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In the theoretical studies on distributed algorithms for swarm robotics, the complexity and 
capabilities of the robots are usually reduced to their minimum. Recently, the MOBLOT model 
has been introduced in order to deal with robots considered silent, anonymous, and oblivious but 
capable to aggregate into more complex structures, called molecules. We study the case where 
robots move along a graph based on a square lattice and we formally define the Molecular Pattern 
Formation (MPF) problem, where a specific configuration of robots assembled into molecules must 
be reached. As a preliminary general result, we provide a necessary condition for its solvability. 
Then, we actually show that dealing with molecules can resolve in some cases the symmetry 
breaking issue on grids where otherwise robots cannot. Finally, we introduce an interesting case 
study, representative of the MPF problem, in which the molecules can be formed by the set 
of the seven tetrominoes (aka Tetris blocks). We provide a complete characterization of this 
specific problem, providing a distributed algorithm able to form a molecular pattern whenever 
the necessary condition for the solvability of MPF is verified.

1. Introduction

Robotics is an active area of research that includes many computer science and engineering disciplines. Dealing with robotics 
concerns the design, the construction, the operation, and the use of robots. In particular, two main research areas have been deeply 
investigated in robotics: modular robotics (e.g., see [2]) and swarm robotics (e.g., see [3,4]). Swarm robotics differ from modular 
robotics as single robots in the system do not need to maintain the connection with each other at all times, but they are usually 
mobile units with full autonomy (e.g., Kilobot [5]). In such a context, the interaction among robots in some specific form should lead 
to a desired collective behavior. This approach emerged in the field of artificial swarm intelligence, as well as the biological studies 
of insects, ants and other fields in nature, where swarm behavior occurs.

Researchers in the field of swarm robotics mainly follow a theoretical approach that considers robot systems in the abstract, 
where the complexity and capabilities of the robots induced by the underlying model are often reduced to their minimum. One of the 
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main issues faced when dealing with such models is that they help, in general, to rigorously analyze the designed algorithms, hence 
providing new theoretical insights that subsequently also extend the practical aspect of the studied systems. Representative models in 
this context are the Amoebot model [6–8], the more recent models Silbot [9–13] and Pairbot [14], and the well-investigated OBLOT

(see, e.g., [15]).

The OBLOT model deals with the case of distributed robots moving in some environment, and can be considered as a sort of 
framework within which many different settings can be manipulated, each implied by specific choices among a range of possibilities, 
with respect to fundamental components like time synchronization as well as other important elements, such as memory, orientation, 
mobility and communication. Such settings are often maintained at minimum, thus defining very weak computational entities: robots 
are oblivious (no memory about past activities), identical (indistinguishable from their appearance), anonymous (no distinct identities 
that can be used during the computation), autonomous (they operate without a central control or external supervision), homogeneous

(they all execute the same algorithm), silent (they have no means of direct communication with each other - everything is computed 
on the base of the relative positions of the robots only), and disoriented (each robot operates in its own local coordinate system). When 
a robot is activated, it enters in a so-called Look–Compute–Move cycle: it acquires a snapshot of the current global configuration 
(Look) as the disposal of the robots with respect to its own coordinate system. Successively, it decides whether to move toward a 
specific target or not (Compute), and in the positive case it moves (Move). In general, robot’s capabilities are maintained as weak as 
possible so as to understand what is the limit for the feasibility of the problems. Moreover, the less assumptions are made, the more 
a resolution algorithm is robust with respect to possible disruptions.

In this work, we consider MOBLOT [15], a recently introduced theoretical model concerning swarm robotics that extends OBLOT

to address a larger spectrum of problems. MOBLOT stands for Molecular OBLivious robOTs: like atoms combine themselves to form 
molecules, in MOBLOT simple robots can bond with each other in order to create possibly bigger computational units with more 
intrinsic capabilities with respect to robots (called molecules also in the model). A molecule is specified by a pattern. When robots 
move so as to be correctly positioned according to the pattern they firmly bond to make a molecular robot; like in nature, molecules 
can further bond to create more complex structures (e.g., the matter), the MOBLOT version of molecules can exploit their own 
capabilities to accomplish new tasks to form any shape defined according to some compositional properties or specific patterns.

Our results. MOBLOT has been initially defined for entities (robots and molecules) moving in a continuous environment (the Eu-

clidean plane). Motivated by the observation that many models for swarm robotics assume robots moving in a graph (e.g., the 
Amoebot model uses a graph defined by the triangular lattice), as a first contribution here we extend MOBLOT for working also in a 
discrete environment based on a graph defined by the square lattice. Another observation that guides this work concerns the main 
problem faced in the OBLOT model, that is Pattern Formation [16–24] (see also the recent survey in [25] and references therein): 
given a team of robots and a geometric pattern in terms of points in the plain with respect to an ideal coordinate system (not known 
to the robots), the goal is to design a distributed algorithm that works for each robot to guide it so that eventually all robots together 
form the pattern, if possible. Based on this observation, here we extend this problem in the MOBLOT model by defining the Molecular 
Pattern Formation (MPF) problem: given a team of robots, the definition of a set of molecules (ideally small patterns composed by 
a few of robots), and the matter to be formed (defined according to some adjacency properties among molecules or by providing 
a specific pattern made of molecules), the aim is to provide an algorithm that works for each single robot and for each composed 
molecule, in a distributed way, to guide them so that eventually the matter is formed, if possible. As usual, both the molecule and 
the matter are defined with respect to an ideal coordinate system (not known to the robots nor to the molecules).

Determining which patterns are formable under what conditions has been the subject of extensive studies in a variety of settings. 
Hence, as a general result, we provide a necessary condition for the solvability of MPF which relies on two factors. The first is 
somehow inherited from the continuous case, that is the symmetricity. Informally, the symmetricity of a configuration measures the 
amount of symmetries of the robots’ disposal. The second is instead specific of the discrete environment and concerns the type of 
center of the smallest enclosing box of the pattern. As we deal with regular square grids, such a center might be a vertex, the middle 
point of an edge, or the center of a square of the grid. We then show that dealing with molecules can resolve in some cases the 
symmetry breaking issue on grids where OBLOT cannot. Finally, we introduce an interesting case study, representative of the MPF

problem, in which the set of potentially formable molecules is the set of the seven tetrominoes (aka Tetris blocks) [26]. This case 
study is a specific variant of MPF and is called Tetris-like MPF (TL-MPF). For this problem, we provide a complete characterization, 
that is we provide a distributed algorithm for a set of synchronous robots that is able to form a molecular pattern whenever the 
necessary condition for the solvability of MPF is verified.

Outline. Since the MOBLOT model is an extension of OBLOT, in the next section we first recall the latter model and then we provide 
the MOBLOT model on square lattice. The section is concluded with the formal definition of the MPF problem. Section 3 contains the 
necessary condition for the feasibility of MPF. In Section 4, we introduce the Tetris-like MPF problem, and in Section 5 we formalize 
𝖳𝖫, the resolving algorithm for TL-MPF. In Section 6, we give an extended example to show the effectiveness of 𝖳𝖫, whereas in 
Section 7 we formally provide its correctness. Section 8 concludes the paper by highlighting some final remarks.

2. Molecular oblivious robots on grids

In this section, we present the MOBLOT model for robots moving on a square grid. This is provided by revising most of the 
properties characterizing the MOBLOT model introduced in [27] for robots moving on the Euclidean plane, which in turn was an 
2

extension of the OBLOT model for the same environment.
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Fig. 1. A molecule formed by four adjacent robots and the dual grid, where only the extent of the molecule is shown.

An OBLOT system is composed by a set 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛} of robots, that live and operate in graphs. Robots are viewed as points 
(they are dimensionless), and more than one robot can occupy the same vertex at the same time, i.e., a multiplicity can occur. 
They have the following basic properties: typed (each robot has a type that can be modeled as a color (e.g., see [28]), and when 
just one color is available we say that robots are identical), anonymous (they do not have distinct ids), autonomous (they operate 
without a central control or external supervision), homogeneous (they all execute the same algorithm), silent (they have no means 
of direct communication of information to other robots), and disoriented (each robot has its own local coordinate system - LCS) but 
they share a common handedness, i.e., chirality is assumed. A robot is capable of observing the positions (expressed in its LCS) of all 
the robots. We consider synchronous robots whose behavior follows the sequential phases that form a computational cycle:

• Wait. The robot is idle. A robot cannot stay indefinitely idle.

• Look. The robot obtains a snapshot of the positions of all the other robots expressed in its own LCS.

• Compute. The robot performs a local computation according to a deterministic algorithm  (i.e., the robot executes ), which 
is the same for all robots, and the output is a vertex among its neighbors or the one where it resides.

• Move. The robot performs a nil movement if the destination is its current location otherwise it instantaneously moves on the 
computed neighbor.

Look-Compute-Move computational cycles (LCM cycles, for short) can be performed by robots according to different schedulers. 
In the asynchronous scheduler (ASYNC) the robots are activated independently, and the duration of each phase is finite but unpre-

dictable (the activation of each robot can be thought as decided by the adversary). As a result, robots do not have a common notion 
of time. Moreover, according to the definition of the Look phase, a robot does not perceive whether other robots are intended to 
move or not. Hence, robots may move based on outdated perceptions. In fact, due to asynchrony, by the time a robot takes a snapshot 
of the configuration, this might have drastically changed once the robot starts moving. In the fully-synchronous scheduler (FSYNC) 
all robots are always active, and the activation phase can be logically divided into global rounds: for all 𝑖 ≥ 1, all robots start the 
𝑖-th LCM cycle simultaneously and synchronously execute each phase. The semi-synchronous (SSYNC) scheduler coincides with the

FSYNC one, with the only difference that some robots may not start the 𝑖-th LCM cycle for some 𝑖 (some of the robots might be in the

Wait state), but all of those who have started the 𝑖-th cycle synchronously execute each phase.

