
Information and Software Technology 157 (2023) 107159

A
0

M
r
V
a

b

A

D
t
Q

K
M
S
P
R
R
M
S

1

a
e
i
d
s
s
f
a
t
r
o

(

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

any-objective optimization of non-functional attributes based on
efactoring of software models
ittorio Cortellessa a,∗,1, Daniele Di Pompeo a,1, Vincenzo Stoico a,1, Michele Tucci b,1

University of L’Aquila, Italy
Charles University, Czech Republic

R T I C L E I N F O

ataset link: https://github.com/SEALABQuali
yGroup/EASIER, https://github.com/SEALAB
ualityGroup/2022-ist-replication-package

eywords:
ulti-objective optimization

earch-based software engineering
erformance
eliability
efactoring
odel-driven engineering

oftware architecture

A B S T R A C T

Context: Software quality estimation is a challenging and time-consuming activity, and models are crucial to
face the complexity of such activity on modern software applications. In this context, software refactoring is
a crucial activity within development life-cycles where requirements and functionalities rapidly evolve.
Objective: One main challenge is that the improvement of distinctive quality attributes may require con-
trasting refactoring actions on software, as for trade-off between performance and reliability (or other
non-functional attributes). In such cases, multi-objective optimization can provide the designer with a wider
view on these trade-offs and, consequently, can lead to identify suitable refactoring actions that take into
account independent or even competing objectives.
Method: In this paper, we present an approach that exploits the NSGA-II as the genetic algorithm to search
optimal Pareto frontiers for software refactoring while considering many objectives. We consider performance
and reliability variations of a model alternative with respect to an initial model, the amount of performance
antipatterns detected on the model alternative, and the architectural distance, which quantifies the effort to
obtain a model alternative from the initial one.
Results: We applied our approach on two case studies: a Train Ticket Booking Service, and CoCoME. We
observed that our approach is able to improve performance (by up to 42%) while preserving or even improving
the reliability (by up to 32%) of generated model alternatives. We also observed that there exists an order of
preference of refactoring actions among model alternatives.
Conclusion: Based on our analysis, we can state that performance antipatterns confirmed their ability to
improve performance of a subject model in the context of many-objective optimization. In addition, the metric
that we adopted for the architectural distance seems to be suitable for estimating the refactoring effort.
. Introduction

Software refactoring [1] can be triggered by different causes, such
s the introduction of additional requirements, the adaptation to new
xecution contexts, or the degradation of non-functional properties. The
dentification of optimal refactoring actions is a non-trivial task, mostly
ue to the large space of solutions, while there is still lack of automated
upport to this task. Search-based techniques have been involved in
uch a context [2–8], and they have proven to suit within the non-
unctional analysis due to the quantifiable nature of non-functional
ttributes [9–11]. Among the search-based techniques, those related
o multi-objective optimization have been recently applied to model
efactoring optimization problems [12,13]. A common aspect of multi-
bjective optimization approaches applied to model-based software

∗ Corresponding author.
E-mail addresses: vittorio.cortellessa@univaq.it (V. Cortellessa), daniele.dipompeo@univaq.it (D. Di Pompeo), vincenzo.stoico@graduate.univaq.it

V. Stoico), tucci@d3s.mff.cuni.cz (M. Tucci).
1 The contribution of each author is equivalent.

refactoring problems is that they search among design alternatives (e.g.,
through architectural tactics [13,14]).

In this paper, we present an approach based on a many-objective
evolutionary algorithm (i.e., NSGA-II [15]) that searches sequences of
refactoring actions, to be applied on models, leading to the optimiza-
tion of four objectives: (i) performance variation (analyzed through
Layered Queueing Networks [16]), (ii) reliability (analyzed through
a closed-form model [17]), (iii) number of performance antipatterns
(automatically detected [18]) and (iv) architectural distance [19]. A
performance antipattern is a bad design decision that might lead to a
performance degradation [20,21]. In particular, we analyze the com-
position of model alternatives generated through the application of
refactoring actions to the initial model, and we analyze the contribution
vailable online 27 January 2023
950-5849/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2023.107159
eceived 1 March 2022; Received in revised form 4 October 2022; Accepted 20 Ja
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

nuary 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
mailto:vittorio.cortellessa@univaq.it
mailto:daniele.dipompeo@univaq.it
mailto:vincenzo.stoico@graduate.univaq.it
mailto:tucci@d3s.mff.cuni.cz
https://doi.org/10.1016/j.infsof.2023.107159
https://doi.org/10.1016/j.infsof.2023.107159
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107159&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.

o
e
i
s
a
i
s
t
t
m

2

t

𝑝

v
f

of the architectural distance to the generation of Pareto frontiers.
Furthermore, we study the impact of performance antipatterns on the
quality of refactoring solutions. Since it has been shown that removing
performance antipatterns leads to systems that show better perfor-
mance than the ones affected by them [18,21,22], we aim at studying if
this result persists in the context of many-objective optimization, where
performance improvement is not the only objective.

Our approach applies to UML models augmented by MARTE [23]
and DAM [24] profiles that allow to embed performance and reliability
properties. However, UML does not provide native support for perfor-
mance analysis, thus we introduce a model-to-model transformation
that generates Layered Queueing Networks (LQN) from annotated UML
models. The solution of LQN models feeds the performance variation
objective.

Here, we consider refactoring actions that are designed to improve
performance in most cases. Since such actions may also have an impact
on other non-functional properties, we introduce the reliability among
the optimization objectives to study whether satisfactory levels of
performance and reliability can be kept at the same time. In order
to quantify the reliability objective, we adopt an existing model for
component-based software systems [17] that can be generated from
UML models.

We also minimize the distance between the initial UML model and
the ones resulting from applying refactoring actions. Indeed, without an
objective that minimizes such distance, the proposed solutions could be
impractical because they could require to completely disassemble and
re-assemble the initial UML model.

In a recent work [25], we extended the approach in [12,19], by
investigating UML models optimization, thus widening the scope of
eligible models. In this paper, we extensively apply the approach to two
case studies from the literature: Train Ticket Booking Service [26,27],
and CoCoME [28]. We analyze the sensitivity of the search process
to configuration variations. We refine the cost model of refactoring
actions, introduced in [25], and we investigate how it contributes to
the generation of Pareto frontiers. Also, we analyze the characteristics
of computed Pareto frontiers in order to extract common properties for
both case studies.

This study answers the following research questions:

• RQ1: To what extent do experimental configurations affect quality
of Pareto frontiers?

– RQ1.1: Does antipattern detection contribute to find better
solutions compared to the case where antipatterns are not
considered at all?

– RQ1.2: Does the probabilistic nature of fuzzy antipatterns
detection help to include higher quality solutions in Pareto
frontiers with respect to deterministic one?

– RQ1.3: To what extent does the architectural distance con-
tribute to find better alternatives?

• RQ2: Is it possible to increase reliability without performance
degradation?

• RQ3: What type of refactoring actions are more likely to lead to
better solutions?

The experimentation lasted approximately 200 h and generated more
than 70,000 model alternatives.

Generally, multi-objective optimization is beneficial when the solu-
tion space is so large that an exhaustive search is impractical. Hence,
due to the search of the solution space, multi-objective optimization
requires a lot of time and resources.

Our results show that, by considering the reduction of performance
antipatterns as an objective, we are able to obtain model alternatives
that show better performance and, in the majority of cases, better
reliability as well. We also find that a more sophisticated architec-
2

tural distance objective estimation helps the optimization process to
generate model alternatives showing better quality indicators. Also,
we strengthen the idea that performance antipatterns are promising
proxies of performance degradation of software models.

The structure of the paper is the following: Section 2 introduces
basic concepts, Section 3 describes the approach, Section 4 describes
the two involved case studies, and Section 5 details used configurations,
in Section 6 we evaluate our approach and discuss the results, threats
to validity are described in Sections 7 and 8 reports related work, and
Section 9 concludes the paper.

2. Background

We identify four competing objectives of our evolutionary approach
as follows: perfQ is a performance quality indicator that quantifies the
performance improvement/detriment between an initial model and one
obtained by applying the refactoring actions of a solution (Section 2.1);
reliability is a measure of the reliability of the software model (Sec-
tion 2.2); performance antipatterns is a metric that quantifies the amount
of performance antipattern occurrences while considering the intrinsic
uncertainty rising from thresholds used by the detection mechanism
(Section 2.3); #changes represents the distance between an initial model
and one obtained by applying the refactoring actions of a solution
(Section 2.4).

We employ the Non-dominated Sorting Algorithm II (NSGA-II) as
ur genetic algorithm [15], since it is extensively used in the software
ngineering community, e.g., [14,29]. NSGA-II randomly creates an
nitial population of model alternatives, and it used to create the off-
pring population by applying the Crossover with probability 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟,
nd the Mutation with probability 𝑃𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 operators. The union of the
nitial and the offspring populations is sorted by the Non-dominated
orting operator, which identifies different Pareto frontiers with respect
o considered objectives. Finally, the Crowding distance operator cuts off
he worse half of the sorted union population. Hence, the remaining
odel alternatives become the initial population for the next step.

.1. Performance quality indicator (perfQ)

perfQ quantifies the performance improvement/detriment between
wo models, and it is defined as follows:

𝑒𝑟𝑓𝑄(𝑀) = 1
𝑐

𝑐
∑

𝑗=1
𝑝𝑗 ⋅

𝐹𝑗 − 𝐼𝑗
𝐹𝑗 + 𝐼𝑗

where 𝑀 is a model obtained by applying a refactoring solution to the
initial model, 𝐹𝑗 is the value of a performance index in 𝑀 , and 𝐼𝑗 is the
alue of the same index on the initial model. 𝑝 ∈ {−1, 1} is a multiplying
actor that holds: (i) 1 if the 𝑗th index has to be maximized (i.e., the

higher the value, the better the performance), like the throughput; (ii)
−1 if the 𝑗th index has to be minimized (i.e., the smaller the value, the
better the performance), like the response time.

Notice that, for performance measures representing utilization, 𝑝
also holds 1 but we define a utilization correction factor 𝛥𝑗 to be added
to each jth term above, as defined in [19]. The utilization correction
factor penalizes refactoring actions that push the utilization too close
to 1, i.e., its maximum value. Finally, the global perfQ is computed as
the average across the number 𝑐 of performance indices considered in
the performance analysis.

As mentioned in the introduction, in order to obtain performance
indices of a UML model, the analysis has been conducted on Layered
Queueing Networks (LQNs) [16]2 that are obtained through a model
transformation approach from UML to LQN, which we have introduced
in [25]. We chose Layered Queueing Networks as our performance
model notation because it is extensively used in the literature and it
allows a more explicit representation of software and hardware com-
ponents (and their interactions) than the one of conventional Queueing
Networks [13,14,30].

2 http://www.sce.carleton.ca/rads/lqns/LQNSUserMan-jan13.pdf.

http://www.sce.carleton.ca/rads/lqns/LQNSUserMan-jan13.pdf

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.

o
p
e

𝜃

Table 1
Detectable performance antipatterns in our approach. Left column lists performance antipattern names, while right column lists performance antipattern descriptions [22].

Performance antipattern Description

Pipe and filter Occurs when the slowest filter in a ‘‘pipe and filter’’ causes the system to have unacceptable throughput.

Blob Occurs when a single component either (i) performs the greatest part of the work of a software system or (ii) holds the greatest part of
the data of the software system. Either manifestation results in excessive message traffic that may degrade performance.

Concurrent processing system Occurs when processing cannot make use of available processors.

Extensive processing Occurs when extensive processing in general impedes overall response time.

Empty semi-truck Occurs when an excessive number of requests is required to perform a task. It may be due to inefficient use of available bandwidth, an
inefficient interface, or both.

Tower of babel Occurs when processes use different data formats and they spend too much time in convert them to an internal format.
i
s

u
𝐵
s
e
T

#

D
t

3

a
a
P
c
o
a
E
t
o
o
t
c
c

3

n

2.2. Reliability model

The reliability model that we adopt here to quantify the reliability
bjective is based on the model introduced in [17]. The mean failure
robability 𝜃𝑆 of a software system 𝑆 is defined by the following
quation:

𝑆 = 1 −
𝐾
∑

𝑗=1
𝑝𝑗

(𝑁
∏

𝑖=1
(1 − 𝜃𝑖)

𝐼𝑛𝑣𝑁𝑟𝑖𝑗 ⋅
𝐿
∏

𝑙=1
(1 − 𝜓𝑙)𝑀𝑠𝑔𝑆𝑖𝑧𝑒(𝑙,𝑗)

)

This model takes into account failure probabilities of components (𝜃𝑖)
and communication links (𝜓𝑙), as well as the probability of a scenario to
be executed (𝑝𝑗). Such probabilities are combined to obtain the overall
reliability on demand of the system (𝜃𝑆), which represents how often
the system is not expected to fail when its scenarios are invoked.

