first
introduced by Enrici et al. [84]. The main reason behind the adoption of the Communication

Vincenzo Stoico 16



2.2. Co-Specification

integer at sender port

channel_buffer : Integer

transmit

lost

Figure 2.2: Communication Protocol adopted by the connectors of FIRGCD

View is to overcome communication mismatch in the later stages of the design. As highlighted by
Enrici et al., communication logic is usually embedded in the application and platform description
but it is realized using different models of computation. Therefore, the designer may encounter
inconsistency issues during the mapping stage of a HW/SW Co-Design flow. For simplicity, we
consider all the connectors of FIRGCD, i.e. the solid lines in Figure 2.1, implementing the same
protocol. Figure 2.2 shows the communication protocol of FIRGCD. The protocol implemented in
our toy example consists of a point-to-point communication. The exchange is unidirectional, so it
involves a single sender and receiver. The data is kept until the buffer is filled. Once full, buffer
elements are transmitted one at a time to the receiver. Data received while the buffer is full are
lost. Moreover, data could be lost during transmission. In this case, the protocol provides for the
re-transmission of the data. The flow ends whenever everything is successfully transmitted.

Time View

In FIRGCD, time flows continuously. The generation of integers is regulated by a Timer, which
periodically sends a signal to stim0 and stim1 after a delay of 100 time units. To model the
duration of the delay, we used the MARTE TimedProcessing stereotype. The activity diagram
of the Timer includes an action named delay annotated with TimedProcessing. This stereotype
has the tag duration set to 100. Moreover, MARTE helps in constraining the duration of actions
and execution chunks. Such a constraint expresses the duration between the occurrence of two
events. In FIRGCD, we impose a limit of 100 time units on the execution chunk that begins when
the timer is triggered (i.e., receipt of reset on stim0), and ends when the output is shown to
the user. This constraint, named global_constraint is defined using the following VSL expression:
displayed− reset < 100.
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Table 2.1: UML/MARTE to UPPAAL Timed Automata Transformation
UML/MARTE Element UPPAAL Element

InitialNode InitialLocation

Action Location

lost
«raiseException»

AcceptEventAction Reception of Signal

integer at 
sender port s?

SendSignalAction Emission of Signal

transmit
s!

Decision Branching Point

2.3 UML/MARTE to UPPAAL Timed Automata Transformation

In order to exploit UPPAAL for functional verification and timing validation, we defined a semantic
mapping from UML/MARTE to UPPAAL timed automata network. The network is built consid-
ering the architecture of the model and the behavioral description of each component. Table 2.1
reports all the elements involved in the generation of an automaton of the network. Each activity
diagram represents the internal behavior of a system element and it has a corresponding automaton.
In our case, each process represents the behavior of a component. The node starting the flow of an
activity diagram (i.e., InitialNode) is converted into the initial location of the target automaton.
The remaining locations are obtained transforming each action found in the activity diagram. The
edges of an automaton are obtained from the control flow of the activity. At this preliminary stage,
we do not include the object flow in the verification. We used the architecture of the model, in
Figure 2.1, to define the topology of the network of timed automata. In UPPAAL, we bound con-
nectors by modeling the data exchange between components. Indeed, in the UML/MARTE model,
components can write and read data to/from the connectors. This aspect is modeled in UPPAAL
using channels. For each connector, we create two channels: conn and data. The conn channels
are used to model rendezvous between components and connectors. We use conn! to denote a
component sending data to a connector, while conn? embodies a connector waiting for data to be
written. The data channels have the same semantics but the roles are inverted. In the same way, we
use UPPAAL synchronizations to model the arrival and the emission of signals. In our model, the
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signal exchange is modeled using AcceptEventAction for the reception and SendSignalAction for
the emission of signals. Finally, we translated UML decision nodes into UPPAAL branching points.
Each outgoing edge of a branching point is annotated with a probability chosen by the designer.

The transformation is designed to involve only the semantics required to obtain a network of
timed automata that fully reflects the source model. For example, specifying input/output (I/O)
ports in the UML/MARTE model would not add semantics to the transformation. A designer may
use I/O ports to model rendezvous between system components. However, component synchroniza-
tion is already modeled with UML/MARTE signals and specified in the activity diagram of system
components. Thus, we decided to keep the semantics of the ports of the source model as abstract
as possible.

2.4 Co-V&V

The timed automata network resulting from the transformation is supplied to UPPAAL for verifica-
tion and validation. We defined a set of properties, expressed in Computational Tree Logic (CTL)
[74], to check functional correctness and validate the timing constraints defined the in UML/MARTE
model. Table 2.2 reports the CTL formulae along with the results produced by the UPPAAL ver-
ifier. These results are used to improve the UML/MARTE model defined during Co-Specification.
It is evident by looking at the description of FIRGCD, in Section 2.2.2, that the results of the V&V
are conditioned by the quality of the communication protocol. Indeed, the latter implements the
most sophisticated behavior. Thus, in the case of FIRGCD, the quality of the initial design can
be improved by simplifying the structure of FIRGCD or the logic of the communication protocol,
respectively, in Figure 2.1 and Figure 2.2. Therefore, before calculating the results, it is necessary
to fix the parameters that can affect the results of the formulae. In FIRGCD, these parameters
are the probability values labeling the edges of the branching points in Figure 2.2. As described
in Section 2.2.2, the protocol starts the transmission when the buffer is full. We test the system
considering a small capacity buffer to obtain many transmissions during the observation time frame.
The situation involving a full buffer is represented setting a likelihood of 80% between DataArrived

and Transmit. The functional correctness of the system can be verified by defining CTL formulae.
CTL formulae represent different aspects of the system, for example, the reachability of a state
or the presence of a deadlock. Properties such as deadlock freedom, fairness, safety, and liveness
ensure behavior correctness and, thus, should hold across all kinds of systems. Instead, constraints
involving quantities such as "component A should return a result within X milliseconds" may vary
according to the kind of system. A well-known example is real-time systems, in which behavioral
correctness also depends on when actions are performed. In the real-time systems domain, timing
constraints can be hard, firm, and soft real-time. This classification is defined according to the
consequences of violating a constraint which can be different with diverse real-time systems. In
FIRGCD, behavior correctness is ensured by reachability of timed automata locations and deadlock
freedom. During the simulation of the timed automata network, reaching a specific location can
represent a correct or faulty behavior of the system. Besides, whether this is done within a time
frame reveals the satisfiability of timing constraints. Before proceeding to deeper analyses, it is im-
portant to know if the system execution does not lead to a deadlock. Deadlock freedom of FIRGCD
is guaranteed executing Equation 2.1 in Table 2.2 in the UPPAAL verifier.
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Table 2.2: System Properties along with corresponding Computational Tree Logic (CTL) Formulae and
UPPAAL Verifier Output. Legend: m : average messages, tu : time units

Property CTL Formula Verifier Output
Deadlock Freedom (2.1) A□not deadlock Satisfied
Reachability (2.2) E♢ display.Displayed Satisfied

(2.3) A♢ display.Displayed Unsatisfied
(2.4) Pr[<= 300; 2000](♢ display.Displayed) 82%− 85%

Communication (2.5) E♢ forall (i : conn_t)Connector(i).T ransmitted Satisfied
(2.6) Pr[<= 200; 500](♢Connector(4).T ransmitted) 42%− 51%
(2.7) E[<= 300; 500](max : sum(i : conn_t)Connector(i).T ransmitted) 2.078m
(2.8) E[<= 300; 500](max : sum(i : conn_t)Connector(i).Lost) 1.48m

Time (2.9) E[<= 100; 2000](max : Stopwatch.x) 130.75tu

2.4.1 Reachability of Display

In FIRGCD, Display reachability can be considered evidence of successful execution. Using the
Stochastic Model Checking features of UPPAAL, we can calculate the likelihood of reaching the
displayed location. Equation 2.2 and Equation 2.3 express, respectively, the reachability of the
displayed location in some and all the execution traces. The satisfiability of these formulae suggests
whether the displayed location is eventually reached. Therefore, in case the formulae are satisfied,
a designer can perform a deeper analysis checking the likelihood to reach displayed. Equation 2.4
calculates the probability that the displayed location is reached within the first 300 time units. A
low probability value can be a symptom of problems occurring before arriving at Display.

The UPPAAL verifier validates the Equation 2.2, while the compliance of Equation 2.3 is not
guaranteed. The non-compliance of Equation 2.3 implies that Display might never be reached. This
behavior may stem from the communication protocol, since the protocol models the situation in
which there is a loss of data. Thus, in the worst case, data could be infinitely lost and never reach
Display. The execution of the Equation 2.4 outputs that the probability to reach the displayed

location within 300 time units lies between 82% and 85% measured in 2000 runs.
Figure 2.5a reveals that the displayed location is periodically reached. This phenomenon may

originate from the behavior of Timer. Indeed, the Timer starts the execution flow by sending a
signal to stim0 and stim1 each 50 time units. In order to prove it, we have shortened the Timer
by decreasing the delay to 20 time units. The results show that the probability increased to a
range of 89% to 92%. This hypothesis is supported by comparing Figure 2.5a and Figure 2.5b.
Indeed, Figure 2.5b shows a chart shifted to the left with more concentrated values than Figure
2.5a. However, the average number of data lost by all the connectors, calculated using the Equation
2.8, increases from 1.48 to 1.84 average messages. This issue can be fixed by changing the structure
of the UML/MARTE model, in Figure 2.1, by merging the connectors linking the filters with the
GCD component. Moreover, the resulting connector will implement a larger buffer to store the
results of the filters. A larger buffer can be represented by decreasing the probability that the
buffer is full from 80% to 60%. Thus, in Figure 2.3, we change the probability value on the edge
connecting DataArrived to Transmit. The reachability of the displayed location becomes almost
certain within 300 time units, while the average number of data lost decreases from 1.84 to 0.91.
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Figure 2.3: Connector Automata

2.4.2 Communication Correctness

The benefits of introducing a Communication View become evident in the Co-V&V step. Through-
out the transformation, each communication protocol is translated into an independent UPPAAL
template. In this way, every protocol results in a different timed automaton that can be analyzed
separately. This modeling decision reduces V&V complexity since the designer may check com-
munication properties independently from the network behavior. The architecture of FIRGCD, in
Figure 2.1, presents five connectors implementing a common communication protocol. Therefore,
the resulting network contains a unique UPPAAL template, embodying the protocol behavior, and
a UPPAAL process for each connector. The functional correctness of the protocol implies that
messages are eventually transmitted. This test can be done by checking the location representing
the system state after the transmission of a message. However, due to the shape of the Activity
Diagram, the obtained protocol automaton does not include such a location. Therefore, we add a
location to the protocol automaton called Transmitted. Figure 2.3 depicts the protocol automaton
including the Transmitted location. This situation can happen whenever a designer represents
a behavior at a high level of abstraction and desires to perform a more fine-grained verification
during Co-V&V. In our case, the Transmit location denotes the system state when ready to send
data. However, it does not inform about what happened before (i.e., if data has just been sent or
not). Equation 2.5 guarantees that data is eventually transmitted by all the connectors. Instead,
Equation 2.6 returns the probability of transmitting data from the Connector(4), namely cnc4 in
Figure 2.1, within the first 200 time units. Consequently, the same property can be checked when
data is lost. Expressions involving time values, like Equation 2.5, are well suited for checking the
satisfiability of timing constraints defined in the Time View.

The UPPAAL verifier outputs a range between 41% and 50% for Equation 2.6, while a likelihood
within 38% and 47% that information is lost. Further insights about the system model may arise by
checking the average number of data items transmitted and lost. Equation 2.7 outputs 2.078 that
denotes the maximum average messages transmitted within 300 time units. The same property can
be written for the loss of data. In this case, the verifier returns an average of 1.48 messages.
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Figure 2.4: Stopwatch Automaton

2.4.3 Timing Validation

The Time View describes the definition of constraints on the time elapsing between the occurrence
of two events. One example of such a constraint, i.e. the global_constraint, is described in
Section 2.2.2. This constraint binds time from when stim0 generates an integer to the moment
this integer will be displayed. An event can occur multiple times during an execution. Therefore,
to measure a time interval, we need to track the time elapsing between the ith occurrences of two
events. The introduction of variables or locking mechanisms to control the occurrence of events
seemed a solution that would substantially complicate the network of timed automata. For this
reason, we introduced an additional timed automaton behaving as a stopwatch. Figure 2.4 depicts
the automaton of the stopwatch. The stopwatch switches to the waiting state upon the arrival
of start! and exits at the reception of stop!. Hence, the duration of intervals can be checked by
measuring how much time the stopwatch spends in the waiting state.

We check the satisfiability of global_constraint through Equation 2.9. This formula includes
the expression max : Stopwatch.x that denotes the maximum value of x over a run. The variable
x is a clock that is reset as the stopwatch enters and exits the waiting state. The UPPAAL verifier
evaluates Equation 2.9 for 2000 runs, each lasting for 300 time units. At each run, the verifier takes
the maximum value of x, and then it returns the average of all values chosen in 2000 runs. Equation
2.9 outputs that the average duration of the interval between reset and displayed equals to 130.75

time units. So, global_constraint is not satisfied since the duration between these two events should
not exceed 100 time units. The same thing happens considering the improved structure of FIRGCD
as described in Section 2.4.1. In this case, Equation 2.9 results in an average of 118.59 time units.
It is worth noting that the satisfiability of global_constraint is remarkably affected by the delay
of the timer as well as the duration of the shifting and evaluation operations of the filters.
Consequently, it is sufficient to reduce these duration values to meet global_constraint. This is
supported by the UPPAAL verifier that outputs an average of 96.51 time units just decreasing the
duration of the evaluation operation from 50 to 25 on fir8 time units and from 45 to 25 time units
on fir16. Such analyses suggests, to the designer, possible operation duration values to consider
for subsequent design phases.
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Figure 2.5: Number of times the displayed state is reached in 1000 time units by stimulating the application
with different timers.

2.5 Related Work

UML/MARTE is a widely used language for modeling the characteristics of real-time embedded
systems. However, it lacks support for functional verification and validation of time constraints.
A popular strategy to achieve verification consists in the creation of a semantic mapping towards
UPPAAL timed automata. This approach has already been investigated by several works [61, 62,
75, 99, 101, 182, 204].

Some of the most representative work start from a state-based representation of system behavior
for the conversion into timed automata. Surdyevara et al. [182] propose a mapping between
UML Statemachine and UPPAAL timed automata. The UML state machines are annotated using
MARTE+CCSL to express causal constraints of clock instants. A similar work is Chen et al. [61]
which focuses on verification of component-based systems. They propose a novel mapping from
MARTE+CCSL to UPPAAL-TIGA timed I/O automata to model components interfaces. These
works differ from ours by the level of abstraction of the source model. Their conversion maps a
state to a location. In this way, a location of a timed automaton represents the state of the system
when it assumes a particular configuration (i.e., values of its variables or set of active objects) and
thus when an invariant condition holds. In this paper, a location represents a fundamental unit of
executable functionality. Hence, the semantics of actions in activity diagrams. This is necessary to
examine specific execution flows, including those internal to the state of a system. Besides, state
representation would lead to inaccurate time estimation and thus invalid timing validation. Both
[182] and [61] employ CCSL to model causal constraints on event occurrences. They constrain
event order or their timing. Our work diverges since the control flow of events is expressed using
the constructs of activity diagrams. Instead, we constrain the duration of actions and executions
rather than events timing.

Another peculiarity of our work is the adoption of stochastic model checking to analyze the
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likelihood of reaching a location. Gu et al. [99] has commonalities with our work both for the
adoption of stochastic model checking and the usage of activity diagrams. They exploit stochastic
modeling to represent user inputs and action duration. Gu et al. use a different strategy to model
actions duration. Indeed, they annotate actions with a range denoting their execution time variation.
Instead, we express action duration constraints using MARTE/VSL. Both of the approaches use
properties written as Pr[<= T ](ψ) to check whether constraints are validated. The works differ
in how action durations are described in UPPAAL. Gu et al. use a two-dimensional array storing
the execution duration variation for each node. We implement the duration constraint as a guard
on transition. This choice was made considering that we perform timing validation in the early
stages of the design. So, action execution time is estimated and modeled as a delay in UPPAAL.
Finally, to the best of our knowledge, it is a novelty to involve both structural and dynamic aspects
of a UML/MARTE model to obtain a network of timed automata. Indeed, the component diagram
defines the topology of the network, while the activity diagrams induce each automaton composing
the network. Moreover, arranging the system model in views allows to reduce verification complexity
and analyze system properties independently (e.g., communication).

2.6 Conclusion

This chapter presented the first two steps of the V&V-based HW/SW Co-Design. During the first
step, i.e., Co-Specification, we exploited UML/MARTE to model the functional and non-functional
requirements of the system. The UML/MARTE model is made by three views: Application, Com-
munication, and Time. We introduced a new verification and validation step, namely Co-V&V.
Co-V&V uses the UPPAAL model checker for functional verification and timing validation of the
system. To use UPPAAL, Co-V&V includes an M2M transformation from UML/MARTE to a
network of timed automata. We showed Co-Specification and Co-V&V through the FIRGCD toy
example. FIRGCD is characterized by a component-based architecture where each component runs
asynchronously at the reception of data or signals. After the transformation into timed automata, we
used UPPAAL to check the reachability of the displayed state, the correctness of the communica-
tion protocol, and the satisfiability of the timing constraints. The Co-V&V showed how reachability
verification can be beneficial to improve the structure of the system. Indeed, we achieved a higher
probability value of reaching the displayed location eliminating the two connectors linking the FIR
filters to the GCD component. We proved that the global_constraint is not satisfiable with the
initial design of FIRGCD. The validation revealed that the constrained execution chunk is mostly
affected by the delay of the timer and the duration of the operations of the two FIR and poorly
influenced by the structure of FIRGCD. The transformation, at the current stage, is performed
manually. Consequently, the designers need extensive knowledge of the semantics of UML/MARTE
and Timed Automata elements, UPPAAL, and CTL formulae. We plan to automate the transfor-
mation and provide the designers with a framework to build CTL formulae. We hypothesize that,
in this way, we can reduce the effort needed to perform verification and validation. However, this
hypothesis should be confirmed or disproved by conducting a user study. Moreover, we plan to
examine case studies with more stringent non-functional requirements (e.g., real-time constraints
[141]) or more complex behavior (e.g., self-adaptive [73]). Finally, it will be necessary to study how
to associate UPPAAL time units with more concrete metrics such as milliseconds.
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Chapter 3

Many-objective optimization of
non-functional attributes based on
refactoring of UML models

As stated in the Introduction, the complexity of HW/SW systems is growing and, as a result,
techniques to tackle complexity are becoming increasingly important. Model-Driven approaches are
widely used in different domains to reduce complexity at design time [76, 118, 134, 192]. Indeed,
models can be employed to evaluate a subset of system aspects and optimize candidate design solu-
tions. For example, to verify the functional correctness, and to estimate performance and reliability
of design solutions. The main goal of this thesis is to integrate such analyses before the Design Space
Exploration (DSE) of an HW/SW Co-Design flow. Integration is possible exploiting model-to-model
transformations in which a UML/MARTE model is converted to different formalisms for V&V. For
example, the initial model can be converted into performance models and validate performance con-
straints using a simulator or a solver. Therefore, the insights gathered during validation are used
to improve the initial model. Thus, the optimization of the initial model mainly involves 3 stages:
(i) transformation to a target formalism, (ii) analysis, and (iii) refactoring of the initial model.
In this chapter, we describe Co-Analysis, which aims to automate the optimization of the initial
model. The idea consists of applying a set of refactoring actions to the initial model to generate
design alternatives. Therefore, evaluate the generated alternatives according to performance and
reliability. This process can be seen as a search problem that aims at finding the design solutions
that improve performance and reliability.

Search-based techniques have been widely used for software optimization [36, 110, 128, 154,
155, 163, 164], and they have proven to suit within the non-functional analysis due to the quan-
tifiable nature of non-functional attributes [18, 19, 130]. Among the search-based techniques, those
related to multi-objective optimization have been recently applied to model refactoring optimization
problems [63, 149]. A common aspect of multi-objective optimization approaches applied to model-
based refactoring problems is that they search among design alternatives (e.g., through architectural
tactics [111, 149]).

In this chapter, we present an approach based on a many-objective evolutionary algorithm (i.e.,
NSGA-II [77]) that searches sequences of refactoring actions, to be applied on models, leading to
the optimization of four objectives: i) performance variation (analyzed through Layered Queuing

25



Chapter 3. Many-objective optimization of non-functional attributes based on refactoring of UML
models

Networks [148]), ii) reliability (analyzed through a closed-form model [71]), iii) number of perfor-
mance antipatterns (automatically detected [28]) and iv) architectural distance [26]. A performance
antipattern is a bad design decision that might lead to a performance degradation [175, 176].1 In
particular, we analyze the composition of model alternatives generated through the application of
refactoring actions to the initial model, and we analyze the contribution of the architectural distance
to the generation of Pareto frontiers. Furthermore, we study the impact of performance antipatterns
on the quality of refactoring solutions. Since it has been shown that removing performance antipat-
terns leads to systems that show better performance than the ones affected by them [28, 176, 177],
we aim at studying if this result persists in the context of many-objective optimization, where
performance improvement is not the only objective.

Our approach applies to UML models augmented by MARTE [97] and DAM [43] profiles that
allow to embed performance and reliability properties. However, UML does not provide native
support for performance analysis, thus we introduce a model-to-model transformation that generates
Layered Queueing Networks (LQN) from annotated UML models. The solution of LQN models feeds
the performance variation objective. It is worth recalling that the models considered are technology-
independent. This means that any refactoring concerns the behavior or logical structure modeled.
This model is refined in the later stages of HW/SW Co-Design.

Here, we consider refactoring actions that are designed to improve performance in most cases.
Since such actions may also have an impact on other non-functional properties, we introduce the
reliability among the optimization objectives to study whether satisfactory levels of performance
and reliability can be kept at the same time. In order to quantify the reliability objective, we
adopt an existing model for component-based software systems [71] that can be generated from
UML models. This reliability model originated for software systems, but it can also be applied to
technology independent models since it takes into account the elements of the UML model (such as
the number of communication links).

We also minimize the distance between the initial UML model and the ones resulting from ap-
plying refactoring actions. Indeed, without an objective that minimizes such distance, the proposed
solutions could be impractical because they could require to completely disassemble and re-assemble
the initial UML model.

In a recent work [65], we extended the approach in [26, 63], by investigating UML models
optimization, thus widening the scope of eligible models. In this chapter, we extensively apply the
approach to two illustrative examples from the literature: Train Ticket Booking Service [80, 203],
and CoCoME [104]. In spite of the fact that these examples fall into the software domain, we
exploit their specification to create behavioral models which do not include implementation details.
Therefore, during DSE, it can be evaluated if their behavior or part of it could be also implemented
as HW components. We analyze the sensitivity of the search process to configuration variations. We
refine the cost model of refactoring actions, introduced in [65], and we investigate how it contributes
to the generation of Pareto frontiers. Also, we analyze the characteristics of computed Pareto
frontiers in order to extract common properties for both examples.

This study answers the following research questions:

• RQ1 : To what extent do experimental configurations affect quality of Pareto frontiers?

1We provide more detail in 3.1.
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– RQ1.1 : How antipattern detection contribute to find better solutions compared to the
case where antipatterns are not considered at all?

– RQ1.2 : How the probabilistic nature of fuzzy antipatterns detection help to include
higher quality solutions in Pareto frontiers with respect to deterministic one?

– RQ1.3 : To what extent does the architectural distance contribute to find better alterna-
tives?

• RQ2 : Is it possible to increase reliability without performance degradation?

• RQ3 : What type of refactoring actions are more likely to lead to better solutions?

The experimentation lasted approximately 200 hours and generated more than 70,000 model al-
ternatives.

Generally, multi-objective optimization is beneficial when the solution space is so large that an
exhaustive search is impractical. Hence, due to the search of the solution space, multi-objective
optimization requires a lot of time and resources.

Our results show that, by considering the reduction of performance antipatterns as an objective,
we are able to obtain model alternatives that show better performance and, in the majority of cases,
better reliability as well. We also find that a more sophisticated architectural distance objective
estimation helps the optimization process to generate model alternatives showing better quality
indicators. Also, we strengthen the idea that performance antipatterns are promising proxies of
performance degradation of models. Finally, to encourage reproducibility, we publicly share the
implementation of the approach 2, as well as the data gathered during the experimentation 3.

The structure of the chapter is the following: Section 3.1 introduces basic concepts, Section 3.2
describes the approach, Section 3.3 describes the two involved illustrative examples, and Section 3.4
details used configurations, in Section 3.5 we evaluate our approach and discuss the results, threats
to validity are described in Section 3.6, Section 3.7 reports related work, and Section 3.8 concludes
the chapter.

3.1 Background

We identify four competing objectives of our evolutionary approach as follows: perfQ is a perfor-
mance quality indicator that quantifies the performance improvement/detriment between an initial
model and one obtained by applying the refactoring actions of a solution (Section 3.1); reliability
is a measure of the reliability of the model (Section 3.1); performance antipatterns is a metric that
quantifies the amount of performance antipattern occurrences while considering the intrinsic uncer-
tainty rising from thresholds used by the detection mechanism (Section 3.1); #changes represents
the distance between an initial model and one obtained by applying the refactoring actions of a
solution (Section 3.1).

We employ the Non-dominated Sorting Algorithm II (NSGA-II) as our genetic algorithm [77],
since it is extensively used in the software engineering community, e.g., [111, 127]. NSGA-II ran-
domly creates an initial population of model alternatives, and it used to create the offspring pop-
ulation by applying the Crossover with probability Pcrossover, and the Mutation with probability

2https://github.com/SEALABQualityGroup/EASIER
3https://github.com/SEALABQualityGroup/2022-ist-replication-package
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PMutation operators. The union of the initial and the offspring populations is sorted by the Non-
dominated sorting operator, which identifies different Pareto frontiers with respect to considered
objectives. Finally, the Crowding distance operator cuts off the worse half of the sorted union
population. Hence, the remaining model alternatives become the initial population for the next
step.

Performance Quality Indicator (perfQ)

perfQ quantifies the performance improvement/detriment between two models, and it is defined as
follows:

perfQ(M) =
1

c

c∑
j=1

pj ·
Fj − Ij
Fj + Ij

where M is a model obtained by applying a refactoring solution to the initial model, Fj is the value
of a performance index in M , and Ij is the value of the same index on the initial model. p ∈ {−1, 1}
is a multiplying factor that holds: i) 1 if the j–th index has to be maximized (i.e., the higher the
value, the better the performance), like the throughput; ii) −1 if the j–th index has to be minimized
(i.e., the smaller the value, the better the performance), like the response time.

Notice that, for performance measures representing utilization, p also holds 1 but we define
a utilization correction factor ∆j to be added to each j–th term above, as defined in [26]. The
utilization correction factor penalizes refactoring actions that push the utilization too close to 1,
i.e., its maximum value. Finally, the global perfQ is computed as the average across the number c
of performance indices considered in the performance analysis.

As mentioned in the introduction, in order to obtain performance indices of a UML model,
the analysis has been conducted on Layered Queueing Networks (LQNs) [148]4 that are obtained
through a model transformation approach from UML to LQN, which we have introduced in [65]. We
chose Layered Queueing Networks as our performance model notation because it is extensively used
in the literature and it allows a more explicit representation of software and hardware components
(and their interactions) than the one of conventional Queueing Networks [111, 115, 149].

Reliability model

The reliability model that we adopt here to quantify the reliability objective is based on the model
introduced in [71]. The mean failure probability θS of a software system S is defined by the following
equation:

θS = 1−
K∑
j=1

pj

(
N∏
i=1

(1− θi)
InvNrij ·

L∏
l=1

(1− ψl)
MsgSize(l,j)

)

This model takes into account failure probabilities of components (θi) and communication links
(ψl), as well as the probability of a scenario to be executed (pj). Such probabilities are combined to
obtain the overall reliability on demand of the system (θS), which represents how often the system
is not expected to fail when its scenarios are invoked.

The model is considered to be composed of N components and L communication links, whereas
its behavior is made of K scenarios. The probability (pj) of a scenario j to be executed is multiplied

4http://www.sce.carleton.ca/rads/lqns/LQNSUserMan-jan13.pdf
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by an expression that describes the probability that no component or link fails during the execution
of the scenario. This expression is composed of two terms:

∏N
i=1(1 − θi)

InvNrij , which is the
probability of the involved components not to fail raised to the power of their number of invocations
in the scenario (denoted by InvNrij), and

∏L
l=1(1− ψl)

MsgSize(l,j), which is the probability of the
involved links not to fail raised to the power of the size of messages traversing them in the scenario
(denoted by MsgSize(l, j)).

