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Abstract

The aim of this thesis is presenting the structural properties and privacy guarantees
of control systems connected via wireless communication channels, that are modeled
through the finite-state Markov channel abstraction. Spatially distributed systems
connected via wireless medium, also known as wireless control networks, are here
investigated. The aforementioned structural properties are properly exploited to
develop a stability analysis specific for wireless control network scenarios.
As explained in the following chapters, there is a wide literature focusing on stability
analysis, structural properties, and privacy guarantees of wireless control networks.
Most of these works adopt Bernoulli random variables to model packet loss occurrences
over wireless channels.
However, this strategy does not allow to model the occurrence of bursts of packet losses,
as Markov chain theory does. The improvement with respect to the previous works is
modeling the wireless channel as finite-state Markov channel, that allows for modeling
the occurrence of bursts of packet losses, as well as the current mode of the channel.
As a consequence of the Markovian characterization of the wireless channel, Markov
jump system theory provides good mathematical approximations of wireless control
network scenarios.
The contribution achieved by the research presented in this thesis is threefold. Firstly,
this work investigates wireless control network scenarios with double sided packet-loss
links modeled via finite-state Markov channels. Under the assumption of a TCP-
like communication scheme and the mathematical framework of Markov jump linear
systems, the separation principle holds also in this case with finite-state Markov channels.
Secondly, the research here reported provides conditions guaranteeing secrecy against
eavesdropping over finite-state Markov wireless links. Finally, the case of nonlinear
discrete-time Markov jump systems is investigated with the aim of the generalization
of Markov jump linear system framework, so that nonlinear plants may be involved in
wireless control network analysis. Proper stability notions and Lyapunov conditions
are presented for nonlinear discrete-time Markov jump systems in the case without any
delay, as well as in the case of nonlinear discrete-time systems with Markovian delays.



Keywords: Markov Jump Systems, Lyapunov theorems, Wireless control networks,
Finite-state Markov channels
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1. Introduction 2

PhD project at University of L’Aquila under the supervision of Professor Alessandro
D’Innocenzo and Professor Pierdomenico Pepe.
This chapter starts with an introduction of the scenario investigated in this thesis
that concerns wireless control networks.

A brief description of the main features of wireless control networks is here reported.
The following sections present an overview of the main challenges and contributions
addressed by the PhD project here illustrated.

1.1 Chapter outline

This chapter is organized in two main parts.

• The first part of the chapter illustrates the main topic of this thesis, that is, the
study of the impact of the Markov modeling [1] on structural properties and
privacy guarantees for wireless control networks [2].

This topic is the motivation that links all the following chapters. The impact
of the Markov modeling on wireless control network properties can be analyzed
by exploiting Markovian switching systems [3], also known as Markov jump
systems (see [4] for the linear case): the most important challenges are presented
in Section 1.2.

• The second part of this first chapter illustrates the contributions achieved during
this research work on the two modeling classes: Markov jump linear systems [4]
and Markov jump nonlinear systems [3]. The main contributions are described
in Section 1.3.

Moreover, Section 1.4 introduces notation and mathematical background, Section 1.5
illustrates the thesis organization to the reader, and finally, Section 1.6 provides
a list of acronyms.

1.2 Wireless control network: modeling strategies
and significant challenges

Wireless control networks [2, 5] consist of spatially distributed [6] components such as
computational units, actuators, and sensors [7] connected via wireless communication
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links [8]: in this scenario the closed-loop control is provided over wireless links [9].
Wireless control networks have a large variety of application fields, such as industrial
automation [10–14], building management [15], automotive, intelligent transportation
[16], avionics and smart grids [17], receiving considerable attention from industry
and academia [2, 18–21]. Moreover, they offer many advantages such as the ease of
installation and maintenance, large flexibility, and increased safety [22].

Conventional control system design [23] relies on the assumption of instantaneous
delivery of sensor measurements and control inputs with high reliabilities. The usage of
wireless channels in the transmission of information [24] causes delays, packet losses and
message error probabilities [2, 25]. For this reason, the significant challenges in control
over wireless communication channels [26,27] lie within the time-varying, unreliable [28]
and shared nature [29] of this communication medium.

The presence and motion of people and objects in the propagation environment
induces the shadow and small-scale fading that, paired with interference from other
transmitters, causes information loss leading to performance and stability degradation
[30–33]. Furthermore, due to the shared nature of the wireless medium, other agents
in the vicinity can overhear the content of transmissions, and there is often a need
to protect systems from eavesdroppers [34], [35]. This scenario leads for instance to
privacy problems [36–41].
In wireless control system literature problems related to the packet loss occurrences
[42–45] have been widely investigated and discussed. The packet dropouts have been
modeled either as deterministic (in terms of time averages or worst case bounds on the
number of consecutive packet losses, see, e.g., [25, 26,46, 47]) or stochastic phenomena.

In the stochastic framework, many works in the literature assume memoryless packet
drops, and thus dropouts are realizations of a Bernoulli process (see [24,48–51]). Other
works consider more general correlated (bursty) packet losses and use a transition
probability matrix of a finite-state stationary Markov chain (see, e.g., [52–54] and
references therein) to describe the stochastic process governing packet dropouts (see
[52,55]). In these works, wireless control networks with missing packets are modeled via
time-homogeneous Markov jump linear systems [4, 56–60]. However, a simple Markov
chain model for packet losses on wireless channels used in wireless control networks
literature is not exhaustive since the occurrence of packet losses also depends on the
operational mode of the communication channel [1], this dependence is well captured by
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the mathematical abstraction provided by the finite-state stationary Markov channel
model [1]. This thesis focuses on the finite-state Markov channel mideling framework.

The finite-state stationary Markov channel model approximates the channel mode
transitions through a Markov chain and incorporates a specific packet error distribution
information into each mode [1]. The finite-state Markov channel [1] is an essential model
because wireless communication system designers traditionally use this mathematical
abstraction of the wireless channel for modeling error bursts in fading channels to analyze
and improve performance measures in the physical or media access control layers.

Moreover, several receivers’ channel state estimation [61] and decoding algorithms
rely upon finite-state Markov channel models [1].

Bursts of packet losses cannot be modeled by Bernoulli processes, which is the
main limit of the control strategies based on Bernoulli channel [48]. Indeed, the
Bernoullian model is less accurate than the finite-state Markov channel model, and
thus bursts of packet losses may cause unstable behavior without the possibility of
recovery, as illustrated in Chapter 2.