Robots are oblivious, that is they have no memory of past events. This implies that the Compute phase is based only on what 
determined in their current cycle (in particular, from the snapshot acquired in the current Look phase). A data structure containing 
all the information elaborated from the current snapshot represents what later is called the view of a robot. Since each robot refers 
to its own LCS, the view cannot exploit absolute orienteering but it is based on relative positions of robots. Hence, if symmetries 
occur, then symmetric robots have the same view. In turn, (i) the algorithm cannot distinguish between symmetric robots (even 
when placed in different positions), and (ii) symmetric robots may compute the same movements. As chirality is assumed, and we 
are considering a regular square grid as a field of movement, the only possible symmetries are rotations of 90 or 180 degrees.

MOBLOT extends the above system according to the matter formation paradigm: atoms (the smallest units of the matter) first 
combine with other atoms to form molecules (special kind of atom compounds) and then the molecules combine with each other to 
form some kind of matter, like for instance a crystal. Accordingly, in a MOBLOT system the smallest units correspond to the robots of 
the OBLOT model: each robot can be thought as an atom. As in nature there exist different types of atoms, in OBLOT we use colors to 
specify the type of atom the robot represents.

In MOBLOT, the first algorithmic task for robots is to form molecules. A molecule 𝜇 is specified by a fixed pattern (i.e., a specific 
reciprocal disposal of a specific subset of robots) defined with respect to the regular square grid. Once a molecule is formed, it is 
assumed to have an extent 𝐵(𝜇) given by the closed set given by the union of the squares of the same dimensions of the squares of 
the grid, each one centered on one of the robots composing the molecule. The center of the molecule corresponds to the center of the 
smallest rectangle enclosing all robots forming that molecule. Fig. 1 shows a molecule as formed by four robots and also the same 
molecule represented in the dual grid, where - for the sake of simplicity - only the extent of the molecule is considered.

To make the model fair and as general/weak as possible, we make some assumptions about the initial disposal of robots and the 
formation of molecules, as motivated by the following analysis. We assume that initially, each robot has no neighbors (it is similar to 
the typical assumption made in the OBLOT model where the robots are initially positioned on distinct vertices). This guarantees that 
there are no molecules already formed in the initial configuration and that their formation is completely up to the algorithm. During 
the execution of an algorithm, robots might become neighbors and potentially their disposal might seem to make them participate 
3

in two different molecules. However, the intersection between two molecules (including their boundaries) must be empty while at 
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Fig. 2. A set of molecules formed by nine robots each (example taken from the notion of tiles described in [29]). There are three types of robots which are visualized 
by three different colors (brown, gold, and light gray). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. An example of matter built by using molecules from Fig. 2 and defined according to adjacency properties.

least one of them is going to be formed, otherwise, the generation of that molecule is prevented. These assumptions can be modeled 
according to the following constraints:

1: in each initial configuration, each pair of robots is at distance not less than 2, where the distance is the number of edges 
composing the shortest path connecting them (this ensures that there are no molecules already formed in the initial 
configuration);

2: a molecule 𝜇 is formed as soon as the robots needed to build it are suitably placed according to the pattern that defines 𝜇, 
and in 𝐵(𝜇) there must be no more robots than necessary (this ensures that the right number of robots are involved in the 
formation of a molecule);

3: for each 𝜇 just formed and for any other 𝜇′ already formed or that could be formed at the same time of 𝜇, 𝐵(𝜇) ∩𝐵(𝜇′) = ∅
(this avoids ambiguities during the formation of molecules)

In MOBLOT, as soon as a molecule 𝜇 is formed, each robot forming 𝜇 is no longer an independent entity but it stops executing 
its algorithm as a single robot and acts as a part of the molecule. This means that once a molecule is formed it constitutes a new 
computational entity with a physical dimension, i.e., it is intended as solid. The basic properties of such new entities can still be 
modeled as in OBLOT systems (and its variants), with the main exception that a molecule not only can move by following an edge 
of the grid but it also may rotate of 90 degrees with respect to one of the vertices occupied by the robots composing it. Being solid, 
any other entity in the system (robot or molecule) can touch the external surface of 𝐵(𝜇) but cannot penetrate inside. It is worth 
to remark that in MOBLOT, a robot 𝑟 performing the Look phase is able to detect not only all the other robots but also any formed 
molecule 𝜇. Note that, 𝑟 perceives both the molecule and the robots that compose it. We denote by Mol the set of molecules detected 
at a given time by a robot 𝑟.

By  = {𝜇1, 𝜇2, … , 𝜇𝑚} we denote the set containing all different molecules that can be potentially formed. For instance, in 
Fig. 2, five molecules are shown as displayed in the dual grid. Each molecule is formed by nine robots, and there are three different 
types of robots (visualized by means of three different colors). The five different molecules shown in Fig. 2 may constitute the set 
 given in input to the algorithm, and the algorithm is responsible to assemble all the molecules so that a more complex structure 
(i.e., the matter) is formed. The matter is defined either according to some adjacency properties of the molecules or by providing a 
fixed pattern made of molecules (cf., Fig. 3). By  we denote the set containing all the possible elements of the matter to be formed. 
Of course, also  must be provided as an input to the algorithm. This constitutes what we call the Molecular Pattern Formation
4

problem on grids (MPF for short).
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Fig. 4. Examples for the notion of center of a rotational configuration. From left to right, three rotational configurations 𝐶 ′ , 𝐶 ′′ , and 𝐶 ′′′ with tc(𝐶 ′) = 1, tc(𝐶 ′′) = 2, 
and tc(𝐶 ′′′) = 3.

2.1. Formalization of the MPF problem

A square tessellation of the Euclidean plane is the covering of the plane using squares of side length 1, called tiles, with no 
overlaps and in which the corners of squares are identically arranged. Let 𝑆 be the infinite lattice formed by the vertices of the 
square tessellation. The graph 𝐺□ is called grid graph, its vertices are the points in 𝑆 and its edges connect vertices that are 
distance 1 apart.

Let 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛} be the set of robots. The topology where robots are placed is the grid graph 𝐺□ = (𝑉 , 𝐸). A function 𝜆 ∶
𝑅 → 𝑉 maps each robot to the vertex in 𝐺□ where the robot is placed. Assume that each robot knows the set of formable molecules 
 and the set  of possible patterns describing the matter to form. As said above, during the Look phase, each robot detects in 
the local coordinate system both the robots’ positions and the set Mol of already formed molecules. We call 𝐶 = (𝐺□, 𝑅, 𝜆, Mol) a

configuration. Notice that constraint 1 imposes Mol = ∅ in each initial configuration.

Let 𝐶 be a configuration and  be an algorithm processing 𝐶 . By 𝐶(𝑡) we denote the configuration 𝐶 observed by some robots at 
time 𝑡 ≥ 0 during the execution of . Formally, an execution of  from the initial configuration 𝐶 is a sequence of configurations 
𝔼 ∶ 𝐶(𝑡0), 𝐶(𝑡1), 𝐶(𝑡2), …, where {𝑡𝑖 ∶ 𝑖 = 0, 1, …} is the set of time instants at which at least one robot takes the snapshot 𝐶(𝑡𝑖) during 
its Look phase. With respect to the defined MOBLOT model, the MPF problem on the grid graph can be formalized as follows.

Definition 1. Given an initial configuration 𝐶 = (𝐺□, 𝑅, 𝜆, Mol = ∅), a set of formable molecules , and a set  of possible patterns 
describing the matter to form, the goal is to design a distributed algorithm  that works for each entity so that eventually they form 
some pattern in  , if possible. Formally,  solves an instance (𝐶, ,  ) of the MPF problem for 𝐶 if, for each possible execution 
𝔼 ∶ 𝐶 = 𝐶(𝑡0), 𝐶(𝑡1), … of , there exists a finite time instant 𝑡𝑛 > 0 such that in 𝐶(𝑡𝑛) all robots have been assembled into molecules, 
the molecules form an element in  , and no entity moves after 𝑡𝑛, i.e., 𝐶(𝑡𝑘) = 𝐶(𝑡𝑛) for each 𝑡𝑘 ≥ 𝑡𝑛.

3. Necessary conditions on the feasibility of MPF

In this section, we state a necessary condition for the feasibility of MPF. As done above, we remind that the term entity is used 
when there is no need to distinguish among robots and molecules.

Two undirected graphs 𝐺 = (𝑉 , 𝐸) and 𝐺′ = (𝑉 ′, 𝐸′) are isomorphic if there is a bijection 𝜑 from 𝑉 to 𝑉 ′ such that {𝑢, 𝑣} ∈ 𝐸

if and only if {𝜑(𝑢), 𝜑(𝑣)} ∈ 𝐸′. Vertices 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉 ′ are equivalent if there exists an isomorphism 𝜑 such that 𝜑(𝑢) = 𝑣. An 
automorphism on a graph 𝐺 is an isomorphism from 𝐺 to itself, that is a permutation of the vertices of 𝐺 that maps edges to edges 
and non-edges to non-edges. We denote by Aut(𝐺) the set of all such automorphisms.

The concept of graph isomorphism can be extended to configurations in a natural way. Two configurations 𝐶 = (𝐺□, 𝑅, 𝜆, Mol)
and 𝐶 ′ = (𝐺′

□, 𝑅′, 𝜆′, Mol′) are isomorphic if there exists an isomorphism 𝜑 between 𝐺□ and 𝐺′
□ that can be extended to obtain a 

bijection from 𝑉 ∪𝑅 to 𝑉 ′ ∪𝑅′ that maps vertices into vertices and robots into robots and such that:

• two robots can be associated by 𝜑 only if they have the same color and reside on equivalent vertices, that is if 𝜑(𝑟) = 𝑟′ then 
𝜑(𝜆(𝑟)) = 𝜆′(𝑟′);

• it preserves molecules: if 𝜇 = {𝑟𝑖1 , … , 𝑟𝑖𝑡} ∈ Mol then {𝜑(𝑟𝑖1 ), … , 𝜑(𝑟𝑖𝑡 )} = 𝜇′ ∈𝑀𝑜𝑙′ and 𝜇 = 𝜇′, i.e., 𝜇 and 𝜇′ are of the same 
kind (i.e., same shape, same colored robots,. . . ).