The model is considered to be composed of 𝑁 components and
𝐿 communication links, whereas its behavior is made of 𝐾 scenarios.
The probability (𝑝𝑗) of a scenario 𝑗 to be executed is multiplied by an
expression that describes the probability that no component or link fails
during the execution of the scenario. This expression is composed of
two terms: ∏𝑁

𝑖=1(1 − 𝜃𝑖)
𝐼𝑛𝑣𝑁𝑟𝑖𝑗 , which is the probability of the involved

components not to fail raised to the power of their number of invoca-
tions in the scenario (denoted by 𝐼𝑛𝑣𝑁𝑟𝑖𝑗), and ∏𝐿

𝑙=1(1 −𝜓𝑙)
𝑀𝑠𝑔𝑆𝑖𝑧𝑒(𝑙,𝑗),

which is the probability of the involved links not to fail raised to the
power of the size of messages traversing them in the scenario (denoted
by 𝑀𝑠𝑔𝑆𝑖𝑧𝑒(𝑙, 𝑗)).

2.3. Performance antipatterns

A performance antipattern describes bad design practices that might
lead to performance degradation in a system. Smith and Williams have
introduced the concepts of performance antipatterns in [21,31]. These
textual descriptions were later translated into a first-order logic (FOL)
equations [32].

A performance antipattern FOL is a combination of multiple liter-
als, where each one represents a system aspect (e.g., the number of
connections among components). These literals must be compared to
thresholds in order to reveal the occurrence of a performance antipat-
tern. The identification of such thresholds is a non-trivial task, and
using deterministic values may result in an excessively strict detection
where the smallest change in the value of a literal determines the
occurrence of the antipattern. For these reasons, we employ a fuzzy
detection [33], which assigns to each performance antipattern a prob-
ability to be an antipattern. An example of a performance antipattern
fuzzy detection is the following:

1 −
𝑈𝐵(𝑙𝑖𝑡𝑒𝑟𝑎𝑙) − 𝑙𝑖𝑡𝑒𝑟𝑎𝑙

𝑈𝐵(𝑙𝑖𝑡𝑒𝑟𝑎𝑙) − 𝐿𝐵(𝑙𝑖𝑡𝑒𝑟𝑎𝑙)

The upper (UB) and the lower (LB) bounds, in the above equation,
are the maximum and minimum values of the 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 computed on the
entire system. Instead of detecting a performance antipattern in a deter-
ministic way, such thresholds lead to assign probabilities to antipattern
occurrences. In this study, we detect the performance antipatterns listed
3

in Table 1.
2.4. Architectural distance

The architectural distance, that we express here as #changes, repre-
sents the distance of the model obtained by applying refactoring actions
from the initial one [19]. On one side, a baseline refactoring factor (BRF)
is associated to each refactoring action in our portfolio, and it expresses
the refactoring effort to be spent when applying the action. On the other
side, an architectural weight (AW) is associated to each model element
on the basis of the number of connections to other elements in the
model. Hence, we quantify the effort needed to perform a refactoring
as the product between the baseline refactoring factor of an action and
the architectural weight of the model element on which that action is
applied. #changes is obtained by summing the efforts of all refactoring
actions contained in a solution.

Furthermore, BRF and AW can assume any positive value (i.e., zero
s a non-admitted value because it would lead the optimizer to always
elect only actions by that type).

As an example, let us assume that a refactoring sequence is made
p of two refactoring actions: A1 with 𝐵𝑅𝐹 (𝐴1) = 1.23, and A2 with
𝑅𝐹 (𝐴2) = 2.3. For each refactoring action, the algorithm randomly

elects a target element in the model. For instance, let those target
lements be: E1 with 𝐴𝑊 (𝐸1) = 1.43, and E2 with 𝐴𝑊 (𝐸2) = 1.32.
he resulting #changes of A1 and A2 would be:

𝑐ℎ𝑎𝑛𝑔𝑒𝑠(𝐴1, 𝐴2) = 1.23 ⋅ 1.43 + 2.3 ⋅ 1.32

etails about the baseline refactoring factor for each considered refac-
oring action are provided in Section 3.3.

. Approach

Fig. 1 depicts the process we present in this paper. The process uses
UML model and a set of refactoring actions as input. The Initial Model
nd the Refactoring Actions are involved within the Create Combined
opulation step, where mating operations (i.e., selection, mutation, and
rossover) are put in place to create Model Alternatives. The mating
perations randomly apply the refactoring actions, which generate
lternatives functionally equivalent to the initial model. Therefore, the
valuation step is applied to each model alternative. Subsequently,
he model alternatives are ranked (Sorting step) according to four
bjectives: perfQ, reliability , #changes, and performance antipatterns. The
ptimal model alternatives (i.e., non-dominated alternatives) become
he input of the next iteration. The process continues until the stopping
riteria are met. Finally, the process generates a Pareto Frontier, which
ontains all non-dominated model alternatives.

.1. Assumptions on UML models

In our approach, we consider UML models including three views,
amely static, dynamic and deployment views. The static view is mod-

eled by a UML Component diagram in which static connections among
components are represented by interface realizations and their usages.
The dynamic view is described by UML Use Case and Sequence dia-

grams. A Use Case diagram defines user scenarios, while a Sequence

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.
Fig. 1. Our multi-objective evolutionary approach.

diagram describes the behavior inside a single scenario through compo-
nent operations (as defined in their interfaces) and interactions among
them. A Deployment diagram is used to model platform information
and map Components to Deployment Nodes. As mentioned before,
we use an augmented UML notation by embedding two existing pro-
files, namely MARTE [23] that expresses performance concepts, and
DAM [24] that expresses reliability concepts.

Although our assumptions on UML models seem to require an up-
front modeling phase, the accuracy of results is affected by the quality
of model and annotations. We mitigate the modeling effort through the
usage of UML. In fact, a plethora of UML modeling tools is available,
each equipped with entry-level or advanced capabilities that differently
help software models design.3

3.2. The refactoring engine

The automated refactoring of UML models is a key point when
evolutionary algorithms are employed in order to optimize some model
attributes. For the sake of full automation of our approach, we have
implemented a refactoring engine that applies refactoring actions on
UML software models [34].

Each solution that our evolutionary algorithm produces is a se-
quence of refactoring actions that, once applied to an initial model,
leads to a model alternative that shows different non-functional proper-
ties. Since our refactoring actions are combined during the evolutionary
approach, we exploit the feasibility engine that verifies in advance
whether a sequence of refactoring actions is feasible or not [35].

Our refactoring actions are equipped with pre- and post-condition.
While the pre-condition represents the model state for enabling the
action, the post-condition represents the model state when the action
has been applied. The approach extracts a refactoring action and adds
it to the sequence. As soon as the action is selected, it randomly extracts
a model element (i.e., the target element). Thus, the refactoring engine
checks the feasibility of the (partial) sequence of refactoring actions.
When the latest added action makes the sequence unfeasible, the engine
discards the action and replaces it with a new one. The engine reduces
a sequence of refactoring actions to a single refactoring action, which
includes all the changes (see Eq. (1a)).

For example, considering two refactoring actions (𝑀𝑖, and 𝑀𝑗), then
the global pre-condition is obtained by logical ANDing the first action

3 https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools.
4

pre-condition (𝑃𝑟𝑀𝑖) and all the parts of 𝑀𝑗 pre-condition that are
not yet verified by 𝑀𝑖 post-conditions (𝑀𝑃𝑟

𝑗 ∕ 𝑀𝑖
𝑃𝑜) (see Eqs. (1b)).

Since the status of the model after a refactoring is synthesized by its
post-condition, we can discard the parts of a subsequent refactoring
pre-condition that, by construction, are already verified by its post-
condition. The global post-condition is obtained by logical ANDing all
post-conditions within the sequence (𝑀𝑃𝑜

𝑖 ∧𝑀𝑃𝑜
𝑗) (see Eq. (1c)).

𝑃𝑟𝑀𝑃𝑜
𝑖 ∧ 𝑃𝑟𝑀𝑃𝑜

𝑗 ⟼ 𝑃𝑟𝑀𝑃𝑜 (1a)
𝑃𝑟𝑀𝑖 ∧𝑀

𝑃𝑟
𝑗 ∕ 𝑀𝑖

𝑃𝑜 ⟼ 𝑃𝑟𝑀 (1b)

𝑀𝑃𝑜
𝑖 ∧𝑀𝑃𝑜

𝑗 ⟼𝑀𝑃𝑜 (1c)

Our feasibility engine also allows to reduce the number of invalid
refactoring sequences, thus reducing the computational time.

3.2.1. Refactoring action portfolio
Figs. 2 through 5 show a graphic representation of each refactoring

action. Each figure’s left side shows the original model (e.g., static
view in Fig. 3(a), dynamic view in Fig. 3(c), and deployment view in
Fig. 3(e)), while the refactored version is shown on the right side (e.g.,
static view in Fig. 3(b), dynamic view in Fig. 3(d), and deployment
view in Fig. 3(f)). The red highlights indicate changes.

Clone a node (Clon). This action is aimed at introducing a replica of a
Node. Adding a replica means that every deployed artifact and every
connection of the original Node has to be in turn cloned. Stereotypes
and their tagged values are cloned as well. The rationale of this action
is to introduce a replica of a platform device with the aim of reducing
its utilization (see Fig. 2).

Move an operation to a new component deployed on a new node (MO2N).
This action is in charge of randomly selecting an operation and mov-
ing it to a new Component. All the elements related to the moving
operation (e.g., links) will move as well. Since we adopt a multi-view
model, and coherence among views has to be preserved, this action has
to synchronize dynamic and deployment views. A lifeline for the newly
created Component is added in the dynamic view, and messages related
to the moved operation are forwarded to it. In the deployment view,
instead, a new Node, a new artifact, and related links are created. The
rationale of this action is to lighten the load of the original Component
and Node (see Fig. 3).

Move an operation to a component (MO2C). This action is in charge
of randomly selecting and transferring an Operation to an arbitrary
existing target Component. The action consequently modifies each UML
Use Case in which the Operation is involved. Sequence Diagrams are
also updated to include a new lifeline representing the Component
owning the Operation, but also to re-assign the messages invoking the
operation to the newly created lifeline. The rationale of this action is
quite similar to the previous refactoring action, but without adding a
new UML Node to the model (see Fig. 4).

Deploy a component on a new node (ReDe). This action simply modifies
the deployment view by redeploying a Component to a newly created
Node. In order to be consistent with the initial model, the new Node is
connected with all other ones directly connected to the Node on which
the target Component was originally deployed. The rationale of this
action is to lighten the load of the original UML Node by transferring
the load of the moving Component to a new UML Node (see Fig. 5).

3.3. Baseline refactoring factor

As described in Section 2.4, we measure the architectural distance
by summing the products of baseline refactoring factor (BRF) and
architectural weight (AW) for each refactoring action 𝑎𝑖(𝑒𝑙𝑗) within a
sequence (A).

#𝑐ℎ𝑎𝑛𝑔𝑒𝑠(A) =
∑

𝐵𝑅𝐹 (𝑎𝑖) × 𝐴𝑊 (𝑒𝑙𝑗)

𝑎𝑖(𝑒𝑙𝑗)∈A

https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

Information and Software Technology 157 (2023) 107159

5

V. Cortellessa et al.

Fig. 2. The Clon refactoring action example on node_A through a UML software model.

Fig. 3. The MO2N refactoring action example on operation_2 through a UML software model.

Fig. 4. The MO2C refactoring action example on operation_2 and component_C through a UML software model.

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.

i
o
i

Fig. 5. The ReDe refactoring action example on component_C through a UML software model.
c
q
u
P
(
f

i

G
i
c

𝐺

e
d
v

I
b
n

𝐼

H
m
i

𝐻

w
𝑠
c
p

E
t
d
a
f

𝐸

e
e
b

Table 2
A detailed size of the solution space (𝛺) computation.

Action BRF TTBS CoCoME

MO2N 1.80 70 ≈4.8 × 103

MO2C 1.64 ≈1.5 × 106 ≈1.3 × 108

ReDe 1.45 ≈3 × 102 ≈7 × 102

Clon 1.23 ≈3 × 102 70

𝛺 9.45 × 1012 3.05 × 1016

AW is the weight of the target of the refactoring action, BRF is the
ntrinsic cost that one should pay in order to apply the specific action
n a model element. There are different ways to compute the effort for
mplementing software artifacts or maintaining them (e.g., COCOMO-

II [36], and CoBRA [37]). Nevertheless, we consider the cost in terms of
the effort that one should spend on the model to complete a refactoring
action, and we assign BRF values on the basis of our past experience in
manual refactoring. We have not used a cost estimator model, such as
CoBRA, because it requires to collect business information that is not
available for non-industrial case studies. Table 2 lists the BRF values
used in this study. It is worth remarking that, in our optimization
problem, the ratio among BRF values is more important than how each
single value has been extracted.

