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Abstract
Tuber magnatum is the most expensive truffle, but its large-scale cultivation
is still a challenge compared to other valuable Tuber species. T. magnatum
mycelium has never been grown profitably until now, which has led to diffi-
culties to studying it in vitro. This study describes beneficial interactions
between T. magnatum mycelium and never before described bradyrhizobia,
which allows the in vitro growth of T. magnatum mycelium. Three
T. magnatum strains were co-isolated on modified Woody Plant Medium
(mWPM) with aerobic bacteria and characterised through microscopic
observations. The difficulties of growing alone both partners, bacteria and
T. magnatum mycelium, on mWPM demonstrated the reciprocal depen-
dency. Three bacterial isolates for each T. magnatum strain were obtained
and molecularly characterised by sequencing the 16S rRNA, glnII, recA and
nifH genes. Phylogenetic analyses showed that all nine bacterial strains
were distributed among five subclades included in a new monophyletic line-
age belonging to the Bradyrhizobium genus within the Bradyrhizobium jica-
mae supergroup. The nifH genes were detected in all bacterial isolates,
suggesting nitrogen-fixing capacities. This is the first report of consistent
T. magnatum mycelium growth in vitro conditions. It has important implica-
tions for the development of new technologies in white truffle cultivation and
for further studies on T. magnatum biology and genetics.

INTRODUCTION

True truffles are hypogeous ascomycetes within the
genus Tuber. This genus includes more than 180 ecto-
mycorrhizal species (Bonito et al., 2013), and some of
them have the highest economic value among edible
mushrooms (Luxury Columnist, 2022) due to their
excellent organoleptic properties (Mello et al., 2006).
Tuber magnatum Picco, Tuber melanosporum Vittad.,
Tuber aestivum Vittad., and Tuber borchii Vittad. are
the most economically important species, but only the
last three have been extensively cultivated until now.
Their cultivation is achieved by planting truffle seed-
lings in appropriate soils and climates. The most com-
mon inoculum type used by nurseries to produce truffle

seedlings is made by crushing fresh, frozen or dried
fruiting bodies to obtain a spore slurry that is used to inoc-
ulate the root system (Iotti, Piattoni, & Zambonelli, 2012).
Several authors demonstrated that it is also possible to
produce Tuber mycorrhizas with mycelial cultures
(Chevalier & Frochot, 1997; Sisti et al., 1997) and that the
truffle plants obtained by mycelial inoculum can fructify
like those obtained by spore inoculum (Iotti et al., 2016).
However, not all truffle mycelia can be cultivated in vitro
conditions and, when possible, they grow slower than the
mycelia of other ectomycorrhizal species. T. borchii
(Barbieri et al., 2005), Tuber rufum Picco, and Tuber
macrosporum Vittad. (Iotti et al., 2002) are some of the
species that can be successfully isolated and grown on
agar media, whereas T. magnatum mycelium is hard to
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isolate and its development has been limited to a few
hundred micrometres (Iotti, Piattoni, & Zambonelli, 2012).
Fontana (1968) first reported the isolation of T. magnatum
mycelium from a fragment of gleba transferred on agar
plates. Later, Mischiati and Fontana (1993) affirmed that
they had isolated T. magnatum mycelium from mycorrhi-
zas, but several years later, Mello et al. (2001) genetically
verified that this mycelium belonged to the whitish truffle
Tuber maculatum Vittad.

During their development in soil, the mycelium of
ectomycorrhizal fungi interacts with many microorgan-
isms, some of which, as the mycorrhiza helper bacteria,
may affect the fungal metabolism and growth (Frey-
Klett et al., 2007). Bacteria also play an essential role in
the life cycle of truffles, and in particular, the micro-
biome associated with T. magnatum ascomata seems
to have a crucial role in aroma biosynthesis
(Vahdatzadeh et al., 2015), fruiting body formation and
nutrition (Monaco et al., 2022).

Many taxa of bacteria live in the ascoma of
T. magnatum (Barbieri et al., 2007, 2010; Citterio
et al., 1995; Monaco et al., 2021; Niimi et al., 2021a)
and other Tuber spp. The majority of them belong to
Proteobacteria, in particular Gammaproteobacteria
and Alphaproteobacteria. The last includes Bradyrhi-
zobium, which is the most abundant bacterial genus
found in truffle ascomata (Antony-Babu et al., 2014;
Benucci & Bonito, 2016; Niimi et al., 2021b; Sillo
et al., 2022). Barbieri et al. (2010) hypothesised the
involvement of Bradyrhizobium in the nitrogen nutrition
of T. magnatum. They detected the nitrogenase gene
nifH of Bradyrhizobium spp. inside the T. magnatum
ascoma and found that the level of nitrogen fixation
was comparable to that of early nodules of legumes
associated with specific nitrogen-fixing bacteria
(Barbieri et al., 2010, 2012).