Works such as the one by Lun et al. [62] illustrate how the adoption of the finite-
state Markov channel model [1] in the design of wireless control networks impacts the
control performance in a positive way. This modeling strategy of the wireless channel
provides a consistent improvement [62] in stabilizing control synthesis. This is the
reason why the research work adopts the finite-state Markov channel, for the control
design strategy that accounts for bursts of packet losses occurrence, as well as the
current state of the wireless communication channel. See Chapter 2 for more details.

As the reader will observe in the following, the most important challenges concerning
wireless control networks related to wireless connectivity can be grouped considering
the two main features of the wireless communication medium:

• the unreliability [2] (addressed by Chapter 2),

• the shared nature of the wireless medium [40] (addressed by Chapter 3).

1.2.1 Markov jump linear system theory applied to double-
sided packet loss scenarios

Markov jump linear system theory has been frequently used in literature [63–65]
to model the challenges in analysis and design of wireless control networks [66, 67].
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Specifically, Markov jump linear systems are linear switching systems [68–73] where
the switching rule is a Markov chain exploited for wireless link modeling [1, 8, 74].

This thesis exploits Markov jump linear system theory [4] to model and analyze
the impact of finite-state Markov channel modeling [1] of double-sided packet loss
links in wireless control network scenarios [48].

Double-sided packet losses have been already investigated for instance in [25,47],
with arbitrary packet loss process [25], or Markovian [47]. These works summarize
the packet losses on both links.

Let us consider a wireless control network scenario where the plant and the controller
are connected via wireless links [48]: the link concerning the communication from the
controller to the actuators and the link concerning the communication from the sensor
to the controller. Let us call actuation link the link concerning the communication
from the controller to the actuators. Let us call sensing link the link concerning the
communication from the sensor to the controller.

The significant difficulty of the setting presented in this thesis arises from a combined
effect of two link packet losses possibly resulting in long periods in which the controller
and actuator cannot simultaneously receive new data (see also Remark 1 in Chapter 2).
However, a simple Markov chain model for packet losses on wireless channels [2] used
in wireless control networks literature is not exhaustive since the occurrence of packet
losses also depends on the operational mode of the communication channel [1] (obtained
via channel state estimation [61]). Thus, the channel model exploited in this PhD
thesis is the finite-state Markov channel [1].

Consequently, the existing stabilizability and detectability notions [48,49,75] are
not suitable for the general finite-state Markov channel scenario, as illustrated in the
following chapters.
This research work overcomes this limitation by addressing the output-feedback control
problem [76] over finite-state Markov channels and characterizing novel stabilizability
and detectability conditions [77]. The investigated wireless control network infrastruc-
ture relies on a TCP-like architecture [48], implying that the communication between
the controller and the actuators is characterized by acknowledgement messages.

Messages of acknowledgement are crucial messages for this research setting: with-
out them the separation [48] between estimation and control is impossible even in
Bernoullian setting.
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Concerning the actuation link, the controller is the transmitter: specifically, the
transmitter is not able to know the outcome of the transmission before sending the mes-
sage [78]. This is the reason why the controller receives the acknowledgement message
only after a time-step delay [48,79], while this delay does not affect the sensing link.

In modern communication systems the channel state estimation [61] is always
performed through the receiver. Therefore, on the sensing link, the controller (i.e.,
the receiver) is able to know the outcome of the transmission and the mode of the
channel without delay.

1.2.2 The separation principle over finite-state Markov chan-
nels

As highlighted in the previous paragraph, in contrast to traditional control and
estimation problems, wireless control networks are unreliable [24, 50]: this means
that the observation and control packets may be lost or delayed due to the wireless
transmission features [76]. Thus, the underlying communication network with double-
sided packet losses is modeled stochastically [80] by assigning probabilities to the
successful transmission of packets [43, 44, 49]. One of the challenges addressed by
this PhD thesis is the separation principle for estimation and control problems in
wireless control networks over finite-state Markov channels. This challenge aims at
the generalization of the results in [48]. In traditional control theory there is a large
amount of works investigating the separation principle [81].

As it is well known, in traditional control schemes [23], the separation principle is
guaranteed by structural properties, i.e., stabilizability and detectability [75].

Many works in the field of control theory investigate problems of estimation and
control over wireless lossy networks [43–46, 48, 49].

There are important research lines (such as the one that has led to the work titled
“Foundations of Control and Estimation Over Lossy Networks ”, by Schenato et al. [48])
that investigate the separation principle in wireless control network architectures with
double-sided packet losses. The aforementioned paper by Schenato et al. provides the
proof of the separation principle for wireless transmissions with TCP-like protocols.
Moreover, the same work shows that when considering UDP-like protocols separation
cannot hold. Specifically, in [48, Theorem 5.6], the separation principle is guaranteed
by the structural properties of stabilizability and detectability, that are exploited in



1. Introduction 7

the analyzed scenario considering the Bernoulli probabilities of packet losses over the
sensing link and the actuation link [48, Lemma 5.4, Theorem 5.5].

This manuscript addresses the analysis of a TCP-like remote control architecture
(that is analogous to the one in [48]) with a more accurate channel model for the
wireless link, i.e., the finite-state Markov channel model [1].

As deeply explained in the following chapters (see Chapter 2), the problem of
the separation principle over finite-state Markov channels is here investigated by
exploiting the notions of mean square detectability and mean square stabilizability [4],
i.e., structural properties in the mean square sense.

The mean square stabilizability with delay, introduced in the work by Lun et
al. [79], accounts for the one time-step delay due to the presence of acknowledgement
messages (see Chapter 2 for more details).

Mean square detectability and mean square stabilizability with delay (presented in
Chapter 2 for the considered wireless control network scenario) report formally the
classical structural properties in control theory (stabilizability and detectability [75]) in
the finite-state Markov channel framework, providing the basis for development of solid
conditions guaranteeing the separation principle over finite-state Markov channels [77].

1.2.3 Privacy guarantees against eavesdropping

The previous sections focus on the unreliable nature of the wireless medium (mentioned
above), that may cause packet losses and other non ideal behaviors in wireless control
networks. Another important feature of the wireless channel is the shared nature of the
wireless medium [82], that makes other agents in the vicinity able to overhear the content
of transmissions [83]. This risk has an impact on the privacy of the transmission [84].