Performance Antipatterns

A performance antipattern describes bad design practices that might lead to performance degrada-
tion in a system. Smith and Williams have introduced the concepts of performance antipatterns
in [176, 178]. These textual descriptions were later translated into a First-Order Logic (FOL)
equations [69].

Performance antipattern Description

Pipe and Filter Occurs when the slowest filter in a “pipe and filter” causes the system
to have unacceptable throughput.

Blob Occurs when a single component either i) performs the greatest part
of the work or ii) holds the greatest part of the data. Either manifesta-
tion results in excessive message traffic that may degrade performance.

Concurrent Processing Sys-
tem

Occurs when processing cannot make use of available processors.

Extensive Processing Occurs when extensive processing in general impedes overall response
time.

Empty Semi-Truck Occurs when an excessive number of requests is required to perform
a task. It may be due to inefficient use of available bandwidth, an
inefficient interface, or both.

Tower of Babel Occurs when processes use different data formats and they spend too
much time in convert them to an internal format.

Table 3.1: Detectable performance antipatterns in our approach. Left column lists performance antipattern
names, while right column lists performance antipattern descriptions [177].

A performance antipattern FOL is a combination of multiple literals, where each one repre-
sents a system aspect (e.g., the number of connections among components). These literals must
be compared to thresholds in order to reveal the occurrence of a performance antipattern. The
identification of such thresholds is a non-trivial task, and using deterministic values may result in
an excessively strict detection where the smallest change in the value of a literal determines the
occurrence of the antipattern. For these reasons, we employ a fuzzy detection [30], which assigns
to each performance antipattern a probability to be an antipattern. An example of a performance
antipattern fuzzy detection is the following:

1− UB(literal)− literal

UB(literal)− LB(literal)

The upper (UB) and the lower (LB) bounds, in the above equation, are the maximum and minimum
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values of the literal computed on the entire system. Instead of detecting a performance antipattern
in a deterministic way, such thresholds lead to assign probabilities to antipattern occurrences. In
this study, we detect the performance antipatterns listed in Table 3.1.

Architectural distance

The architectural distance, that we express here as #changes, represents the distance of the model
obtained by applying refactoring actions from the initial one [26]. On one side, a Baseline Refactoring
Factor (BRF) is associated to each refactoring action in our portfolio, and it expresses the refactoring
effort to be spent when applying the action. On the other side, an Architectural Weight (AW) is
associated to each model element on the basis of the number of connections to other elements in
the model. Hence, we quantify the effort needed to perform a refactoring as the product between
the baseline refactoring factor of an action and the architectural weight of the model element on
which that action is applied. #changes is obtained by summing the efforts of all refactoring actions
contained in a solution.

Furthermore, BRF and AW can assume any positive value (i.e., zero is a non-admitted value
because it would lead the optimizer to always select only actions by that type).

As an example, let us assume that a refactoring sequence is made up of two refactoring actions:
A1 with BRF(A1) = 1.23, and A2 with BRF(A2) = 2.3. For each refactoring action, the algorithm
randomly selects a target element in the model. For instance, let those target elements be: E1 with
AW (E1) = 1.43, and E2 with AW (E2) = 1.32. The resulting #changes of A1 and A2 would be:

#changes(A1, A2) = 1.23 · 1.43 + 2.3 · 1.32

Details about the baseline refactoring factor for each considered refactoring action are provided in
Section 3.2.

3.2 Approach

Figure 3.1 depicts the process we present in this paper. The process uses a UML model and a set of
refactoring actions as input. The Initial Model and the Refactoring Actions are involved within the
Create Combined Population step, where mating operations (i.e., selection, mutation, and crossover)
are put in place to create Model Alternatives. The mating operations randomly apply the refactoring
actions, which generate alternatives functionally equivalent to the initial model. Therefore, the
Evaluation step is applied to each model alternative. Subsequently, the model alternatives are
ranked (Sorting step) according to four objectives: perfQ , reliability , #changes, and performance
antipatterns. The optimal model alternatives (i.e., non-dominated alternatives) become the input
of the next iteration. The process continues until the stopping criteria are met. Finally, the process
generates a Pareto Frontier, which contains all non-dominated model alternatives.

Assumptions on UML models

In our approach, we consider UML models including three views, namely static, dynamic and
deployment views. The static view is modeled by a UML Component diagram in which static
connections among components are represented by interface realizations and their usages. The
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[are the stopping criteria 
met?]

#performance antipatterns

Figure 3.1: Our multi-objective evolutionary approach

dynamic view is described by UML Use Case and Sequence diagrams. A Use Case diagram defines
user scenarios, while a Sequence diagram describes the behavior inside a single scenario through
component operations (as defined in their interfaces) and interactions among them. A Deployment
diagram is used to model platform information and map Components to Deployment Nodes. As
mentioned before, we use an augmented UML notation by embedding two existing profiles, namely
MARTE [97] that expresses performance concepts, and DAM [43] that expresses reliability concepts.

Although our assumptions on UML models seem to require an upfront modeling phase, the
accuracy of results is affected by the quality of model and annotations. We mitigate the modeling
effort through the usage of UML. In fact, a plethora of UML modeling tools is available, each
equipped with entry-level or advanced capabilities that differently help models design.5

The Refactoring Engine

The automated refactoring of UML models is a key point when evolutionary algorithms are employed
in order to optimize some model attributes. For the sake of full automation of our approach, we
have implemented a refactoring engine that applies refactoring actions on UML models [29].

Each solution that our evolutionary algorithm produces is a sequence of refactoring actions that,
once applied to an initial model, leads to a model alternative that shows different non-functional
properties. Since our refactoring actions are combined during the evolutionary approach, we exploit
the feasibility engine that verifies in advance whether a sequence of refactoring actions is feasible or
not [27].

Our refactoring actions are equipped with pre- and post-condition. While the pre-condition
represents the model state for enabling the action, the post-condition represents the model state
when the action has been applied. The approach extracts a refactoring action and adds it to the
sequence. As soon as the action is selected, it randomly extracts a model element (i.e., the target
element). Thus, the refactoring engine checks the feasibility of the (partial) sequence of refactoring

5https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
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actions.When the latest added action makes the sequence unfeasible, the engine discards the action
and replaces it with a new one. The engine reduces a sequence of refactoring actions to a single
refactoring action, which includes all the changes (see Equation (3.1a)).

For example, considering two refactoring actions (Mi, and Mj), then the global pre-condition
is obtained by logical ANDing the first action pre-condition (PrMi) and all the parts of Mj pre-
condition that are not yet verified by Mi post-conditions (MPr

j / Mi
Po) (see Equations (3.1b)).

Since the status of the model after a refactoring is synthesized by its post-condition, we can discard
the parts of a subsequent refactoring pre-condition that, by construction, are already verified by its
post-condition. The global post-condition is obtained by logical ANDing all post-conditions within
the sequence (MPo

i ∧MPo
j ) (see Equation (3.1c)).

PrMPo
i ∧ PrMPo

j 7−→ PrMPo (3.1a)
PrMi ∧MPr

j / Mi
Po 7−→ PrM (3.1b)

MPo
i ∧MPo

j 7−→MPo (3.1c)

Our feasibility engine also allows to reduce the number of invalid refactoring sequences, thus reducing
the computational time.

Refactoring Action portfolio

Figure 3.2 through Figure 3.5 show a graphic representation of each refactoring action. Each figure’s
left side shows the original model (e.g., static view in Figure 3.3a, dynamic view in Figure 3.3c,
and deployment view in Figure 3.3e), while the refactored version is shown on the right side (e.g.,
static view in Figure 3.3b, dynamic view in Figure 3.3d, and deployment view in Figure 3.3f). The
red highlights indicate changes.

Clone a Node (Clon) This action is aimed at introducing a replica of a Node. Adding a replica
means that every deployed artifact and every connection of the original Node has to be in turn
cloned. Stereotypes and their tagged values are cloned as well. The rationale of this action is to
introduce a replica of a platform device with the aim of reducing its utilization.

node_C

component_C
«artifact»

node_B

component_B
«artifact»

node_A

component_A
«artifact»

(a) Initial

node_B

component_B
«artifact»

cloned−node_A

component_A
«artifact»

node_C

component_C
«artifact»

node_A

component_A
«artifact»

(b) Refactored

Figure 3.2: The Clon refactoring action example on node_A through a UML Model

Move an Operation to a new Component deployed on a new Node (MO2N) This
action is in charge of randomly selecting an operation and moving it to a new Component. All the
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elements related to the moving operation (e.g., links) will move as well. Since we adopt a multi-view
model, and coherence among views has to be preserved, this action has to synchronize dynamic and
deployment views. A lifeline for the newly created Component is added in the dynamic view, and
messages related to the moved operation are forwarded to it. In the deployment view, instead, a
new Node, a new artifact, and related links are created. The rationale of this action is to lighten
the load of the original Component and Node.

component_C

«component»

component_B

«component»

component_A

«component»

operation_2

operation_1

(a) Initial

component_C

«component»

component_B

«component»

new−component

«component»

component_A

«component»

operation_2

operation_1

(b) Refactored

: component_C: component_B : component_A

operation_23: 

operation_11: 

return operation_12: 

return operation_24: 

(c) Initial

: new−component : component_C: component_B : component_A

return operation_24: 

operation_23: 

operation_11: 

return operation_12: 

(d) Refactored

node_C

component_C
«artifact»

node_B

component_B
«artifact»

node_A

component_A
«artifact»

(e) Initial

new−node

new-component
«artifact»

node_C

component_C
«artifact»

node_B

component_B
«artifact»

node_A

component_A
«artifact»

(f) Refactored

Figure 3.3: The MO2N refactoring action example on operation_2 through a UML Model

Move an Operation to a Component (MO2C) This action is in charge of randomly selecting
and transferring an Operation to an arbitrary existing target Component. The action consequently
modifies each UML Use Case in which the Operation is involved. Sequence Diagrams are also
updated to include a new lifeline representing the Component owning the Operation, but also to
re-assign the messages invoking the operation to the newly created lifeline. The rationale of this
action is quite similar to the previous refactoring action, but without adding a new UML Node to
the model.

Deploy a Component on a new Node (ReDe) This action simply modifies the deployment
view by redeploying a Component to a newly created Node. In order to be consistent with the initial
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component_C
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component_B
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component_A

«component»

operation_2
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(a) Initial

component_A

«component»

component_C

«component»

component_B
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operation_2

operation_1
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return operation_12: 

return operation_24: 

(c) Initial

: component_C: component_B : component_A

operation_22: operation_11: 

return operation_13: 

(d) Refactored

Figure 3.4: The MO2C refactoring action example on operation_2 and component_C through a UML
Model

model, the new Node is connected with all other ones directly connected to the Node on which the
target Component was originally deployed. The rationale of this action is to lighten the load of the
original UML Node by transferring the load of the moving Component to a new UML Node. The
ReDe and Clon actions have a similar rationale, i.e., to redirect the load to a new deployment node,
but they differ on the type of node on which they move the load. A Clon action transfers the load
to a new node, which is offloaded and created specifically for the operation. Instead, a ReDe action
targets existing nodes that may already be handling other loads.

node_C

component_C
«artifact»

node_B

component_B
«artifact»

node_A

component_A
«artifact»

(a) Initial

node_B

component_B
«artifact»

node_A

component_A
«artifact»

new−node

component_C
«artifact»

node_C

(b) Refactored

Figure 3.5: The ReDe refactoring action example on component_C through a UML Model

Baseline Refactoring Factor

As described in Section 3.1, we measure the architectural distance by summing the products of
baseline refactoring factor (BRF ) and architectural weight (AW) for each refactoring action ai(elj)
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Action BRF TTBS CoCoME

MO2N 1.80 70 ≈ 4.8× 103

MO2C 1.64 ≈ 1.5× 106 ≈ 1.3× 108

ReDe 1.45 ≈ 3× 102 ≈ 7× 102

Clon 1.23 ≈ 3× 102 70

Ω 9.45× 1012 3.05× 1016

Table 3.2: A detailed size of the solution space (Ω) computation.

within a sequence (A).
#changes(A) =

∑
ai(elj)∈A

BRF(ai)×AW (elj)

AW is the weight of the target of the refactoring action, BRF is the intrinsic cost that one should
pay in order to apply the specific action on a model element. There are different ways to compute the
effort for implementing artefacts or maintaining them (e.g., COCOMO-II [45], and CoBRA [186]).
Nevertheless, we consider the cost in terms of the effort that one should spend on the model to
complete a refactoring action, and we assign BRF values on the basis of our past experience in
manual refactoring. We have not used a cost estimator model, such as CoBRA, because it requires
to collect business information that is not available for non-industrial case studies. Table 3.2 lists
the BRF values used in this study. It is worth remarking that, in our optimization problem, the
ratio among BRF values is more important than how each single value has been extracted.

Computing reliability on UML models

The reliability parameters of the model introduced in Section 3.1 are annotated on UML models
by means of the MARTE-DAM profile. The probability of executing a scenario (pj) is specified
by annotating UML Use Cases with the GaScenario stereotype. This stereotype has a tag named
root that is a reference to the first GaStep in a sequence. We use the GaScenario.root tag to point
to the triggering UML Message of a Sequence Diagram and the GaStep.prob to set the execution
probability. Failure probabilities of components (θi) are defined by applying the DaComponent
stereotype on each UML Component and by setting, in the failure tag, a DaFailure element with the
failure probability specified in the occurrenceProb tag. Analogously, failure probabilities of links (ψl)
are defined in the failure.occurrenceProb tag of the DaConnector stereotype that we apply on UML
CommunicationPath elements. Such elements represent the connection links between UML Nodes
in a Deployment Diagram. Sequence Diagrams are traversed to obtain the number of invocations
of a component i in a scenario j (denoted by InvNrij in our reliability model), but also to compute
the total size of messages passing over a link l in a scenario j (denoted by MsgSize(l, j)). The size
of a single UML Message is annotated using the GaStep.msgSize tag. The Java implementation of
the reliability model is available online.6

6https://github.com/SEALABQualityGroup/uml-reliability
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Configuration Eligible values

Experiment
settings

Baseline Refactoring Factor no, yes
Performance Antipattern fuzziness 0.55, 0.80, 0.95
Illustrative Examples TTBS, CoCoME

NSGA-II

Number of genetic evolutions 72, 82, 102
Population Size 16
Number of independent runs 3
Selection operator Binary Tournament Selection
Pcrossover 0.80
Crossover Operator Single Point
Pmutation 0.20
Mutation Operator Simple Mutation

Table 3.3: Eligible configuration values.

Pareto Frontier Quality Indicators

We compare the performance of the NSGA-II while varying the configuration eligible values listed in
Table 3.3. We used well-established quality indicators also provided in the JMetal framework [147].
We use quality indicators to quantify the difference among computed Pareto Frontier (PFc) with
respect to the reference Pareto Frontier (PFref ) [20]. Therefore, we can declare which configuration
outperform the others.

In the following, we recall some characteristics for each quality indicator.

GSPREAD The Generalized SPREAD (GSPREAD) is a quality indicator to be minimized, and
it measures the spread of solution within PF c [202]. It is computed as follows:

GSPREAD(PF c) =

∑m
i=1 d(ei, PF

c) +
∑

s∈PF c

∣∣id(s, PF c)− īd
∣∣∑m

i=0 d(ei, PF
c) + |PF c| ∗ īd

where ei is the optimal value for the objective fi, i.e., (e1, . . . , em) is the extreme solution in PF ref ,
id(s, PF c) = d(s, PF c\{s}) is the minimal distance of a solution s from the solutions in PF c, and
īd is the mean value of id(s, PF c) across the solutions s in PF ref .

IGD+ The Inverse Generational Distance plus (IGD+) is a quality indicator to be minimized. It
measures the distance from a solution in PF ref to the nearest solutions in PF c [108]. It is computed
as follows:

IGD+(PF c) =

√∑
s∈PF ref d(s, PF c)2

|PF ref |

Hypervolume The Hypervolume (HV) indicator is to be maximized and it measures the volume
of the solution space Ω covered by PF c [206]. It is computed as follows:

HV (PF c) = volume(∪si∈PF chc(si))
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where si is a solution within the PF c, hc(si) is the hypercube having si and w as diagonal points.
The variable w is the reference point computed using the worst objective function values among all
the possible solutions in PF c.

EPSILON The EPSILON (EP) quality indicator measures the smallest distance that each solu-
tion within PF c should be translated so that PF c dominates PF ref [207]. EPSILON is a quality
indicator to be minimized, and it uses the notation of epsilon-dominance ≻ϵ. It is computed as
follows:

EP (PF c) = inf{ϵ ∈ R|(∀x ∈ PF ref , ∃y ∈ PF c : y ≻ϵ x)}

In our study, we have computed a PF ref for each illustrative example by extracting every non-
dominated solutions across each PF c, i.e., one for each configuration. Hence, the quality indicators
in Table 3.5 and Table 3.6 have been computed with respect to the PF ref for the TTBS, and CoCoME

illustrative example respectively.

3.3 Illustrative Examples

In this section, we apply our approach to Train Ticket Booking Service (TTBS) [80, 203], and to
the well-established Common Component Modeling Example (CoCoME), whose UML model has
been derived by the specification in [104].

3.3.1 Train Ticket Booking Service

Train Ticket Booking Service (TTBS) is a web-based booking application, whose architecture is
based on the microservice paradigm. The system is made up of 40 microservices, and it provides
different scenarios through users that can perform realistic operations, e.g., book a ticket or watch
trip information like intermediate stops. The application employs a docker container for each
microservice, and connections among them are managed by a central pivot container.

Our UML model of TTBS is available online.7 The static view is made of 11 UML Components,
where each component represents a microservice. In the deployment view, we consider 11 UML
Nodes, each one representing a docker container.

Among all TTBS scenarios shown in [80], in this chapter we have considered 3 UML Use Cases,
namely login, update user details and rebook. We selected these three scenarios because they involve
different TTBS components and operations. Consequently, we obtain heterogeneous sequences of
refactoring actions since they are applied to diverse model elements. A refactoring action applied
to different model elements can reveal whether the results are affected by that element type, that
refactoring action, or a combination of both. Each scenario is described by a UML Sequence
Diagram. Furthermore, the model comprises two user categories: simple and admin users. The
simple user category can perform the login and the rebook scenarios, while the admin category can
perform the login and the update user details scenarios.

7https://github.com/SEALABQualityGroup/2022-ist-replication-package/tree/main/case-studies/tra
in-ticket

Vincenzo Stoico 37

https://github.com/SEALABQualityGroup/2022-ist-replication-package/tree/main/case-studies/train-ticket
https://github.com/SEALABQualityGroup/2022-ist-replication-package/tree/main/case-studies/train-ticket


3.4. Experimental setup

Illustrative Example UML Node UML Component UML Message Ω

TTBS 11 11 8 1.20× 1013

CoCoME 8 13 20 3.26× 1016

Table 3.4: Number of UML elements in our Illustrative Examples, and the size of the relative solution
space (Ω).

3.3.2 CoCoME

The component-based system engineering domain has always been characterized by a plethora
of standards for implementing, documenting, and deploying components. These standards are
well-known as component models. Before the birth of the common component modeling example
(CoCoME) [104], it was hard for researchers to compare different component models. CoCoME acts as
a single specification to be implemented using different component models.

CoCoME describes a Trading System containing several stores. A store might have one or more
cash desks for processing goodies. A cash desk is equipped with all the tools needed to serve a
customer (e.g., a Cash Box, Printer, Bar Code Scanner). CoCoME covers possible scenarios performed
at a cash desk (e.g., scanning products, paying by credit card, generating reports, or ordering new
goodies). A set of cash desks forms a cash desk line. The latter is connected to the store server for
registering cash desk line activities. Instead, a set of stores is organized in an enterprise having its
server for monitoring stores operations.

CoCoME describes 8 scenarios involving more than 20 components. We have modeled CoCoME using
UML and following the structure described in Section 3.2. From the CoCoME original specification, we
analyzed different operational profiles, i.e., scenarios triggered by different actors (such as Customer,
Cashier, StoreManager, StockManager), and we excluded those related to marginal parts of the
system, such as scenarios of the EnterpriseManager actor. Thus, we selected 3 UML Use Cases, 13
UML Components, and 8 UML Nodes from the CoCoME specification. Beside this, we focused on
three scenarios, namely: UC1 that describes the arrival of a customer at the checkout, identification,
and sale of a product; UC4 that represents how products are registered in the store database upon
their arrival; UC5 that represents the possibility of generating a report of store activities.

We computed the size of the solution space (Ω) as the Cartesian product of the combination
of refactoring actions Cn,k =

(
n
k

)
where n is the number of target model elements, and k is the

length of the chromosome (i.e., the length of the sequence of refactoring actions, which is 4 in our
case), and we summarize data in Table 3.2. We remark that a manual investigation of the solution
space is unfeasible due to its size. Hence, the evolutionary search is helpful for looking for model
alternatives showing better quality than the initial one. Table 3.4 summarizes characteristics of the
illustrative examples.

3.4 Experimental setup

A configuration is defined by the combination of parameters related to the genetic algorithm, and
the ones related to the specific optimization model. The eligible configuration values in our approach
are listed in Table 3.3. In order to investigate which configuration produces better Pareto frontiers,
we have executed multiple tuning runs to find a set of optimal configurations.
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In order to set the parameters related to the genetic algorithm, we have performed a tuning phase
with the intent of increasing the quality of the Pareto frontiers. In particular, we have set the length
of refactoring sequences to four actions, which represents a good approximation of the number of
refactoring actions usually applied by a designer in a single session. We have set the Pcrossover and
Pmutation probabilities to 0.8 and 0.2, respectively, following common configurations [32]. The higher
the values of these two probabilities, the greater the chance of generating an unfeasible sequence
of refactoring actions, which in turn causes a longer simulation time due to a higher number of
discarded sequences. For example, the Pcrossover increase could cause a lot of permutation among
sequences, and it might lead to wrong or unfeasible sequences of refactoring actions.

The initial population size might drive the genetic algorithm in local minima, and thus result
in stagnant solutions. In general, a densely populated initial population minimizes the probability
of stagnant solutions in local minima. However, the generation of a crowded initial population is
computational demanding and, in case of rare local minima, the computational cost represents a
clear slowdown for the evolutionary approach [31]. For that reason, we set the population size to
16 elements (i.e., 16 different UML model alternatives), which did not show stagnant issues in our
tuning phase. Furthermore, we will investigate in a future work the impact of denser populations in
our analysis, in terms of computational time and quality of the computed Pareto frontiers (PF c). In
addition, multiple runs have been executed for each configuration in order to reduce the randomness
of the genetic algorithm.

We considered three fuzziness thresholds, i.e., {0.55, 0.80, 0.95}, to study the impact of per-
formance antipatterns on computed Pareto frontiers. Since we are considering a fuzzy detection
of performance antipatterns, we should use values greater than 50% to reduce the probability of
false positives, but less than 100% to not fall in a case of performance antipatterns deterministic
detection. Therefore, we decided to use those three fuzziness values to analyze the uncertainty of a
fuzzy performance antipatterns detection.

With regard to parameters related to refactoring actions, we ran the experiment twice, one by
excluding BRF , and one by including it. For the latter, we set BRF of each refactoring action
as reported in Table 3.2. As we said in Section 3.2, we did not employ a complex cost model for
baseline refactoring factor values. However, we remark that we are interested in the ratio between
BRF values rather than in their specific values, and we will deeply investigate the impact of other
values on future work.

Our experimental settings on TTBS and CoCoME have generated 70,000 model alternatives and
have taken 200 hours of computation. We performed our experiments on a server equipped with
two Intel Xeon E5-2650 v3 CPUs at 2.30GHz, 40 cores and 80GB of RAM.

3.5 Results and discussion

Results presented in this section are aimed at answering the aforementioned three research questions.

3.5.1 RQ1

RQ1: To what extent do experimental configurations affect quality of Pareto frontiers?
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BRF maxeval probpas q_indicator value

yes 72 95 HV 0.329645
yes 82 95 HV 0.304931
yes 82 95 HV 0.267898
yes 72 80 HV 0.266588
yes 82 55 HV 0.254973

yes 72 95 IGD+ 0.135226
yes 82 95 IGD+ 0.149903
yes 72 55 IGD+ 0.157150
yes 82 95 IGD+ 0.167142
yes 72 80 IGD+ 0.173162

yes 72 95 EP 0.295681
yes 82 95 EP 0.296014
yes 82 95 EP 0.316964
yes 72 55 EP 0.316964
yes 82 55 EP 0.323661

yes 102 55 GSPREAD 0.125487
yes 102 95 GSPREAD 0.127085
yes 102 80 GSPREAD 0.144666
yes 102 55 GSPREAD 0.148802
yes 72 55 GSPREAD 0.203504

Table 3.5: Best five of each quality indicator for Train Ticket Booking Service while varying the performance
antipattern fuzziness and the genetic algorithm evolutions.

RQ1 focuses on the contribution of experimental configurations to the quality of the computed
Pareto frontiers (PF c).

In Table 3.5 and Table 3.6 it is possible to observe the configurations that result in better Pareto
frontiers. Generally, quality indicators are obtained with respect to the optimal reference Pareto
frontier (PF ref ), and each one has its ideal value (e.g., HV = 1, IDG+ = 0). Moreover, values in
tables have been sorted in ascending order when the best quality indicator is the lowest one, and in
descending order otherwise. Since we did not have the optimal PF ref for our illustrative examples,
we computed, for each example, the quality indicators with respect to a PF ref that contains every
non-dominated solution across all PF c. Once quality indicators have been obtained and sorted, we
identify which maxeval and probpas have generated better indicators. Finally, we also report data
about BRF .

At a glance, we can see that in most cases for both illustrative examples, maxeval = 72 and
lower fuzziness generates better quality indicators, whereas BRF has a different impact on the two
illustrative examples.

In the following, we split RQ1 into three sub-questions, each one related to a specific experi-
mental configuration attribute. RQ1.1 analyzes the influence of performance antipatterns on PF c.
RQ1.2 investigates whether the fuzziness of performance antipattern detection helps to find better
PF c. RQ1.3 studies the contribution of BRF to the quality of PF c.

RQ1.1

RQ1.1: How antipattern detection contribute to find better solutions compared to the case where
antipatterns are not considered at all?

In order to answer this research question, we have conducted an additional experimentation for
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BRF maxeval probpas q_indicator value

no 72 95 HV 0.360432
no 82 95 HV 0.359415
no 102 95 HV 0.342563
no 72 55 HV 0.326384
no 82 95 HV 0.305201

no 72 95 IGD+ 0.091767
no 82 95 IGD+ 0.105173
no 102 95 IGD+ 0.106406
no 82 95 IGD+ 0.132800
no 72 55 IGD+ 0.135904

no 82 95 EP 0.250000
no 72 55 EP 0.250000
no 72 95 EP 0.250000
no 82 95 EP 0.313857
yes 72 95 EP 0.333333

no 82 55 GSPREAD 0.145989
yes 102 55 GSPREAD 0.193488
yes 102 95 GSPREAD 0.196790
no 102 55 GSPREAD 0.200320
no 102 80 GSPREAD 0.203431

Table 3.6: Best five of each quality indicator for CoCoME while varying the performance antipattern
fuzziness and the genetic algorithm evolutions.

every problem configuration, where we have removed performance antipattern occurrences from the
fitness function, thus reducing the optimization to the remaining three objectives.

Train Ticket Booking Service Figure 3.6 depicts the Pareto frontiers of 72 genetic evolutions
while considering the lowest fuzziness (i.e., probpas = 0.95) and no performance antipatterns (i.e.,
probpas = 0). We can see that frontiers with performance antipatterns are generally more densely
populated than the case where probpas = 0. Also, performance antipatterns help finding model
alternatives showing lower #changes than the ones found when they have been ignored. Although
probpas = 0 generates the highest value of perfQ (i.e., perfQ = 0.24), there are more solutions in
the topmost part of the plot when performance antipatterns drive the search process. From our
analysis, it emerges that probpas = 0.95 produces better frontiers among those with performance
antipatterns. Therefore, we can state that, for TTBS, the lower fuzziness the better the quality of
frontiers in terms of perfQ , reliability , and #changes.