Until now, the role of the Bradyrhizobium spp. or
other Proteobacteria living inside T. magnatum asco-
mata on its mycelium development in vitro conditions
has never been investigated. However, a few years
ago, Le Roux et al. (2016) identified Alphaproteobac-
teria belonging to Rhodopseudomonas growing associ-
ated with the mycelia of T. melanosporum and
T. brumale, which seemed to maintain the vitality of
these truffle mycelia after repeated subculturing. Since
Tuber mycelia grow slowly in vitro conditions and the
risk of losing them after the first subculture is very high
(Giomaro et al., 2005), the improvement of their growth
performances would be fundamental for both scientific
studies and truffle cultivation applications.

In this work, we isolated and maintained in vitro the
mycelium of T. magnatum for the first time thanks to
the presence of Bradyrhizobium spp. living inside the
ascoma. These bacteria were characterised by phylo-
genetic analyses of four genes, and their specificity for
T. magnatum was assessed by co-culture tests with
other Tuber species.

EXPERIMENTAL PROCEDURES

Mycelium isolation

During 2021 and 2022, many attempts to isolate
T. magnatum strains from fresh ascomata collected in
Italy were carried out. Fragments of gleba, 1–2 mm
in size, were aseptically excised from the inner part of
the ascoma and cultured in Petri dishes on modified
Woody Plant Medium (mWPM) (Iotti et al., 2005) at
22.5�C in the dark. Each ascoma was then dried and
deposited in the herbarium of the ‘Centro di Micologia’
of Bologna (CMI-UNIBO) (Table 1). All isolates were
subcultured every 50–60 days on mWPM to stabilise
the cultures.

The identity of each T. magnatum isolate was
molecularly confirmed by polymerase chain reaction
(PCR) with the species-specific primers TmgI and
TmgII (Amicucci et al., 1998). All the PCR reactions
were carried out by mixing 25 μL of 2� Phanta® Max
Master Mix (Vazyme Biotech Co) with 2 μL of each
primer (10 μM), 1 μL of 2.5% dimethylsulphoxide and
nuclease-free sterile water to a reaction volume of
50 μL. Some hyphae were put directly into the reaction
volume in aseptic conditions. The reaction mixtures
underwent an initial denaturation step of 94�C for 5 min,
followed by 25 cycles of 20 s at 94�C, 15 s at 62�C,
1 min at 72�C and a final extension at 72�C for 7 min.
PCR products were run on 1% agarose gel and visua-
lised by staining with ethidium bromide.

Microscopic observations

The morphological characteristics of the hyphae of
T. magnatum isolates were observed and measured
under a Nikon Eclipse TE2000 U Inverted Microscope
(Nikon Corporation, Tokyo, Japan) and images cap-
tured with a Nikon DS-Fi3 (Nikon Corporation, Tokyo,
Japan). The measures were collected with the NIS Ele-
ments BR software (ver. 4.6, Nikon Corporation, Tokyo,
Japan).

T. magnatum hyphae from the inner part of the col-
ony of each strain were first observed without any treat-
ments and then observed again after washing in sterile
water added with 0.5% Tween 20, followed by vortex-
ing for 1 min to remove loosely attached bacteria. Blue
lactophenol was used to stain the wall polysaccharides
of hyphae and Gram-negative bacteria cells
(Ericksen, 2015).

The hyphal features selected to describe
T. magnatum strains were hyphal diameter, septal dis-
tance, Hyphal Growth Unit (HGU) (Trinci, 1974) and
Vesicle Production Ratio (VPR). Vesicles are common
morphological features of Tuber spp. mycelium and are
represented by hyphal swellings (Iotti et al., 2002).
VPR is represented by the formula:
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VPR¼ vesiscle number
septal distance

:

Antibiotic treatment

At first, preliminary analysis was carried out on
T. borchii—CMI-UNIBO, strain n. TBO5005 (Puliga
et al., 2021)—to evaluate the effect of antibiotic addition
on Tuber spp. mycelial growth. To this purpose,
200 μg/mL of streptomycin, ampicillin and chloram-
phenicol (Kuykendall et al., 1988) were added to
mWPM plates. Five mWPM plates (9 cm in diameter)
added with antibiotics were inoculated with 0.5 cm
mycelium plugs from 50-day-old T. borchii cultures, and
the other five mWPM plates without antibiotic addition
were used as controls. The colony diameter of each
plate was measured every 7 days until the stationary
phase (10 weeks), along two preset diametrical lines.
After this preliminary analysis, the same procedure was
applied to evaluate the mycelial growth of T. magnatum
in the absence of bacteria. T. magnatum mycelial plugs
were taken from 60-day-old cultures of each fungal iso-
late containing wild bacteria strains.

