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Abstract: The advent of collaborative and soft robotics has reduced the mandatory adoption of 
safety barriers, pushing human–robot interaction to previously unreachable levels. Due to their 
reciprocal advantages, integrating these technologies can maximize a device’s performance. 
However, simplifying assumptions or elementary geometries are often required due to non-linear 
factors that identify analytical models for designing soft pneumatic actuators for collaborative and 
soft robotics. Over time, various approaches have been employed to overcome these issues, 
including finite element analysis, response surface methodology (RSM), and machine learning (ML) 
algorithms. Based on the latter, in this study, the bending behavior of an externally reinforced soft 
pneumatic actuator was characterized by the changing geometric and functional parameters, 
realizing a Bend dataset. This was used to train 14 regression algorithms, and the Bilayered neural 
network (BNN) was the best. Three different external reinforcements, excluded for the realization 
of the dataset, were tested by comparing the predicted and experimental bending angles. The BNN 
demonstrated significantly lower error than that obtained by RSM, validating the methodology and 
highlighting how ML techniques can advance the prediction and mechanical design of soft 
pneumatic actuators. 
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1. Introduction 
In recent decades, in the field of robotics, human–machine interaction has increased 

with both the advent of collaborative robotics [1] and soft robotics [2]. Robots are now 
allowed to operate in shared workspaces with operators [3,4], eliminating the need for 
dedicated spaces with safety barriers. Indeed, human–machine interaction has been 
extended into confined spaces [5] with, for example, path planning [6,7] and emotional 
intelligence [8] algorithms. This extends the adaptability of robots even in unstructured 
environments, as it endows robots with unexpected capabilities compared to the past 
through high degrees of freedom, such as stretching [9], bending [10,11], twisting [12], 
locomotion [13–15], jumping [16], swimming [17], climbing [18], and growing [19]. This is 
possible using silicone rubbers [20], which allow for soft and easily deformable actuators. 
The integration of these technologies can maximize the performance of a device, thanks 
to the integration of the advantages of each technology. For instance, utilizing the benefits 
mentioned for cobots equipped with soft end-effectors enables the manipulation of 
delicate objects with extreme dexterity and security [21–23]. 

Several types of actuations have been proposed over the years [24], but the pneumatic 
one is the most adopted [25]. Indeed, it enables actuators to be made lightweight, safe, 
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inexpensive, easy to manage, and with a high power-to-weight ratio. Actuators of this 
type are known as soft pneumatic actuators (SPAs), and can be used without [26] or with 
an external [27] or internal [13] reinforcement to limit and guide their deformation. 

On the other hand, there are several disadvantages involving the complex 
identification of analytical models [28,29] for designing SPAs, since they are affected by 
non-linearities due to air compressibility, silicone rubbers’ viscoelastic behavior, 
hysteresis [30,31], friction [32] between silicone and reinforcement when used, and large 
deformations. Over the years, analytical models have been formulated to describe the 
behavior of SPAs [33]. Models are often complex and require the identification of 
parameters. In addition, simplifying assumptions must usually be made or simple 
geometries must be used to describe and predict the actuator behavior. 

An approach for achieving a predictive model for SPAs is response surface 
methodology (RSM) [34,35]. Firstly, it allows the planning of testing campaigns to 
minimize the resources used and the time required by identifying a predictive polynomial 
model of the analyzed response (e.g., bending angles of the SPA) based on the input 
parameters (geometric or functional parameters of the SPA) [36,37]. Secondly, it aims to 
simplify complex analytical models that have already been identified: several simulations 
of an identified model are run, and with regression methods, the responses fit simpler 
models. 

Alternatively, static finite element analysis (FEAs), i.e., simulations with constant and 
uniform application of pressure to surfaces [13] or transient [38] with fluid–structure 
interaction, can be employed to predict SPA behavior. However, simulations are 
computationally expensive and time-consuming for numerical resolution. Integration 
between FEAs and RSM is helpful to minimize the number of simulations needed to 
characterize SPAs [39]. 

