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Learning nonlinear systems via Volterra series
and Hilbert-Schmidt operators
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Abstract— This paper examines the application of regu-
larization techniques and kernel methods in addressing the
task of learning nonlinear dynamical systems from input-
output data. Our assumption is that the estimator belongs
to the space of polynomials composed of Hilbert-Schmidt
operators, which ensures the ability to approximate non-
linear dynamics arbitrarily, even within bounded but non-
compact data domains. By employing regularization tech-
niques, we propose a finite-dimensional identification pro-
cedure that exhibits computational complexity proportional
to the square of the size of the training set size. This
procedure is applicable to a broad range of systems, in-
cluding discrete and continuous time nonlinear systems
on finite or infinite dimensional state spaces. We delve
into the selection of the regularization parameter, taking
into account the measurement noise, and also discuss
the incorporation of causality constraints. Furthermore, we
explore how to derive estimates of the Volterra series of the
operator by selecting a parametric inner product between
data trajectories.

Index Terms— Reproducing Kernel Hilbert space, Sys-
tem Identification, Learning, Nonlinear systems, Volterra
series

I. INTRODUCTION

Black-box identification of unknown systems from observed
input-output data is a central problem for systems theory since
the beginning and it has recently become an active area of
research for machine learning leading to an interesting cross
fertilization between classical parameter identification and
model selection methods [1], statistical learning techniques
[2] and kernel methods [3]: see [4], [5] for comprehensive
overviews. The impact of this cross fertilization is testified
by the fact that estimation techniques that were typically
associated to the machine learning community – such as
artificial neural networks, support vector machines, regres-
sion trees, etc. – have now found a stable place in control
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theory [6]–[8], proving their accuracy in data-based control
strategies on large-scale complex scenarios [9], [10]. Some
of the key mathematical tools used in this new paradigm are
reproducing kernel Hilbert spaces (RKHS) [11]–[16], kernel
methods and regularization networks [3], [17]–[26], Gaussian
process regression [27], [28], support vector machines [29],
[30], representer theorems [25], [31], [32] and regularized
solutions [33]–[36].

In an abstract setting the output of a system is generated
by some nonlinear operator applied to the input, that may
include the initial state of the system. The challenge is that
the identification of this input-output operator is always an ill-
posed problem since the operator cannot be uniquely inferred
from a finite set of input and output trajectories. We recall
that a problem is ill-posed if one of the three conditions of
existence, uniqueness and continuous dependence on data fails
to hold for its solution [33], [37]. Even when a solution exists
in the solution space, the unavoidable presence of noise may
cause existence to fail. This is where regularization comes
into play. The essential idea is to find the best approximation
of the solution in a space where the approximation exists, is
unique and continuous with respect to the data. This introduces
a trade-off between accuracy, i.e. good accordance of actual
and predicted data, and the requirement that solutions are well-
behaved. In the regularization approach this trade-off is usually
controlled by a scalar regularization parameter [35], [38]. Ker-
nel methods are then used to generate the best approximation
in the infinite-dimensional operator space by projecting on
the subspace of operators that can be represented from the
available data. This approach has been widely exploited in the
learning techniques mentioned above. The existing techniques
have been applied to linear systems [23], [27], [39]–[43], linear
discrete-time systems with outliers [44], discrete-time dynam-
ics in Euclidean spaces [45]–[47], and nonlinear functions with
discrete samples [22], [48]. It is also worth mentioning that the
theoretical features of Volterra series and polynomial kernel
regression have already been considered in several important
works, for example [45], [47], [49], [50], and a huge literature
exists on block-oriented approaches to nonlinear identification
exploiting specific structures of nonlinear operators, such as
Hammerstein models, Wiener models, and combinations of
them (see [51], [52]).

Our work extends the approach presented in [53] for
the linear case. The core idea is to extend existing results
to the general problem of nonlinear maps over separable
Hilbert spaces. Our task is to compute a finite-dimensional
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approximation of the unknown input-output map Hx Ñ Hy

starting from a training set of input-output samples txi, yiu,
i “ 1, . . . , N , where Hx and Hy are generic Hilbert spaces.
This training set may either be generated by user-defined
probe inputs, or be collected from the autonomous dynamics
of the system under consideration. This abstract framework
encompasses many cases, for example xi and yi may be
finite-dimensional vectors of input and output values but also
vector-valued functions of time corresponding to the input and
the output of a dynamical system, or functions on a spatial
domain when the operator of interest is the solution of a PDE.
Thus, the results obtained in this setting can be applied to
discrete as well as continuous time systems evolving in Rn,
distributed parameter systems, nonlinear systems with delay,
finite-dimensional sequences, etc. The aims and contributions
of this work can be summarized as follows.

‚ We establish an abstract framework to generalize regu-
larization and kernel-based techniques to a broader class
of systems. We study which hypotheses are needed to
ensure that essential properties of the solutions provided
by these methods are not lost in the generalization.

‚ We show that with a suitable choice of the solution space
regularization techniques can approximate arbitrarily well
nonlinear systems with reasonable physical constraints.

‚ We show how the available prior knowledge can be
plugged into the framework to restrict the solution space
and improve the accuracy of the learning process. How-
ever, we show that solutions can be found in absence of
any prior knowledge in a completely black-box setting.

‚ We show that solution spaces based on polynomial or
Volterra series have computational complexity compara-
ble to linear estimates and that solutions can incorporate
causality requirements.

As for the first point we derive a closed form optimal approx-
imation of the Volterra series (or of its truncated version up
to a specified order) by extending the well known technique
of minimizing a regularized quadratic performance index
computed on the training set, and we show that this solution
admits a finite-dimensional computation.

The second contribution is to identify the most general
solution space that yields solution operators with a physical
characterization. The unknown nonlinear input-output map is
represented as a Volterra series of Hilbert-Schmidt operators
(H-S operators in the following). This choice is motivated by
the considerations reported in Section II-C.

As for the third point, we show that the general estimator
can be specialized by defining the inner product that generates
the estimator based on a specific kernel. In other words one can
introduce the prior information on the unknown operator to be
estimated by choosing the most appropriate kernel to define
the inner product on the linear space of the input trajectories.

Finally, we prove that causal operators can be introduced in
this framework without additional constraints on the solution
space. Our results prove the existence of a solution without
any a priori hypothesis on the structure of the operator.

Although most of the above points have been considered and
studied in the previous literature mentioned above, we argue
that providing a general and flexible framework has important

benefits and implications. In the first place, it avoids the need
of “reinventing the wheel” in each specific situation whereas at
the same time it indicates where specific choices, for example
the kernel design or the choice of the meta-parameters, come
into play to tailor the solution to specific application needs.

The paper is organized as follows. In Section II we introduce
the basic definitions and assumptions used throughout the
paper. Section III contains the main results on the computation
of the optimal polynomial and Volterra series approximation.
Section V links our framework to the well established theory
of reproducing kernel Hilbert spaces (RKHS), by showing that
our polynomial operators with H-S terms constitute in fact a
RKHS. Section VI discusses an example to illustrate the results
and Section VII concludes the paper.

Notation: L2pD;Cq denotes the Hilbert space of square
integrable functions f : D Ñ C. The scalar product be-
tween elements x1, x2 P L2pD;Cq is denoted rx1, x2sL2 and
}x}L2

“
a

rx, xsL2 is the norm of an element x P L2pD;Cq.
Throughout the paper we denote colni“1pxiq the vector with
n entries xi, and rown

i“1pxiq the row vector with n entries
xi, that can be scalars, vectors, functions or matrices. The
lower and upper bound of the index is sometimes omitted for
brevity. The linear combination

řk
i“1 aixi of a finite number

k of elements xi P L2pD;Cq with coefficients ai P R is
concisely denoted as aJcolipxiq, where a “ colipaiq. The
same convention is used when M P Rnˆk is a matrix with
scalar entries mij , Mcolki“1pxiq :“ colni“1p

řk
j“1 mijxjq.