The area (cm2) covered weekly by the mycelium
was calculated according to Puliga et al. (2022),
assuming an elliptical shape covered by the mycelium
as reported by Tryfinopoulou et al. (2020) with the fol-
lowing formula:

FCA¼R1�R2�π,

where FCA is the fungal colony area (cm2) and R1 and
R2 are the two perpendicular radii, respectively.

The area growth rate of the mycelium (AGR)
was calculated with the formula of Sinclair and
Cantero (1989):

AGR¼FCAf �FCAi

T f �T i

where FCAf and FCAi are the FCAs at the end and
beginning of the exponential growth phase, respec-
tively; Tf and Ti are the times (weeks) at the end and
beginning of the exponential growth phase,
respectively.

Tuber mycelia/bacteria co-culture test

The growth of the three T. magnatum strains (TMG5072,
TMG5300 and TMG5319) was determined by measuring
the FCA with the same method described above (Puliga
et al., 2022). The bacterial population of the strain with
the faster growth was selected for the next test.

The ability of the bacterial community isolated from
T. magnatum ascomata to promote the growth of Tuber
borchii (TBO5005), and T. melanosporum—CMI-
UNIBO, strain n. TME2 (Iotti, Rubini, et al., 2012)—was
evaluated by co-culture tests in mWPM plates (Iotti
et al., 2005). For each truffle species, five plates (6 cm in
diameter) were inoculated with 0.5 cm mycelium plugs
and 10 μL of bacterial suspension (�1 � 108 CFU/mL of
the TMG5072 bacterial community) in yeast mannitol
medium (YM) (Keele Jr et al., 1969). An additional five
Petri dishes for each truffle species were inoculated only
with the Tuber spp. mycelium as a control, added with
10 μL of liquid YM. Finally, other five Petri dishes were
inoculated with 0.5 cm mycelium plugs of TMG5072
together with its native bacteria. The mycelium diameter
of each strain was measured every 7 days until the sta-
tionary phase (10 weeks from inoculation) along two pre-
set diametrical lines. FCA and AGR were calculated as
previously reported.

TAB LE 1 List of Tuber magnatum ascomata used for mycelium isolation.

Strain Species Putative host Proveniencea Date

TMG5072b T. magnatum na Molinella (BO), Emilia Romagna, Italy 28 September 2021

TMG5299 T. magnatum na na 14 September 2022

TMG5300b T. magnatum na na 14 September 2022

TMG5301 T. magnatum na na 14 September 2022

TMG5302 T. magnatum na na 14 September 2022

TMG5312 T. magnatum Populus alba L. Montefalcone nel Sannio (CB), Molise, Italy 15 November 2022

TMG5316 T. magnatum na na 09 November 2022

TMG5317 T. magnatum na na 09 November 2022

TMG5318 T. magnatum na na 09 November 2022

TMG5319b T. magnatum Quercus cerris L. Città della Pieve (PG), Umbria, Italy 15 November 2022

Abbreviations: BO, Bologna; CB, Campobasso; na, not available; PG, Perugia.
ana = provided by Truffleland s.r.l, Sant’Anatolia di Narco, Perugia, Italy.
bStrain with an active growing mycelium.
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Statistical analyses

The morphological data, FCA and AGR were analysed
using R Studio 2023.09.1+494. The significant differ-
ence between treatments was tested by one-way anal-
ysis of variance and the means were compared by
Tukey’s t-test (p ≤ 0.05).

Bradyrhizobium isolation

The bacterial populations growing together with each
isolated T. magnatum strain were transplanted into
mWPM (Iotti et al., 2005) and yeast mannitol agar
(YMA) and kept at both 22.5�C and 28�C in the dark.

Bradyrhizobium strain isolation and purification
were made by streak-planting (Sanders, 2012) on YMA
at 28�C in the dark, which are the best conditions for
Bradyrhizobium growth (Hafiz et al., 2021;
Vincent, 1970). The isolation was carried out starting
from the bacterial population of each fungal strain.