In this way, analogously to graph automorphism, an automorphism of a configuration 𝐶 is an isomorphism from 𝐶 to itself, and 
the set of all automorphisms of 𝐶 forms a group under the composition operation that we call automorphism group of 𝐶 and denote 
as Aut(𝐶). Moreover, if |Aut(𝐶)| = 1 we say that 𝐶 is asymmetric, otherwise it is symmetric. We have already defined the notion of 
equivalence between vertices. Concerning a configuration 𝐶 , two distinct entities of 𝐶 (robots or molecules) are equivalent if there 
exists 𝜑 ∈ Aut(𝐶) that maps one into the other.

Remark 1. Let 𝐶 = (𝐺□, 𝑅, 𝜆, Mol) be a symmetric configuration,  be any algorithm acting on 𝐶 , and 𝐸 be any maximal subset of 
5

pairwise equivalent entities in 𝐶 . Any move planned by  for an element of 𝐸 applies to all set 𝐸.
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Fig. 5. All possible tetrominoes. According to their shape, they can be referred to as 𝙻, 𝚃, 𝙹, 𝙸, 𝙾, 𝚂, and 𝚉, resp.

As chirality is assumed, it is easy to see that any configuration 𝐶 defined on 𝐺□ admits one type of automorphisms only:

rotations. A rotation is an isometry defined by a center 𝑐 and a minimum angle of rotation 𝛼 ∈ {90, 180, 360} working as follows: 
if the configuration is rotated around 𝑐 by an angle 𝛼, then a configuration coincident with itself is obtained. The order of a 
configuration is given by 360∕𝛼. A configuration is rotational if its order is 2 or 4. The type of center of a rotational configuration 
𝐶 is denoted by tc(𝐶) and is equal to (cf. Fig. 4):

• 1, when the center of rotation is on a vertex of 𝐺□;

• 2, when the center of rotation is on a median point of an edge of 𝐺□ ;

• 3, when the center of rotation is on the center of a square of the tessellation forming 𝐺□ .

The symmetricity of a configuration 𝐶 , denoted as 𝜌(𝐶), is equal to its order unless its center is occupied by a robot, in which 
case 𝜌(𝐶) = 1. It comes out that for the considered configurations defined on 𝐺□ we have 𝜌(𝐶) ∈ {1, 2, 4}.

We defined 𝜌() and tc() for any configuration 𝐶 = (𝐺□, 𝑅, 𝜆, Mol) regardless whether Mol is empty or not. Concerning notation, 
we use 𝜌(𝐹 ) and tc(𝐹 ) to refer to any configuration forming a pattern 𝐹 ∈  (e.g., for the rotational pattern 𝐹 in Fig. 3 we have 
𝜌(𝐹 ) = 2 and tc(𝐹 ) = 2). As a special case, we use 𝜌(𝜇) and tc(𝜇) to refer to robots within a single molecule 𝜇 only. Moreover, for a 
given pattern 𝐹 ∈  , let Mol(𝐹 ) denote the set of molecules that form 𝐹 ; clearly, each molecule in Mol(𝐹 ) also appears in . Our 
general result can be then formally stated:

Theorem 2. Let 𝐶 = (𝐺□, 𝑅, 𝜆, Mol) be any configuration composed of FSYNC robots and (𝐶, ,  ) be an instance of the MPF problem. If 
there exists an algorithm  able to form a pattern 𝐹 ∈  from 𝐶 , then one of the following holds:

1. 𝜌(𝐶) divides 𝜌(𝐹 ) and (𝜌(𝐶) > 1 ⇒ tc(𝐶) = tc(𝐹 ));
2. ∃ 𝜇 ∈ Mol(𝐹 ): 𝜌(𝐶) divides 𝜌(𝜇) and (𝜌(𝐶) > 1 ⇒ tc(𝐶) = tc(𝜇)).

Proof. We first assume that  can form 𝐹 without moving any formed molecule. This implies that there exists a time 𝑡𝑛 > 0 such 
that the disposal of the robots in 𝐶(𝑡𝑛) equals 𝐹 and no molecule is moved in 𝐶(𝑡𝑖) for each 𝑡𝑖 < 𝑡𝑛. In this case, we have from [16]

that property (1) holds.

In what follows, we assume that  must move some molecules to form 𝐹 . We also assume 𝜌(𝐶) > 1, otherwise both properties (1) 
and (2) are trivially verified. Let 𝔼 ∶ 𝐶 = 𝐶(𝑡0), 𝐶(𝑡1), … be the execution of the algorithm . According to Remark 1, one or more 
sets of 𝜌(𝐶(𝑡0)) pairwise equivalent robots move synchronously. Let 𝐶(𝑡𝑘), 𝑘 > 0, be the first configuration containing molecules. If 
𝐶(𝑡𝑘) contains more than one molecule, according to the synchronous moves and to the symmetricity of 𝐶 , then (𝑖) in 𝐶(𝑡𝑘) there is 
one or more sets of 𝜌(𝐶(𝑡0)) molecules, (𝑖𝑖) in 𝐶(𝑡𝑘), the molecules in each set are all equivalent, (𝑖𝑖𝑖) 𝜌(𝐶(𝑡𝑘)) divides 𝜌(𝐹 ) and it is 
a multiple of 𝜌(𝐶(𝑡0)), and (𝑖𝑣) the center of 𝐶(𝑡0) and that of the configuration made by the formed molecules coincide. Then, from 
𝐶(𝑡𝑘) on, each move planned by  maintains at least the same symmetricity 𝜌(𝐶(𝑡0)) and the same type of center until 𝐹 is formed. 
Then, 𝜌(𝐶(𝑡0)) divides 𝜌(𝐹 ) and the center of the formed molecules is maintained. Summarizing, property (1) must hold.

If 𝐶(𝑡𝑘) contains just one molecule 𝜇, then it must be formed around the center of the configuration so that 𝑡𝑐(𝜇) = 𝑡𝑐(𝐶(𝑡0)). 
Moreover, even in this case  makes 𝜌(𝐶(𝑡0)) equivalent robots move synchronously, and hence 𝜌(𝜇) must be a multiple of 𝜌(𝐶(𝑡0)). 
Summarizing, property (2) must hold. □

It is well known that the synchronization schedulers induce the following hierarchy (see, e.g. [30]): FSYNC robots are more 
powerful (i.e., they can solve more tasks) than SSYNC robots, that in turn are more powerful than ASYNC robots. As a consequence, 
any impossibility result stated for FSYNC robots also holds for SSYNC and ASYNC robots. This implies that the above result also holds 
when SSYNC and ASYNC robots are considered.

4. The Tetris-like MPF problem

In this section, we introduce Tetris-Like MPF (TL-MPF for short), a particular version of the MPF problem. TL-MPF will be used 
6

as a case study of the MOBLOT model in order to appreciate its facets in grids.
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Fig. 6. (left) A configuration containing only robots and such that 𝜌(𝐶) = 4. (right) A connected pattern 𝐹 with 𝜌(𝐹 ) = 2 (tetrominoes have a gray background color).

In TL-MPF all robots are identical (they are not colored), a molecule is formed by exactly four robots, and four robots form a 
molecule if they are disposed as a possible tetromino [26].1 A tetromino is a geometric shape composed of four squares connected 
orthogonally (i.e., at the edges and not the corners). It follows that here  is composed by the seven possible tetrominoes, and each 
kind of tetromino is denoted by a single character among 𝙻, 𝚃, 𝙹, 𝙸, 𝙾, 𝚂, and 𝚉, according to their shape, see Fig. 5. Concerning 
the matter to be formed,  is composed of just one pattern 𝐹 – i.e.,  = {𝐹 }, where 𝐹 is composed of four or more tetrominoes. 
Notice that, except the minimum number of molecules, there are no other restrictions on 𝐹 and hence it may have any possible 
shape and may even have holes. According to the definition of 𝐹 , the set of initial configurations consists of any configuration 
𝐶 = (𝐺□, 𝑅, 𝜆, Mol = ∅) where 𝑅 has a multiple of 4 and with at least 16 robots. We remark that we do not impose any further 
constraint on 𝐹 , and hence 𝐹 may have holes or may be disconnected.

According to the constraints on the molecule formation provided in Section 2, we know that robots forming any initial configu-

ration 𝐶 are pairwise non-adjacent, and any two tetrominoes formed from 𝐶 by any algorithm cannot overlap. In the following, we 
say that two tetrominoes are adjacent when robots belonging to distinct tetrominoes are adjacent in 𝐺□.

We now specialize Theorem 2 to provide the definition of potentially-formable patterns from any initial configuration 𝐶 of

TL-MPF, i.e., patterns that respect the constraints dictated by Theorem 2 within TL-MPF. Note that, as 𝐶 has an even number of 
robots, if 𝜌(𝐶) = 1 then 𝐶 is necessarily asymmetric. In fact, a robot occupying 𝑐(𝑅) leaves an odd number of robots to constitute a 
configuration with an even symmetricity, which is not possible. This remark implies that, in each initial configuration 𝐶 for TL-MPF, 
the symmetricity induces a partition of all the entities in subsets having the following relevant properties: (1) each set has size equal 
to 𝜌(𝐶), and (2) in each set, the entities are pairwise equivalent. Each set in this partition is called orbit.