A data-driven approach involves machine learning algorithms that correlate input 
data (independent variables) with output data (dependent variable) without adopting 
simplifying assumptions for modeling the actuator. Artificial neural networks (ANNs) 
have been implemented to describe the workspace of SPAs [40–42]. In addition, ANNs can 
also control an SPA by continuously learning [43]. Approaches between FEAs and ANNs 
adopt data for training that are derived directly from the numerical results of simulations 
[44]. Alternatively, the accuracy of ANN predictions can be improved with a hybrid 
approach between model-free and an analytical model, called a physics-informed 
recurrent neural network [45]. An integration approach between ANNs and fuzzy logic, 
known as fuzzy neural networks, allows the replacement of the neural network 
pretraining with knowledge-based fuzzy logic [46]. Another work [47] shows how the 
control performance improves with a fuzzy neural network sliding control, even when 
expanding the actuation range to 4.0 bar. Finally, it is possible to control an SPA with four 
chambers by the predictions of an ANN and fuzzy logic methodology to integrate several 
position controllers into one valid control over the whole range [48]. 

In this work, the presented SPA consists of an inner tube made of hyper-elastic 
silicone rubber, an external reinforcement in thermoplastic polyurethane (TPU), and a 
polylactic acid (PLA) connector. A Bend dataset was created to train different regression 
algorithms. In this dataset, responses regarding bending angles as a function of geometric 
parameters of the reinforcement and feeding pressure are reported. The Bilayered neural 
network (BNN) was the best model, resulting in the smallest error in both training and 
validation. Hence, to validate the methodology, the BNN was adopted for the mechanical 
design of joints of three external reinforcements, which had not previously been adopted 
to create the Bend dataset. 

The mechanical design of the SPA, adopting the ML approach, and creating a proper 
dataset based on experimental tests represent the novelty of the work. The following items 
represent the main contents of the work: 
• The realization of the Bend dataset; 
• The adoption of the ML to train 14 regression algorithms on the dataset; 
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• The identification of the best algorithm for the mechanical design of the proposed 
SPA; 

• The experimental test of the methodology on three tubes and reinforcements that 
differ in the joints’ length, mass, geometric, and functional parameters. 
The paper is organized as follows. Section 2 describes the rationale and the 

realization of the SPA. Section 3 explains the testing campaign to realize the Bend dataset 
and the training phase to identify the best regression algorithm. Experimental testing of 
the methodology is analyzed in Section 4. Sections 5 and 6 present a discussion and the 
conclusions, respectively. 

2. Materials and Manufacturing Process 
2.1. Rationale of the SPA 

The rationale of the SPA is detailed in a preliminary work [36]. The SPA consists of 
an inner tube, an external reinforcement, and a connector. The reinforcement contains the 
radial deformation and guides, by cuts, the deformation of the actuator when pressurized. 
Figure 1a details the cuts made on the external reinforcement to create geometric 
asymmetries between the two sides of the SPA. This results in an asymmetry in bending 
stiffness due to an inextensible layer (the part of the external reinforcement not involved 
in the cuts). The actuator bends toward the side with greater stiffness, as shown in Figure 
1b. In addition, Figure 1c specifies how the single segment is characterized by an open 
sector (Lo) and a closed sector (Lc). The geometric parameters that define the reinforcement 
are the length of the segment (L), the ratio open—total (R), and the closing angle of the 
inextensible layer (Θ). 

Thus, L is the sum of the open and closed sector length: 𝐿 = 𝐿ை  𝐿 (1)

R is the ratio between the open sector and total segment length, following Equation 
(2). 𝑅 = 𝐿ை𝐿  (2)

 

 
  

(a) (b) (c) 

Figure 1. The adopted SPA: (a) external reinforcement with cuts to create geometric asymmetries; 
(b) example of SPA bending under pressurization toward the direction of the inextensible layer; (c) 
details of geometric parameters of the reinforcement, with green indicating the inextensible layer 
and red the closing angle. 

2.2. Component Realization 
The inner tube in silicone rubber R PRO20 (Reschimica, Barberino Tavarnelle, Italy) 

is made by injection molding after making the base–catalyst mixture in a 1:1 ratio and 
removing air bubbles, as in [36]. Its dimensions are the outer diameter, thickness, and tube 
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length of 24, 3, and 115 mm, respectively. One end is closed; the other houses the Polylactic 
acid (PLA) connector and shows a race to ensure the pneumatic and mechanical seal. 
Reinforcements made of TPU 95A (SUNLU, Hong Kong, China) were 3D-printed with the 
following parameters: printing speed of 40 mm/s; inner and outer wall speeds of 20 mm/s; 
extruder temperature of 220 °C; printing plate temperature of 65 °C; and filling percentage 
of 100% according to concentric configuration. All reinforcements have an outer diameter 
of 28 mm and a thickness of 2 mm. The only functional parameter is the feeding pressure, 
P. The variable geometric parameters of the reinforcement cuts are L, R, and Θ. Table 1 
reports the chosen parameters and their ranges of variation. 