II. PRELIMINARY DEFINITIONS AND RESULTS

A. Problem statement and assumptions

The input-output map of an unknown nonlinear system S
is modeled as a nonlinear operator from the input linear space
Hx “ L2pD;H1q to the output linear space Hy “ L2pD;H2q.
The input and the output of the system are therefore square
integrable functions on D, which is a bounded domain (for
example D “ r0, T s)1. When D is discrete, Hx “ ℓ2pD;H1q

and Hy “ ℓ2pD;H2q. H1 and H2 are real separable Hilbert
spaces. The image spaces H1 and H2 are purposefully kept
generic to include a variety of input and output data, such
as those generated by finite-dimensional systems, distributed
parameter systems, delay systems, etc. We will refer to xi P

Hx and yi P Hy as input and output trajectories, bearing in
mind the reference case where D “ r0, T s and H1 “ Rnx ,
H2 “ Rny that models linear or nonlinear systems with finite-
dimensional input and output.

We consider the following problem. Given a training set
of pairs pxi, yiq, where xi P Hx is the input corresponding
to yi P Hy , we want to find a finite-dimensional nonlinear
approximation in the least-squares sense of the unknown input-
output map. To this end we shall make use of polynomial
functions of given order of the input and of the corresponding
Volterra series as the solution space. For the reasons explained
in Section II-C, the existence of a polynomial approximation
of the input-output operator rests on the following assumption.

1Throughout the paper we denote t the elements of D. However, D may
be any domain for example a spatial domain.
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Assumption 1: The operator F : Hx Ñ Hy is uniformly S-
continuous on the sets of bounded energy signals of interest.
S-continuity is defined in Definition 4. We also require that
the yi are defined on all D, since their values are needed to
compute the output of the estimated operator.

Assumption 2: The output signals yi of the training set are
defined in all D.

B. Volterra series and Hilbert-Schmidt operators

We briefly introduce a few formal notations to represent
polynomials and Volterra series in a compact way. The fol-
lowing definition is for the case H1 “ Rn but it can be easily
extended to separable Hilbert spaces.

Definition 1: [Kronecker product on Hilbert spaces]. Given
x, z P Hn “ L2pD;Rnq their Kronecker product x b z is the
element of L2pD2;Rn2

q such that, @ξ, ζ P D,

px b zqpξ, ζq :“ xpξq b zpζq, (1)

where b is the ordinary Kronecker product.
Remark 1: The value of xbz is the product of the values of

x and z at different points of D. Consequently, the temporal or
spatial correlation between functions, when D is respectively a
temporal or spatial domain, can be expressed through operators
on x b z.

Let tϕku be an orthonormal basis of Hn. Then xbz belongs
to H 2

n , a subspace of L2pD2;Rn2

q defined as

H 2
n “ tw P L2pD2;Rn2

q :

w “
ÿ

k,j

ak,j pϕk b ϕjq ,
ÿ

k,j

a2k,j ă 8u. (2)

In essence, H 2
n is the span of the Kronecker product of versors

in the basis of Hn. When x “ z, x2 “ x b x defines the
Kronecker power of elements of Hn. This can be generalized
to higher-orders by defining x i “ x b x i ´ 1 P H i

n, i P N,
where H i

n Ă L2pDi;Rni

q is the span of ϕk1 b . . .bϕki with
square summable coefficients ak1,...,ki

. Furthermore, when the
image of elements in Hn is not Rn but a space of functions
with values in Rn, Definition 1 is extended by replacing in (1)
xpξqbzpζq with xpξqbzpζq, where b is the Kronecker product
in the image space. We now show how the inner product in
Hm

n is related to the inner product in Hn.
Lemma 1: If x, y, z, w P Hn, Hn separable, then

rx b y, w b zsH2
n

“ rx,wsHn
ry, zsHn

(3)

rxm , ym sHm
n

“ rx, ysmHn
(4)

}xm }Hm
n

“ }x}mHn
. (5)

Proof: It is sufficient to prove the first relationship. Since
Hn is separable, given an orthonormal basis tϕku of Hn,

x b y “
ÿ

k1

ÿ

k2

rx, ϕk1
sry, ϕk2

s pϕk1
b ϕk2

q (6)

rx b y, w b zsH2
n

“
ÿ

k1

ÿ

k2

rx, ϕk1sry, ϕk2srw, ϕk1srz, ϕk2s

“ rx,wsHn
ry, zsHn

. (7)

In this paper we consider polynomials whose monomial
terms are H-S operators. We first recall the definition of H-S
operators.

Definition 2: [H-S operators]. A Hilbert-Schmidt operator
on separable Hilbert spaces L : Hx Ñ Hy is a linear operator
such that

Lx “

8
ÿ

k“1

rx, ϕksHx
Lϕk (8)

}L}2
H.S.

“

8
ÿ

k“1

}Lϕk}2Hy
ă 8, (9)

where tϕju is any orthonormal basis of Hx (i.e. the norm does
not depend on tϕju). l

The definition implies that

}Lx}Hy ď }L}H.S.}x}Hx . (10)

H-S operators from Hx to Hy are bounded finite-energy input-
output operators, as it is apparent from (9). We recall that on
infinite-dimensional Hilbert spaces the identity operator is not
a H-S operator because }I}2

H.S.
“

ř8

k“1 }ϕk}2Hy
“ 8, thus

the input-output behavior is not represented by H-S operators
when there is a direct term from the input to the output, e.g.
yi “ xi cannot be represented through H-S operators when
Hy is infinite-dimensional. Finally, the linear space of H-S
operators L : Hx Ñ Hy endowed with inner product

rL1, L2sH.S. “

8
ÿ

k“1

rL1ϕk, L2ϕksHy
(11)

is a Hilbert space LH.S.pHx;Hyq.
Polynomial operators Hx Ñ Hy are obtained by summing

monomials that are H-S operators, Mm : Hm
x Ñ Hy , m ě 1.

A generic monomial term is written Mmpx1 bx2 b . . .bxmq,
where xi P Hx, and its value in Hy . Mm is multilinear with
respect to its arguments xi. Thus, a monomial Mmpxm q is a
linear operator with respect to xm but not to x.

Since Mm is a H-S operator, it is defined by specifying its
value on some basis of Hm

x , as prescribed by (8). Let tϕku be
an orthonormal basis of Hx and Km “ tk1, . . . , kmu a multi-
index with m elements. Then ξ P Hm

x can be represented
as

ξ “
ÿ

Km

aKmpϕk1 b ¨ ¨ ¨ b ϕkmq,

where aKm
“ rξ, ϕk1

b ¨ ¨ ¨ b ϕkm
sHm

x
, and

Mm pξq “
ÿ

Km

aKm
Mm pϕk1

b ¨ ¨ ¨ b ϕkm
q , (12)

where
ř

Km
}Mmpϕk1

b ¨ ¨ ¨ b ϕkm
q}2Hy

ă 8 as required by
(9).

In particular, it descends from (3) that when ξ “ xm then
aKm

“
ś

jPKm
rx, ϕjs. Consequently,

Mm

`

xm
˘

“
ÿ

Km

˜

ź

jPKm

rx, ϕjs

¸

Mm pϕk1
b ¨ ¨ ¨ b ϕkm

q .

(13)
Definition 3: [H-S Polynomial operators]. Given L2 spaces

Hx, Hy and a finite sequence tMmu, m “ 1, . . . , ν of H-S
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operators Mm : Hm
x Ñ Hy , the operator Pν : Hx Ñ Hy

defined as

Pνpxq :“
ν
ÿ

m“1

Mmpxm q (14)

is called a ν-degree polynomial operator. l

Remark 2: Since Pν : Hx Ñ Hy , by definition y “ Pνpxq

is square integrable over D. Notice that however Pν is neither
a linear operator nor, consequently, a H-S operator.
Definition 3 does not include a constant term M0 P Hy , that
can be added as a separate term. For example, in the case of
L2pD;Rnq, a complete second-degree polynomial is

y “ M0 ` M1x ` M2px2 q (15)

yptq “ y0ptq `

ż

D

κM1pt, τqxpτq dτ

`

ż

DˆD

κM2pt, σ, τq pxpσq b xpτqq dτ dσ, (16)

and y is specified though the choice of M0 “ y0 P Hy and
of the operator kernels κM1 : D2 Ñ Rnyˆnx , κM2 : D3 Ñ

Rnyˆn2
x . Since M1 P LH.S.pHx;Hyq and M2 P LH.S.pH 2

x ;Hyq

are H-S operators, it holds that
ż

DˆD

}κM1pt, τq}2 dτ dt ă 8, (17)
ż

D3

}κM2pt, σ, τq}2dτ dσ dt ă 8. (18)

The Volterra series can be obtained as the limit limνÑ8 Pνpxq

of a sequence of polynomial operators. It is worth remarking
that this representation of the input-output map is not neces-
sarily a causal one. For example, to introduce causality in (15)
one needs to add the constraints κLpt, τq “ 0 whenever τ ą t
and κQpt, σ, τq “ 0 whenever σ ě τ or τ ě t.