In principle, given an initial configuration 𝐶 and a pattern 𝐹 to be formed, it is possible that no algorithm exists for solving

TL-MPF. According to 𝜌(𝐶), we have the following cases:

Corollary 3. Given a configuration 𝐶 and a pattern 𝐹 ∈  , 𝐹 is potentially-formable from 𝐶 if one of the following conditions hold:

1. 𝜌(𝐶) = 1;

2. 𝜌(𝐶) = 2 and

(a) tc(𝐶) = tc(𝐹 ) and 𝜌(𝐹 ) ∈ {2, 4}, or

(b) tc(𝐶) = 2 and {𝚂, 𝚉, 𝙸} ∩ Mol(𝐹 ) ≠ ∅, or

(c) tc(𝐶) = 3 and 𝙾 ∈ Mol(𝐹 );
3. 𝜌(𝐶) = 4 and

(a) tc(𝐶) = tc(𝐹 ) and 𝜌(𝐹 ) = 4, or

(b) tc(𝐶) = 3 and 𝙾 ∈ Mol(𝐹 ).

Proof. The statement follows directly from Theorem 2. In fact, as already observed, since 𝐶 is a configuration defined on 𝐺□, we 
have 𝜌(𝐶) ∈ {1, 2, 4}.

When 𝜌(𝐶) = 1, then property (1) of Theorem 2 holds.

When 𝜌(𝐶) = 2, then, according to the kind of molecules composing 𝐹 , we have the three cases of the claim. The first dictated by 
property (1) of Theorem 2. The second and the third dictated by property (2) of Theorem 2, where {𝚂, 𝚉, 𝙸} are the only molecules 
with simmetricity equal to 2 whereas 𝙾 is the only molecules with simmetricity equal to 4.

When 𝜌(𝐶) = 4, then, according to the kind of molecules composing 𝐹 , we have the two cases of the claim. The first dictated by 
property (1) of Theorem 2; the second dictated by property (2) of Theorem 2, where 𝙾 is the only molecules with simmetricity equal 
to 4. □
7

1 Notice that, in the remainder we use tetromino and molecule as synonyms.
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Fig. 7. Division of mbr(𝑅) into regions based on shape and 𝜌(𝐶). The mbr(𝑅) is shown in blue. Robots with the minimum view are shown in grey only when needed.

5. The algorithm 𝗧𝗟

In this section, we describe an algorithm called 𝖳𝖫 that solves TL-MPF for each pair (𝐶, 𝐹 ), where 𝐶 is an initial configuration 
composed of FSYNC robots and 𝐹 is potentially-formable from 𝐶 . This provides a complete characterization of the feasibility of

TL-MPF. While reading this section, it might be helpful to refer to the running example provided in Section 6.

5.1. Concepts, definitions, and data structures used by 𝖳𝖫

Let 𝐶 = (𝐺□, 𝑅, 𝜆, Mol) be an initial configuration. By mbr(𝑅), we denote the minimum bounding rectangle of 𝑅, that is the 
smallest rectangle (with sides parallel to the edges of 𝐺□) enclosing all robots (cf. Fig. 7). Note that mbr(𝑅) is unique. By 𝑐(𝑅), we 
denote the center of mbr(𝑅). Similarly, mbr(𝐹 ) is defined for the minimum bounding rectangle enclosing the molecules forming 𝐹 .

In 𝖳𝖫, robots encode the perceived configuration into a binary string called lexicographically smallest string and denoted as 
LSS(𝑅). It is computed by robots as follows (cf. [24]). Starting from the least significant bit, they assign a string to each corner of 
mbr(𝑅): the grid enclosed by mbr(𝑅) is analyzed row by row or column by column - the direction is given by the smallest side of 
mbr(𝑅) - and 1 or 0 correspond to the presence or the absence, resp., of a robot for each encountered vertex. From the 4 corners they 
get up to 8 different strings, and the lexicographically smallest one is LSS(𝑅). Note that if two strings obtained from opposite corners 
along opposite directions are equal, then the configuration is rotational, otherwise it is asymmetric.

The robot(s) with minimum view is the one with minimum position in LSS(𝑅) (as for the construction, the position is meant by 
scanning the string from the least significant bit). Fig. 7 can be used for providing examples about the view. In particular: in Fig. 7.(a) 
we have 𝜌(𝐶) = 2, LSS(𝑅) = 0000100 0100010 1010101 0100010 1010101 0100010 0010000; in (b) we have 𝜌(𝐶) = 1, LSS(𝑅)
= 0000010 0001001 0100000 1001010 0010101 1001010 0100101. A similar approach can be used to associate a string made of 
letters to 𝐹 (i.e., if the analyzed vertex is occupied by a robot forming molecule 𝚉, then 𝚉 is inserted in the string, otherwise, if the 
vertex is unoccupied, 𝚇 is inserted).

𝖳𝖫 assumes that robots are assigned to regions of mbr(𝑅) as follows (cf. Fig. 7). If 𝜌(𝐶) = 4 then mbr(𝑅) is a square and hence 
it is partitioned by using two diagonals. If 𝜌(𝐶) = 2 and mbr(𝑅) is a square, it is partitioned into 2 equal regions by a line passing 
through 𝑐(𝑅) and parallel to the sides of mbr(𝑅) where the robots with minimal view reside.2 If 𝜌(𝐶) = 1 and mbr(𝑅) is a square, it 
is partitioned into 2 equal regions by a line passing through 𝑐(𝑅) and parallel to the side of mbr(𝑅) where the robot with minimum 
view resides. If 𝜌(𝐶) = 1, 2 and mbr(𝑅) is a rectangle, it is partitioned into 2 equal regions by a line passing through 𝑐(𝑅) and parallel 
to the shortest sides. Each robot is assigned (or belongs) to one of the formed regions, unless it is on a half-line of the lines used for 
partitioning mbr(𝑅); in this case, the robot belongs to the region to the right of the half-line. Each side 𝓁 of mbr(𝑅) entirely contained 
in a region is said to be “associated with” that region.

In Figs. 7.(a) and (b), the mbr(𝑅) is a square and it is partitioned into 2 equal regions by a line passing through 𝑐(𝑅) and parallel to 
the sides of mbr(𝑅) where the robots with minimum view reside; in Fig. 7.(c) we have 𝜌(𝐶) = 2 while in Fig. 7.(d) we have 𝜌(𝐶) = 1. 
However, in both the cases the mbr(𝑅) is a rectangle and it is partitioned into 2 equal regions by a line passing through 𝑐(𝑅) and 
parallel to the shortest sides; in Fig. 7.(e), we have 𝜌(𝐶) = 4, mbr(𝑅) is a square, and hence it is partitioned by using two diagonals.

Two robots in 𝐶 are called partial-molecule if they are adjacent (the term refers to the possibility that the robots can subsequently 
be joined by others until a molecule is obtained). Note that, by Property 1, a partial-molecule cannot exist in initial configurations. 
Two robots in 𝐶 are called point-joined-robots if they are aligned along the diagonal of a cell of the grid and their corresponding 
monominoes in the dual graph intersect in one point. We recall that Mol is part of the configuration and it is the set of all the 
molecules perceived by the robots during the Look phase; During the Look phase, robots perceive also 𝐹 ′ ⊆ Mol, that is the set of 
formed molecules that are already assembled to form the matter. If the algorithm works correctly, it should be that 𝐹 ′ is a sub-pattern 
of 𝐹 .
8

2 If a robot with minimum view is on a corner, it is assumed to reside on the clockwise side of mbr(𝑅).
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Table 1

The decomposition of TL-MPF into tasks.

problem sub-problems task

TL-MPF

Making working Space 𝑇1
Forming 𝜌(𝐶) new molecules 𝑇2
Forming one central molecule 𝑇3
Adding molecules to pattern 𝑇4
Termination 𝑇5

5.2. On the structure of the algorithm

The algorithm 𝖳𝖫 has been designed according to the methodology proposed in [31]. It is based on a preliminary decomposition 
approach: the problem is divided into a set of sub-problems so that each sub-problem is simple enough to be thought as a task

that can be performed by (a subset of) entities. Table 1 (that will be better explained later) shows the decomposition into tasks for

TL-MPF. More details will be given in Table 2. 𝖳𝖫 is responsible for allowing entities to detect which task must be accomplished in 
any configuration observed during an execution. This is realized by assigning a predicate 𝑃𝑖 to task 𝑇𝑖, for each 𝑖. The predicate is 
evaluated in the Compute phase on the basis of the view acquired during the Look phase. As soon as entities recognize that a task 
𝑇𝑖 must be accomplished, a move 𝑚𝑖 – associated to that task, is performed by a subset of designed entities.

Predicates 𝑃𝑖 are designed to guarantee the following required properties:

• 𝖯𝗋𝗈𝗉1: each 𝑃𝑖 must be computable on the configuration perceived in each Look phase;

• 𝖯𝗋𝗈𝗉2: 𝑃𝑖 ∧ 𝑃𝑗 = 𝚏𝚊𝚕𝚜𝚎, for each 𝑖 ≠ 𝑗;

• 𝖯𝗋𝗈𝗉3: for each possible perceived configuration there must exists a predicate 𝑃𝑖 evaluated as true.

If we guarantee that all these properties hold, then the algorithm can be used in the Compute phase as follows:

– if an entity executing the algorithm detects that predicate 𝑃𝑖 holds, then it simply performs move 𝑚𝑖 associated with 𝑇𝑖.