Table 1. Functional and geometrical parameters with their ranges of variation. 

Symbol Name Values Unit 
P Feeding Pressure 0.0–1.2 (bar) 
L Segment Length 4.0–10.0 (mm) 
R Ratio Open—Total 0.25–0.75 - 
Θ Closing Angle 40–120 (°) 

A total of twenty-seven external reinforcements, corresponding to the twenty-seven 
combinations of the geometric parameters shown in Table 2, were designed by a 3D CAD 
modeler and realized. Figure 2 shows the reinforcements after the 3D-printing process. 
All these prototypes have five closed sectors and consequently six open sectors. For each 
prototype, the same closed and open sectors are repeated five and six times, respectively. 
Bending is allowed by the open sectors alone, while the closed sectors contain the radial 
expansion of the inner tube. 

Table 2. Values of the geometrical parameters for the twenty-seven external reinforcements. 

Reinforcement L (mm) R (-) Θ (°) Reinforcement L (mm) R (-) Θ (°) Reinforcement L (mm) R (-) Θ (°) 
1 4 0.25 40 10 4 0.25 70 19 4 0.25 100 
2 7 0.25 40 11 7 0.25 70 20 7 0.25 100 
3 10 0.25 40 12 10 0.25 70 21 10 0.25 100 
4 4 0.50 40 13 4 0.50 70 22 4 0.50 100 
5 7 0.50 40 14 7 0.50 70 23 7 0.50 100 
6 10 0.50 40 15 10 0.50 70 24 10 0.50 100 
7 5 0.35 50 16 10 0.50 85 25 10 0.65 120 
8 7 0.75 40 17 7 0.75 70 26 7 0.75 100 
9 10 0.75 40 18 10 0.75 70 27 10 0.75 100 

 

  
Figure 2. Prototypes with the geometric parameters in Table 2 after printing and support removal. 

3. Dataset Construction and Regression Algorithms 
3.1. Camera Calibration 

Calibration of the camera employed was performed preliminary to the execution of 
the bending tests for the dataset creation. The RGB (Apple, Cupertino, CA, USA) camera 
used was an A2215 [49] with 12-megapixel resolution, 120° field of view, HD 1080p/60fps, 
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autofocus, and automatic image stabilization. The camera was set in a fixed position in 
front of the test bench where the actuator samples were placed. Fifteen images were im-
ported into the Camera Calibration toolbox of MATLAB R2023b. In these images, the 
checkerboard (Figure 3a) with a characteristic dimension of 20 mm was shifted slightly to 
calibrate the camera and map the environment around it. In Figure 3b, there is the 3D 
reconstruction of the external world with the camera positioned at the point (0,0,0). In the 
same image, it is also possible to appreciate the position and orientation of the checker-
board in each of the images acquired and used in the calibration phase. Figure 3c shows 
the average error in pixels for each image adopted. The maximum error, shown by the 
solid red line, and the average error, in the orange dotted line, are 0.27 and 0.23 pixels, 
respectively, corresponding to 0.072 and 0.061 mm. This result was considered satisfying 
for the executed calibration. With these calibration parameters, it is possible to transform 
the coordinates of an image pixel into the respective X–Y coordinates and calculate the 
positions, displacements, and bending angles of the SPA. 

(a) (b) 

 
(c) 

Figure 3. Camera calibration results: (a) the adopted checkerboard in one of the positions used for 
the camera calibration; (b) real-world 3D reconstruction with the camera positioned at the point 
(0,0,0); (c) mean errors of the fifteen images used in the calibration with the maximum error shown 
by the red solid line and the mean error the orange dotted line. 