CoCoME Figure 3.7 depicts the Pareto frontiers with 72 genetic evolutions while considering
the lowest fuzziness (i.e., probpas = 0.95) and no performance antipatterns (i.e., probpas = 0).
Most of the solutions lay in the topmost part of the plot, thus meaning that PF c shows better
perfQ and reliability of the initial solution (see the black cross in the figure). Frontiers generated by
performance antipatterns are more densely populated than those without performance antipatterns.
Thus, the reduction of the number of performance antipatterns occurrences, if it is included among
the objectives, helps the process finding more alternative models showing higher perfQ and reliability
with lower #changes.
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Figure 3.6: The scatter plot of PF c of TTBS with 72 genetic evolutions while considering, and excluding
performance antipatterns in the optimization process (i.e., probpas = 0.95, and probpas = 0)
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Figure 3.7: The scatter plot of PF c of CoCoME 72 genetic evolutions while considering, and excluding
performance antipatterns in the optimization process (i.e., probpas = 0.95, and probpas = 0).

Vincenzo Stoico 42



3.5. Results and discussion

Discussion Based on our analysis, the reduction of performance antipatterns helps the optimiza-
tion problem to generate alternatives showing better performance and reliability in most of the
cases. CoCoME has mainly shown a light search for better reliability, likely due to the high reliability
value of the initial model.

On the basis of our experimentation, we can state that the consideration of performance antipattern
occurrences in the optimization process leads to better solutions than the ones found when ignoring
them.

RQ1.2

RQ1.2: How the probabilistic nature of fuzzy antipatterns detection help to include higher quality
solutions in Pareto frontiers with respect to the deterministic one?

In order to answer this research question, we varied the values of the fuzziness threshold of the perfor-
mance antipatterns detection within {0.50, 0.80, 0.95} for the two illustrative examples. Figure 3.8
and Figure 3.9 depict the kernel density estimate (KDE) plots showing each possible combination
among objectives for TTBS and CoCoME respectively. Each plot depicts the KDE of the relative
objectives, e.g., Figure 3.8a shows the perfQ KDE for TTBS.

Train Ticket Booking Service For TTBS, we have noticed larger variability of perfQ when
performance antipatterns are ignored, see the flattest curve in Figure 3.8a. In addition, perfQ is
narrower to the mean (≈ 0.2) when performance antipatterns are involved in the fitness function,
which means less variability in terms of performance in the model alternatives. With regard to
the reliability (Figure 3.8b), it seems to be more stable without performance antipattern detection.
Moreover, the performance antipattern detection helps including solutions with higher reliability
values than the case without them. Figure 3.8c shows that the lower the fuzziness the more stable
the #changes values, which means less variability in the model alternatives discovered by the
search. Finally, the 0.95 fuzziness reduces the variability of the performance antipatterns objective
(Figure 3.8d). Thus, the more deterministic, the higher the probability of discovering true positive
performance antipatterns.

CoCoME We notice that Pareto frontiers obtained while ignoring performance antipatterns in
the fitness function showed larger variability than the ones obtained while considering them. This
is depicted in Figure 3.9a where perfQ shows negative values and the curve is flatter than the
other cases. For CoCoME we notice that the higher the performance antipattern probpas, the higher
perfQ , which becomes similar to a normal distribution with mean falling on 0.3 for a probpas = 0.95

of performance fuzziness. In the case of the lowest fuzziness value, perfQ assumed the highest
value in our experiments. With regard to #changes (Figure 3.9c), it increases when performance
antipatterns are ignored. Moreover, the higher the probpas, the more stable #changes, which means
less variability in the model alternatives. Again, due to the high value of reliability for the initial
model, CoCoME shows most of the reliability values around 0.9 (Figure 3.9b).

Discussion Our analysis shows that in most of the cases the higher probpas, the closer to the mean
is the distribution of perfQ , which means less variability for perfQ . Therefore, it seems better to use
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Figure 3.8: The KDE plots of Train Ticket Booking Service while varying the Performance Antipattern
fuzziness probabilities. The probpas = 0.00 means performance antipatterns were ignored as objectives. Each
plot is referring to the objective in the label.
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Figure 3.9: The KDE plots of CoCoME while varying the Performance Antipattern fuzziness probabilities.
The probpas = 0.00 means performance antipatterns were ignored as objectives. Each plot is referring to the
objective in the label.
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a more deterministic antipattern detection (i.e., higher values of probpas). However, a deterministic
detection has the drawback of relying on fixed thresholds that must be computed in advance for each
model alternative. The trade-off between better quality solution and the effort to bind thresholds
is likely domain-dependent and worth to be more investigated.

On the basis of our experimentation, we can state that performance antipattern fuzzy detection
does not help to improve the quality of Pareto frontiers.

RQ1.3

RQ1.3: To what extent does the architectural distance contribute to find better alternatives?

In order to answer this research question, we run the same problem configurations by varying
the baseline refactoring factor value. In particular, we decided to activate (BRF ) and deactivate
(noBRF ) the baseline refactoring factor to study how it contributes to the generation of Pareto
frontiers.

Train Ticket Booking Service Figure 3.10a and Figure 3.10b show Pareto frontiers obtained
with BRF and noBRF configurations, respectively. We can see that results with noBRF are nar-
rower to the initial solution (i.e., the black marker in figure) than the case where BRF is activated.
noBRF seems to penalize performance antipatterns with higher fuzziness, in fact probpas = 0.95

generates the best alternatives in terms of perfQ and reliability (see the topmost right corner in
Figure 3.10b). However, the highest perfQ in the case of noBRF is lower than the one in the case
of BRF . Hence, BRF helps the search finding better solutions in terms of perfQ for the TTBS case.
Also, the noBRF configuration shows, in a few cases, a detriment of the initial performance and
reliability (see the left bottom-most corner) that it never happened when the BRF is active.

CoCoME Figure 3.11b shows Pareto frontiers obtained with noBRF configuration. By comparing
this plot with the one shown in Figure 3.11a, we can see that the BRF exclusion generates more
densely populated frontiers than the other case. Furthermore, no extreme differences arise between
the executions with BRF and noBRF configurations. In both cases perfQ and reliability fall within
the same region of the plot, where alternatives with BRF reached better perfQ (see perfQ > 0.4

in Figure 3.11a). With regard to the reliability , we can see that noBRF configuration found few
model alternatives showing lower values.

Discussion Based on our analysis, the baseline refactoring factor helps generating better alterna-
tives in terms of objectives. We noticed that the reliability is penalized with noBRF configurations.
Also, the BRF deactivation penalized perfQ in few cases. A deeper investigation is required on
how BRF might affect the computed Pareto frontiers quality. For example, we can introduce more
complex cost models, e.g., COCOMO [45], to improve its estimation. However, we preferred having
a more straightforward cost estimation to avoid burdening the search algorithm with additional
computational costs.
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Figure 3.10: The scatter plot of Train Ticket Booking Service Pareto frontiers while varying the fuzziness
after 72 genetic evolutions with BRF , and noBRF configurations.
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Figure 3.11: The scatter plot of CoCoME Pareto frontiers while varying the fuzziness after 72 genetic
evolutions with BRF and noBRF configurations.
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Based on our results, we can state that BRF helps better estimating #changes of refactoring
actions, which generates Pareto frontiers showing higher quality (or at least it does not worsen the
Pareto frontier quality).

3.5.2 RQ2

RQ2: Is it possible to increase reliability without performance degradation?

We answer RQ2 by looking for model alternatives, within the computed Pareto frontiers (PF c),
that improve both initial reliability and performance.

Figure 3.12 shows the results obtained on the PF c of TTBS and CoCoME. The dark dots represent
the alternatives we are looking for, i.e., those improving both reliability and perfQ . Instead, the
bright dots represent the model alternatives that improve one of the two non-functional aspects.

Train Ticket Booking Service Figure 3.12a shows that in TTBS we obtained 54% of the model
alternatives improving reliability and perfQ . Thus, there is a portion (i.e., 46%) presenting a detri-
ment of the reliability but an improvement in terms of performance. This is confirmed by looking at
the model alternatives within the PF ref : 18 over 26 alternatives are those taken from the examined
Pareto. In this case, model alternatives that guarantee an improvement can be very important for
a designer, as we find a performance upgrade of up to 27% and a reliability increase of up to 32%.

CoCoME The case of CoCoME, in Figure 3.12b, strengthens the observations made for TTBS. In this
case, the majority (i.e., 74%) of the model alternatives improve both perfQ and reliability of the
initial model. This is confirmed by the number of improving alternatives in the PF ref : 38 out of 48.
We got an improvement of the reliability up to 24%, which is smaller than TTBS but likely affected
by the fact that, in this case, the starting model has higher initial reliability (i.e., 0.75). Instead,
the performance improvement is higher, i.e., up to 42%.

Discussion The set of model alternatives, which have been found while answering to RQ1, are
characterized by a neat improvement of two quality attributes: reliability and perfQ . This result
could be fundamental for designers, as they could do further analysis or use the model as a starting
point in subsequent stages of the development process.

Our experimentation shows that, our approach can find design alternatives characterized by a
significant improvement of both reliability and performance.

3.5.3 RQ3

RQ3: What type of refactoring actions are more likely to lead to better solutions?

With this research question, we investigate whether some refactoring actions are more likely to
be selected than others in the Pareto optimal front during the optimization process. This could
potentially lead to more general insights on the effectiveness of specific types of refactoring actions
to improve the considered objectives.
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Figure 3.12: Solutions of the Pareto frontiers displayed according to their reliability and performance.
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Train Ticket Booking Service Table 3.7 reports the share of refactoring types for Train Ticket
Booking Service. Each row represents a configuration (i.e., an experiment) with a different combi-
nation of BRF , maxeval , and probpas. The rightmost four columns represent the refactoring action
types that we have considered in our approach. The last row shows the percentages computed over
all the configurations.

It is evident that the genetic algorithms prefer to select certain types of refactorings. MO2C and
Clon are clearly more likely to be selected, with a slight preference for Clon in most configurations
and, consequently, on average across all configurations. These refactorings are inherently very
beneficial for the performance: cloning a component will frequently split the utilization in half, and
moving an operation to a new component will not only reserve a node for a single operation, but will
also relieve the original component of the load related to that operation. Also, they are unlikely to
disrupt the reliability objective, since the new nodes will have the same probability of failure as the
ones they are cloned from. Conversely, the ReDe refactoring may be advantageous for performance
and reliability only when the component to be redeployed is sharing the current node with many
other components, and this is not the case in the initial model. This is most probably the reason
why the ReDe refactoring is considerably less likely to be selected, and there is even a configuration
in which it was not selected in any Pareto solution (BRF : yes, maxeval : 72, probpas: 0.95).

brf maxeval probpas Clon MO2N MO2C ReDe

no 72 0.00 31.77 42.71 12.50 13.02
no 72 0.55 39.58 47.40 2.60 10.42
no 72 0.80 31.25 53.12 9.90 5.73
no 72 0.95 34.38 28.12 18.23 19.27
no 82 0.00 56.25 27.08 2.60 14.06
no 82 0.55 36.98 39.06 17.71 6.25
no 82 0.80 23.96 51.04 11.98 13.02
no 82 0.95 42.71 30.73 23.44 3.12
no 102 0.00 42.71 30.73 16.15 10.42
no 102 0.55 35.94 27.08 17.71 19.27
no 102 0.80 40.10 30.21 14.58 15.10
no 102 0.95 25.00 58.85 10.94 5.21
yes 72 0.00 40.10 30.21 16.15 13.54
yes 72 0.55 37.50 36.98 14.06 11.46
yes 72 0.80 42.71 19.27 16.15 21.88
yes 72 0.95 49.48 37.50 13.02 0.00
yes 82 0.00 19.79 57.81 10.42 11.98
yes 82 0.55 39.06 36.98 22.40 1.56
yes 82 0.80 27.60 40.62 13.54 18.23
yes 82 0.95 43.75 34.90 20.31 1.04
yes 102 0.00 43.75 35.94 16.67 3.65
yes 102 0.55 41.15 25.00 9.38 24.48
yes 102 0.80 35.42 40.10 10.42 14.06
yes 102 0.95 54.17 22.92 16.67 6.25

Total 38.13 36.85 14.06 10.96

Table 3.7: Share of refactoring types in Train Ticket.

CoCoME Analogously, we report the share of refactoring actions for CoCoME in Table 3.8. The
overall preferences in the selection of refactorings seem to be similar to the Train Ticket Booking
Service case. However, we can notice an even stronger preference for the Clon refactoring. Since
this refactoring largely decreases the utilization of nodes, it may be reasonable to conclude that,
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in the initial CoCoME model, some nodes with high utilization are preventing the performance to
improve. While the ReDe refactoring is still the less selected one, there are no configurations in
which at least one refactoring of this type does not contribute to Pareto solutions. However, in 13
configurations over a total of 24, the ReDe refactoring has a share below 10%.

brf maxeval probpas Clon MO2N MO2C ReDe

no 72 0.00 30.21 37.50 19.79 12.50
no 72 0.55 54.69 24.48 12.50 8.33
no 72 0.80 42.19 32.81 18.75 6.25
no 72 0.95 45.83 37.50 9.90 6.77
no 82 0.00 43.23 25.52 17.19 14.06
no 82 0.55 48.96 27.60 12.50 10.94
no 82 0.80 37.50 41.67 10.42 10.42
no 82 0.95 53.12 28.12 5.73 13.02
no 102 0.00 20.83 36.46 17.71 25.00
no 102 0.55 44.27 28.12 20.31 7.29
no 102 0.80 55.73 27.08 1.04 16.15
no 102 0.95 56.25 28.65 13.54 1.56
yes 72 0.00 41.15 29.17 23.96 5.73
yes 72 0.55 38.02 32.81 20.83 8.33
yes 72 0.80 35.94 42.71 13.02 8.33
yes 72 0.95 61.98 23.44 10.94 3.65
yes 82 0.00 51.56 30.73 14.06 3.65
yes 82 0.55 41.67 33.85 18.75 5.73
yes 82 0.80 38.54 40.62 12.50 8.33
yes 82 0.95 44.27 26.56 16.67 12.50
yes 102 0.00 43.75 20.31 17.19 18.75
yes 102 0.55 66.67 6.25 20.31 6.77
yes 102 0.80 59.90 19.27 8.33 12.50
yes 102 0.95 61.46 16.67 8.33 13.54

Total 46.57 29.08 14.34 10.00

Table 3.8: Share of refactoring types in CoCoME.

Discussion In both illustrative examples, we can observe a common trend on preferring some
refactoring types over other ones. In order to confirm that the trend is consistent, we show in
Figure 3.13 the density distributions of the shares of refactoring types across the different config-
urations. The order in which the distributions are shifted along the x-axis is the same in both
cases, and their overlapping is somehow similar. This indicates that, on average, the refactoring
types are selected with the same order of preference. We can also notice that, while in CoCoME

the variability decreases together with the average percentage, in Train Ticket Booking Service the
situation is less clear. A greater variability indicates that there are more chances that a change in
the configuration will lead to a change in the selection preference of refactoring types, as it can be
observed for Clon and MO2N. On the other hand, a narrow distribution means that configuration
changes have little effect on the selection choice, as it happens for MO2C and ReDe. However, the
refactorings that are more likely to be selected (i.e., Clon and MO2N ) exhibit larger variability
in both illustrative examples, thus meaning that these refactorings are also the most variable ones
from one configuration to another. This may indicate that, even if these two refactorings dominate,
on average, the composition of solutions, the Pareto frontiers obtained by different configurations
tend to be quite diverse.

Another aspect to consider is the influence of BRF on the choice of refactoring actions. While
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Figure 3.13: Distributions of refactoring types among different configurations.
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BRF clearly has a direct impact on the #changes objective, it looks like its presence is not enough
to impose a different order of preference among the refactoring types. On the one hand, it could be
expected that the Clon refactoring will be the most preferred because of its low BRF (1.23), but
on the other hand the MO2N refactoring, that is consistently in the second place, has the highest
value of BRF .

In an attempt to understand if there is a stronger relation between refactoring types and the
objectives, we have also performed a multiple regression analysis. We tried to predict perfQ , reli-
ability , and #changes using the refactoring types as predictors. The coefficients of determination
(r2) we obtained for each objective and for both examples are very low. This means that the
refactoring types are not suitable to explain most of the variability we observe in the objectives.
Such a result might be the indication that, at least for the two examples we considered, we are not
able to derive general refactoring strategies to improve the objectives without going through the
optimization process.

From our experimentation, we were able to establish an order of preference among refactoring
types that is consistent in both illustrative examples.

3.6 Threats to validity

The validity of our study can be affected by different threats described by the Wohlin et al. clas-
sification [194]. In the following, we detail each category by discussing the causes and motivations
for each threat.

Construct validity The way we have designed our problem and our experimentation might be
affected by Construct validity threats. In particular, the role played by the architectural distance
objective on the combination of refactoring actions might affect the selection of refactoring actions.
However, we have studied the influence of our BRF in building PF c in two different illustrative
examples, and it has coherently shown the ability to improve the overall quality of the non-dominated
solutions in both cases. We will further investigate to what extent BRF could improve the overall
quality with more accurate cost estimation, such as COCOMO [45], which might have as drawback
the increase of the execution time for BRF estimation.

Another important aspect that might threaten our experimentation concerns the parameters
of the initial UML model. For example, CoCoME showed higher initial reliability that might affect
the search. However, in our experiments, it seems that TTBS and CoCoME initial configurations
did not threaten the optimization process. We will further investigate how different initial UML
model parameters could change the optimization results. We remark that changing a single model
parameter means starting the optimization process on a different point of the solution space that
might produce completely different results.

Internal validity Our optimization approach might be affected by internal validity threats.
There are high degrees of freedom on our settings. For example, the variations of genetic con-
figurations, such as the Pcrossover probability, may produce PF c with different quality solutions.
Also, the problem configuration variations may also change our results. The degrees of freedom in
our experimentation generate unfeasible brute force investigation of each suitable combination. For
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this reason, we limit the variability to subsets of problem configurations, as shown in Table 3.3. We
also mitigate this threat by involving two different illustrative examples derived from the literature,
thus reducing biases in their construction.

A fruitful investigation will be on the length of the sequence of refactoring actions. At this
stage, we fixed the length to four actions. It will be interesting to investigate how the length of the
sequence affects results. At a glance, the longer the sequence, the farther the solutions can go from
the initial one, and it means that having a long sequence of refactoring actions might be unfeasible
because it generates different model alternatives.

External validity Our results might be affected by external validity threats, as their generaliza-
tion might be limited to some of the assumptions behind our approach.

In the first place, a threat might be represented by the use of a single modeling notation.
We cannot generalize our results to other modeling notations, which could imply using a different
portfolio of refactoring actions. The syntax and semantics of the modeling notation determine
the amount and nature of refactoring actions that can be performed. However, we have adopted
UML, which is the de facto standard in the modeling domain. In general terms, this threat can be
mitigated by porting the whole approach on a different modeling notation, but this is out of this
thesis scope.

Another threat might be found in the fact that we have validated our approach on two illustrative
examples. While the two illustrative examples were selected from the available literature, they might
not represent all the possible challenges that our approach could face in practice. Nonetheless, our
results could presumably hold in all the cases in which the modeling assumptions described in
Section 3.2 are met. Specifically, the performance antipattern detection and the refactoring actions
are designed to rely on information coming from static, dynamic, and deployment views of the
system. Without such information, even if in most cases the refactoring actions would still be
applicable, they would not be as effective.

Finally, this study is limited to the use of a single algorithm. Therefore, our results are influenced
by the ability of NSGA-II of exploring the solution space, given the objectives of our approach.
While comparing the effectiveness of genetic algorithms in this context is out of the scope of this
thesis, we started investigating this issue [63, 79], and we will continue in future work.

Conclusion validity Our results might be affected by Conclusion validity threats, since our
considerations might change with deeply-tuned parameters for the NSGA-II . Also, parameter con-
figurations might threaten our conclusion. We did not perform an extensive tuning phase for the
latter due to the long duration of each run, while we used common parameters for the NSGA-II ,
which should mitigate these threats. We can also soften this threat by employing other generic
algorithms to generalize our results. Each algorithm will require its tuning phase, which is a clear
drawback in execution time.

Another aspect that might affect our results is the estimation of the reference Pareto frontier
(PF ref ). PF ref is used for extracting the quality indicators as described in Section 3.5. We soften
this threat by building the PF ref overall our PF c for each illustrative example. Therefore, the
reference Pareto should optimistically contain all non-dominated solutions across all configurations.
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Takeaways Model-based multi-objective refactoring optimization presents a variety of challenges
that may jeopardize the validity of results.

Genetic algorithms contain a number of configuration options, to start. Every parameter as-
signment may have an effect on the outcomes quality. Indeed, there is opportunity for research
direction here, since it would be impractical to evaluate every parameter combination. There have
been studies on determining the (almost) ideal configuration of genetic algorithms in diverse con-
texts. We employed the standard genetic algorithm setup, such as the crossover probability [32].
However, it would be interesting to see which study applies to our situation as well. We plan to
examine how different configurations affect the outcomes quality in future work.

The initial model setup is another factor taken into account. Studies that mix running data
(such as traces) and model artifacts already exist to address this problem. There are plenty of
shortcomings with these studies. We recently investigated the potential of model-based performance
predictions when models are fed with running application data [64]. We discovered that if models
take into account the confounding factors affecting application performance, such as network latency,
they can anticipate the performance of the running application.

Moreover, the modeling notation affects how expressive the technique is. For instance, the
use of a domain specific language to speed up design time could impair models expressiveness.
Therefore, we chose to utilize UML, even though its broad general-purpose character is one of
its disadvantages. With regard to the modeling and annotation practices in industry, the effort
dedicated to these activities can largely vary depending on the field where industries work. As
an example, automotive industries have adopted (since many decades) model-driven engineering
approaches for designing their embedded software systems. For instance, [24] provide an interesting
study on the adoption in industrial contexts of modeling for sake of non-functional analysis.

Finally, regarding the applicability of the approach, it is difficult to establish a category of
systems for which our approach would be better suited. Indeed, the only constraint that we require
for its applicability is the usage of UML with the DAM [43] and MARTE [97] profiles. Obviously,
such approach should be applied in systems where performance and reliability requirements have
high priority. For example: distributed systems where reliable connections and timely response are
main critical issues; embedded domains (e.g., automotive) where resources with limited hardware
capability must guarantee high reliability. Centralized systems represent a further category of
systems that may be subject to stringent performance requirement because, for example, a single
host machine and its hardware resources must manage a complex software system.

3.7 Related Work

In the last decade, multi-objective optimization studies have been introduced to optimize various
quality attributes (e.g., reliability, and energy [116, 129, 130, 132]) with different degrees of freedom
in the model modification (e.g., service selection [57, 166]). A systematic literature review on model
optimization can be found in [19]. We consider here, as related work, those approaches that directly
involve multi-objective evolutionary algorithms, and the ones that exploit LQN as performance
modelling notation [21, 111, 115, 197].

We split this section in two subsections, namely Software Architecture optimization and Layered
Queueing Network approaches. The partition is not strict, as it might happen that some studies
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fall in both conceptual areas. In order to prevent duplication, we chose to describe these studies in
only one specific area.

3.7.1 Software Architecture optimization

Menasce et al. have presented a framework for architectural design and quality optimization [133],
where architectural patterns are used to support the search process (e.g., load balancing, fault
tolerance). Two limitations affects the approach: the architecture has to be designed in a tool-related
notation and not in a standard modelling language (as we do in this chaper), and it uses equation-
based analytical models for performance indices that could be too simple to capture architectural
details and resource contention.

Aleti et al. [18] have presented an approach for modeling and analyzing AADL architectures [88].
They have also introduced a tool aimed at optimizing different quality attributes while varying the
architecture deployment and the component redundancy. Our work relies on UML models and
considers more complex refactoring actions, as well as different target attributes for the fitness
function. Besides, we investigate the role of performance antipatterns in the context of many-
objective model refactoring optimization.

A recent work compares the ability of two different multi-objective optimization approaches to
improve non-functional attributes [149], where randomized search rules have been applied to improve
the model. The study of Ni et al. is based on a specific modelling notation (i.e., Palladio Component
Model) and it has implicitly shown that the multi-objective optimization problem at model level
is still an open challenge. They applied architectural tactics, which in general do not represent
structured refactoring actions, to find optimal solutions. Conversely, we applied refactoring actions
that change the structure of the initial model by preserving the original behavior. Another difference
is the modelling notation, as we use UML with the goal of experimenting on a standard notation
instead of a custom Domain Specific Language (DSL).

Some authors of this chapter have previously studied the sensitivity of multi-objective model
refactoring to configuration characteristics [63], where models are defined in Æmilia, which is a
performance-oriented ADL. They compared two genetic algorithms in terms of Pareto frontiers
quality. In this chapter, we change the modelling notation from Æmilia to UML, and we add
the reliability as a new objective. Both approaches provide a refactoring engine, however, in this
chapter, the refactoring engine offers more complex refactoring actions since UML is more expressive
than Æmilia.

[87] presented an approach aimed at improving architecture quality attributes through genetic
algorithms. The multi-objective optimization considers component-based architectures described
through a DSL, i.e., AQOSA IR [117]. The architecture evaluations can be obtained by means
of several notation, such as Queueing Network and Fault Tree. The genetic algorithm consider
variation of designs (e.g., number of hardware nodes) as objectives of the fitness function. The
main difference between our approach and the one of Etemaadi et al. [87] is based on the types of
the fitness function objectives. Yet, we used UML as the modeling notation instead of a DSL, and
the LQN as the performance model.
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3.7.2 Layered Queueing Network approaches

Koziolek et al. have presented PerOpteryx [111], i.e., a performance-oriented multi-objective opti-
mization problem. In PerOpteryx the optimization process is guided by tactics referring to compo-
nent reallocation, faster hardware, and more hardware. The latter ones do not represent structured
refactoring actions, as we intend in this chapter. PerOpteryx supports architectures specified in
Palladio Component Model [39] and produces, through model transformation, a LQN model for
performance analysis.

Rago et al. have presented SQuAT [162], which is an extensible platform aimed at including
flexibility in the definition of an architecture optimization problem. SQuAT supports models con-
forming to Palladio Component Model language, exploits LQN for performance evaluation, and
PerOpteryx tactics for architectural changes. A main difference of our approach with PerOpteryx
and SQuAt is that we use the UML modelling notation. We moved a step ahead with respect
PerOpteryx and SQuAT. Beyond the modeling notation, we introduced more complex refactoring
actions, and we use different objectives, e.g., performance antipatterns.

Model-to-model (M2M) transformations from UML to LQN notations have been presented in [21,
22, 115, 197]. For example, [115] presented a tool, namely Tulsa, aimed at enabling performance
analysis of data intensive applications. Li et al. [115] augmented UML models with the DICE profile,
which allows expressing data intensive application domain specification. Also, they introduced a
model-to-model transformation aimed at allowing a performance analysis through Layered Queueing
Network. In contrast with these approaches, we present a novel M2M transformation mapping that
employs UML Sequence Diagrams as the behavioral view of the logical structure, instead of UML
Activity Diagrams. UML Sequence Diagrams have two benefits: they are adopted more frequently
than UML Activity Diagrams for design [85], and they explicitly define method calls, while UML
Activity Diagrams usually focus on workflows and processes. Therefore, our approach supports a
more detailed behavioral representation in terms of time intervals between method calls.

3.8 Conclusions

In this chapter, we have used NSGA-II to optimize UML models with respect to performance
and reliability properties, as well as the number of detected performance antipatterns and the
architectural distance. We focused our study on the impact that performance antipatterns may have
on the quality of optimal refactoring solutions. We studied the composition of refactoring actions,
and how the architectural distance metric can help the approach to compute Pareto frontiers.

From our experimentation, we gathered interesting insights about the quality of the generated
solutions and the role of performance antipatterns as an objective of the algorithm. In this regard,
we showed that, by including the detection of performance antipatterns in the optimization process,
we are able to obtain better solutions in terms of performance and reliability. Moreover, we also
showed that, the more we increase the probability of detecting a performance antipattern using
the fuzziness threshold, the better the quality of the refactoring solutions. In addition, we noticed
that the baseline refactoring factor generally helps discovering better model alternatives. Another
important aspect of our study was to ensure that our approach did not worsen the reliability of
the initial model. In this respect, our experiments showed that we were in fact able to increase the
reliability of model alternatives, with respect to the initial model, in the majority of cases.
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As future work, we intend to tackle the threats to validity discussed before. In particular,
we intend to investigate the influence of settings (i.e., experiment and algorithm configurations)
on the quality of Pareto frontiers. For example, we will investigate the impact of more dense
populations in our analysis, in terms of computational time and quality of the computed Pareto
frontiers (PF c). Also, we are interested in the role played by #changes, and specifically in studying
the effect of estimating the baseline refactoring factor through more complex cost model, such as
COCOMO-II [45], on the combination of refactoring actions. A fruitful investigation will be on the
length of the sequence of refactoring actions, which is currently fixed to four refactoring actions,
and we intend to extend the refactoring actions portfolio, for example, by including fault tolerance
refactoring actions [67]. We also intend to extend the reliability model to also take into account error
propagation [68]. We will involve other genetic algorithms in our process to study the contribution
of different optimization techniques within the model refactoring.