Consequently, this problem leads to the necessity of protecting system data from
eavesdroppers [34, 35], for instance by adopting encryption-based tools [40] or physical-
layer security methods [85], and control-theoretic approaches [37,39,86].
The privacy scenario [37,38] here investigated concerns a wireless estimation problem [49]
over a finite-state Markov channel [1].
This research line focuses on state estimation [49] in wireless control networks with
secrecy against eavesdropping [38].

Specifically, in the remote architecture scenario here considered [87], a sensor
transmits a system state information to the estimator over a legitimate user link, and
an eavesdropper overhears these data over its link independent on the user link. Each
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connection may be affected by packet losses and is modeled by the finite-state Markov
channel that has been briefly introduced before [1].
The part of the PhD thesis concerning privacy guarantees moves from the paper titled
“State Estimation with Secrecy against Eavesdroppers ”, by Tsiamis et al. [38]: the secrecy
mechanism and the remote architecture here illustrated are the same as the ones in [38].

Certainly, problems concerning estimation techniques [88,89] and privacy guarantees
[34] over wireless channels have been already addressed in literature.

However, the wireless link [8] has been modeled either exploiting the Bernoulli
processes [48], or exploiting two-mode Markov chains [34].

As explained in Section 1.3.2 and also in Chapter 3, a significant difference with
respect to the previous literature is the development of privacy guarantees over finite-
state Markov channels [87] (which is an improvement with respect to Bernoulli processes
and the two-mode Markov chains).

1.2.4 Markovian switching nonlinear systems

The challenges presented above are typically addressed by adopting a linear modeling
strategy [4], that is widely used in wireless control network literature [2].
Markov jump linear systems [4,90] provide very good approximations for wireless control
networks [77,91,92] as long as the plant to control can be modeled as a linear system.

However, when the dynamics are nonlinear, the general mathematical model with
nonlinear functions is needed [81, 93–96].
The main modeling strategies and mathematical tools exploited to analyze wireless
control networks [2] and their structural properties can be grouped as follows:

• the discrete-time Markov jump linear systems [4, 90] (investigated in Chapter 2
and Chapter 3),

• the discrete-time Markovian switching nonlinear systems [3] (investigated in
Chapter 4 and Chapter 5).

This section introduces the discussion on discrete-time Markovian switching systems,
where the function can also be nonlinear [3], so that this class of systems is able to
provide a good approximation for wireless control networks with nonlinear plants [97].
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Discrete-time Markovian switching systems, also known as Markov jump systems
[4, 67, 98], are particularly useful for modeling systems subject to abrupt changes [99],
such as wireless control networks, that may suffer from packet losses [49].

Markovian switching nonlinear systems [3, 100] are good approximations of wireless
control networks when the plant is characterized by nonlinear dynamics [94].
This thesis investigates the class of discrete-time Markov jump linear systems, as well as
the general class of discrete-time Markovian switching nonlinear systems. Particularly,
the investigations concerning the stability properties [101,102] focus on exponential
mean square stability [3] and exponential mean square input-to-state stability [97],
that are stability notions involving the second moment of the state [3, 4].

1.2.5 Stability notions

The investigations on the formal guarantees for stability properties of wireless control
networks [2, 72, 80] play a key role in this thesis.

The classical stability notions traditionally used in control theory [81] are not suitable
for a wireless control network scenario modeled through a stochastic framework [80],
as the one studied in this work.
Thus, the main challenge concerning stability notions addressed by this work is the
construction of a suitable mathematical setting [3,4,97] providing the best mathematical
approximation of the considered wireless control network scenario for the formal
description of the stability problems [48].
The stability notions here investigated are the mean square sense stability notions [4].

Stability notions in the mean square sense are the most suitable ones because they
involve the stochastic features existing in the stochastic mathematical environment
describing the wireless channel [1, 74]. Specifically, this thesis deals with mean square
stability and mean square input-to-state stability [103–105] notions [3, 4].
Mean square stability (i.e., a stability notion in the mean square sense) of discrete-time
Markovian switching systems has been extensively analysed in the linear case [4], but
there are also some works such as [3] investigating this stability notion in the nonlinear
framework.
The input-to-state stability [106, 107] property has been widely investigated in the
literature [108–111]: the corresponding notion was originally proposed by Sontag for
continuous-time nonlinear systems (see for instance [105,112–118]). Intuitively, when
a system is input-to-state stable, every state trajectory corresponding to a bounded
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control remains bounded and tends to the equilibrium when inputs tend to zero.
In the last decades, a great effort has been spent studying some variants of the
original notion and related applications [103, 111, 119–127]. In [128], a network of
integral input-to-state stable [109,110] retarded systems is considered and a small-gain
methodology for constructing a Lyapunov-Krasovskii functional of such a network is
developed. Following the same research line, [129] and [130] present input-to-state
stability and integral input-to-state stable feedback control design strategies facing
actuators disturbances. Relevant works expressing the significance of exponential
input-to-state stability property are [131,132].
Together with the increasing attention given to switching nonlinear systems, particularly
in the last decades, Lyapunov characterizations of stability and input-to-state stability
for this kind of systems has played an important role: the reader can refer to [133–136].
The methodology presented in [137] for the discrete-time case is based on the one
provided by [133, 134] for the continuous-time case. A converse Lyapunov result
for the global asymptotic stability is established in [137] for discrete-time switching
systems. However, the procedure presented there is developed for an arbitrary switching
framework and it is based on common Lyapunov functions, while the approach provided
in this manuscript (particularly in Chapter 4) concerns the use of multiple Lyapunov
functions [136] in the Markovian switching domain [3], where the switching rule is
a Markov chain [138]. More details on the aforementioned approach are provided in
Chapter 4.
The deterministic counterpart of the considered stochastic mathematical scenario is
provided by [136], where discrete-time switching nonlinear systems [68], whose switching
rule is constrained by a digraph, are investigated.
With respect to [136, 139, 140], this research focuses on the scenario in which the
state of the system is a random variable [141], and therefore, the main interest of
this investigation is the behavior of its second moment [4, 141], i.e., the mean square.
Consequently, the considered stability notions [4] (i.e., the mean square stability, the
exponential mean square stability [3], the mean square input-to-state stability, and the
exponential mean square input-to-state stability [97, 142]) are different with respect to
the ones considered by Pepe in [136,140] and by Goebel in [139].
As far as the Markovian switching domain is concerned, the notions of pth moment
stability and pth moment input-to-state stability are investigated in [143] and [144],
respectively. In [144] continuous-time stochastic retarded systems are analysed and a
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Razumikhin-type theorem is developed for pth moment input-to-state stability. The
Razumikhin stability approach is also exploited in [124], where some novel criteria for
pth moment input-to-state stability and integral input-to-state stability are derived,
considering impulsive stochastic functional differential equations.
In the discrete-time framework, impulsive stochastic delay systems are studied in [125],
where pth moment exponential input-to-state stability is investigated. Works concerning
discrete-time Markovian switching nonlinear systems are [3] and [145]. In particular,
in [145] a complete proof of the Markov property of the state of a class of discrete-time
hybrid systems is given, and a mean square stability analysis is carried out in [3].
This research line moves from the work titled “Stochastic model predictive control
for constrained discrete-time Markovian switching systems” [3], that provides a mean
square stability analysis for discrete-time nonlinear Markovian switching systems.