3.2. Bend Dataset 
After calibration, a test campaign was carried out to build the Bend dataset. In each 

test, hereinafter called trial, there was a unique combination of the geometric and func-
tional parameters of the external reinforcement. The twenty-seven external reinforce-
ments were tested at seven different pressure levels for 189 tests and repeated three times, 
for an overall amount of 567 trials. In each of them, the average of the six bending angles 
of the open sectors, identified for the same parameter combination, was calculated. In the 
trials, the pressure was set with a precision regulator (SMC IR1220-N01-A, maximum 
pressure of 4.0 bar, SMC Corporation, Tokyo, Japan) and measured with a pressure 
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manometer (maximum pressure 2.5 bar, sensitivity 0.05 bar). The images were imported 
and processed in MATLAB R2023b. The parameters from the calibration results were used 
in the image analysis. The undistorted [50] and imlocalbrighten filters [51] can be used before 
identifying the bending angles of each test. The first filter rectifies errors induced by lens 
distortion; thus, the algorithm maps the coordinates of the undistorted output image to 
the input camera image using distortion coefficients. The second filter improves image 
contrast: a contrast adjustment realigns the image intensity values to the full display range 
of the data type. Thus, with an image with good contrast, which has more pronounced 
differences between black and white, it is easier to identify points of interest in image 
analysis. 

Figure 4a shows the raw image acquired for reinforcement 6 at a pressure P of 1.2 
bar, while Figure 4b and 4c show the same image with distortion correction and contrast 
enhancement, respectively. To better understand the influence of the filters, histograms of 
grayscale pixel intensities are shown in Figure 4d–f for each image. The differences that 
occurred by the application of the first filter are not appreciable to the naked eye. With 
histograms, it is possible to understand how the filter acts on the intensity of some pixels, 
correcting the distortion of the lenses. Furthermore, the minimal changes made during 
this correction justify the good results of the calibration. The second filter, on the other 
hand, marks contrast, especially in the darker areas of the image, as is evident from the 
reduction in the number of pixels in the low-intensity areas. 

Finally, from the undistorted ImagePoints coordinates (in pixels) and calibration pa-
rameters, the image2world2d function was used to return the WorldPoints coordinates (X 
and Y in mm) by rigid transformation. Following this process, the dataset was available, 
and for each quatern of values of P, L, R, and Θ, there was given output bending angle of 
the open sector, α. In total, 189 combinations of four inputs were associated with the cor-
responding output bending angle. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. Example of test number 6, at P = 1.2 bar, L = 10 mm, R = 0.5, Θ = 40°: (a) raw image; (b) 
image after undistorted filter application; (c) image after imlocalbright filter application and detail 
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about open sector bending angle α. Histogram of pixel intensities for: (d) raw image; (e) undistorted 
image; (f) image with contrast improved. 

3.3. Regression Algorithms 
After creating the Bend dataset, the trials were divided 80% into training and 20% 

into validation [52]. Next, with the Regression Learner toolbox in MATLAB R2023b, inputs 
and outputs were normalized in the range 0–1 and set to analyze the performance of 14 
regression algorithms. The results of root mean square error (RMSE) for the training and 
validation phases, training time, and model size are shown in Table 3. RMSE is defined as 
the standard deviation of the residuals, according to Equation (3): 

𝑅𝑀𝑆𝐸 = ඩ൫𝛼௫ − 𝛼൯ଶ𝑛
ୀଵ  (3)

where αexp and αpre are the experimental and predicted responses, while n is the number 
of observations. The square elevation of the residuals prevents positive and negative val-
ues from canceling each other out. In addition, with this parameter, errors of greater value 
are amplified; therefore, they allow methods involving more significant errors to be dis-
carded. Ideally, an RMSE value of 0 indicates a perfect fit between the measured response 
and that predicted by the algorithm. 

Table 3. Performance results for different regression algorithms. 

Algorithm Training RMSE (°) Validation RMSE (°) Training Time (s) Model Size (kB) 
Coarse Tree 3.84 3.35 10.90 3 
Medium Tree 2.68 1.84 12.05 4 
Fine Tree 2.12 2.51 13.34 8 
Linear SVM 2.50 1.99 8.89 8 
Quadratic SVM 1.48 1.37 7.37 6 
Cubic SVM 1.38 1.22 6.79 6 
Medium Gaussian SVM 1.62 1.35 25.31 6 
Coarse Gaussian SVM 2.44 1.89 24.20 7 
SVM Kernel 3.37 2.48 5.20 9 
Efficient Linear Least Square 2.38 1.97 22.95 11 
Boosted Trees 1.84 1.49 10.90 153 
Bagged Trees 2.07 1.33 8.71 165 
Wide Neural Network 0.92 0.98 10.54 10 
Bilayered Neural Network 0.83 0.73 3.07 12 

The algorithm with the lowest RMSE was the Bilayered neural network (BNN) (in 
bold in Table 3), which is composed of two layers with twenty-five neurons fully con-
nected and a rectified linear unit (ReLU) activation function. This algorithm showed a 
minimum training time of only 3.07 s, the shortest training time of the algorithms, and a 
model size of 12 kB. 