We also planned to study how modeling outcomes could be verified and estimated on real-
systems. As a first step to address this long-term study, we combined runtime traces (i.e., traces
from a running system) and modeling outcomes [64] and we found out that models can help improve
performance of HW/SW systems.

Another interesting aspect to investigate could be whether the refactoring actions proposed in
the Pareto frontiers make sense form the point of view of the designer and within the established
development practices. Therefore, we plan on using visualization techniques to conduct a detailed
analysis of the solutions resulting from the optimization process. Visualizing refactoring solutions
also opens to a human-in-the-loop process, in which the designer could interactively drive the
optimization towards acceptable solutions.
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Chapter 4

Statement-Level Timing Estimation for
Embedded System Design Using
Machine Learning Techniques

In the last thirty years, there has been an exponential increase in the spread and evolution of
information technology. In this regard, it undoubtedly underlined the spiraling of embedded systems
[124]. Their diffusion has led practitioners in researching and implementing techniques to improve
the quality of embedded systems. Evaluating the attributes of an embedded system is a task with
an effort that should not be underestimated, especially during early design phases. Indeed, working
on a higher abstraction level (i.e., Electronic System-Level (ESL)) is needed to early estimate
HW/SW performance [78]. Furthermore, in the era of Big Data, the use of Machine Learning (ML)
methods [123, 174] in this context can be a valid alternative to the classic methods to estimate
metrics for embedded system performance [23, 33, 52]. Performance estimation techniques can be
valuable during Design Space Exploration (DSE) for helping designers to compare different HW/SW
implementations. This part of the thesis focuses on DSE, which, as mentioned in the introduction,
includes techniques to compare different HW/SW implementations. In the V&V-based HW/SW
Co-Design, these techniques are used to refine the platform-agnostic model and select a platform for
the candidate design. In this chapter, we provide an ML model that can be exploited during DSE
to produce accurate performance values of a software executed on a given microprocessor. This
work answers the following research questions:

1. RQ1: How to extrapolate a meaningful timing performance metric for embedded platforms
without Instruction Set Simulator (ISS) or the target device, which is time consuming?

2. RQ2: How to reduce estimation time and increase accuracy for embedded timing software
performance predictions using Machine Learning techniques?

RQ1 relies on the considered timing performance metric extraction [119], and the use of ISS instead
of the final HW/SW embedded platforms can reduce the time needed for estimation step, depending
on the simulator accuracy. RQ2 considers to replace ISS or selected HW/SW platforms with ML
algorithms to reduce design time and increase accuracy w.r.t. the traditional approaches.

Thus, this section presents an approach for timing performance estimation. The aim is to
extract information about the main practice used in system-level design flows in order to reduce
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the time needed for the initial activities, reducing also estimation errors without an extensive and
deep analysis of the final hardware/software platforms. A timing performance metric related to
high-level C programming language statements will be exploited, as presented in [145]. In addition,
a framework that helps to calculate this metric for a given function will be presented. Additionally,
this framework can automatically generate large amounts of constrained random inputs and evaluate
statistics on the metric itself. The framework exploits ISSs to evaluate several features from the
source code, while static code analysis is used to enrich the dataset. The number of clock cycles
needed to execute the program, the number of executed C statements with profiling on the host
architecture, the Cyclomatic and Healsted number are a subset of the considered features selected for
the following ML activity. These big data have been analyzed through several statistical methods,
and useful results encourage exploiting this approach inside an ESL design flow.

4.1 Preliminaries

In the context of Embedded System Design [124], some of the main challenges are related to accuracy
and simulation/estimation time associated with estimation methods at different abstraction level
[189]. The higher the abstraction level, the lower the accuracy and the estimation time, depending
on adopted estimation models and simulators [120]. Different abstraction levels can be considered
to perform timing estimation, and several approaches have been proposed in the literature. Malik et
Al. [126] explored different performance metrics that need to be considered in embedded software
performance analysis and examined a wide range of techniques (e.g., path analysis techniques,
system utilization analysis techniques). The section in [35] presents two approaches to solve the
performance estimation problem: (1) a source-based approach that uses compilation onto a virtual
instruction set, and (2) an object-based approach that translates the assembly generated by the
target compiler to “assembly-level”. Brandolese et Al. [52] introduce a methodology for software
execution time estimation. The procedure is supported by mathematical models of C statements
and statistical analysis. Alterbernd et Al. [23] introduce an approach to predict the execution
time of software through an early, source-level timing analysis. The estimation is done directly
from the source code, without compiling and running it, using a set of virtual instructions, and
defining an abstract machine able to execute the source code. Finally, [91] introduces an approach
to source-level timing estimation through elementary operations. Most of these works aim to predict
timing performance behaviors using time-consuming but quite accurate simulators, mathematical
prediction models at the system-level, or virtual platform emulators.

In contrast, timing prediction approaches based on ML techniques are the newest methods ex-
ploiting big training data-set to make predictions without knowledge of the considered HW platform.
Oyamada et Al. [156] presents a methodology for system design and performance analysis. They
use an analytic approach based on neural networks for high-level software performance estimation.
The analytical estimation results in errors only up to 29.75%, with an estimated time of about
17 seconds. The section in [157] extracts performances of a small set of computers. It uses this
information to develop linear regression and neural network models to predict any different con-
sidered computer’s performance. They can predict the performance of regarded platforms within
3.4% average error rate. Huang et Al. [106] propose the SPORE (Sparse POlynomial REgression)
methodology to build prediction models of program performance using feature data collected from
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Figure 4.1: Proposed Approach.

program execution on sample inputs, with relative error less than 7%. Finally, the paper in [135]
proposes a method through performing data mining on historical data. The authors suggest per-
forming timing prediction using three ML techniques (i.e., Naïve Bayes, Logistic Regression, and
Random Forests). These works confirm the validity of ML and data mining in general and the use of
these techniques in particular for software estimation. Table 4.1 compares the different approaches,
w.r.t. ML techniques and results. Furthermore, to the best of our knowledge, very few research
works exploit these techniques for embedded system timing performance estimation, mostly for the
low accuracy of these techniques. This section tries to solve this open research problem.

Table 4.1: ML timing performance estimation comparison (N.A. means Not Available).

Work Domain Prediction Data Benchmark Platform Accuracy Training Estimation
Models Preparation Time Time

[156] Embedded Neural N.A. Custom ARM946 up to 29.75% Slow up to 17sNetwork Benchmark

[157]
General Linear Regression (LR) Clementine

SPEC2000
AMD Opteron LR: 1.5% ... 3.5%

N.A. N.A.Purpose Neural Network (NN) Software Intel Pentium D and 4 NN: 1.16% ... 5.94%
Computer Intel Xeon (Best Case)

[106]
General Sparse SPORE Lucene Generic

up to 7% N.A. N.A.Purpose Polynomial LASSO Find Maxima CPUs
Computer Regression Method Segmentation

[135]
General Naïve Bayes (NB) Wrapper NASA Generic NB: 17%

N.A. N.A.Purpose Logistic Regression (LR) Feature software CPUs LR: 19%
Computer Random Forest (RF) Selection Benchmark RF: 14%

This Work Embedded
BAT, BOT, Average Custom 8051 up to 2.58%

< 10s « 1msFT, LR, Score Benchmark LEON3 (Best Case)
SVM Value ATmega328/P

4.2 Proposed Approach

The approach proposed in this section performs statement-level execution time estimation using
statistical analysis and approximate predictions, as shown in Fig. 4.1. The idea behind this approach
is to train the ML model, using (micro-)benchmarks, so that it can predict the performance for any
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given input C-code function for a given target processor. Compiler and program analysis tools are
exploited to extract data for this goal on different real embedded devices. The ML module uses
this data to solve the timing performance prediction problem. The whole framework is divided into
three macro-blocks: (a) Input Generator Block, where the selected functions take several inputs
randomly generated inside module 1○. (b) Parallel Independent Block, where three sub-modules
can be executed independently from each other. Module 2○ uses Gcov program to extract dynamic
information about executed C statements; module 3○ performs Instruction Set Simulator (ISS)
execution, with the collection of clock cycles needed to execute the benchmark function set; module
4○ implements static analysis, where Frama-C [13] is used to enlarge the dataset with static function
parameters useful for the ML algorithm. (c) Machine Learning Block, the core of the estimation
method.

A module that (semi)automatically generates inputs for the benchmark functions has been
created in 1○. In particular, for each function they are randomly generated 1000 input data sets.
Moreover, for each function, different data types have been considered (i.e. int8, int16, int32, and
float) to analyze the results w.r.t. the internal architecture of the considered processor. Each input
data set is stored in a header file to be included in the function at compile time. After the inputs
generation phase, a procedure to count the number of executed C statements is evaluated in 2○. This
value is obtained by performing a profiling of the benchmark functions employing the gcov profiler
for each generated input. To obtain the total number of executed C statements for each function, a
sum of the single profiling numbers is performed. The number of clock cycles needed by the target
processor technology to execute each function (for each generated input) in the benchmark (and
the number of executed assembly instructions, useful for energy/power analysis) is extracted in 3○.
Depending on the target processor technology there is the need for an Instruction Set Simulator
(ISS) or an High Level Synthesis (HLS) for Special Purpose Processors (SPP). The latter is not
part of this section. The last data are evaluated using Frama-C tool and other useful script in 4○,
integrated inside the whole framework instance. Finally, all the generated data output artifacts are
sent to 5○ where the information is organized, selected and exploited for model training, test and
validation, as described below.

4.3 Dataset Preparation and Feature Extraction

In this study, several features have been chosen to provide a statistical analysis of collected data
(i.e., distribution parameters). Several Python scripts have been created to automate all CSV file’s
statistical analysis, integrated into the last framework module 5○. To guarantee unbiased data and
correct ML training activities, feature analysis is applied to the output framework dataset (i.e.,
33 features) that can be clustered w.r.t. the number of Source Lines of Code (SLOC), input data
type, Halstead Complexity, Cyclomatic Complexity, functions reachability and program profiling,
as described in [11]. Once the dataset is created, four regressor models are considered in order to
perform the feature analysis, taking inspiration from [114]. In particular, we considered the Random
Forest Regressor, Extra Trees Regressor, Gradient Boosting Regressor and Ada Boost Regressor,
exploiting the python scikit-learn package. The average value of the previous results [114], reduced
by the confidence interval value of 99%, has been used as the lower bound to select the most
important features. After the feature analysis process, the most significant features will be taken
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into consideration. ML algorithms will be trained to predict the timing performance metric, or
better the Effective Clock Cycles feature.

4.4 Machine Learning Techniques

The ML techniques considered, among the most used in literature [56, 102], range from regression
trees to SVM, and linear regressors, with the aim to identify which of these can better predict the
timing performance metric. At this stage of the work, the Matlab app Regressor Learner [14] has
been used. In particular, we considered five ML methodology, according to those available: Linear
Regression (LR), Fine Trees (FT), Boosted Trees (BOT), Bagged Trees (BAT), and Support Vector
Machine (SVM). We excluded Neural Network Algorithm’s usage since we plan to dedicate a specific
work in future time so as not to burden the discussion in this study [95]. Furthermore, this analysis
involves the usage of a different Matlab package.

(a) LEON3 Corr. Scatter Plot. (b) 8051 Corr. Scatter Plot. (c) ATmega328/P Corr. Scatter
Plot.

Figure 4.2: Correlation plot w.r.t. different processors and float data type

Linear regression models [103] have predictors linear in the model parameters and are easy to
interpret and fast for making predictions. However, the highly constrained form of these models
means that they often have low predictive accuracy compared to the others. Regression Learner App
uses the fitlm function to train Linear model option. Regression trees [103] are easy to interpret, fast
for fitting and prediction, and low in memory usage. The Matlab App Regression Learner gives the
possibility to choose among different kinds of regression trees. In this section, the Fine Tree option
was selected, which means high flexibility, with many small leaves for a highly flexible response
function (the minimum leaf size is 4). The Regression Learner App uses the fitrtree function to
train regression trees, with the parameter Minimum leaf size equal to 4 and no splitting criteria
for surrogate nodes. Ensemble Boosted Tree model combine results from many weak learners into
one high-quality ensemble model. The approach involves a least-squares boosting methodology
with regression tree learners [103]. Regression Learner App uses the fitrensemble function to train
ensemble models and gives the possibility to set three different parameters: the Minimum leaf size,
the Number of learners and the Learning rate, which are respectively 8, 30 and 0.1. Another kind
of ensemble model with regression tree learners is the Bagged Trees [103]. Regression Learner App
uses the fitrensemble function to train ensemble models. Here the parameter to set are two: the
Minimum leaf size and the Number of learners, which are respectively 8 and 30. Support vector
machines are supervised learning methods used both for classification and regression [103]. Among
the advantages of the support vector machines approach, it is effective in high dimensional spaces and
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in cases where the number of dimensions is greater than the number of samples. Regression Learner
App uses the fitrsvm function to train SVM regression models and, in this case, the parameter
Kernel function is set to Linear.

4.5 Experimental Results

The proposed approach has been evaluated first in the SW domain by considering General Purpose
Processor (GPP) technology. In this work, three GPPs, and their related ISSs, have been analyzed:
LEON3 , a 32-bit synthesizable RISC soft-microprocessor with a Harvard architecture, and a sim-
ulated system clock of 75 MHz. Cobham Gaisler offers TSIM System Emulator as an accurate ISS
of LEON3 processors, with gcc compiler (in this work, the default optimization flag −O0 has been
used); Intel 8051 micro-controller , an 8-bit micro-controller with MCS-51 CISC instruction set
and Harvard Architecture; The Dalton Instruction Set Simulator (ISS) [12] has been used to simu-
late programs written for the 8051 and to collect statistics, with Small Device C Compiler (SDCC)
compiler; picoPower CMOS 8-bit AVR ATmega328/P , with an 8-bit RISC-based processor
core and Harvard architecture. The SimulAVR [38] program has been used as a simulator for the
Atmel AVR family of microcontrollers, with gcc compiler (in this work, the default optimization
flag −O0 has been used).

The benchmark execution has been done with a microprocessor software simulation using each
processor’s ISS, as presented above.

4.6 Dataset Preparation and Feature Extraction Results

A benchmark composed of control-dominated and data-dominated applications was used to train
and test the estimator [156] and finally validate the approach. The benchmark is composed of 15
different algorithms taken from [140] for training and test, with a total amount of 6 ∗ 104 samples,
and 12 different algorithms taken from [169] for validation, with a total amount of 48 ∗ 103 samples.
Table 4.2 describes the functions used in the experiments. For each function, different data types
have been considered (int8, int16, int32, and float). Indeed, timing performance metric changes
w.r.t. the dimension of data [120].

Table 4.2: Functions Set.

Sort and Search binarysearch, bubblesort, insertionsort,
mergesort, quicksort, selectionsort

Numerical matrixmul, gcd, bankeralgorithm

Networking astar, bellmanford, bfsdfs,
djikstra, floydwarshall, kruskal

Data Processing allpass, bitrev, can, conv, dir
Viterbialgorithm, tap, wave, wrap

Fig. 4.2 shows the scatter plot related to the Pearson correlation for different processors. The

Vincenzo Stoico 66



4.6. Dataset Preparation and Feature Extraction Results

three figures show a strict correlation between C statements and clock cycles. Regarding the other
points (the ones under the main linear regression line), the deviation depends on function implemen-
tations that introduce different behaviors compared to the significant distribution. These points
introduce errors inside the timing estimation activity and are related to the internal processor
micro-architecture (i.e., 8/16/32 bit architecture, pipeline, number of registers, etc.).

Table 4.3 shows the Pearson correlation and slope values between clock cycles and executed C
statements. The high correlation values reported in Table 4.3 between the Clock Cycles and the
number of C statements prompts us to explore further the processor characteristics and to exploit
ML algorithms for timing performance estimation.

Table 4.3: Correlation and Slope Analysis results (p-value ≪ 0.001 for every processor, so that we can
reject the null hypothesis and the statistical analysis is highly significant).

Function int8 int16 int32 float Tot.
LEON3 Corr. 0.9939 0.9872 0.9277 0.7465 0.9631
MPU8051 Corr. 0.9939 0.9871 0.9276 0.7465 0.9631
ATmega328/P Corr. 0.7465 0.9939 0.9871 0.9277 0.9631
LEON3 Slope 10.8838 9.4241 10.9702 15.1550 88.9492
MPU8051 Slope 88.2752 110.5197 183.8507 389.2319 88.9492
ATmega328/P Slope 24.7353 11.197 18.1595 14.0614 88.9492

In Fig. 4.3 is reported the result of the feature analysis. The figure (green line) shows the
arithmetic mean behavior between the four algorithms results [114]. Some features show prominent
behavior compared to others. To select the most important, a selection criterion is introduced, as
described in Section 3.1. From Fig. 4.3 it is worth noting that two feature dominates the other
ones. These two features are related to the dynamic execution of the code. To introduce features
connected to static code analysis, we decided to remove the "Executed Assembly Instructions"
and "Executed C instructions" features and to apply the selection criteria to the remaining features
again. The solid red line represents the average value calculated without the two dominant features.
Since some features are close to the solid red line in Fig. 4.3, we included features with a mean
score value holds within the confidence interval of 99% (i.e., the dashed lines), eliminating all those
features with a value less than the lower confidence interval value.

Respect to each regressor algorithms the variance is 0.0210 for Random Forest Regressor, 0.0169
for Extra Trees Regressor, 0.0202 for Gradient Boosting Regressor and 0.0188 for Ada Boost Re-
gressor. The most prominent value is for Random Forest Regressor, while the feature GLOBAL
VARIABLES has the larger variance than others, considering all the regressor.
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Figure 4.3: Feature analysis (X-axes represent the percentage score from 0 to 1).
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4.7 Machine Learning Training and Test Results

Once the less significant features were eliminated from the dataset for each processor, the ML
algorithms listed in the previous paragraph were trained to define a model capable of predicting the
output performance variable, i.e., the Clock Cycles. The dataset generated from the 15 functions
inside the training and test benchmark is divided into 80% for training and 20% for testing for each
processor. After the training process, in Fig. 4.4 are reported the prediction values Vs. the real
values for a subset of devices and ML models trained. The good agreement between prediction and
real values for FT in each device is evident. Also, the LR and SVM behave well, at least for 8051
and LEON3. The BAT, on the other hand, provides bad results for each device. The ATmega328/P
device badly behaves for every predictor except for the FT.

(a) 8051 FT. (b) ATmega328/P
FT.

(c) LEON3 FT. (d) 8051 BAT. (e) ATmega328/P
SVM.

Figure 4.4: Predictions Vs Real Values w.r.t. different prediction models and processors

(a) 8051 RMSPE (%). (b) LEON3 RMSPE (%).

Figure 4.5: Test Errors w.r.t. different processors.

(a) 8051 Prediction Time. (b) Training Time.

Figure 4.6: Training and Prediction Time w.r.t. different processor technologies.
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Testing is performed on 20% of the dataset. Fig. 4.5 shows the results of the Root Mean Square
Percentage Error (RMSPE) for a subset of the processors. In each plot, it is possible to distinguish
each ML predictor model’s behavior for various types of data aggregation: by function, data type,
total dataset test (All). As mentioned for the prediction vs. real values plots, the Fine Tree is the
ML model that performs best since its RMSPE values are globally lower than all other ML models.
It is worth noting that in the LEON3 and 8051 scenarios, the predictor’s RMSPE is always under
the 10%, while the FT and BAT for the same devices are generally under the 1%. There is just
an exception w.r.t. 8051, where the int8 scenario is badly driven by bubblesort function (maybe
related to some dataset noise). The ATmega328/P results are the worst scenario because the error
is always ≥ 100 and ≤ 101 for BAT and FT, while is ≥ 101 for BOT, LR, and SVM. Concerning
the RMSE, the error variance ranges from 102 and 104. For the ATmega328/P, the error range is
shifted to 103 and 105.

Overall, from the following analysis, it can be stated that the SVM does not fit well the problem
and owns the worst overall RMSPE, probably since there is a lot of data w.r.t. the feature. Boosted
Trees and Bagged Trees can be considered acceptable. Still, they need an optimization of the
model’s input parameters, especially for the BAT, if we look at Fig. 4.4. The Linear Model is good
for prediction but swinging for the RMSE, as expected. The best ML model is the Fine Tree, which
performs best for predictions and RMSPE. Also, the latter can be improved by further modifying
the input parameters of the model.

As a final analysis, in Fig. 4.6 are reported the average prediction time considering 8051 processor
(Figure a) and the average training time for each processor of the five ML models (Figure b).
The average prediction time behaviour is equal for each selected processor. The best performance
belongs to the Bagged Trees, while the SVM persist with worse execution timing behavior. Knowing
each model’s execution times is essential to understand how quickly the model is in its training and
prediction phase, considering the ESL scenario where it is necessary to execute the model predictions
several times. Regarding the training time, BAT and BOT are the quicker ones, under 5 s, LR and
FT approximately 10 s, while the SVM takes the slowest execution time, more than 2 h.

4.8 Validation

In this paragraph, the validation of the five ML models is presented. Fig. 4.7 report the RMSPE
for 8051 and ATmega328/P. Still, it is possible to see a good behavior of the decision tree (FT)
and ensemble models (BAT and BOT), unlike the Linear and SVM, which have extremely high
percentage values. Regarding FT, BOT, and BAT, it is possible to notice that FT is the best
considering the different processors. For the 8051, all the three best models are under the 10% of
RMSPE. FT is under the 3% (with values below 1%), BOT is under 7% (with an error range greater
than the FT scenario), while BAT is between 1% and 10%. For the LEON3, FT, BOT, and BAT
are similar, varying between 9% and 70%. Finally, the unique model that is always under 60% is
the FT for the ATmeag328/P, ranging from 1% to 60%, with an average error of about 20%.

The average time prediction analysis shows the same behavior w.r.t. the original training dataset,
placing the BAT as the best and SVM the worst from a timing performance point of view. The
prediction times for the validation dataset are similar to those considered in previous paragraphs,
while variance is in terms of ms− µs, as shown in Fig. 4.8.
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(a) 8051 RMSPE (%). (b) ATmega328/P RMSPE (%).

Figure 4.7: Validation Errors w.r.t. different processors.

(a) 8051 Prediction Time. (b) LEON3 Prediction Time.

Figure 4.8: Prediction Time w.r.t. different processor technologies and validation data set.

4.9 Discussion

Answer to RQ1: The considered "meaningful" timing performance metric is the embedded software
execution time (i.e., Clock Cycles) [120]. It is possible to use the approach presented in this section
to predict this metric. The idea is to use ML techniques instead of simulators/emulators. This idea
is reasonable because we have noted a quite high observed correlation among the Clock Cycles, C
Statements, and Assembly Instructions Executed, as shown in Fig. 4.2 and Table 4.3. Despite the
high correlation values shown in the table, LEON3 and ATmega328/P present lower correlation
values, respectively, to float and int8, which can lead to wrong predictions. For 8051, the lowest
correlation value of float data type depends on internal microcontroller architecture (i.e., due to
the absence of the Floating-Point Unit). The use of the proposed ML approach leads to feature
selection problems (i.e., to find the most essential features considering only the software code). From
Fig. 4.3, we can state that the most important features that contribute to the prediction model are
the Executed Ass. Instr. (Assembly Instructions) and Executed C Instr. (C Instructions). The only
Cyclomatic Complexity parameters considered are ASSIGNMENT and GLOBAL VARIABLES,
which depends on the input data type. The Halsted Complexity parameters, the Input Data Type,
and SLOC are included almost totally, while the Function Reachability parameters (COVERAGE
and TOTAL FUNCTIONS) do not reach the considered threshold. The minimum score feature is
the POINTER DEFERENCING since there are not many dereferencing pointer operators inside
the considered benchmark.

Answer to RQ2: It is necessary to exploit several ML algorithms and analyze them to reduce
estimation time and increase accuracy using ML. Regarding the Fig. 4.4, we can notice that the
models based on the regression trees approach behaves better than the other ones. The same
behaviour is also present in the plots reported in Fig. 4.5 (training and test) and Fig. 4.7 (validation).
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8051 shows the best prediction behavior in terms of RMSPE. For training and test FT, BOT and
BAT are under 1%, while validation of the 8051 timing performance prediction errors ranges from
1% to 10%. These low errors depend on 8051 microcontroller architecture (i.e., 8 bit), instructions
set (i.e., MCS-51 CISC), and limited register size (i.e., 8 bit). For ATmega328/P, despite the
architecture and register size being the same as 8051, the different instructions set (i.e., RISC) leads
us to have high errors because of the reduced number of micro-code instructions that deal with a vast
amount of assembly line after the compilation step. LEON3 presents good results w.r.t. training
and test (i.e., all the prediction models have errors lower than 1%), but worst for validation (i.e.,
higher than 60%), compared to ATmega328/P (i.e., errors lower than 1% for the FT scenario). This
error depends on LEON3’s more complex processor architecture (i.e., 32 bit with 7 stage pipeline).
Fig. 4.6 and Fig. 4.8 present the training, test, and validation prediction time, where all the results
are aligned in terms of time granularity. The fast prediction model is the BOT, followed by BAT
and FT, and it shows that these three models are the best in estimation and training time, and
they can be improved in future works. This approach seems to be good enough to answer to RQ2

as presented in [156]. Concerning the results in [156], Table 4.4 present a comparison between the
two different approaches (Neural Network for [156], FT for our work). The FT estimation error
is lower than the other test scenario approach, while LEON3 and ATmega328/P behave worst in
the validation scenario. Also the estimation time is slower than [156], as shown in Fig. 4.6. Future
works will continue to refine this strategy working on ML parameters and algorithms.

Table 4.4: Estimation Error Comparison.

Processor Max Mean Std
Error Error Deviation

ARM946 Test [156] 29.75% 9.05% 8.90%
8051 Test 0.61% 0.42% 0.12%

ATmega328/P Test 6.03% 2.24% 1.48%
LEON3 Test 0.29% 0.07% 0.06%

ARM946 Validation [156] N.A. N.A. N.A.
8051 Validation 2.58% 1.19% 0.69%

ATmega328/P Validation 65.39% 12.58% 17.79%
LEON3 Validation 73.74% 52.02% 21.36%

4.10 Conclusion

This chapter presented an ML-based approach to predict the timing performance of embedded
processors. The modular framework helps the designer extracting static and dynamic code informa-
tion, used by the next ML module to guess selected embedded processors’ timing performance. The
results show that the proposed approach is good enough to predict timing behaviors for a CISC
microcontroller. Simultaneously, the use of this method for more complex processors introduces
estimation errors that can be reduced with more advanced ML techniques. Future works will inves-
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tigate (1) the possibility to increase the total number of features introducing metrics and features
able to characterize not only the input data types but also the input specific values (2) the model
prediction parameters optimization (i.e., minimum leaf size and the number of learners for ensem-
bles of trees and regression trees, kernel function for SVM, etc.); (3) overfitting problems (e.g., the
LEON3 scenario) and the use of cross-validation to solve them, (4) the possibility to analyze several
regression models, different from the ones considered in this section, also considering the use of
Neural Networks as a concrete and useful ML algorithm alternative, (5) the usage of the proposed
approach to characterize the impact of SW-monitoring systems on given processors [190], (6) the
possibility to apply this approach to other domains (i.e., Cyber-Physical Systems, SW Computer
performance, etc.) [158].
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Chapter 5

An Early-Stage Statement-Level Metric
for Energy Characterization of
Embedded Processors

Energy consumption is one of the most critical design issues in the embedded systems domain. In
particular, the need to guarantee even longer life for all battery-powered devices is one of the main
problems that affect the design activities. Indeed, the choices made by designers at the system-level
of abstraction, can drastically influence the final system energy consumption, since different opti-
mizations can be considered in the whole Electronic System Level (ESL) design flow [98]. Therefore,
different energy consumption models can be taken into account in order to estimate the energy con-
sumption of the final system implementation. Such models can be related to processors, Application
Specific Integrated Circuit (ASIC), memories, and the interconnections among them. Moreover, the
models can be at different levels of abstraction and granularity, mainly depending on the required
estimation accuracy.