According to [31], in order to make 𝖯𝗋𝗈𝗉2 valid, 𝑃𝑖 is defined as follows:

𝑃𝑖 ≡ 𝚙𝚛𝚎𝑖 ∧ ¬(𝚙𝚛𝚎𝑖+1 ∨ 𝚙𝚛𝚎𝑖+2 ∨…∨ 𝚙𝚛𝚎5) (1)

where 𝚙𝚛𝚎𝑖 is the precondition3 that characterizes 𝑇𝑖. Accordingly, in the Compute phase, each entity evaluates - with respect to 
the perceived configuration and the provided input - the preconditions starting from 𝚙𝚛𝚎5 and proceeding in the reverse order until 
a true precondition is found. In case all predicates 𝑃5, 𝑃4, … , 𝑃2 are evaluated false, then task 𝑇1, whose precondition is simply 𝚝𝚛𝚞𝚎, 
is performed. This guarantees that 𝖯𝗋𝗈𝗉3 holds.

In the subsequent five sections, we give a description of each task 𝑇𝑖, by including also details about the corresponding move 𝑚𝑖

and precondition 𝚙𝚛𝚎𝑖. The reader will be able to observe that, from the definition of the preconditions, it follows that also 𝖯𝗋𝗈𝗉1
holds.

5.3. Tasks 𝑇1 - making working space

The goal of this task is to increase the distance between robots. In fact, in an initial configuration, robots might be too close 
to each other (e.g., when robots occupy alternatively the vertices of the grid) and the movements might cause the formation of 
undesired partial-molecules.

During 𝑇1, according to Remark 1, robots move away from 𝑐(𝑅). At the end of the task, consecutive orbits of robots (with respect 
to the distance from 𝑐(𝑅) of the robots composing the orbit) are at distance at least 𝛿 = 2 from each other and there is also an empty 
space 𝑄 in the center of the configuration that contains at most the robots of the first orbit (the closest to 𝑐(𝑅)). The space 𝑄 is a 
square centered in 𝑐(𝑅) and its side is side(𝑄) = 2𝑆 , where 𝑆 =max{𝑤(𝐹 ), ℎ(𝐹 )} and 𝑤(𝐹 ) and ℎ(𝐹 ) are the width and the height, 
resp., of mbr(𝐹 ). The fixed distance 𝛿 guarantees that robots have enough space for moving and creating a molecule.

Within regions, robots are numbered as follows:

• Case 𝜌(𝐶) = 2, 4. Let 𝓁 be the side of mbr(𝑅) associated with the region, and 𝑣 be the leftmost vertex of 𝓁.4 Robots are numbered 
starting from 𝑣, proceeding along 𝓁, then continuing in order with all the lines parallel to 𝓁. By assuming that the region contains 
𝑡 robots, the first met robot is numbered as 𝑟𝑡 and the remaining, in order, as 𝑟𝑡−1, … , 𝑟1. It is clear that the robots in a region all 
belong to different orbits and therefore the numbering of robots can be understood as a numbering for the orbits. Hence, orbits 
are denoted as 𝑂𝑡, 𝑂𝑡−1, … , 𝑂1.

3 Specific conditions that must be verified in order to start a given task.
9

4 Since robots share chirality, for each side they can distinguish between the two ending vertices: one on the left and one on the right.
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• Case 𝜌(𝐶) = 1. The two defined regions may have a different number of robots inside, say 𝑡1 and 𝑡2. Robots are numbered as 
in the previous cases in both the regions, but they are denoted as 𝑟̇𝑡1 , ..., 𝑟̇1 in the region containing the robot with minimum 
view, and as 𝑟̈𝑡2 , ..., ̈𝑟1 in the other region. Hence, orbits are denoted as 𝑂̇𝑡1 , 𝑂̇𝑡1−1, … , 𝑂̇1, and 𝑂̈𝑡2 , 𝑂̈𝑡2−1, … , 𝑂̈1. Let 𝑂𝑡, … , 𝑂1, 
with 𝑡 = 𝑡1 + 𝑡2, such that 𝑂𝑡 = 𝑂̇𝑡1 , 𝑂𝑡−1 = 𝑂̈𝑡2 and the remaining orbits 𝑂𝑡−2, … , 𝑂1 are defined by keeping orbits from the two 
regions in an alternating fashion as long as possible.

Let 𝑟 be a robot in a region associated with a side 𝓁, and assume 𝑟 ∈𝑂𝑖: cdQ(𝑂𝑖) represents the “current distance” of 𝑂𝑖 from 𝑄 (that 
is the distance between 𝑟 and the side of 𝑄 parallel to 𝓁), it is negative if 𝑟 is inside 𝑄; fdQ(𝑂𝑖) represents the “final distance” of 𝑂𝑖

from 𝑄, that is the distance that robots on 𝑂𝑖 must have when the orbit is correctly positioned. These functions are formally defined 
as follows. When 𝜌(𝐶) = 2, 4:

• fdQ(𝑂1) =max{𝑆 + 1, cdQ(𝑂1)}
• fdQ(𝑂𝑖) =max{fdQ(𝑂𝑖−1) + 𝛿, cdQ(𝑂𝑖−1)}, ∀𝑖 > 1

When 𝜌(𝐶) = 1:

• fdQ(𝑂1) =max{𝑆 + 1, cdQ(𝑂1)}
• fdQ(𝑂𝑖) =max{fdQ(𝑂𝑖−1) + 𝛿, cdQ(𝑂𝑖−1)}, ∀𝑖 > 1, 𝑖 < 𝑡 − 1
• fdQ(𝑂𝑡) = fdQ(𝑂𝑡−1) =max{fdQ(𝑂𝑡−2) + 𝛿, cdQ(𝑂𝑡−2)}

The move planned for this task works as follows:

• Move 𝑚1: each robot in 𝑂𝑗 , for each 𝑗 > 1, moves perpendicularly to the side 𝓁 of mbr(𝑅) which it is associated to, increasing its 
distance from 𝑐(𝑅), until cdQ(𝑂𝑗 ) = fdQ(𝑂𝑗 ).

Note that the task makes all robots moving concurrently. By defining the two Boolean variables

• 𝑃 (𝑘) ≡ each orbit 𝑂𝑖, 𝑖 > 𝑘, is correctly positioned with respect to fdQ();
•  ≡ square 𝑄 is formed with at most one orbit inside,

it can be observed that task 𝑇1 ends when both 𝑃 (1) and  hold.

5.4. Task 𝑇2 - forming 𝜌(𝐶) new molecules

The goal of this task is to create 𝜌(𝐶) new molecules to be added to the matter 𝐹 ′ formed so far. Let 𝐵′ be a Boolean variable that 
is true when one among the conditions 1, 2.a, and 3.a of Corollary 3 hold. Notice that in all such cases 𝜌(𝐹 ) is a multiple of 𝜌(𝐶), 
and when 𝜌(𝐶) > 1 then 𝐶 and 𝐹 have the same type of center. Another condition that must be satisfied is that |𝑀𝑜𝑙 ⧵ 𝐹 ′| = 0, i.e., 
there are no molecules already formed that must be moved.

In order to be executed, 𝑇2 requires that 𝐵′ holds and 𝑇1 is completed (i.e., 𝑃 (1) and  hold). If ParMol denotes the number of 
partial-molecules formed, then the precondition of 𝑇2 is the following:

• 𝚙𝚛𝚎2 ≡𝐵′ ∧ |𝑀𝑜𝑙 ⧵ 𝐹 ′| = 0 ∧ ((𝑃 (1) ∧) ∨ ParMol = 𝜌(𝐶)).

In this task, a relevant issue is that robots have to agree on which molecule 𝜇 in 𝐹 must be formed (in 𝜌(𝐶) copies).

Definition 2 (Disassembling sequence). Let 𝐹 be a pattern and 𝓁 be a side of mbr(𝐹 ) encoded with the minimal string within LSS(𝐹 ). 
Perform the following iterative process: (1) mark all molecules in 𝐹 and create an empty ordered list DS(𝐹 ), (2) with respect to the 
marked molecules only, compute the set 𝐸 of all the molecules that can be “extracted” from 𝐹 through 𝓁5; (3) insert in DS(𝐹 ) one of 
the molecules 𝜇 ∈ 𝐸 including a robot of minimum view, (4) unmark all the molecules belonging to the same orbit of 𝜇, (5) iterate 
from (2) as long as marked orbits exist. The order of the elements belonging DS(𝐹 ) constitutes a disassembling sequence for 𝐹 .

For instance, DS(𝐹 ) = (𝙹, 𝙾, 𝚉) for the pattern 𝐹 shown in Fig. 6 (where 𝓁 coincides with the left and right sides). The algorithm 
selects the molecule 𝜇 to build by comparing the formed sub-pattern 𝐹 ′ with 𝐹 . See also Fig. 11. According to this comparison, the 
algorithm searches for molecules 𝜇′ and 𝜇′′ in 𝐹 ′ having minimum and maximum positions in DS(𝐹 ), resp.; if 𝜇′′ is not the last 
element in DS(𝐹 ), then 𝜇 is the next to 𝜇′′ in DS(𝐹 ), otherwise it precedes 𝜇′ in DS(𝐹 ). In this way, the disassembling sequence in 
DS(𝐹 ) is used to correctly compose the pattern. See the running example in Section 6 and in particular Fig. 11 in which the first 
molecule formed is necessarily 𝙾.
10

5 I.e., when the molecule’s projection on 𝓁 is not obstructed by any other molecule.
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Let 𝑂∗
1 , 𝑂∗

2 , 𝑂∗
3 , 𝑂∗

4 be the consecutive orbits closest to 𝑐(𝑅) and containing robots not involved in any molecule. The move 
planned for this task works as follows:

• Move 𝑚2:

– If no partial-molecule is formed, then each robot in 𝑂∗
1 moves toward the robot in 𝑂∗

2 belonging to the same region to form a partial-

molecule,

– else, each robot closest to 𝑐(𝑅), excluding those forming the partial-molecule, i.e. the robots of the former orbits 𝑂∗
3 or 𝑂∗

4 , moves 
toward the partial-molecule within the same region toward a position adjacent to the partial-molecule and according to molecule 𝜇 to 
be formed.