After bacterial growth, the identity of at least 10 colo-
nies from each T. magnatum strain was verified by a
direct PCR approach using the Bradyrhizobium spp.-
specific primers BRdnaKf–BRdnaKr (Menna et al., 2009).
PCR reactions were performed with the thermal parame-
ters specified in Table S1. Three bradyrhizobial colonies
from each T. magnatum strain were randomly selected
for phylogenetic analyses.

The isolated Bradyrhizobium strains were then
transferred into YM liquid medium and grown on an
orbital shaker at 180 rpm, at 28�C in the dark for
10 days (Iturralde et al., 2020). After that, 500 μL of
these cultures were added with 500 μL of glycerol and
preserved at –80�C.

Phylogenetic analyses

Phylogeny of bradyrhizobia strains was inferred by
maximum likelihood (ML) and neighbour joining (NJ) in
raxmlGUI 1.5b2 (Silvestro & Michalak, 2012) and
MEGA11 software (Tamura et al., 2021) using the
genes 16S rRNA, glnII, recA and nifH. The selected
genes were amplified through direct PCR using the
primer pairs and the conditions reported in Table S1.
The nifH gene was amplified with the newly designed
primers NifseqF (ATTCTGATCGTCGGTTGCG) and
NifseqR (GGATCTTCTCGGCAAGGC) to avoid non-
specific amplicons. Amplified fragments were
sequenced at Eurofins Genomics (Germany) in both
directions. Sequences were edited and assembled by
the Bioedit Sequence Alignment Editor (Hall
et al., 2011) and then aligned with the MUSCLE algo-
rithm implemented in MEGA11 software (Tamura
et al., 2021). The sequences were deposited in Gen-
Bank, and their accession numbers were listed here:

OR544965–OR544973 (16S rRNA), OR569722–
OR569730 (glnII), OR569731–OR569739 (recA) and
OR569740–OR569748 (nifH). For each accession
number, the closest BLASTn result was reported in
Table S2.

Single gene phylogenies were inferred for the 16S
rRNA, glnII, recA and nifH gene sequences, while a
concatenated dataset was generated with the
sequences of glnII and recA genes (Chahboune
et al., 2011; Delamuta et al., 2017). The sequences
used to construct phylogenetic trees and the outgroup
are listed in Table S3. ML analyses were performed
with 1000 throughout bootstrap replicates (100 runs),
applying the models of nucleotide substitution GTR
+ G + I either for the 16S rRNA and nifH genes or for
glnII + recA concatenated dataset. Single gene phylog-
enies of glnII and recA were inferred with NJ analysis
with 1000 throughout bootstrap replicates (100 runs)
and applying the p-distance model. ML and NJ trees
were edited using MEGA11 (Tamura et al., 2021). Only
bootstrap values greater than 75% were shown on
branches. Genetic diversity (p-distance) within and
among the Bradyrhizobium supergroups of both glnII
and recA genes was evaluated using MEGA11
(Tamura et al., 2021).

RESULTS

Mycelium isolation

The PCR with specific primers confirmed the identity of
all T. magnatum isolates, which were characterised by
active and consistent growth in subsequent subcultures
(TMG5072, TMG5302 and TMG5319). The mycelia
grew both on the surface and in the agar medium. After
the isolation procedure, all strains showed a very long
lag phase. The excised fragments of the gleba also
took more than 1 month to generate the first hyphae.
The same behaviour was also observed after the first
subculturing. The growth rate seemed to increase in
the following subcultures, although the inocula took 2–
3 weeks to form an evident hyphal extension from the
plug. On mWPM, T. magnatum strains generally take
10 weeks from inoculation to reach the stationary
phase.

The mycelial colony appeared whitish at the begin-
ning (Figure 1) and gradually changed to ivory and pale
yellow 8–10 weeks after inoculation.

Each mycelial isolate showed the co-occurrence of
a native bacterial population. During subcultures, the
first days after inoculation, the bacteria grew around
the inoculation point, forming a cream colony that
remained circumscribed only in the inner area of myce-
lium growth. After the mycelium colonised almost all of
the surface of the plate, the bacteria spread deep into
the medium, which became a little opaque.
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Microscopic observations

For each strain, several vesicles, rare anastomoses
and hyphal coils were observed (Graziosi et al., 2022)
(Figure 1). The hyphal diameter averaged from 4.45
± 0.16 μm for the strain TMG5072 to 5.38 ± 0.19 μm for
the strain TMG5300 (Table 2). The statistical analysis
of hyphal diameter showed no significant differences
between the strains TMG5072 and TMG5319, whereas
it was found between the strain TMG5300 and the other
two strains.