3.4. Computing reliability on UML models

The reliability parameters of the model introduced in Section 2.2
are annotated on UML models by means of the MARTE-DAM profile.
The probability of executing a scenario (𝑝𝑗) is specified by annotating
UML Use Cases with the GaScenario stereotype. This stereotype has a
tag named root that is a reference to the first GaStep in a sequence. We
use the GaScenario.root tag to point to the triggering UML Message of a
Sequence Diagram and the GaStep.prob to set the execution probability.
Failure probabilities of components (𝜃𝑖) are defined by applying the
DaComponent stereotype on each UML Component and by setting, in
the failure tag, a DaFailure element with the failure probability specified
in the occurrenceProb tag. Analogously, failure probabilities of links
(𝜓𝑙) are defined in the failure.occurrenceProb tag of the DaConnector
stereotype that we apply on UML CommunicationPath elements. Such
elements represent the connection links between UML Nodes in a
Deployment Diagram. Sequence Diagrams are traversed to obtain the
number of invocations of a component 𝑖 in a scenario 𝑗 (denoted
by 𝐼𝑛𝑣𝑁𝑟𝑖𝑗 in our reliability model), but also to compute the total
size of messages passing over a link 𝑙 in a scenario 𝑗 (denoted by
𝑀𝑠𝑔𝑆𝑖𝑧𝑒(𝑙, 𝑗)). The size of a single UML Message is annotated using the
GaStep.msgSize tag. The Java implementation of the reliability model is
available online.4

4 https://github.com/SEALABQualityGroup/uml-reliability.
6

c

3.5. Pareto frontier quality indicators

We compare the performance of the NSGA-II while varying the
onfiguration eligible values listed in Table 3. We used well-established
uality indicators also provided in the JMetal framework [38]. We
se quality indicators to quantify the difference among computed
areto frontiers (𝑃𝐹 𝑐) with respect to the reference Pareto frontier
𝑃𝐹 𝑟𝑒𝑓) [39]. Therefore, we can declare which configuration outper-
orm the others.

In the following, we recall some characteristics for each quality
ndicator.

SPREAD. The Generalized SPREAD is a quality indicator to be min-
mized, and it measures the spread of solution within 𝑃𝐹 𝑐 [40]. It is
omputed as follows:

𝑆𝑃𝑅𝐸𝐴𝐷(𝑃𝐹 𝑐) =
∑𝑚
𝑖=1 𝑑(𝑒𝑖, 𝑃𝐹

𝑐) +
∑

𝑠∈𝑃𝐹 𝑐
|

|

𝑖𝑑(𝑠, 𝑃𝐹 𝑐) − ̄𝑖𝑑|
|

∑𝑚
𝑖=0 𝑑(𝑒𝑖, 𝑃𝐹 𝑐) + |𝑃𝐹 𝑐 | ∗ ̄𝑖𝑑

where 𝑒𝑖 is the optimal value for the objective 𝑓𝑖, i.e., (𝑒1,… , 𝑒𝑚) is the
xtreme solution in 𝑃𝐹 𝑟𝑒𝑓 , 𝑖𝑑(𝑠, 𝑃𝐹 𝑐) = 𝑑(𝑠, 𝑃𝐹 𝑐∖{𝑠}) is the minimal
istance of a solution 𝑠 from the solutions in 𝑃𝐹 𝑐 , and ̄𝑖𝑑 is the mean
alue of 𝑖𝑑(𝑠, 𝑃𝐹 𝑐) across the solutions 𝑠 in 𝑃𝐹 𝑟𝑒𝑓 .

GD+. The Inverse Generational Distance plus is a quality indicator to
e minimized. It measures the distance from a solution in 𝑃𝐹 𝑟𝑒𝑓 to the
earest solutions in 𝑃𝐹 𝑐 [41]. It is computed as follows:

𝐺𝐷+(𝑃𝐹 𝑐) =

√

∑

𝑠∈𝑃𝐹 𝑟𝑒𝑓 𝑑(𝑠, 𝑃𝐹 𝑐)2

|

|

𝑃𝐹 𝑟𝑒𝑓 |
|

ypervolume. The Hypervolume indicator is to be maximized and it
easures the volume of the solution space 𝛺 covered by 𝑃𝐹 𝑐 [42]. It

s computed as follows:

𝑉 (𝑃𝐹 𝑐) = 𝑣𝑜𝑙𝑢𝑚𝑒(∪𝑠𝑖∈𝑃𝐹 𝑐ℎ𝑐(𝑠𝑖))

here 𝑠𝑖 is a solution within the 𝑃𝐹 𝑐 , ℎ𝑐(𝑠𝑖) is the hypercube having
𝑖 and 𝑤 as diagonal points. The variable 𝑤 is the reference point
omputed using the worst objective function values among all the
ossible solutions in 𝑃𝐹 𝑐 .

PSILON. The EPSILON quality indicator measures the smallest dis-
ance that each solution within 𝑃𝐹 𝑐 should be translated so that 𝑃𝐹 𝑐
ominates 𝑃𝐹 𝑟𝑒𝑓 [43]. EPSILON is a quality indicator to be minimized,
nd it uses the notation of epsilon-dominance ≻𝜖 . It is computed as
ollows:

𝑃 (𝑃𝐹 𝑐) = 𝑖𝑛𝑓{𝜖 ∈ R|(∀𝑥 ∈ 𝑃𝐹 𝑟𝑒𝑓 ,∃𝑦 ∈ 𝑃𝐹 𝑐 ∶ 𝑦 ≻𝜖 𝑥)}

In our study, we have computed a 𝑃𝐹 𝑟𝑒𝑓 for each case study by
xtracting every non-dominated solutions across each 𝑃𝐹 𝑐 , i.e., one for
ach configuration. Hence, the quality indicators in Tables 5 and 6 have
een computed with respect to the 𝑃𝐹 𝑟𝑒𝑓 for the TTBS, and CoCoME

ase study respectively.

https://github.com/SEALABQualityGroup/uml-reliability

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.

a
t
a

m
m
o

s
W
p
i
c
u
t
s

4

c
i
c
i
d
a
m

s
c
(
s
b
c
s

p

Table 3
Eligible configuration values.

Configuration Eligible values

Experiment settings
Baseline refactoring factor No, yes
Performance antipattern fuzziness 0.55, 0.80, 0.95
Case study TTBS, CoCoME

NSGA-II

Number of genetic evolutions 72, 82, 102
Population size 16
Number of independent runs 3
Selection operator Binary tournament selection
𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 0.80
Crossover operator Single point
𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 0.20
Mutation operator Simple mutation
n
t
s

4. Case studies

In this section, we apply our approach to the Train Ticket Book-
ing Service (TTBS) case study [26,27], and to the well-established
model case study CoCoME, whose UML model has been derived by the
specification in [28].

4.1. Train Ticket Booking Service

Train Ticket Booking Service (TTBS) is a web-based booking ap-
plication, whose architecture is based on the microservice paradigm.
The system is made up of 40 microservices, and it provides different
scenarios through users that can perform realistic operations, e.g., book

ticket or watch trip information like intermediate stops. The applica-
ion employs a docker container for each microservice, and connections
mong them are managed by a central pivot container.

Our UML model of TTBS is available online.5 The static view is
ade of 11 UML Components, where each component represents a
icroservice. In the deployment view, we consider 11 UML Nodes, each

ne representing a docker container.
Among all TTBS scenarios shown in [26], in this paper we have con-

idered 3 UML Use Cases, namely login, update user details and rebook.
e selected these three scenarios because they commonly represent

erformance-critical ones in a ticketing booking service. Each scenario
s described by a UML Sequence Diagram. Furthermore, the model
omprises two user categories: simple and admin users. The simple
ser category can perform the login and the rebook scenarios, while
he admin category can perform the login and the update user details
cenarios.

.2. CoCoME

The component-based system engineering domain has always been
haracterized by a plethora of standards for implementing, document-
ng, and deploying components. These standards are well-known as
omponent models. Before the birth of the common component model-
ng example (CoCoME) [28], it was hard for researchers to compare
ifferent component models. CoCoME is a case study that acts as
single specification to be implemented using different component
odels.
CoCoME describes a Trading System containing several stores. A

tore might have one or more cash desks for processing goodies. A
ash desk is equipped with all the tools needed to serve a customer
e.g., a Cash Box, Printer, Bar Code Scanner). CoCoME covers possible
cenarios performed at a cash desk (e.g., scanning products, paying
y credit card, generating reports, or ordering new goodies). A set of
ash desks forms a cash desk line. The latter is connected to the store
erver for registering cash desk line activities. Instead, a set of stores

5 https://github.com/SEALABQualityGroup/2022-ist-replication-
ackage/tree/main/case-studies/train-ticket.
7

Table 4
Number of UML elements in our Case Studies, and the size of the relative solution
space (𝛺).

Case study UML node UML component UML message 𝛺

TTBS 11 11 8 1.20 × 1013

CoCoME 8 13 20 3.26 × 1016

is organized in an enterprise having its server for monitoring stores
operations.

CoCoME describes 8 scenarios involving more than 20 compo-
ents. We have modeled this case study using UML and following
he structure described in Section 3.1. From the CoCoME original
pecification, we analyzed different operational profiles, i.e., scenarios

triggered by different actors (such as Customer, Cashier, StoreManager,
StockManager), and we excluded those related to marginal parts of
the system, such as scenarios of the EnterpriseManager actor. Thus,
we selected 3 UML Use Cases, 13 UML Components, and 8 UML
Nodes from the CoCoME specification. Beside this, we focused on three
scenarios, namely: UC1 that describes the arrival of a customer at the
checkout, identification, and sale of a product; UC4 that represents how
products are registered in the store database upon their arrival; UC5
that represents the possibility of generating a report of store activities.

We computed the size of the solution space (𝛺) as the Cartesian
product of the combination of refactoring actions 𝐶𝑛,𝑘 =

(𝑛
𝑘

)

where
𝑛 is the number of target model elements, and 𝑘 is the length of the
chromosome (i.e., the length of the sequence of refactoring actions,
which is 4 in our case), and we summarize data in Table 2. We remark
that a manual investigation of the solution space is unfeasible due
to its size. Hence, the evolutionary search is helpful for looking for
model alternatives showing better quality than the initial one. Table 4
summarizes the case study characteristics.

5. Experimental setup

A configuration is defined by the combination of parameters related
to the genetic algorithm, and the ones related to the specific optimiza-
tion model. The eligible configuration values in our approach are listed
in Table 3. In order to investigate which configuration produces better
Pareto frontiers, we have executed multiple tuning runs to find a set of
optimal configurations.

In order to set the parameters related to the genetic algorithm, we
have performed a tuning phase with the intent of increasing the quality
of the Pareto frontiers. In particular, we have set the length of refactor-
ing sequences to four actions, which represents a good approximation
of the number of refactoring actions usually applied by a designer in
a single session. We have set the 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 and 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 probabilities to
0.8 and 0.2, respectively, following common configurations [44]. The
higher the values of these two probabilities, the greater the chance of
generating an unfeasible sequence of refactoring actions, which in turn
causes a longer simulation time due to a higher number of discarded
sequences. For example, the 𝑃 increase could cause a lot of
𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟

https://github.com/SEALABQualityGroup/2022-ist-replication-package/tree/main/case-studies/train-ticket
https://github.com/SEALABQualityGroup/2022-ist-replication-package/tree/main/case-studies/train-ticket

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.

g
t
I

6

m

6

t

s
w

permutation among sequences, and it might lead to wrong or unfeasible
sequences of refactoring actions.

The initial population size might drive the genetic algorithm in local
minima, and thus result in stagnant solutions. In general, a densely
populated initial population minimizes the probability of stagnant so-
lutions in local minima. However, the generation of a crowded initial
population is computational demanding and, in case of rare local
minima, the computational cost represents a clear slowdown for the
evolutionary approach [45]. For that reason, we set the population size
to 16 elements (i.e., 16 different UML model alternatives), which did
not show stagnant issues in our tuning phase. Furthermore, we will
investigate in a future work the impact of denser populations in our
analysis, in terms of computational time and quality of the computed
Pareto frontiers (𝑃𝐹 𝑐). In addition, multiple runs have been executed
for each configuration in order to reduce the randomness of the genetic
algorithm.

We considered three fuzziness thresholds, i.e., {0.55, 0.80, 0.95},
to study the impact of performance antipatterns on computed Pareto
frontiers. Since we are considering a fuzzy detection of performance
antipatterns, we should use values greater than 50% to reduce the
probability of false positives, but less than 100% to not fall in a
case of performance antipatterns deterministic detection. Therefore, we
decided to use those three fuzziness values to analyze the uncertainty
of a fuzzy performance antipatterns detection.

With regard to parameters related to refactoring actions, we ran the
experiment twice, one by excluding BRF , and one by including it. For
the latter, we set BRF of each refactoring action as reported in Table 2.
As we said in Section 3.3, we did not employ a complex cost model
for baseline refactoring factor values. However, we remark that we are
interested in the ratio between BRF values rather than in their specific
values, and we will deeply investigate the impact of other values on
future work.

Our experimental settings on TTBS and CoCoME case studies have
enerated 70,000 model alternatives and have taken 200 h of compu-
ation. We performed our experiments on a server equipped with two
ntel Xeon E5-2650 v3 CPUs at 2.30 GHz, 40 cores and 80 GB of RAM.

. Results and discussion

Results presented in this section are aimed at answering the afore-
entioned three research questions.

.1. RQ1

RQ1: To what extent do experimental configurations affect quality
of Pareto frontiers?

RQ1 focuses on the contribution of experimental configurations to
he quality of the computed Pareto frontiers (𝑃𝐹 𝑐).

In Tables 5 and 6 it is possible to observe the configurations that re-
ult in better Pareto frontiers. Generally, quality indicators are obtained
ith respect to the optimal reference Pareto frontier (𝑃𝐹 𝑟𝑒𝑓), and each

one has its ideal value (e.g., 𝐻𝑉 = 1, 𝐼𝐷𝐺+ = 0). Moreover, values
in tables have been sorted in ascending order when the best quality
indicator is the lowest one, and in descending order otherwise. Since
we did not have the optimal 𝑃𝐹 𝑟𝑒𝑓 for our case studies, we computed,
for each case study, the quality indicators with respect to a 𝑃𝐹 𝑟𝑒𝑓 that
contains every non-dominated solution across all 𝑃𝐹 𝑐 . Once quality
indicators have been obtained and sorted, we identify which maxeval
and probpas have generated better indicators. Finally, we also report
data about BRF .