This thesis provides a novel input-to-state stability analysis in the mean square
sense for discrete-time nonlinear Markovian switching systems [97, 142].

1.2.6 Markovian delays

Time-delays [33,46,146] often lead to complex behaviors in the dynamics of wireless
control networks [2] and may lead to the failure of stability [76].

Discrete-time systems subject to Markovian delays provide a good mathematical
approximation of wireless control networks with random delays [147] modeled by
Markov chains [148].
This part of the research work investigates bounded variations of Markovian delays
(see [148] and the references therein).
These problems can be mathematically formalized by studying discrete-time systems
[149, 150] with Markovian delays [148]. Discrete time-delay systems [151–155] have
received renewed attention in recent years because of their important applications in
engineering fields (see for instance [151, 153, 156–160]).

In recent years, the graph theory [161,162] approach has been satisfactorily used in
the development of stability theory for discrete-time switching systems with constrained
switching signals (see [136,163–168] and the references therein). Constraints on time-
delays can be described by means of the delay digraphs notion (see [160, 169]) as
a natural counterpart for time-delay systems of the switches digraphs approach for
switching systems. See also [169, 170] for motivations of modeling the constraints
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through a digraph, and for the impact of this choice in establishing the stability results.
Constraints provided by bounded delay variations are studied in [148, 171, 172].

In [172] the problem of disturbance rejection control for Markovian jump linear
systems is investigated, while [148] presents the regulation problem for discrete-time
linear systems with bounded unknown random state delay. In [171], the constraints
due to bounded delay variations can be described by a delay digraph as well.
The modeling framework for systems subject to Markovian switching is given by discrete-
time Markovian switching systems, also known as Markov jump systems [3,4]. There is a
wide literature investigating this class of systems. Indeed, they are particularly useful in
the modeling of systems subject to abrupt changes, such as wireless control networks [2].

This is because, the wireless channel may suffer from packet-losses that are the
cause of abrupt changes and delays (see [4,67,98,99]). There are two main reasons why
Markovian switching systems are good approximations of wireless control networks
that have been widely illustrated in Section 1.2 and are briefly recalled in the following.

• Markov chains allow to model bursts of packet losses, which is not possible using
Bernoulli random variables (see [1] and the references therein).

• The Markov modelling of the wireless channel [1,66,79] in analysis and co-design
of wireless control networks [54, 62, 66, 79] allows performance improvement in
stabilizing control synthesis [62].

Given the arguments presented above, the aim of this part of PhD project is studying
the discrete-time delay systems with Markovian delays. Thus, this part of the work
focuses on stability notions concerning the second moment of the state [141] of the
system, that is the exponential mean square stability [4].

1.3 Main contributions

The most significant contributions of this thesis can be found along the main research
lines of the PhD project introduced in the previous paragraphs of this Chapter.

The reader can find here a list containing the main contributions achieved by
the research work addressed by this thesis.

(i) The main contributions concerning the separation principle over finite-state
Markov channels [77,92] (introduced with more details in Section 1.3.1) can be
summarized as follows.
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– The communication timing (between plant and controller in the wireless
control network scenario) are explicitly considered, as well as computation
and transmission delays. This leads to two different estimation strategies.
The first estimation strategy proposed will be called next-step predictor,
the second one will be called current estimator. Each estimation strategy
will be presented with its feasibility conditions in Chapter 2.

– The separation principle validity is proved for both the considered estimators
in the general finite-state Markov channel setting.

– Four different detectability notions (presented from the weakest to the
strongest one) are introduced in Chapter 2 with the aim of providing a
suitable theoretical basis for the formal description of the filtering problems.
The aforementioned detectability notions are instrumental for the guarantees
of the separation principle in the general finite-state Markov channel scenario.

(ii) The contribution concerning privacy guarantees over the finite-state Markov
channel is the applications of the modeling approach based on the finite-state
Markov channel and Markov jump linear system theory for the development of
privacy guarantees [87] (summarized in Section 1.3.2).

(iii) The contributions concerning the modeling framework of discrete-time Markov
jump systems [97] (introduced with more details in Section 1.3.3) can be summa-
rized as follows.

– Lyapunov characterizations of exponential mean square stability and expo-
nential mean square input-to-state stability based on multiple Lyapunov
functions for discrete-time Markovian switching nonlinear systems [3].

– Necessary and sufficient conditions for the exponential mean square input-to-
state stability are proposed for discrete-time Markovian switching systems.

– Sufficient conditions for p-th moment input-to-state stability.

(iv) The application of the theory developed for exponential mean square stability
and exponential mean square input-to-state stability to the case of discrete-time
nonlinear systems subject to Markovian delays [173] (summarized in Section 1.3.4).
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1.3.1 The output-feedback control over finite-state Markov
channels: the separation principle

The considered wireless control network scenario is composed by a plant and a controller
connected via wireless links and communicating by TCP-like protocols [48].

The closed-loop system composed by plant and controller exchanging information
via wireless links can be modeled as a Markov jump linear system. This work addresses
(as one of the contributions) the output-feedback control design for the described
wireless control network scenario.

The output-feedback control for Markov jump linear systems has been investigated
in [4] and [174]. This work focuses on the output-feedback control for Markov jump
linear systems on a TCP-like scenario [48]. In the considered output-feedback control
architecture [77, 91, 92], the controller is able to receive the information on the sensing
link, i.e., the output of the system, the outcome of the transmission and the channel
mode [61] without any delay. Instead, on the actuation link the controller sends
the control law and it is able to receive the information concerning the outcome of
the transmission and the channel mode with one time-step delay with respect to the
time instant of the control law transmission [79]. This situation is summarized by
saying that one time-step delay affects the actuation link mode observation [79]. The
channel mode observation on the sensing link occurs without any delay because the
acknowledgement message is not necessary for the receiver, as it is explained with
more details in Chapter 2, Remark 2.