Since this chapter focuses on embedded processors, Figure 5.1 shows the typical abstraction
levels involved in a classical ESL design flow for embedded processors [159]. The first abstraction
level, called Functional, catches very few non-functional static processor features, as average Clock
cycles Per Instruction (CPI), static power dissipation, etc. The Architectural/ISS abstraction level
involves the knowledge of the Instruction Set Architecture (ISA) and it is normally supported
by a so-called Instruction Set Simulator (ISS) to perform several kinds of dynamic analysis. The
Pipeline-accurate Architectural/ISS abstraction level adds details about the behavior of the pipeline
into the simulator, providing a more refined processor model. Finally, the Cycle-accurate Micro-
Architectural abstraction level introduces further details about the processor architecture in terms
of Control Unit and Data Path, allowing a cycle-accurate analysis of the final implementation. The
following work is located between the first two levels of the design flow. Here, a statement-level
metric called Joule for C Statement (J4CS) is proposed, in order to estimate the average energy
consumption associated to the execution of a generic C statement by means of a given target
processor (i.e., a hybrid functional/instruction level approach). However, two main issues must
be firstly clarified. The first one is related to the definition of "generic C statement". This work
exploits the same approach presented in [143], where it has been defined, by adopting an empirical
approach. In particular, it refers to the way a common profiling tool as GCov [3] performs C
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Figure 5.1: Classical ESL design flow for embedded processors.

statements identification and counting, when profiling their execution. The second issue is related
to the fact that J4CS is influenced also by the used C compiler (and the adopted optimization
options) since the optimizations performed by a compiler can lead to different energy consumption
value. Furthermore, there are several ways to manage such an influence. One is to introduce the
used compiler, possibly giving rise to a J4CS for each processor/compiler pairs. Another one is
to consider the average of the results obtained by using the most diffused C compilers. In such
a case, the issue can be managed through a statistical characterization of J4CS, considering both
different compilers and different compiler optimization options. This can be obtained by evaluating
a set of values related to Min, Max, Average, Standard Deviation and by also trying to identify an
associated statistical distribution. In such a context, this work intends to explore the statistical
characterization approach by providing a metric useful to estimate, during Design Space Exploration
(DSE), the energy consumption related to the execution of SW on a target embedded processor, so
characterizing the processor itself. J4CS is suitable for very fast estimation of energy consumption,
as well as comparison and selection of different HW/SW solutions. This chapter enriches the set of
platform-specific techniques that can be used during the DSE of our V&V-based HW/SW Co-Design
methodology.

J4CS evaluation considers the assembly-level analysis presented in [59] [59], as explained in
Section 5.1, and exploits the framework developed in [143]. The obtained value can be assigned
to each statement of a given C function and exploited, with a host-based source-level profiling, in
order to estimate the total amount of energy consumed when the C function with specific inputs is
executed on the target embedded processor. According to this scenario, this work intends to extend
the ideas addressed in [138] by providing in addition:

• a comparison of related works, with a focus on platforms and accuracy;
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• more detailed aspects about the proposed J4CS evaluation framework;

• the addition of the Intel CISC 8051 micro-controller and the introduction of new target boards;

• a statistical analysis considering different data types and the correlation between assembly
instructions and C statements;

• error estimation associated with a validation benchmark, and the exploitation of the Affinity
[50] metric value to increase J4CS accuracy;

The remainder of the paper is organized as follows: Section 5.1 formally defines the proposed
J4CS metric. Section 5.3 presents the J4CS metric evaluation framework applied to two reference
embedded processors. Section 5.5 describes how we validated the metric, thus the comparison
between estimations and measurements. Finally, Section 5.6 closes the paper with conclusions and
future works description.

5.1 Metric Definition

The transistor-level power consumption of a microprocessor [173] during the execution of a given
program can be evaluated as:

Ptot = Pdyn + Pstat = Pswitching + Pshort−circuit + Pstat =

= α · CL · V 2
dd · f + Isc · Vdd + Vdd · Ileak

(5.1)

where Ptot is the total power consumption made up of dynamic and static power contributions, α
is the node transition activity factor (normally, α = 1

2), CL is the average switched capacitance
per clock cycle during the execution of the program, Vdd is the supply voltage, and f is the clock
frequency. Pshort−circuit is related to the direct-path short circuit current Isc, which arises when
both the NMOS and PMOS transistors are simultaneously active, conducting current directly from
supply to ground. Pstatic is related to the leakage current Ileak, i.e., the current that flows through
the circuit to ground. The works [167][107] show that the switching activity represents 90% of the
total power consumption, so estimations mainly focus on it.

Considering the execution time associated to a given SW program (∆t), it is possible to evaluate
the total energy consumption as:

Etot = Ptot ·∆t = α · Ctot · V 2
dd + Isc · Vdd ·∆t+ Vdd · Ileak ·∆t (5.2)

where Ctot is the total switched capacitance. Changing the clock frequency (and so decreasing/in-
creasing the program execution time) doesn’t change Ctot [173] and so the energy consumption
decrease/increase linearly with the scaled frequency with the slope proportional to the amount of
leakage. Equation 5.1 and Equation 5.2 define the power processor model at circuit level.

Then, by considering the assembly-level software model presented in [185], it is possible to define
the energy consumption associated with a given program also as:

Ē =
∑
i

(Bi ×Ni) +
∑
i,j

(Oi,j ×Ni,j) +
∑
k

(Ek) (5.3)
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where Bi is the base cost (i.e., the energy cost associated to the execution of a specific assembly
instruction), Ni is the number of times a specific assembly instruction has been executed, Oi,j

represents the circuit state overhead (i.e., the energy overhead due to the execution of two separated
sequential instructions), and Ek is the energy contribution related to other inter-instruction effects
(i.e. stalls or cache misses) [184].

The higher the abstraction level, the lower the estimation accuracy, but also the lower the timing
simulation activities needed for power estimation. Furthermore, at instruction level, considering the
average power consumed by a microprocessor while running a program, it is possible to simplify
Equation 5.2 and Equation 5.3 by considering P̄ = Ī×Vdd, where Ī is the average current and Vdd the
voltage supply. So, the average energy consumed by a program can be expressed by: Ē = P̄×N×τ ,
where N is the number of program clock cycles and τ is the clock period [185].

Thus, while taking into account the formulas described above, the approach proposed in this
work exploits some benchmark activities on a specific set of C functions in order to evaluate a
metric related to the average energy consumption per C statement, as described below, to estimate
a statistical interval of energy consumption.

5.2 Main Assumptions

As described in [59], many embedded microprocessors have a statistical property of constant energy
consumption for each executed assembly instruction. So, the proposed idea is to apply the same
approach to a higher abstraction level (i.e., statement-level) by characterizing the energy cost (e.g.,
probabilistic distribution in terms of distribution parameters) associated to the execution of a C
statement. This is achieved by performing several simulations in order to consider a meaningful
number of execution paths depending on different inputs.

In order to perform statistical analysis, some assumptions must be made:

• if the program has a huge amount of Source Lines of Code (LOC), then the energy consumed
for each instruction can be considered constant without great loss of accuracy [173];

• each statement contributes with the same weight for the evaluation of the total energy con-
sumption, since the analysis is given from a statistical point of view, while the evaluation does
not consider the influence of operators and variables on the total energy cost;

• an average number of assembly instructions per C statement is considered, since the number of
instructions can vary depending on several factors (i.e., memory accesses, addressing modes,
register file size, branch mis-predictions, etc.);

• an average number of clock cycles for a pipeline stage divided by the processor efficiency
Φ is considered in order to evaluate the mean energy consumed by each executed assembly
instruction, as presented in [59].

By these assumptions, it is possible to define the following energy model.

5.2.1 Proposed Energy Model

The approach proposed in this work performs statement-level energy estimation using statistical
analysis and approximate predictions.
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Definition 5.2.1. Z = {zi | i = 1, 2, · · · , n} is a set of n software functions, B = {bi,k | i =

1, 2, · · · , n ∧ k = 1, 2, · · · , t } is a set of t randomly generated inputs for each function zi, and
P = {pj | j = 1, 2, · · · ,m} is a set of m processing units (i.e., processors that are able to execute
the considered software functions).

Definition 5.2.2. Total Energy Consumption for a Generic Software Function:
Let CS(zi, bi,k) the number of statements executed for a generic software function zi with input
bi,k (evaluated by considering a statement-level execution trace representing the sequence of the
executed statements), then the total energy consumed ET (pj , zi, bi,k) to execute the whole function
zi on processor pj with input bi,k is:

ET (pj , zi, bi,k) =

CS(zi,bi,k)∑
s=1

Es(pj , zi, bi,k) (5.4)

where Es(pj , zi, bi,k) is the amount of energy consumption related to the statement s in the execution
trace.

The energy consumption is different each time a generic statement s inside the function zi is
executed, because, depending on involved data location (i.e., memory, cache or register), data type
size (i.e., 8, 16, 32, 64 bit), and statement complexity, the number of needed assembly instructions
is different.

If Is(pj , zi, bi,k) is the number of assembly instruction required to execute statement s of func-
tion zi on processor pj with input bi,k (evaluated by considering an assembly-level execution trace
representing the sequence of the executed instructions), and E′

l,s(pj , zi, bi,k) is the corresponding
energy consumed by each assembly instruction l of statement s, then:

Es(pj , zi, bi,k) =

Is(pj ,zi,bi,k)∑
l=1

E′
l,s(pj , zi, bi,k) (5.5)

ET (pj , zi, bi,k) =

CS(zi,bi,k)∑
s=1

Is(pj ,zi,bi,k)∑
l=1

E′
l,s(pj , zi, bi,k) (5.6)

Simplify Eqn. 5.6, we can consider the mean energy consumption value E′
s(pj , zi, bi,k) for assembly

instruction in the execution trace belonging to statement s inside the function zi executed on
processor pj with input bi,k in this manner:

E
′
s(pj , zi, bi,k) =

1

Is(pj , zi, bi,k)
·
Is(pj ,zi,bi,k)∑

l=1

E′
l,s(pj , zi, bi,k) (5.7)

Es(pj , zi, bi,k) =

Is(pj ,zi,bi,k)∑
l=1

E′
l,s(pj , zi, bi,k) = Is(pj , zi, bi,k) · E

′
s(pj , zi, bi,k) (5.8)

We can re-write Eqn. 5.6 in this way:

ET (pj , zi, bi,k) =

CS(zi,bi,k)∑
s=1

Is(pj , zi, bi,k) · E
′
s(pj , zi, bi,k) (5.9)
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When the executed code of function zi is longer enough, the mean energy consumption E′
s(pj , zi, bi,k)

per assembly instruction on statement s can be considered constant among different statements
without great loss of accuracy [173]. Under this assumption, at system-level we have:{

∀l ∈ {1, 2, · · · , Is(pj , zi, bi,k)}
∀s ∈ {1, 2, · · · , CS(zi, bi,k)}

}
⇒ E

′
s(pj , zi, bi,k)

∼= E
′
(pj) (5.10)

ET (pj , zi, bi,k) =

CS(zi,bi,k)∑
s=1

Is(pj , zi, bi,k) · E
′
(pj) (5.11)

where E′
(pj) is the approximate average assembly instruction energy consumption on processor pj

defined as follow [59]:

Definition 5.2.3. Average Assembly Instruction Energy :
The average energy consumption associated to a generic assembly instruction executed on a pro-

cessor pj can be defined as:

Ē′(pj) =
MPC(pj)

ϕ(pj) · f(pj)
(5.12)

where MPC(pj) is the Mean Power Consumption, f(pj) is the Frequency, and ϕ(pj) is the Power
Efficiency associated to processor pj , while ϕ(pj) is related to the MIPS parameter, normally
provided on processors data-sheets [150].

Simplify Eqn. 5.11 using the average number of assembly instruction executed, we have:

I
′
(pj , zi, bi,k) =

1

CS(zi, bi,k)
·
CS(zi,bi,k)∑

i=1

Is(pj , zi, bi,k) (5.13)

I(pj , zi, bi,k) =

CS(zi,bi,k)∑
s=1

Is(pj , zi, bi,k) = I
′
(pj , zi, bi,k) · CS(zi, bi,k) (5.14)

where I ′(pj , zi, bi,k) is the mean number of assembly instructions executed for each generic statement
C belonging on software function zi on the processor pj with input bi,k, while I(pj , zi, bi,k) is the
total number of assembly instruction executed. Finally, we can define the total energy consumption
of a software function zi running on processor pj with input bi,k as follow:

ET (pj , zi, bi,k) = E
′
(pj) · I(pj , zi, bi,k) (5.15)

ET (pj , zi, bi,k) = E
′
(pj) · I

′
(pj , zi, bi,k) · CS(zi, bi,k) (5.16)

The evaluation of I(pj , zi, bi,k) in Eqn. 5.15 is time consuming, since it is needed to evaluate this
value each time using an ISS execution, while CS(zi, bi,k) in Eqn. 5.16 considers the use of static
profiling tools on host environment and does not need to have the real or emulated target processor.
Furthermore, the I ′(pj , zi, bi,k) value can be evaluated using a statistical approach, as presented in
the next section.
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5.2.2 J4CS Metric

Starting from Eqn. 5.16, we need information about the average number of assembly instruction
executed I ′(pj , zi, bi,k) for each generic statement C belonging to function zi executed on a processor
pj with input bi,k. This feature can be considered as a fixed distribution evaluated on a selected
function set (as much as possible characterizing all the possible functionalities used to realize em-
bedded software application) and re-used to evaluate energy consumption associated to a generic C
function executed on a processor pj . For this, it is possible to exploit two profiling activities on a
specific selected benchmark:

• by means of an ISS to find the number of executed assembly instructions I(pj , zi, bi,k);

• by means of GCov [143] on a host-based compilation it is possible to find the number of
executed C statements CS(zi, bi,k);

Then, it is possible to define a statement-level energy consumption metric as follows below.

Definition 5.2.4. J4CS (Joule for C Statements):
Let Z = {zi | i = 1, 2, · · · , n} a benchmark set of n reference leaf C functions (i.e., no other
internal nested function calls). The J4CS metric is the ratio between the number of assembly
instructions executed by the target processor pj running the functions zi, and the number of executed
C statements multiplied by the average energy of a assembly instruction execution E′

(pj), i.e.:

J4CS(pj) =

{
E

′
(pj) · I

′
(pj , zi, bi,k) = E

′
(pj) ·

I(pj , zi, bi,k)

CS(zi, bi,k)
,∀zi ∈ Z, bi,k ∈ B

}
(5.17)

where I(pj , zi, bi,k) is the number of assembly instructions executed by the target processor pj to
execute the function zi with inputs bi,k, and the CS(zi, bi,k) is the number of executed C state-
ments for the function zi with inputs bi,k, evaluated with static host profiling. The J4CS(pj) is a
frequency distribution of assembly instructions, C statements and average power consumption, and
it is represented by meaningful statistical values (e.g., min, arithmetic mean, standard deviation,
median, max, quartiles, percentiles).

The reference approach to evaluate J4CS metric is shown in Fig. 5.2. The first step is the function
selection, where all the reference functions, one at a time, are extracted from the benchmark. The
next step involves the input generation, where a fixed random number of inputs for each considered
function have been generated. Two parallel path evaluates the assembly instructions needed to
execute the functions and the "host-based" executed C statements (i.e., they depends only on
inputs and functions, not on target processing unit). Finally, it is possible to evaluate J4CS using
Eqn. 5.17 with an iterative approach.

As said in the introduction, a first clarification is due with respect to the concept of “generic C
statement”. It could be generally intended as “something that ends with a semicolon” (other views
are possible too, e.g. Table 6.1 in [171]) but, to avoid ambiguity, this work adopts an empirical
approach: it refers to the way a common profiling tool as GCov [3] performs the C statements
identification when profiling their execution. Another clarification is related to the fact that such a
metric will be for sure influenced by the used compiler. Some ways to manage this issue could be: (1)
to specify also the used compiler (possibly giving rise to a set of J4CS for each processor/compiler
pair); (2) to report the average of the results obtained by using the most diffused compilers; (3)
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Figure 5.2: J4CS Evaluation Approach.

to report only the results related to the most diffused one. At this point, it is quite clear that
J4CS, as defined above, will be influenced by several factors and that a J4CS-based estimation
will be probably affected by relevant errors. However, these can be still acceptable by keeping
in mind the following aspects: it is a straightforward way to have an off-the-shelf metric (i.e., by
defining a standard benchmark it would possible to report its value on a processor data-sheet like
normally done for the MIPS metric); it can be applied to several SW processor technologies; it is
intended to be used for very early performance analysis in SW domain. Anyway, as described in
the next section, J4CS can be also characterized by a set of values related to Min, Max, Average,
and Standard Deviation (i.e., by statistical distribution parameters). In this way, it is possible to
perform different analysis depending on the final goal.

5.3 Evaluation of J4CS

5.3.1 Generic Framework

In order to evaluate the metric for a given target processor, it is needed, at least, to: define a set of
relevant C functions to be used as benchmark (ideally a standard benchmark to be used for all the
processors) [143]; identify a way to stimulate (i.e., to execute) it by means of relevant input data
sets; identify a tool to perform statement-level profiling in order to count the number of executed C
statements for each input; identify tools to compile the C function for the target processor and to
simulate its execution in order to obtain total number of executed assembly instructions, as shown
in Fig. 5.3.

Figure 5.3: J4CS Evaluation Methodology.
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It is worth noting that only the last step must be applied for each different processors that have
to be characterized. Indeed, the others are independent. Moreover, J4CS is an one-time effort since
this metric, once evaluated, is available ”for free” for any estimation activity. So, to support J4CS
evaluation, a proper framework [144] has been adapted. Additionally, such a framework is also able
to evaluate statistics on the metric itself.

The overall flow of the J4CS evaluation can be summarized into three phases.

• Energy Data Acquisition: collect energy information useful to evaluate J4CS metrics (i.e.,
assembly line executed, C statement executed).

• Energy Model Characterization: calculate the parameter related to energy consumption [59]

• Energy Estimation: execute profiling and substitute this results into the energy model to
calculate the total energy consumption.

The advantage of this approach relies on a statistical analysis able to extract as-much-as-possible
energy/power pattern behavior, without an exhaustive instruction-level energy estimation for soft-
ware that often need to perform deep architectural software analysis (i.e., control-flow analysis, loop
bound analysis, path analysis).

It is possible, for instance, to consider the real number of executed assembly line, and correlate
them with the number of executed C statement. The higher the correlation between these two
parameters, the higher the accuracy in power consumption estimation inside a specific fixed interval.
The whole framework is shown in Fig. 5.4. The following paragraphs describe the main features of
this generic framework, meanwhile processor specific features are described later.

5.3.2 Reference Benchmark

A simple benchmark composed of 14 well-known functions (i.e., C leaf functions zi in Eqn. 5.17 has
been realized. The functions of the benchmark are the following ones:

• Quicksort : the sorting algorithm that follows the divide et impera approach. The algorithm
recursively divides the input array until many small 1-length arrays was obtained. An array
and its length have been passed as parameters.

• Mergesort : a sorting algorithm that follows the divide et impera approach. The array is
recursively split until the sub-lists are composed by a single element. Then, two adjacent
sub-lists are compared and merged sorting the inner elements.

• Matrix Multiplication: an algorithm that multiplies rows by columns of two-dimensional array.

• Kruskal : it is used to find the minimum spanning tree of a non-oriented graph that does not
contains negative edges. It is a greedy algorithm and, in this case, the greedy choice consists
in taking always the edge with minimum cost between among those available.

• Floyd-Warshall : it calculates the distances between all pairs of vertices of a weighed graph
with no negative loops. The costs of the edges may be negative values as long as these are
not part of a negative loop.
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Figure 5.4: J4CS Evaluation Framework.

• Dijkstra: it calculates the minimum paths from a starting node x towards all nodes accessible
by x. The graph must be oriented, can contain loops and must have edges with positive costs.
This algorithm uses the concept of relaxation in order to obtain distances.

• Breadth First Search and Depth First Search: two algorithms for traversing a graph. In the
first function, the nodes that must be visited are inserted in a queue, while in the second one
in a stack.

• Banker’s Algorithm: it is used in the operating systems to avoid deadlock situations during
the allocation of resources to a process.

• A* : a graph-searching algorithm that identifies a path from an initial node x to a final node
y. It is similar to the Dijkstra algorithm that for each node takes into account all possible
directions and then chooses the one with lower cost. Instead, A* avoids to visit all edges
connected to a node using a heuristic function that estimates the cost to the destination node.

• Bubble Sort : Sorting algorithm that repeatedly steps through the list, compares adjacent
elements and swaps them if they are in the wrong order.

• Selection Sort : it divides the input list into two parts, the subset of items already sorted, and
the subset of items remaining to be sorted that occupy the rest of the array.

• Insertion Sort : it builds the final sorted array one item at a time.
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• Greatest Common Divisor (GCD): the classical greatest common divisor algorithm.

• Binary Search: it finds the position of a target value within a sorted array.

• Bellman Ford : it computes shortest paths from a single source vertex to all of the other
vertices in a weighted graph.

Table 5.1: Benchmark Functions Characterization

Functions Decision Global Loop GOTO Assignment Exit Total Distinct Total Distinct
Point Variables Point Operators Operators Operands Operands

A* 19 13 7 3 39 10 372 41 205 34
Banker’s Algorithm 6 12 4 1 20 4 247 33 119 44
Bellman Ford 14 7 7 2 28 5 352 34 168 52
Binary Search 6 6 3 1 19 4 195 35 75 25
Bubble Sort 4 5 2 0 17 4 243 29 105 57
Dijkstra 15 12 6 2 35 6 331 39 161 35
Floyd-Warshall 4 5 3 0 11 3 266 26 140 88
GCD 6 6 2 1 13 4 164 25 55 21
Insertion sort 3 7 2 0 12 3 164 30 59 20
Kruskal 23 14 12 1 46 11 394 34 194 38
Matrix Multiplication 4 6 3 0 16 3 207 33 80 35
Mergesort 10 6 6 0 41 5 271 36 133 45
Quicksort 6 5 4 0 27 5 238 36 118 33
Selection Sort 3 7 2 0 14 4 163 28 62 22

The source-code is available on [2]. Table 5.1 and Table 5.2 summarizes the main features of the
whole benchmark. Functions are characterized by decision points (i.e., control flow statements),
loops, GOTO (i.e., unconditional jumps), variables assignments, functions exit points, operators
and operands (total and distinct). Moreover, all the functions are leaf ones. Functions source-code
is characterized by source lines of code (SLOC), data types, inputs types (scalar or vector) and
their values. SLOC do not include comment lines or empty lines. The scalar values range have been
chosen related to 8051 internal memory size (128 KB), to prevent buffer overflows.

5.3.3 Inputs Generation

A module that (semi)automatically generates inputs for the benchmark functions has been used
in order to evaluate J4CS (i.e., bi,k in Eqn. 5.17). In particular, for each function they have been
randomly generated 1000 input data sets. Moreover, for each function, different data types have
been considered (i.e., int8, int16, int32, and float) to analyze the results with respect to the internal
architecture of the considered processor. Each input data set is then stored in a header file to be
included in the function at compile time.

The module needs to know what variables the function requires. For this purpose, the user
must define a prototype of the implemented function. This prototype contains the function name
and the name and type of each input variable. The input generator parses the prototype file to
find its name and to find out proper data for the function. For each variable, the user is asked
to insert a values range (as shown in Table 5.2) and then the module will generate the number of
values accordingly. With a function that requires more then one variable, it performs the Cartesian
product of generated values. For each combination obtained, it creates a header file that contains
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Table 5.2: Source-level characteristics

Functions SLOC Data Scalar Range Array Range
Type Inputs Scalar Values Inputs Array Values

A* 105

int8

s, g

s ∈ [2, 9], g ∈ [0, 8]

a[s][s]

[-128,127]
int s ∈ [2, 6], g ∈ [0, 5] [-32768,32767]
long s ∈ [2, 3], g ∈ [0, 2] [-2147483648,2147483647]
float s ∈ [2, 3], g ∈ [0, 2] [-2147483648.0,2147483647.0]

Banker’s Algorithm 46

int8

nr, np

nr ∈ [1, 5], np ∈ [1, 5] available[nr]
allocated[np][nr]

max[np][nr]

[0,255]
int nr ∈ [1, 3], np ∈ [1, 3] [0,65535]
long nr ∈ [1, 2], np ∈ [1, 2] [0,4294967295]
float nr ∈ [1, 2], np ∈ [1, 2] [0.0,4294967295.0]

Bellman Ford 75

int8

s

s ∈ [2, 10]

a[s][s]

[-128,127]
int s ∈ [2, 7] [-32768,32767]
long s ∈ [2, 4] [-2147483648,2147483647]
float s ∈ [2, 4] [-2147483648.0,2147483647.0]

Binary search 44

int8

n

n ∈ [2, 116]

a[n]

[-128,127]
int n ∈ [2, 54] [-32768,32767]
long n ∈ [2, 23] [-2147483648,2147483647]
float n ∈ [2, 23] [-2147483648.0,2147483647.0]

Bubble Sort 35

int8

n

n ∈ [1, 116]

a[n]

[-128,127]
int n ∈ [1, 54] [-32768,32767]
long n ∈ [1, 23] [-2147483648,2147483647]
float n ∈ [1, 23] [-2147483648.0,2147483647.0]

Dijkstra 82

int8

s

s ∈ [2, 9]

a[s][s]

[-128,127]
int s ∈ [2, 5] [-32768,32767]
long s ∈ [2, 3] [-2147483648,2147483647]
float s ∈ [2, 3] [-2147483648.0,2147483647.0]

Floyd-Warshall 29

int8

s

s ∈ [1, 10]

a[s][s]

[0,255]
int s ∈ [1, 7] [0,65535]
long s ∈ [1, 5] [0,4294967295]
float s ∈ [1, 5] [0.0,4294967295.0]

GCD 32

int8

n, m

n ∈ [2, 120], m ∈ [2, 120]

- -int n ∈ [2, 32768], m ∈ [2, 32768]
long n ∈ [2, 2147483647], m ∈ [2, 2147483647]
float n ∈ [2, 2147483647], m ∈ [2, 2147483647]

Insertion Sort 35

int8

n

n ∈ [2, 116]

a[n]

[-128,127]
int n ∈ [2, 54] [-32768,32767]
long n ∈ [2, 23] [-2147483648,2147483647]
float n ∈ [2, 23] [-2147483648.0,2147483647.0]

Kruskal 129

int8

s

s ∈ [2, 10]

a[s][s]

[-128,127]
int s ∈ [2, 6] [-32768,32767]
long s ∈ [2, 4] [-2147483648,2147483647]
float s ∈ [2, 3] [-2147483648.0,2147483647.0]

Matrix Multiplication 34

int8 [1,6] [-128,127]
int rowA, colA [1,4] a[rowA][colA] [-32768,32767]
long rowB, colB [1,2] b[rowB][colB] [-2147483648,2147483647]
float [1,2] [-2147483648.0,2147483647.0]

Mergesort 84

int8

n

n ∈ [1, 57]

a[n]

[-128,127]
int n ∈ [1, 25] [-32768,32767]
long n ∈ [1, 11] [-2147483648,2147483647]
float n ∈ [1, 6] [-2147483648.0,2147483647.0]

Quicksort 55

int8

n

n ∈ [1, 36]

a[n]

[-128,127]
int n ∈ [1, 17] [-32768,32767]
long n ∈ [1, 6] [-2147483648,2147483647]
float n ∈ [1, 5] [-2147483648.0,2147483647.0]

Selection Sort 29

int8

n

n ∈ [2, 116]

a[n]

[0,255]
int n ∈ [2, 54] [0,65535]
long n ∈ [2, 23] [0,4294967295]
float n ∈ [2, 23] [0.0,4294967295.0]
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the values of a single combination. Finally, the module creates a directory that contains every
header file.

5.3.4 Profiling on the Host Architecture (Host Profiling)

After the inputs generation phase, a tool to count the number of executed C statements is needed
(i.e., CS(zi, bi,k) in Eqn. 5.17)). This value is obtained by performing a profiling of the benchmark
functions by means of the GCov [3] profiler for each generated input. The functions have been
compiled with GCC, using -fprofile-arcs and -ftest-coverage compilation flags. These flags tell the
compiler to generate other information needed by GCov in order to make correct profiling. The first
flag allows the generation of a .gcda file that has more information for each branch of the program,
while the second one adds information to count the number of times a statement has been executed.
The compilation will trigger the creation of a .gcno file and generate the corresponding .gcda file.
To complete the task, the GCov command has been executed. The profiling will be done correctly
only if the above-described files were generated and reachable.

The total number of executed C statements for each function is simply the sum of the single
profiling numbers associated with each statement. It is worth noting that such profiling is performed
one-time on the host platform since it is independent of the target processor.