At a glance, we can see that in most cases for both case studies,
𝑚𝑎𝑥𝑒𝑣𝑎𝑙 = 72 and lower fuzziness generates better quality indicators,
whereas BRF has a different impact on the two case studies.
8

Table 5
Best five of each quality indicator for the Train Ticket Booking Service case study while
varying the performance antipattern fuzziness and the genetic algorithm evolutions.
BRF maxeval probpas q_indicator Value

yes 72 95 HV 0.329645
yes 82 95 HV 0.304931
yes 82 95 HV 0.267898
yes 72 80 HV 0.266588
yes 82 55 HV 0.254973

yes 72 95 IGD+ 0.135226
yes 82 95 IGD+ 0.149903
yes 72 55 IGD+ 0.157150
yes 82 95 IGD+ 0.167142
yes 72 80 IGD+ 0.173162

yes 72 95 EP 0.295681
yes 82 95 EP 0.296014
yes 82 95 EP 0.316964
yes 72 55 EP 0.316964
yes 82 55 EP 0.323661

yes 102 55 GSPREAD 0.125487
yes 102 95 GSPREAD 0.127085
yes 102 80 GSPREAD 0.144666
yes 102 55 GSPREAD 0.148802
yes 72 55 GSPREAD 0.203504

Table 6
Best five of each quality indicator for the CoCoME case study while varying the
performance antipattern fuzziness and the genetic algorithm evolutions.
BRF maxeval probpas q_indicator Value

no 72 95 HV 0.360432
no 82 95 HV 0.359415
no 102 95 HV 0.342563
no 72 55 HV 0.326384
no 82 95 HV 0.305201

no 72 95 IGD+ 0.091767
no 82 95 IGD+ 0.105173
no 102 95 IGD+ 0.106406
no 82 95 IGD+ 0.132800
no 72 55 IGD+ 0.135904

no 82 95 EP 0.250000
no 72 55 EP 0.250000
no 72 95 EP 0.250000
no 82 95 EP 0.313857
yes 72 95 EP 0.333333

no 82 55 GSPREAD 0.145989
yes 102 55 GSPREAD 0.193488
yes 102 95 GSPREAD 0.196790
no 102 55 GSPREAD 0.200320
no 102 80 GSPREAD 0.203431

In the following, we split RQ1 into three sub-questions, each one re-
lated to a specific experimental configuration attribute. RQ1.1 analyzes
the influence of performance antipatterns on 𝑃𝐹 𝑐 . RQ1.2 investigates
whether the fuzziness of performance antipattern detection helps to
find better 𝑃𝐹 𝑐 . RQ1.3 studies the contribution of BRF to the quality
of 𝑃𝐹 𝑐 .

6.1.1. RQ1.1

RQ1.1: Does antipattern detection contribute to find better solutions
compared to the case where antipatterns are not considered at all?

In order to answer this research question, we have conducted an
additional experimentation for every problem configuration, where
we have removed performance antipattern occurrences from the fit-
ness function, thus reducing the optimization to the remaining three
objectives.

Train Ticket Booking Service. Fig. 6 depicts the Pareto frontiers of
72 genetic evolutions while considering the lowest fuzziness (i.e.,

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.

a

𝑝
c
d
a
t
0
a
a
𝑝
a
l
r

C
w
p
l
b
t
d
t
i
a
#

D
t
s
C
i

b
t
h
t
m
s
m
t
a

C
f
t
F
t
m
a
o
p
#
i
w
t
o

D
p

Fig. 6. The scatter plot of 𝑃𝐹 𝑐 of TTBS with 72 genetic evolutions while considering,
and excluding performance antipatterns in the optimization process (i.e., 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0.95,
nd 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0).

𝑟𝑜𝑏𝑝𝑎𝑠 = 0.95) and no performance antipatterns (i.e., 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0). We
an see that frontiers with performance antipatterns are generally more
ensely populated than the case where 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0. Also, performance
ntipatterns help finding model alternatives showing lower #changes
han the ones found when they have been ignored. Although 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 =

generates the highest value of perfQ (i.e., 𝑝𝑒𝑟𝑓𝑄 = 0.24), there
re more solutions in the topmost part of the plot when performance
ntipatterns drive the search process. From our analysis, it emerges that
𝑟𝑜𝑏𝑝𝑎𝑠 = 0.95 produces better frontiers among those with performance
ntipatterns. Therefore, we can state that, for the TTBS case study, the
ower fuzziness the better the quality of frontiers in terms of perfQ,
eliability , and #changes.

oCoME. Fig. 7 depicts the Pareto frontiers with 72 genetic evolutions
hile considering the lowest fuzziness (i.e., 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0.95) and no
erformance antipatterns (i.e., 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0). Most of the solutions
ay in the topmost part of the plot, thus meaning that 𝑃𝐹 𝑐 shows
etter perfQ and reliability of the initial solution (see the black cross in
he figure). Frontiers generated by performance antipatterns are more
ensely populated than those without performance antipatterns. Thus,
he reduction of the number of performance antipatterns occurrences,
f it is included among the objectives, helps the process finding more
lternative models showing higher perfQ and reliability with lower
changes.

iscussion. Based on our analysis, the reduction of performance an-
ipatterns helps the optimization problem to generate alternatives
howing better performance and reliability in most of the cases. The
oCoME case study has mainly shown a light search for better reliabil-

ty, likely due to the high reliability value of the initial model.

On the basis of our experimentation, we can state that the consideration
of performance antipattern occurrences in the optimization process leads
to better solutions than the ones found when ignoring them.

6.1.2. RQ1.2

RQ1.2: Does the probabilistic nature of fuzzy antipatterns detection
help to include higher quality solutions in Pareto frontiers with
respect to the deterministic one?
9

m

Fig. 7. The scatter plot of 𝑃𝐹 𝑐 of CoCoME 72 genetic evolutions while considering,
and excluding performance antipatterns in the optimization process (i.e., 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0.95,
and 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0).

In order to answer this research question, we varied the values of the
fuzziness threshold of the performance antipatterns detection within
{0.50, 0.80, 0.95} for the two case studies. Figs. 8 and 9 depict the
kernel density estimate (KDE) plots showing each possible combination
among objectives for TTBS and CoCoME respectively. Each plot depicts
the KDE of the relative objectives, e.g., Fig. 8(a) shows the perfQ KDE
for the TTBS case study.

Train Ticket Booking Service. For the TTBS case study, we have noticed
larger variability of perfQ when performance antipatterns are ignored,
see the flattest curve in Fig. 8(a). In addition, perfQ is narrower to the
mean (≈0.2) when performance antipatterns are involved in the fitness
function, which means less variability in terms of performance in the
model alternatives. With regard to the reliability (Fig. 8(b)), it seems to
e more stable without performance antipattern detection. Moreover,
he performance antipattern detection helps including solutions with
igher reliability values than the case without them. Fig. 8(c) shows
hat the lower the fuzziness the more stable the #changes values, which
eans less variability in the model alternatives discovered by the

earch. Finally, the 0.95 fuzziness reduces the variability of the perfor-
ance antipatterns objective (Fig. 8(d)). Thus, the more deterministic,

he higher the probability of discovering true positive performance
ntipatterns.

oCoME. We notice that Pareto frontiers obtained while ignoring per-
ormance antipatterns in the fitness function showed larger variability
han the ones obtained while considering them. This is depicted in
ig. 9(a) where perfQ shows negative values and the curve is flatter
han the other cases. For CoCoME we notice that the higher the perfor-
ance antipattern probpas, the higher perfQ, which becomes similar to
normal distribution with mean falling on 0.3 for a 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0.95

f performance fuzziness. In the case of the lowest fuzziness value,
erfQ assumed the highest value in our experiments. With regard to
changes (Fig. 9(c)), it increases when performance antipatterns are

gnored. Moreover, the higher the probpas, the more stable #changes,
hich means less variability in the model alternatives. Again, due to

he high value of reliability for the initial model, CoCoME shows most
f the reliability values around 0.9 (Fig. 9(b)).

iscussion. Our analysis shows that in most of the cases the higher
robpas, the closer to the mean is the distribution of perfQ, which

eans less variability for perfQ. Therefore, it seems better to use a

Information and Software Technology 157 (2023) 107159

10

V. Cortellessa et al.

Fig. 8. The KDE plots of the Train Ticket Booking Service case study while varying the performance antipattern fuzziness probabilities. The 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0.00 means performance
antipatterns were ignored as objectives. Each plot is referring to the objective in the label.

Fig. 9. The KDE plots of the CoCoME case study while varying the performance antipattern fuzziness probabilities. The 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0.00 means performance antipatterns were
ignored as objectives. Each plot is referring to the objective in the label.

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.

c
p
b
o

T
t
s
b
s
f
a
h
B
p
c
b

C
f
w
f
b
c
w
i
c

D
g
t
d
q
F
C
a
a

C
i
d
n

T
t
T
r
f
2
c
i

more deterministic antipattern detection (i.e., higher values of probpas).
However, a deterministic detection has the drawback of relying on
fixed thresholds that must be computed in advance for each model
alternative. The trade-off between better quality solution and the effort
to bind thresholds is likely domain-dependent and worth to be more
investigated.

On the basis of our experimentation, we can state that performance
antipattern fuzzy detection does not help to improve the quality of Pareto
frontiers.

6.1.3. RQ1.3

RQ1.3: To what extent does the architectural distance contribute to
find better alternatives?

In order to answer this research question, we run the same problem
onfigurations by varying the baseline refactoring factor value. In
articular, we decided to activate (BRF) and deactivate (noBRF) the
aseline refactoring factor to study how it contributes to the generation
f Pareto frontiers.

rain Ticket Booking Service. Figs. 10(a) and 10(b) show Pareto fron-
iers obtained with BRF and noBRF configurations, respectively. We can
ee that results with noBRF are narrower to the initial solution (i.e., the
lack marker in figure) than the case where BRF is activated. noBRF
eems to penalize performance antipatterns with higher fuzziness, in
act 𝑝𝑟𝑜𝑏𝑝𝑎𝑠 = 0.95 generates the best alternatives in terms of perfQ
nd reliability (see the topmost right corner in Fig. 10(b)). However, the
ighest perfQ in the case of noBRF is lower than the one in the case of
RF . Hence, BRF helps the search finding better solutions in terms of
erfQ for the TTBS case. Also, the noBRF configuration shows, in a few
ases, a detriment of the initial performance and reliability (see the left
ottom-most corner) that it never happened when the BRF is active.

oCoME. Fig. 11(b) shows Pareto frontiers obtained with noBRF con-
iguration. By comparing this plot with the one shown in Fig. 11(a),
e can see that the BRF exclusion generates more densely populated

rontiers than the other case. Furthermore, no extreme differences arise
etween the executions with BRF and noBRF configurations. In both
ases perfQ and reliability fall within the same region of the plot,
here alternatives with BRF reached better perfQ (see 𝑝𝑒𝑟𝑓𝑄 > 0.4

n Fig. 11(a)). With regard to the reliability , we can see that noBRF
onfiguration found few model alternatives showing lower values.

iscussion. Based on our analysis, the baseline refactoring factor helps
enerating better alternatives in terms of objectives. We noticed that
he reliability is penalized with noBRF configurations. Also, the BRF
eactivation penalized perfQ in few cases. A deeper investigation is re-
uired on how BRF might affect the computed Pareto frontiers quality.
or example, we can introduce more complex cost models, e.g., CO-
OMO [36], to improve its estimation. However, we preferred having
more straightforward cost estimation to avoid burdening the search

lgorithm with additional computational costs.

Based on our results, we can state that BRF helps better estimating
#changes of refactoring actions, which generates Pareto frontiers showing
higher quality (or at least it does not worsen the Pareto frontier quality).

6.2. RQ2

RQ2: Is it possible to increase reliability without performance
degradation?
11

2

Fig. 10. The scatter plot of Train Ticket Booking Service Pareto frontiers while varying
the fuzziness after 72 genetic evolutions with BRF , and noBRF configurations.

We answer RQ2 by looking for model alternatives, within the com-
puted Pareto frontiers (𝑃𝐹 𝑐), that improve both initial reliability and
performance.

Fig. 12 shows the results obtained on the 𝑃𝐹 𝑐 of TTBS and Co-
oME. The dark dots represent the alternatives we are looking for,
.e., those improving both reliability and perfQ. Instead, the bright
ots represent the model alternatives that improve one of the two
on-functional aspects.

rain Ticket Booking Service. Fig. 12(a) shows that in TTBS we ob-
ained 54% of the model alternatives improving reliability and perfQ.
hus, there is a portion (i.e., 46%) presenting a detriment of the
eliability but an improvement in terms of performance. This is con-
irmed by looking at the model alternatives within the 𝑃𝐹 𝑟𝑒𝑓 : 18 over
6 alternatives are those taken from the examined Pareto. In this
ase, model alternatives that guarantee an improvement can be very
mportant for a designer, as we find a performance upgrade of up to

7% and a reliability increase of up to 32%.

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.