The configuration obtained after task 𝑇2 contains 𝜌(𝐶) new molecules.

5.5. Tasks 𝑇3 - forming one central molecule

This task processes the configurations of robots fulfilling one among conditions 2.b, 2.c, and 3.b of Corollary 3, according to the 
pattern 𝐹 that must be potentially-formable from 𝐶 .

This task is alternative to 𝑇2 as it builds a single molecule 𝜇 in the center of 𝐶 , usually when it is required to break the symmetry 
by means of a molecule. Let 𝐵 be a Boolean variable that it is true if one among the conditions 2.b, 2.c, and 3.b from Corollary 3

holds. Note that 𝑇3 activates only when the square 𝑄 is formed. Let PJR be a boolean variable that is true if there exist two point-

joined-robots. In particular, the precondition of 𝑇3 is equal to:

• 𝚙𝚛𝚎3 ≡𝐵 ∧ ((𝑃 (1) ∧ |𝑀𝑜𝑙| = 0) ∨ (𝑃 (2) ∧ (ParMol = 1 ∨ PJR))).

Robots must agree on which molecule in 𝐹 must be formed as first. It corresponds to the molecule fulfilling conditions 2.b, 2.c, 
and 3.b of the definition of potentially-formable pattern in Corollary 3 and with the highest position on the disassembling sequence 
of 𝐹 . Four robots belonging to one or two orbits 𝑂1, 𝑂2 (according whether 𝜌(𝐶) = 4 or 𝜌(𝐶) = 2, resp.) closest to 𝑐(𝑅) are selected. 
𝜇 is embedded on the grid so that the center of the molecule coincides with 𝑐(𝑅). See Fig. 9 and the running example in Section 6.

The move planned for this task works as follows:

• Move 𝑚3:

– if 𝜌(𝐶)=2, then first robots in 𝑂1 move toward 𝑐(𝑅) until forming a partial-molecule when tc(𝐶) = 2 and 𝜇 ∈ {𝚂, 𝚉, 𝙸}, or reaching 
the minimum distance between them when tc(𝐶) = 3 and 𝜇 = 𝙾. Then robots in 𝑂2 move toward robots in 𝑂1 by forming the desired 
molecule 𝜇;

– if 𝜌(𝐶)=4, robots in 𝑂1 move toward 𝑐(𝑅) until forming 𝜇 = 𝙾.

The task ends when all the 4 moving robots reach their targets and the molecule is built with its center in 𝑐(𝑅). At the end of task 
𝑇3, a new configuration 𝐶 ′ is obtained with 𝜌(𝐶 ′) = 1.

5.6. Task 𝑇4 - adding molecules to pattern

During this task, the molecules built during 𝑇2 or 𝑇3 move to start forming 𝐹 or to be aggregated to 𝐹 ′ (created by previous 
executions of this task). We define quadrant any of the four areas into which the square 𝑄 is divided by two orthogonal lines parallel 
to the sides of 𝑄 and intersecting in 𝑐(𝑅). To test if the pattern creation has already started, robots check whether (1) there exists a 
sub-pattern 𝐹 ′ in one of the four quadrants, or (2) there exists a sub-pattern 𝐹 ′ embedded so that it is centered in 𝑐(𝑅). This allows 
robots to evaluate the following precondition of 𝑇4 :

• 𝚙𝚛𝚎4 ≡ |𝑀𝑜𝑙 ⧵ 𝐹 ′| > 0.

During this task, 𝜌(𝐶) can be 1, 2 or 4. To correctly determine the move to be performed, the algorithm considers four disjoint 
cases, which are defined according to 𝜌(𝐶), 𝐹 ′, and Mol. Hence, the move planned for this task works as follows:

• Move 𝑚4:

– Case 1: 𝜌(𝐶) = 1, |𝐹 ′| = 0, Mol = {𝜇}, and 𝜇 is centered in 𝑐(𝑅). It is clear that the current configuration 𝐶 has been created in 𝑇3. 
In this case, 𝑚4 breaks the symmetry by simply moving 𝜇 away from the center in an arbitrary direction. Notice that, in the formed 
configuration 𝐶 ′ we have 𝜌(𝐶 ′) = 1, |𝐹 ′| = 0, Mol = {𝜇}, and 𝜇 is no longer centered in 𝑐(𝐶 ′).

– Case 2: 𝜌(𝐶) = 1, |𝐹 ′| = 0, Mol = {𝜇}, and 𝜇 is not centered in 𝑐(𝑅). The current configuration has been created in 𝑇4 (Case 1), 
or by 𝑇2. 𝐹 is meant to be embedded in the quadrant 𝑞 of 𝑄 closest to 𝜇, and 𝑚4 moves 𝜇 toward the position in the embedded 𝐹
corresponding to the minimum position of its shape in the disassembling sequence DS(𝐹 ). Concerning how 𝐹 is embedded into 𝑞: let 𝓁
be a side of mbr(𝐹 ) used in the disassembling sequence (cf. Definition 2), and let 𝑐 be the corner of 𝓁 with larger label; 𝑐 is mapped 
on the vertex in 𝑞 closest to 𝑐(𝑅), and 𝓁 is mapped on the counter-clockwise internal side of 𝑞. Notice that this embedding is used 
11

whenever the configuration is asymmetric.
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Table 2

Tables formalizing the most important details about 𝖳𝖫 .

var definition

𝑃 (𝑘) each orbit 𝑂𝑖, 𝑖 > 𝑘, is correctly positioned with respect to fdQ()
 square 𝑄 is formed with at most one orbit inside

𝐵 one among the conditions 2.b, 2.c, and 3.b of Corollary 3 holds

𝐵′ one among the conditions 1, 2.a, and 3.a of Corollary 3 holds

PJR there exist two point-joined-robots

(a) The basic Boolean variables used to define all the tasks’ preconditions. They 
are formally introduced along Sections 5.3-5.7.

pre definition

𝚙𝚛𝚎1 𝚝𝚛𝚞𝚎
𝚙𝚛𝚎2 𝐵′ ∧ |𝑀𝑜𝑙 ⧵ 𝐹 ′| = 0 ∧ ((𝑃 (1) ∧) ∨ ParMol = 𝜌(𝐶))
𝚙𝚛𝚎3 𝐵 ∧ ((𝑃 (1) ∧ |𝑀𝑜𝑙| = 0) ∨ (𝑃 (2) ∧ (ParMol = 1 ∨ PJR)))
𝚙𝚛𝚎4 |𝑀𝑜𝑙 ⧵ 𝐹 ′| > 0
𝚙𝚛𝚎5 𝐹 is formed

(b) Tasks’ preconditions formulated according to the Boolean variables in 
Table 2a. We recall that ParMol denotes the number of partial-molecules formed 
(cf. Section 5.4) and 𝐹 ′ ⊂ Mol is the set of molecules already formed and 
observed by robots during the Look phase.

problem sub-problems task move transitions

TL-MPF

Making working Space 𝑇1 𝑚1 𝑇2, 𝑇3
Forming 𝜌(𝐶) new molecules 𝑇2 𝑚2 𝑇4
Forming one central molecule 𝑇3 𝑚3 𝑇4
Adding molecules to pattern 𝑇4 𝑚4 𝑇2, 𝑇5
Termination 𝑇5 𝑚5 𝑇5

(c) The decomposition of TL-MPF into tasks exploited by 𝖳𝖫. The last column 
shows the transitions among tasks generated by the provided algorithm. Details 
about moves 𝑚1, … , 𝑚5 are provided in Sections 5.3-5.7.

– Case 3: 𝜌(𝐶) = 1 and |𝐹 ′| > 0. In this case, there exists only one molecule 𝜇 which is not part of 𝐹 ′. This is due to the fact that 
molecules are assembled one at time since 𝜌(𝐶) = 1. Move 𝑚4 makes 𝜇 moving toward its target identified by comparing 𝐹 ′ with the 
position of 𝜇 in the disassembling sequence of 𝐹 .

– Case 4: 𝜌(𝐶) > 1 and |Mol ⧵𝐹 ′| = 𝜌(𝐶). In this case, 𝐹 ′ is embedded so that it is centered in 𝑐(𝑅). There are exactly 𝜌(𝐶) molecules 
which are not part of 𝐹 ′, and they must be moved toward their final targets. The final targets are obtained by comparing 𝐹 with 𝐹 ′. 
During the movements, each molecule remains in the same region. The last time this task is executed, 𝐹 is finally formed.

5.7. Task 𝑇5 - termination

It refers to the termination problem, that is the task in which each entity recognizes that the pattern is formed. The precondition 
is the following:

• 𝚙𝚛𝚎5 ≡ “F is formed”.

When this task is recognized, each entity maintains the current position and hence 𝑚5 corresponds to the nil movement.

5.8. Formalization of 𝖳𝖫

The previous five sections have provided a detailed description for each task 𝑇𝑖 in which the TL-MPF problem has been de-

composed. They also include details about the corresponding move 𝑚𝑖 and precondition 𝚙𝚛𝚎𝑖, 1 ≤ 𝑖 ≤ 5. Table 2 summarizes all 
the Boolean variables used to define the tasks’ preconditions and all the preconditions, respectively, for such tasks. A predicate 
𝑃𝑖 = 𝚙𝚛𝚎𝑖 ∧ ¬(𝚙𝚛𝚎𝑖+1 ∨ 𝚙𝚛𝚎𝑖+2 ∨ … ∨ 𝚙𝚛𝚎5) is assigned to each task 𝑇𝑖. According to this definition of the predicates, 𝖳𝖫 works 
as follows: in the Compute phase, each entity evaluates - with respect to the perceived configuration and the provided input - the 
preconditions starting from 𝚙𝚛𝚎5 and proceeding in the reverse order until a true precondition is found.