The average septal distance ranged from 45.56
± 6.44 for the strain TMG5300 to 56.86 ± 4.34 μm for
the strain TMG5072, and statistical differences were
observed among all the strains (Table 2).

The branching angle was very similar among the
tested strains and no statistical differences were found.
Strain TMG5072 showed the lowest average angle
(61.80 ± 7.31�), whereas strain TMG5319 exhibited the
greatest (68.70 ± 7.69�).

Regarding HGU, strain TMG5300 is characterised
by the highest average value (178.50 ± 37.76 μm) in
contrast with the TMG5072 and TMG5319 strains,
which showed 144.81 ± 24.53 and 145.62 ± 8.09 μm,
respectively. Thus, strain TMG5300 developed more
linear hyphae and the lowest number of branches. Nev-
ertheless, there were no statistical differences among
strains.

The occurrence of vesicles was very similar among
strains and no statistical differences were detected.
Strain TMG5072 had the highest frequency of vesicles,
with a VPR average value of 63.96 ± 9.76 μm followed
by TMG5300 (66.77 ± 12.30 μm) and TMG5319
(76.35 ± 7.78 μm).

After staining, bacterial cells adhering to hyphae
were evident, although it did not occur extensively

along their entire length. Other bacterial cells
remained spread in the cultural medium. After the
washing treatment, all T. magnatum strains exhibited
only some bacterial clusters that remained attached to
the hyphae.

Antibiotic treatment and co-culture test

The growth of TBO5005 mycelium was not significantly
affected by antibiotic addition (Figure S1), whereas
TMG5072 mycelium and the associated bacteria were
completely inhibited.

Among T. magnatum isolates, the strain TMG5072
showed the fastest growth and maintained its vitality
with subculturing (Figure S2). On the contrary, mycelia
of strains TMG5300 and TMG5319 grew slower and
weaker just after the first subculture.

The FCA covered weekly by the tested truffle spe-
cies on mWPM in the co-culture test is reported in
Figure 2. The lag-phases differed between Tuber spe-
cies (from a few days to 3 weeks). T. borchii was the
first species to grow new hyphae, just 1 week after
inoculation. T. magnatum and T. melanosporum were
characterised by the longest lag-phases and the expo-
nential growth phase started 4 weeks after inoculation.
Nevertheless, TMG5072 showed significantly faster
growth and within 5 weeks after inoculation, its mycelial
area exceeded that of TME2 (1.27 ± 0.26 cm2). At the
stationary phase (8 weeks after inoculation), the area
covered by TMG5072 mycelium (7.32 ± 0.23 cm2)
reached approximately the TBO5005 one (7.36
± 0.16 cm2). The bacterial addition did not significantly
affect the mycelial growth, both in the case of T. borchii
and T. melanosporum, during all over the measurement
period.

F I GURE 1 Example of Tuber magnatum mycelium culture on modified Woody Plant Medium (mWPM) at the first stage of growth (A).
Bacterial biofilm around hyphae (B). Morphology of T. magnatum mycelium (C–E); bar = 15 μm. Bacterial distribution along the hypha (C),
vesicles (D) hyphal coils and aggregates (E). Hyphae and bacteria were coloured with blue lactophenol staining.
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These results were also confirmed by the data of
AGRs (Figure S3) during the exponential phase. The
AGRs values of both these two species added with bac-
teria exhibited a non-significant difference despite the
control, according to p < 0.05 by Tukey’s test. On the
other hand, the AGR of the TMG5072 mycelium, about
1.66 ± 0.043 cm2/week, was significantly higher than
other truffle species with or without bacteria addition,
respectively: 0.69 ± 0.022 cm2/week for TBO5005_bac
and 0.59 ± 0.024 cm2/week for TBO5005; 0.12
± 0.011 cm2/week for TME2_bac and 0.22 ± 0.031 cm2/
week for TME2.

Bradyrhizobium isolation

The bacteria were unable to grow on mWPM without
the mycelium, and no colony was formed after 1 month
of incubation at both 22.5 and 28�C in the dark. Never-
theless, at 22.5�C, they can develop abundantly in a
few days in the presence of the mycelium. Bacteria
formed colonies within 10 days after inoculation in the
absence of T. magnatum mycelium only on a selective
medium (YMA) and with strictly specific conditions
(28�C in the dark).

