
Computers & Operations Research 157 (2023) 106280

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

One-dimensional stock cutting resilient against singular random defects
Claudio Arbib a, Fabrizio Marinelli b,∗, Ulrich Pferschy c, Fatemeh K. Ranjbar a,1

a Dipartimento di Ingegneria/Scienze dell’Informazione e Matematica, Università degli Studi dell’Aquila, L’Aquila, Italy
b Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Ancona, Italy
c Institut für Operations und Information Systems, Universität Graz, Graz, Austria

A R T I C L E I N F O

Keywords:
Cutting stock
Bin packing
Recoverable defects
Dynamic programming
Mixed integer programming

A B S T R A C T

When industrial components are obtained by cutting bars of raw material (stocks), production volumes and
values can be affected by random defects in the stocks. To deal with this inconvenience, we propose to design
reconfigurable cutting patterns that can be adjusted so that defects fall, as far as possible, in the residual
area that is normally discarded. In this situation, a trade-off arises between the amount of this scrap area and
the probability that there exists a reconfiguration with no loss of items. We define mathematical models for
the expected economic value produced with a single stock, or with all the stocks cut to obtain the required
items. We then introduce the relevant optimization problems, discuss their complexity and devise various
solution algorithms, comprising dynamic programming and Integer Linear Programming. The effectiveness of
our algorithms is finally illustrated by computational tests on sample problems derived from the literature.
1. Introduction

In the One-dimensional Cutting Stock Problem (CSP) we are given a
set 𝐼 ∶= {1,… , 𝑛} of items of (generally non-distinct) integer lengths
𝑤𝑖 ∈ N, 𝑖 ∈ 𝐼 , and sufficiently many bars of raw material from which
all the items can be cut.2 Those bars are called the stock items (in brief,
stocks) and are all of a standard integer length 𝑤 ∈ N. Obviously, we
assume 𝑤𝑖 < 𝑤 for all 𝑖 ∈ 𝐼 . A feasible solution of the basic CSP is a
partition of 𝐼 into 𝑚 subsets 𝑃1,… , 𝑃𝑚 such that
∑

𝑖∈𝑃𝑘

𝑤𝑖 ≤ 𝑤

for 𝑘 = 1,… , 𝑚. Every 𝑃𝑘 ⊆ 𝐼 fulfilling the above length condition is
called a pattern, and a collection of patterns that define a solution is
called a cutting plan.

For every pattern 𝑃 we define the residual piece as the part of the
stock not used (lengthwise) by the items of 𝑃 . Its length 𝑤𝑃

0 is called
the pattern leftover :

𝑤𝑃
0 = 𝑤 −

∑

𝑖∈𝑃
𝑤𝑖 ≥ 0 (1)

From an economical perspective, the total gain 𝑧 of a solution using
𝑚 stocks is given by profit minus cost: 𝑧 =

∑

𝑖∈𝐼 𝑒𝑖−𝑚 ⋅ 𝑐, where 𝑒𝑖 ∈ Q+

∗ Corresponding author.
E-mail addresses: claudio.arbib@univaq.it (C. Arbib), fabrizio.marinelli@staff.univpm.it (F. Marinelli), ulrich.pferschy@uni-graz.at (U. Pferschy),

fatemeh.kafashranjbar@graduate.univaq.it (F.K. Ranjbar).
1 Funded by the Italian Ministry of Education, PON 2014-2020, CCI 2014IT16M2OP005.
2 Most of the cutting and packing literature assumes integer values of items. Clearly, rational data could be covered as well by multiplying all numbers by

their lowest common denominator.

is the profit (or economic value) of item 𝑖 ∈ 𝐼 , and 𝑐 ∈ Q+ is the stock
unitary cost. In a traditional CSP, the total value of all items in 𝐼 does
not depend at all on how patterns are formed, and hence maximizing
the gain 𝑧 is equivalent to minimizing the number 𝑚 of stocks used.
We will denote by 𝑚∗ the optimal, i.e. minimum, number of patterns
whose union gives 𝐼 .

An interesting new aspect arises however if stocks are prone to
defects. If the positions of defects are known before the cutting patterns
are computed, an optimal CSP solution with no defective items can
be obtained, at least in principle, by splitting the stocks so as to
remove all the defects and then solving a multiple length CSP (Alves
and de Carvalho, 2008). This approach is however not common in
industrial settings for considerations related to internal logistics: stocks
placed far away from the manufacturing department; costs of offline
stock inspection, classification and pre-cut, etc. Quite often, stocks are
therefore cut as if they were faultless, and defective items are just
discarded afterwards. An intermediate approach, however, is to adopt
a robust solution coupled with some online recourse action to limit the
impact of defects. Such a solution can be defined – intuitively – as a
cutting plan where the items of each pattern can be rearranged to avoid
defects as far as possible. To fix ideas, imagine a practical CSP setting
with the following timeline:
vailable online 15 May 2023
305-0548/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.cor.2023.106280
Received 15 November 2022; Received in revised form 30 March 2023; Accepted 1
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2 May 2023

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:claudio.arbib@univaq.it
mailto:fabrizio.marinelli@staff.univpm.it
mailto:ulrich.pferschy@uni-graz.at
mailto:fatemeh.kafashranjbar@graduate.univaq.it
https://doi.org/10.1016/j.cor.2023.106280
https://doi.org/10.1016/j.cor.2023.106280
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106280&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 157 (2023) 106280C. Arbib et al.
Fig. 1. (𝑎) − (𝑏) 𝑡-reconfigurable and (𝑐) not 𝑡-reconfigurable pattern for a defect in position 𝑡 indicated by a star.
1. First, the data of all items in 𝐼 are received and a basic CSP is
solved, i.e., 𝐼 is partitioned into a sequence of patterns 𝑃1,… , 𝑃𝑚.

2. Then a sequence of stocks becomes available, and the 𝑗th stock
of the sequence is cut according to pattern 𝑃𝑗 . Both the defec-
tiveness of each single stock and, if defective, the positions of
faults within it are regarded as random events.

3. When the 𝑗th stock is received, it is checked and possible defect
positions are detected. With this information, the items of 𝑃𝑗 , or
a subset thereof, are assigned to fixed positions on the horizontal
segment [0, 𝑤], so that no interval occupied by an item contains
a defect.

4. Unassigned items – if any – are permanently discarded, that is,
do not contribute to generate profit.

Notice that, in the above setting, defect positions are not known
during phase 1, i.e., when patterns are formed: only when the stock
is ready to be processed, it becomes evident whether it is defective or
not and – if it is the case – where defects are positioned. Examples of
production settings of this kind taken from literature will be given in
Section 2.

If, for given defect positions, all the items of a pattern can be
produced without faults, the pattern is said to be reconfigurable (see
Fig. 1). This gives a probabilistic meaning to the notion of solution
robustness: in fact, we define the robustness 𝜋(𝑃) of a pattern 𝑃 as the
probability that 𝑃 is reconfigurable against defects occurring at random
in the stock associated.

If pattern 𝑃 turns out to be not reconfigurable for a certain arrange-
ment of defects, then not all items can be produced (phase 4 above),
i.e. cut from the faulty stock, which results in an economic loss equal
to the sum of economic values, or profits, of all discarded items of 𝑃 .
In general, once defects are spotted in a stock, a local (deterministic)
problem arises to minimize the economic loss the defects cause in the
set of items assigned. The Expected Economic Loss (EEL) of a pattern 𝑃 ,
denoted as 𝑒𝑒𝓁(𝑃), is then obtained by summing up the minimum loss
over all possible defect positions, weighing each one by the probability
that a defect arises exactly there.

Finally, considering that the processed stocks have a cost, one can
also ask to compute the number 𝑚 of patterns that maximizes the
expected gain. More formally, one can define the Expected Total Revenue
(ETR) as the total value of the items, minus the EEL and the total stock
cost. Intuitively, the two opposing goals of material utilization and
robustness should be balanced. In fact, a solution with a minimum num-
2

ber of stocks will generally be tightly packed; consequently, chances are
higher that items must be discarded because of defects in the stock. On
the other hand, spreading the items over a larger number of stocks will
entail a larger slack; thence, one would have more chances to avoid
economic loss, but at the cost of using more raw material (which, by
the way, would also give chances to additional defects — see Section 6
for a detailed analysis).

Summarizing, the above discussion gives rise to four problems, two
of them concerning the robustness of a single pattern:

Problem 1 (Pattern Robustness). Given a pattern 𝑃 , compute its robust-
ness 𝜋(𝑃), i.e., the probability that 𝑃 is reconfigurable.

Problem 2 (Pattern Expected Economic Loss). Given a pattern 𝑃 and
item economic values 𝑒𝑖, 𝑖 ∈ 𝑃 , compute 𝑒𝑒𝓁(𝑃).

The other two problems refer to robust CSP solutions with favorable
properties in terms of both residual pieces and sensitivity to defects:

Problem 3 (Total Expected Economic Loss). Given a fixed number of
stocks 𝑚 ≥ 𝑚∗ and the probability 𝜌 that a stock is subject to one
defect, find a cutting plan (with some patterns possibly empty) which
minimizes the total EEL

𝑒𝑒𝓁(𝑃1,… , 𝑃𝑚) = 𝜌 ⋅
𝑚
∑

𝑘=1
𝑒𝑒𝓁(𝑃𝑘) (2)

Problem 4 (Total Expected Revenue). Assuming unitary stock cost 𝑐 ∈
Q+, find a cutting plan which maximizes the ETR:

𝑒𝑡𝑟(𝑃1,… , 𝑃𝑚) =
∑

𝑖∈𝐼
𝑒𝑖 − 𝑒𝑒𝓁(𝑃1,… , 𝑃𝑚) − 𝑐 ⋅ 𝑚 (3)

or equivalently minimizes the total stock cost plus EEL.

In this paper we consider the one-dimensional setting, and hence
refer to applications where stocks are iron bars, lumber rods, and
similar. We also assume that defects are point-shaped spots that corrupt
only a unit interval of the stock, and that the simultaneous occurrence
of more than one such defect in a stock is a rare event, i.e., each
stock contains at most one defect. These assumptions will be further
discussed in Section 3.1.

Finally, as in the standard CSP, we assume 𝑒0 = 0, i.e., that the
leftovers have no economic value. In practice, the leftover of a stock

might well be utilized in a later stage. However, keeping a stack of

Computers and Operations Research 157 (2023) 106280C. Arbib et al.
partially used raw material of different sizes often constitutes an oper-
ational burden or is technically infeasible. The difficulties of producing
‘‘useful’’ leftovers under uncertainty was recently investigated by Cherri
et al. (2023). In any case, it is difficult to estimate the monetary
value of a residual piece that may (or may not) be used in some
future production lot. That is why we stick to the standard model and
represent the cost of a solution by the number of utilized stocks (=
patterns) multiplied by the stock unitary cost 𝑐, thereby ignoring the
potential values of residual pieces. Generally speaking, it may also
happen that eliminating some items would increase the total gain. Take
for example 𝑤 = 𝑐 = 10, |𝐼| = 4, 𝑤𝑖 = 3 and 𝑒𝑖 = 6: an optimal solution
that cuts all the four items uses two stocks and hence produces a total
gain of 6 ⋅4−10 ⋅2 = 4, but the gain increases to 6 ⋅3−10 = 8 if one gives
up one item and so saves the cost of one stock. However, we again stick
to the standard CSP assumption that requires the production of all the
items of 𝐼 (some of which might possibly be discarded later because of
defects detected during the production process) because such an item
elimination strategy has only a marginal impact concerning the use of
the very last stock.

Our contribution comprises three main aspects: First of all, we
introduce a new cutting stock problem based on a stochastic model of
small defects and study theoretical properties of the resulting expected
utilization of stock. Secondly, we state a subset sum based deterministic
algorithm, which computes a-priori the best utilization of a given
cutting pattern for every possible defect position. Algorithmic improve-
ments are developed to reduce its running time complexity. Finally, we
introduce ILP-based models for maximizing the total expected revenue
for a given list of orders balancing the stock cost with the expected loss
incurred by defects. Computational experiments analyze the practical
behavior of these models.

The paper is organized as follows. In Section 2 we briefly survey
the existing literature on related topics. In Section 3 we introduce the
reconfiguration issue, and the notion of pattern robustness against a
single random defect in the stock; here we also define (Section 3.2)
the expected economic loss of a pattern (or of a whole packing) as
the minimum loss of item values obtainable by pattern reconfiguration.
In Section 4 we discuss the complexity of computing pattern robust-
ness and expected economic loss. Solution approaches are proposed
in Section 5: in particular, Problem 4 is treated by repeatedly solving
Problem 3 for increasing number of stocks, starting from 𝑚 = 𝑚∗

and moving up to a convenient number computed by solving a CSP
with all reconfigurable patterns. A computational experience based on
benchmark instances taken from literature is described in Section 7,
and conclusions are finally drawn in Section 8.

2. Related work

The recent scientific literature on discrete optimization includes
a large body of theoretical and application-oriented papers on cut-
ting (and packing) problems, see, e.g., the typology by Wäscher and
Haußner (2007) and the survey on the deterministic setting without
defective stocks by Delorme et al. (2016).

Industrial cutting processes use a large variety of raw material: glass
in automotive and building components (Arbib et al., 2022b,a), lumber
logs and boards in the furniture and wood industry (Ghodsi and Sassani,
2005; Wenshu et al., 2015), leather sheets in shoes and textile (Sarker,
1988; Özdamar, 2000), steel in metallurgy (Sierra-Paradinas et al.,
2021), silicon plates in electronics (Hwang et al., 2011) and paper rolls
in paper mills (Aboudi and Barcia, 1998), just to mention a few. Al-
though raw material is almost always subject to possible imperfections
(knotholes in wood, bubbles in glass, contaminated areas in steel, holes,
stains or streaks in paper, etc.), relatively few papers in the cutting
literature address problems arising in defective stock cutting, and in
most of them defect size and location are known in advance.