The following theorem is proved in Appendix A.
Theorem 1: For any ν, the linear space of polynomial

operators Pν : Hx Ñ Hy on separable Hilbert spaces defined
in (14) is an Hilbert space LP

ν with inner product

rP 1
ν , P

2
ν sLP

ν
“

ν
ÿ

m“1

rM1
m,M2

msLH.S. . (19)

In particular, with }Mi}
2
H.S. “

ř

Ki
}Mipϕk1

b ¨ ¨ ¨ bϕkm
q}2

H i
x

}Pν}2LP
ν

“

ν
ÿ

i“1

}Mi}
2
H.S.. (20)

C. Polynomial approximations of nonlinear operators
The choice of H-S operators to approximate nonlinear

dynamical systems has two main motivations. The first one
is that H-S operators are bounded as one would expect from
a physical system. The second one is that a polynomial based
on H-S operators can approximate with arbitrary precision a
large class of input-output maps. In fact, the approximation of
nonlinear operators by means of polynomials requires some
version of the Weierstrass approximation theorem suited to
Hilbert or Banach spaces. Such extensions have been widely
explored in the literature in the past decades [54]–[57] but
they crucially depend on the compactness of the domain. This

hypothesis is restrictive in the context of system identification,
e.g. the ball of finite energy signals is bounded but not
compact. A possibility to overcome this problem is to restrict
ourselves to maps that are uniformly continuous with respect
to the S-topology [58], since it was proved in [59] (Theorem
3) that given a map F : Hx Ñ Hy uniformly continuous with
respect to the S-topology on a bounded set Ω Ă Hx, @ϵ ą 0
there exists a continuous polynomial P : Hx Ñ Hy such that

sup
xPΩ

}F pxq ´ P pxq} ă ϵ. (21)

In other words, on bounded sets the continuous polynomials
are dense with respect to the family of uniformly S-continuous
functions.

Definition 4: [58], [59] A map F : Hx Ñ Hy is said to be
uniformly continuous with respect to the S-topology if, for any
ϵ ą 0 there exists a self-adjoint non-negative definite trace-
class operator Sϵ : Hx Ñ Hy such that rSϵpx1 ´ x2q, x1 ´

x2sHx ă 1 implies }F px1q ´ F px2q}Hy ă ϵ for all x1, x2 P

Hx.
The S-topology is weaker than the norm topology and

maps that are uniformly continuous with respect to the S-
topology are also compact (Theorem 1 in [59]). In addition,
the functions in this class can be represented as continuous
nonlinear functions on H-S operators [60] and in particular
linear operators that are uniformly continuous with respect
to the S-topology are H-S operators. This is not only a nice
mathematical characterization but it also implies the very
“physical” property of being an input-output map with a
smoothing action. Summarizing, the choice of H-S operators
as monomial terms of P pxq is justified both on physical and
mathematical terms.

III. LEARNING THE OPTIMAL VOLTERRA SERIES

A. Learning the optimal linear approximation
We first consider the problem of estimating the best linear

approximation (i.e. ν “ 1 in (14)), to introduce regularized
estimates that will be extended to the polynomial case. The
material in this section summarizes the results in [53] for the
linear case. Given a training set tpxi, yiqu, the simplest way to
compute a linear approximation L̂x “ M̂1x`M̂0 of the input-
output operator is the well known Least Squares Estimate
(LSE) L̂ “ argminL JpLq, JpLq “

ř

i }yi ´ Lxi}
2
Hy

. This
approach has two main drawbacks. The first one is that when
both txiu and tyiu have N independent elements the LSE
yields a L̂ such that JpL̂q “ 0 because @i yi “ L̂xi, and
consequently the approach is prone to over-fitting. On the other
side, when there is no linear operator such that @i yi “ L̂xi,
LSE yields an infinite norm estimate. More precisely, any
sequence tL̂nu of operators with finite-rank n that minimizes
JpLq is such that }L̂n}H.S. Ñ 8 [33], [53]. The problem is
relevant in practice when the output yi is affected by noise
ni, since the operator L̂ tends to track the output noise in
order to reduce the residual yi ´ L̂xi.

One method to cope with the above problems is to introduce
a penalty for the norm of the estimate in the cost function.
Intuitively, this regularization alleviates over-fitting because
“too precise” solutions are discarded in favor of more compact
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ones, and at the same time it yields finite norm estimates
when the LSE estimate does not exist. In the case of the
best affine estimate the regularization approach amounts to
defining a cost functional JN : R` ˆ LH.S. ˆ Hy Ñ R` and,
with Lξ “ M1ξ ` M0,

JN pλ, Lq “

N
ÿ

i“1

}yi ´ M1xi ´ M0}2Hy
` λ}M1}2H.S., (22)

where λ P R` is a regularization parameter [13], [23], [61]
(notice that the regularization parameter does not affect M0).
The solution is found by using variational calculus to find
argminL JN pλ, Lq. Let ϵ ą 0 and ∆Lx “ ∆M1x ` ∆M0 ,
M0 P Hy , ∆M1

P LH.S.. Straightforward computations yield
that in the minimum L̂

d
dϵ

JN pλ, L̂ ` ϵ∆Lq

ˇ

ˇ

ˇ

ˇ

ϵ“0

“

N
ÿ

i“1

´2ryi ´ L̂xi,∆LxisHy ` 2λrM̂1,∆M1sH.S. “ 0.

The minimum is obtained by imposing that the derivative is
null @∆M1

,∆M0
. In particular, choosing ∆M1

“ 0 one obtains

N
ÿ

i“1

´2ryi ´ M̂1xi ´ M̂0,∆M0xisHy “ 0

that can be satisfied @∆M0 only when

M̂0 “

N
ÿ

i“1

yi ´ M̂1xi “ ȳ ´ M̂1x̄, (23)

that yields M̂0 as a function of M̂1. We notice that the “affine”
term M̂0 disappears when ȳ “ x̄ “ 0. For this reason, we can
consider the centered training set

pX̊, Y̊ q “ pcolipxi ´ x̄q, colipyi ´ ȳqq, (24)

that has ȳ “ x̄ “ 0, and compute the best linear and
polynomial estimate with the tacit assumption that affine
estimates are obtained by adding M̂0 given by (23). On a
centered training set and for a given choice of the weight λ,
the best estimate of L is now defined as

L̂ “ arg min
M1PLH.S.

N
ÿ

i“1

}ẙi ´ M1x̊i}
2
Hy

` λ}M1}2H.S., (25)

and it can be computed as follows [53].
Theorem 2: If Assumption 2 holds, then, given a centered

training set txi, yiu, x “ txiu i “ 1, . . . , N , and the matrix
Apxq P RNˆN with entries

Apxqpi,jq “ rxi, xjsHx
, (26)

1) For any λ P R the optimal linear estimator M̂1 defined
by (25) exists and, denoting Y “ colipyiq P HN

y , @k,

M̂1ϕk “αJ
k pλ,xqY “

N
ÿ

i“1

αkipλ,xqyi (27)

αJ
k pλ,xq “rJ

k pxq pλIN ` Apxqq
´1

P R1ˆN (28)

rJ
k pxq “rowN

i“1rxi, ϕksHx (29)

where tϕku is an orthonormal basis of Hx. Moreover,
each M̂1ϕk P Hy is defined @t P D.