Previous works such as [48,49] do not consider the communication channel mode,
but actually the receiver has access to this information, by performing a channel
state estimation [61].

The novelty of this work lies within the output-feedback control in the FSMC setting
[1].

Optimal linear quadratic regulation [175] with one time-step delay on actuation
link mode has been already investigated in [79]. Specifically, the work by Lun et al.
presented in [79] introduces an optimal linear quadratic regulator for a control system
where the control law is sent over a TCP-like wireless actuation link. Consequently, the
TCP-like communication is characterized by acknowledgement messages that provide
one time step delay in the observation of the actuation link mode.
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Thus, the optimal linear quadratic regulator has to account for the delay [79] in
the observation of the actuation link mode [52].

In [176], the Kalman filter is adopted for a single simplified Gilbert channel modeled
by a Markov chain with two Markov modes. This result cannot be applied to the
general Markov channel scenarios that require 2N modes with N > 2: N channel modes
result, e.g., from the signal-to-interference-plus-noise-ratio partitioning, and each mode
is associated with a binary symmetric channel, see [1]. Thus, 2N modes derive from
the general Markov channel mathematical model. Other estimation techniques are
H2 and H∞ estimation: in [55], sub-optimal filters are obtained for the case of cluster
availability of the operational modes.
It is well known that for the case in which the information on the output of the system
and on the Markov chain are available at each time-step, the best linear estimator of
the state is the Kalman filter [177–179] (see [176] and [4, Remark 5.2]).

An offline computation of the Kalman filter is inadvisable [180], as discussed more
in detail in Chapter 2. Indeed, the solution of the difference Riccati equation and
the time varying Kalman gain are sample path dependent and the number of sample
paths grows exponentially in time. On the other hand, an online computation of
the Kalman filter requires online matrix inversions which might be inadvisable for
the significant computational complexity.

For this reason, this work provides a different class of estimators, for which the
filtering gains can be pre-computed offline. Specifically, two infinite horizon minimum
mean square Markov jump filters [4, Chapter 5.3] are presented:

• the first one with a next-step predictor [181, Chapter 8.2.1],

• the second one using the current estimator [181, Chapter 8.2.4].

These estimators use different communication and computation timing sequences and
offer different performance levels, as explained more in detail in Chapter 2. This
research line involves the contributions presented in two conference papers and one
work submitted for possible publication as journal contribution.

• The conference paper presented at the 58th IEEE Conference on Decision and
Control [79] illustrates the design over finite-state Markov channels,

• The conference paper presented at the 2021 American Control Conference
illustrates optimal output-feedback over finite-state Markov channels [92].
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• The article [77] provides the design of an optimal output-feedback controller over
finite-state Markov channels, with two infinite horizon minimum mean square
Markov jump filters [4, Chapter 5.3] (the next-step predictor and the current
estimator).

Specifically, these two works focus on control design and structural properties (sta-
bilizability and detectability) [182] for wireless control networks over finite-state
Markov channels.
The paper by Lun et al. [79] has introduced the controllability notion over one step
delayed actuation link mode observation, while the results in [92] concern the output-
feedback control with double-sided packet losses and detectability notions for the
next-step predictor.

Concerning the Markov jump linear system theory modeling wireless control network
scenarios, the research leading to this thesis moves from the results in [79].

Particularly, this research work has added the double-sided packet losses to the
wireless control network scenario in [79] and the results obtained concerning the
next-step predictor have been presented in the conference paper [92].

An improvement with respect to [92] consists in the introduction of the current
estimator together with a comparison between the two methodologies. This im-
provement achieved in the research has been presented in the paper submitted as
possible journal contribution [77].

The current estimator provides better performance but it requires more restrictive
constraints to be satisfied. Different computation timing sequences are used by the
two estimators: the one concerning the current estimator presents more restrictive
physical constraints (see Chapter 2 for more details).

The theoretical existence of these two estimators is a problem addressed using
different detectability notions that have been introduced for the finite-state Markov
channel scenario and that are presented in this work with the aim of finding suitable
conditions guaranteeing the existence of an observer (either next-step predictor or
current estimator).

Particularly, conditions guaranteeing the weakest detectability are necessary and
sufficient, while requirements ensuring the strongest detectability are only sufficient.

Moreover, this thesis contains the detailed proofs of the separation principle for
next-step predictor and current estimator. Finally, the reader can find a more general
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case study with respect to the one in [92], providing several propagation environments
showing in which cases it is possible to conclude the existence of one of the two
observers. The main contributions concerning the output-feedback control briefly
illustrated in this chapter can be summarized as follows.

(i) The finite-state Markov channel is introduced into the TCP-like double-sided
packet loss wireless control network scenario.

(ii) The communication timing, as well as computation and transmission delays, are
explicitly considered, as explained above.

(iii) The separation principle validity is proved for both the considered estimators in
the general finite-state Markov channel setting.

(iv) Four different detectability notions (presented from the weakest to the strongest
one) are introduced in Chapter 2.

(v) The presented results are illustrated in a case study concerning an inverted
pendulum on a cart described in Chapter 2.

1.3.2 Privacy guarantees over finite-state Markov channels

The research line concerning privacy over finite-state Markov channels moves from the
work by Tsiamis et al. [38] and applies the modeling approach based on the finite-state
Markov channel [1] and Markov jump system theory [4] to study the problem of secure
state estimation [36] over wireless communication channels [74].

Specifically, Tsiamis et al. [38] model wireless links as independent and identically
distributed (i.i.d.) Bernoulli random variables. Other works, such as Leong et al. [34],
provide privacy guarantees over wireless links modeled as time-homogeneous two-
state Markov chain models [138].

Differently from previous works that exploit either the Bernoulli model [30,38] or
two mode Markov chains for the wireless link, this work focuses on privacy guarantees
over a finite-state Markov channel [1, 62].

In this research work each agent [87] (user or eavesdropper) estimates the process
evolution of the signal-to-interference-plus-noise ratio on its link, independently from
the other. A finite-state Markov chain (with more than two modes) approximates the
signal-to-interference-plus-noise-ratio process over each link. A binary random variable
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standing for the outcome of the transmission is associated to each Markov mode, which
determines the distribution of the binary random variable [1].