One of the earliest contributions on cutting problems with known
defects is due to Hahn (1968). Since then, variants considering one
3

(Carnieri et al., 1993; Neidlein et al., 2009) or more (Afsharian et al.,
2014; Wenshu et al., 2015) defects per stock were addressed, either in
one or two dimensions. In those papers, defect geometry ranges from
simple points to rectangular or generally convex areas, and damage
can either involve immediate item scrap or just reduce item quality.
Also defect handling is addressed in different ways: it can concern the
optimal use of faultless areas or, more generally, the optimization of
the whole cutting process including fault numbers and/or placement of
items in the stock (Sarker, 1988). A recent paper by Durak and Tüzün
(2017) considers an optimization setting where only a few stocks are
available at any given time; however, despite the online nature of the
process, the faults affecting that limited stock set are again treated in a
deterministic way. The cutting problems with known defects addressed
in the above references are mostly modeled as mixed integer linear
programs, and solved by dynamic programming, Lagrangian relaxation
and subgradient optimization (Durak and Tüzün, 2017; Rönnqvist and
Åstrand, 1998; Rönnqvist, 1995).

In some cases, the problem calls for rearranging the items of a given
pattern so as to avoid as many defects as possible. To the best of our
knowledge, the earliest reference to this issue is the Min Defective Subset
Sum problem considered in Aboudi and Barcia (1998), where a single
defective interval occurs at a given position in the stock, and one wishes
to find a layout of a given pattern that places items for a maximum total
value. The authors observe that the problem is -hard already in the
one-dimensional case, reformulate it as Multiple Subset Sum and solve it
by a branch-and-bound approach. Such a problem is actually a special
case of the Multiple Knapsack Problem (Dell’Amico et al., 2019), with
two knapsacks and profits equal to lengths.

Papers dealing with uncertainty in cutting problems especially ad-
dress the stochastic behavior of such major item attributes as size,
demand and economical value. Indeed, most cases consider either
an online process where items arrive sequentially, or a production
setting with uncertain demand. Just to mention some examples, ro-
bust optimization is used in Alem and Morabito (2012) to address a
combined lot-sizing and cutting-stock problem, and in Ide et al. (2015)
to address an application in the wood cutting industry. Uncertainty
in customer demand is tackled by two-stage stochastic optimization
in Alem et al. (2010) and Beraldi et al. (2009). Random customer
demand and random cutting times are investigated in Krichagina et al.
(1998) and heuristically solved by linear programming and dynamic
control.

A parallel line of contributions in the stochastic setting concerns
the One-dimensional Bin Packing problem (very similar to the CSP) with
uncertain item sizes. Recent works by Perez-Salazar et al. (2022)
and Schepler et al. (2022) provide a rich source of references. A closely
related problem, indeed a subproblem of the CSP, is the classical Knap-
sack problem: uncertain variants are addressed in Monaci et al. (2013),
where the item weights belong to a given interval, and in Gaivoronski
et al. (2011), where different elements of the problem formulation,
subject to a degree of uncertainty described by random variables, are
reformulated by probability constraints and a solution approach based
on semi-definite relaxation is proposed. However, these references do
not take stock defectiveness into account.

Several articles, indeed, observe that feeding cutting machines with
stocks is an online process and, as such, calls for a stochastic model
of defects. An early paper by Sculli (1981) assumes a random defec-
tiveness of one-dimensional stocks that however only affects the edges
(and therefore the size) of rolls. More recent examples of industrial
cutting problems, where defects are detected only immediately before
the cutting process, can be found, e.g., in wood processing. Window
frame production with on optical surface scanner integrated in the
cutting machine was discussed in Petutschnigg et al. (2007). A more
complicated analysis of logs scanned by a computer tomograph for
internal errors in the production of high quality lumber was treated
in Petutschnigg et al. (2005), Pernkopf and Riegler M. Gronalt (2019).

Computers and Operations Research 157 (2023) 106280C. Arbib et al.

a

s
a
𝑝

r

m
o
𝑇
o

𝑓
𝜋
a
d

𝜋

w
r
p
t
t

3

𝑡
b
c
a
t
c
i
c

h
i
r
T
a
t
i

Another example is described in Arbib et al. (2022b) where an
assortment-and-cut problem arising in the glass industry is considered,
and a stochastic model for defect occurrence proposed. The stochastic
realization of defects is modeled as a spatial Poisson point process, and
a mixed integer program in the vein of robust optimization is presented.
This paper presents an analogy with the present contribution in an
idea of recourse strategy based on pattern reconfiguration. However,
the context sensibly differs from ours because, although 2-dimensional,
patterns are elementary. Moreover, the main focus of the problem is on
the reduction of back-orders rather than economic loss.

3. Pattern reconfiguration

Suppose that, independently on other stocks, every stock is subject
to a single defect with probability 𝜌. If a stock has a defect, assume
its integer position 𝑡 ∈ [1, 𝑤] to be distributed along the stock length
according to some discrete probability function 𝑓 (𝑡) independent from
and identical for all stock. Given the integrality of the item sizes, it is
easy to see that any fractional defect position 𝑡 can be replaced by ⌈𝑡⌉.

As mentioned in the introduction, we here consider small defects
which render only one length unit of the stock unusable. We can then
formally associate a defect with a certain integer position 𝑡 ∈ [1, 𝑤],
which decomposes the stock into two intervals, [0, 𝑡 − 1] and [𝑡, 𝑤],
that can still be used to produce items. The part of the stock between
positions 𝑡− 1 and 𝑡 contains the defect and cannot be used. Two cases
may then occur for a given pattern 𝑃 : either the defect can be isolated
within the residual piece of the pattern (Figs. 1-𝑎, 𝑏), or this operation
is impossible and therefore an item must be discarded (Fig. 1-𝑐). In the
former case, no economic loss is incurred because the leftover has no
economic value; in the latter case, we assume the loss for not producing
an item to be equivalent to the item value.

For a defect at an integer position 𝑡 we then define:

Definition 1. Let 𝑃 ⊆ 𝐼 be a pattern and let 𝑡 ∈ [1, 𝑤]∩N. We say that
𝑃 is 𝑡-reconfigurable if there exists 𝐿 ⊆ 𝑃 such that

𝑤(𝐿) =
∑

𝑖∈𝐿
𝑤𝑖 ≤ 𝑡 − 1 𝑤(𝑃 ⧵ 𝐿) =

∑

𝑖∈𝑃⧵𝐿
𝑤𝑖 ≤ 𝑤 − 𝑡 (4)

Moreover, we say that 𝑃 is reconfigurable if it is 𝑡-reconfigurable for all
integer 𝑡 ∈ [1, 𝑤].

Given a finite set 𝑃 of numerical weights 𝑤𝑖 ∈ N and a capacity
𝑞 ∈ N, the classical Subset Sum Problem (SSP), cf. Kellerer et al. (2004),
asks for finding a subset 𝑆 ⊆ 𝑃 with maximum total weight such that
∑

𝑖∈𝑆 𝑤𝑖 ≤ 𝑞. From an algorithmic point of view, one can then search
for a subset 𝐿 fulfilling (4) by solving a subset sum problem with item
set 𝑃 and capacity 𝑡 − 1. If the optimal solution set 𝑆 has total value
𝑤(𝑆) ≥ 𝑤(𝑃) −𝑤 + 𝑡, then 𝑃 is 𝑡-reconfigurable.

Recalling the Min Defective Subset Sum problem pointed out in Sec-
tion 2, a pattern 𝑃 is 𝑡-reconfigurable if and only if the instance of Min
Defective Subset Sum defined by 𝑃 and a defective interval [𝑡 − 1, 𝑡], has
n optimum with no discarded items.

Note that if 𝑃 is 𝑡-reconfigurable for some 𝑡, then it is also (𝑤−𝑡+1)-
reconfigurable by symmetry. Although this aspect can be useful to
speed-up computations, we will not consider it explicitly in this paper
for simplicity of exposition.

Definition 1 can be generalized to 𝑟 defect positions in a stock.
However, in this paper we suppose that the simultaneous occurrence
of more than one defect in a stock is a rare event, and hence we focus
only on the case where each stock contains no more than one defect.

3.1. Pattern robustness

All the integers 𝑡 ∈ [1, 𝑤] for which 𝑃 is 𝑡-reconfigurable define a
et 𝑇𝑃 ⊆ [1, 𝑤] built from a finite number of reconfiguration intervals
s shown in Fig. 2. The reconfiguration intervals are at most 2𝑝, with
4

= |𝑃 | (Fig. 2-𝑎), and each of them is generated from a subset 𝐿 ⊆ 𝑃 by
Fig. 2. (𝑎) Reconfiguration intervals, (𝑏) reconfiguration set and (𝑐) a generic
econfiguration implied by 𝑇𝑃 .

oving all the items of 𝐿 to the left side of the stock and the remaining
nes to the right: Fig. 2-𝑐 shows that no more sets are necessary to build
𝑃 , as any other way of 𝑡-reconfiguring a pattern is implied by a subset
f reconfiguration intervals. Clearly, 𝑇𝑄 ⊇ 𝑇𝑃 for any subset 𝑄 of 𝑃 .

Given a discrete probability distribution 𝑓 ∶ [1, 𝑤] ∩ N → R, where
(𝑡) gives the probability of a defect at position 𝑡, we define the measure
(𝑃) under 𝑓 as the probability that 𝑃 is 𝑡-reconfigurable (i.e. that
ll the items of 𝑃 can be produced) for a single defect at position 𝑡
istributed according to 𝑓 along the length of the stock:

(𝑃) =
𝑤
∑

𝑡=1
𝜒(𝑃 , 𝑡)𝑓 (𝑡) , (5)

here 𝜒(𝑃 , 𝑡) is a characteristic function with 𝜒(𝑃 , 𝑡) = 1 if 𝑃 is 𝑡-
econfigurable and 0 otherwise. The probability 𝜋(𝑃) represents the
attern robustness as stated in Problem 1: that is, the larger the 𝜋(𝑃),
he more pattern 𝑃 is robust against defects. If, in particular, 𝜋(𝑃) = 1,
hen 𝑃 is reconfigurable.

.2. Expected economic loss of a pattern

If a pattern turns out to be not 𝑡-reconfigurable for a defect position
, then some items must be removed from the pattern as they cannot
e produced; equivalently, if produced, we assume that these items
ontribute no revenue, just like the pattern residual piece. Considering
certain defect position 𝑡, it is easy to see that one will never have

o remove more than one item from any pattern 𝑃 : given in fact a
ertain ordering of the items in 𝑃 , where each item is associated to an
nterval with integer extremes, it suffices to remove the unique interval
ontaining 𝑡.

To minimize the economic loss 𝓁(𝑃 , 𝑡) that may occur if pattern 𝑃 is
it by a defect in position 𝑡, one then has to identify the least valuable
tem whose removal makes 𝑃 a 𝑡-reconfigurable pattern: clearly, the
emoved item (if any) may be different for different defect positions.
o compute the expected economic loss (EEL) of a pattern 𝑃 , denoted
s 𝑒𝑒𝓁(𝑃), we have then to determine the corresponding reaction, i.e.
he removal of the least valuable item, for every position 𝑡 for which 𝑃
s not 𝑡-reconfigurable.

Computers and Operations Research 157 (2023) 106280C. Arbib et al.

t

𝑇

d

S
𝜋

𝜋

o
t
r

4

p
d
b

d
(
T

a

p

I
b
u
p

𝑇
c

e

t

Example 1. Let 𝑤 = 10, 𝑃 = {1, 2}, 𝑤1 = 1, 𝑤2 = 9 and 𝑒𝑖 = 𝑒𝑤𝑖 for
some positive constant 𝑒. Moreover, suppose that a defect occurs at an
integer position uniformly distributed in [1, 10].

Because the leftover is 𝑤𝑃
0 = 0, 𝑃 is not 𝑡-reconfigurable for any 𝑡 ∈

[1, 10], hence 𝜋(𝑃) = 0. However, if 𝑡 ∈ {1, 10} we can reorder items and
save the most valuable item, i.e., 2: thus we lose 𝑒𝑤1 with probability
0.2; in all the other cases, we are forced to lose 𝑒𝑤2. Therefore the EEL
of pattern 𝑃 is 𝑒𝑒𝓁(𝑃) = (0.2𝑤1 + 0.8𝑤2)𝑒 = 7.4𝑒. □

Generally speaking, to express 𝑒𝑒𝓁(𝑃) we need to know the prob-
ability 𝜋𝑖 that 𝑖 is the least expensive item whose removal allows to
reconfigure the pattern. The EEL will then be computed as

𝑒𝑒𝓁(𝑃) =
∑

𝑖∈𝑃
𝑒𝑖𝜋𝑖 . (6)

For economic values depending on the item sizes, the computation
of the least valuable item for removal from a given pattern 𝑃 can be
formalized as follows. Considering the removal of a certain item 𝑘 from
𝑃 , we denote the set of all defect positions 𝑡 for which 𝑃 ⧵ {𝑘} is 𝑡-
reconfigurable as 𝑇 𝑘 ∶= 𝑇𝑃⧵{𝑘} and 𝑇 0 for 𝑇𝑃 . We already observed
𝑇𝑄 ⊇ 𝑇𝑃 for 𝑄 ⊆ 𝑃 : thus 𝑇 0 ⊆ 𝑇 𝑘 for all 𝑘. In addition

Proposition 1. Assume that the items in 𝑃 are sorted by non-decreasing
economic values 𝑒1 ≤ … ≤ 𝑒𝑝. If, for all 𝑖 ∈ 𝑃 , 𝑒𝑖 = 𝑒(𝑤𝑖) for a
non-decreasing function 𝑒 ∶ Q+ → Q+, then 𝑇 𝑖 ⊆ 𝑇 𝑘 for any 𝑖 < 𝑘.