7

C
t
a
i
o
i
t
p

D
a
q
t
a

Fig. 11. The scatter plot of CoCoME Pareto frontiers while varying the fuzziness after
2 genetic evolutions with BRF and noBRF configurations.

oCoME . The case of CoCoME, in Fig. 12(b), strengthens the observa-
ions made for TTBS. In this case, the majority (i.e., 74%) of the model
lternatives improve both perfQ and reliability of the initial model. This
s confirmed by the number of improving alternatives in the 𝑃𝐹 𝑟𝑒𝑓 : 38
ut of 48. We got an improvement of the reliability up to 24%, which
s smaller than TTBS but likely affected by the fact that, in this case,
he starting model has higher initial reliability (i.e., 0.75). Instead, the
erformance improvement is higher, i.e., up to 42%.

iscussion. The set of model alternatives, which have been found while
nswering to RQ1, are characterized by a neat improvement of two
uality attributes: reliability and perfQ. This result could be fundamen-
al for designers, as they could do further analysis or use the model as
starting point in subsequent stages of the development process.

Our experimentation shows that, our approach can find design alterna-
tives characterized by a significant improvement of both reliability and
performance.
12
Fig. 12. Solutions of the Pareto frontiers displayed according to their reliability and
performance.

6.3. RQ3

RQ3: What type of refactoring actions are more likely to lead to
better solutions?

With this research question, we investigate whether some refactor-
ing actions are more likely to be selected than others in the Pareto
optimal front during the optimization process. This could potentially
lead to more general insights on the effectiveness of specific types of
refactoring actions to improve the considered objectives.

Train Ticket Booking Service. Table 7 reports the share of refactoring
types for Train Ticket Booking Service. Each row represents a configura-
tion (i.e., an experiment) with a different combination of BRF , maxeval,

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.
Table 7
Share of refactoring types in Train Ticket.

brf maxeval probpas Clon MO2N MO2C ReDe

no 72 0.00 31.77 42.71 12.50 13.02
no 72 0.55 39.58 47.40 2.60 10.42
no 72 0.80 31.25 53.12 9.90 5.73
no 72 0.95 34.38 28.12 18.23 19.27
no 82 0.00 56.25 27.08 2.60 14.06
no 82 0.55 36.98 39.06 17.71 6.25
no 82 0.80 23.96 51.04 11.98 13.02
no 82 0.95 42.71 30.73 23.44 3.12
no 102 0.00 42.71 30.73 16.15 10.42
no 102 0.55 35.94 27.08 17.71 19.27
no 102 0.80 40.10 30.21 14.58 15.10
no 102 0.95 25.00 58.85 10.94 5.21
yes 72 0.00 40.10 30.21 16.15 13.54
yes 72 0.55 37.50 36.98 14.06 11.46
yes 72 0.80 42.71 19.27 16.15 21.88
yes 72 0.95 49.48 37.50 13.02 0.00
yes 82 0.00 19.79 57.81 10.42 11.98
yes 82 0.55 39.06 36.98 22.40 1.56
yes 82 0.80 27.60 40.62 13.54 18.23
yes 82 0.95 43.75 34.90 20.31 1.04
yes 102 0.00 43.75 35.94 16.67 3.65
yes 102 0.55 41.15 25.00 9.38 24.48
yes 102 0.80 35.42 40.10 10.42 14.06
yes 102 0.95 54.17 22.92 16.67 6.25

Total 38.13 36.85 14.06 10.96

and probpas. The rightmost four columns represent the refactoring
action types that we have considered in our approach. The last row
shows the percentages computed over all the configurations.

It is evident that the genetic algorithms prefer to select certain types
of refactorings. MO2C and Clon are clearly more likely to be selected,
with a slight preference for Clon in most configurations and, conse-
quently, on average across all configurations. These refactorings are
inherently very beneficial for the performance: cloning a component
will frequently split the utilization in half, and moving an operation to
a new component will not only reserve a node for a single operation,
but will also relieve the original component of the load related to that
operation. Also, they are unlikely to disrupt the reliability objective,
since the new nodes will have the same probability of failure as the
ones they are cloned from. Conversely, the ReDe refactoring may be
advantageous for performance and reliability only when the component
to be redeployed is sharing the current node with many other compo-
nents, and this is not the case in the initial model. This is most probably
the reason why the ReDe refactoring is considerably less likely to be
selected, and there is even a configuration in which it was not selected
in any Pareto solution (BRF : yes, maxeval: 72, probpas: 0.95).

CoCoME . Analogously, we report the share of refactoring actions
for CoCoME in Table 8. The overall preferences in the selection of
refactorings seem to be similar to the Train Ticket Booking Service case.
However, we can notice an even stronger preference for the Clon refac-
toring. Since this refactoring largely decreases the utilization of nodes,
it may be reasonable to conclude that, in the initial CoCoME model,
some nodes with high utilization are preventing the performance to
improve. While the ReDe refactoring is still the less selected one, there
are no configurations in which at least one refactoring of this type does
not contribute to Pareto solutions. However, in 13 configurations over
a total of 24, the ReDe refactoring has a share below 10%.

Discussion. In both case studies, we can observe a common trend on
preferring some refactoring types over other ones. In order to confirm
that the trend is consistent, we show in Fig. 13 the density distributions
of the shares of refactoring types across the different configurations.
The order in which the distributions are shifted along the 𝑥-axis is the
same in both cases, and their overlapping is somehow similar. This
indicates that, on average, the refactoring types are selected with the
13
Table 8
Share of refactoring types in CoCoME.

brf maxeval probpas Clon MO2N MO2C ReDe

no 72 0.00 30.21 37.50 19.79 12.50
no 72 0.55 54.69 24.48 12.50 8.33
no 72 0.80 42.19 32.81 18.75 6.25
no 72 0.95 45.83 37.50 9.90 6.77
no 82 0.00 43.23 25.52 17.19 14.06
no 82 0.55 48.96 27.60 12.50 10.94
no 82 0.80 37.50 41.67 10.42 10.42
no 82 0.95 53.12 28.12 5.73 13.02
no 102 0.00 20.83 36.46 17.71 25.00
no 102 0.55 44.27 28.12 20.31 7.29
no 102 0.80 55.73 27.08 1.04 16.15
no 102 0.95 56.25 28.65 13.54 1.56
yes 72 0.00 41.15 29.17 23.96 5.73
yes 72 0.55 38.02 32.81 20.83 8.33
yes 72 0.80 35.94 42.71 13.02 8.33
yes 72 0.95 61.98 23.44 10.94 3.65
yes 82 0.00 51.56 30.73 14.06 3.65
yes 82 0.55 41.67 33.85 18.75 5.73
yes 82 0.80 38.54 40.62 12.50 8.33
yes 82 0.95 44.27 26.56 16.67 12.50
yes 102 0.00 43.75 20.31 17.19 18.75
yes 102 0.55 66.67 6.25 20.31 6.77
yes 102 0.80 59.90 19.27 8.33 12.50
yes 102 0.95 61.46 16.67 8.33 13.54

Total 46.57 29.08 14.34 10.00

Fig. 13. Distributions of refactoring types among different configurations.

same order of preference. We can also notice that, while in CoCoME
the variability decreases together with the average percentage, in Train

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.

r
e
r
t
d
o

o
#
a
o
m
t
h

r
r
u
n
a
t
r
c
i

p
t
r
i
s
s
c
s
t

c
C
H
t
f
c
m
p
r

q
b

Ticket Booking Service the situation is less clear. A greater variability
indicates that there are more chances that a change in the configuration
will lead to a change in the selection preference of refactoring types,
as it can be observed for Clon and MO2N. On the other hand, a narrow
distribution means that configuration changes have little effect on the
selection choice, as it happens for MO2C and ReDe. However, the
efactorings that are more likely to be selected (i.e., Clon and MO2N)
xhibit larger variability in both case studies, thus meaning that these
efactorings are also the most variable ones from one configuration
o another. This may indicate that, even if these two refactorings
ominate, on average, the composition of solutions, the Pareto frontiers
btained by different configurations tend to be quite diverse.

Another aspect to consider is the influence of BRF on the choice
f refactoring actions. While BRF clearly has a direct impact on the
changes objective, it looks like its presence is not enough to impose
different order of preference among the refactoring types. On the

ne hand, it could be expected that the Clon refactoring will be the
ost preferred because of its low BRF (1.23), but on the other hand

he MO2N refactoring, that is consistently in the second place, has the
ighest value of BRF .

In an attempt to understand if there is a stronger relation between
efactoring types and the objectives, we have also performed a multiple
egression analysis. We tried to predict perfQ, reliability , and #changes
sing the refactoring types as predictors. The coefficients of determi-
ation (𝑟2) we obtained for each objective and for both case studies
re very low. This means that the refactoring types are not suitable
o explain most of the variability we observe in the objectives. Such a
esult might be the indication that, at least for the two case studies we
onsidered, we are not able to derive general refactoring strategies to
mprove the objectives without going through the optimization process.

From our experimentation, we were able to establish an order of
preference among refactoring types that is consistent in both case studies.

7. Threats to validity

The validity of our study can be affected by different threats de-
scribed by the Wohlin et al. classification [46]. In the following, we
detail each category by discussing the causes and motivations for each
threat.

Construct validity. The way we have designed our problem and our
experimentation might be affected by Construct validity threats. In
articular, the role played by the architectural distance objective on
he combination of refactoring actions might affect the selection of
efactoring actions. However, we have studied the influence of our BRF
n building 𝑃𝐹 𝑐 in two different case studies, and it has coherently
hown the ability to improve the overall quality of the non-dominated
olutions in both cases. We will further investigate to what extent BRF
ould improve the overall quality with more accurate cost estimation,
uch as COCOMO [36], which might have as drawback the increase of
he execution time for BRF estimation.

Another important aspect that might threaten our experimentation
oncerns the parameters of the initial UML model. For example, Co-
oME showed higher initial reliability that might affect the search.
owever, in our experiments, it seems that TTBS and CoCoME ini-

ial configurations did not threaten the optimization process. We will
urther investigate how different initial UML model parameters could
hange the optimization results. We remark that changing a single
odel parameter means starting the optimization process on a different
oint of the solution space that might produce completely different
esults.
14
Internal validity. Our optimization approach might be affected by inter-
nal validity threats. There are high degrees of freedom on our settings.
For example, the variations of genetic configurations, such as the
𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 probability, may produce 𝑃𝐹 𝑐 with different quality solutions.
Also, the problem configuration variations may also change our results.
The degrees of freedom in our experimentation generate unfeasible
brute force investigation of each suitable combination. For this reason,
we limit the variability to subsets of problem configurations, as shown
in Table 3. We also mitigate this threat by involving two different
case studies derived from the literature, thus reducing biases in their
construction.

A fruitful investigation will be on the length of the sequence of
refactoring actions. At this stage, we fixed the length to four actions. It
will be interesting to investigate how the length of the sequence affects
results. At a glance, the longer the sequence, the farther the solutions
can go from the initial one, and it means that having a long sequence
of refactoring actions might be unfeasible because it generates different
model alternatives.

External validity. Our results might be affected by external validity
threats, as their generalization might be limited to some of the assump-
tions behind our approach.

In the first place, a threat might be represented by the use of a
single modeling notation. We cannot generalize our results to other
modeling notations, which could imply using a different portfolio of
refactoring actions. The syntax and semantics of the modeling notation
determine the amount and nature of refactoring actions that can be
performed. However, we have adopted UML, which is the de facto
standard in the software modeling domain. In general terms, this threat
can be mitigated by porting the whole approach on a different modeling
notation, but this is out of this paper scope.

Another threat might be found in the fact that we have validated our
approach on two case studies. While the two case studies were selected
from the available literature, they might not represent all the possible
challenges that our approach could face in practice. Nonetheless, our
results could presumably hold in all the cases in which the modeling
assumptions described in Section 3.1 are met. Specifically, the perfor-
mance antipattern detection and the refactoring actions are designed
to rely on information coming from static, dynamic, and deployment
views of the system. Without such information, even if in most cases
the refactoring actions would still be applicable, they would not be as
effective.

Finally, this study is limited to the use of a single algorithm.
Therefore, our results are influenced by the ability of NSGA-II of ex-
ploring the solution space, given the objectives of our approach. While
comparing the effectiveness of genetic algorithms in this context is out
of the scope of this paper, we started investigating this issue [12,47],
and we will continue in future work.

Conclusion validity. Our results might be affected by Conclusion valid-
ity threats, since our considerations might change with deeply-tuned
parameters for the NSGA-II . Also, parameter configurations might
threaten our conclusion. We did not perform an extensive tuning phase
for the latter due to the long duration of each run, while we used
common parameters for the NSGA-II , which should mitigate these
threats. We can also soften this threat by employing other generic
algorithms to generalize our results. Each algorithm will require its
tuning phase, which is a clear drawback in execution time.

Another aspect that might affect our results is the estimation of
the reference Pareto frontier (𝑃𝐹 𝑟𝑒𝑓). 𝑃𝐹 𝑟𝑒𝑓 is used for extracting the
uality indicators as described in Section 6. We soften this threat by
uilding the 𝑃𝐹 𝑟𝑒𝑓 overall our 𝑃𝐹 𝑐 for each case study. Therefore,

the reference Pareto should optimistically contain all non-dominated

solutions across all configurations.

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.

a
a
o
n

8

o
t
c
r
P
M
f

p
t
P
e

Takeaways. Model-based multi-objective refactoring optimization
presents a variety of challenges that may jeopardize the validity of
results.