6. Running example

In this section, we show the effectiveness of algorithm 𝖳𝖫 with an extended example. In particular, we simulate the running of 
𝖳𝖫 by starting from the configuration 𝐶1 shown in Fig. 8.left. Notice that in what follows, when a predicate 𝑃𝑖 holds with respect 
to the current configuration 𝐶 , we say that 𝐶 is in 𝑇𝑖.
12

As 𝜌(𝐶) = 4 in 𝐶1, Fig. 8.right shows the subdivision into four regions and the subset of six robots belonging to one region.
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Fig. 8. Configuration 𝐶1 in 𝑇1 and its subdivision into regions.

Fig. 9. (left) Configuration 𝐶2 ; (right) Configuration 𝐶3 .

Since in 𝐶 there are no molecules formed, then 𝚙𝚛𝚎5 and 𝚙𝚛𝚎4 are false. 𝑃 (1) is false and there is no partial-molecule or point-

joined robots so 𝚙𝚛𝚎3 is false. Since 𝐵′ is false, then 𝚙𝚛𝚎2 is false. As 𝚙𝚛𝚎1 = 𝚝𝚛𝚞𝚎, by Equation (1), then 𝑃1 = ¬(𝚙𝚛𝚎2 ∨𝚙𝚛𝚎3 ∨𝚙𝚛𝚎4 ∨
𝚙𝚛𝚎5) and hence 𝐶1 is in 𝑇1.

Move 𝑚1 is designed to make both 𝑃 (1) and  true. Since 𝜌(𝐶) = 4, 𝑚1 moves all the robots but the 4 closest to 𝑐(𝑅) so as to 
enlarge the mbr(𝑅). This step ensures that robots have enough space to form the designed molecules in the successive tasks. Actually, 
from 𝐶1, both 𝑃 (1) and  becomes true as soon as configuration 𝐶2 is achieved, where exactly 4 robots remain inside the square 𝑄
(cf. Fig. 9). When this happens, still no molecules are yet formed, that is 𝚙𝚛𝚎5, 𝚙𝚛𝚎4 are false. However 𝚙𝚛𝚎3 is true: 𝐵 is true since 
condition 3.b of Corollary 3 holds and |Mol| = 0, hence 𝐶2 belongs to 𝑇3.

Move 𝑚3 moves 4 robots inside 𝑄 to form the first molecule 𝙾 in the center of the configuration. Once this happens, 𝐶3 is 
obtained, 𝚙𝚛𝚎5 is still false, |𝑀𝑜𝑙 ⧵ 𝐹 ′| = 1, 𝚙𝚛𝚎4 becomes true and hence the configuration is in 𝑇4.

Notice that move 𝑚4 is defined by cases. Since in 𝐶3 we have that 𝜌(𝐶) = 1, |𝐹 ′| = 0, Mol = {𝜇}, and 𝜇 is centered in 𝑐(𝑅), then 
Case 1 applies. As a consequence, 𝑚4 breaks the symmetry by moving the molecule away from the center in an arbitrary direction. 
The obtained configuration is still in 𝑇4, but now Case 2 applies. In fact, 𝜌(𝐶4) = 1, |𝐹 ′| = 0, Mol = {𝜇}, and 𝜇 is not centered in 𝑐(𝑅). 
In this case, 𝐹 is meant to be embedded in the quadrant of 𝑄 closest to 𝜇, and 𝑚4 moves 𝜇 toward the position in the embedded 𝐹
corresponding to the minimum position of its shape in the disassembling sequence DS(𝐹 ). It is easy to observe that it is sufficient a 
single LCM cycle to move the molecule in its final destination, as shown in Fig. 10.left. The obtained configuration is denoted as 𝐶4
and it is still in 𝑇4, but now Case 3 applies.

In 𝐶4, clearly 𝚙𝚛𝚎5 is false, |𝑀𝑜𝑙 ⧵ 𝐹 ′| = 0 hence 𝚙𝚛𝚎4 is false. As 𝜌(𝐶) = 1, 𝐵 is false and so 𝚙𝚛𝚎3 is, while 𝐵′ holds since 
condition 1 of Corollary 3 holds. Both  and 𝑃 (1) hold, so the configuration is in 𝑇2.

Four consecutive orbits of robots are selected, 𝑂∗
1 , 𝑂

∗
2 , 𝑂

∗
3 , 𝑂

∗
4 . Since 𝜌(𝐶) = 1 there is only one robot per orbit. Hence, the robot in 

𝑂∗
1 moves toward the robot in 𝑂∗

2 belonging to the same region to form a partial-molecule and the configuration is still in 𝑇2. Then, 
the second condition of move 𝑚2 holds, so the robots closest to 𝑐(𝑅), excluding those forming the partial-molecule, move toward 
the partial-molecule within the same region in a position adjacent to the partial-molecule (according to molecule 𝜇 to be formed). 
13

According to Definition 2, the next molecule to be formed is a 𝚉.
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Fig. 10. (left) Configuration 𝐶4 after 𝑇4 ; (right) Configuration 𝐶5 .

Fig. 11. From left: the pattern 𝐹 and the side l; the view of robots; the disassembly sequence. The assembly sequence is OZJ for the first region, ZOJ for the second 
one.

Fig. 11.right shows the assembling and disassembling sequence of the two regions of the pattern 𝐹 (Fig. 11.left), according to 
the minimal string associated with 𝐹 (Fig. 11.middle). In particular the assembly sequence of the first region is OZJ because the 
algorithm was forced to create a molecule 𝙾 as first, whereas the sequence for the second region is ZOJ.

The formation of molecule 𝚉 is done as shown in Fig. 10.right, where configuration 𝐶5 is represented.

In 𝐶5, 𝚙𝚛𝚎5 is false, but 𝚙𝚛𝚎4 is true. In fact, in 𝑇4 - Case 3 - the algorithm moves the new molecule created by 𝑇2 toward 𝐹 ′, 
positioning it accordingly to the embedding of 𝐹 . Once this happens, a new configuration belonging to 𝑇2 is obtained, see 𝐶6 in 
Fig. 12.left, hence the execution of the algorithm cycles among 𝑇2 and 𝑇4 until pattern 𝐹 is formed, i.e. configuration 𝐶7, shown in 
Fig. 12.right is achieved, where clearly 𝚙𝚛𝚎5 holds.

7. Correctness

In this section, we formally prove that algorithm 𝖳𝖫 solves the TL-MPF problem. According to the methodology proposed 
in [31], the correctness of the proposed algorithm can be obtained by proving that all the following properties hold:

H1: The algorithm never generates unsolvable configurations. According to Corollary 3, this implies that each configuration 𝐶(𝑡), 𝑡 > 0, 
generated by the algorithm is potentially-solvable.

H2: The movement of each robot is collision-free.

H3: For each task 𝑇𝑖, the transitions from 𝑇𝑖 to any other task are exactly those declared in Table 1.

H4: Each transition in Table 1 occurs after a finite number of cycles. This means that the generated configurations can remain in the 
same task only for a finite number of cycles.

Since these properties must be proved for each transition/move, then in the following we provide a specific lemma for each task. 
Notice that Property H3 does not directly imply that robots/molecules “complete” each task in a finite amount of time. In fact, there 
is a cycle created by transitions between tasks 𝑇2 and 𝑇4. Anyway, a final theorem will assess the correctness of 𝖳𝖫 by making use 
of all the proved properties H1–H4 for each task and by also showing that there is a finite number of transitions between tasks 𝑇2
and 𝑇4.
14

Lemma 4. Let 𝐶 be a configuration in 𝑇1. From 𝐶 , 𝖳𝖫 eventually leads to a configuration belonging to 𝑇2 or 𝑇3.



Theoretical Computer Science 996 (2024) 114510S. Cicerone, A. Di Fonso, G. Di Stefano et al.

Fig. 12. (left) Configuration 𝐶6 ; (right) Configuration 𝐶7 .

Proof. During task 𝑇1 robots move away from 𝑐(𝑅) to leave a square 𝑄 of side 2𝑆 centered in 𝑐(𝑅) with at most one orbit inside, 
while leaving at least 𝛿 space between consecutive orbits. Let us analyze properties H𝑖, for 1 ≤ 𝑖 ≤ 4, separately.

H1: By means of move 𝑚1, all the orbits but 𝑂1 move farthest from 𝑐(𝑅). During the movements, robots move synchronously 
keeping the same symmetricity of the initial configuration and the same type of center. The final targets fdQ() reached by 
the robots are defined so that each orbit is at a different distance from the center 𝑐(𝑅). Due to the synchronicity of the 
movements, 𝜌(𝐶) is maintained the same along all the movements and after the robots reach their targets.

H2: During task 𝑇1, robots increase their distance from 𝑐(𝑅) and from other robots moving in a perpendicular direction with 
respect to the side of 𝑚𝑏𝑟(𝑅) to which they are associated with. Orbits move all together and the targets for robots are 
defined so that the distance between consecutive orbits is at least 𝛿 therefore collisions cannot occur during the movements 
of the robots.

H3: We show that each configuration generated from 𝐶 remains in 𝑇1 until all robots reach their targets. When 𝑇1 starts, no 
molecules are yet formed therefore 𝚙𝚛𝚎5 is false. During the movements of the robots, no molecules are built so 𝚙𝚛𝚎4
remains false and the configuration does not belong to 𝑇4. Therefore at the end of 𝑇1 the configuration is either in 𝑇2 or in 
𝑇3.

H4: As long as the configuration remains in 𝑇1, the distance of each moving robot from its target decreases. Hence, the task 
ends within a finite number of computational cycles. □

Lemma 5. Let 𝐶 be configuration in 𝑇2. From 𝐶 , 𝖳𝖫 eventually leads to a configuration belonging to 𝑇4 .

Proof. During task 𝑇2, 𝜌(𝐶) new molecules are built. Let us analyze properties H𝑖, for 1 ≤ 𝑖 ≤ 4, separately.