Proof. By our assumption, 𝑖 < 𝑘 ⇒ 𝑒𝑖 ≤ 𝑒𝑘, therefore 𝑤𝑖 ≤ 𝑤𝑘 by def-
inition of 𝑒(.). Let 𝑄 be a reconfiguration interval of 𝑇 𝑘 corresponding
o a partition 𝐿,𝑅. Suppose w.l.o.g. 𝑖 ∈ 𝐿 and set 𝐿′ = 𝐿 ⧵ {𝑖} ∪ {𝑘},

i.e., replace 𝑘 for 𝑖: then 𝑤(𝐿′) ≥ 𝑤(𝐿). Let 𝑄′ be the reconfiguration
interval of 𝑇 𝑖 obtained by aligning 𝐿′ to the left of the stock and the
remaining items to the right: since 𝑤(𝑅) remains unchanged, we have
𝑄′ ⊆ 𝑄. A similar argument can be repeated if 𝑖 ∈ 𝑅. As the argument
holds for all the reconfiguration intervals of 𝑇 𝑖, 𝑇 𝑘, we then conclude
𝑖 ⊆ 𝑇 𝑘. □

Now let us formalize how to select the item to be discarded for a
efect position 𝑡 under the assumption of Proposition 1.

• If 𝑡 ∈ 𝑇 0, no item has to be removed.
• If 𝑡 ∈ 𝑇 1, we can select the least valuable item 𝑖 = 1. So we discard

item 1 for 𝑡 ∈ 𝑇 1 ⧵ 𝑇 0.
• If 𝑡 ∈ 𝑇 2 ⧵ (𝑇 0 ∪ 𝑇 1) = 𝑇 2 ⧵ 𝑇 1, we will discard 𝑖 = 2. And so on.

ummarizing, for a non-decreasing value function 𝑒(𝑤𝑖) the probability
𝑖 with which the 𝑖th lowest valued item of 𝑃 will be discarded is

𝑖 =
∑

𝑡∈𝑇 𝑖⧵𝑇 𝑖−1

𝑓 (𝑡). (7)

Note that the number 𝑛𝑖 of integer points in 𝑇 𝑖⧵𝑇 𝑖−1 gives how many
f the 𝑤 defect positions incur an economic loss equal to 𝑒𝑖. Hence, in
he simple case of an integer defect position distributed uniformly at
andom in [1, 𝑤], one has 𝜋𝑖 =

𝑛𝑖
𝑤 .

. Complexity and solution approaches

This section is devoted to state fundamental properties of the four
roblems defined in Section 1. Besides complexity results, we here
escribe basic algorithmic approaches that will be refined in Section 5
y pseudo-polynomial dynamic programming algorithms.

To compute, for a given pattern and an arbitrary discrete defect
istribution, the robustness 𝜋(𝑃) and the expected economic loss 𝑒𝑒𝑙(𝑃)
Problems 1 and 2), at first a fixed defect position has to be considered.
his gives rise to the following subproblem.

Pattern reconfiguration. Given a pattern 𝑃 with 𝑝 items, 𝑤(𝑃) ≤ 𝑤, and
n integer defect position 𝑡 ∈ [1, 𝑤], is 𝑃 𝑡-reconfigurable?
5

i

Proposition 2. Pattern reconfiguration is weakly -complete.

Proof. The problem can easily be reduced from Partition (Garey and
Johnson, 1979):

Partition. Given a set 𝑆 of 𝑝 numbers 𝑎𝑖 ∈ N, decide whether 𝑆 contains or
not a subset 𝑆1 such that

𝑤(𝑆1) =
∑

𝑖∈𝑆1

𝑤𝑖 =
∑

𝑖∉𝑆1

𝑤𝑖 = 𝑤(𝑆 ⧵ 𝑆1).

Define an instance of Pattern Reconfiguration with 𝑤𝑖 = 𝑎𝑖 for 𝑖 =
1,… , 𝑝, and 𝑤 = 𝑤(𝑆) + 1. We can assume 𝑤 odd (otherwise Partition
must be a no instance). For 𝑡 = 𝑤+1

2 , Pattern Reconfiguration has a yes
answer if and only if we have a yes instance of Partition. □

From an algorithmic viewpoint, the robustness 𝜋(𝑃) can be com-
uted by solving Pattern Reconfiguration for all integers 𝑡 ∈ [1, 𝑤] and

summing up the probabilities 𝑓 (𝑡) for all 𝑡 values with a ‘‘yes’’ answer.
Such an answer can be found by searching for a subset 𝐿 ⊆ 𝑃 fulfilling
conditions (4). This task resembles a subset sum problem and can be
solved, e.g., by an elementary integer linear programming formulation
or by dynamic programming (see Section 5).

From a theoretical perspective we can establish the following upper
bound on 𝜋(𝑃) for a uniform defect probability distribution.

Proposition 3. If 𝑓 (𝑡) = 1∕𝑤, the robustness of a pattern can be bounded
by

𝜋(𝑃) ≤ 2𝑝
𝑤𝑃

0
𝑤

. (8)

Proof. Every 𝐿 ⊆ 𝑃 gives rise to a 𝑡-reconfigurable interval, with
extremes 𝑤(𝐿)+1, 𝑤(𝐿)+𝑤𝑃

0 , that contains 𝑤𝑃
0 integer defect positions.

n general, these intervals may overlap, but in the best case there can
e 2𝑝 subsets 𝐿 defining disjoint intervals of 𝑤𝑃

0 positions. Therefore,
niformly distributed defects can cover a total number of at most 2𝑝 𝑤𝑃

0
ositions out of the 𝑤 positions of the stock length. This implies (8). □

The bound given in Proposition 3 is strict, if the reconfiguration set
𝑃 is the union of 2𝑝 disjoint intervals. As an example for this case one
an consider 𝑃 = {5, 9, 11} with 𝑤 = 27 and thus 𝑤𝑃

0 = 2.
The complexity of computing 𝜋(𝑃) (that is, of Problem 1) can be

stablished by considering the following variant of Partition:

Subpartition. Given a set 𝑆 of numbers 𝑎𝑖 ∈ N, decide whether 𝑆 contains
or not two disjoint subset 𝑆1, 𝑆2 so that

𝑤(𝑆1) =
∑

𝑖∈𝑆1

𝑤𝑖 =
∑

𝑖∈𝑆2

𝑤𝑖 = 𝑤(𝑆2)

In case of affirmative answer, we say that 𝑆 has a subpartition. The
Subpartition problem is -complete (Woeginger and Yu, 1992).

Proposition 4. There are patterns 𝑃 for Problem 1, where the question
‘‘Is 𝜋(𝑃) < 2𝑝∕𝑤?’’ is -complete to decide.

Proof. Given an instance  of Subpartition, construct an instance of
Problem 1 with 𝑃 = {𝑤𝑖 ∣ 𝑤𝑖 = 2𝑎𝑖, 𝑎𝑖 ∈ 𝑆}, 𝑤 = 𝑤(𝑃) + 1, i.e.
𝑤𝑃

0 = 1, and uniform defect distribution. Each subset 𝐿 ⊆ 𝑃 yields a 𝑡-
reconfigurable interval consisting only of position 𝑤(𝐿)+1. Considering
Proposition 3, 𝜋(𝑃) = 2𝑝∕𝑤 if and only if all subsets 𝐿 have distinct
length 𝑤(𝐿). Thus, the probability of robustness 𝜋(𝑃) < 2𝑝∕𝑤 if and
only if  is a yes instance. □

In addition, note that Problem 1 may require a certificate ex-
ponentially long in 𝑝. Indeed, given an answer to the problem (say,
‘‘𝜋(𝑃) = 8

15 ’’), a certificate for that answer is the set 𝑇𝑃 that generates
the result. Take for instance 𝑤 = 2𝑝+1 − 1, 𝑤𝑖 = 2𝑖 for 𝑖 = 1,… , 𝑝 = |𝑃 |:
he certificate 𝑇𝑃 is constructed on 𝑝 items but is the union of 2𝑝 disjoint

2𝑝 .
ntervals, for a total measure 𝜋𝑃 = 2𝑝+1−1

Computers and Operations Research 157 (2023) 106280C. Arbib et al.

[
c
c
e
a
f
S
i
𝑃
D
m

P
H

P

5

l
p
f
p
n
H
u
p
S

5

p
t
s
s
a
d
a
𝑃
t
a
t
s
n
l
w
a

𝓁
𝚙

a
s
c

q
a

l

1

e
d
a
s
e

S
v
a
b
d
p
u
o

d

d
o
c

a
t
r
𝚕

i

Moving from pattern robustness to pattern expected economic loss
𝑒𝑒𝑙(𝑃), as per Problem 2, again a specific integer defect position 𝑡 ∈
1, 𝑤] has to be considered. The resulting economic loss can be trivially
omputed by repeatedly eliminating one item 𝑖 ∈ 𝑃 at a time, and
hecking whether 𝑃 ⧵ {𝑖} is 𝑡-reconfigurable. As above, the expected
conomic loss is derived as the weighted sum of economic losses over
ll defect positions. In fact, finding the minimum economic loss for a
ixed defect position is equivalent to solving the Min Defective Subset
um problem defined in Aboudi and Barcia (1998), where the problem
s recognized as -hard and an ILP model is proposed to partition

into subsets placed left and right of 𝑡, maximizing the total profit.
ynamic programming approaches for this problem as well as for the
ore general Problem 2 will be presented in Section 5.

Note that any algorithm for Problem 2 can also be used to answer
roblem 1 by setting 𝑒𝑖 = 1 for all 𝑖 ∈ 𝑃 and reporting 𝜋(𝑃) = 1−𝑒𝑒𝑙(𝑃).
ence we conclude from Proposition 4.

roposition 5. Problem 1, and therefore Problem 2, is -hard.

. Dynamic programming algorithms

In this section we discuss algorithmic alternatives for solving Prob-
em 2, i.e., for computing the expected economic loss of a single
attern 𝑃 . We had already discussed elementary solution approaches
or this weakly -hard problem in Section 4. Here we consider
seudo-polynomial dynamic programming algorithms. As usual, dy-
amic programs require a certain effort for computation and storage.
owever, the solution structure produced for a given pattern 𝑃 can be
sed to return the minimum economic loss for arbitrary integer defect
ositions 𝑡 in constant time. We will present two general approaches in
ections 5.1 and 5.2, then refine the latter in Section 5.3.

.1. Decomposition approach

As a first option for solving Problem 2 we can generate all decom-
ositions of the total pattern length into two segments 𝑤′, 𝑤′′ such
hat 𝑤′ + 𝑤′′ ≤

∑

𝑖∈𝑃 𝑤𝑖, which can be obtained from two disjoint
ubsets 𝑃 ′ ∪ 𝑃 ′′ ⊆ 𝑃 with ∑

𝑖∈𝑃 ′ 𝑤𝑖 = 𝑤′ and ∑

𝑖∈𝑃 ′′ 𝑤𝑖 = 𝑤′′. Any
uch decomposition allows a pattern reconfiguration if 𝑤′ ≤ 𝑡 − 1
nd 𝑤′′ ≤ 𝑤 − 𝑡. The computation can be done by keeping all such
ecompositions (𝑤′, 𝑤′′) as states of a dynamic program. The profit of
state is trivially given by ∑

𝑖∈𝑃 ′∪𝑃 ′′ 𝑒𝑖 for the corresponding subsets
′ and 𝑃 ′′. During the computation, items 𝑗 ∈ 𝑃 are added iteratively

o every state (𝑤′, 𝑤′′) giving rise to possible new states (𝑤′ + 𝑤𝑗 , 𝑤′′)
nd (𝑤′, 𝑤′′ +𝑤𝑗). If such a state already exists, we keep the one with
he higher profit value. Without going into details, it is easy to see that
uch an approach would require a running time of 𝑂(𝑤2𝑝), since the
umber of states is trivially bounded by 𝑤2. To minimize the economic
oss 𝓁(𝑃 , 𝑡) for a certain defect position 𝑡, one has to find a state (𝑤′, 𝑤′′)
ith maximum profit, and therefore minimum loss, such that 𝑤′ ≤ 𝑡−1
nd 𝑤′′ ≤ 𝑤 − 𝑡.

In order to successively compute the minimum economic losses
∗(𝑃 , 𝑡) for various defect positions, we determine an auxiliary array
𝚛𝚘𝚏𝚒𝚝[𝜔′, 𝜔′′] where every entry contains the maximum profit over
ll states (𝑤′, 𝑤′′) with 𝑤′ ≤ 𝜔′ and 𝑤′′ ≤ 𝜔′′ (and zero if no such
tates exist). Once this array is filled in 𝑂(𝑤2) time,3 𝚙𝚛𝚘𝚏𝚒𝚝[𝑡−1, 𝑤− 𝑡]
orresponds to 𝓁∗(𝑃 , 𝑡) for any given integer 𝑡 ∈ [1, 𝑤].

The practical performance of such an approach will suffer from the
uadratic influence of the capacity 𝑤. Thus, we will not explore this
pproach in our computational experiments.

3 This can be done e.g. by going through the array row-wise in an outer
oop. For each 𝜔′′ we keep an increasing sequence of profits over all 𝜔′.