Molecular characterisation and nucleotide
sequence analyses

Preliminary analysis using Bradyrhizobium-specific
primers showed that all the bacterial colonies (10 from
each T. magnatum strain) belonged to Bradyrhizobium.
BLASTn analysis of the 16S rRNA gene sequences
(Table S2) revealed that the bacterial isolates (three iso-
lates from each T. magnatum strain) have the highest
similarity (>99.8%) with Bradyrhizobium sp. strain SRL50
(MN134555), Bradyrhizobium sp. 170 (CP064703) and
Bradyrhizobium sp. S12-14-2 (CP129212). ML analysis
based on the 16S rRNA gene (Figure S4) placed the
strains into a clade containing Bradyrhizobium spp.
sequences from T. borchii (clone Cl-19-TB8-II—
AY599677) and T. magnatum (clone TM5_22—
DQ303373; clone TM1_39—DQ303378) ascomata
(Barbieri et al., 2005, 2007) but did not resolve the phylo-
genetic position of the bacteria isolated in this study within
the Bradyrhizobium supergroups defined by Avontuur
et al. (2019). In fact, the 16S rRNA gene sequences clus-
tered together with species of both Bradyrhizobium elkanii
supergroup (Bradyrhizobium viridifuturi and Bradyrhizo-
bium embrapense) and Bradyrhizobium jicamae super-
group (B. jicamae and Bradyrhizobium erythrophlei). On
the contrary, ML analysis of the concatenated glnII and
recA gene dataset (Figure 3) grouped all bradyrhizobia
strains isolated in this study in a monophyletic and
well-supported clade closely related to Bradyrhizobium
valentinum (JX518575, JX518589) and species in theT
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B. jicamae supergroup (Avontuur et al., 2019). The same
topology of the ML tree was also obtained with NJ analy-
sis (Figures S5 and S6).

The nifH phylogenetic tree (Figure 4) was congruent
with the concatenated phylogeny inferred in this study
by glnII and recA genes, placing all the nine
T. magnatum bradyrhizobial strains in a separated
clade, with a branch support of 100. Furthermore, these
strains were strictly related to Bradyrhizobium sediminis
S2-20-1 (CP076134).

The genetic diversity for glnII (Table S4) and recA
(Table S5) genes within and between groups confirmed
the belonging of Bradyrhizobium strains isolated in this
group in the B. jicamae supergroup. In fact, uncorrected
p-distances between T. magnatum bradyrhizobia and
the species of B. jicamae supergroup are on average
always lower than the values calculated among the dif-
ferent supergroups for both glnII (0.08 versus >0.11)
and recA (0.06 versus >0.08).

DISCUSSION

Mycelia of different Tuber species have been success-
fully isolated by many authors and used for a variety of
scientific purposes (Ceccaroli et al., 2001; Iotti
et al., 2002, 2016; Leonardi et al., 2017; Li et al., 2012;
Liu et al., 2009; Nadim et al., 2015; Poma et al., 1999;
Saltarelli et al., 2003; Sbrana et al., 2002;
Vahdatzadeh & Splivallo, 2018). However, viable and
stable mycelial cultures of T. magnatum have been
obtained for the first time only by this work, despite the
numerous attempts made over the years. In this study,
it was necessary to wait more than a month before the

gleba fragments used as inoculum produced the first
hyphae. This long lag phase may partly explain why
T. magnatum mycelium has never been successfully
isolated before. Furthermore, the recurrent develop-
ment of bacteria on the inoculated gleba fragment
might have led the researchers to discard isolation
plates before the hyphal growth became evident
(A. Zambonelli, personal communication, September
1, 2023). In our study, bacteria co-isolated from the
gleba proved to be essential for the growth of
T. magnatum mycelium on mWPM, which is one of the
most suitable media for Tuber mycelium (Iotti
et al., 2002). As these bacteria were not able to
improve the growth of T. borchii and T. melanosporum
mycelia in the same conditions, it is possible to
hypothesise a taxon-specific dependence. Similarly, Le
Roux et al. (2016) identified a specific interaction
between bacterial strains belonging to the Rhodopseu-
domonas genus and the mycelia of T. melanosporum
and T. brumale.