5.3.5 Profiling on the Target Processor (ISS Execution)

The last data needed to calculate the J4CS metric is the number of assembly instructions executed
by the target processor for each function and input set in the benchmark (i.e., I(pj , zi, bi,k) in
Eqn. 5.17). So, for each target processor there is the need for an Instruction Set Simulator (ISS).

5.4 Processor Specific Framework: Two Examples

J4CS has been evaluated by considering some specific processors (i.e., pj in Eqn. 5.17. In this work,
as done in [143], two processors have been analyzed: the Cobham Gaisler LEON3 micro-processor
[6], and the Intel 8051 micro-controller [8].

5.4.1 LEON3 micro-processor

LEON3 [6] is a 32-bit synthesizable soft-processor that is compatible with SPARC V8 architecture:
it has a seven-stage pipeline and Harvard architecture, uses separate instruction and data caches
and supports multiprocessor configurations. It represents a soft-processor for aerospace applications.
Cobham Gaisler offers TSIM System Emulator [9] as an accurate emulator of LEON3 processors.
A free evaluation version of TSIM/LEON3 is available on Gobham website [9], but it does not
support code coverage, configuration of caches, memories and so on. Anyway, it has been chosen
as the reference ISS for first analysis since it provides the information needed to evaluate J4CS.
The LEON3 version has a default simulated system clock of 50 MHz. The evaluation version of
TSIM/LEON3 implements 2*4 KiB caches (not removable), with 16 bytes per line with Least-
Recently-Used (LRU) replacement algorithm. It has 8 register windows, a RAM size of 4096 KiB
and a ROM size of 2048 KiB. By default, TSIM/LEON3 emulates the FPU. Benchmark functions
have been compiled, with the Bare-C Cross-Compiler (BCC) for LEON3 processors [4]. It is based
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on the GNU compiler tools and the New-lib standalone C-library. BCC is composed by GNU GCC
C/C++ compiler 4.4.2, GNU Binutils 2.19.51 and Newlib C-library 1.13.1. After the simulation,
the framework is ready to calculate the metric and some statistics by considering all the inputs used
to stimulate the functions.

5.4.2 LEON3 Statistical Analysis

Table 5.3 shows the Pearson correlation and slope values between executed assembly instructions
and executed C statements. It is possible to note that the correlation is close to 1, while the slope
indicates that the estimation uncertainty depends on the number of data input bits. Furthermore,
some specific functions are more sensitive to data types compared to other ones. These last results
depend on functions implementation (number of branches, loop, and complex arithmetic operations).

Table 5.3: LEON3 Statistical Analysis results.

Data Type Corr.1 Data Type Slope3

Function int8 int16 int32 float Corr. Tot.2 int8 int16 int32 float Slope Tot.4

A* 0.997130176 0.995528883 0.997342958 0.999199314 0.997558728 0.0890 0.0854 0.0818 0.0698 0.0878
Banker’s Algorithm 0.976985991 0.971856389 0.973122344 0.983442876 0.979447788 0.0730 0.0736 0.0774 0.0729 0.0738
Bellman Ford 0.996911126 0.994174207 0.999111052 0.999758625 0.993600677 0.0694 0.0943 0.1162 0.0733 0.0697
Binary Search 0.999249964 0.998686622 0.997520361 0.993549505 0.904750109 0.1545 0.2294 0.2226 0.1692 0.1529
Bubble Sort 0.999886591 0.99998281 0.999912836 0.999845827 0.999198011 0.1266 0.1484 0.1517 0.1128 0.1270
Dijkstra 0.999239588 0.998580215 0.99865452 0.999434198 0.998348213 0.0892 0.0947 0.0879 0.0798 0.0908
Floyd Warshall 0.997867119 0.999069696 0.994619228 0.997353347 0.997684756 0.0659 0.0605 0.0693 0.0642 0.0661
GCD 0.999986897 0.997729568 0.999092395 - 0.958592379 0.1534 0.2003 0.1981 - 0.1415
Insertion Sort 0.999899431 0.999667128 0.998299365 0.99743627 0.998106672 0.1075 0.1397 0.1496 0.1177 0.1083
Kruskal 0.999692859 0.999778195 0.999659212 0.999766269 0.999700213 0.1007 0.1068 0.1151 0.0970 0.1013
Matrix Mult. 0.991026869 0.987504129 0.986854719 0.99465194 0.990567396 0.0570 0.0510 0.0714 0.1265 0.0584
Merge Sort 0.999806391 0.999832814 0.999806429 0.999840959 0.994096345 0.0957 0.1275 0.1225 0.0886 0.0979
Quick Sort 0.999577773 0.999652397 0.999680258 0.999595041 0.999137649 0.1174 0.1279 0.1321 0.1099 0.1192
Selection Sort 0.999924321 0.999882252 0.999821454 0.999667636 0.997105498 0.1151 0.1560 0.1675 0.1287 0.1161
Tot.5 0.99361 0.98178 0.96865 0.98326 0.992487927 0.1218 0.1391 0.1289 0.1049 0.1215

1 Corr.: Pearson Correlation; 2 Corr. Tot.: Total Pearson Correlation considering all data types;
3 Slope: Regression Slope Parameter; 4 Slope Tot.: Total Regression Slope considering all data types;

4 Tot.: Total data set (considering all functions)

Fig. 5.5 shows the scatter plot related to the Pearson correlation. The plots show a strict correla-
tion between C statements and Assembly instructions, due to the Sparc-V8 RISC ISA architecture,
as reported in [59]. Regarding to the other points (the ones under the principal linear regression
line), the deviation depends on different data types and functions implementations that introduce
different behaviors compared to the prominent distribution. These points contribute to the intro-
duction of errors inside the energy estimation activity, and are dependent on the LEON3 processor
internal micro-architecture (i.e., 32 bit architecture, pipeline, number of registers).

5.4.3 8051 micro-controller

The Intel 8051 micro-controller is built around an 8-bit CPU. Architectural model used is the Har-
vard Architecture, and therefore it partitions data and instruction by the use of two memories and
two buses; indeed 8051 presents a PROM non-volatile memory which contains program instruction
and a RAM memory for data. Furthermore, it presents an 8-bit Data Bus and a 16-bit Address
Bus. I8051 registers are 8-bit registers. ALU works with 8-bit words and is provided with an ac-
cumulator register and communicates with four I/O 8-bit ports. The University of California has
developed a project centered on 8051 microprocessor, which provides a number of tools useful for
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(a) LEON3 int8 Corr. (b) LEON3 int16 Corr.

(c) LEON3 int32 Corr. (d) LEON3 float Corr.

Figure 5.5: Pearson Correlation Plot for LEON3.

Vincenzo Stoico 88



5.4. Processor Specific Framework: Two Examples

simulating C code on Intel 8051 microprocessor. The project name is Dalton and was developed by
the Department of Computer Science of the University of California [12]. The Dalton Instruction
Set Simulator (ISS) allows a user to simulate programs written for the 8051 and provides statistics
on instructions executed, instructions executed per second, clock cycles required by the 8051, and
average instructions per second for an 8051 executing the same program. For these characteristics,
it has been chosen as the reference ISS for the measurement of the J4CS for 8051 microprocessor.
The functions were compiled, with SDCC (Small Device C Compiler) [7]. SDCC is a free open
source C compiler suite designed for 8 bit Microprocessors. The entire source-code for the com-
piler is distributed under GPL and has extensive language extensions suitable for utilizing various
micro-controllers and underlying hardware. The Dalton ISS needs a .hex to do the simulation. This
kind of file was generated with SDCC. In order to do a proper simulation, during the compilation
two options was specified: –mmcs51 and –iram-size 128. The first one refers to the family of the
microprocessor while the second to the dimension of the internal RAM. The compilation generates
an .ihx file that can be converted to .hex file using the packihx command. At the end, it is possible
to execute the ISS. It generates a file that contains information about the simulation. After the
simulation, the framework is ready to calculate the metric and some statistics on all input gener-
ated for the functions. These calculations are made with a program that returns two files containing
metric values, for each input, and statistics on the sample.

5.4.4 8051 Statistical Analysis

Table 5.4 shows Pearson correlation and slope between executed assembly instructions and executed
C statements in details. Differently from LEON3 results, it is possible to note that the correlation
is not so close to 1 (there are also values that are under 0.9), while the slope indicates that the
estimation uncertainty depends on the number of data input bits. Some specific functions are more
sensitive to data types compared to other ones (behavior similar to LEON3 processor). This last
results depends on different functions implementations (number of branches, loop, and complex
arithmetic operations), and the fact that 8051 has an 8-bit internal architecture, and no Floating
Point Unit.

Table 5.4: 8051 Statistical Analysis results.

Data Type Corr.1 Data Type Slope3

Function int8 int16 int32 float Corr. Tot.2 int8 int16 int32 float Slope Tot.4

A* 0.999018373 0.84914453 0.998332704 0.999596943 0.830460356 0.1955 0.0582 0.1048 0.0546 0.1376
Banker’s Algorithm 0.966167708 0.961797134 0.950479804 0.971077972 0.340041773 0.1596 0.1060 0.0634 0.0201 0.0106
Bellman Ford 0.99794459 0.99543516 0.948538448 0.999616672 0.852702454 0.1098 0.0633 0.0363 0.0222 0.0976
Binary Search 0.999560803 0.999687367 0.999743356 0.985202744 -0.08002339 0.2128 0.1353 0.0783 0.0183 -0.002
Bubble Sort 0.999655934 0.999585159 0.998940075 0.596901958 0.974990261 0.1923 0.1405 0.0814 0.0215 0.1905
Dijkstra 0.99971141 0.9995696 0.998715493 0.998811434 0.539663795 0.1714 0.1316 0.0901 0.0295 0.0759
Floyd Warshall 0.999881657 0.999075444 0.999106673 0.99911282 0.810045772 0.0913 0.0827 0.0506 0.0171 0.0632
GCD 0.890585301 0.899892026 0.952382673 - 0.68826302 0.1734 0.1601 0.1212 - 0.1466
Insertion Sort 0.999950396 0.999902786 0.999545234 0.994771407 0.973606759 0.2592 0.1414 0.0759 0.0925 0.2503
Kruskal 0.999856993 0.999892487 0.999837653 0.999267543 0.991654051 0.2277 0.1709 0.1255 0.0533 0.2334
Matrix Mult. 0.99952095 0.995791004 0.987974866 0.956583715 0.869857949 0.1322 0.0619 0.0398 0.0206 0.1039
Merge Sort 0.999623696 0.999613733 0.999572569 0.9993614 0.71989699 0.1485 0.1001 0.0656 0.0122 0.0979
Quick Sort 0.999646522 0.999695728 0.999281295 0.997228213 0.905400216 0.1354 0.0919 0.0568 0.0242 0.1249
Selection Sort 0.999717704 0.999385492 0.998837314 0.99584793 0.966448824 0.2041 0.1098 0.0591 0.1083 0.1927
Tot.5 0.99293 0.98799 0.92563 0.74391 0.960083884 0.1937 0.1384 0.0732 0.0245 0.1783

1 Corr.: Pearson Correlation; 2 Corr. Tot.: Total Pearson Correlation considering all data types;
3 Slope: Regression Slope Parameter; 4 Slope Tot.: Total Regression Slope considering all data types;

4 Tot.: Total data set (considering all functions)
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The different correlation and slope values in Table 5.4 (and even negative for binary search
algorithm) mean that the values are very sparse in the scatter-plot. In the case of a single function,
putting together all the types of data, many straight lines for each data type have been founded,
with different slopes and above all different weights (the number of points from which each line is
composed), while the experimental data are arranged very well on the linear regression straight line
for data types (i.e., int8, int16, int32, and float). The more the correlation is low or even negative,
the more the lines by data type are open to each other, with different numbers of points and also
not common intercepts for the Y axis of the graph. From Table 5.4 it is possible to note also that
the worst values are associated to float data types, since the 8051 did not have Floating Point Unit.

Fig. 5.6 shows the scatter plot related to the Pearson correlation. Compared to LEON3 scenar-
ios, the correlation point distributions is not so linear as the LEON3 scenarios. This sparse points
distribution depends on 8051 internal processor architecture (8-bit 8051 CISC ISA). Another differ-
ence is the internal RAM that the 8051 (and Dalton ISS [12]) has compared to the external TSIM
LEON3 RAM memory. This internal 128 KB RAM limits the data input ranges, and the possible
test-bench simulation activities. Meanwhile, there is a similar points placing behaviors with respect
to LEON3 scenarios (i.e., the isolated points under the linear regression line) that introduce errors
in the estimation activities.

(a) 8051 int8 Corr. (b) 8051 int16 Corr.

(c) 8051 int32 Corr. (d) 8051 float Corr.

Figure 5.6: Pearson Correlation Plot for 8051.
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Furthermore, the Fig. 5.6d is the only plot that has a strange point cluster (orange circle).
Fig. 5.7a shows the 8051 float correlation with x-axis in logarithmic scale. It is worth noting that
there are some points outside the main regression line. These points are related to one function, the
Bubblesort. Fig. 5.7b presents the correlation plot for the bubblesort function in more details. From
the graph, it is possible to note that there are 2 fixed assembly instructions values corresponding to
a different number of executed C statements. This behaviors is not normal, while in the other case
(int8, int16 and int32) the points are close to the regression line and they do not follow a strange
pattern. This problem is probably due to errors in the ISS compilation/execution so they have been
deleted from the dataset and not considered.

(a) 8051 Float Corr. (Log Scale) (b) 8051 Bubblesort Float Corr.

Figure 5.7: Pearson Correlation Plot for 8051.

5.4.5 Use Case Scenario

In order to evaluate results in a real scenario, three boards have been considered by taking voltage
and frequency information (the power information can be found in the processor/board data-sheets):
LEON3FT-RTAX [5], LEON3FT-UT699 Single-Core SOC [10] and AT89C51 ATMEL Development
Board [1] (based on 8051 architecture). The processors parameters used to evaluate J4CS [6] are
shown in Table 5.5.

Table 5.5: Board characteristics.

Parameters RTAX UT699 AT89C51

Clock 25 MHz 66 MHz 12 MHz
Vdd 3,3 V 3,6 V 6,0 V
P̄ 500 mW 178,2 mW 600 mW
MIPS 20 75 2
ϕ 0,025 0,002376 0,3

It is worth noting that LEON3-FT is a System-On-Chip design based on LEON3FT core, and
it has the same ISA of the classical LEON3 processor. Therefore, the number of assembly in-
structions executed by the ISS is the same for both processors since they rely on the same com-
piler. So, considering these characteristics, the average energy consumption associated to each
executed assembly instruction is: (ĒRTAX = 0, 8 nJ/Instr., ĒUT699 = 1, 1364 nJ/Instr. and
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ĒAT89C51 = 0, 16 nJ/Instr.). The obtained results for the executions of the benchmark functions
are summarized in Table 5.6.

Table 5.6: J4CS measured on LEON3FT-RTAX, UT699 and AT89C51 Board (in nJ)

Data Type Min Q1
1 Median Q2

3 Max AM3 SD4 Var5 GM6 85%7 95%8

LEON3FT-RTAX int8 1 17 36 148 869 100.73 137.03 18779 48.33 220 338
LEON3FT-RTAX int16 1 32 67 202 868 140.66 173.38 30061 75.33 312 523
LEON3FT-RTAX int32 4 58 129 299 868 213.11 208.60 43513 131.98 451 814
LEON3FT-RTAX float 4 86 202 452 869 270.45 240.16 57676 173.18 597 814
LEON3FT-RTAX AVG 5 48.25 108.5 241.5 869 181.24 189.79 37507 107.20 348.25 622.25
UT699 int8 1 25 51 211 1234 143.07 194.63 37882 68.549 312 481
UT699 int16 5 46 95 286 1233 199.79 246.29 60661 106.9 359 743
UT699 int32 5 83 184 424 1233 302.72 296.29 87789 187.45 564 1156
UT699 float 5 123 287 642 1235 384.22 341.13 1.1637e+05 246.1 743 1157
UT699 AVG 4 69.25 154.25 390.75 1233.75 257.45 269.58 68530.25 152.25 494.5 884.25
AT89C51 int8 1 2 2 3 14 2.2705 1.2716 1.6169 2.0124 3 5
AT89C51 int16 1 2 2 3 19 2.9666 1.413 1.9967 2.7245 4 6
AT89C51 int32 2 3 3 5 24 5.3924 5.2433 27.492 4.1399 8 23
AT89C51 float 3 5 6 11 43 9.8238 8.3489 69.704 7.7229 13 33
AT89C51 AVG 1.75 3 3.25 5.5 25 5.1133 4.0692 25.202 4.149925 7 16.75

1Q1: First Quartile; 2Q3: Third Quartile; 3AM: Arithmetic Mean; 4SD: Standard Deviation;
5Var: Variance; 6GM: Geometric Mean; 785%: 85th Percentile; 895%: 95th Percentile;

For each function, different data types have been considered (int8, int16, int32, and float).
Indeed, both timing [143] and energy, especially their average values, change with respect to the
dimension of data.

Fig. 5.8, Fig. 5.9 and Fig. 5.10 show the distribution related to J4CS evaluated for RTAX, UT699
and AT89C51 boards, according to the reference benchmark. The described evaluation process of
J4CS for the three boards has required a total of near 12 hours on a standard workstation (Intel i7,
1.5 GHz, 16 GB RAM). However, as highlighted before, this is a one-time effort to make available
J4CS for subsequent analysis (as shown in the next section).

Figure 5.8: J4CS BoxPlot results for LEON3 (LEON3FT-RTAX board).
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Figure 5.9: J4CS BoxPlot results for LEON3 (UT699 board).

Figure 5.10: J4CS BoxPlot results for 8051 (AT89C51 board).
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5.5 J4CS-based Energy Consumption Estimation

The availability of J4CS is very useful for very fast early-stage estimation, comparison and selection.
Indeed, by having available J4CS for different processors, with a single host-based profiling it is
possible to estimate the energy consumption of a function of interest for the whole processors set,
giving very fast preliminary comparison and selection activities. As an example, strating from a
target function tf() and considering a specific golden input x, by means of a host-based profiling
(that takes less than a second on the same workstation described in the previous section), it is
possible to count the number of executed C statements during the execution of tf(x) (e.g., 100).
Then, as shown in Fig. 5.11 (the x-axis is in a logarithmic scale), it is straightforward to compare
the whole processors set by multiplying 100 for the related J4CS. Depending on a possible energy
consumption constraint it is then possible to select a specific processor or, at least, to reduce the
set to few of them in order to be considered for further analyses.

Figure 5.11: J4CS-based SW comparison.

5.5.1 Validation

In order to validate the proposed metric, an error estimation evaluation has been performed with
respect to the benchmark. Table 5.7 shows some results related to AT89C51 board. It is worth
noting that the error depends on the specific J4CS considered (in this example we considers the first
quartile, the arithmetic mean, the median and the third quartile). Errors ranges are highly variable,
where median errors are less than other ones, depending on assembly and C statements distributions.
In order to reduce errors and variance associated to the estimations, a further assumption can be
considered.

Fig. 5.8, Fig. 5.9 and Fig. 5.10 present the specific processor characterization w.r.t. different
boards. It is possible to fix the J4CS value introducing the concept of "Affinity" defined in [51].
Since the execution time of different functions depends on some architectural features of specific
executors classes, this dependency can be defined using the "Affinity" metric, which suggests the
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Table 5.7: AT89C51 board Relative Error Results (in %).

Int8 int16 int32 float

Function 1Q1 Median 2AM 3Q3
1Q1 Median 2AM 3Q3

1Q1 Median 2AM 3Q3
1Q1 Median 2AM 3Q3

A* 4.99 4.99 -7.83 -42.5 46.34 46.34 22.20 19.51 21.33 21.33 -41.32 -31.10 8.31 -10.01 -79.69 -101.69
Banker’s Algorithm 31.01 31.01 21.70 -3.47 35.67 35.67 6.73 3.51 43.02 43.02 -2.36 5.04 40.99 29.19 -15.64 -29.80
Bellman Ford 14.22 14.22 2.64 -28.66 25.47 25.47 -8.06 -11.78 2.97 2.97 -74.32 -61.71 18.68 2.42 -59.37 -78.89
Binary Search 30.48 30.48 21.10 -4.26 24.87 24.87 -8.92 -12.68 35.35 35.35 -16.14 -7.74 83.55 80.26 67.77 63.82
Bubble Sort -12.27 -12.27 -27.43 -68.41 6.53 6.53 -35.51 -40.19 1.77 1.77 -76.47 -63.70 23.31 7.98 -50.29 -68.69
Dijkstra 1.67 1.67 -11.60 -47.49 10.47 10.47 -29.80 -34.28 -5.10 -5.10 -88.84 -75.18 18.15 1.78 -60.42 -80.06
Floyd Warshall 53.49 53.49 47.21 30.23 61.88 61.88 44.73 42.83 67.41 67.41 41.44 45.68 50.41 40.50 2.81 -9.07
GCD -55.38 -55.38 -76.36 -133.07 48.96 48.96 25.99 23.44 85.59 85.59 74.11 75.98 - - - -
Insertion Sort -40.74 -40.74 -59.74 -111.11 -5.90 -5.90 -53.56 -58.86 -11.25 -11.25 -99.88 -85.41 -26.54 -51.85 -148.03 -178.40
Kruskal -19.51 -19.51 -35.65 -79.27 -12.11 -12.11 -62.56 -68.17 -42.31 -42.31 -155.69 -137.19 -37.12 -64.55 168.76 201.67
Matrix Mult. 38.20 38.20 29.86 7.31 45.34 45.34 20.75 18.02 48.16 48.16 6.86 13.60 29.78 5.74 -37.61 -54.46
Merge Sort -10.49 -10.49 -25.40 -65.73 14.99 14.99 -23.26 -27.51 16.84 16.84 -49.39 -38.58 57.78 49.34 17.26 17.26
Quick Sort -0.96 -0.96 -14.59 -51.45 20.05 20.05 -15.92 -19.91 11.88 11.88 -58.31 -46.85 20.28 4.34 -56.24 -75.37
Selection Sort -51.17 -51.17 -71.57 -126.75 -19.33 -19.33 -73.03 -79.00 -33.97 -33.97 -140.71 -123.29 -35.544 -62.65 -165.66 -198.19
Tot. Rel.4 1.17 1.17 -14.83 -51.76 21.65 21.65 13.58 17.50 17.16 17.16 -48.64 -38.86 19.42 2.49 -32.02 -45.51
Tot. Abs.5 25.90 25.90 32.33 57.12 26.99 26.99 30.78 32.83 30.49 30.49 66.13 56.96 34.64 31.58 71.50 89.02

1Q1: First Quartile; 2AM: Arithmetic Mean; 3Q3: Third Quartile;
4 Tot. Rel: Total Relative Error (all functions); 5 Tot. Abs.: Total Absolute Error (all functions)

most suitable processor class for the execution of a given functionality. This value, in the range of
0 and 1, provides a quantification of the matching between the structural and functional features
of the functionality implemented by the considered processor classes function and the architectural
features.

Starting from the affinity value, it is possible to refine the J4CS definition using the following
equations:

Definition 5.5.1. J4CS-A (Joule for C Statements considering Affinity metric). Considering a
single C function zi, with a specific affinity value Ai,j evaluated with the method proposed in
[51], and the J4CS(pj) distribution evaluated for a specific processor, as presented in Eqn 5.17,
it is possible to chose a fixed value for J4CS − A(pj , Ai,j) depending on an "Affinity" value and
distribution parameters [{Min, Q1, Med (Median), Q3, Max} of J4CS(pj) from Table 5.6]. Three
different scenarios are considered:

1. Best Case
J4CS − A(pj , Ai,j) = 2 · (Med − Q3) · Ai,j + Q3 If Ai,j < 0.5

J4CS − A(pj , Ai,j) = Med + 2 · (Ai,j − 0.5) · (Q1 − Med) If Ai,j ≥ 0.5
(5.18)

2. Average Case

J4CS − A(pj , Ai,j) = 2 · (Med − [Q3 + α · IQR]) · Ai,j + (Q3 + α · IQR) If Ai,j < 0.5

J4CS − A(pj , Ai,j) = Med + (Ai,j − 0.5)(Q1 − α · IQR) − 2 · Med If Ai,j ≥ 0.5
(5.19)

3. Worst Case
J4CS − A(pj , Ai,j) = 2 · (Med − Max) · Ai,j + Q4 If Ai,j < 0.5

J4CS − A(pj , Ai,j) = Med + 2 · (Ai,j − 0.5)(Min − Med) If Ai,j ≥ 0.5
(5.20)

Eqn. 5.18-5.19-5.20 are derived considering a linear interpolation between affinity value and
J4CS distribution. Fig. 5.12 shows the graphical representation of the equations above.

Table 5.8 shows the relative and absolute errors associated to the AT89C51 board where the
affinity value has been introduced in order to reduce the estimation error. The total relative and
absolute mean errors (considering all the functions in the benchmark and a test-bench composed of
100 inputs and executions for each functions) associated to the validation activity is in the range of
{+/ − 0 . . . 15}, with an highest error equal to about 34 %, and the error reduction (absolute and
relative) compared to Table 5.7 is in the range of {50 . . . 110%}. The only worst situation is the float

Vincenzo Stoico 95



5.5. J4CS-based Energy Consumption Estimation

Figure 5.12: J4CS-based Refinement (considering affinity value).

case, where the error range is {+/− 0.5 . . . 18%}. This is an interesting result since the estimation
activity takes only few seconds (the time to profile the functions with the different inputs), without
execute the specific functions on the reference target.

Finally, Fig. 5.13 shows the relative error results graph w.r.t. Insertion Sort function. In this
case the errors are less then 10 %. The other functions have a similar behavioral pattern, with some
functions that arrive to relative errors less then 15 % at most.

Figure 5.13: Relative Error plot compared to Insertion Sort function tests.
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Table 5.8: AT89C51 board Error Results (in %) considering Affinity values.

Int8 int16 int32 float

Function 1 Aff. 2Rel. 3Abs. 1 Aff. 2Rel. 3Abs. 1 Aff. 2Rel. 3Abs. 1 Aff. 2Rel. 3Abs.
A* 0.5 4.9955 11.7152 0.45 6.7401 38.1508 0.48 0.6858 30.3601 0.441 -0.4464 7.4036
Banker’s Algorithm 0.015 -2.4440 9.9131 0.47 2.8766 9.0229 0.445 -0.8453 9.1918 0.38 5.1252 13.2049
Bellman Ford 0.4 5.6460 14.5508 0.48 0.1357 17.6572 0.49 -10.6119 18.3243 0.425 -0.0185 24.3389
Binary Search 0.45 -11.2165 19.7001 0.48 -0.6609 5.5448 0.45 -9.8993 11.1606 0.1 34.88 40.07
Bubble Sort 0.6 -1.0513 2.5975 0.5 6.5398 7.4153 0.5 1.7746 2.9615 0.425 5.6814 7.4037
Dijkstra 0.5 1.6725 8.8011 0.5 10.4797 14.5653 0.56 -0.9043 9.2400 0.42 -0.6719 4.5762
Floyd Warshall 0.4 -2.3208 16.5335 0.4 -2.9037 17.2394 0.35 -1.0251 14.7806 0.31 -8.8814 16.6744
GCD 0.85 -1.0007 1.9384 0.45 5.5825 6.0357 0.02 -11.2415 14.7339 - - -
Insertion Sort 0.8 1.4812 2.5001 0.6 4.6832 4.8414 0.65 0.1265 1.9446 0.48 2.8127 6.7120
Kruskal 0.68 1.9949 14.7680 0.6 -0.9022 8.0750 0.9 -4.3662 6.8132 0.48 -5.3124 9.2739
Matrix Mult. 0.4 15.9635 21.0259 0.45 -1.1063 24.6616 0.45 11.8742 23.0171 0.4 -1.1025 15.5807
Merge Sort 0.6 0.5581 4.3580 0.5 14.9922 14.9922 0.5 16.8476 16.8476 0.3 3.7551 4.4141
Quick Sort 0.5 0.5581 4.3580 0.48 -7.1272 7.1272 0.5 11.8866 11.8866 0.4 -14.7891 14.7891
Selection Sort 0.8 -5.8196 6.1361 0.7 4.5302 4.5302 0.9 1.7502 1.7502 0.5 18.6732 19.1008
Tot. 4 - 0.6441 9.9211 - 3.1328 12.8471 - 0.4323 12.3580 - 3.0543 14.1186
Tot. Red. AM5 - -104.3430 -69.3129 - -76.93 -58.262 - -100.889 -81.313 - -109.539 -80.254
Tot. Red. Med.6 - -44.9518 -61.6945 - -89.822 -52.401 - -97.4809 -59.469 - 22.6611 -55.293

1Aff: Affinity; 2Rel: Relative Error; 3 Abs: Absolute Error; 4 Tot.: Total Error (all functions);
5 Tot. Red. AM: Total Reduced Relative and Absolute Error (reduced % respect to AM in Table 5.7);

6 Tot. Red. Med.: Total Reduced Relative and Absolute Error (reduced % respect to Median in Table 5.7);

5.6 Related Work

Different abstraction levels can be considered in order to describe a processor and its behavior.
Accordingly, several energy estimations can be performed [180], as previously stated. Starting
from lower-levels of abstraction, such as gate or Register-Transfer (RT) ones [146], a lot of works
consider the problem of estimate power/energy consumption by using time-consuming simulators
[172][200][16]. Other works start from an accurate modeling of the target ISS [184][173], but this
still requires a considerable time both for the modeling and the simulation activities.