Genetic algorithms contain a number of configuration options, to
start. Every parameter assignment may have an effect on the outcomes
quality. Indeed, there is opportunity for research direction here, since it
would be impractical to evaluate every parameter combination. There
have been studies on determining the (almost) ideal configuration of
genetic algorithms in diverse contexts. We employed the standard ge-
netic algorithm setup, such as the crossover probability [44]. However,
it would be interesting to see which study applies to our situation
as well. We plan to examine how different configurations affect the
outcomes quality in future work.

The initial model setup is another factor taken into account. Studies
that mix running data (such as traces) and model artifacts already
exist to address this problem. There are plenty of shortcomings with
these studies. We recently investigated the potential of model-based
performance predictions when models are fed with running application
data [48]. We discovered that if models take into account the confound-
ing factors affecting application performance, such as network latency,
they can anticipate the performance of the running application.

Moreover, the modeling notation affects how expressive the tech-
nique is. For instance, the use of a domain specific language to speed up
design time could impair models expressiveness. Therefore, we chose
to utilize UML, even though its broad general-purpose character is
one of its disadvantages. With regard to the modeling and annotation
practices in industry, the effort dedicated to these activities can largely
vary depending on the field where industries work. As an example,
automotive industries have adopted (since many decades) model-driven
engineering approaches for designing their embedded software systems.
For instance, Ameller et al. [49] provide an interesting study on the
adoption in industrial contexts of modeling for sake of non-functional
analysis.

Finally, regarding the applicability of the approach, it is difficult to
establish a category of systems for which our approach would be better
suited. Indeed, the only constraint that we require for its applicability
is the usage of UML with the DAM [24] and MARTE [23] profiles.
Obviously, such approach should be applied in systems where perfor-
mance and reliability requirements have high priority. For example:
distributed systems where reliable connections and timely response
are main critical issues; embedded domains (e.g., automotive) where
resources with limited hardware capability must guarantee high re-
liability. Centralized systems represent a further category of systems
that may be subject to stringent performance requirement because,
for example, a single host machine and its hardware resources must
manage a complex software system.

8. Related work

In the last decade, software model multi-objective optimization
studies have been introduced to optimize various quality attributes
(e.g., reliability, and energy [11,50–52]) with different degrees of
freedom in the model modification (e.g., service selection [53,54]).
A systematic literature review on model optimization can be found
in [10]. We consider here, as related work, those approaches that
directly involve multi-objective evolutionary algorithms, and the ones
that exploit LQN as performance modeling notation [14,30,55,56].

We split this section in two subsections, namely Software Architecture
optimization and Layered Queueing Network approaches. The partition is
not strict, as it might happen that some studies fall in both conceptual
areas. In order to prevent duplication, we chose to describe these
studies in only one specific area.
15
8.1. Software architecture optimization

Menasce et al. have presented a framework for architectural design
and quality optimization [57], where architectural patterns are used to
support the search process (e.g., load balancing, fault tolerance). Two
limitations affects the approach: the architecture has to be designed in
a tool-related notation and not in a standard modeling language (as
we do in this paper), and it uses equation-based analytical models for
performance indices that could be too simple to capture architectural
details and resource contention.

Aleti et al. [9] have presented an approach for modeling and analyz-
ing AADL architectures [58]. They have also introduced a tool aimed
at optimizing different quality attributes while varying the architecture
deployment and the component redundancy. Our work relies on UML
models and considers more complex refactoring actions, as well as dif-
ferent target attributes for the fitness function. Besides, we investigate
the role of performance antipatterns in the context of many-objective
software model refactoring optimization.

A recent work compares the ability of two different multi-objective
optimization approaches to improve non-functional attributes [13],
where randomized search rules have been applied to improve the
software model. The study of Ni et al. is based on a specific modeling
notation (i.e., Palladio Component Model) and it has implicitly shown
that the multi-objective optimization problem at model level is still an
open challenge. They applied architectural tactics, which in general do
not represent structured refactoring actions, to find optimal solutions.
Conversely, we applied refactoring actions that change the structure
of the initial model by preserving the original behavior. Another dif-
ference is the modeling notation, as we use UML with the goal of
experimenting on a standard notation instead of a custom DSL.

Some authors of this paper have previously studied the sensitivity of
multi-objective software model refactoring to configuration characteris-
tics [12], where models are defined in Æmilia, which is a performance-
oriented ADL. They compared two genetic algorithms in terms of Pareto
frontiers quality. In this paper, we change the modeling notation from
Æmilia to UML, and we add the reliability as a new objective. Both
approaches provide a refactoring engine, however, in this paper, the
refactoring engine offers more complex refactoring actions since UML
is more expressive than Æmilia.

Etemaadi and Chaudron [59] presented an approach aimed at im-
proving architecture quality attributes through genetic algorithms. The
multi-objective optimization considers component-based architectures
described through domain specific language (DSL), i.e., AQOSA IR [50].
The architecture evaluations can be obtained by means of several
notation, such as Queueing Network and Fault Tree. The genetic al-
gorithm consider variation of designs (e.g., number of hardware nodes)
s objectives of the fitness function. The main difference between our
pproach and the one of Etemaadi and Chaudron is based on the types
f the fitness function objectives. Yet, we used UML as the modeling
otation instead of a DSL, and the LQN as the performance model.

.2. Layered Queueing Network approaches

Koziolek et al. have presented PerOpteryx [14], i.e., a performance-
riented multi-objective optimization problem. In PerOpteryx the op-
imization process is guided by tactics referring to component reallo-
ation, faster hardware, and more hardware. The latter ones do not
epresent structured refactoring actions, as we intend in this paper.
erOpteryx supports architectures specified in Palladio Component
odel [60] and produces, through model transformation, a LQN model

or performance analysis.
Rago et al. have presented SQuAT [61], which is an extensible

latform aimed at including flexibility in the definition of an archi-
ecture optimization problem. SQuAT supports models conforming to
alladio Component Model language, exploits LQN for performance
valuation, and PerOpteryx tactics for architectural changes. A main

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.

p

h
p
o
t
d
f
Q
n
g
A
a
d
D
a
o

9

r
o
f
h
c
m

t
a
t
o
p
w
u
s

e

difference of our approach with PerOpteryx and SQuAt is that we
use the UML modeling notation. We moved a step ahead with respect
PerOpteryx and SQuAT. Beyond the modeling notation, we introduced
more complex refactoring actions, and we use different objectives, e.g.,
erformance antipatterns.

Model-to-model (M2M) transformations from UML to LQN notations
ave been presented in [30,55,56,62]. For example, Li et al. [30]
resented a tool, namely Tulsa, aimed at enabling performance analysis
f data intensive applications. Li et al. augmented UML models with
he DICE profile, which allows expressing data intensive application
omain specification. Also, they introduced a model-to-model trans-
ormation aimed at allowing a performance analysis through Layered
ueueing Network. In contrast with these approaches, we present a
ovel M2M transformation mapping that employs UML Sequence Dia-
rams as the behavioral view of software architectures, instead of UML
ctivity Diagrams. UML Sequence Diagrams have two benefits: they
re adopted more frequently than UML Activity Diagrams for software
esign [63], and they explicitly define method calls, while UML Activity
iagrams usually focus on workflows and processes. Therefore, our
pproach supports a more detailed behavioral representation in terms
f time intervals between method calls.

. Conclusions

In this work, we have used NSGA-II to optimize UML models with
espect to performance and reliability properties, as well as the number
f detected performance antipatterns and the architectural distance. We
ocused our study on the impact that performance antipatterns may
ave on the quality of optimal refactoring solutions. We studied the
omposition of refactoring actions, and how the architectural distance
etric can help the approach to compute Pareto frontiers.

From our experimentation, we gathered interesting insights about
he quality of the generated solutions and the role of performance
ntipatterns as an objective of the algorithm. In this regard, we showed
hat, by including the detection of performance antipatterns in the
ptimization process, we are able to obtain better solutions in terms of
erformance and reliability. Moreover, we also showed that, the more
e increase the probability of detecting a performance antipattern
sing the fuzziness threshold, the better the quality of the refactoring
olutions. In addition, we noticed that the baseline refactoring factor gen-

erally helps discovering better model alternatives. Another important
aspect of our study was to ensure that our approach did not worsen
the reliability of the initial model. In this respect, our experiments
showed that we were in fact able to increase the reliability of model
alternatives, with respect to the initial model, in the majority of cases.

As future work, we intend to tackle the threats to validity discussed
before. In particular, we intend to investigate the influence of settings
(i.e., experiment and algorithm configurations) on the quality of Pareto
frontiers. For example, we will investigate the impact of more dense
populations in our analysis, in terms of computational time and quality
of the computed Pareto frontiers (𝑃𝐹 𝑐). Also, we are interested in
the role played by #changes, and specifically in studying the effect of
stimating the baseline refactoring factor through more complex cost

model, such as COCOMO-II [36], on the combination of refactoring
actions. A fruitful investigation will be on the length of the sequence
of refactoring actions, which is currently fixed to four refactoring
actions, and we intend to extend the refactoring actions portfolio, for
example, by including fault tolerance refactoring actions [64]. We also
intend to extend the reliability model to also take into account error
propagation [65]. We will involve other genetic algorithms in our
process to study the contribution of different optimization techniques
within the software model refactoring.

We also planned to study how modeling outcomes could be verified
and estimated on real-systems. As a first step to address this long-term
study, we combined runtime traces (i.e., traces from a running system)
16
and modeling outcomes [48] and we found out that software models
can help improve performance of software systems.

Another interesting aspect to investigate could be whether the
refactoring actions proposed in the Pareto frontiers make sense form
the point of view of the designer and within the established software
development practices. Therefore, we plan on using visualization tech-
niques to conduct a detailed analysis of the solutions resulting from the
optimization process. Visualizing refactoring solutions also opens to a
human-in-the-loop process, in which the designer could interactively
drive the optimization towards acceptable solutions.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We publicly share the implementation of the approach https://
github.com/SEALABQualityGroup/EASIER as well as the data gathered
during the experimentation https://github.com/SEALABQualityGroup/
2022-ist-replication-package.

Acknowledgments

Daniele Di Pompeo is supported by the Centre of EXcellence on Con-
nected, Geo-Localized and Cybersecure Vehicle (EX-Emerge), funded
by the Italian Government under CIPE resolution n. 70/2017
(Aug. 7, 2017). Michele Tucci is supported by the OP RDE project
No. CZ.02.2.69/0.0/0.0/18_053/0016976 ‘‘International mobility of
research, technical and administrative staff at the Charles University’’.

References

[1] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
Professional, 2018.

[2] G. Bavota, M.D. Penta, R. Oliveto, Search based software maintenance: Methods
and tools, in: T. Mens, A. Serebrenik, A. Cleve (Eds.), Evolving Software Systems,
Springer, 2014, pp. 103–137, http://dx.doi.org/10.1007/978-3-642-45398-4_4.

[3] M. Kessentini, H.A. Sahraoui, M. Boukadoum, O. Benomar, Search-based model
transformation by example, Softw. Syst. Model. 11 (2) (2012) 209–226, http:
//dx.doi.org/10.1007/s10270-010-0175-7.

[4] T. Mariani, S.R. Vergilio, A systematic review on search-based refactoring, Inf.
Softw. Technol. 83 (2017) 14–34, http://dx.doi.org/10.1016/j.infsof.2016.11.
009.

[5] A. Ouni, R.G. Kula, M. Kessentini, K. Inoue, Web service antipatterns detection
using genetic programming, in: S. Silva, A.I. Esparcia-Alcázar (Eds.), Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid,
Spain, July 11-15, 2015, ACM, 2015, pp. 1351–1358, http://dx.doi.org/10.1145/
2739480.2754724.

[6] A. Ouni, M. Kessentini, K. Inoue, M.Ó. Cinnéide, Search-based web service
antipatterns detection, IEEE Trans. Serv. Comput. 10 (4) (2017) 603–617, http:
//dx.doi.org/10.1109/TSC.2015.2502595.

[7] A. Ramírez, J.R. Romero, S. Ventura, A survey of many-objective optimisation
in search-based software engineering, J. Syst. Softw. 149 (2019) 382–395, http:
//dx.doi.org/10.1016/j.jss.2018.12.015.

[8] M. Ray, D.P. Mohapatra, Multi-objective test prioritization via a genetic algo-
rithm, Innov. Syst. Softw. Eng. 10 (4) (2014) 261–270, http://dx.doi.org/10.
1007/s11334-014-0234-2.

[9] A. Aleti, S. Björnander, L. Grunske, I. Meedeniya, ArcheOpterix: An extendable
tool for architecture optimization of AADL models, in: ICSE 2009 Workshop
on Model-Based Methodologies for Pervasive and Embedded Software, MOMPES
2009, May 16, 2009, Vancouver, Canada, IEEE Computer Society, 2009, pp.
61–71, http://dx.doi.org/10.1109/MOMPES.2009.5069138.

[10] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, I. Meedeniya, Software architecture
optimization methods: A systematic literature review, IEEE Trans. Softw. Eng. 39
(5) (2013) 658–683, http://dx.doi.org/10.1109/TSE.2012.64.