The resulting finite-state Markov channel model [1] allows for a tighter integration
in the coupled design of the communication and estimation components of the wireless
control networks. Some procedures for control and estimation over packet dropping
wireless links modeled by finite-state Markov channels can be related to the Markov
jump linear system theory [79,92,183–185] generalizing the fundamental results based
on i.i.d. Bernoullian assumptions [48]. Nevertheless, most of the contributions on
estimation and control over fading channels consider the two-state Markov chain
modeling a bursty packet erasure channel [176].
The secrecy problem addressed by [38] provides a secrecy notion which is suitable for
wireless estimation problems solved by Kalman filtering: perfect expected secrecy [38,
Definition 1], based on covariance matrices of the user and of the eavesdropper,
respectively.
This work exploits a minimum mean square Markov jump filter instead of Kalman
filter (see [38, 176]), because the filter dynamics depends just on the current mode
of the wireless sensing link (rather than on the entire past history of modes). This
implies that the filtering gains can be pre-computed offline [4].

The work by Impicciatore et al. [87] introduces a novel secrecy notion (reported in
Chapter 3), which is suitable for minimum mean square Markov jump filter: optimal
mean square expected secrecy over finite-state Markov channels that requires the user
mean square error to be bounded and the eavesdropper mean square error unbounded.
The reader can find more details in Chapter 3.

1.3.3 Lyapunov characterizations for discrete-time Markov
jump systems

The contribution concerning Lyapunov characterizations for discrete-time Markov
jump systems is based on the journal article by Impicciatore et al. titled “Lyapunov
characterizations of exponential mean square input-to-state stability for discrete-time
Markovian switching nonlinear systems” [97].

A preliminary version of the aforementioned article was the conference paper “Suf-
ficient Lyapunov conditions for pth moment ISS of discrete-time Markovian Switching
Systems” by the same authors [142], where a pth moment input-to-state stability
analysis for discrete-time Markovian switching nonlinear systems has been presented.
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In this conference contribution the pth moment input-to-state stability notion
(introduced in [144]) is conveyed to the discrete-time Markovian switching nonlinear
domain and sufficient Lyapunov conditions guaranteeing this property are provided.
The contributions concerning the investigations in the discrete-time nonlinear Markovian
switching framework are listed in the following.

(i) Discrete-time Markovian switching nonlinear systems [3] are investigated in this
work with the aim of providing Lyapunov characterizations of exponential mean
square stability and exponential mean square input-to-state stability based on
multiple Lyapunov functions.

(ii) A converse result for discrete-time Markovian switching nonlinear systems is
provided: a reverse implication for the Lyapunov conditions for exponential mean
square stability, given in [3].

(iii) Necessary and sufficient conditions for the exponential mean square input-to-state
stability are proposed for discrete-time Markovian switching systems.

(iv) Sufficient conditions for p-th moment input-to-state stability are illustrated in
Chapter 4.

The contributions summarized above will be illustrated with all the necessary details
and explanations in Chapter 4.

1.3.4 Lyapunov conditions for discrete-time nonlinear systems
subject to Markovian delays

The mean square stability has been extensively analyzed for discrete-time Markovian
switching linear systems without delays [4]. Only few works presented in the literature
investigate this stability notion in the nonlinear framework [3, 145]. However, when
considering discrete-time nonlinear systems with Markovian delays, the mean square
stability notion results to be particularly useful for investigating the behavior of the
mean square of the system state.
The contribution on this research line is twofold.

• Firstly, this work shows that when considering discrete-time delay systems with
delay signals constrained to follow a delay digraph [160,169,170], the discrete-time
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delay system can be rewritten as a discrete-time Markov jump system [3,4] if the
delay switching rule [160,169] satisfies the Markov property.

• Secondly, this part of the thesis extends sufficient Lyapunov conditions existing
for the global asymptotic stability property of discrete-time delay systems with
delays digraphs [169,170] to the study of mean square stability.

The reader can find more explanations and details on this part in Chapter 5.

1.4 Notation and mathematical background

This section provides the main notation adopted throughout this thesis.
Let R, R+ and N denote the sets of real numbers, nonnegative real numbers and

nonnegative integers, respectively.
Given a finite set A, |A| denotes the cardinality of A.
For k1, k2 ∈ N, N[k1,k2] , {k ∈ N | k1 ≤ k ≤ k2}.
The symbol F indicates the set of either real or complex numbers. The absolute

value of a number is denoted by | · |. Let us recall that every finite-dimensional
normed space over F is a Banach space [186]. Let us denote the Banach space of
all bounded linear operators of Banach space X into Banach space Y, by B (X,Y).
Let us set B (X,X) , B (X).

Let the symbol On denote the vector containing all zeros of length n and let the
symbol In indicate the identity matrix of size n.

The symbol On represents the matrix of zeros of size n× n.
The transposition is denoted by the apostrophe, the complex conjugation by an

overbar, the conjugate transposition by superscript ∗. Fn×n∗ and Fn×n+ represent the
sets of Hermitian and positive semi-definite matrices, respectively.

For any positive integers C, r, n, and m, let us define the following sets:

• HCr,n is the set of all K = [Km]Cm=1, Km in Fr×n,

• HCn,∗ is the set of all K = [Km]Cm=1, Km in Fn×n∗ ,

• HCn,+ the set of all K in HCn,∗, with Km ∈ Fn×n+ .
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Let us set HCn = HCn,n.
Let the symbol ρ(·) denote the spectral radius of a square matrix (or a bounded

linear operator), i.e., the largest absolute value of its eigenvalues, and let ‖·‖ be either
any vector norm or any matrix norm.

Let us denote by ⊗ the Kronecker product defined in the usual way, see, e.g., [187],
and ⊕ the direct sum. Notably, the direct sum of a sequence of square matrices (Φi)Ci=1

produces a block diagonal matrix having its elements, Φi, on the main diagonal blocks.
Then, tr (·) indicates the trace of a square matrix.

For two Hermitian matrices of the same dimensions, Φ1 and Φ2 , Φ1�Φ2 (respectively
Φ1�Φ2) means that Φ1−Φ2 is positive semi-definite (respectively positive definite).