2) The optimal linear estimate of M̂1ξ, @ξ P Hx, is

M̂1ξ “rowiprξ, xisHx
q pλIN ` Apxqq

´1
Y. (30)

3) }colipyi ´ M̂1xiq}HN
y

is a non-decreasing function of λ

and }M̂1}H.S. is a non-increasing function of λ.
4) If colipyi ´ L̃xiq “ 0 for some L̃ P LH.S., then

limλÑ0` M̂1 “ argminLPLH.S. }L}H.S. : colipyi ´ Lxiq “

0. l

When the dataset is not centered, M̂1 is given by (27) where
xi and yi are replaced by xi ´ x̄ and yi ´ ȳ, and M̂0 is given
by (23). For completeness a proof of the first point is reported
in Appendix B. The second point follows from straightforward
computations. For points 3)–4) see Thm. 3 and 5 in [53] or
Thms. 3.12, 3.15 in [33].

The second point of Theorem 2 provides a finite dimen-
sional closed-form expression of M̂1ξ for any ξ P Hx as
a linear combination of the yi in the training set. Since
pλIN ` Apxqq

´1 colipyiq, which is a vector of functions with
entries in Hy , depends only on the training set, it can be com-
puted once and for all. The computation of M̂1ξ for a generic
ξ requires only to compute the vector rowiprξ, xisHx

q P RN .
From the point of view of the computational complexity
the most computationally intensive operation is the scalar
product, that typically involves the numerical computation of
an integral. In this sense, the computational complexity of
(30) is quadratic in the size N of the training set, since Apxq

contains NpN ` 1q{2 distinct entries of the kind rxi, xjsHx
.

Example 1: In the case of continuous-time systems Hx “

L2pD;Rnxq, Hy “ L2pD;Rny q, let Mλ “ λIn ` Apxq.
Straightforward manipulations yield

ŷptq “pM̂1xqptq “
ż

D

``

xJpτqrowipxipτqqM´1
λ

˘

b Iny

˘

colipyiqptq dτ

“

ż

D

rowipyiptqqM´1
λ

J
colipxJ

i pτqqxpτq dτ, (31)

where we recognize the underlying operator kernel of M̂1,
κM̂1pt, τq P Rnyˆnx ,

κM̂1pt, τq “ rowipyiptqqM´1
λ

J
colipxJ

i pτqq. (32)

B. Learning the optimal polynomial approximation

This section considers the problem of computing the ν-th
degree polynomial that best approximates F : Hx Ñ Hy

from a training set of input and output signals txi, yiu,
i “ 1, . . . , N . The setting and the notation are the same as
in Section III-A. When M0 “ 0 our hypotheses model is that
there exists a polynomial operator P ‹

ν such that

yi “ P ‹
ν pxiq, (33)

and we aim at computing M̂m, m “ 1, . . . , ν so that

ŷi “ P̂νpxiq “

ν
ÿ

m“1

M̂mpxm
i q, (34)
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is the “best” approximation of yi, where, as before, xi P Hx,
yi P Hy , M̂m P LH.S.pHm

x ;Hyq. Given an orthonormal basis
tϕku of Hx, M̂m can be represented as in (12),

M̂mpx j q “
ÿ

Km

aKm
pxqM̂mpϕk1

b ¨ ¨ ¨ b ϕkm
q, (35)

where aKm
pxq “ rx, ϕk1

sHx
¨ . . . ¨ rx, ϕkm

sHx
P R and

ÿ

Km

paKm
px1q ¨ aKm

px2qq “ rx1, x2s
j
Hx

. (36)

The optimal estimate P̂ is obtained by minimizing the func-
tional Jν

N : R` ˆ LP
ν Ñ R`,

Jν
N pλ, Pνq “

N
ÿ

i“1

}yi ´ Pνpxq}2Hy
` λ}Pν}2LP

ν
. (37)

Theorem 3: If Assumption 2 holds, then, given a training
set txi, yiu, i “ 1, . . . , N and the matrix Aνpxq P RNˆN with
entries

pAνpxqqpi,jq “

ν
ÿ

m“1

rxi, xjsmHx
, (38)

for any λ P R the optimal polynomial estimator with respect
to (37) exists and its monomials M̂m, are given by

M̂mpϕk1
b ¨ ¨ ¨ bϕkm

q “ rowipaKm
pxiqq pλIN ` Aνpxqq

´1
Y

(39)
where tϕku is an orthonormal basis of Hx and Y “ colipyiq.
Moreover, M̂mpϕk1

b ¨ ¨ ¨ b ϕkm
q are defined @t P D.

Proof: The minimum P̂ν of Jν
N is the solution of the

system

@m “ 1, . . . , ν, @∆Mm
P LH.S.pHm

x ;Hyq :

dJν
N pλ, P̂ν ` ϵ∆Mmq

dϵ

ˇ

ˇ

ˇ

ˇ

ˇ

ϵ“0

“ 0. (40)

Proceeding as in the proof of Theorem 2 in Appendix B we
obtain that, @m, @∆Mm

P LH.S.pHm
x ;Hyq,

N
ÿ

i“1

ryi ´ P̂νpxiq, ∆Mm
pxiqsHy

“ λrM̂m, ∆Mm
sLH.S. , (41)

that is, @m “ 1, . . . , ν, @Km,

M̂mpϕk1 b ¨ ¨ ¨ b ϕkmq “
1

λ

N
ÿ

i“1

aKmpxiqpyi ´ P̂νpxiqq. (42)

Since, by definition,

P̂νpxiq “

ν
ÿ

m“1

ÿ

Km

aKmpxiqM̂mpϕk1 b ¨ ¨ ¨ b ϕkmq, (43)

replacing (42) in (43) yields

P̂νpxiq “
1

λ

ν
ÿ

m“1

ÿ

Km

aKmpxiq

N
ÿ

ℓ“1

aKmpxℓqpyℓ ´ P̂νpxℓqq

“
1

λ

˜

N
ÿ

ℓ“1

yℓ

˜

ν
ÿ

m“1

rxi, xℓs
m
Hx

¸

´

N
ÿ

ℓ“1

P̂νpxℓq

˜

ν
ÿ

m“1

rxm, xℓs
m
Hx

¸¸

(44)

Thus, by stacking P̂νpxiq,

colipP̂νpxiqq “ pλIN ` Aνpxqq
´1

Aνpxq colipyiq. (45)

Finally, we replace (45) into (42) to obtain

M̂mpϕk1
b ¨ ¨ ¨ b ϕkm

q “
1

λ

N
ÿ

i“1

aKmpxiqpyi ´ P̂νpxiqq

“
1

λ
rowipaKm

pxiq

´

IN ´ pλIN ` Aνpxqq
´1

Aνpxq

¯

colipyiq

“rowipaKm
pxiq pλIN ` Aνpxqq

´1 colipyiq. (46)

Again, Assumption 2 together with (46) guarantees that
M̂mpϕk1

b ¨ ¨ ¨ b ϕkm
q exists @t P D and @pk1, . . . , kmq.

Corollary 1: In the hypotheses of Theorem 3 the optimal
polynomial estimate P̂νξ, ξ P Hx, is given by

P̂νpξq “

ν
ÿ

m“1

rowiprξ, xis
m
Hx

q pλIN ` Aνpxqq
´1 colipyiq.

(47)
l

The proof is entirely analogous to Theorem 2 in Section III-
A. Remarkably, the polynomial estimate (47) has complexity
proportional to N2 just as the linear estimate (30). In other
words, the computational complexity of (47) is insensitive to
the degree ν of the polynomial, since Aνpxq is obtained by
summing the entry-wise powers of Apxq.

Remark 3: When one considers the full polynomial includ-
ing the affine term, i.e.

yi “ P ‹
ν pxiq ` M0, (48)

it is easy to prove that the estimation procedure of Theorem 3
and Corollary 1 is exactly the same and that the best estimate
M̂0 of M0 is given by

M̂0 “
1

N

N
ÿ

i“1

´

yi ´ P̂νpxiq

¯

. (49)

Example 2: For vector-valued continuous-time systems
consider the case ν “ 2. The generic quadratic operator
P2 “ M1pxq ` M2px2 q P LP

2 can be represented as

pP2xqptq “yptq “

ż

D

κM1pt, τqxpτq dτ

`

ż

DˆD

κM2pt, τ, σqpxpτq b xpσqq dτdσ. (50)

Let Mλ,2 “ λIn ` A2. If we are interested in the explicit
expression of the operator kernels of the optimal quadratic
estimator (47), for κM̂1 we can use (32) of Example 1, with
Mλ replaced by Mλ,2. To express κM̂2 we use (47), with
j “ 2. Straightforward manipulations yield

M̂2px2 q “

ż

D2

rowipyiptqqpM´1
λ,2qJcolipxipτq b xipσqqJ

¨ pxpτq b xpσqq dτdσ, (51)

and the underlying kernel κM̂2pt, τ, σq P Rnyˆn2
x is

κM̂2pt, τ, σq “ rowipyiptqqpM´1
λ,2qJcolipxipτq b xipσqqJ.