Even in the presence of the bacteria, all
T. magnatum strains isolated in this study had slower
growth than most of the saprotrophic cultivated basidio-
mycetes and ascomycetes (Badalyan et al., 2023;
Puliga et al., 2022) but similar to other ectomycorrhizal
fungi (Iotti et al., 2005). Considering the Tuber genus,
the growth of the strain TMG5072 calculated as FCA
was similar to that of T. borchii and higher than that of
T. melanosporum. The mycelium of this strain
appeared more branched (lowest HGU value) than the
other strains although the HGU means were not statisti-
cally different. An increase in branching rate can be
related to a more consistent growth, as demonstrated
previously for T. borchii (Amicucci et al., 2010).

F I GURE 2 Growth trend of area covered weekly by mycelia of Tuber magnatum strain 5072 (TMG5072, black solid line), Tuber borchii
control (TBO5005, black dashed line), T. borchii with bacterial addition (TBO5005_bac, black dotted line), Tuber melanosporum control (TME2,
grey dashed line), T. melanosporum with bacterial addition (TME2_bac, grey dotted line). FCA, fungal colony area.
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Significant differences between strains were found for
hyphal diameter and septal distance. In particular, the
strain TMG5300 showed shorter and larger hyphal cells
with respect to the other two strains but a lower branch-
ing rate. These morphological differences could be due
to T. magnatum strain genetic differences or to the spe-
cific interaction with the bacteria lineages.

Molecular analyses showed that all the isolated bac-
teria belonged to Bradyrhizobium, which have previ-
ously been found to be common members of the
bacterial community inhabiting the ascomata of Tuber
spp. (Antony-Babu et al., 2014; Barbieri et al., 2005,

2007, 2010, 2012; Benucci & Bonito, 2016; Citterio
et al., 1995; Frey-Klett et al., 2007; Graziosi
et al., 2022; Marozzi et al., 2023; Monaco et al., 2021,
2022; Niimi et al., 2021a, 2021b; Pavi�c et al., 2013;
Sillo et al., 2022). In particular, our 16S rRNA gene
sequences clustered together with those of bradyrhizo-
bia found in T. borchii and T. magnatum by Barbieri
et al. (2005, 2007), with identities ranging from 98.2%
to 99.7%. Similarly, the bacteria identified by Benucci
and Bonito (2016) in the ascomata of several hypoge-
ous ascomycetes (Kalapuya brunnea M.J. Trappe,
Trappe & Bonito, Leucangium carthusianum (Tul. &

F I GURE 3 Maximum likelihood phylogeny based on concatenated glnII-recA gene sequences showing the relationships between the nine
Tuber magnatum bradyrhizobial strains isolated in this work and other members of the Bradyrhizobium genus. Accession numbers are indicated
within brackets. Bootstrap values >75% are indicated at the nodes. Bar = 5 substitutions every 100 positions.
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C. Tul.) Paol., Terfezia claveryi Chatin, Tuber indicum
Cooke & Massee, T. melanosporum, Tuber lyonii But-
ters, Tuber gibbosum Harkn. and Tuber oregonense
Trappe, Bonito & P. Rawl.) and by Antony-Babu et al.
(2014) in T. melanosporum ascomata, have 16S rRNA
gene sequence identities always >98.7%. Our findings
confirm the hypothesis of the existence of a ubiquitous
Bradyrhizobium taxon that is part of the core microbial
community of Tuber ascomata (Benucci &
Bonito, 2016). Considering the effects of these bacteria
on Tuber mycelia, it can be assumed that the species
of this taxon may promote gleba formation during
ascoma maturation.

However, the 16S rRNA gene is too conserved in
bradyrhizobia to discriminate between species and is
not able to discriminate also between Bradyrhizobium
and closely related genera (Willems et al., 2001). For
this reason, we conducted a multilocus phylogeny
using the genes glnII and recA, which allowed the best
resolution of the evolutionary relationships of our nine
bradyrhizobial strains within the Bradyrhizobium
genus. The concatenated tree placed all nine strains
in a strongly supported clade closely related to the
species in the B. jicamae supergroup (Avontuur
et al., 2019). Unfortunately, no sequences of glnII and
recA from bradyrhizobia inhabiting truffle ascomata
are available in GenBank. Intriguingly, the three
strains from the ascoma TMG5300 were grouped
together in the same subclade (bootstrap value = 99),
whereas the six strains isolated from TMG5319 and
TMG5072 were paraphyletic and divided into four
independent lineages.