Incrementing 𝜔′′, it suffices to compare the states for 𝜔′′ with the best profit
found for 𝜔′′ − 1.
6

S

5.2. An approach based on Subset Sum

Algorithm 1 Subset Sum-based dynamic programming for computing
𝜋(𝑃) and 𝑒𝑒𝓁(𝑃)
1: loss[𝑟′] ∶= max𝑗∈𝑃 𝑒𝑗 , ∀𝑟′ ∈ [1, 𝑤]
2: 𝜋(𝑃) ∶= 0
3: for all 𝑗 ∈ 𝑃 do
4: 𝑅𝑗 ∶= Subset Sum(𝑃 ⧵ {𝑗})
5: 𝑅𝑗 ∶= UpdateLoss(𝑅𝑗 , 𝑤𝑃

0 +𝑤𝑗 , 𝑒𝑗)
6: end for
7: if 𝑤𝑃

0 ≥ 1 then
8: 𝑅0 ∶= Subset Sum(𝑃)
9: 𝑅0 ∶= UpdateLoss(𝑅0, 𝑤𝑃

0 , 0)
10: 𝜋(𝑃) ∶=

∑

𝑟∈𝑅0 𝑓 (𝑟)
11: end if
12: 𝑒𝑒𝓁(𝑃) ∶= 1

𝑤
∑

𝑟′∈[1,𝑤] loss[𝑟′]
13: output (𝜋(𝑃), 𝑒𝑒𝓁(𝑃))

4: function UpdateLoss(𝑅,𝑤0, 𝑒)
15: 𝑅′ ∶= ∅
16: for all 𝑟 ∈ 𝑅 and 𝑟′ ∈ [𝑟 + 1, 𝑟 +𝑤0] do
17: 𝑅′ ∶= 𝑅′ ∪ {𝑟′}
18: end for
19: for all 𝑟′ ∈ 𝑅′ do
20: loss[𝑟′] ∶= min{loss[𝑟′], 𝑒}
21: end for
22: return 𝑅′

23: end function

As a second possibility we can exploit the fact that at most one item
will be discarded from 𝑃 for any defect position 𝑡 (recall Section 3.2).
Therefore, one can simply go through all 𝑝 candidates and solve the
Subset Sum problem (4) for the remaining 𝑝 − 1 items, which takes 𝑝
xecutions of an 𝑂(𝑝𝑤) time algorithm, i.e. 𝑂(𝑝2𝑤) time.4 The iteration
iscarding the item with the smallest economic value 𝑒𝑗 and permitting
solution of (4) returns 𝓁∗(𝑃 , 𝑡) for the given position 𝑡 (in order to

olve Problems 1 and 2, an additional iteration with all items must
ventually be performed).

However, noting that the usual dynamic programming algorithm for
ubset Sum determines all reachable length values 𝑟 ∈ {0, 1,… , 𝑤}, i.e.
alues 𝑟 such that there exists 𝑆 ⊆ 𝑃 with ∑

𝑖∈𝑆 𝑤𝑖 = 𝑟, we can do better
nd use the dynamic program to store information so that 𝓁∗(𝑃 , 𝑡) can
e computed in the same running time for arbitrary defect positions as
escribed in detail in Algorithm 1. Observe that, assuming the residual
iece as a dummy item, the set of reachable lengths corresponds to the
nion of the starting coordinates of the items of all the normal patterns
f 𝑃 as described in Christofides and Whitlock (1977).

Let us define by 𝑅𝑗 the set of all length values reachable after
iscarding some item 𝑗, i.e. for the item set 𝑃 ⧵ {𝑗}, and 𝑅0 the set of

reachable values for 𝑃 . These are computed by the standard dynamic
programming procedure Subset Sum(𝑃 ⧵ {𝑗}). If a position 𝑟 ∈ 𝑅𝑗 can be
reached, then we can conclude that 𝑃 ⧵{𝑗} is 𝑡-reconfigurable for every
efect position 𝑟 + 1 ≤ 𝑡 ≤ 𝑟 +𝑤𝑃

0 +𝑤𝑗 . Any such solution yields a loss
f 𝑒𝑗 . This argument could be easily extended to the case of a defect
overing more than one unit of stock.

Throughout the dynamic programming algorithm we will use an
rray 𝚕𝚘𝚜𝚜[] of length 𝑤 such that 𝚕𝚘𝚜𝚜[𝑟′], 𝑟′ = 1,… , 𝑤 contains
he current minimum loss achievable for a defect at position 𝑟′. Every
eachable position 𝑟 ∈ 𝑅𝑗 implies a series of potential updates since
𝚘𝚜𝚜[𝑟′] ≤ 𝑒𝑗 for 𝑟′ = 𝑟+1,… , 𝑟+𝑤𝑃

0 +𝑤𝑗 . These updates are performed

4 This assumes the standard dynamic programming algorithm as described
n Kellerer et al. 2004, ch. 4.1. Improved algorithms will be discussed in
ection 5.3.

Computers and Operations Research 157 (2023) 106280C. Arbib et al.

s

m
i

c
a
s
𝑅
a
𝑅
s
i
c
2
𝑂

T
f
o
𝑅
a
a

a
e
𝑂

n
v
s
𝑂
w
w
t
c
w
s

𝓁

T

l
a
t

m
n
c
i
i
t

z
r

by function UpdateLoss(𝑅𝑗 , 𝑤𝑃
0 + 𝑤𝑗 , 𝑒𝑗). For 𝑅0 the updated length

positions are returned only for the computation of the probability of
reconfigurability in line 10.

Starting with an upper bound 𝚕𝚘𝚜𝚜[𝑟′] = max𝑗∈𝑃 {𝑒𝑗} for all 𝑟′,
we consider iteratively the elimination of each item 𝑗. Therefore,
we compute all positions 𝑟 ∈ 𝑅𝑗 reachable for 𝑃 ⧵ {𝑗} and update
the resulting array entries 𝚕𝚘𝚜𝚜[𝑟′] ∶= min{𝚕𝚘𝚜𝚜[𝑟′], 𝑒𝑗} thus keeping
possible improvements gained by discarding item 𝑗. Note that the same
index 𝑟′ may be affected for different reachable positions. This update
can be done easily by one pass through the dynamic programming array
computed for Subset Sum.

Eventually, also 𝑅0 must be computed to nullify the loss of the
positions 𝑟′ for which the pattern is 𝑡-reconfigurable without removing
any item. Note that this is the case only if 𝑤𝑃

0 ≥ 1 (line 7).
Each iteration for one item 𝑗 requires 𝑂(𝑝𝑤) time which yields

an overall running time of 𝑂(𝑝2𝑤), as before. After this procedure,
we can compute 𝓁∗(𝑃 , 𝑡) for any defect position 𝑡 in constant time
by simply reporting the entry 𝚕𝚘𝚜𝚜[𝑡]. Problems 1 and 2 can also be
straightforwardly solved by reading 𝚕𝚘𝚜𝚜[].

If 𝓁∗(𝑃 , 𝑡) shall be computed only for one particular defect position
𝑡, it will be useful in practice to sort the items in increasing order of
economic values 𝑒𝑗 . Then, the computation can be stopped as soon
as the removal of an item permits a 𝑡-reconfigurable pattern, that is,
𝚕𝚘𝚜𝚜[𝑡] is updated for the first time. Clearly, this happens for the
item causing the smallest possible loss. However, this shortcut does not
improve the worst-case complexity.

5.3. An improved approach based on Subset Sum

Instead of the standard dynamic programming algorithm, one can
employ the recent algorithm by Koiliaris and Xu (2019) which solves
the subset sum problem in 𝑂̃(

√

𝑝𝑤) time, instead of 𝑂(𝑝𝑤). Here, 𝑂̃
‘‘hides’’ polylogarithmic factors. Since the algorithm in Koiliaris and
Xu (2019) also determines all reachable length values, it can be used
to improve the running time of Section 5.2 from 𝑂(𝑝2𝑤) to 𝑂̃(𝑝3∕2𝑤).

Sticking to the classical dynamic programming algorithm, we can
improve the running time of the strictly serial iteration over all items
𝑗 ∈ 𝑃 performed in Algorithm 1 as follows. For a parameter 𝑘 (to be
chosen later) we group the 𝑝 iterations into 𝑘 subsets as follows.

1. Partition the set of items in 𝑃 into 𝑘 subsets of (roughly) equal
size 𝑝∕𝑘, then run 𝑘 iterations, each of them considering the case
that the discarded item lies in the corresponding subset.

2. For the remaining 𝑝 − 𝑝∕𝑘 items, compute all reachable length
positions by dynamic programming (as above) in (𝑝− 𝑝∕𝑘) ⋅𝑤 ≈
𝑝𝑤 time. Store the resulting array of reachable positions.

3. Now consider each of the 𝑝∕𝑘 items 𝑗 in the current subset as
a candidate for discarding: For each such candidate item 𝑗, add
the remaining 𝑝∕𝑘−1 items to the stored dynamic programming
array from Step 2 to determine in (𝑝∕𝑘 − 1) ⋅ 𝑤 ≈ 𝑝∕𝑘 ⋅ 𝑤 time
the positions reachable without item 𝑗. Compute the resulting
positions 𝑅𝑗 and run UpdateLoss(𝑅𝑗 , 𝑤𝑃

0 +𝑤𝑗 , 𝑒𝑗) to update array
𝚕𝚘𝚜𝚜[] with 𝑒𝑗 in 𝑂(𝑤) time, as before.
For the next candidate 𝑗′ from the same subset, go back to the
dynamic programming array stored in Step 2 containing the
reachable positions of the other 𝑝 − 𝑝∕𝑘 items and do the same
procedure as for 𝑗.

4. Iterate this process over all 𝑘 subsets.

The running time of this algorithm consists of 𝑘 iterations in each of
which a dynamic programming array is computed in 𝑂(𝑝𝑤) time and
there are 𝑝∕𝑘 candidate items to be considered each of them requiring
𝑂(𝑝∕𝑘𝑤) time. This yields a total running time of 𝑂(𝑘𝑝𝑤 + 𝑝2∕𝑘𝑤).
Plugging in the best choice, 𝑘 =

√

𝑝, into this expression eventually
yields 𝑂(𝑝3∕2𝑤) time. Note that a similar partitioning approach was
used in Malaguti et al. (2019). This construction avoids the polylog-
arithmic factors above. One could also solve Step 2 by the algorithm
7

A

in Koiliaris and Xu (2019), but this method does not permit the iterative
insertion of items in Step 3. Without going into details, such a combined
approach would give a running time of 𝑂̃(𝑘(

√

𝑝𝑤 + 𝑝∕𝑘(𝑝∕𝑘𝑤))). This
yields 𝑂̃(𝑝5∕4𝑤) running time for a parameter 𝑘 = 𝑝3∕4.

One can push this idea of evaluating and storing partial solutions
further, and as a limit obtains the following tree-like structure of the
computation. For simplicity of description assume 𝑝 = 2𝑘. Arrange the
et of items of 𝑃 in a complete binary tree with log 𝑝 levels where every

leaf corresponds to one item. Each inner node 𝑣 at level 𝓁 is the root
of a subtree containing in its leaves a subset 𝑆(𝑣) of 2log 𝑝−𝓁 items. The

ain computation consists of the construction of the following auxiliary
nformation:

For each inner node 𝑣 we compute an array 𝑅(𝑣) of length 𝑤
ontaining all length positions reachable with items 𝑃 ⧵ 𝑆(𝑣), i.e. with
ll items except those in the subtree rooted at 𝑣. Starting with the trivial
olution for the overall root node 𝑟𝑜𝑜𝑡 (no positions are reachable,
(𝑟𝑜𝑜𝑡) = ∅), we can go top-down in the tree and compute 𝑅(𝑣) for an
rbitrary inner node, assuming that 𝑅(𝑝𝑟𝑒𝑑(𝑣)) is known. To compute
(𝑣) it suffices to consider 𝑝𝑟𝑒𝑑(𝑣) and all items 𝑆(𝑤), where 𝑤 is the

ibling node of 𝑣 (i.e. 𝑝𝑟𝑒𝑑(𝑤) = 𝑝𝑟𝑒𝑑(𝑣)). Add each of these 2log 𝑝−𝓁

tems to the set of reachable values in 𝑅(𝑝𝑟𝑒𝑑(𝑣)). The total effort to
ompute these arrays for all 2𝓁 nodes at some level 𝓁 is 2𝓁 ⋅2log 𝑝−𝓁 ⋅𝑤 =
log 𝑝𝑤 = 𝑝 ⋅𝑤. Summing up over all log 𝑝 levels gives a running time of
(𝑝 log(𝑝)𝑤) for this preprocessing step.

In the main computation step we keep a loss array 𝚕𝚘𝚜𝚜[] as before.
hen every item 𝑗 (=leaf of the tree) is considered as a candidate
or removal. For each such 𝑗, we still have to consider the possibility
f adding the sibling item of 𝑗 to all reachable length positions in
(𝑝𝑟𝑒𝑑(𝑗)). For ever resulting reachable position 𝑟 we determine again
ll implied entries 𝑟′ and (possibly) update 𝚕𝚘𝚜𝚜[𝑟′] with 𝑒𝑗 , as in Step 3
bove.

All this can be done in 𝑂(𝑤) time for one candidate 𝑗, which yields
n overall running time of 𝑂(𝑝𝑤) for the main step. As before, 𝚕𝚘𝚜𝚜[𝑟′]
quals 𝓁∗(𝑃 , 𝑟′) for any defect position 𝑟′, after a total running time of
(𝑝 log(𝑝)𝑤).