(52)
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C. Convergence of the approximated Volterra series

Having obtained the best polynomial estimate for any given
order ν our next step is logically to derive the best regularized
estimate of the Volterra series of the system by letting ν Ñ 8.
Before doing so it is appropriate to offer some comments
to put these results in the framework of recent kernel-based
identification methods (see, among many others, [4], [23],
[27], [62]). The results of the previous sections emphasize
the prominent role of the matrices Apxq (linear case) and
Aνpxq, that have entries of the form, respectively, rxi, xjsHx

,
rxi, xjsmHx

, and encode the “similarity” of the elements xi

and xj . The inner product may seem a very specific choice
of similarity, but the framework described so far is abstract
and the inner product in Hx is actually a design parameter
that may lead to different estimates. In the continuous time
case with finite-dimensional inputs/outputs the standard inner
product rxi, xjs “

ş

D
xipsqJxjpsq ds is an instance of the

more general case rxi, xjsκ “
ş

D
xipsqJκpsqxjpsq ds, where

κ : D Ñ Rnxˆnx is symmetric and positive definite. By
changing κ we obtain different regularized estimates. As
discussed in [53], κ corresponds to the notion of “kernel” of
the regularized estimate (not to be confused with the kernel of
a RKHS introduced in Section V), and its choice, discussed for
example in [18] for the case of LTI systems, should crucially
incorporate prior knowledge about the system to identify, for
example stability or frequency content. Although the solutions
described in sections III-A, III-B apply beyond LTI systems,
they may incorporate this flexibility by customizing the inner
product in Hx to reflect the prior knowledge about the system.
Clearly, in a totally black-box approach one may not possess
sufficient prior knowledge to make this choice. In this case it
is still possible to estimate the unknown operator by choosing
any “natural” inner product in the input space.

We now apply this flexibility in the choice of the inner
product to estimate the Volterra series as the limit of a
polynomial approximation. To our knowledge, this problem
has been studied for the first time in [49]. In our case the
problem is whether the polynomial approximations in (47)
converge for ν Ñ 8. From the definition of Aνpxq in (38)
it is immediate to see that as ν Ñ 8 the entries of Aνpxq

diverge when |rxi, xjs| ą 1. In order to obtain a convergent
series of polynomials we may re-define the norm (20) with
a weight function w so that higher-order monomials have
a larger weight. Given a positive and unbounded function
w :N Ñ R`, limmÑ8 wpmq “ 8, let us re-define the inner
product and the norm in LP

ν as

rP 1
ν , P

2
ν sw “

ν
ÿ

m“1

wpmqrM1
m,M2

msLH.S. , (53)

}Pν}2w “

ν
ÿ

m“1

wpmq}Mm}2LH.S.
. (54)

By repeating the steps in the proof of Theorem 3 we easily
obtain the representation of the optimal polynomial estimator
with respect to a functional based on this new norm.

Theorem 4: If Assumption 2 holds, then, given a positive
and unbounded function w :N Ñ R`, a training set txi, yiu,

i “ 1, . . . , N and the functional

Jν
N pλ, Pνq “

N
ÿ

i“1

}yi ´ Pνpxq}2Hy
` λ}Pν}2w (55)

then for any λ P R the optimal polynomial estimator with
respect to (55) exists and its monomials M̂m are given by

M̂mpϕk1
b ¨ ¨ ¨ b ϕkm

q “

rowi
aKmpxiq

wpmq
pλIN ` Aw,νpxqq

´1
Y (56)

where tϕku is an orthonormal basis of Hx, Y “ colipyiq and
the matrix Aw,νpxq P RNˆN has entries

pAw,νpxqq
pi,jq

“

ν
ÿ

m“1

rxi, xjsmHx

wpmq
. (57)

Moreover, M̂pϕk1 b ¨ ¨ ¨ b ϕkj q are defined @t P D and

P̂w,νpξq “

ν
ÿ

m“1

rowi

ˆ

rξ, xis
m
Hx

wpmq

˙

pλIN ` Aw,νpxqq
´1

Y.

(58)

l

At this point we can let ν Ñ 8, provided that w is suitably
chosen. As already remarked in [49] different choices of w
yield different possible polynomial kernels. The step forward
with respect to [49] is that, in the light of the results mentioned
in Section I, all these kernels are universal, in the sense that
they are capable of uniformly approximating all S-continuous
functions on bounded sets of Hx. For example, if we choose
wpmq “ wm with w ą 1 we obtain the following limit for
the Volterra series.

Corollary 2: In the hypotheses of Theorem 4, if wpmq “

wm with w ą maxi,jprxi, xjsHxq, then the function
P̂w,8pξq “ limνÑ8 P̂w,νpξq is well defined for all ξ such
that rξ, xisHx

ă w, i “ 1, . . . , N , and, with Y “ colipyiq,

P̂w,8pξq “rJ
w,8pξ,xq pλIN ` Aw,8pxqq

´1
Y (59)

rJ
w,8pξ,xq “rowi

ˆ

rξ, xisHx

w ´ rξ, xisHx

˙

(60)

pAw,8pxqq
pi,jq

“
rxi, xjsHx

w ´ rxi, xjsHx

. (61)

l

It is natural to identify (59) as the estimate of the Volterra
series of the unknown system based on the rational kernel (61).
Notice that, since rx1, x2s ď }x1}}x2}, the constraint on w of
Corollary 2 translates into a bound on the energy of the input
signals. Another interesting choice of w, inspired to [49], is

wpmq “ m!κptqm, (62)

with κptq ą 0 a positive and monotonic function of t P D.
The choice (62) yields the exponential kernel

pAw,8pxqq
pi,jq

“e
1

κptq
rxi,xjsHx ´ 1. (63)

The function κptq is chosen monotonically increasing with t
in order to normalize the (potentially large) values rxi, xjsHx

and to prevent numerical issues.
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Remark 4: The learning procedure described in Section III-
B requires to fix two meta-parameters, pλ, νq, whereas the
procedure of Section III-C requires pλ,wq, where w is a
function. The choice of λ is discussed in Section III-D. Other
approaches are possible since, as discussed at the beginning
of this section, the inner product itself can be considered a
design choice. For example, if the inner product is defined so
that |rxi, xjs| ă 1 the function w is no longer necessary. In
all cases the choice of the kernel for rxi, xjs determines the
kernel pAw,8q of the Volterra series.

Remark 5: A property of estimator in Section III-B is that
its complexity does not depend on the degree chosen for the
polynomial estimator. Moreover, the estimate of the Volterra
series (59) only requires finite-dimensional operations. In
general, the complexity of the learning procedure is quadratic
in the size of the training set due to the need of computing
rxi, xjsHx for all possible pairs. The computational cost
becomes linear in N if it is possible to design a training set of
orthogonal input functions, since this makes the matrix Aνpxq

block diagonal.
Remark 6: Since P̂ν : Hx Ñ Hy , the framework described

in this section guarantees that the estimated trajectories are
square integrable on D for any input x. For example, when
Hy “ L2pR`;Rnq it is obvious that limtÑ8 P̂ pxqptq “ 0.
When D is a bounded temporal domain, it may be of interest
to extend the estimate ŷ to a larger domain. In other words,
given a training set in r0, T s, one might want to estimate the
output of the system for an input in r0,8q. This interesting
extension is a theme of further research.

D. Choice of the regularization parameter and noisy data

In Section V we shall see that the space of the estimators is
a reproducing kernel Hilbert space, and thus the choice of λ
may exploit results in that area [27], [42]. In this section we
show how to choose λ in the case of noisy measurements.

The results in Theorem 2 are easily extended to the linear
space of polynomial operators. In particular, we have that
whenever there exists a “true” polynomial operator P ‹

ν such
that yi “ P ‹

ν pxiq, for all i, and the data tpxi, yiqu are exact,
then the estimate (47) is such that

lim
λÑ0`

P̂ν “ arg min
PνPLP

ν

!