H1: During this task, the algorithm moves 𝜌(𝐶) orbits of robots and builds 𝜌(𝐶) molecules synchronously working by regions. 
Hence the symmetricity of the configuration is kept during the execution of 𝑇2. If there are only four robots left and they 
move to form the last molecule, at least two of these four robots are on the sides of mbr(𝑅) holding its shape. When the two 
outermost robots are on mbr(𝑅), both mbr(𝑅) and the type of center do not change during the movements of 𝑂∗

1 toward 
𝑂∗
2 . When all the four robots are on mbr(𝑅), then the shape of mbr(𝑅) and the type of center change during the movement 

of 𝑂∗
1 . However the type of center changes only either horizontally or vertically, never in both directions so it can never 

coincide with tc(𝐹 ), eventually changing 𝜌(𝐶). So 𝑐(𝑅) ≠ 𝑐(𝐹 ) during all the execution of 𝑇2 and 𝜌(𝐶) is kept until the end 
of the task.

H2: During task 𝑇2 the four orbits of robots 𝑂∗
1 , 𝑂∗

2 , 𝑂∗
3 , 𝑂∗

4 that are the closest to 𝑐(𝑅) are selected to move. One robot for 
each region moves at a time. Firstly the robots from 𝑂∗

1 move towards the robots in 𝑂∗
2 . Note that, at the end of task 

𝑇1 the distance between consecutive orbits is at least 𝛿, so the robots in 𝑂∗
1 move in an empty space until they form a 

partial-molecule with the robots of orbit 𝑂∗
2 . The partial-molecule is built outside 𝑄. Since 𝑂∗

3 , 𝑂∗
4 are the orbits of robots 

closest to 𝑐(𝑅) not involved in any molecule, they move toward the partial-molecules without any collision with other 
robots. Their target is a position adjacent to the partial-molecule according to the molecule 𝜇.

H3: We show that each configuration generated from 𝐶 remains in 𝑇2 until 𝜌(𝐶) molecules are built. Since the configuration 
15

is in 𝑇2, all the preconditions 𝚙𝚛𝚎𝑖 with 𝑖 > 2 are false. In fact 𝐹 is not formed so 𝚙𝚛𝚎5 is false, and since there are no 
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molecules that are not part of the pattern until 𝑇2 ends, then 𝚙𝚛𝚎4 is false. During task 𝑇2, 𝜌(𝐶) can be 1, 2, or 4. If 
𝜌(𝐶) = 1 then one molecule is built and the movements of the robots never augment the symmetricity of the configuration 
(see Property 𝐻1 above) hence variable 𝐵 belonging to 𝚙𝚛𝚎3 is always false. If in 𝑇2, 𝜌(𝐶) = 2, 4 then condition 2 of 
Corollary 3 is false and the movements of the robots during move 𝑚2 cannot change the symmetricity of the configuration 
nor the type of center. Therefore variable 𝐵′ is false and does not change its value during the execution of 𝑇2, so 𝚙𝚛𝚎3 is 
false.

H4: As long as the configuration remains in 𝑇2, the distance of each moving robot from their target decreases. Hence, within a 
finite number of computational cycles the task ends and the configuration is in 𝑇4. □

Lemma 6. Let 𝑅 be a configuration in 𝑇3. From 𝐶 , 𝖳𝖫 eventually leads to a configuration belonging to 𝑇4 .

Proof. Let us analyze properties H𝑖, for 1 ≤ 𝑖 ≤ 4, separately.

H1: During this task 𝜌(𝐶) = 2, 4 and one among conditions 2.b, 2.c, 3.b of Corollary 3 holds. One or two orbits of robots closest 
to 𝑐(𝑅) move. During the movements of 𝜌(𝐶) robots towards 𝑐(𝑅), the symmetricity of 𝐶 and the type of center cannot 
change due the synchronicity of the moves, until the task is over. When the task ends, a new configuration 𝐶 ′ is obtained 
such that 𝜌(𝐶 ′) = 1. Condition 1 of Corollary 3 holds and the configuration is still potentially-formable.

H2: Task 𝑇3 starts after 𝑇1, that is square 𝑄 centered in 𝑐(𝑅) with at most four robots inside has been realized. The four robots 
closest to 𝑐(𝑅) move toward 𝑐(𝑅) to build the first molecule. They belong to one or two orbits depending on 𝜌(𝐶). There 
are no other robots between these four and 𝑐(𝑅), so no collision can occur. As soon as they become adjacent, they stop and 
the molecule is formed.

H3: The precondition 𝚙𝚛𝚎4 remains false until the molecule is built. As soon as the molecule is completed, precondition 𝚙𝚛𝚎4
becomes true and the configuration is in 𝑇4.

H4: As long as the configuration remains in 𝑇3, the distance of each moving robot from 𝑐(𝑅) decreases. Hence, within a finite 
number of computational cycles, the robots create a molecule and the configuration is in 𝑇4. □

Lemma 7. Let 𝐶 be a configuration in 𝑇4. From 𝑅, 𝖳𝖫 eventually leads to a configuration belonging to 𝑇2 or 𝑇5.

Proof. During this task, the molecules formed during either task 𝑇2 or 𝑇3 move to join the pattern 𝐹 ′. Let us analyze properties H𝑖, 
for 1 ≤ 𝑖 ≤ 4, separately.

H1: If 𝜌(𝐶) = 1, the pattern 𝐹 is embedded in a quadrant 𝑞 of 𝑄. One molecule goes toward its target in 𝑞 and 𝜌(𝐶) cannot 
increase during the movement. Then, the configuration remains potentially-solvable by Corollary 3. If 𝜌(𝐶) = 2, 4, during 
the movements of the molecules, 𝑐(𝑅) does not change and so does 𝑡𝑐(𝐶), so the conditions 2 and 3 of Corollary 3 still 
hold.

H2: During this task only molecules move, therefore collisions between robots cannot happen. When 𝜌(𝐶) = 2, 4, there is one 
molecule in each region that goes toward 𝐹 ′ that is embedded in the center of 𝑐(𝑅). The space between the molecules 
𝜇 and 𝐹 ′ is empty and the molecules move on free trajectories. When 𝜌(𝐶) = 1 then one molecule goes toward 𝐹 ′ that 
is embedded in a quadrant 𝑞 of 𝑄. The quadrant 𝑞 is big enough to contain 𝐹 , the space between 𝐹 ′ and the molecule 
𝜇 is empty and the molecule moves on a free trajectory. Therefore no collision can occur. Note that, as more robots are 
assembled into molecules the empty space around 𝑄 enlarges. Moreover the disassembly sequence ensures that molecule 
can set in place in 𝐹 without colliding with other molecules.

H3: Precondition 𝚙𝚛𝚎4 remains true until there are molecules that are not yet part of the pattern 𝐹 ′. If there are no robots left 
then, as soon as the molecules join the pattern 𝐹 ′, the pattern 𝐹 is completed and the configuration is in 𝑇5, otherwise the 
configuration is in 𝑇2.

H4: As long as the configuration remains in 𝑇4, the distance of each moving molecule from 𝐹 ′ decreases. Hence, within a finite 
number of computational cycles, the molecules join the pattern. □

Theorem 8. 𝖳𝖫 solves the TL-MPF problem for any initial configuration 𝐶 and any pattern 𝐹 if and only if 𝐹 is potentially-formable from 
𝐶 .

Proof. Lemmata 4-7 ensure that properties H1, H2, H3, and H4 hold for each task 𝑇1, 𝑇2, … , 𝑇5. This implies the following properties: 
𝐹 is always potentially-solvable; the movements of the robots and molecules are all collision-free; all the transitions are those reported 
in Table 2c; and the generated configurations can remain in the same task only for a finite number of cycles. Lemmata 4-7 also show 
that from a given task only subsequent tasks can be reached, or 𝚙𝚛𝚎5 eventually holds (and hence TL-MPF is solved). The only 
exception is the cycle among tasks 𝑇2 and 𝑇4. However, in this case, at the end of 𝑇4, the number of molecules composing the pattern 
increases, and since no molecule is moved away from the pattern, task 𝑇5 is reached from 𝑇4 after a finite number of transitions 
between 𝑇2 and 𝑇4. This formally implies that, for each initial configuration 𝐶 and for each execution 𝔼 ∶ 𝐶 = 𝐶(𝑡0), 𝐶(𝑡1), 𝐶(𝑡2), …
of 𝖳𝖫, there exists a finite time 𝑡𝑗 > 0 such that the disposal of the entities in 𝐶(𝑡𝑗 ) equal the pattern to be formed in the TL-MPF
16

problem and 𝐶(𝑡𝑘) = 𝐶(𝑡𝑗 ) for each time 𝑡𝑘 ≥ 𝑡𝑗 . □
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8. Conclusion

In this paper, we have extended the recently introduced MOBLOT model to the case in which robots and molecules move along 
the edges of a grid graph. We have also formalized the Molecular Pattern Formation (MPF) problem where the final configuration 
is composed by molecules only. MPF is an extension of the well-studied Pattern Formation problem defined in the OBLOT model. 
For MPF, we have proven a necessary condition for its resolution. Finally, we have introduced TL-MPF, a specialized version of MPF

called Tetris-like MPF in which the formable molecules correspond to the set of seven tetrominoes. For TL-MPF, we have given a 
complete characterization, providing a distributed algorithm able to form a molecular pattern whenever the necessary condition for 
the solvability of MPF is verified.

There are many directions for future research in the proposed model. The most natural one is to investigate about a (complete) 
characterization on the solvability of the general MPF problem according to the assumed capabilities for robots and molecules. Others 
concern the formalization of possible self-reconfigurable matter problems, as well as problems related to the matter movement. 
Completely different tasks/problems can also be thought, perhaps by adding further capabilities to the molecules.
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