It remains to discuss the storage requirements. While the basic dy-
amic programming algorithm described above as well as the improved
ersion with subset partitioning can be easily implemented using 𝑂(𝑤)
pace for the auxiliary arrays, the tree-based approach would require
(𝑝) auxiliary arrays of length 𝑤 in a naive implementation. However,
e can generate the required arrays 𝑅(𝑣) on-demand as follows. When
e consider the first item (= leaf) as a candidate for removal, it suffices

o generate all log 𝑝 arrays on the path to 𝑟𝑜𝑜𝑡. This approach can be
ontinued during the computation for all items 𝑗, so that at any time
e do not store more than 𝑂(log 𝑝) arrays of length 𝑤, yielding a total

pace complexity of 𝑂(log(𝑝)𝑤).
These descriptions of dynamic programming algorithms to compute

∗(𝑃 , 𝑡) can be summarized in the following result:

heorem 1. Given a pattern 𝑃 , one can compute in 𝑂(min{
√

𝑝,𝑤}𝑝𝑤)
time and 𝑂(𝑤) space an array of length 𝑤 containing the minimum economic
oss 𝓁(𝑃 , 𝑡) for every defect position 𝑡 ∈ {1, 2,…, 𝑤}. Disregarding polylog-
rithmic factors, a running time of 𝑂̃(𝑝5∕4𝑤) can be reached. Alternatively,
he same result can be obtained in 𝑂(log(𝑝)𝑝𝑤) time and 𝑂(log(𝑝)𝑤) space.

Algorithm 2 implements the above tree-based dynamic program-
ing procedure by using an iterative construction instead of the more
atural recursive function, since the latter is computationally less effi-
ient. The algorithm assumes the nodes of the tree as labeled with the
ntegers 0,… , 2𝑝 − 1 going top-down over all levels and then left–right
n each level. The array 𝚝𝚛𝚎𝚎[] describes the depth-first visit: 𝚝𝚛𝚎𝚎[𝑖] is
he label of the node visited at the 𝑖th step.

Notice that the procedure visits one more leaf corresponding to a
ero length item in order to compute the set 𝑅0 of length positions
eachable by the whole set 𝑃 , and 𝑒𝑒𝓁(𝑃) accordingly (as in line 12 of

lgorithm 1).

Computers and Operations Research 157 (2023) 106280C. Arbib et al.

1
1
1
1
1

3

3

𝐼

i
t

a
o
r
r

6

l
C

s

P
l

𝑤

t

𝑝
o

P
b

𝑤

P
𝑆
t

Algorithm 2 dynamic programming for computing 𝜋(𝑃) and 𝑒𝑒𝓁(𝑃)
1: 𝓁 ∶= ⌈log2 𝑝⌉ // tree depth
2: 𝑝𝑈 ∶= 2𝓁 // tree # of leaves
3: 𝜏 ∶= 2𝑝𝑈 // tree # of nodes
4: loss[𝑟′] ∶= max𝑗∈𝑃 𝑒𝑗 , ∀𝑟′ ∈ [1, 𝑤]
5: 𝑤𝑗 ∶= 0 ∀𝑗 ∈ [𝑝 + 1, 𝑝𝑈]
6: 𝜋(𝑃) ∶= 0
7: 𝑅[0] ∶= ∅
8: for 𝑖 ∶= 1 to 𝜏 and tree[𝑖] < 𝑝𝑈 + 𝑝 do
9: 𝓁′ ∶= log2(tree[𝑖]) + 1 // tree level of the current node 𝑣
0: 𝑠 ∶= tree[𝑖] + 1 − 2𝓁′ // offset of 𝑣 on level 𝓁′

1: 𝑅[𝓁′] ∶= 𝑅[𝓁′ − 1]
2: (𝑗𝐿, 𝑗𝑈) ∶= SiblingItems(𝓁 − 𝓁′, 𝑠)
3: for 𝑗 ∶= 𝑗𝐿 to 𝑗𝑈 and 𝑤𝑗 > 0 do
4: for all 𝑟 ∈ 𝑅[𝓁′] and 𝑟 ≤ 𝑤 −𝑤𝑗 do

15: 𝑅[𝓁′] ∶= 𝑅[𝓁′] ∪ {𝑟 +𝑤𝑗}
16: end for
17: 𝑅[𝓁′] ∶= 𝑅[𝓁′] ∪ {𝑤𝑗}
18: end for
19: if tree[𝑖] ≥ 𝑝𝑈 − 1 then
20: if 𝑤𝑃

0 +𝑤𝑗 = 0 then
21: 𝑅[𝓁′] ∶= ∅
22: else
23: 𝑅[𝓁′] ∶= UpdateLoss(𝑅[𝓁′], 𝑤𝑃

0 +𝑤𝑗 , 𝑒𝑗)
24: end if
25: if 𝑤𝑗 = 0 then
26: 𝜋(𝑃) ∶=

∑

𝑟∈𝑅[𝓁′] 𝑓 (𝑟)
27: end if
28: end if
29: end for
30: 𝑒𝑒𝓁(𝑃) ∶= 1

𝑤
∑

𝑟′∈[1,𝑤] loss[𝑟′]
1: output (𝜋(𝑃), 𝑒𝑒𝓁(𝑃))

2: function SiblingItems(𝑙, 𝑠)
33: //compute indices of items in 𝑆(𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑣))
34: if 𝑠 is even then
35: return (2𝑙(𝑠 + 1), 2𝑙(𝑠 + 2) − 1)
36: else
37: return (2𝑙(𝑠 − 1), 2𝑙𝑠 − 1)
38: end if
39: end function

6. Robust CSP solution

Being the computation of EEL and ETR (Problems 3 and 4) partic-
ularly complex, we address them heuristically starting from the trivial
observation that pattern robustness normally increases with leftover.
Indeed, as a general rule and in rough terms, the robustness of a pattern
𝑃 against point-shaped faults increases with

• the pattern leftover 𝑤𝑃
0 , and

• the pattern assortment, i.e. the number of different item lengths
in 𝑃 .

Let 𝑤0 = 𝑚𝑤 −
∑

𝑖∈𝐼 𝑤𝑖 be the total leftover obtained after cutting
from 𝑚 stocks. Concerning the pattern leftover, it makes sense to

distribute 𝑤0 as evenly as possible among the patterns of the cutting
plan. See the following example:

Example 2. 𝐼 = {1, 2, 3, 4}, 𝑤 = 20, 𝑤1 = 𝑤2 = 10, 𝑤3 = 𝑤4 = 5.

There are two minimum cutting plans that allow to cut all the items
of 𝐼 : , consisting of 𝑃1 = {1, 2} and 𝑃2 = {3, 4}, and , consisting of
𝑃 = {1, 3} and 𝑃 = {2, 4} (or equivalent combinations like {1, 4} etc.).
8

3 4 i
𝑃1 has 0 leftover, but is not robust at all as 𝜋(𝑃1) = 0. 𝑃2, 𝑃3, 𝑃4 are
instead totally robust, as 𝜋(𝑃2) = 𝜋(𝑃3) = 𝜋(𝑃4) = 1. Therefore

𝑒𝑒𝓁() > 0 𝑒𝑒𝓁() = 0.

So we have two solutions that are equivalent from the viewpoint of
total leftover but not from that of potential value loss caused by a single
random fault: value loss is minimized by the solution that distributes
leftover among the stocks as fairly as possible. □

Observe however that equally distributing 𝑤0 as far as possible
among stocks may not be sufficient to maximize robustness. The fol-
lowing simple example illustrates the issue of pattern assortment, thus
introducing a combinatorial view of the notion of robust pattern:

Example 3. |𝐼| = 12, 𝑤 = 11, 𝑤1 = 𝑤2 = 5, 𝑤3 = 𝑤4 = 4, 𝑤5 = 𝑤6 =
𝑤7 = 𝑤8 = 2, 𝑤9 = 𝑤10 = 𝑤11 = 𝑤12 = 1.

It is easy to see that ∑

𝑖∈𝐼 𝑤𝑖 = 30 and 𝑚∗ = 3. Among the cutting
plans that minimize the trim loss, at least two have the total leftover
of 3 perfectly balanced among the three stocks:

: 𝑃1 = {1, 2}, 𝑃2 = {3, 4, 5}, 𝑃3 = {6, 7, 8, 9, 10, 11, 12}
: 𝑃4 = {1, 5, 6, 9}, 𝑃5 = {2, 7, 8, 10}, 𝑃6 = {3, 4, 11, 12}

The mean robustness of  is 𝜋̄() = 20
33 , smaller than 𝜋̄() = 31

33 , and
ndeed, the patterns of  have more variation in their lengths than
hose of . □

Indeed, we observe that stock leftovers are in some way subject to
trade-off: they must be sufficiently small to reduce the requirement

f stocks, but also sufficiently large to maximize the chances of pattern
ecovery. In the following, we derive a sufficient condition of pattern
econfigurability that basically depends on the assortment of its items.

.1. Assignment with bounded leftover

To derive an applicable criterion for the appropriate size of the
eftover for one stock, we will state the following sufficient condition.
onsider all the possible subsets 𝐿 (including ∅) of a set 𝑃 of items

assigned to a single stock, and rank them according to non-decreasing
𝑤(𝐿). Let 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑠 be the distinct lengths 𝑤(𝐿)
obtained in this way. To recover a defect falling within 𝑡𝑘 and 𝑡𝑘+1 one
can then choose the 𝐿 ⊆ 𝑃 such that 𝑤(𝐿) = 𝑡𝑘, provided that the
leftover 𝑤𝑃

0 = 𝑤−𝑤(𝑃) is at least 𝑡𝑘+1 − 𝑡𝑘. In that case, the items 𝑃 ⧵𝐿
can be placed in the interval [𝑡𝑘+1, 𝑤]. Hence, we can state the following
ufficient condition for 𝑃 to be reconfigurable.

roposition 6. Let 𝑃 be the pattern assigned to a given stock. If the
eftover fulfills

𝑃
0 ≥ max

0≤𝑘<𝑠
{𝑡𝑘+1 − 𝑡𝑘} =∶ 𝑤̄𝑃

0 (9)

hen 𝑃 is reconfigurable.

A difficulty of formula (9) is that the number of 𝑡𝑘 is exponential in
. However, assuming 𝑤1 ≤ 𝑤2 ≤ ⋯ ≤ 𝑤𝑝, this drawback is partially
vercome by the following simple bound:

roposition 7. Let 𝑃 be a pattern assigned to a given stock with 𝑤̄𝑃
0 given

y (9). Then

̄ 𝑃0 ≤ max{𝑤1, 𝑤𝑖 −𝑤𝑖−1 ∶ 𝑖 ∈ 𝑃 , 𝑖 > 1} =∶ 𝑤̃𝑃
0 (10)

roof. Let 𝑤(𝐿) = 𝑡𝑘, and 𝑖 ∈ 𝐿. If 𝑖 = 1, let 𝑆 = 𝐿 − {1}, otherwise
= 𝐿 − {𝑖} ∪ {𝑖 − 1}. In both cases, 𝑤(𝑆) ≤ 𝑤(𝐿), and since 𝑤(𝐿) = 𝑡𝑘,

hen 𝑤(𝑆) ≤ 𝑡𝑘−1. Thus in the former case 𝑡𝑘 − 𝑡𝑘−1 ≤ 𝑤(𝐿) −𝑤(𝑆) = 𝑤1;

n the latter, ≤ 𝑤𝑖 −𝑤𝑖−1 and hence the thesis. □

Computers and Operations Research 157 (2023) 106280C. Arbib et al.

A
w

a

c
t
s
t

c

7

m
P
o
j

i
i

w
o
r
𝑐
w

S

Combining Propositions 6 and 7, it is evident that a pattern 𝑃 is re-
configurable if its leftover fulfills 𝑤𝑃

0 ≥ 𝑤̃𝑃
0 . Imposing this condition for

every stock would guarantee a reconfigurable packing of 𝐼 . However, it
may well lead to an exaggerated number of stocks. Thus, we tone down
this requirement multiplying each bound 𝑤̃𝑃

0 by a parameter 𝛿 ∈ [0, 1].
One can then formulate an assignment-type ILP-model for the prob-

lem of cutting all the items of 𝐼 from a minimum number of stocks, with
the condition that a minimum leftover 𝛿 ⋅ 𝑤̃𝑃

0 appears in each pattern
𝑃 of a stock, so as to achieve a certain degree of pattern robustness.
Of course, only 𝛿 = 1 would guarantee robustness. However, we
experimentally observed that 𝛿 = 0.5 already guarantees solutions with
a mean pattern robustness greater than 0.95, while the mean pattern
robustness of the CSP solutions is under 0.2. A further discussion on
the influence of 𝛿 is given in Section 7.

Recall 𝑤1 ≤ ⋯ ≤ 𝑤𝑛 and assume that a sufficiently large set 𝑀 of
stocks is available. We will use the following variables:

𝑥𝑘 = 1 if stock 𝑘 ∈ 𝑀 is used, 0 else;
𝑥𝑘𝑖 = 1 if item 𝑖 ∈ 𝐼 is cut from stock 𝑘 ∈ 𝑀 , 0 else;
𝑦𝑘𝑖 = 1 if 𝑖 ∈ 𝐼 is the shortest item of stock 𝑘 ∈ 𝑀 , 0 else;
𝑦𝑖𝑗 = 1 if items 𝑖 and 𝑗, 𝑖 < 𝑗 are cut from the same stock and no item

ℎ with 𝑖 < ℎ < 𝑗 is cut from that stock, 0 else;
𝑤𝑘

0 be a non-negative real variable indicating the leftover assigned to
stock 𝑘 ∈ 𝑀 .