}Pν}2LP
ν
: yi “ Pνpxiq,

)

(64)

that is, limλÑ0` P̂ν is the minimum norm polynomial operator
of degree ν that yields a null residual on the training set.
Notice that limλÑ0` P̂ν “ P ‹

ν is not ensured (the true operator
could be not minimum norm). In presence of noise it is in
general

ř

i }yi ´P ‹
ν pxiq}2 ą 0, that is, the residual is not null

even for the true operator. It is therefore useless to decrease
λ to reduce

ř

i }yi ´ P ‹
ν pxiq}2 too much, and we obtain the

following maximum likelihood rule to tune λ:
Optimal Rule - Choose λ so that

ř

i }yi ´ P̂νpxiq}2 equals
the expected value of the residual of P ‹

ν .
The optimal rule can be implemented when the expected

value does not depend on P ‹
ν itself, for example additive output

noise, yi “ P ‹
ν pxiq ` ny

i , where the expected value of the
residual is

ř

i Er}ny
i }2Hy

s. Conversely, the optimal rule cannot

be implemented when the the residual depends on P ‹
ν , that is

not available. This is for example the case of additive noise
in the input, yi “ P ‹

ν pxi ` nx
i q ` ny

i . The following heuristic
rule is commonly used in these cases [33]:

Heuristic Rule - Choose λ so that
ř

i }yi ´ P̂νpxiq}2 equals
its expected value.

The rule can be justified as follows. In the first place, it is
statistically satisfied by P ‹

ν itself. In the second place, when
the “true” operator belongs to LP

ν , the rule yields a unique
value of λ, since the sample residual of P̂ν increases with
λ (Theorem 2) and its expected value depends on }P̂ν} that
decreases with λ (Theorem 2). Finally, it is worth mentioning
that the application of Heuristic Rule can be implemented
by extending criteria that hold for the finite-dimensional case
based on the concept of equivalent degrees of freedom of
regularized estimators [63], [64].

When more hyper-parameters are added to the scheme, for
example the function w, the degree ν of the polynomial, or
parameters that specialize the inner product, it is necessary
to resort to more powerful hyper-parameter estimation tech-
niques, like empirical Bayes and marginal likelihood [65], Cp

statistic [66], k-fold cross validation [67], generalized cross
validation [68], etc.

IV. RECURSIVE COMPUTATION OF CAUSAL ESTIMATES

In the estimation of dynamical system D may be a temporal
domain and the variables x, y in y “ F pxq are functions of
time, i.e. x P L2pr0, T s;H1q, y P L2pr0, T s;H2q. It makes
sense to introduce in the estimate of F a causality constraint,
i.e. restrict ourselves to causal operators.

Definition 5: An operator F : L2pr0, T s;H1q Ñ

L2pr0, T s;H2q is said to be causal if, whenever yptq exists,
for some t P r0, T s, yptq depends only on xpτq, τ P r0, ts. l

The optimal polynomial estimate (47) is not causal, because
P̂νpξqptq is obtained as a linear combination of yiptq with
coefficients that depends on ξ P r0, T s via the inner prod-
ucts rξ, xisHx

. However, the estimate is causal for t “ T .
Consequently, a simple method to obtain a causal estimate
is to define two parametric spaces Ht

x “ L2pr0, ts;H1q,
Ht

y “ L2pr0, ts;H2q and let the estimates evolve with t. This
estimate can be computed at any t by integrating a differential
representation. Let us rewrite (47) as

ŷptq “ P̂νpξqptq “rνpξ,x, tqJM´1
λ,νpx, tqcolipyiptqq (65)

rνpξ,x, tqJ “

ν
ÿ

m“1

rowi

``

rξ, xisHt
x

˘m˘

(66)

Mλ,νpx, tq “ pλIN ` Aνpx, tqq (67)

pAνpx, tqqi,j “

ν
ÿ

m“1

`

rxi, xjsHt
x

˘m
, (68)

where rνpξ,x, 0q “ 0, Aνpx, 0q “ 0, Mλ,νpx, 0q “ λIN .
Clearly, ŷptq is a causal estimate, because it depends only on
past values of xi and yi. We can easily obtain a differential
representation by recalling that

d
dt

rxi, xjsHt
x

“rxiptq, xjptqsH1 (69)
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thus the terms in (65) can be computed by integrating the
scalar products from a null initial condition. (65) provides the
sought causal and recursive estimate of the optimal P̂νpξqptq.
This causal estimate can be easily adapted to the case of
discrete-tine systems by replacing the differential equation
with a difference equation.

V. CONNECTION WITH RKHS

In this Section we interpret the results of Section III in
the light of the theory of reproducing kernel Hilbert spaces
(RKHS) in order to establish a connection and shed more
light on the properties of the estimation framework previously
described. We specialize the abstract definition of RKHS [39],
[40] to our framework.

Definition 6: Given a set X and a Hilbert space Hy , a Hy-
valued RKHS on X is a Hilbert space H such that the elements
of H are functions f : X Ñ Hy and @x P X there exists a
positive constant Cx such that

}fpxq}Hy
ď Cx}f}H. (70)

Definition 7: A Hy-valued kernel of positive type on XˆX
is a map

K : X ˆ X Ñ BpHy;Hyq (71)

where BpHy;Hyq is the Banach space of bounded operators
Hy Ñ Hy with the uniform norm, such that @N P N, xi P X ,
ci P C, i “ 1, . . . , N , @y P Hy ,

N
ÿ

i“1

N
ÿ

j“1

cic̄j rKpxi, xjqy, ysHy
ě 0. (72)

l

A Hy-valued RKHS on X canonically defines a Hy-valued
kernel of positive type on X ˆX as follows [39], [40]. Given
x P X , define the evaluation operator evx : H Ñ Hy such
that, for any f P H

evxpfq “ fpxq. (73)

(70) guarantees that the evaluation map ev is a bounded
operator with the conjugate ev˚

x : Hy Ñ H. The reproducing
kernel K : X ˆ X Ñ BpHy;Hyq associated to H is

Kpx1, x2q “ evx1
ev˚

x2
. (74)

Lemma 2: [39] K defined by (74) is of positive type. l

Conversely, if H is a real vector space, any symmetric Hy-
valued kernel of positive type (i.e. Kpx1, x2q “ Kpx2, x1q)
defines a unique Hy-valued RKHS H whose reproducing
kernel is K (see Proposition 2.3 in [39]). If H is a complex
vector space, a kernel of positive type is always hermitian.

The first property that descends from the definition (74) of
the reproducing kernel is that @x1, x2 P X and y P Hy ,

Kpx1, x2qy “ evx1
ev˚

x2
y “ pev˚

x2
yqpx1q P Hy (75)

and consequently, @x P X , y P Hy ,

ev˚
x y “Kp., xqy P H, (76)

that defines the conjugate ev˚
x of evx from the reproducing

kernel K. The second property that immediately descends
from the definition (74) is the reproducing property

rfpxq, ysHy
“ revx f, ysHy

“ rf, ev˚
x ysH (77)

that holds @f P H, x P X , y P Hy .
We now return to the operators Hx Ñ Hy considered in

Section III. Given two Hilbert spaces Hx and Hy , it is easy to
prove that the Hilbert space LH.S. of H-S operators Hx Ñ Hy

is a RKHS (with X “ Hx).
Theorem 5: The Hilbert space LH.S. of H-S operators

L : Hx Ñ Hy is a RKHS with kernel Kpx1, x2q “

rx1, x2sHx
IHy

, where IHy
denotes the identity in Hy .

Proof: Hilbert-Schmidt operators are bounded and (10)
implies that (70) holds with Cx “ }x}Hx

. Moreover, since

rKpx, xqy, ysHy
“ }x}2Hx

}y}2Hy
ě 0 (78)

it is easy to verify that K is a Hy-valued kernel of positive type
and that Kp¨, xqy “ r¨, xsHx

y is a H-S operator Hx Ñ Hy

that satisfies the reproducing property (77) since, @L P LH.S.,
x P Hx, y P Hy , one has

rL, ev˚
x ysLH.S. “ rL, r., xsHx

ysLH.S. (79)

“

8
ÿ

k“1

rLϕk, rϕk, xsHx
ysHy

“ rLx, ysHy
.