Finally, E [·] stands for the mathematical expectation of the underlying scalar-valued
random variable, and R (·) indicates the real part of the elements of a complex matrix.
For a positive real δ, a positive integer m, and x ∈ Rm, Bm

δ (x) , {y ∈ Rm : ‖y − x‖ ≤ δ}.
For x ∈ R+, [x] is the largest integer smaller or equal to x. The symbol ◦ denotes

composition (of functions).
Let us here recall that a continuous function σ : R+ → R+ is

• of class K if it is zero at zero and strictly increasing,

• of class K∞ if it is of class K and unbounded,

• of class L if it is decreasing and converging to zero as the argument tends to +∞.

A continuous function β : R+ × R+ → R+ is said to be of class KL if, for each fixed
t ∈ R+, the function s→ β(s, t), s ∈ R+, is of class K, and, for each fixed s ∈ R+, the
function t→ β(s, t), t ∈ R+, is of class L.

1.5 Thesis organization

The thesis is organized as follows.

• Chapter 1 provides an introduction to the main topics and contributions addressed
by this research work.

• Chapter 2 provides the main challenges and solution strategies for the optimal
output-feedback control problem over finite-state Markov channels with double-
sided packet losses.
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Specifically, Chapter 2 addresses the problem of the separation principle for
wireless control network scenarios with analogous remote architecture as [48] and
the finite-state Markov channel modeling the wireless link.

• Chapter 3 illustrates the privacy guarantees over finite-state Markov channels
based on the results in [87].

• Chapter 4 addresses the general case of discrete-time Markov jump systems with
Lyapunov characterizations of exponential mean square stability and exponential
mean square input-to-state stability.

• Chapter 5 provides Lyapunov conditions for exponential mean square stability of
discrete-time systems with Markovian delays.

Finally, some concluding remarks and future research directions are provided in Chap-
ter 6.

1.6 List of acronyms

Consider the following abbreviation list that contains all the abbreviations and acronyms
used throughout this work.
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Acronyms Description
WCN wireless control network
TPM transition probability matrix
FSMC finite-state Markov channel
MJLS Markov Jump Linear System
MS Mean square
MSS Mean square stability
MSD Mean square detectable
EMSS Exponential Mean square stability
EMS-ISS Exponential Mean square input-to-state stability
SINR Signal-to-nterference-plus-noise-ratio
i.i.d. independent and identically distributed
GEC Gilbert and Elliott channel
ISI intersymbol-interference
UHF ultrahigh frequency
HMM hidden Markov model
PED packet error distribution
PER packet error rate
BER bit error rate
PEP packet error probability
LMI Linear Matrix Inequality
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This Chapter is based on the paper by Impicciatore et al. [77] submitted for possible
journal publication and on the conference paper [92] (preliminary version of [77]).

The aim of the Chapter is providing an accurate problem formulation concerning the
WCN scenario here illustrated by means of the notation introduced in Chapter 1. There
are different stochastic models used to formally describe the wireless communication
links [74] in WCN literature [188,189] and they are widely discussed in this Chapter.
As deeply explained in the following, a very interesting insight concerning the wireless
link mathematical formalization is the impact of the adopted FSMC model over the
performance of the controller in WCN design. Indeed, as deeply explained in the
following, previous works in the Telecommunications field have already illustrated this
insight of WCNs [62]. Following the research line by Lun et al. [62], this Chapter
illustrates one of the most significant thesis contributions, i.e., the statement of the
separation principle over FSMCs with double-sided packet losses.

2.1 Chapter outline

This section provides a short summary of the organization of this Chapter.

• Section 2.2 introduces the problem formulation concerning the specific challenges
investigated for a WCN scenario, whose remote architecture control scheme is
shown in Fig. 2.1.

• Section 2.3 describes the Bernoulli mathematical model [1, 48] of the wireless
channel and highlights the limitations of the Bernoulli model.
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• Section 2.4 describes the mathematical model given by the finite-state Markov
channel and points out the performance impacts [62] and its advantages [77,91,92]
with respect to the Bernoulli model.

• Section 2.5 takes into account two different timing diagrams reported in Fig. 2.4
concerning the transmission from the sensor to the controller (sensing link) and
the communication from the controller to the actuators (actuation link). This
leads to the adoption of two different estimation techniques:

– the next-step predictor [4],

– the current estimator [181].

• Section 2.6 provides the complete model of the wireless control network resulting
from the architecture in Fig. 2.1 and from the finite-state Markov channel model.

• Section 2.7 describes the design of the output-feedback controller, that exploits
the aforementioned estimation techniques.

• Section 2.8 provides the analysis of the estimation techniques and highlights the
existing differences.

• Section 2.9 provides the instruments for the stability analysis in the mean square
sense of the WCN scenario modeled as a MJLS.

• Section 2.10 illustrates the core of this Chapter, that is, the separation principle
over FSMCs.

• Section 2.11 describes the mode-independent output-feedback control, that is
compared to the mode-dependent output-feedback control.

• Section 2.12 provides the numerical example validating the results presented in
this Chapter.

• Proofs of Lemmas and Theorems concerning the results presented in this Chapter
are reported in Appendix A.
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Figure 2.1: Wireless control network architecture.

2.2 Problem formulation

This section illustrates the problem formulation concerning the optimal output-feedback
control of WCNs over FSMCs.

2.2.1 The wireless control network architecture

Fig. 2.1 shows the WCN architecture considered throughout this work. The remote
control scheme is based on a TCP-like protocol and it is made up of four elements:

• the discrete-time equivalent system,

• the controller,

• the wireless links connecting the plant to the controller

– wireless sensing link,

– wireless actuation link.

2.2.1.1 Communication between plant and controller: sensing link and
actuation link

The communication between the plant and the controller happens according to a
TCP-like protocol [48]. In this thesis, the link responsible for the communication from
the plant to the controller is called sensing link, while the link responsible for the
communication from the controller to the plant is the actuation link. This implies
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that the controller is the receiver on the sensing link and it is the transmitter on
the actuation link.