Figure 5a shows the comparison between the predicted and true responses for the 
trials used for training. The values cluster near the bisector of the first quadrant, showing 
low deviations. To better understand the errors made, Figure 5b shows the residuals (dif-
ference between true and predicted responses) as a function of true responses. At zero 
pressure, i.e., for a bending angle of 0°, an error is made with BNN’s predictions. These 
residuals increase as the experimental response increases, but are at most 3.62°. In the 
entire range of the true response (0–30°), the limited values of the residuals justify the 
possible use of BNN in the predictions. Thus, these images show that the BNN can predict 
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responses of the bending angle α as a function of the combinations of the four adopted 
parameters. 

  
(a) (b) 

Figure 5. Training results for the BNN: (a) comparison between predicted and experimental bending 
angles; (b) residual vs. true response. 

Turning to the validation, in Figure 6a,b, the plots of the comparison between the 
predicted and true response and the residuals as a function of the true response are pre-
sented. In this case, the residuals are quite constant as a function of the true response, and 
the error is at most 2.72°. Once again, the BNN can predict the true response with a small 
absolute error. 

  
(a) (b) 

Figure 6. Validation results for the BNN: (a) comparison between predicted and experimental bend-
ing angles; (b) residual vs. true response. 

4. Experimental Results 
4.1. Experimental Tests 

Experimental tests were conducted to exclude any overfitting of the BNN on the data 
adopted for training. Specifically, three new external reinforcements were designed and 
realized. Reinforcements I and II had the same 115 mm silicone rubber tube as the previ-
ous tests, while reinforcement III had a longer one of 180 mm. In this way, it was possible 
to see if the predictions were acceptable even with different SPA lengths and thus different 
masses of tubes and reinforcements. Also, the parameter values of the joints, reported in 
Table 4, differed from those used in constructing the dataset. The parameter N, i.e., the 
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number of open sectors in each joint, was also added to this analysis. Another advantage 
of this SPA is the possibility of managing the number of open sectors in each joint to in-
crease or decrease the bending angle. The purpose is to quantify the average absolute error 
committed between each joint’s predicted and experimental bending angles. 

Table 4. Parameter values for the external reinforcements used in the experimental test. 

Reinforcement Joint 
Parameters 

L (mm) R (-) Θ (°) N (-) 
I 1 5.0 0.65 82 6 

II 
1 10.0 0.70 70 3 
2 10.0 0.60 70 2 
3 5.0 0.60 70 2 

III 

1 5.2 0.50 60 2 
2 5.2 0.60 54 2 
3 10.0 0.65 86 2 
4 8.0 0.40 74 2 
5 8.0 0.60 64 2 

4.2. Comparison between BNN and RSM 
The SPA with reinforcements I and III was mounted vertically, as for the tests con-

ducted for the dataset construction, while the one with reinforcement II was mounted 
horizontally. This was done to assess whether the predictions could be made by neglecting 
the gravitational effects of the different SPA assemblies. Figure 7a–i show the deformation 
states of the three reinforcements at 0.4, 0.8, and 1.2 bar. 

The same image analysis followed to construct the dataset was adopted to quantify 
the experimental joint bending angles (αexp) of each of the three reinforcements. The pa-
rameter values of each joint were used to predict the bending angle by both using BNN 
(αBNN) and a previously identified model with RSM (αRSM) [36]. The experimental and pre-
dicted angles of the joints are shown in Table 5. Absolute errors for BNN (ΔαBNN) and RSM 
(ΔαRSM) were calculated with Equations (4) and (5). 𝛥𝛼ேே = 𝛼௫ − 𝛼ேே (4)𝛥𝛼ோௌெ = 𝛼௫ − 𝛼ோௌெ (5)