[11] A. Martens, H. Koziolek, S. Becker, R.H. Reussner, Automatically improve
software architecture models for performance, reliability, and cost using evo-
lutionary algorithms, in: A. Adamson, A.B. Bondi, C. Juiz, M.S. Squillante
(Eds.), Proceedings of the First Joint WOSP/SIPEW International Conference on
Performance Engineering, San Jose, California, USA, January 28-30, 2010, ACM,
2010, pp. 105–116, http://dx.doi.org/10.1145/1712605.1712624.

https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
https://github.com/SEALABQualityGroup/2022-ist-replication-package
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb1
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb1
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb1
http://dx.doi.org/10.1007/978-3-642-45398-4_4
http://dx.doi.org/10.1007/s10270-010-0175-7
http://dx.doi.org/10.1007/s10270-010-0175-7
http://dx.doi.org/10.1007/s10270-010-0175-7
http://dx.doi.org/10.1016/j.infsof.2016.11.009
http://dx.doi.org/10.1016/j.infsof.2016.11.009
http://dx.doi.org/10.1016/j.infsof.2016.11.009
http://dx.doi.org/10.1145/2739480.2754724
http://dx.doi.org/10.1145/2739480.2754724
http://dx.doi.org/10.1145/2739480.2754724
http://dx.doi.org/10.1109/TSC.2015.2502595
http://dx.doi.org/10.1109/TSC.2015.2502595
http://dx.doi.org/10.1109/TSC.2015.2502595
http://dx.doi.org/10.1016/j.jss.2018.12.015
http://dx.doi.org/10.1016/j.jss.2018.12.015
http://dx.doi.org/10.1016/j.jss.2018.12.015
http://dx.doi.org/10.1007/s11334-014-0234-2
http://dx.doi.org/10.1007/s11334-014-0234-2
http://dx.doi.org/10.1007/s11334-014-0234-2
http://dx.doi.org/10.1109/MOMPES.2009.5069138
http://dx.doi.org/10.1109/TSE.2012.64
http://dx.doi.org/10.1145/1712605.1712624

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.
[12] V. Cortellessa, D. Di Pompeo, Analyzing the sensitivity of multi-objective soft-
ware architecture refactoring to configuration characteristics, Inf. Softw. Technol.
135 (2021) 106568, http://dx.doi.org/10.1016/j.infsof.2021.106568.

[13] Y. Ni, X. Du, P. Ye, L.L. Minku, X. Yao, M. Harman, R. Xiao, Multi-objective
software performance optimisation at the architecture level using randomised
search rules, Inf. Softw. Technol. 135 (2021) 106565, http://dx.doi.org/10.1016/
j.infsof.2021.106565.

[14] A. Koziolek, H. Koziolek, R.H. Reussner, PerOpteryx: automated application of
tactics in multi-objective software architecture optimization, in: I. Crnkovic, J.A.
Stafford, D.C. Petriu, J. Happe, P. Inverardi (Eds.), 7th International Conference
on the Quality of Software Architectures, QoSA 2011 and 2nd International
Symposium on Architecting Critical Systems, ISARCS 2011. Boulder, CO, USA,
June 20-24, 2011, Proceedings, ACM, 2011, pp. 33–42, http://dx.doi.org/10.
1145/2000259.2000267.

[15] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197,
http://dx.doi.org/10.1109/4235.996017.

[16] J.E. Neilson, C.M. Woodside, D.C. Petriu, S. Majumdar, Software bootlenecking
in client-server systems and rendezvous networks, IEEE Trans. Softw. Eng. 21
(9) (1995) 776–782, http://dx.doi.org/10.1109/32.464543.

[17] V. Cortellessa, H. Singh, B. Cukic, Early reliability assessment of UML based
software models, in: Third International Workshop on Software and Performance,
WOSP@ISSTA 2002, July 24-26, 2002, Rome, Italy, ACM, 2002, pp. 302–309,
http://dx.doi.org/10.1145/584369.584415.

[18] D. Arcelli, V. Cortellessa, D. Di Pompeo, Performance-driven software model
refactoring, Inf. Softw. Technol. 95 (2018) 366–397, http://dx.doi.org/10.1016/
j.infsof.2017.09.006.

[19] D. Arcelli, V. Cortellessa, M. D’Emidio, D. Di Pompeo, EASIER: an evolution-
ary approach for multi-objective software ArchItecturE refactoring, in: IEEE
International Conference on Software Architecture, ICSA 2018, Seattle, WA,
USA, April 30 - May 4, 2018, IEEE Computer Society, 2018, pp. 105–114,
http://dx.doi.org/10.1109/ICSA.2018.00020.

[20] C.U. Smith, L.G. Williams, Software performance antipatterns, in: Second Inter-
national Workshop on Software and Performance, WOSP 2000, Ottawa, Canada,
September 17-20, 2000, ACM, 2000, pp. 127–136, http://dx.doi.org/10.1145/
350391.350420.

[21] C.U. Smith, L.G. Williams, Software performance AntiPatterns; common per-
formance problems and their solutions, in: 27th International Computer
Measurement Group Conference, Anaheim, CA, USA, December 2-7, 2001,
Computer Measurement Group, 2001, pp. 797–806.

[22] C.U. Smith, L.G. Williams, More New Software Performance Antipatterns: Even
More Ways to Shoot Yourself in the Foot, in: 29th International Computer
Measurement Group Conference, 2003, pp. 717–725.

[23] O.M. Group, A UML Profile For MARTE: Modeling and Analysis of Real-Time
Embedded Systems, Object Management Group, 2008, URL: http://www.omg.
org/omgmarte/.

[24] S. Bernardi, J. Merseguer, D.C. Petriu, A dependability profile within MARTE,
Softw. Syst. Model. 10 (3) (2011) 313–336, http://dx.doi.org/10.1007/s10270-
009-0128-1.

[25] V. Cortellessa, D. Di Pompeo, V. Stoico, M. Tucci, On the impact of performance
antipatterns in multi-objective software model refactoring optimization, in: M.T.
Baldassarre, G. Scanniello, A. Skavhaug (Eds.), 47th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2021, Palermo, Italy,
September 1-3, 2021, IEEE, 2021, pp. 224–233, http://dx.doi.org/10.1109/
SEAA53835.2021.00036.

[26] D. Di Pompeo, M. Tucci, A. Celi, R. Eramo, A microservice reference case study
for design-runtime interaction in MDE, in: A. Bagnato, H. Brunelière, L.B. no,
R. Eramo, A. Gómez (Eds.), STAF 2019 Co-Located Events Joint Proceedings:
1st Junior Researcher Community Event, 2nd International Workshop on Model-
Driven Engineering for Design-Runtime Interaction in Complex Systems, and 1st
Research Project Showcase Workshop Co-Located with Software Technologies:
Applications and Foundations (STAF 2019), Eindhoven, the Netherlands, July
15 - 19, 2019, CEUR-WS.org, 2019, pp. 23–32, URL: http://ceur-ws.org/Vol-
2405/06_paper.pdf.

[27] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, D. Ding, Fault analysis and
debugging of microservice systems: Industrial survey, benchmark system, and
empirical study, IEEE Trans. Softw. Eng. 47 (2) (2021) 243–260, http://dx.doi.
org/10.1109/TSE.2018.2887384.

[28] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner, K. Krogmann,
H. Koziolek, R. Mirandola, B. Hummel, M. Meisinger, C. Pfaller, Cocome
- the common component modeling example, in: The Common Component
Modeling Example: Comparing Software Component Models, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008, pp. 16–53, http://dx.doi.org/10.1007/978-
3-540-85289-6_3.

[29] U. Mansoor, M. Kessentini, M. Wimmer, K. Deb, Multi-view refactoring of class
and activity diagrams using a multi-objective evolutionary algorithm, Softw.
Qual. J. 25 (2) (2017) 473–501, http://dx.doi.org/10.1007/s11219-015-9284-4.

[30] C. Li, T. Altamimi, M.H. Zargari, G. Casale, D.C. Petriu, Tulsa: A tool for
transforming UML to layered queueing networks for performance analysis of
data intensive applications, in: N. Bertrand, L. Bortolussi (Eds.), Quantitative
17
Evaluation of Systems - 14th International Conference, QEST 2017, Berlin,
Germany, September 5-7, 2017, Proceedings, Springer, 2017, pp. 295–299, http:
//dx.doi.org/10.1007/978-3-319-66335-7_18.

[31] C.U. Smith, L.G. Williams, Software performance engineering, in: L. Lavagno, G.
Martin, B. Selic (Eds.), UML for Real - Design of Embedded Real-Time Systems,
Kluwer, 2003, pp. 343–365, http://dx.doi.org/10.1007/0-306-48738-1_16.

[32] V. Cortellessa, A. Di Marco, C. Trubiani, An approach for modeling and detecting
software performance antipatterns based on first-order logics, Softw. Syst. Model.
13 (1) (2014) 391–432, http://dx.doi.org/10.1007/s10270-012-0246-z.

[33] D. Arcelli, V. Cortellessa, C. Trubiani, Performance-based software model refac-
toring in fuzzy contexts, in: A. Egyed, I. Schaefer (Eds.), Fundamental Approaches
to Software Engineering - 18th International Conference, FASE 2015, Held As
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, Springer, 2015, pp.
149–164, http://dx.doi.org/10.1007/978-3-662-46675-9_10.

[34] D. Arcelli, V. Cortellessa, D. Di Pompeo, Automating performance antipattern
detection and software refactoring in UML models, in: X. Wang, D. Lo, E. Shihab
(Eds.), 26th IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019, IEEE,
2019, pp. 639–643, http://dx.doi.org/10.1109/SANER.2019.8667967.

[35] D. Arcelli, V. Cortellessa, D. Di Pompeo, A metamodel for the specification
and verification of model refactoring actions, in: A. Ouni, M. Kessentini, M.O.
Cinnéide (Eds.), Proceedings of the 2nd International Workshop on Refactoring,
IWoR@ASE 2018, Montpellier, France, September 4, 2018, IWoR@ACM, 2018,
pp. 14–21, http://dx.doi.org/10.1145/3242163.3242167.

[36] B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E. Horowitz, R.
Madachy, D.J. Reifer, B. Steece, SoftWare Cost Estimation With COCOMO II,
Prentice Hall Press, 2009.

[37] A. Trendowicz, Software Cost Estimation, Benchmarking, and Risk Assessment:
The Software Decision-Makers’ Guide to Predictable Software Development,
Springer Science & Business Media, 2013.

[38] A.J. Nebro, J.J. Durillo, M. Vergne, Redesigning the jmetal multi-objective
optimization framework, in: S. Silva, A.I. Esparcia-Alcázar (Eds.), Genetic and
Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-
15, 2015, Companion Material Proceedings, ACM, 2015, pp. 1093–1100, http:
//dx.doi.org/10.1145/2739482.2768462.

[39] S. Ali, P. Arcaini, D. Pradhan, S.A. Safdar, T. Yue, Quality indicators in search-
based software engineering: An empirical evaluation, ACM Trans. Softw. Eng.
Methodol. 29 (2) (2020) 10:1–10:29, http://dx.doi.org/10.1145/3375636.

[40] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E.P.K. Tsang, Combining model-based
and genetics-based offspring generation for multi-objective optimization using
a convergence criterion, in: IEEE International Conference on Evolutionary
Computation, CEC 2006, Part of WCCI 2006, Vancouver, BC, Canada, 16-21 July
2006, IEEE, 2006, pp. 892–899, http://dx.doi.org/10.1109/CEC.2006.1688406.

[41] H. Ishibuchi, H. Masuda, Y. Nojima, Sensitivity of performance evaluation results
by inverted generational distance to reference points, in: IEEE Congress on
Evolutionary Computation, CEC 2016, Vancouver, BC, Canada, July 24-29, 2016,
IEEE, 2016, pp. 1107–1114, http://dx.doi.org/10.1109/CEC.2016.7743912.

[42] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach, IEEE Trans. Evol. Comput. 3 (4) (1999)
257–271, http://dx.doi.org/10.1109/4235.797969.

[43] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. da Fonseca, Performance
assessment of multiobjective optimizers: an analysis and review, IEEE Trans.
Evol. Comput. 7 (2) (2003) 117–132, http://dx.doi.org/10.1109/TEVC.2003.
810758.

[44] A. Arcuri, G. Fraser, Parameter tuning or default values? An empirical investi-
gation in search-based software engineering, Empir. Softw. Eng. 18 (3) (2013)
594–623, http://dx.doi.org/10.1007/s10664-013-9249-9.

[45] A. Arcuri, G. Fraser, On parameter tuning in search based software engineering,
in: M.B. Cohen, M.O. Cinnéide (Eds.), Search Based Software Engineering - Third
International Symposium, SSBSE 2011, Szeged, Hungary, September 10-12, 2011.
Proceedings, Springer, 2011, pp. 33–47, http://dx.doi.org/10.1007/978-3-642-
23716-4_6.

[46] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, Experimentation
in software engineering, Springer, 2012, http://dx.doi.org/10.1007/978-3-642-
29044-2.

[47] D. Di Pompeo, M. Tucci, Search budget in multi-objective refactoring optimiza-
tion: a model-based empirical study, in: 48th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2022, IEEE, 2022, pp. 406–413,
http://dx.doi.org/10.1109/SEAA56994.2022.00070.

[48] V. Cortellessa, D. Di Pompeo, R. Eramo, M. Tucci, A model-driven approach
for continuous performance engineering in microservice-based systems, J. Syst.
Softw. 183 (2022) 111084, http://dx.doi.org/10.1016/j.jss.2021.111084.