Finally, the completion of the linear space of H-S operators in
the form

řN
k“1 Kp., ϕkqyk “

řN
k“1r., ϕksHx

yk, with arbitrary
N and tyku is exactly LH.S., since it follows from (8) that,

Lx “

8
ÿ

k“1

rx, ϕksHx
Lϕk “

8
ÿ

k“1

Kpx, ϕkqyk, (80)

with yk “ Lϕk. Since K is symmetric, uniqueness of the
kernel follows from Proposition 2.3 in [39].

Theorem 5 shows that Kpx1, x2q generates any operator
L P LH.S.. H-S operators are, in this sense, the most “natural”
space of linear operators between L2 spaces that constitute a
RKHS.

Example 3: In the case of continuous-time systems Hx “

L2pD;Rnxq, Hy “ L2pD;Rny q, the kernel of the RKHS,
Kpx1, x2q “ rx1, x2sHx

IHy
, is

rKpx1, x2qysptq “rx1, x2sHx
yptq

“

ˆ
ż

D

xJ
1 pτqx2pτq dτ

˙

yptq,

and the corresponding RKHS is the linear space of H-S
operators Lx : Hx Ñ Hy defined as Lxξ “ rξ, xsHxy where
ξ, x P Hx, y P Hy .

The essential property that connects RKHS and Volterra
series based on H-S monomials is that the Hilbert space LP

ν of
polynomial operators Pν : Hx Ñ Hy introduced in Section
II-B turns out to be a RHKS (with X “ Hx).

Theorem 6: The linear space LP
ν of polynomial operators

Pν : Hx Ñ Hy with H-S monomials of Theorem 1 is a RKHS
with kernel Kνpx1, x2q “

řν
m“1rx1, x2smHx

IHy
, where IHy

is
the identity operator in Hy .
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Proof: We already know that LP
ν is a Hilbert space of

functions Hx Ñ Hy thus we need only to prove (70). This is
straightforward to prove, since

}Pνpxq}Hy “

›

›

›

›

›

ν
ÿ

m“1

Mmpxm q

›

›

›

›

›

ď

ν
ÿ

m“1

}Mm}H.S.

›

›xm
›

›

Hm
x

ď

ν
ÿ

m“1

}Mm}H.S. }x}
m
Hx

ď

˜

ν
ÿ

m“1

}x}
2m
Hx

¸
1
2
˜

ν
ÿ

m“1

}Mm}
2
H.S.

¸
1
2

“Cx}Pν}Lp
ν
, (81)

where we have used Theorem 1. We have thus proved
that LP

ν is a RKHS. The kernel Kν is clearly of positive
type. Notice that from (4) it follows that Kνpx1, x2q “
řν

m“1rxm
1 , xm

2 sHm
x
IHy

and thus Kνp., xqy is an operator
Hx Ñ Hy in LP

ν . We can easily verify that Kν satisfies the
reproducing property (77) since, @P P LP

ν , x P Hx, y P Hy ,

rP, ev˚
x ysLp

ν
“

ν
ÿ

m“1

“

Mm, r., xm sHm
x
y
‰

LH.S.pHm
x ;Hyq

“

ν
ÿ

m“1

ÿ

Km

”

Mm pϕKm
q ,

“

ϕspmq, x
m
‰

Hm
x

y
ı

Hy

“

ν
ÿ

m“1

ÿ

Km

«

Mm pϕKm
q ,

ź

jPKm

rx, ϕjsHx
y

ff

Hy

“

ν
ÿ

i“m

«

ÿ

Km

ź

jPKm

rx, ϕjsHx
Mm pϕKm

q , y

ff

Hy

“

«

ν
ÿ

m“1

Mmpxm q, y

ff

Hy

“ rPνpxq, ysHy
, (82)

where we have used (12), and ϕKm
:“ ϕk1

b ¨ ¨ ¨ b ϕkm
.

Example 4: In the case of continuous-time systems Hx “

L2pD;Rnxq, Hy “ L2pD;Rny q, the kernel of the RKHS of
polynomial operators, Kνpx1, x2q, is

rKνpx1, x2qysptq “

ν
ÿ

m“1

prx1, x2sHxqmyptq

“

n
ÿ

m“1

ˆ
ż

D

xJ
1 pτqx2pτq dτ

˙m

yptq,

and the corresponding RKHS is the linear space of polynomial
operators P x

ν : Hx Ñ Hy defined as P x
ν ξ “

řν
m“1rξ, xsmHx

y
where ξ, x P Hx, y P Hy .

As a consequence of Theorem 6 we can apply the results
concerning RKHS to LP

ν . The optimal polynomial estimator
(47) can be rewritten, by using the notation of the RKHS LP

ν

P̂ν “rowipKνp., xiqqM´1
λ,νcolipyiq

“

N
ÿ

i“1

Kνp., xiqpM´1
λ,νqicolipyiq (83)

where we have denoted Mλ,ν “ pλIN `Aνpxqq P RNˆN , and
pM´1

λ,νqi the i-th row of Mλ,ν . This result is a consequence of

the representer theorem for RKHS (Theorem 4.2 in [61]), see
also [2], [32], [43].

Theorem 7: [61] Given a set tpxi, yiqu, xi P Hx, yi P Hy ,
i “ 1, . . . , N , and the functional Jν

N in (37), the minimizer of
Jν
N , P̂ν “ argminLP

ν
Jν
N pPνq can be represented as

P̂ν “

N
ÿ

i“1

Kνp., xiqĉi, ĉi P Hy. (84)

It is immediate to verify that (84) coincides with (47)
with Mλ,νcolipĉiq “ colipyiq. In other words, the optimal
polynomial estimation derived in Theorem 3 and Corollary 1
coincides with the solution arising from the theory of RKHS.

VI. NUMERICAL EXAMPLE

In this example we show that a good estimate of the input-
output behavior of a nonlinear system can be obtained with
a moderate computational burden when the training set is
based on input functions that are similar to the ones to be
estimated. This similarity condition is reasonable, since in the
nonlinear case the only way to “learn” the behavior of the
system is from similar cases, a restriction that can be lifted for
linear operators. We also illustrate how to set the regularization
parameter λ from prior information of the measurement noise.

We consider a Volterra-Lotka system with polynomial non-
linearities and measurement noise, described by

9z1 “ ´ a11z1 ` a12z1z2 (85)
9z2 “a21z1 ´ a22z1z2 ` x (86)
y1 “z1 ` n1pωq (87)
y2 “z2 ` n2pωq, (88)

where x P Hx “ Lpr0, T s;Rq is a non-negative input, the
parameters are a11 “ a22 “ 0.5, a12 “ a21 “ 0.25, and
we assume y “ py1, y2q P Hy “ Lpr0, T s;R2q are available
noisy measurements of the state pz1, z2q. The measurement
noise n “ pn1, n2q P Hy chosen in the example is a colored
stochastic process generated as

9nhptq “ ´annhptq ` bnωhptq, (89)

for h “ 1, 2, with an “ ´2; bn “ 0.1 and ωh mutually
independent white-noise processes. Notice that above, in ac-
cordance with standard notation, the subscripts h “ 1, 2 denote
state, output and noise components, and not their realizations,
which will be denoted with subscript letter i in what follows.
Clearly, if F pxq is the true nonlinear operator of the Volterra-
Lotka system, Er}y´F pxq}2Hy

s “ Er}n}2Hy
s. The noise can be

represented as n “ FN pω1, ω2q, where FN is the H-S operator
described by the equations (89). From the white-noise theory it
is known that Er}n}2Hy

s “ }FN }2H.S. (see for example Lemma
4, [53]). Therefore, the knowledge of the noise parameters
allows to apply the Optimal Rule of Section III-D to choose
the optimal value of λ. The norm of FN can be computed as

}FN }2H.S. “

ż T

0

ż t

0

›

›

›
eanpt´τqbn

›

›

›

2

R
dτ dt, (90)

and, with T “ 250 and the parameters listed above we obtain
}FN }2H.S. “ 1.25.
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Fig. 1. Noisy output yi on 10 samples of the training set compared to ŷi generated by the estimate (59) of the Volterra series for λ “ 2 ¨ 10´4.
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ŷ
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Fig. 2. Noise-less output y of the test function compared to (noisy)
ŷ generated by the estimate (59) of the Volterra series for λ “ 2 ¨

10´4. The value of λ has been chosen according to the Optimal Rule
of Section III-D.