The maximum absolute error was 8.20° for BNN and −8.85° for RSM. However, eval-
uating the average error for reinforcements I, II, and III results in 2.72°, 2.80°, and 2.71° for 
BNN and 4.55°, 3.91°, and 3.14° for RSM, respectively. These values give further validation 
to the soft joint design approach by the BNN algorithm. Figure 8 plots the absolute errors 
as a function of pressure for each of the three reinforcements analyzed to view and com-
pare the results of Table 5 easily. In these figures, the errors have been indicated with Δα, 
where the subscripts denote the reinforcement and the joint’s number to which it refers, 
respectively. Figure 8a shows that the error with the BNN (black circles) for reinforcement 
I seems to have a negative linear trend. However, Figure 8b shows more variability for the 
absolute errors related to reinforcement II. Only for the predictions of joint 2 (blue circles) 
is there a negative linear trend, while for joint 1 with the RSM, there is a positive linear 
trend. Instead, for reinforcement III, analyzed in Figure 8c, the error obtained on joint 2 
(blue circles), joint 4 (green circles), and joint 5 (purple triangles) with the BNN remains 
relatively constant. The error shows a positive linear trend for the RSM prediction on joint 
4 (gray stars). 
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(a) (b) (c) 

 
(d) (e) (f) 

(g) (h) (i) 

Figure 7. Deformation configurations for reinforcement: (a) I at 0.4 bar; (b) I at 0.8 bar; (c) I at 1.2 
bar; (d) II at 0.4 bar; (e) II at 0.8 bar; (f) II at 1.2 bar; (g) III at 0.4 bar; (h); III at 0.8 bar; (i) III 1.2 bar. 

Table 5. Experimental angles, predicted angles, and absolute errors for BNN and RSM in experi-
mental tests on reinforcements I, II, and III at 0.4, 0.8, and 1.2 bar. All bending angles and absolute 
errors are in (°). 

Reinforcement Joint 0.4 bar 0.8 bar 1.2 bar 
αexp αBNN ΔαBNN αRSM ΔαRSM αexp αBNN ΔαBNN αRSM ΔαRSM αexp αBNN ΔαBNN αRSM ΔαRSM 

I 1 20.82 18.00 2.82 25.80 −4.98 45.82 45.42 0.40 51.60 −5.78 80.88 85.82 −4.94 78.00 2.88 

II 
1 15.45 12.66 2.79 24.30 −8.85 44.75 40.49 4.26 49.20 −4.45 73.10 71.51 1.59 74.10 −1.00 
2 10.86 9.22 1.64 16.20 −5.34 24.60 27.53 −2.93 32.40 −7.80 45.56 51.52 −6.06 49.00 −3.54 
3 8.18 8.81 −0.63 9.26 −1.08 16.14 14.36 1.78 18.64 −2.50 27.75 31.30 −3.55 28.12 0.63 

III 

1 6.57 5.94 0.63 9.40 −2.83 22.76 14.56 8.20 19.00 3.76 30.49 27.63 2.86 28.60 1.89 
2 10.94 5.58 5.36 10.06 0.88 20.87 14.70 6.17 20.24 0.63 33.52 28.09 5.43 30.56 2.96 
3 10.36 7.36 3.00 16.20 −5.84 27.97 23.86 4.11 32.41 −4.44 48.23 48.13 0.10 49.00 −0.77 
4 10.22 9.37 0.85 12.70 −2.48 26.93 27.28 −0.35 25.54 1.39 45.55 44.64 0.91 38.56 6.99 
5 8.50 7.48 1.02 13.54 −5.04 23.77 22.45 1.32 27.24 −3.47 44.89 45.21 −0.32 41.12 3.77 
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(a) (b) 

 
(c) 

Figure 8. Absolute errors between experimental and predicted bending angles for BNN and RSM 
as a function of feeding pressure for (a) reinforcement I, (b) reinforcement II, and (c) reinforcement 
III. 

5. Discussion 
Characterization conducted with a model-free approach performed better than one 

with RSM [36]. Both regression algorithms are data-driven and are based on experimental 
responses. The BNN required a dense campaign of tests to build the Bend dataset, while 
RSM minimized the number of trials to be conducted. It is true that with the second ap-
proach, SPA behavior can be identified with less time and few resources expended, but 
greater errors are made. 