[RCS]𝛿 ∶ min
∑

𝑘∈𝑀
𝑥𝑘 (11)

∑

𝑘∈𝑀
𝑥𝑘𝑖 = 1 𝑖 ∈ 𝐼 (12)

∑

𝑖∈𝐼
𝑤𝑖𝑥

𝑘
𝑖 +𝑤𝑘

0 = 𝑤𝑥𝑘 𝑘 ∈ 𝑀 (13)

𝑤𝑘
0 + 𝛿(𝑤𝑖 −𝑤𝑗)(𝑦𝑖𝑗 + 𝑥𝑘𝑖 − 1) ≥ 0 𝑖, 𝑗 ∈ 𝐼 ∶ 𝑖 < 𝑗; 𝑘 ∈ 𝑀 (14)

− 𝑦𝑖𝑗 + 𝑥𝑘𝑖 + 𝑥𝑘𝑗 −
∑

𝑖<ℎ<𝑗
𝑥𝑘ℎ ≤ 1 𝑖, 𝑗 ∈ 𝐼 ∶ 𝑖 < 𝑗; 𝑘 ∈ 𝑀 (15)

𝑤𝑘
0 − 𝛿𝑤𝑖(𝑦𝑘𝑖 + 𝑥𝑘𝑖 − 1) ≥ 0 𝑖 ∈ 𝐼 ; 𝑘 ∈ 𝑀 (16)

− 𝑦𝑘𝑖 + 𝑥𝑘𝑖 −
∑

ℎ<𝑖
𝑥𝑘ℎ ≤ 0 𝑖 ∈ 𝐼 ; 𝑘 ∈ 𝑀 (17)

𝑥𝑘, 𝑥𝑘𝑖 , 𝑦𝑖𝑗 , 𝑦
𝑘
𝑖 ∈ {0, 1}, 𝑤𝑘

0 ∈ Q+ 𝑖, 𝑗 ∈ 𝐼 ; 𝑘 ∈ 𝑀

Constraints (12) ensure that every item of 𝐼 is cut from exactly one
stock. Constraints (13) state (𝑖) that a stock is used whenever is assigned
at least one item, and (𝑖𝑖) that every stock used has a non-negative
leftover 𝑤𝑘

0 .
Constraints (14) quantify the convenient leftover via the bound 𝑤̃𝑃

0
given by Proposition 7 scaled with 𝛿 ∈ [0, 1]. Notice that [RCS]0 is the
classical assignment formulation of the CSP.

The definition of 𝑦𝑖𝑗 is implemented by constraints (15) that enforce
𝑦𝑖𝑗 = 1 if items 𝑖 and 𝑗, but no item in between, are cut from the
same stock. Constraints (16) and (17) implement the same conditions
of (14) and (15), to cope with the case in which 𝑤𝑘

0 is determined
by the smallest item cut from stock 𝑘. Notice that item sizes 𝑤𝑖 >
𝑤∕(1 + 𝛿) make (16) infeasible. However, items with such sizes are
always cut individually from distinct stocks in any solution compliant
with Proposition 7, therefore they can be preprocessed and removed
from 𝐼 .

A solution to model [RCS]1 consists of guaranteed robust patterns
only. This level of robustness is found at the expense of additional
stocks compared to the minimum 𝑚∗ of an optimal cutting plan. Notice
that Proposition 7 states a condition of optimal robustness which is
only local to the pattern, and only sufficient (and presumably too much
restrictive). Local robustness in general does not guarantee a cutting
plan to be globally robust, that is to minimize, e.g., the total expected
economic loss. In fact, large stock leftovers increase on one hand
the robustness of individual patterns, but on the other hand leftover
minimization helps reduce the expected amount of discarded items,
since the largest the number of stocks in a plan (and hence the largest
9

the total leftover), the higher the chances that some stock will be faulty. t
6.2. Equal distribution of leftovers

A different approach striving for robustness aims at an equal distri-
bution of leftovers over all stocks. That means: given a cutting plan
using a fixed set 𝑀 of 𝑚 ≥ 𝑚∗ stocks, we would like to distribute
the items ‘‘as equally as possible’’ among the 𝑚 stocks. Such a so-
lution, which improves the discussed trade-off between global and
local robustness, can be obtained heuristically by solving a relative
of a Multiprocessor Scheduling problem, namely minimizing the total
deviation from the leftover averaged over the number 𝑚 = |𝑀| of
stocks.

[MS]𝑚 ∶ min
∑

𝑘∈𝑀

|

|

|

|

|

𝑤𝑘
0 −

𝑚𝑤 −
∑

𝑖∈𝐼 𝑤𝑖

𝑚

|

|

|

|

|

(18)

∑

𝑘∈𝑀
𝑥𝑘𝑖 = 1 𝑖 ∈ 𝐼 (19)

∑

𝑖∈𝐼
𝑤𝑖𝑥

𝑘
𝑖 +𝑤𝑘

0 = 𝑤 𝑘 ∈ 𝑀 (20)

𝑥𝑘𝑖 ∈ {0, 1}, 𝑤𝑘
0 ∈ Q+ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝑀

bsolute values in the objective function can be linearized in a standard
ay. However, as previously observed, the equalization of 𝑤0 among

stocks may not be sufficient to maximize robustness, see Example 3.
In fact, the objective function (18) only surrogates the maximization

of plan robustness which can be evaluated only ex post by computing
the EEL and the mean pattern robustness of the solutions provided by
[MS]

|𝑀|

. Other loss equalization strategies, such as

max min
𝑘∈𝑀

𝑤𝑘
0 (21)

nd

min(max
𝑘∈𝑀

𝑤𝑘
0 − min

𝑘∈𝑀
𝑤𝑘

0), (22)

an be also considered; a preliminary computational experience showed
hat (18), (21) and (22) do not dominate each other in terms of both
olution quality and computational costs, but (18) turned out the best
rade-off.

Numerical experiments in Section 7 show the gain in robustness one
an get with the above procedure.

. A computational experience

Numerical tests were carried out to evaluate the performance of
odels [RCS]𝛿 (see Section 6.1) and [MS]

|𝑀|

(see Section 6.2) for
roblems 3 and 4 in terms of both total EEL reduction and improvement
f ETR and mean pattern robustness with respect to a CSP solution that
ust minimizes the number of stocks used.

We assumed stocks prone to a defect with certainty, i.e., with
dentical probabilities 𝜌 = 1, and defect position 𝑡 uniformly distributed
n the stock length, i.e., 𝑓 (𝑡) = 1

𝑤 .
Pattern robustness 𝜋(𝑃) is computed by formula (5) where 𝜒(𝑃 , 𝑡)

is determined by the dynamic program implemented with Algorithm 2.
The expected economic loss of a single pattern is computed by formula
(6), where we assume item economic values to be equal to item lengths,
i.e. 𝑒 = 1. Summarizing, with the above assumptions formula (6) is
rendered

𝑒𝑒𝓁(𝑃) = 1
𝑤

𝑤
∑

𝑡=1
𝓁∗(𝑃 , 𝑡)

here we recall that 𝓁∗(𝑃 , 𝑡) is the minimum economic loss if a defect
ccupies position 𝑡 in pattern 𝑃 . Expected economic loss 𝑒𝑒𝓁(⋅) and total
evenue 𝑒𝑡𝑟(⋅) of a solution are computed according to (2) and (3) with
= 𝑤. Since economic value and stock cost are identical to length, 𝑒𝑡𝑟(⋅)
ill always be negative.

All integer programs derived from the models [RCS]𝛿 and [MS]
|𝑀|

of
ection 6 were solved by GuRoBi 9.1.2 with default setting and running

ime limited to 1800 seconds. Algorithm 2 was implemented in C++ and

Computers and Operations Research 157 (2023) 106280C. Arbib et al.
Table 1
Features of instance sets from Scholl et al. (1997).
Group Set 𝑛 𝑤 𝑤𝑖

Group 1 N1C1W1 50 100 ∈ [1, 𝑤]
N2C1W1 100 100 ∈ [1, 𝑤]

Group 2

N1W4B1 50 1000 ∈ [0.8 𝑤
9
, 1.2 𝑤

9
]

N1W4B2 50 1000 ∈ [0.5 𝑤
9
, 1.5 𝑤

9
]

N1W4B3 50 1000 ∈ [0.1 𝑤
9
, 1.9 𝑤

9
]

N2W4B1 100 1000 ∈ [0.8 𝑤
9
, 1.2 𝑤

9
]

N2W4B2 100 1000 ∈ [0.5 𝑤
9
, 1.5 𝑤

9
]

N2W4B3 100 1000 ∈ [0.1 𝑤
9
, 1.9 𝑤

9
]

compiled using Microsoft 𝑐𝑙 ver. 19.14 with option ∕𝑂2. Tests were run
on a virtual machine QUEMU CPU 1.5.3 (8 cores) at 2.30 MHz with
8 GB of RAM.

We tested 100 instances taken from Scholl et al. (1997) and orga-
nized in two groups with different features: Group 1 (Group 2) consists
of two sets of twenty (of six sets of ten) instances each. Details are given
in Table 1: the columns report, for each set, the number 𝑛 of items, the
stock length 𝑤 and the interval from which the integer item sizes were
randomly generated by Scholl et al. (1997). Sets are constructed so that
in Group 1 (Group 2) the expected average number of items per stock
is not larger than 3 (than 9).

The general approach of our solution method works as follows:
Determine lower and an upper bounds 𝑚𝐿 and 𝑚𝑈 for the number of
stocks which maximizes the ETR. For each value 𝑚 = 𝑚𝐿,… , 𝑚𝑈 , solve
[MS]𝑚 and compute EEL and ETR of the packing obtained. Finally,
select the solution with the largest ETR among the 𝑚𝑈 − 𝑚𝐿 + 1
candidates.

To implement this approach the experiments followed the baseline
described below:

1. For each instance, we compute an upper bound 𝑚𝑈 by solving
model [RCS]1. The lower bound 𝑚𝐿 is straightforwardly given
by the number 𝑚∗ of patterns of an optimal CSP solution. Such a
solution can be computed by [RCS]0 or, more efficiently, by our
adaptation of the Sequential Value Correction (SVC) algorithm
described in Arbib et al. (2021) (that in fact happens to certify
optimality for all the instances of the data set). In general,
the SVC scheme was successfully employed in one-dimensional
cutting stock problems (Belov and Scheithauer, 2007) and strip
packing (Belov et al., 2008). The basic strategy is quite simple:
given a pseudo-price 𝜆𝑖 for each item 𝑖 ∈ 𝐼 , stocks are cut
sequentially, each one for obtaining the items not yet produced
that maximize the sum of pseudo-prices. After a solution has
been computed, pseudo-prices are conveniently updated and the
process iterated until some halting criterion is fulfilled.

2. We solve model [MS]𝑚 for all 𝑚 ∈ {𝑚𝐿,… , 𝑚𝑈 − 1}. For each
solution (𝑃1,… , 𝑃𝑚) so obtained we use Algorithm 2 to solve
Problems 1 and 2 pattern by pattern. In this way we compute
the mean pattern robustness 𝜋̄(𝑃1,… , 𝑃𝑚) =

1
𝑚
∑

𝑘∈𝑀 𝜋(𝑃𝑘), the
expected economic loss 𝑒𝑒𝓁(𝑃1,… , 𝑃𝑚) and the expected total
revenue 𝑒𝑡𝑟(𝑃1,… , 𝑃𝑚).
Indeed, instead of solving [MS]𝑚𝑈

, we just take the solution
obtained from [RCS]1 in Step 1 which is reconfigurable by
construction.

In the following, we report in Table 2 detailed results for computing
the lower bound 𝑚𝐿 and solving the corresponding problem [MS]𝑚𝐿
(rows report mean values taken in each class of instances). Table 2
shows:

• The number 𝑚𝐿 of stocks used, together with the initial mean
pattern robustness 𝜋̄𝐶𝑆 and expected total revenue 𝑒𝑡𝑟𝐶𝑆 of the
optimal CSP solutions computed by SVC (columns 2 to 4);
10
• The final mean pattern robustness 𝜋̄𝑀𝑆 and expected total rev-
enue 𝑒𝑡𝑟𝑀𝑆 of the solutions obtained by [MS]𝑚𝐿

(columns 6 and
7);

• The running time taken by the SVC algorithm to solve CSPs
(column 5), and by GuRoBi to solve [MS]𝑚𝐿

(column 8). For the
dynamic program to compute the required values of 𝜋 and 𝑒𝑡𝑟 we
report the total running time (in milliseconds) taken by the 𝑚𝐿
executions of Algorithm 2 (column 11).

• Columns 9 and 10 report the improvement in terms of pattern ro-
bustness and expected total revenue of [MS]𝑚𝐿

versus the standard
stock cutting solutions, computed as:

𝐺𝜋̄ =
𝜋̄𝑀𝑆
𝜋̄𝐶𝑆

𝐺𝑒𝑡𝑟 = 100 ⋅
𝑒𝑡𝑟𝐶𝑆 − 𝑒𝑡𝑟𝑀𝑆

𝑒𝑡𝑟𝐶𝑆

Table 3 provides analogous information for the other extreme point,
namely the solution for 𝑚𝑈 derived by model [RCS]1. Solving this
model turned out to be much harder than [MS]

|𝑀|

, with a computation
time exceeding the time limit of 1800 s for the majority of instances.
Therefore, instead of the CPU time, we report the mean optimality gap
𝐺𝑜𝑝𝑡 of the solutions taken over all instances (column 5) and the number
#limit of instances (out of 20 resp. 10) where GuRoBi reached the time
limit (column 6). Relative improvements in columns 7 and 8 refer to
the values of [RCS]1 compared to the CSP.

Between these two extreme points we noted that the relevant pa-
rameters behave just as they can be expected to do. The mean pattern
robustness 𝜋̄𝑀𝑆 increases, while the expected economic loss 𝑒𝑒𝓁(⋅)
decreases with increasing stock number. The behavior of the ETR is
less predictable and will be discussed later. As an intermediate point of
reference we considered [RCS]0.5 and report in Table 4 values analogous
to Table 3. For every instance [MS]𝑚 was run for the number of stocks 𝑚
returned by [RCS]0.5. It can be seen that even if the sufficient condition
for reconfigurability (14) is reduced considerably by a factor 𝛿 = 0.5,
the mean pattern robustness 𝜋̄𝑅𝐶𝑆 already exceeds 0.95 for Group 2
instances while it ranged in [0.1, 0.2] for 𝛿 = 0. For Group 1 instances,
the increase of 𝜋̄𝑅𝐶𝑆 is less impressive, but still quite near to the best
values reached for 𝛿 = 1 (note that 𝜋 = 1 cannot be reached for
instances with very large items). It is interesting to note that [MS]𝑚
further improves the values of 𝜋̄𝑅𝐶𝑆 and 𝑒𝑡𝑟𝑅𝐶𝑆 although 𝜋̄𝑅𝐶𝑆 should
be maximal by construction. This can be explained by the effect of
𝛿 = 0.5.