We used a training set of N “ 100 harmonic functions
having form xiptq “ 1`sinpθit`ϕiq, where θi P r0, 15π

T s, ϕi P

r0, 1s are random variables uniformly distributed, T “ 250 is
the time horizon of the input trajectory, and i “ 1, . . . , N . The
estimate was computed by using the Volterra series estimate
(59) with the rational kernel (61)

pAw,8q
pi,jq

pxq “
rxi, xjsHx

w ´ rxi, xjsHx

.

with w “ 4maxi,jtrxi, xjsqHx
and M̂0 “ ȳ ´ P̂w,8x̄.

A sample of 10 noisy output trajectories yi in the training set
is plotted in the phase state for t P r0, T s in Fig. 1, together
with the corresponding estimates obtained by the estimator
(59)–(61) for λ “ 2 ¨ 10´4 and w.

The same estimator is used on the input test function xptq “

1` sinp 8π
T t`0.5q. Fig. 2 shows the true and estimated output

for this test function. Notice that the true output is plotted
without measurement noise, whereas the estimated output is
not as smooth because of the noise in the training set.

The choice λ “ 2 ¨ 10´4 for these plots was made in
accordance to the Optimal Rule of Section III-D, based on

−1

−0.5

0

0.5

1

1.5

2

2.5

−7 −6 −5 −4 −3 −2 −1 0

log10(λ)

avg. ‖yi − ŷi‖2training

‖y − ŷ‖2test

E[‖n(ω)‖2Hy
]

Fig. 3. The average residual of the training set for the Volterra-Lotka
system, 1

N

řN
i“1 }yptq ´ ŷptq}2, increases with λ as predicted by the

theory (log scale on the y´axis). In presence of noise, the error on the
test input has a minimum when the residual equals the expected value
of the norm of the noise, at λ » 10´3, in accordance with the Optimal
Rule of Section III-D.

the knowledge of the measurement noise. Fig. 3 shows that
λ “ 2 ¨ 10´4 is the value that makes the average norm of
the residuals 1

N

řN
i“1 }yiptq ´ ŷiptq}2 equal to Er}n}2Hy

s “

}FN }2H.S. “ 1.25 (the vertical axis in this plot is in logaritmic
scale). We notice that this value of λ allows to obtain an error
norm in the test function very close to the minimum that is
obtained approximately for λ P r10´4, 10´3s. We remark that
this choice of the regularization parameter is based on some
a priori knowledge of the measurement noise.

Next, we compare causal and non-causal estimates for
this system. The difference between the two cases is more
evident with larger levels of measurement noise, thus the
plots in Fig. 4 have been obtained with bn “ 0.4 that yields
}FN }2H.S. “ 19.98. In this case we used the exponential kernel
(63), pAw,8q

pi,jq
pxq “ e

1
κptq

rxi,xjsHx ´ 1, with

κptq “ max
i,j

␣

rxi, xjsHt
x

(

(91)
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Fig. 4. Average residuals and errors at varying λ for causal and
non causal estimates (log scale on the y´axis). Causal estimates
have larger residuals but smaller errors. Notice that in both cases the
minimum is reached when the residual equals the norm of the noise.

as a normalization factor to avoid numerical instabilities.
Fig. 4 shows that causal estimates have larger error on the
training set, which is not surprising because of the additional
causality constraint, but smaller errors on the test set. The
error reduction when using the causal estimate, although not
so evident from the logarithmic plot, is significant (around
15%). We notice that also with the exponential kernel for
both estimates the minimum error on the test set is obtained
when the error on the training set equals the norm of the
measurement noise, in accordance with the Optimal Rule of
Section III-D.

VII. CONCLUSIONS

In this work, we have presented a general estimator for
nonlinear unknown input-output operators. There are several
crucial aspects that warrant further investigation, including the
selection of the regularization parameter in the presence of
input noise, the determination of the Volterra series kernel
based on prior information, and the potential extension of
the estimator to a domain beyond the training set, such as
unbounded time intervals.

APPENDIX

A. Proof of Theorem 1
It is clear that the linear combination of polynomials (14) is

still a polynomial. It is also immediate to check that (19) is an
inner product and (20) is a norm. The non trivial point to prove
is that the operators Mm, that by definition form a linear space
of H-S linear operators Hm

x Ñ Hy , have a H-S norm which
does not depend on the choice of an orthonormal basis tϕku

of Hx. In other words, we need to prove that }Mi}
2
H.S. does

not depend on tϕku. This can be done similarly to the linear
case (see for example [69], Lemma 3.4.2) thanks to property
(3) in Lemma 1. In fact, given two multi-indexes Ki and Li

and denoting ΦKi
“ ϕk1

b . . . b ϕki
, ΦLi

“ ϕl1 b . . . b ϕli ,
(3) implies that

rΦKi
,ΦLi

sH i
x

“ rϕk1 , ϕl1sHx ¨ . . . ¨ rϕki , ϕlisHx (92)

which is 1 if and only if Ki “ Li. In plain words, ΦKi
is an

orthonormal basis of H i
x and the standard proof applies. l

B. Proof of Theorem 2
Since the training set is normalized we can assume M̂0 “ 0.

Let ∆L P LH.S. and ϵ P R.

d
dϵ

JN pλ, L̂ ` ϵ∆Lq

ˇ

ˇ

ˇ

ˇ

ϵ“0

“
d
dϵ

˜

N
ÿ

i“1

”

yi ´ L̂xi ´ ϵ∆Lxi, yi ´ L̂xi ´ ϵ∆Lxi

ı

Hy

`λ
”

M̂1 ` ϵ∆L, M̂1 ` ϵ∆L

ı

H.S.

¯

ϵ“0
(93)

“

N
ÿ

i“1

´2ryi ´ L̂xi,∆LxisHy
` 2λrM̂1,∆LsH.S.. (94)

From (93) it follows that @∆L P LH.S., the functional JN is
continuous with respect to L and convex, in fact

d2

dϵ2
JN pλ, M̂1 ` ϵ∆Lq

2

ˇ

ˇ

ˇ

ˇ

ˇ

ϵ“0

“

N
ÿ

i“1

}∆Lxi}
2
Hy

` λ}∆L}2H.S. ą 0,

(95)

and from (94) we obtain that the condition:

@∆L P LH.S. :
N
ÿ

i“1

ryi ´ M̂1xi,∆LxisHy
“ λrM̂1,∆LsH.S.

(96)
yields the global minimum of JN pλ, Lq. Let tϕku be an
orthonormal basis of Hx. By using (11) in (96) we obtain
with simple derivations

8
ÿ

k“1

«

N
ÿ

i“1

rxi, ϕksHxpyi ´ M̂1xiq ´ λM̂1ϕk,∆Lϕk

ff

Hy

“ 0.

(97)

Since (97) holds @∆L P LH.S., the condition becomes

@k : M̂1ϕk “
1

λ

N
ÿ

i“1

rxi, ϕksHx
pyi ´ M̂1xiq (98)

In order to solve (98) we start by solving for M̂1xi. From (8)
we obtain

λM̂1xi “

N
ÿ

j“1

rxi, xjsHx
yj ´

N
ÿ

j“1

rxi, xjsHx
M̂1xj . (99)

Let aij “ rxi, xjsHx
, A :“ colNi“1rowN

j“1paijq P RNˆN ,
Mpλq :“ pλIN ` Aq. (99) can be rewritten as

λ colipM̂1xiq “A colipyiq ´ A colipM̂1xiq,

colipyi ´ M̂1xiq “λMpλq´1colipyiq. (100)

Denoting rJ
k “ rowN

i“1rxi, ϕksHx , and , by replacing (100) in
(98) we get

@k : M̂1ϕk “ rJ
k Mpλq´1colipyiq, (101)

that provides the sought expression of the best linear estimator.
Finally, Assumption 2 together with (101) guarantees that
pM̂1ϕkqptq exists @t P D and @k. l
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