The errors in the experimental tests are described in the previous section, and here 
the relative percentage errors are quantified. Concerning Table 5 and graphs in Figure 8, 
in reinforcement I, the bending angles are 20.82° at 0.4 bar, 45.82° at 0.8 bar and 80.88° at 
1.2 bar. The absolute errors of 2.82°, 0.40° and 4.94° with the BNN are equal to a relative 
error of 13.54%, 0.87% and 6.11%, respectively. With the values predicted by RSM, how-
ever, the errors rise to 23.92%, 12.61% and 3.56%. 

For reinforcement II, the maximum relative errors are for joint 1 at 0.4 bar and for 
joint 2 at 0.8 bar and 1.2 bar for both algorithms. At these joints and pressures, the bending 
angles are equal to 15.45°, 24.60° and 16.14°. Specifically, the relative errors are 18.6%, 
11.91%, and 13.33% for the BNN and reach 57.28%, 31.71% and 7.79% for RSM. 

Reinforcement III, on the other hand, shows a relative error of 48.99% for joint 2 at 
0.4 bar, 36.03% at 0.8 bar for joint 1, and finally 16.20% again for joint 2 at 1.2 bar for the 
BNN. The maximum relative errors with RSM are 59.29% at 0.4 bar for joint 5, 15.87% at 
0.8 bar for joint 3, and finally 15.35% for joint 4 at 1.2 bar. 
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It emerges that the largest errors occur at lower pressures when the SPA bending 
angles are smaller. This means that for the same absolute error, there is more influence on 
the relative error at low deflections. However, even when considering relative percentage 
errors, there were smaller errors with the use of the BNN than RSM. 

Making comparisons with other work employing ANNs for characterizing SPAs is 
quite complex. Indeed, a comparison of algorithm performance would be made on differ-
ent types of SPAs, such as with and without reinforcement, with different geometries and 
different materials. In the literature, there are several studies employing ANNs, but the 
details of the layers or neurons used are often not provided to compare the hyperparam-
eters employed. In addition, the training times are often not specified, and so we were not 
able to compare the required times either. Also, the input data or dataset responses are 
different, for example, some consider the spatial position of the SPA tip (X, Y, and Z coor-
dinates) and others the bending angles, as in the present work. The ranges of input pa-
rameters can be very different, for example, in terms of actuation pressures, which depend 
greatly on the materials used. Therefore, a comparison in terms of absolute or relative 
percentage errors would not be very meaningful. 

6. Conclusions 
In this work, the bending behavior of an SPA is driven by an external TPU reinforce-

ment with cuts when it is pressurized. The bending angle is managed by the design of the 
geometric parameters of the cuts and the feeding pressure. Twenty-seven reinforcements 
with different cut sizes were used to evaluate the influence of the geometrical and func-
tional parameters on the bending angle of the open sector. A total of 189 trials repeated 
three times were carried out. The average of the three tests was evaluated and inserted as 
the response of a unique quatern of the chosen input parameters. 

Hence, the Bend dataset was realized and adopted to train 14 different regression 
algorithms: the BNN was the most accurate one, with an RMSE of 0.83° and 0.73° in testing 
and validation, respectively. To exclude possible overfitting of the BNN, experimental 
tests were performed on three new reinforcements not employed in the dataset construc-
tion. The mean absolute errors for reinforcements I, II, and III were 2.72°, 2.80°, and 2.71° 
for the BNN and 4.55°, 3.91°, and 3.14° for RSM, respectively. 

The BNN demonstrated a significantly lower error than previously obtained by RSM, 
validating the methodology and highlighting how the application of artificial intelligence 
techniques can lead to advances in the prediction and design of soft actuators. 

It was possible to predict joint bending angles with limited errors even for actuators 
with different lengths, masses, geometric and functional parameters, numbers of joints, 
and mounting positions. However, the procedure was very time-consuming, since it re-
quired the design and printing of 27 external reinforcements and a total of 567 trials for 
the creation of the Bend dataset. 

Several future developments are possible with the extension of this dataset to other 
parameters, such as reinforcement inner diameter, reinforcement thickness, or payload 
applied to the end of the SPA. 

Potential applications of the BNN include the mechanical design of soft joints to de-
velop fingers for gripping devices of cobots or in rehabilitative gloves, support legs for 
robots with locomotion abilities, or reproduce bioinspired structures capable of perform-
ing specific bending movements. 
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