Let us now comment in more detail the results obtained. First of
all, we point out that the ETR is always negative because, not referring
to a specific process – features can in fact vary a lot depending on
application –, we consider the case of a process with no value-added
(that is, item values correspond to item lengths) and one defect per
stock (𝜌 = 1). This scenario does not correspond directly to any
practical case but can be used as benchmark as we will see later.
What is here relevant, instead, is to measure the ETR improvement
one can obtain with the proposed approach. Instances of Group 1 are
quite different from those of Group 2: unlike the latter, they consist of
highly heterogeneous items, often longer than 𝑤∕2, see Table 1. Such
a difference has, in the first place, an impact on the optimal solutions
of the CSP, both in the number of stocks used (on average, 39.6 for
Group 1 vs. 8.86 for Group 2) and in the ETR (on average, −22.63
for Group 1 vs. −1.15 for Group 2). Similar gaps are also observed in
the solutions of [MS]𝑚𝐿

and [RCS]1, see Columns 𝑒𝑡𝑟𝑀𝑆 resp. 𝑒𝑡𝑟𝑅𝐶𝑆 in
Table 2 resp. 3. The ranges [𝑚𝐿, 𝑚𝑈] are very different as well: quite
large in Group 1 (11.93 stocks on average), they reduce to very few
stocks (1.12 on average) in Group 2.

Let us now focus on Table 2. Columns 𝐺𝜋̄ and 𝐺𝑒𝑡𝑟 show the
effectiveness of the [MS]𝑚𝐿

model in providing better solutions in terms
of both robustness and ETR using the same number of stocks. Again,
however, the difference of performance between Group 1 and 2 is
remarkable. In fact, though CSP solutions have roughly similar values
of 𝜋̄ (on average, 0.12 in Group 1 and 0.14 in Group 2), the mean

pattern robustness of [MS]𝑚𝐿

solutions increases by 1.6 times in Group

Computers and Operations Research 157 (2023) 106280C. Arbib et al.

o

p

Table 2
Results for 𝛿 = 0.0.
Set SVC [MS]𝑚𝐿

DP

𝑚𝐿 𝜋̄𝐶𝑆 𝑒𝑡𝑟𝐶𝑆 𝑇 𝜋̄𝑀𝑆 𝑒𝑡𝑟𝑀𝑆 𝑇 𝐺𝜋̄ 𝐺𝑒𝑡𝑟 𝑇
(sec) (sec) (%) (msec)

N1C1W1 27.25 0.14 −15.73 0.052 0.22 −15.36 5.21 1.54 2.33 1.24
N2C1W1 51.95 0.09 −29.52 0.119 0.14 −29.12 5.44 1.66 1.30 2.50

N1W4B1 6.00 0.20 −0.98 0.013 0.98 −0.52 98.20 5.01 47.01 4.36
N1W4B2 6.00 0.18 −0.84 0.009 0.92 −0.50 280.52 5.31 43.29 5.82
N1W4B3 6.73 0.16 −1.03 0.007 0.98 −0.59 6.53 6.26 43.54 6.36
N2W4B1 11.60 0.13 −1.51 0.030 0.79 −0.77 86.99 6.33 48.78 7.52
N2W4B2 11.50 0.10 −1.32 0.006 0.90 −0.56 62.16 9.12 59.39 10.28
N2W4B3 11.33 0.09 −1.20 0.011 0.84 −0.44 48.10 9.62 64.81 12.91
Table 3
Results for 𝛿 = 1.0.
Set [RCS]1 DP

𝑚𝑈 𝜋̄𝑅𝐶𝑆 𝑒𝑡𝑟𝑅𝐶𝑆 𝐺𝑜𝑝𝑡 (%) #limit 𝐺𝜋̄ 𝐺𝑒𝑡𝑟 (%) 𝑇 (msec.)

N1C1W1 34.25 0.62 −19.84 4.40 15 5.63 −27.45 0.74
N2C1W1 68.80 0.65 −39.40 9.18 20 9.64 −34.78 1.38

N1W4B1 6.80 1.00 −1.31 11.43 8 5.13 −35.73 2.37
N1W4B2 6.50 1.00 −0.97 4.29 3 5.84 −35.14 3.23
N1W4B3 7.55 1.00 −1.39 8.33 6 6.41 −50.03 4.79
N2W4B1 12.90 1.00 −1.84 7.76 10 8.69 −31.79 5.44
N2W4B2 12.70 1.00 −1.68 9.38 10 10.18 −33.27 6.97
N2W4B3 13.44 1.00 −2.43 14.72 10 11.49 −116.88 8.98
Table 4
Results for 𝛿 = 0.5.
Set [RCS]0.5 [MS]𝑚

𝑚 𝜋̄𝑅𝐶𝑆 𝑒𝑡𝑟𝑅𝐶𝑆 𝐺𝑜𝑝𝑡 #limit 𝜋̄𝑀𝑆 𝑒𝑡𝑟𝑀𝑆 𝑇 𝐺𝜋̄ 𝐺𝑒𝑡𝑟
(%) (sec.) (%)

N1C1W1 31.60 0.54 −17.66 3.06 17 0.56 −17.53 4.27 4.85 −12.81
N2C1W1 64.90 0.59 −36.28 14.36 20 0.61 −35.92 51.69 8.84 −24.39

N1W4B1 6.00 0.97 −0.52 0.00 0 0.97 −0.52 3.80 4.97 46.62
N1W4B2 6.20 0.97 −0.69 0.00 0 0.99 −0.67 7.51 5.62 4.55
N1W4B3 6.91 0.95 −0.79 2.60 2 0.99 −0.77 9.91 6.10 9.67
N2W4B1 12.00 0.95 −1.00 0.83 3 0.95 −1.00 58.03 8.30 26.19
N2W4B2 12.00 0.96 −1.03 4.10 6 0.99 −0.99 81.65 9.78 14.13
N2W4B3 12.11 0.97 −1.15 4.49 8 1.00 −1.10 84.33 11.09 −6.05
D
s

1 (𝜋̄𝑀𝑆 = 0.18 on average) and by 6.94 times in Group 2 (𝜋̄𝑀𝑆 = 0.90
n average), meaning that almost all patterns are reconfigurable.

The low robustness of Group 1 instances mainly depends on the
resence of very large sizes (those with 𝑤𝑖 > 𝑤∕2) which make the

pattern certainly not 𝑡-reconfigurable for some positions 𝑡 (preventing,
de facto, the realization of reconfigurable patterns). The improvement
of 𝜋̄ obtained by model [MS] implies a corresponding improvement of
the ETR, by 1.82% in Group 1 (increasing from −22.63 of the stock
cutting solutions to −22.54 of the [MS]𝑚𝐿

solutions) and by 51.13% in
Group 2 (increasing from −1.15 to −0.56). To conclude with Table 2,
the relative homogeneity of item sizes in Group 2 has also an impact
on the CPU time required to solve [MS]𝑚𝐿

, that is on average some 18
times that spent for solving the problems of Group 1 (see column 8).

Let us now comment on Table 3. The maximum 𝜋̄ obtained by
[RCS]1 is, on average, 0.63 in Group 1 and 1.00 in Group 2 (see col 3).
The instances of Group 1 do not reach full pattern reconfiguration due
the presence of sizes > 𝑤∕2. Furthermore, the impact of the restricted
number 𝑚𝐿 of stocks is much more relevant in Group 1 than in Group
2: indeed, the 𝜋̄ of the former is only 0.286 the maximum computed
via [RCS]1, whereas the 𝜋̄ of the latter is already 0.90 the maximum,
being almost all patterns of Group 2 solutions already reconfigurable
using [MS]𝑚𝐿

.
Although the solutions of [RCS]1 exhibit the largest pattern-by-

pattern robustness, they are uneconomical under the item values 𝑒𝑖
and defect probability 𝜌 adopted in our experiments. In particular,
compared to that obtained with |𝑀| = 𝑚𝐿 stocks, the 𝑒𝑡𝑟 worsens
11

on average by 31.12% in Group 1 and by 50.47% in Group 2. In b
fact, the composition of the total loss (see Fig. 3) shows that most
pattern robustness is achieved by increasing the leftover: on average,
the proportion of leftover and EEL is 28.86% vs. 71.14% in solutions
with 𝛿 = 0 and 79.84% vs. 20.16% in solutions with 𝛿 = 1 (maximally
robust patterns). Again, the frequency of very large sizes in Group 1
causes the proportion to be 8.99% vs. 91.01% for 𝛿 = 0 and 47.13% vs.
52.87% for 𝛿 = 1, whereas the EEL of Group 2 is much reduced with
𝛿 = 0 (the proportion is 41.93% vs. 58.07%), and equals zero for 𝛿 = 1.

Though not convenient in the benchmark scenario analyzed (item
values 𝑒𝑖 = 𝑤𝑖, stock defectiveness probability 𝜌 = 1), the opportunity
of improving the ETR by using more stocks than 𝑚𝐿 is worth being
considered in a general setting. For example, Fig. 4 reports the ETR
obtained for 𝑒𝑖 = 2.5𝑤𝑖 and 𝜌 = 0.8 from the 40 Group 1 instances,
plotted as a function of the number of stocks used. One can observe
the expected concave behavior of this function:

• If 𝑚 is small, all the stocks are almost completely used, hence
the probability that the associated patterns can be reconfigured
is small: although raw material cost is minimized, revenue is
sensibly reduced.

• If 𝑚 is large, an increased slack allows to arrange items so that re-
configuration is more likely: expected economic loss is so reduced,
but this comes at the expense of more raw material.

epending on the ratio between economic value of items and cost of
tocks, the optimal number of stocks can be determined as a trade-off

etween these two extreme cases.

Computers and Operations Research 157 (2023) 106280C. Arbib et al.
Fig. 3. Total loss for 𝛿 = 0.0 and 𝛿 = 1.0.
Fig. 4. 𝑒𝑡𝑟 for different numbers of stocks (Group 1 instances with item values 𝑒𝑖 = 2.5𝑤𝑖 and 𝜌 = 0.8).
A final remark on the evaluation of 𝜋(𝑃) and EEL. Column 11
of Table 2 and column 9 of Table 3 report the total CPU time (in
milliseconds) for computing the EEL and the robustness 𝜋(𝑃) of all
the patterns of a solution (averaged on the number of instances per
group). These computations were done by the dynamic programming
Algorithm 2. As we elaborated in detail in Section 5.3, this tree-
based algorithm should improve upon the standard version described
in Algorithm 1.
12
Indeed, for the case of 𝛿 = 0.0, the overall sum of computation times
spent for Algorithm 1 exceeded the times for Algorithm 2 by a factor
of 1.94. In this case, a total of 2111 cutting patterns were evaluated
twice (for SVC and [MS]). For the case of 𝛿 = 1.0, this factor goes
down to 1.56 for a total of 2654 pattern computations. It seems that,
in the latter case, a smaller number of items per pattern reduces the
advantage of the more sophisticated Algorithm 2. As a whole, dynamic
programming was used to evaluate 6876 patterns in a total CPU time of
897 ms (Algorithm 2) and in 1602 ms (Algorithm 1), i.e. an increase by

Computers and Operations Research 157 (2023) 106280C. Arbib et al.

p

a factor of ≈ 1.78. However, it has to be said that most patterns contain
only a fairly small number of items, and thus the computation times
are very short and therefore sensitive to programming style.

8. Conclusions and future research

We addressed the problem of computing robust cutting patterns in
the setting of one-dimensional stock cutting where stock pieces may be
affected by a defect that makes unusable a unit length of material. The
robustness of a pattern, (i.e., a set of items assigned to a single stock) is
defined as the probability that all its items can be cut so as to avoid the
defective unit, which is distributed arbitrarily or uniformly at random
along the length of the stock.

For a given pattern, we considered the occurrence of a defect at
some integer position 𝑡 and determined algorithms for deciding if the
attern is 𝑡-reconfigurable, i.e. all items can be obtained avoiding

position 𝑡, or, if this is not the case, for finding the most advantageous
subset of items that can still be cut from the stock. Iterating over all
possible defect positions, these algorithms can be used to determine
the expected economic loss of the pattern. The latter computation can
be done in one run of a dynamic programming approach for which we
derived several algorithmic improvements.

Moving from one pattern to the general cutting stock problem
(CSP), the trade-off between number of stocks (raw material) used and
the expected loss incurred gives rise to a variant of CSP, where the
total expected revenue is maximized. Using more stocks with lower
utilization makes the patterns of each stock more robust and reduces
expected economic loss, but incurs higher material cost. We presented
two different ILP-models for resolving this trade-off. Finally, we set
up numerical tests to check the validity of the proposed methods and
compare the efficacy of different solution approaches.

The computational effort required for the problems here considered
leaves room for improvements of the solution methodologies in the
future. Since our ILP-models are built upon rather straightforward
models for the standard stock cutting problem, we could proceed with
a column generation approach, which is know to be highly effec-
tive for stock cutting. Moreover, investigating possible approximation
algorithms would be an interesting perspective.

From a more general perspective, several research directions stem
from the present work. First, we just regarded as rare the event of
more than one fault in a stock, so a natural extension would be one
where such an assumption is relaxed. Secondly, our model assumes
point-shaped faults, whereas this might not be the case in relevant
industrial applications: Some of our results easily extend to faults
of larger size, as long as it is known; but treating the fault size as
a random variable poses new challenges. Third, we just considered
one-dimensional cutting processes, thus leaving important application
settings in two dimensions uncovered. In fourth place, we limited our
analysis to a recourse strategy which does not reassign items to stocks
but just modifies the item sequence in each particular faulty stock.