The analyses on genetic divergence within and
among Bradyrhizobium supergroups seem to confirm
the inclusion of T. magnatum bradyrhizobia group into
the B. jicamae supergroup. The B. jicamae supergroup
contains nitrogen-fixing bacteria commonly associated
with leguminous plants but also included soil free-living
bacteria (Avontuur et al., 2019; Ormeño-Orrillo &
Martínez-Romero, 2019). We successfully amplified the
nifH gene in all isolated strains and the tree generated
with their sequences also grouped the nine
T. magnatum bradyrhizobial strains in a separate clade
with high bootstrap support. The nifH genes of
T. magnatum bradyrhizobia appear to be evolutionarily
closer to that of the free-living, nitrogen-fixing and non-
nodulating B. sediminis isolated from freshwater sedi-
ment (Jin et al., 2022) rather than the nifH sequences
of the root symbiotic and nodulating species.

The detection of nifH genes in the ascoma-
inhabiting bacteria leads to speculation on their role in
nitrogen nutrition of T. magnatum (Barbieri et al., 2010).
Moreover, the inability of the co-isolated bradyrhizobia
to grow in pure culture on mWPM suggests a possible
mutualistic interaction with T. magnatum. Le Roux et al.
(2016) made the same assumption of symbiotic interac-
tion between the mycelia of T. melanosporum and
T. brumale and bacteria in the Rhodopseudomonas,
although these authors did not detect nifH gene in the
analysed bacterial strains.

The role of the mycelia of ectomycorrhizal fungi on
bacterial growth was already demonstrated by Riga-
monte et al. (2010) and it may be related to the produc-
tion of trehalose and various polyols (e.g., mannitol and

F I GURE 4 Maximum likelihood phylogeny of nifH gene sequences. Accession numbers are indicated within brackets. Bootstrap values
>75% are indicated at the nodes. Bar = 5 substitutions every 100 positions.
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arabitol). Mannitol is the main carbon source of Bradyr-
hizobium within a selective medium (Keele Jr
et al., 1969; Kuykendall, 2015). These sugars are com-
monly produced during the active growth of ectomycor-
rhizal basidiomycetes (Hampp & Schaeffer, 1999;
Ineichen & Wiemken, 1992; Martin et al., 1984, 1998;
Söderström et al., 1988) and ascomycetes (Martin
et al., 1985, 1988) including Tuber spp. (Ceccaroli
et al., 2003, 2011). For instance, the utilisation of man-
nitol and trehalose exudated by Cantharellus cibarius
Fr. mycelium was common among Pseudomonas spp.
from different environments (Rangel-Castro
et al., 2000; Rangel-Castro, Danell, & Pfeffer, 2002;
Rangel-Castro, Danell, & Taylor, 2002). Also, the high
level of trehalose accumulated in Laccaria bicolor
(Maire) P.D. Orton hyphae chemoattracted and pro-
moted the growth of the helper bacteria (Deveau
et al., 2010).

The intriguing relationship between bacteria and
mycorrhizal fungi might have arisen at the origin of their
evolution and taxon-specific interaction may have
evolved over time (Frey-Klett et al., 2007). Seneviratne
and Jayasinghearachchi (2003) reported the mycelial
colonisation of some soil fungi by Bradyrhizobium spp.
The fungal partner provided a site for cell adhesion and
its exudates served as a source of nutrition for bradyrhi-
zobia. Microscopic observations carried out by Senevir-
atne and Jayasinghearachchi (2003) showed an
extended hyphal adhesion between bacterial and fun-
gal cells similar to that observed in T. magnatum myce-
lium, although in our case the interaction seems to be
closer. In fact, T. magnatum and the co-isolated bradyr-
hizobia benefit each other and cannot grow separately,
at least in mWPM, suggesting a mutual dependency.
This unique association seems to have become essen-
tial during the evolutionary process of this truffle spe-
cies. The genetic closeness of the bacteria inhabiting
truffle ascomata could be due to a co-evolution process
between some bradyrhizobia taxa and the Tuber spp.
This co-evolutional process between truffles and bra-
dyrhizobia might have induced the differentiation of
some bacterial strains extremely specific to certain
Tuber spp.

The strict relations between Bradyrhizobium spp.
and T. magnatum mycelial growth could have practical
implications in truffle cultivation. In fact, the application
of these bradyrhizobia could affect the success of the
spore inoculation in the greenhouse mycorrhization
process and, later, the maintenance of T. magnatum
soil colonisation after plantation in the field. Moreover,
cultivating in vitro T. magnatum mycelium opens up the
possibility of obtaining mycorrhized plants with
T. magnatum mycelial cultures.

For a better exploitation of the beneficial effects of
these bacteria on T. magnatum cultivation, further stud-
ies will be necessary to characterise their physiology

and the exact nature of their relationship with
T. magnatum mycelium.
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