Other studies present energy estimation approaches at (assembly) instructions level. These
energy consumption estimation techniques usually consider either ISS or low-level assembly code
analysis in order to obtain power characterization of the application, at the expense of a higher
consumption of estimation time. Instruction-level energy estimation can be divided into two types:
(1) measurement-based techniques that do not consider processors architectural details, while trying
to extract an average energy cost per instruction [112][113]; (2) pipeline and accurate architectural
analysis that take into account pipeline stages and complex architectural details [167][151][181]. The
same problems arise in approaches that involve the introduction of some kind of Virtual Instruction
Set (e.g., [49]), but that still require some explicit detailed knowledge of the target processors
architecture.

Several works analyze the energy consumption of processor functional units, where the total
energy consumption of a target processor is obtained by the sum of energy dissipation of these func-
tional components [170]. Also for the so called Functional-Level Power Analysis (FLPA) methods,
the energy model is derived by means of simulation or on-target measurements [125][122]. In order
to bring the gap between instruction and functional level power estimation, Blume et al. [44] and
Brandolese et al. [55] has presented a hybrid approach that combines these two methods to estimate
energy consumption.

Other works try to rise the abstraction level, by going towards the system level one. This is
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often done by directly considering source-code [59], but also this kind of analysis can involve different
time-consuming activities strictly related to the need of taking into account the peculiarities of the
considered target processors. With respect to the source-code analysis, the works in [53][48] present
a statement-level timing estimation that is used to evaluate power/energy metrics directly on the
base of timing executions and profiling activities. A work that tries to fill up the gap between the
reduced simulation time of high-level dynamic analysis of source-code, with the accuracy of low-
level dynamic analysis, is [54], that introduces an intermediate pseudo instruction set for analyzing
applications and HW architectures, using an approach still similar to [49]. Finally, a statement-level
energy estimation based on GCC has been proposed in [46], where an higher absolute error was
measured due to the simple and basic method used for the measurements. Table 5.9 presents a
comparison of the considered works according to several features [121].

Table 5.9: Comparison of Considered Power Estimation Works.

Work Year Target Simulator and/or Accuracy Abstraction BenchmarkEstimation Model Level
[172] 1999 ARM710a ARMulator 5% Cycle Level Dhrystone
[200] 2000 VLIW processor SimplePower 15% Cycle Level Custom
[16] 2002 ARM920 Armulator N.A. Cycle Level MPEG4

[184] 1994 Intel 486DX2-S Custom N.A. Cycle Level CustomSPARClite 934

[173] 2001 StrongARM SA-1100 JouleTrack 2% ≤ acc ≤ 8% Cycle Level CustomHitachi SH-4
[112] 2001 ARM7TDMI Regression Model 2% ≤ acc ≤ 6% Instruction Level Custom
[113] 2002 ARM7TDMI Regression Model 2% ≤ acc ≤ 6% Instruction Level Custom
[167] 2000 VLIW Core Math Model 3% ≤ acc ≤ 16% Instruction Level Custom
[151] 2005 ARM7TDMI Math Model acc ≤ 5% Instruction Level Custom
[181] 2009 LEON3 Custom Framework N.A. Instruction Level Custom

[49] 2000 Motorola MC68000 TOSCA OCCAM2 1% ≤ acc ≤ 20% Instruction Level ILC 16ARM7TDMI

[44] 2007 ARM926EJ-S ARMulator
4% ≤ acc ≤ 9% Instr./Func. Level Digital Signal

C55x DSP XDS510PP Plus Processing Tasks

[55] 2002

Intel i960JF

acc ≤ 9% Instr./Func. Level CustomIntel i960HD Instruction
SPARClite MB86934 Characterization

ARM7TDMI

[170] 2002 TMS320C6201 Math Model acc ≤ 4.2% Functional Level Digital Signal
Processing Algorithms

[125] 2007 TMS320C6416 Functional Model acc ≤ 10% Functional Level Custom
[122] 2005 TMS320C6416 Functional Model acc ≤ 9% Functional Level FIR filter

[59] 2007 ARM9TDMI SystemC Sim. acc ≤ 11% System Level CustomARM TRM
[53] year N.A. Math Model acc ≤ 11% System Level Custom
[48] 2010 ReISC III Math Model acc ≤ 6% System Level WCET suite
[54] 2002 Intel i486 Formal Model acc ≤ 5% System Level Custom

[46] 2016 Tiva TM4C123G Instruction
acc ≤ 30% System Level CustomCharacterization

This Work 2019
RTAX

TSIM, Dalton 1% ≤ acc ≤ 15% System Level CustomUT699
AT89C51

In such a context, the work presented in this paper is close to the work presented in [59]. The
main difference is that the purpose of this work is to reduce the time needed for estimation activities
by means of a strategy that allows to quickly evaluate and select processors in an early-stage analysis.
In fact, the estimation of the energy consumed during SW execution is very fast since it is based
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only on a host-based source-level profiling performed one-shot independently from the number of
target processors considered. More detailed ISA-related analysis, if needed, can be then performed
by focusing only on the selected processors.

5.7 Conclusion and Future Work

This work has presented a metric useful to estimate in an early-stage design phase, the energy
consumption related to the execution of embedded SW on a target processor. Such a metric, called
J4CS (Joule for C Statements) is good for very fast estimation, comparison and selection activi-
ties. Then, more accurate approaches at lower abstraction levels can be used for more precise and
time-consuming estimations. Beyond the pure SW domain, this metric can be easily exploited into
specific HW/SW Co-Design methodologies and tools (e.g., [142]), in order to consider energy re-
quirements during system-level design space exploration. Indeed, it is worth noting that this metric
can be evaluated also in the HW domain, by using High-Level Synthesis (HLS) tools and Hardware
Description Language (HDL) simulators able to provide energy information as output. Such values
can be used to substitute the E′

(pj) · I(pj , zi, bi,k) numerator value in Eqn. 5.17. Moreover, J4CS
can be also useful in ESL energy consumption estimation approaches that rely on the availability
of an estimated energy consumption for each statement composing the ESL specification (e.g.,[42]).
We chose the C language to define J4CS since it is the most popular language in the embedded sys-
tems domain. C is less abstract than most modern programming languages, e.g., Java and Python,
and can be linked to assembly instructions executed by the underlying platform through its com-
piler. It is not the case with Java, for example, whose compiler generates Java bytecode executed
by the Java Virtual Machine (JVM). The JVM makes Java portable; however, we needed to have
a direct connection with the hardware platform, which influences the energy consumption of the
HW/SW system. Thus, the C language helps reducing the abstraction introduced by modern pro-
gramming languages and has a direct connection to the underlying platform. J4CS-type metrics can
be developed by evaluating how abstractions, e.g., classes, virtual machines, libraries, and garbage
collectors, impact energy consumption. This work could be replicated using the Rust programming
language, which is proven to be fast and ideal for embedded systems development. Future works will
concentrate on the validation of J4CS-A metric with respect to the energy consumption measured
on the actual boards and choosing other functions, different from the reference ones. Other future
activities will focus on reducing absolute error estimations, introducing more accurate statistical
analysis and models able to better consider processor architectural features. ome interesting oppor-
tunities, still at early-stage, will be related to the use of HW profilers [137], in order to evaluate
estimation errors directly on-target and to the combined exploitation firstly of the Affinity metric
[51], so to reduce such errors by identifying a proper distribution subset, and secondly of a more
detailed static analysis of source-code, in order to assign different weights to different statements.
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Chapter 6

An Approach Using Performance Models
for Supporting Energy Analysis of
Software Systems

The ubiquity of ICT devices triggered a continuous digitalization of information, thus facilitating
access, storage, and manipulation of data. ICT brought several benefits to society, such as moni-
toring the health conditions of people in real-time or having almost universal access to educational
content. However, continuous digitization has also downsides. A considerable amount of infor-
mation demands expensive resources for processing and storage, with a consequent rising need for
energy to build and power ICT devices. As energy demand increases, the impact of ICT in terms of
carbon dioxide (CO2) emissions becomes significant [191]. Belkhir et al. estimate that ICT devices
will produce 14% of global CO2 emissions by 2040 [41].

As already discussed in 2018 by Georgiou et al [93] in the context of IoT systems, technology has
made considerable advancements for increasing hardware power consumption savings, which however
can be undermined by poor design decisions at the software level. Software energy optimization is
a hard endeavor, where multiple (and frequently conflicting) design and implementation decisions
can influence the energy footprint of the software [191]. Making developers aware of the impact
of their decisions on the energy consumption of their software is fundamental to cutting it down
[82]. However, energy optimization cannot be pursued in isolation, because it may negatively
impact on other non-functional attributes of software and, in particular, on performance. Hence,
software design decisions have to induce acceptable tradeoffs between the satisfaction of performance
requirements and power consumption savings [86]. Energy/performance tradeoffs can be analyzed
by measurement-based experiments, although they can be very time-consuming and they need
contextual conditions to be taken under control (e.g., temperature of devices) for achieving reliable
results. Modeling is often a valuable alternative to measurements, especially in cases where enough
information about the software system and its context is known. Obviously, energy/performance
models have to hold an appropriate level of abstraction that allows not to miss relevant aspects of
the system and, at the same time, to keep an acceptable complexity of model evaluation process
[47].

This chapter explores the combination of measurement-based experiments and modeling in the
context of energy/performance analysis of software systems, in order to benefit from the advantages
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of both of them. In particular, we investigate how to exploit performance models (specifically,
Layered Queuing Networks – LQNs) to reduce the experimentation time while keeping a high
accuracy in the energy consumption estimate of a software system. Although LQNs are a well-
known modeling notation for software performance analysis [90, 187], their adoption for energy
consumption analysis has yet to be developed. LQNs fit our purposes as they represent system
resources as time-consuming entities. As energy consumption is a time-based metric, it is possible to
define a relationship between performance and energy consumption according to resource utilization
(namely, the amount of time a resource is busy). We reduce the reality gap between the LQN model
and the system under analysis by systematically refining the LQN model using data obtained from
a small-scale measurement-based experiment. After achieving satisfactory accuracy, the LQN can
be used to study the system under different workloads and get corresponding resource utilization
estimates. These estimates can be multiplied by the energy consumed per second by each resource
to obtain the total energy consumed while the resources are busy. We tested our approach on two
different systems: Digital Camera, which we employ as a running example, and Train Ticket Booking
System. The former is an image processing application that we deployed on an embedded platform,
while the latter is a container-based web application for managing train bookings. For the Digital
Camera, the supplied workloads correspond to batches of images of different resolutions, namely 2K,
4K, and 8K. Instead, for Train Ticket Booking System the workloads consists of bursts of 75, 150,
225, 300, 375, 450, and 500 customers. We parametrized the LQN with data measured for the batch
of 2K images and the 75-customer burst, respectively, then we estimated resource utilization and
energy consumption for different scenarios. Promising results emerged by comparing the measured
data with the estimates. The Mean Absolute Percentage Error (MAPE) obtained for Train Ticket
Booking System equals 9.24% for CPU Utilization and 8.47% for energy consumption. At the same
time, we reduced experimentation time from 5 hours to 35 minutes.

The technique presented in this chapter, presumes the existence of a system prototype, i.e., a
candidate HW/SW implementation of the system. The system prototype is profiled and modeled
for performance and energy consumption estimation. As mentioned before, through a combination
of empirical experimentation and MDE, we accelerate experimentation and energy consumption
analysis. Consequently, this approach could be effective for Design Space Exploration (DSE) and
can be integrated in our V&V-based HW/SW Co-Design methodology to optimize and compare
different design solutions.

Hence, the main contributions of this chapter are: (i) an approach for using LQNs to make
accurate energy estimations of a software system, (ii) a preliminary empirical evaluation of the
proposed approach on two different software systems across different domains, (iii) a replication
package for the independent verification and replication of the performed evaluation 1. The chapter
is structured as follows. Section 6.1 presents energy consumption basics and describes the Layered
Queuing Networks. Section 6.2 delves into the approach and shows it through a running example:
the Digital Camera. Section 6.3 outlines the experiments and the results achieved on the Train
Ticket Booking System illustrative example. Threats to validity and related work are discussed,
respectively, in Section 6.4 and Section 6.5. The chapter ends with conclusions in Section 6.6.

1https://doi.org/10.5281/zenodo.7877782
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6.1 Background

6.1.1 Software Energy Measurement

The physical quantities used for expressing the energy consumed by software executions are electrical
energy and electrical power. Electrical energy quantifies the amount of work needed to drive current
through a circuit, while electrical power refers to the rate energy is consumed by the circuit at any
instant. Energy is commonly measured in joule (J), which is defined in the International System
of Units (SI). Power, unlike energy, expresses a rate. Indeed, power is defined as the total energy
consumed over time measured in joule per second (Js ) or, following the standard SI, in watt (W).

Literature includes a plethora of tools for measuring software energy consumption [72]. We
distinguish energy profilers and power monitors. Energy profilers are software tools which provide
an estimation of the energy consumed by a running application. Compared with power monitors,
energy profilers are easy to set up but are less accurate as they provide estimates. Among the most
popular ones we have: perf and powerstat. Power Monitors are hardware devices wired directly
to the system to profile, e.g., to the battery of the system. Therefore, they are more accurate but
also more complex to set up. In this work, we exploit two power monitors for our experiments: the
Monsoon [136] and the Watts up Pro? [193]. Instead of reporting total energy usage in joules, several
power monitors report the power consumption in watts. They read, at each instant t, the current
intensity (I) and voltage (V) and calculate the power as P = I × V . The total energy consumption
(E) can be derived by the power consumption. When the power consumption is constant, the total
energy spent is proportional to the observation interval ∆t, that is E = P × ∆t. As previously
mentioned, some power monitors calculate power values querying the system every instant t over
an observation period ∆t. This process results in a dataset, where each row is formed by the power
value in watts and the timestamp of the reading. This dataset describes the distribution of power
values consumed during ∆t. Since power corresponds to the rate at which energy is consumed over
time, it is possible to retrieve the total amount of energy spent between two instants t0 and tn, by
calculating the area bounded by these two instants underneath the distribution. Formally, this area
can be calculated by integrating the power consumption values over t0 and tn.

6.1.2 Layered Queuing Network

Layered Queuing Networks (LQNs) are used to describe and analyze the performance of a system
[198]. A LQN captures the behavior of a system as a set of interacting entities sending and servicing
requests. Incoming requests generate workload that is handled by system resources such as CPU
or Disk. If a request comes to a resource that is already busy, the request is queued. Such model
of computation is peculiar of ordinary queuing models. LQNs extend ordinary queuing models by
implementing simultaneous resource possession. Simultaneous resource possession occurs when a
resource is blocked waiting for another to finish serving a request. Figure 6.3 shows the LQN used
for analyzing a Train Ticket Booking System. The root task may be used to specify the workload
which the system will undergo or receive requests from the environment. In the former case, the
task is named reference task and represents the number of users in the system, while in the second
case requests arrive following a rate specified with the λ parameter. System entities are shown
as parallelograms and are called tasks. A task provides service through one or multiple entries
and has a single host processor. Processors are represented with circles connected to a task and
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embody system resources. Thus, processors handle the workload generated by the entries. Entries
are represented as rectangles within tasks and specify a demand corresponding to the mean time the
processor is busy serving the entry. Communication among tasks is described by arrows connecting
the entries. These arrows are labeled with the mean number of requests the client task sends to
the server task. Carleton University provides a suite of tools including modeling languages and an
analytic solver to create and retrieve performance metrics [58]

6.2 Our approach

As mentioned in the introduction, we exploit performance models to assist designers in making
energy-related decisions. For this purpose, we have conceived a modeling process to reach a good
trade-off between abstraction and accuracy of estimates. Developing models of existing systems
may help to understand them better, which includes identifying flaws and finding opportunities for
improvement. At design time, models are used to describe design choices or to verify conformance to
the requirements. Considering that implementation details highly influence the energy consumption
of the software, we chose to proceed bottom-up and exploit models for studying existing software
systems. This implies the use of models that can be simulated or solved analytically to study "what
if" cases and gain fast insights into the system under study. In addition, we see modeling as an
opportunity to reduce the complexity and time of measurements. Our approach combines both
strengths of measurements and abstraction.

Our modeling approach is schematically represented in Figure 6.1. Each rounded box represents
an activity, while labels on the edges embody the exchanged artifacts. Initially, an existing system is
modeled and profiled. Profiling means measuring the characteristics of the system that we planned
to evaluate using the models, in this case performance and energy consumption. Modeling and
profiling activities can be conducted in parallel. After the end of these two activities, the measured
data are used to parametrize the model. Taking performance as an example, we can look at the
rate at which requests arrive at the system, or how long it takes software components to handle a
request. Parameters such as arrival rate, or service time are the input parameters of the model.
Once the model is parametrized, it is validated and possibly refined. In the validation step, the
correctness of the model and the accuracy of the estimations are considered. Moreover, during this
phase, designers refine the model removing unnecessary details and simplifying it. The process stops
when consensus about model accuracy and abstraction level is reached. We envisage that, under
a set of assumptions, it is possible to exploit the flexibility of performance models for estimating
energy consumption. Briefly speaking, since energy consumption is a metric based on time, we can
relate energy consumption and resource utilization over a fixed observation time. Our approach,
at the moment, considers only the cases in which energy consumption grows linearly with execution
time. However, this is not always true. As reported by Cruz et al [72], some mobile architectures
have fast but power-hungry CPUs for processing heavy tasks and slower but more efficient CPUs
for less time-consuming tasks. Despite this, the approach has significant benefits since performance
models can be utilized to scale workload and retrieve energy consumption values along with resource
utilization estimates.

As a result of the modeling process depicted in Figure 6.1, we obtain a model approximating
the behavior of the system with a certain degree of accuracy. This approximation stems from the
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Figure 6.1: The process underlying our approach.

behavior observed while profiling the system. So, the model reproduces the behavior observed
under the experimental setup of the profiling phase. For example, profiling the system under a
given workload will produce a model representing resource usage under that specific workload. This
aspect becomes even more important when it comes to power consumption. Indeed, behavior and
power consumption are heavily connected. Different experimental settings will result in different
system behaviors and thus different power distributions. On the other hand, we can exploit the
relationship between behavior and power distribution to infer that the modeled behavior will induce
a power distribution similar to the system one. Indeed, from the performance model solution we
know when resources will be busy handling requests. For this reason, we can map the time interval
resources are busy onto the power distribution measured during the profiling phase. Figure 6.2
shows an example of mapping between model behavior and the power distribution measured on
the system. In this example, the power distribution is measured while running several times a
software on a server. The blue cross on the x-axis represents the end of a single execution. Requests
arrive periodically and require CPU and disk at the same time. The CPU, depicted by the gray
area, is occupied for a longer interval than the disk, which is depicted in orange. White areas
represent the time interval when resources are idle. Each colored segment underneath the power
distribution represents the energy consumed by a resource during that time interval (see Section
6.1.1). Therefore, it is possible to obtain the energy consumption of a resource by integrating the
areas where the resource was busy (6.1). Thus, given a resource, the sum of all the intervals in which
a resource was busy (i.e., same color intervals in Figure 6.2) represents the total energy demand
(i.e., ED(res)) during the observation time (Equation 6.2). Accordingly, we can derive the average
consumption per visit of each resource, namely E(res) (Equation 6.3). This value is tied to a visit,
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Figure 6.2: Sample Power Distribution highlighting CPU and Disk busy time, respectively, in gray and
orange.

so it reflects the energy spent serving a specific software task. For example, if the CPU spent 2
seconds serving a visit, the energy spent per visit refers to the consumption during two seconds. So,
the energy consumed per visit is measured in Joule

V isit . The Joule consumed per second (i.e., e(res))
can be obtained from E(res), which is unbound to the size of a software task. We calculated e(res)
by dividing E(res) by the average time the resource is busy performing a software task (Equation
6.4). Since e(res) is decoupled from the size of the task visiting a resource, we can use it to estimate
the energy consumed by a resource busy serving a task with whatever size. In other words, since
e(res) is measured in Joule

s , it is untied from the workload and becomes a property of the resource.
Thus, we assume that it does not sensibly vary by scaling the workload. In this way, we can use
e(res) as a multiplier of the busy time of a resource and estimate the energy consumption in case
of larger workload sizes. This method allows designers to scale up the estimations retrieved during
low-effort experiments to predict the energy and performance of more complex scenarios. In this
way, designers can very quickly obtain estimates for complex cases and thus avoid laborious and
complex experiments.

E(res, i) =

∫ Sres

t0,i
P dt[

Joule

V isit
] (6.1)

ED(res) =

#V isit∑
i=1

∫ Sres,i

t0,i
P dt (6.2)

E(res) =
ED(res)

#V isit
(6.3)

e(res) =
E(res)

S(res)
[
Joule

s
] (6.4)

where:
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res = a resource
t0 = the instant a resource starts to be busy
i = ith visit to a resource
#V isit = total number of visits to a resource
Sres = the average time the resource spends serving a software task

Running example: the Digital Camera

We deployed the application of a Digital Camera (DC) on a BeagleBone Black (BBB) development
platform. The BBB is a ARM-based single core platform equipped with Linux Debian, which, in our
setting, executes only the services of the operating system and the DC. As our approach envisions
(see Section 6.2), we set an experiment in which the DC is subject to a synthetic workload. While
the DC processes the workload, we measure the power required by the BBB using a Monsoon
Power Monitor [136], which is placed between the BBB and a notebook. The notebook orchestrates
the experiment, stores the power consumption recorded by the power monitor, and records the
performance of the BBB. Performance measures include the time DC takes to process an image
(i.e., the response time) and resources utilization. The notebook queries the operating system of
the BBB and retrieves, for each execution, the busy time of the CPU.

The workload consists of a stream of image batches. A batch contains 30 pictures of the same
format chosen between 2K, 4K, and 8K. A total of thirty batches are provided to the application,
i.e., 10 per format. The DC processes all images sequentially in a batch, then pauses for two minutes
before continuing. Their arrival is randomized to avoid any influence of image size on measurements
[195]. The batch size is set to 30 to achieve statistical significance of metrics derived from observed
behavior, such as resource utilization.

We determined the energy spent by the CPU to operate a batch of a particular format based
on Equation 6.3. Therefore, using the measured response time, we calculated the e multiplier
using Equation 6.4, which represents the average power in Joule

s spent by the CPU. As Section 6.2
remarks, e is a property of the resource, which is detached from the characteristics of the visiting
task and therefore has the same value across scaled workloads. If we know or estimate the S(res)
variable of Equation 6.4, we can use the e profiled for the batches of 2K images to discover the
average energy spent for batches of format 4K and 8K. Consequently, we obtain estimates of the
energy consumed for batches of 4K and 8K images without taking any measurements. We used
an LQN to simulate the arrival of 30 images of 4K and 8K and estimate the response time for
the corresponding batch. The LQN has a single task, representing the DC, connected to a single
processor, which embodies the CPU. Incoming images arrive following a rate (i.e., λ). By varying
the λ parameter, we replicated sequential arrival of 4K and 8K images, while changing the service
time of the DC task, we set the average CPU processing time per image. In fact, the service time
of the CPU differs based on image size. The model yields estimations concerning both the time it
takes the CPU to handle a batch of 30 images and CPU usage.

Table 6.1 provides the results according to the image format of a batch. The table includes
the arrival rate λ, the time spent handling a batch, i.e. the response time, CPU utilization, and
energy consumed per batch. Columns containing two values show the measured value on the left
and the corresponding estimates on the right. The estimates for the energy consumed per batch
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Table 6.1: Results for the Digital Camera and Train Ticket Booking System according to the size of the
input. Legend: IS: Input Size; λ: Arrival Rate; R: Response Time; U: CPU Utilization; e: Average Power
Consumption; EC: Average Energy Consumed. Columns with double values indicate measured and estimated
values (on the right).

IS λ ( images
s ) R (s) U (%) e (Js ) EC (J)

Digital Camera

2K 0.48 60.30 - 60.30 96.30 - 96.48 1.57 95.27 - 95.16
4K 0.12 240.36 - 240.30 96.76 - 96.12 1.59 382.46 - 379.24
8K 0.03 960.73 - 960.60 97.39 - 96.06 1.59 1537.96 - 15016.04

Train Ticket Booking System

75 6.45 4.09 - 4.63 35.96 - 39.86 78.56 321.99 - 364.17
150 9.17 8.89 - 9.27 50.72 - 56.73 80.89 719.82 - 728.34
225 10.32 13.86 - 13.90 57.88 - 63.77 82.45 1143.19 - 1092.51
300 11.02 18.96 - 18.54 61.70 - 68.10 82.28 1560.54 - 1456.68
375 11.34 24.95 - 23.17 64.91 - 70.08 82.02 2047.20 - 1820.85
450 11.51 29.89 - 27.81 66.32 - 71.13 82.77 2474.40 - 2185.03
500 11.64 33.73 - 30.90 67.67 - 71.94 82.67 2788.76 - 2427.81

are calculated multiplying 1.57J
s , which corresponds to the e calculated for batches of 2K images,

by 240.30s and 960.60s, which is the estimated response time for batches of 4K and 8K images.
By comparing estimates to the measurements, it can be concluded that the results are promising.
Finally, the BBB data sheet reports a range of 1.04J

s to 2.3J
s consumed by the platform when subject

to various load [37]. The e(CPU) multiplier of the DC falls within this range. This observation
confirms the reliability of the e(CPU) used for the analysis and the value of the approach for
evaluating particular combinations of hardware and software. The small complexity of this running
example and the availability of the DC source code, have simplified the mapping process between
power distribution and the busy time of the CPU. Indeed, the DC executes only few functions in
sequence, and from the source code we could see when the CPU operations were performed. In
addition to the plethora of analyses that can be done by varying LQN parameters, we also gain
benefits in terms of time. In fact, we obtained energy estimations without performing experiments
in the 4K and 8K cases.

6.3 Evaluation

In light of the promising results obtained from the experiments with the Digital Camera, we decided
to validate the method using a widely used illustrative example: Train Ticket Booking System
(TTBS) [92], which is an application comprised of 68 Docker containers that manages bookings of
a railway system.2

Consistently with the method described in Section 6.2, we set up a testbed for profiling TTBS
and supplied a synthetic workload to the application. Therefore, we modeled TTBS through an
LQN (see Fig. 6.3) and parametrized the model with the measurements retrieved during the fastest
experiment. For the sake of space, we do not show the iterations, described in Section 6.2, performed

2For our measurements, we used release 0.0.4: https://github.com/FudanSELab/train-ticket/tree/release
-0.0.4
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Figure 6.3: Layered Queuing Network of Train Ticket Booking System. The variable $rate varies based
on the workload to provide to the model.
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(a) Performance (b) Energy Consumption

Figure 6.4: Comparison between measured and estimated results.

to obtain the LQN. Each task in the model embodies a Docker container, which has its service time
indicated in square brackets. We remark that this value stands for the average time a container
kept the CPU busy. We included a task called Residual that models the time spent on the CPU
by unrepresented containers. Thus, this task can be seen as a delay that is triggered as requests
arrive.

The testbed consists of two machines, M1 and M2, used, respectively, to record the measurements
and run TTBS. Both machines run Ubuntu Linux. M2 has 32 GB of RAM and 8 CPUs. It is worth
to remark that using two different machines we reduce the perturbation on the machine where the
application is running. Hence, we collected results as cleaner as possible. We provide TTBS with a
variable-sized burst of customers and measure the performance and the energy expense of M2 for
each burst. The bursts can have size equal to 75 (i.e., the one we used to parameterize the LQN
model), 150, 225, 300, 375, 450, 500 and were randomly supplied to TTBS for 30 times. This means
for each size we collected 30 readings for a total of 210 executions. Randomization is necessary to
remove the burst size from the factors that might influence the readings [195]. Further, we inserted
a one-minute pause between executions to allow M2 to cool and thus prevent subsequent executions
from affecting the profiled data. We empirically validated the pause we need to have a fresh machine.
Measurements are coordinated through a bash script running on M1. The script runs JMeter [25],
which generates a burst of customers operating on TTBS. At the same time, it records application
and M2 performance from the operating system of M2, while the power consumption of TTBS is
recorded from a Wattsup Pro power monitor [193] connected to M2. Additionally, we measured
disk utilization, but excluded it from the analysis because it was too low to be meaningful.