In fact, phase 3 of the timeline described in the introduction assumes
that the pre-computed sequence of patterns cannot be changed online.
Indeed, for several reasons, such a setting is quite common in real
applications. On one hand, if items must be collected in orders, and
orders have due dates, efficient approaches combine the minimization
of material usage with the minimization of some scheduling perfor-
mance indicators, e.g., lateness, Arbib et al. (2021), Arbib and Marinelli
(2017, 2014), Marinelli and Pizzuti (2018), whose values depend on
the sequence of cutting patterns. Therefore any ex post adjustment
of an optimal sequence could affect the quality of the solutions. On
the other hand, specific features of cutting machines (e.g., a limited
availability of out-buffers) could restrict feasible sequences of cutting
patterns (Arbib et al., 2016, 2012) and therefore changing the initial
sequence could lead to infeasible solutions. However, different and
possibly more elaborated strategies can be considered, also depending
13

on the application. Generally speaking, it would also be interesting
to consider in future research a scenario where the patterns of a CSP
solution are indeed computed in advance, but are only sequenced after
all stocks are inspected and defects detected. In that scenario, patterns
could be matched to (defective) stocks in the best possible way, still
rearranging the items assigned to each defective stock in order to
minimize economic loss.

CRediT authorship contribution statement

Claudio Arbib: Conceptualization, Methodology, Software, Valida-
tion, Writing – review & editing. Fabrizio Marinelli: Conceptualiza-
tion, Methodology, Software, Validation, Writing – review & editing.
Ulrich Pferschy: Conceptualization, Methodology, Software, Valida-
tion, Writing – review & editing. Fatemeh K. Ranjbar: Software,
Validation.

Data availability

Data will be made available on request

Acknowledgments

We gratefully acknowledge Stefan Lendl for useful discussions on
this topic. Ulrich Pferschy acknowledges support by the field of ex-
cellence ‘‘COLIBRI’’ of the University of Graz. Fatemeh K. Ranjbar
was funded by Italian Ministry of Education, PON 2014–2020, CCI
2014IT16M2OP005. We are also very grateful to the anonymous ref-
erees for insightful comments that helped us to significantly improve
the presentation of this work.

References

Aboudi, R., Barcia, P., 1998. Determining cutting stock patterns when defects are
present. Ann. Oper. Res. 82, 343–354.

Afsharian, M., Niknejad, A., Wäscher, G., 2014. A heuristic, dynamic programming-
based approach for a two-dimensional cutting problem with defects. OR Spectrum
36 (4), 971–999.

Alem, D.J., Morabito, R., 2012. Production planning in furniture settings via robust
optimization. Comput. Oper. Res. 39, 139–150.

Alem, D.J., Munari, P.A., Arenales, M.N., Ferreira, P.A.V., 2010. On the cutting stock
problem under stochastic demand. Ann. Oper. Res. 179, 169–186.

Alves, C., de Carvalho, J.M.V., 2008. A stabilized branch-and-price-and-cut algorithm
for the multiple length cutting stock problem. Comput. Oper. Res. 35 (4),
1315–1328.

Arbib, C., Marinelli, F., 2014. On cutting stock with due dates. Omega 46, 11–20.
Arbib, C., Marinelli, F., 2017. Maximum lateness minimization in one-dimensional bin

packing. Omega 68, 76–84.
Arbib, C., Marinelli, F., Pezzella, F., 2012. An LP-based tabu search for batch scheduling

in a cutting process with finite buffers. Int. J. Prod. Econ. 2 (136), 287–296.
Arbib, C., Marinelli, F., Pınar, M.Ç., Pizzuti, A., 2022a. Assortment and cut of defective

stocks by bilevel programming. In: Proc. of the 11th Int. Conf. on Operations
Research and Enterprise Systems. pp. 294–301.

Arbib, C., Marinelli, F., Pınar, M.Ç., Pizzuti, A., 2022b. Robust stock assortment
and cutting under defects in automotive glass production. Prod. Oper. Manage.
http://dx.doi.org/10.1111/poms.13812.

Arbib, C., Marinelli, F., Pizzuti, A., 2021. Number of bins and maximum lateness
minimization in two-dimensional bin packing. European J. Oper. Res. 291 (1),
101–113.

Arbib, C., Marinelli, F., Ventura, P., 2016. One-dimensional cutting stock with a
limited number of open stacks: bounds and solutions from a new integer linear
programming model. Int. Trans. Oper. Res. 1–2 (23), 47–63.

Belov, G., Scheithauer, G., 2007. Setup and open-stack minimization in one-dimensional
stock cutting. INFORMS J. Comput. 19 (1), 27–35.

Belov, G., Scheithauer, G., Mukhacheva, E.A., 2008. One-dimensional heuristics adapted
for two-dimensional rectangular strip packing. J. Oper. Res. Soc. 59 (6), 823–832.

Beraldi, P., Bruni, M.E., Conforti, D., 2009. The stochastic trim-loss problem. European
J. Oper. Res. 197 (1), 42–49.

Carnieri, C., Mendoza, G.A., Luppold, W.G., 1993. Optimal cutting of dimension parts
from lumber with a defect: A heuristic solution procedure. Forest Prod. J. 43 (9),
66–72.

Cherri, A.C., Cherri, L.H., Oliveria, B.B., Oliveria, J.F., Carravilla, M.A., 2023. A stochas-
tic programming approach to the cutting stock problem with usable leftovers.

European J. Oper. Res. 308 (1), 38–53.

http://refhub.elsevier.com/S0305-0548(23)00144-2/sb1
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb1
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb1
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb2
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb2
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb2
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb2
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb2
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb3
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb3
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb3
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb4
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb4
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb4
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb5
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb5
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb5
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb5
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb5
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb6
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb7
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb7
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb7
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb8
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb8
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb8
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb9
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb9
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb9
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb9
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb9
http://dx.doi.org/10.1111/poms.13812
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb11
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb11
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb11
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb11
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb11
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb12
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb12
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb12
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb12
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb12
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb13
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb13
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb13
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb14
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb14
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb14
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb15
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb15
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb15
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb16
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb16
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb16
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb16
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb16
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb17
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb17
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb17
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb17
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb17

Computers and Operations Research 157 (2023) 106280C. Arbib et al.
Christofides, N., Whitlock, C., 1977. An algorithm for two-dimensional cutting
problems. Oper. Res. 25 (1), 30–44.

Dell’Amico, M., Delorme, M., Iori, M., Martello, S., 2019. Mathematical models and
decomposition methods for the multiple knapsack problem. European J. Oper. Res.
274 (3), 886–899.

Delorme, M., Iori, M., Martello, S., 2016. Bin packing and cutting stock problems:
Mathematical models and exact algorithms. European J. Oper. Res. 255 (1), 1–20.

Durak, B., Tüzün, D.A., 2017. Dynamic programming and mixed integer programming
based algorithms for the online glass cutting problem with defects and production
targets. Int. J. Prod. Res. 55 (24), 7398–7411.

Gaivoronski, A.A., Lisser, A., Lopez, R., Xu, H., 2011. Knapsack problem with
probability constraints. J. Global Optim. 49, 397–413.

Garey, M., Johnson, D., 1979. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W.H. Freeman.

Ghodsi, R., Sassani, F., 2005. Real-time optimum sequencing of wood cutting process.
Int. J. Prod. Res. 43 (6), 1127–1141.

Hahn, S.G., 1968. On the optimal cutting of defective sheets. Oper. Res. 16 (6),
1100–1114.

Hwang, J.Y., Kuo, W., Ha, C., 2011. Modeling of integrated circuit yield using a spatial
nonhomogeneous Poisson process. IEEE Trans. Semicond. Manuf. 24 (3), 377–384.

Ide, J., Tiedemann, M., Westphal, S., Haiduk, F., 2015. An application of deterministic
and robust optimization in the wood cutting industry. 4OR 13, 35–57.

Kellerer, H., Pferschy, U., Pisinger, D., 2004. Knapsack Problems. Springer.
Koiliaris, K., Xu, C., 2019. Faster pseudopolynomial time algorithms for subset sum.

ACM Trans. Algorithms 15 (3), 1–20, Article No. 40.
Krichagina, E.V., Rubio, R., Taksar, M.I., Wein, L.M., 1998. A dynamic stochastic

stock-cutting problem. Oper. Res. 46 (5), 690–701.
Malaguti, E., Monaci, M., Paronuzzi, P., Pferschy, U., 2019. Integer optimization

with penalized fractional values: The knapsack case. European J. Oper. Res. 273,
874–888.

Marinelli, F., Pizzuti, A., 2018. A sequential value correction heuristic for a bi-objective
two-dimensional bin-packing. Electron. Notes Discrete Math. 64, 25–34.

Monaci, M., Pferschy, U., Serafini, P., 2013. Exact solution of the robust knapsack
problem. Comput. Oper. Res. 40, 2625–2631.

Neidlein, V., Vianna, A.C.G., Arenales, M.N., Wäscher, G., 2009. Two-dimensional
guillotineable-layout cutting problems with a single defect – an AND/OR-graph
approach. In: Operations Research Proceedings 2008, Part 3. Springer, pp. 85–90.
14
Özdamar, L., 2000. The cutting-wrapping problem in the textile industry: optimal
overlap of fabric lengths and defects for maximizing return based on quality. Int.
J. Prod. Res. 38, 1287–1309.

Perez-Salazar, S., Singh, M., Toriello, A., 2022. Adaptive bin packing with overflow.
Math. Oper. Res. http://dx.doi.org/10.1287/moor.2021.1239, Published online in
Articles in Advance 25 Feb 2022.

Pernkopf, M., Riegler M. Gronalt, M., 2019. Profitability gain expectations for computed
tomography of sawn logs. Eur. J. Wood Wood Prod. 77, 619–631.

Petutschnigg, A., Pferschy, U., Sattler, L., 2007. Influence of production costs on cutting
optimization in window frame production - a graph-theoretical model. Comput.
Electron. Agric. 58, 133–143.

Petutschnigg, A., Schwarzbauer, P., Pferschy, U., 2005. Material flow simulation to
support site planning of a sawmill with an installed computer tomograph - a case
study. Paper and Timber (Paperi Ja Puu) 87, 47–52.

Rönnqvist, M., 1995. A methods for the cutting stock problem with different qualities.
European J. Oper. Res. 83, 57–68.

Rönnqvist, M., Åstrand, E., 1998. Integrated defect detection and optimization for cross
cutting of wooden boards. European J. Oper. Res. 108, 490–508.

Sarker, B.R., 1988. An optimum solution for one-dimensional slitting problems: a
dynamic programming approach. J. Oper. Res. Soc. 39, 749–755.

Schepler, X., Rossi, A., Gurevsky, E., Dolgui, A., 2022. Solving robust bin-packing
problems with a branch-and-price approach. European J. Oper. Res. 297 (3),
831–843.

Scholl, A., Klein, R., Juergensen, C., 1997. BISON: A fast hybrid procedure for exactly
solving the one-dimensional bin packing problem. Comput. Oper. Res. 24, 627–645.

Sculli, D., 1981. A stochastic cutting stock procedure: Cutting rolls of insulating tape.
Manage. Sci. 27 (8), 946–952.

Sierra-Paradinas, M., Soto-Sánchez, O., Alonso-Ayuso, A., Martín-Campo, J., Gal-
lego, M., 2021. An exact model for a slitting problem in the steel industry. European
J. Oper. Res. 295 (1), 336–347.

Wäscher, G., Haußner, H., 2007. An improved typology of cutting and packing
problems. European J. Oper. Res. 183 (3), 1109–1130.

Wenshu, L., Dan, M., Jinzhuo, W., 2015. Study on cutting stock optimization for
decayed wood board based on genetic algorithm. Open Autom. Control Syst. J.
7, 284–289.

Woeginger, G.J., Yu, Z., 1992. On the equal-subset-sum problem. Inform. Process. Lett.
42, 299–302.

http://refhub.elsevier.com/S0305-0548(23)00144-2/sb18
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb18
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb18
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb19
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb19
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb19
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb19
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb19
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb20
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb20
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb20
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb21
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb21
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb21
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb21
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb21
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb22
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb22
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb22
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb23
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb23
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb23
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb24
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb24
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb24
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb25
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb25
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb25
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb26
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb26
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb26
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb27
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb27
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb27
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb28
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb29
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb29
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb29
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb30
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb30
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb30
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb31
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb31
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb31
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb31
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb31
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb32
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb32
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb32
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb33
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb33
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb33
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb34
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb34
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb34
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb34
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb34
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb35
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb35
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb35
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb35
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb35
http://dx.doi.org/10.1287/moor.2021.1239
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb37
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb37
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb37
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb38
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb38
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb38
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb38
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb38
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb39
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb39
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb39
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb39
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb39
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb40
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb40
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb40
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb41
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb41
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb41
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb42
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb42
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb42
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb43
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb43
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb43
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb43
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb43
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb44
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb44
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb44
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb45
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb45
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb45
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb46
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb46
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb46
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb46
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb46
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb47
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb47
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb47
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb48
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb48
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb48
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb48
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb48
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb49
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb49
http://refhub.elsevier.com/S0305-0548(23)00144-2/sb49

	One-dimensional stock cutting resilient against singular random defects
	Introduction
	Related work
	Pattern reconfiguration
	Pattern robustness
	Expected economic loss of a pattern

	Complexity and Solution Approaches
	Dynamic Programming Algorithms
	Decomposition approach
	An approach based on Subset Sum
	An improved approach based on Subset Sum

	Robust CSP solution
	Assignment with bounded leftover
	Equal distribution of leftovers

	A computational experience
	Conclusions and future research
	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	References