[49] D. Ameller, X. Franch, C. Gómez, S. Martínez-Fernández, J. Araújo, S. Biffl, J.
Cabot, V. Cortellessa, D.M. Fernández, A. Moreira, H. Muccini, A. Vallecillo,
M. Wimmer, V. Amaral, W. Böhm, H. Brunelière, L. Burgueño, M. Goulão,
S. Teufl, L. Berardinelli, Dealing with non-functional requirements in model-
driven development: A survey, IEEE Trans. Softw. Eng. 47 (4) (2021) 818–835,
http://dx.doi.org/10.1109/TSE.2019.2904476.

http://dx.doi.org/10.1016/j.infsof.2021.106568
http://dx.doi.org/10.1016/j.infsof.2021.106565
http://dx.doi.org/10.1016/j.infsof.2021.106565
http://dx.doi.org/10.1016/j.infsof.2021.106565
http://dx.doi.org/10.1145/2000259.2000267
http://dx.doi.org/10.1145/2000259.2000267
http://dx.doi.org/10.1145/2000259.2000267
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/32.464543
http://dx.doi.org/10.1145/584369.584415
http://dx.doi.org/10.1016/j.infsof.2017.09.006
http://dx.doi.org/10.1016/j.infsof.2017.09.006
http://dx.doi.org/10.1016/j.infsof.2017.09.006
http://dx.doi.org/10.1109/ICSA.2018.00020
http://dx.doi.org/10.1145/350391.350420
http://dx.doi.org/10.1145/350391.350420
http://dx.doi.org/10.1145/350391.350420
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb22
http://www.omg.org/omgmarte/
http://www.omg.org/omgmarte/
http://www.omg.org/omgmarte/
http://dx.doi.org/10.1007/s10270-009-0128-1
http://dx.doi.org/10.1007/s10270-009-0128-1
http://dx.doi.org/10.1007/s10270-009-0128-1
http://dx.doi.org/10.1109/SEAA53835.2021.00036
http://dx.doi.org/10.1109/SEAA53835.2021.00036
http://dx.doi.org/10.1109/SEAA53835.2021.00036
http://ceur-ws.org/Vol-2405/06_paper.pdf
http://ceur-ws.org/Vol-2405/06_paper.pdf
http://ceur-ws.org/Vol-2405/06_paper.pdf
http://dx.doi.org/10.1109/TSE.2018.2887384
http://dx.doi.org/10.1109/TSE.2018.2887384
http://dx.doi.org/10.1109/TSE.2018.2887384
http://dx.doi.org/10.1007/978-3-540-85289-6_3
http://dx.doi.org/10.1007/978-3-540-85289-6_3
http://dx.doi.org/10.1007/978-3-540-85289-6_3
http://dx.doi.org/10.1007/s11219-015-9284-4
http://dx.doi.org/10.1007/978-3-319-66335-7_18
http://dx.doi.org/10.1007/978-3-319-66335-7_18
http://dx.doi.org/10.1007/978-3-319-66335-7_18
http://dx.doi.org/10.1007/0-306-48738-1_16
http://dx.doi.org/10.1007/s10270-012-0246-z
http://dx.doi.org/10.1007/978-3-662-46675-9_10
http://dx.doi.org/10.1109/SANER.2019.8667967
http://dx.doi.org/10.1145/3242163.3242167
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00013-7/sb37
http://dx.doi.org/10.1145/2739482.2768462
http://dx.doi.org/10.1145/2739482.2768462
http://dx.doi.org/10.1145/2739482.2768462
http://dx.doi.org/10.1145/3375636
http://dx.doi.org/10.1109/CEC.2006.1688406
http://dx.doi.org/10.1109/CEC.2016.7743912
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.1007/s10664-013-9249-9
http://dx.doi.org/10.1007/978-3-642-23716-4_6
http://dx.doi.org/10.1007/978-3-642-23716-4_6
http://dx.doi.org/10.1007/978-3-642-23716-4_6
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1109/SEAA56994.2022.00070
http://dx.doi.org/10.1016/j.jss.2021.111084
http://dx.doi.org/10.1109/TSE.2019.2904476

Information and Software Technology 157 (2023) 107159V. Cortellessa et al.
[50] R. Li, R. Etemaadi, M.T.M. Emmerich, M.R.V. Chaudron, An evolutionary
multiobjective optimization approach to component-based software architecture
design, in: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2011, New Orleans, la, USA, 5-8 June, 2011, IEEE, 2011, pp. 432–439,
http://dx.doi.org/10.1109/CEC.2011.5949650.

[51] I. Meedeniya, B. Buhnova, A. Aleti, L. Grunske, Architecture-driven reliability
and energy optimization for complex embedded systems, in: G.T. Heineman,
J. Kofron, F. Plasil (Eds.), Research Into Practice - Reality and Gaps, 6th
International Conference on the Quality of Software Architectures, QoSA 2010,
Prague, Czech Republic, June 23 - 25, 2010. Proceedings, Springer, 2010, pp.
52–67, http://dx.doi.org/10.1007/978-3-642-13821-8_6.

[52] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, R.H. Reussner, A hybrid
approach for multi-attribute QoS optimisation in component based software
systems, in: G.T. Heineman, J. Kofron, F. Plasil (Eds.), Research Into Practice -
Reality and Gaps, 6th International Conference on the Quality of Software Archi-
tectures, QoSA 2010, Prague, Czech Republic, June 23 - 25, 2010. Proceedings,
Springer, 2010, pp. 84–101, http://dx.doi.org/10.1007/978-3-642-13821-8_8.

[53] F. Rosenberg, M.B. Müller, P. Leitner, A. Michlmayr, A. Bouguettaya, S. Dustdar,
Metaheuristic optimization of large-scale QoS-aware service compositions, in:
2010 IEEE International Conference on Services Computing, SCC 2010, Miami,
Florida, USA, July 5-10, 2010, IEEE Computer Society, 2010, pp. 97–104,
http://dx.doi.org/10.1109/SCC.2010.58.

[54] V. Cardellini, E. Casalicchio, V. Grassi, F.L. Presti, R. Mirandola, Qos-driven
runtime adaptation of service oriented architectures, in: H. van Vliet, V. Issarny
(Eds.), Proceedings of the 7th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2009, Amsterdam, the Netherlands, August 24-28, 2009,
ACM, 2009, pp. 131–140, http://dx.doi.org/10.1145/1595696.1595718.

[55] C.M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen, T. Israr, J. Merseguer,
Performance by unified model analysis (PUMA), in: Proceedings of the Fifth
International Workshop on Software and Performance, WOSP 2005, Palma, Illes
Balears, Spain, July 12-14, 2005, ACM, 2005, pp. 1–12, http://dx.doi.org/10.
1145/1071021.1071022.

[56] T. Altamimi, D.C. Petriu, Incremental change propagation from UML software
models to LQN performance models, in: M. Mindel, K.A. Lyons, J. Wigglesworth
(Eds.), Proceedings of the 27th Annual International Conference on Computer
Science and Software Engineering, CASCON 2017, Markham, Ontario, Canada,
November 6-8, 2017, IBM / ACM, 2017, pp. 120–131, URL: http://dl.acm.org/
citation.cfm?id=3172810.

[57] D.A. Menascé, J.M. Ewing, H. Gomaa, S. Malek, J.P. Sousa, A framework for
utility-based service oriented design in SASSY, in: A. Adamson, A.B. Bondi,
C. Juiz, M.S. Squillante (Eds.), Proceedings of the First Joint WOSP/SIPEW
International Conference on Performance Engineering, San Jose, California,
USA, January 28-30, 2010, ACM, 2010, pp. 27–36, http://dx.doi.org/10.1145/
1712605.1712612.
18
[58] P.H. Feiler, D.P. Gluch, Model-Based Engineering with AADL - an Introduction
to the SAE Architecture Analysis and Design Language, SEI series in software en-
gineering, Addison-Wesley, 2012, URL: http://www.pearsoned.co.uk/bookshop/
detail.asp?item=100000000518651.

[59] R. Etemaadi, M.R.V. Chaudron, New degrees of freedom in metaheuristic
optimization of component-based systems architecture: Architecture topology and
load balancing, Sci. Comput. Program. 97 (2015) 366–380, http://dx.doi.org/10.
1016/j.scico.2014.06.012.

[60] S. Becker, H. Koziolek, R.H. Reussner, The palladio component model for model-
driven performance prediction, J. Syst. Softw. 82 (1) (2009) 3–22, http://dx.doi.
org/10.1016/j.jss.2008.03.066.

[61] A. Rago, S.A. Vidal, J.A. Diaz-Pace, S. Frank, A. van Hoorn, Distributed quality-
attribute optimization of software architectures, in: Proceedings of the 11th
Brazilian Symposium on Software Components, Architectures and Reuse, SBCARS
2017, Fortaleza, CE, Brazil, September 18 - 19, 2017, ACM, 2017, pp. 7:1–7:10,
http://dx.doi.org/10.1145/3132498.3132509.

[62] T. Altamimi, M.H. Zargari, D.C. Petriu, Performance analysis roundtrip: auto-
matic generation of performance models and results feedback using cross-model
trace links, in: M. Mindel, B. Jones, H.A. Müller, V. Onut (Eds.), Proceedings
of the 26th Annual International Conference on Computer Science and Software
Engineering, CASCON 2016, Toronto, Ontario, Canada, October 31 - November
2, 2016, IBM / ACM, 2016, pp. 208–217, URL: http://dl.acm.org/citation.cfm?
id=3049899.

[63] J. Erickson, K. Siau, Can UML be simplified? Practitioner use of UML in separate
domains, in: E. Proper, T.A. Halpin, J. Krogstie (Eds.), Proceedings of the 12th
International Workshop on Exploring Modeling Methods for Systems Analysis
and Design, EMMSAD 2008, Held in Conjunction with the 19th Conference on
Advanced Information Systems (CAiSE 2007), Trondheim, Norway, 11-15 June,
2007, CEUR-WS.org, 2007, pp. 81–90, URL: http://ceur-ws.org/Vol-365/paper9.
pdf.

[64] V. Cortellessa, R. Eramo, M. Tucci, From software architecture to analysis
models and back: Model-driven refactoring aimed at availability improvement,
Inf. Softw. Technol. 127 (2020) 106362, http://dx.doi.org/10.1016/j.infsof.2020.
106362.

[65] V. Cortellessa, V. Grassi, A modeling approach to analyze the impact of
error propagation on reliability of component-based systems, in: H.W. Schmidt,
I. Crnkovic, G.T. Heineman, J.A. Stafford (Eds.), Component-Based Software
Engineering, 10th International Symposium, CBSE 2007, Medford, MA, USA,
July 9-11, 2007, Proceedings, Springer, 2007, pp. 140–156, http://dx.doi.org/
10.1007/978-3-540-73551-9_10.

http://dx.doi.org/10.1109/CEC.2011.5949650
http://dx.doi.org/10.1007/978-3-642-13821-8_6
http://dx.doi.org/10.1007/978-3-642-13821-8_8
http://dx.doi.org/10.1109/SCC.2010.58
http://dx.doi.org/10.1145/1595696.1595718
http://dx.doi.org/10.1145/1071021.1071022
http://dx.doi.org/10.1145/1071021.1071022
http://dx.doi.org/10.1145/1071021.1071022
http://dl.acm.org/citation.cfm?id=3172810
http://dl.acm.org/citation.cfm?id=3172810
http://dl.acm.org/citation.cfm?id=3172810
http://dx.doi.org/10.1145/1712605.1712612
http://dx.doi.org/10.1145/1712605.1712612
http://dx.doi.org/10.1145/1712605.1712612
http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000518651
http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000518651
http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000518651
http://dx.doi.org/10.1016/j.scico.2014.06.012
http://dx.doi.org/10.1016/j.scico.2014.06.012
http://dx.doi.org/10.1016/j.scico.2014.06.012
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1145/3132498.3132509
http://dl.acm.org/citation.cfm?id=3049899
http://dl.acm.org/citation.cfm?id=3049899
http://dl.acm.org/citation.cfm?id=3049899
http://ceur-ws.org/Vol-365/paper9.pdf
http://ceur-ws.org/Vol-365/paper9.pdf
http://ceur-ws.org/Vol-365/paper9.pdf
http://dx.doi.org/10.1016/j.infsof.2020.106362
http://dx.doi.org/10.1016/j.infsof.2020.106362
http://dx.doi.org/10.1016/j.infsof.2020.106362
http://dx.doi.org/10.1007/978-3-540-73551-9_10
http://dx.doi.org/10.1007/978-3-540-73551-9_10
http://dx.doi.org/10.1007/978-3-540-73551-9_10

	Many-objective optimization of non-functional attributes based on refactoring of software models
	Introduction
	Background
	Performance Quality Indicator (perfQ)
	Reliability model
	Performance Antipatterns
	Architectural distance

	Approach
	Assumptions on UML models
	The Refactoring Engine
	Refactoring Action portfolio

	Baseline Refactoring Factor
	Computing reliability on UML models
	Pareto Frontier Quality Indicators

	Case Studies
	Train Ticket Booking Service
	CoCoME

	Experimental setup
	Results and discussion
	RQ1
	RQ1.1
	RQ1.2
	RQ1.3

	RQ2
	RQ3

	Threats to validity
	Related Work
	Software Architecture optimization
	Layered Queueing Network approaches

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