We set the arrival rate, i.e., the λ parameter of the LQN in Figure 6.3, and the service time
of each task according to the data collected while supplying 75-customer bursts. Therefore, we
incremented the λ parameter to replicate the arrival of 150, 225, 300, 375, 450, and 500 customers.
The LQN returns CPU utilization predictions that we compared against the measurements. Table
6.1 reports performance and energy metrics for each batch size. It provides the arrival rate, i.e., the
one we also supplied to the LQN, the response time, CPU utilization, the average power consumed
by the CPU, i.e., the e multiplier, and the average energy consumed per batch. The columns
containing two values show the measured value on the left and the corresponding predicted value

Vincenzo Stoico 109



6.4. Threats To Validity

on the right.
As expected, the CPU utilization rises according to the size of the burst. In our experiment,

CPU utilization ranges from 35.96% when supplying a burst of 75 customers to 67.67% with a
burst size of 500 customers. Figure 6.4a shows the distance between CPU utilization estimates
and measurements varying burst size. The predictions slightly overestimate the measurements.
This overestimation is quantified by the Root Mean Squared Error (RMSE) which equals 5.27%.
Moreover, we obtained a Mean Absolute Percentage Error (MAPE) of 9.24%, which confirms the
accuracy of the CPU utilization predictions. Besides utilization, the LQN returns response time
estimates for each burst size. Therefore, it is possible to estimate the average energy consumed for a
given burst by combining the corresponding response time prediction with the emultiplier calculated
for the 75-customer burst, i.e., E(CPU)

S(CPU) = 321.99J
4.098s = 78.56J

s . For example, given the response time
estimation for a 500-customer burst, i.e., 30.90 seconds, we calculated the corresponding energy
consumption by multiplying it by e using Equation 6.4. We obtained an estimation of 2427.81
J, which is lower than the measured energy consumption, i.e., 2788.76 J. Figure 6.4b summarizes
energy consumption predictions for each tested burst size. The energy consumption estimates are
quite accurate as also evidenced by the RMSE and the MAPE which are equal to 200.16 J and 8.72%,
respectively. However, we can observe that as the burst size increases, the difference between the
prediction and the measured value also increases. As it can be seen from Figure 6.4, the RMSE
between the energy estimation and the measured one shows a divergence trend meaning that we can
suppose having a larger RMSE as the size of the burst grows up. Whereas, the response time trend
appears to be convergent. We suppose that this phenomenon may be due to the amount of data
collected during the shortest experiment. In our case, this can be noticed by comparing the value
of the e across burst sizes. There is a difference of approximately 4J

s between the e calculated with
75-customers burst data and the one measured for greater workloads, which is nearly 82J

s . Finally,
by exploiting the LQN, we gain savings in terms of experimentation time. We spent nearly 5 hours
collecting all the data for different burst sizes. This period can be reduced by measuring the system
undergoing bursts of 75 customers and exploiting the model for predicting energy and performance
for greater workloads. By doing so, we would have spent only 35 minutes for experimentation versus
5 hours for measuring the 7 cases.

6.4 Threats To Validity

This discussion of threats to validity follows the classification made by Wohlin et el. [195]. The
results of the study might be affected by Conclusion Validity threats due to the low significance
of the sample collected during the lower-effort experiment. In fact, due to the short duration of
this experiment, the sample collected may not be enough to accurately characterize either the
LQN parameters (e.g., service time of containers) or the energy data (e.g., value of eJs ). This
inaccuracy affects the estimates since we use this dataset to parameterize the LQN and derive
energy consumption values in the case of heavier workloads. In both Digital Camera and Train
Ticket Booking System, we consider only the load handled by the CPU and scaled workloads.
The findings might not be confirmed in situations involving more resources and different types of
workload. Therefore, they might not be generalizable and the work might be affected by Construct
Validity threats. Finally, we do not consider a broad sample of hardware/software systems. For
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example, we do not examine battery-powered systems, which may have power-saving modes. These
characteristics might impact the measurements of energy consumption and performance. As a
result, the study might be affected by External Validity threats, making it difficult generalize the
findings to all types of systems.

6.5 Related Work

To the best of our knowledge, this is the first study investigating and quantitatively evaluating
how performance models (specifically, LQNs) can be exploited to make accurate energy estimations
of software systems. Moreover, in our case, the models are used to support measurement-based
experiments and reduce experimentation time, thus assessing situations that designers aimed to
measure. Several papers in the literature use queuing models to define energy-aware behaviors.
These works come from different domains, such as robotics [83], wireless sensor networks (WSNs)
[94, 109, 201], or cloud computing [34]. Cerotti et al. [60] use a queuing model to improve the
utilization of the servers in a data center. Indeed, depending on the workload, some servers may
be subject to long periods of low utilization, which still generate significant energy consumption.
The queuing model incorporates a controller which manages the incoming workload so that servers
maximize their throughput and resource utilization. So, each request will require less energy to serve,
reducing the total energy consumption. Marsan and Meo [17] apply queuing models to optimize the
energy footprint of a university WLAN. The authors consider the areas covered by multiple access
points (APs). Co-located APs can be turned on/off, depending on the capacity of the group of APs
to provide service and the number of active users accessing the WLAN. This situation is modeled
with a queuing system which outputs the number of APs of a group that should be active to handle
a given workload. In some of the situations, the authors manage to save even more than half of the
energy usually expended to power the WLAN.

6.6 Conclusions

In this chapter we have introduced a model-based approach for simplifying the energy consumption
estimation of software systems. We have exploited the linear dependency of energy consumption
and performance to extrapolate estimations of the former one in scenarios that would require high
measurement times in practice. We tested the approach using a running example: Digital Camera,
then validated the results on a more complex application, Train Ticket Booking System. The
experimental results are quite promising, thus we plan to apply our approach to larger-size energy-
critical software systems. Besides, we intend to examine the performance and energy consumption
of resources other than the CPU, such as the disk and network. Although the approach has been
implemented on top of LQN model, the whole process is independent of the modeling notation
adopted for sake of performance analysis. Therefore, as further future work, we plan to consider
different modeling notations that could be more suitable in specific application domains.
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Chapter 7

Conclusion

HW/SW Co-Design has been introduced to improve the design loop of the traditional design flow
of embedded systems. The main drawback of the traditional flow lies in its design loop, which en-
visages separate design and implementation of the hardware and the software of embedded systems.
Due to the growing complexity of embedded systems over the years, the traditional design flow
became intractable and time-consuming due to the increasing number of iterations of the design
loop. The objective of HW/SW Co-Design is to minimize design time by simultaneously develop-
ing both the hardware and software of the system. This methodology exploits an abstract model,
called the technology-independent model, which represents the desired behavior without providing
any details about implementation. The model is used during DSE to evaluate different HW/SW
implementations of the represented behavior.

This thesis investigated if improving the technology-independent model benefits the quality of
the design resulting from DSE. We focused on integrating approaches and metrics for identifying
eventual defects of the technology-independent model and anticipate validation of extra-functional
attributes. These purposes are fulfilled by formal methods, which usually use formal languages
to produce executable or verifiable models for verification and validation. Since formal models are
based on a well-defined syntax and semantics, their execution aims at discovering logical inconsisten-
cies and estimate non-functional attributes according to a mathematical framework. Nonetheless,
formal methods have yet to gain widespread adoption because their effectiveness has not been fully
proven and the learning curve required to use them is high. Therefore, this thesis studied: (G1)
how to integrate formal verification and validation before DSE, (G2) which verification and valida-
tion analyses to perform using the technology-independent model, and (G3) how to facilitate the
adoption of formal methods to practitioners.

Part I of the thesis describes the first steps of the V&V-based HW/SW Co-Design. As men-
tioned in the Introduction, this novel HW/SW Co-Design methodology introduces multiple steps
of verification and validation at the beginning of the design flow (G1), which aims at improving a
platform-agnostic model. A platform-agnostic model describes the logical structure and the behav-
ior of system elements and does not include any information about possible systems implementation.
The main goal of the first part of the methodology is to early detect modeling flaws and avoid their
propagation in the later stages as well as improve the overall quality of the model by estimating its
quality attributes. We have integrated multiple formal methods for functional correctness verifica-
tion and validation of timing, performance, and reliability constraints (G2). V&V-based Co-Design
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uses a UML/MARTE-based platform-agnostic model, which is then converted through multiple
M2M transformations into several formal models for verification and validation. It is possible to
ease the knowledge transfer of formal methods to practitioners by defining a mapping between in-
formal and formal models and use the insights gathered from V&V to improve the source model
(G3). Part II focuses on Design Space Exploration (DSE), which operates on the model resulting
from verification and validation. DSE includes metrics and methods to compare different HW/SW
implementations and that can be used to implement what described in the source model. In Chapter
4 we build a ML-model providing accurate performance values of a given software on different mi-
croprocessor. This ML-model aids designers during DSE in the choice of a microprocessor. Instead,
in Chapter 5 and 6 we focus on the energy consumption of the system under design. We provide,
in Chapter 5, a metric for comparing different microprocessors according to the energy consumed
while executing a given software, i.e., JC4S, while Chapter 6 outlines a model-driven approach for
estimating the energy consumed by a system prototype. As the reader may have noticed, energy
consumption is an extra-functional property that is examined only in Part II. To the best of our
understanding, energy consumption can only be measured or estimated when there is a prototype
of the system in place, i.e. a candidate system implementation of the HW/SW. In Chapter 6, we
study the cases in which energy consumption is proportional to performance. A proven relationship
between energy and performance could eliminate the need to have a prototype of the system, since
there are already works and tools that estimate performance from abstract models.

7.1 Findings

Each chapter of the thesis addresses particular steps of the V&V-based HW/SW Co-Design.

7.1.1 Chapter 2: From UML/MARTE Specifications to Functional Verification
& Timing Validation

Chapter 2 described Co-Specification, thus the creation of the technology-independent model, and
Co-V&V, so functional verification and timing validation. We used UML to model the FIRGCD
toy example [160] and UML/MARTE to plug time constraints into the model. FIRGCD consists
of a set of components that react to the reception of messages, which are sent through channels. A
message can be lost during the communication. The execution of FIRGCD is repeated according
to a timer.

This chapter shows how the modeling framework, defined for Co-Specification, facilitates ver-
ification and validation of FIRGCD, as well as how the insights resulting from verification and
validation help improve the source model. We incremented the behavioral model of the traditional
HW/SW Co-Design methodology with information about the domain and the structure of the sys-
tem through a class and a component diagram included in the application view. Activity diagrams
detail the behavior of each system element in the application view and model the communication
protocol used by system elements in the communication view. In the time view, instead, we used
UML/MARTE elements to define delays and timers, as well as the Value Specification Language
(VSL), included in UML/MARTE, to constrain the duration of execution traces. We provided a
semantic mapping, which is not yet automatic, from the above-described view model to a network
of timed automata. A set of clocks is added to an automaton to create a timed automaton, where
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the clocks increase as the automaton is executed. A set of communicating automata composes a
network of timed automata. The latter is then processed by the UPPAAL model checker which
uses a verifier to check system properties [74]. The UML/MARTE model structure defines the
topology of the network, while each behavioral description produces an automaton. In our case,
time constraints impose a duration to the execution of a behavior or define a delay. UML/MARTE
delays are converted into delays on automaton locations, while constraints on traces duration are
not converted but verified using UPPAAL formulas.

Computational Tree Logic (CTL) is used to write UPPAAL formulas for verifying execution
traces time constraints, reachability of locations, and communication correctness. We discovered
that FIRGCD execution success and satisfiability of time constraints are largely determined by
communication protocol and the duration of the timer used to time the execution. The system
as modeled can lead to continuous loss of messages and thus failure of an execution. In addition,
we found that the parameters set in the UML/MARTE model led to the unsatisfiability of a time
constraint set on system-level behavior.

7.1.2 Chapter 3: Many-objective optimization of non-functional attributes based
on refactoring of software models

Chapter 3 presented a potential approach for Co-Analysis, aiming to enhance the extra-functional
attributes of a model through a process of iterative refactoring and evaluation. The main contribu-
tions of Chapter 3 consists in: an approach that uses refactoring in combination with NSGA-II for
model optimization and techniques to automatically assess eventual improvements made to a UML
model after a refactoring action.

The approach requires an initial model and a set of refactoring actions, which are randomly
applied to the source model to generate several model alternatives. Each model alternative is
evaluated according to performance, reliability, architectural distance to the initial model, and
number of performance antipatterns. This loop is integrated into a many-objective evolutionary
algorithm, i.e., NSGA-II, that chooses the solutions with better performance and reliability but
presenting less changes and performance antipatterns. This process is repeated for a set number of
iterations, where each iteration optimizes the best solutions resulting from the previous iteration.
Models are created with UML and supplemented with MARTE and DAM profiles to represent
performance and reliability concepts. For model evaluation, we defined an automatic conversion
from MARTE to LQNs for performance evaluation and from DAM to a closed-form model for
reliability assessment. Performance antipatterns, instead, are identified quantifying the probability
of their occurrence and tallied if this probability exceeds a fixed threshold. Finally, the architectural
distance is determined by multiplying the weight of the model element - identified by its number
of links to other model elements - with the effort required to apply a given refactoring action. The
approach is tested through two illustrative examples: Train Ticket Booking System and CoCoME,
which, for each case, resulted in a set of solutions improving the initial model.

The experimentation showed, in both illustrative examples, that the majority of the solutions re-
sulting from our approach exhibit notable improvements in both performance and reliability (RQ2).
Moreover, we studied how the optimization process is influenced by experimental parameters and
how the quality of the solutions is impacted by the objectives (RQ1). Additional experiments
were conducted to explore how performance antipatterns (RQ1.1) and their fuzzy detection tech-
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nique (RQ1.2) impact finding better solutions, as well as the extent to which architectural distance
contributes to the quality of solutions (RQ1.3).

We performed two experiments to determine the effect of integrating performance antipatterns
into the optimization process on the quality of solutions. One experiment involved their inclu-
sion, while in the other we excluded them. Instead, to evaluate fuzzy detection, we compared the
solutions of an experiment using fuzzy detection with those resulting from an experiment using
fixed thresholds for performance antipatterns detection. Including performance antipatterns in the
optimization process increases, for both illustrative examples, the number of solutions having im-
proved performance and reliability. The same doesn’t apply to the fuzzy detection of performance
antipatterns, which adoption didn’t result in improved solutions. Instead, we assessed the effect of
architectural distance by examining a scenario where a refactoring action requires zero effort. We
obtained better solutions when accounting refactoring actions effort in the optimization process. Fi-
nally, by examining the output of the experimentation, we identified a subset of refactoring actions
that have a higher likelihood of producing improved solutions (RQ3).

7.1.3 Chapter 4: Statement-Level Timing Estimation for Embedded System
Design Using Machine Learning Techniques

In Chapter 4, we examined how to use machine learning (ML) models to predict the execution
time of C-based functions on a set of processors. The provided approach applies in contexts where
designers wish to compare various HW/SW implementations, making the method useful to quickly
estimate the performance of a system prototype. The main reason to involve ML-based techniques
for performance prediction is to check if they lead to improved estimation accuracy and reduced
estimation time. The main contributions include an assessment of prediction accuracy and time of
five ML models, as well as a framework to automatically generate the dataset to train these models.

The aim of this approach is to produce prediction models for the execution time of C code on a
specific processor, which can be alternative of simulators or emulators. In this study, we compared 5
ML models, namely Linear Regression (LR), Fine Trees (FT), Boosted Trees (BOT), Bagged Trees
(BAT), and Support Vector Machine (SVM), according to prediction time and accuracy. In order
to be compared, we trained these models with data retrieved from the execution of a benchmark,
written using the C language, on a set of target processors. Similarly to what described in Chapter 5,
we generated a set of inputs for each function included in a benchmark of 15 well-known functions
written using the C language. For each input within the corresponding input set, we simulated
the execution of each function in the benchmark on multiple processors. We considered, as target
processors, the Cobham Gaisler LEON3, the Intel 8051, and the ATmega328/P. The simulations
generate the dataset used for training the ML models. The evaluation of the models involved three
phases: feature extraction, which reduces the number of features used for training to the most
influential ones, followed by a test/train and validation phases. The step train/test is used to
preliminary assess the precision of the predictions on a subset of models and processor, while the
validation considers the full set of models and processors. The validation indicates that regression
tree models, such as Fine Trees, Bagged Trees, and Boosted Trees, result in the highest prediction
accuracy and time efficiency. However, these models only yield satisfactory results for the 8051
processor. Indeed, the Root Mean Square Percentage Error (RMSPE) obtained from the results
retrieved for the 8051 processor remains under the 10%. The RMSPE for the LEON3 ranges between
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6% and 70%, while for the Atmega328/P only Fine Trees produces a RMSPE under 60%. Finally,
out of all the models, Bagged Trees require the shortest amount of time to generate predictions.
Based on the results, we concluded that the study requires additional investigations and refinements
for improving the accuracy of the predictions.

7.1.4 Chapter 5: An Early-Stage Statement-Level Metric for Energy Charac-
terization of Embedded Processors

Chapter 5 outlined J4CS, a metric that quantifies the energy consumed by a processor in relation
to the executed C statements. J4CS is defined as Ē′(pj) · I

′
(pj , zi, bi,k), which is the average energy

consumed by a processor pj multiplied by the average assembly instructions spent by pj to execute
a C code zi with a fixed input bi,k. J4CS is suitable for assessing the energy consumption of diverse
C-based software solutions on a target processor. Chapter 5 provides the definition of J4CS plus its
evaluation, which studies the accuracy of the metric across different processors using a benchmark.
Moreover, we provided the J4CS evaluation framework, which automatically generates the quantities
needed to calculate J4CS (e.g., number of executed assembly instructions and c statements) and
the metric itself. The chapter ends presenting J4CS-A, which is a refinement of J4CS aiming at
improving the accuracy of J4CS.

We validated J4CS through an experiment involving two target processors: Cobham Gaisler
Leon3 and Intel 8051. We first defined a benchmark including 15 well-known functions (e.g., Quick-
Sort, Binary Search). The mentioned framework creates a range of inputs for each function by
varying input values and data types (such as int8, int16, and float). Every function and its as-
sociated set of inputs are executed on both simulators and actual processors, producing a dataset
of J4CS values measured and estimated. The framework orchestrates input generation and the
execution of the benchmark on the simulators. We used three boards to obtain empirical data of
J4CS: LEON3FT-RTAX and LEON3FT-UT699, having the Leon3 processor, and the 8051-based
AT89C51 development board. We executed the benchmark on the boards and compared the mea-
surements against the estimations. We obtained, in all the cases, highly variable relative and
absolute error ranges, which suggests further validation or a refinement of the metric. To reduce
the error, we introduced J4CS-A, which integrates the pre-existing concept of affinity into the J4CS
formula. The affinity metric indicates the most appropriate processor class for executing a given
function and ranges between 0 and 1. This quantity embodies the affinity between architectural and
functional features of the target processor and the executed software functionality. We used J4CS-A
to decrease the error margin of measurements retrieved from the AT89C51 board. The reduction in
relative and absolute errors is promising for all datatypes. Indeed, we obtained an error reduction,
for both relative and absolute error, in the range of {50%...110%}.

7.1.5 Chapter 6: An approach using performance models for supporting energy
analysis of software systems

In chapter 6 we provided a method to estimate energy consumption and performance of a given
system prototype, thus a candidate HW/SW implementation, and reduce the time spent testing
the system. This chapter contributes to the methods usable during DSE to evaluate a candidate
system implementation according to energy consumption and performance. The method utilizes an
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experiment to generate a LQN. The experiment should take as little time as possible to set up and
monitor the system, which can be achieved supplying to the system, for example, a low-utilization
workload. The LQN replicates the behavior of the system during the experiment. After checking the
accuracy of LQN estimates, performance can be estimated in different scenarios by changing LQN
parameters. Moreover, we provided a relationship between performance and energy consumption
to obtain the corresponding energy consumed by the scenarios evaluated with the LQN. We first
tested the method through a running example, namely Digital Camera, and then validated it using
the Train Ticket Booking System illustrative example. Digital Camera involves an application that
compresses and stores images, while Train Ticket Booking System is a train bookings management
system. We focused on cases where designers aim to increase the workload handled by the system.
Therefore, for validation purposes, we observed the system undergoing a set of scaled-up workloads
and predicted performance and energy in the same cases. Finally, we compared the measurements
against the predictions. For Digital Camera, we measured the system subject to a stream of 2K
images and evaluated the cases where a stream of 4K and 8K images is supplied. Instead, for Train
Ticket Booking System, we observed the system handling a burst of 75 customers and evaluated
the cases of 150, 225, 300, 375, 450, and 500 customers burst. We evaluated, for both cases, CPU
utilization and energy consumption.

The results for Digital Camera are very accurate. For example, we get an estimate of 379.24 J
in the case of an 4K image stream versus a measured value of 382.46 J. Similarly, this applies to
an 8K image stream where the estimated value is 15016.04 J and the measured value is 1537.96 J.
Train Ticket Booking System confirms promising results. Indeed, we reduced measurement time
from 5 hours to 35 minutes by exploiting our model, this reflected in a Mean Absolute Percentage
Error of 9.24% in the estimates of CPU utilization and 8.72% in energy consumption predictions.
We noticed, in both cases, that as the burst size grows larger, the gap between the estimation and
the measured value also expands. One possible reason for this is that the minimal experiment data
used to parameterize the LQN may not accurately reflect system behavior.

7.2 Publications

This section lists the publications presenting the contributions of this thesis. The list is divided in
four types: journal (JN), conference (CN), workshop (WS), and doctoral symposium (DS) papers.
Chapter 1 describes the V&V-based HW/SW Co-Design which is the main contribution of the
thesis and has been discussed at the Doctoral Symposium of MODELS 2021 (DS1) and at the
WOSP-C workshop (WS1). The second work discusses the contributions found in Chapter 2. Thus,
the paper introduces the methodology and presents Co-Specification and Co-V&V. and that we
improved with the findings described in the journal paper JN2. Finally, the contributions presented
in Chapter 5, 6, and 4 are published in JN1, WS2, and CN2, respectively. The papers indicated
in this section are the result of several collaborations. For the studies described in JN1 e CN2, I
implemented the microbenchmarks and the framework that generates the dataset employed for ML
model training and evaluate J4CS. Additionally, I wrote the sections regarding the microbenchmarks
and the framework, as well as reviewed the paper. I contributed to JN2 and CN1 by implementing
the transformation from the UML/MARTE models and part of the EASIER framework. Moreover,
I created the model of Train Ticket Booking System and analyzed the data for RQ3 in JN2. Finally,
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I wrote the section dedicated to RQ3 in JN2 and edited and revised the papers. As the main author
of WS1, WS2 and DS1, I contributed to the conceptualization of the studies, the creation of the
models, the design and execution of the experiments, and the data analysis of the results.

JN1. V. Muttillo, P. Giammatteo, V. Stoico, and L. Pomante. An early-stage statement-level
metric for energy characterization of embedded processors. Microprocessors and Microsystems,
77:103200, 2020 [140].

JN2. V. Cortellessa, D. Di Pompeo, V. Stoico, and M. Tucci. Many-objective optimization of
non-functional attributes based on refactoring of software models. Information and Software
Technology, 157:107159, 2023 [66].

CN1. V. Cortellessa, D. Di Pompeo, V. Stoico, and M. Tucci. On the impact of performance
antipatterns in multi-objective software model refactoring optimization. In M. T. Baldassarre,
G. Scanniello, and A. Skavhaug, editors, 47th Euromicro Conference on Software Engineering
and Advanced Applications, SEAA 2021, Palermo, Italy, September 1-3, 2021, pages 224–233.
IEEE, 2021 [65]

CN2. V. Muttillo, P. Giammatteo, and V. Stoico. Statement-level timing estimation for embedded
system design using machine learning techniques. In Proceedings of the ACM/SPEC Inter-
national Conference on Performance Engineering, ICPE ’21, page 257–264, New York, NY,
USA, 2021. Association for Computing Machinery [139]

WS1. V. Cortellessa, L. Pomante, and V. Stoico. From uml/marte specifications to esl hw/sw
co-design: Early functional verification and timing validation. In Companion of the 2023
ACM/SPEC International Conference on Performance Engineering, ICPE ’23 Companion,
page 373–380, New York, NY, USA, 2023. Association for Computing Machinery [70]

WS2. V. Stoico, V. Cortellessa, I. Malavolta, D. Di Pompeo, L. Pomante, and P. Lago. An approach
using performance models for supporting energy analysis of software systems. 19th European
Performance Engineering Workshop (EPEW 2023).

DS1. V. Stoico. A model-driven approach for early verification and validation of embedded systems.
In ACM/IEEE International Conference on Model Driven Engineering Languages and Systems
Companion, MODELS 2021 Companion, Fukuoka, Japan, October 10-15, 2021, pages 684–
688. IEEE, 2021 [179]

7.3 Future Work

This thesis defines a new design methodology called V&V-based HW/SW Co-Design. This method-
ology converts a source non-formal model to several formal models to perform rigorous preliminary
analyses before the implementation. Literature certifies that using models can reduce the complex-
ity of designing modern embedded systems. However, as the introduction extensively discusses,
there are three problems stemming from using models. They are as follows:

1. Design models can include flaws. Therefore, we introduced formal methods in the early stages
of the provided methodology to discover and fix eventual flaws (G1)
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2. The analysis of functional and non-functional attributes of the system can be anticipated at
the early stages of the design. We focus on how and which type of analysis can be performed
by setting the right level of abstraction (G2)

3. Formal methods hamper the usability of a design methodology due to their high learning curve.
We used multiple model-to-model transformations to ease the adoption of formal methods for
practitioners (G3)

We believe that this thesis serves as a foundation for the development and enhancement of
HW/SW Co-Design methodologies that includes formal analyses early in the design flow. This thesis
explores the advantages of such a methodology. Nevertheless, in our view, a full-fledged validation
of the V&V-based HW/SW Co-Design methodology is necessary in the future. Moreover, this thesis
provides opportunities for further research in the embedded systems domain, highlighting three main
points: the (i) definition of the right level of abstraction of models used in the initial stages, the
(ii) proof of the efficacy of formal analysis, and (iii) how to facilitate knowledge transfer of formal
methods to practitioners. The level of abstraction in our case has been established by HW/SW
Co-Design, which forms the basis of our approach. As a result, we employ platform-specific models;
future studies may explore whether platform-specific models can be further refined or abstracted to
carry out the same or multiple analyses. Point (ii) stresses the necessity of proving that the analyses
done in the early stages using formal methods apply in reality. For example, if any flaw fixed in the
early stages does not appear during system implementation. We tackled point (iii) by implementing
several model-to-model transformations from a non-formal model to several formal models. These
transformations facilitate the creation and adoption of formal methods by practitioners. To date,
however, this claim has not been backed up by empirical research, such as a user study. We plan to
focus on two points that are missing in the dissertation: the methodology should be entirely executed
by performing all the steps in sequence. In this way, we could observe whether the improvements of
the technology-independent model resulted in a better design solution after DSE. The second aspect
concerns the application of the methodology in an industrial setting. Through a field experiment,
we can verify if the introduced steps of V&V increase the complexity of using HW/SW Co-Design
for practitioners and evaluate whether employing M2M transformations eases the adoption of formal
methods. Moreover, we want to supply the improved technology-independent model, i.e., the one
obtained before our DSE, to existing HW/SW Co-Design methodologies that already implement
an automatic or semi-automatic DSE [141]. Additional investigations are necessary for each step
of the methodology. Co-Specification and Co-V&V are tested with a running example: FIRGCD.
This choice influenced the subset of UML/MARTE, which addresses component-based architectures
and reactive behaviors. Further validation of Co-Specification and Co-V&V is required through
more complex case studies, resulting in an incremented subset of UML/MARTE, which could be
suitable for modeling different types of system. Further investigation is required for Co-Analysis
to determine the impact of experimental parameters on the optimization process and to make a
comparison between various optimization techniques. Instead, for the contributions presented in
Chapters 5 and 4, i.e., those regarding J4CS and performance estimation via machine learning, we
obtain wide ranges of error percentage values that suggest further refinements. Finally, for the study
in Chapter 6, we plan to estimate the utilization of other resources besides the CPU, for example,
the disk.
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