As it is well known, the main feature of the TCP-like protocol is the presence of
acknowledgement messages [48], that are received from the transmitter (in this case
the controller) and that bring the information on the outcome of the transmission.
Consequently, it is straightforward that the acknowledgement messages are received
after the control law transmission. Specifically, the acknowledgement message is
received one time-step after the control law transmission.
The mathematical description of the wireless links accounts for both the mode of the
wireless channel [61], as well as the outcome of the transmission on the considered link.
The random variables θk−1 and ηk are the modes of actuation link and sensing link,
respectively. The binary variables νk−1 and γk model the transmission outcome on the
actuation link and sensing link, respectively (as the reader will see in paragraph 2.4.2).
The actuation link data θk−1 and νk−1 are received with one time-step delay, due to
the features of the acknowledgement message discussed above. Analogously, ηk and γk
are data concerning the sensing link. The quantities ηk and γk are not affected by any
delay, because on the sensing link the controller is the receiver of the transmission. A
complete description of θk−1, νk−1, ηk, and γk is illustrated in Section 2.4.2.

2.2.1.2 The discrete-time equivalent system

The discrete-time equivalent system is composed by the plant, the Analog to Digital
Converter (A/D block in Fig. 2.1) with sampling period T , and Digital to Analog
Converter (D/A block in Fig. 2.1) based for instance on Zero-Order Hold (ZOH), so
that the analog control input, denoted by uc(t), can be applied to the continuous-
time process. The output of the continuous-time process is denoted by ys(t) and it
goes in input to the block A/D that produces as output the discrete-time output
measurement ysk ∈ Fny , k ∈ N. The output of the controller, denoted by uk, is sent
through the actuation link to the actuators, that receive uck. The variable uck denotes
the information received by the D/A block, that provides uc(t) as an output. Consider
the remote architecture depicted in Fig. 2.1.
The discrete-time equivalent system is formally described by the system G, defined as fol-
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lows,

G :

xk+1 = Axk +Buck +Gwk,

ysk = Lxk +Hwk,
(2.1)

where xk ∈ Fnx is the system state and ysk ∈ Fny is the system output, k ∈ N. For k ∈ N,
wk ∈ Rnw is a sequence of i.i.d. Gaussian random variables with zero mean. The
matrices A, B, G, L, and H are system matrices of appropriate sizes. An unstable
system matrix is considered, as in [48]. Otherwise, a stabilizing output-feedback control
would not be required. As explained above, G is controlled remotely by a digital
output-feedback controller, which receives the measurements ysk on the wireless sensing
link and sends the control inputs over the wireless actuation link.

Remark 1 Fig. 2.1 reports the scheme of a WCN infrastructure with possible packet
loss occurrence on both the sensing link and actuation link.

The main challenge of this scenario arises from a combined effect of two link packet
losses possibly resulting in long periods in which the controller and actuator cannot
simultaneously receive new data. The scheme is a TCP-like communication [48] based
on acknowledgement messages. Specifically, the controller receives the acknowledgement
of the transmission on the connection actuators-controller (see Fig. 2.1).

Packet losses over this connection are negligible since the probability of a packet
loss for acknowledgement messages is very small in practical applications.

There are two main strategies concerning the wireless channel model:

• the Bernoulli channel model,

• the finite-state Markov channel model (the model adopted in the presented
research line).

2.3 Bernoulli wireless channel model and its lim-
itations

A vast amount of research assumes memoryless packet drops, so that dropouts are
realizations of a Bernoulli process [24, 48,50]. The research illustrated in [48] provides
foundations of control and estimation over lossy networks by adopting the Bernoulli
model of the communication links. Specifically, the processes of arrival of both
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observations and control packets are modeled as random processes whose parameters
are related to the characteristics of the communication channel. Two independent
Bernoulli processes are considered, that govern packet losses between the sensor and the
controller, and between the latter and the actuation points, see [48, Fig. 1]. As pointed
out in [48], the Bernoullian abstraction of the transmission outcome (an idealization
chosen for mathematical tractability) reveals useful design guidelines in the WCN
design problem addressed by Schenato et al. [48].
However, the networking component (SINR, path loss, shadow fading, and interference
[1, 74]) obviously has an additional impact on the performance of the closed-loop
systems that is not considered by the Bernoulli model. Moreover, the catch affecting
the Bernoulli model is that the presence of correlations in the packet loss process
cannot be taken into account. Indeed, the occurrence of bursts of packet losses cannot
be modeled by Bernoulli random variables.
The adoption of FSMC provides a more accurate model for the radio link [62]:
specifically, a relevant theoretical outcome obtained via the adoption of the FSMC
framework consists in designing a controller that guarantees stability and improves
control performance of the closed-loop system, where other approaches based on a
simplified channel model fail. Indeed, many works consider more general correlated
(bursty) packet losses and use a TPM of a finite-state stationary Markov channel
(see e.g. the finite-state Markov modelling of Rayleigh, Rician and Nakagami fading
channels in [1, 190–192]) to describe the stochastic process that rules packet dropouts.

2.4 The finite-state Markov channel

This section provides details on the model and motivation of finite-state Markov channel,
or FSMC [1]. Specifically, after the part concerning some historical backgrounds,
this section reports an accurate description of the wireless link model considered
for this research line.

2.4.1 Finite-state Markov channel historical background

The study of finite-state communication channels with memory dates back to the work
by Shannon in 1957 [193]. In [193], Shannon proved coding theorems for finite-state
channels with discrete channel input and output symbols, where the channel state could
be calculated at the transmitter, but not necessarily at the receiver. In 1958, Blackwell
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et al. [194] proved that for a practical class of finite-state channels with memory,
reliable transmission is possible at rates below the channel capacity. In 1960, Gilbert
introduced a new type of finite-state channel model to determine the information
capacity of wireline telephone circuits with burst-noise [195]. One main distinction
between Gilbert’s model and Blackwell’s model [194] was in the way channel output was
defined to depend on channel states and inputs. In Blackwell’s model, channel output
was a deterministic function of the current channel state, which, in turn, stochastically
depended on current channel input and previous channel state. Whereas in Gilbert’s
model, channel output was a probabilistic function of the current channel input and
the current channel state. In particular, each channel state in Gilbert’s model was
associated with a discrete memoryless channel. Despite its simplicity, Gilbert’s model
was the first nontrivial example of channel models with memory, where the channel state
is statistically independent of channel input symbols and is unknown to the transmitter
or the receiver. Soon after the work of Gilbert [195], Elliott used this model to evaluate
and compare the error rate performance of error correcting and error detecting codes
over burst-noise channels [196]. This channel model is known as the GEC.

Researchers in the late 1960s extended the model proposed by Gilbert and Elliott
to improve their representations of channels with memory. In 1968, McCullough [197]
introduced more channel states in the model, each with a different error rate. State
transitions in [197] were allowed only immediately following an error in the state. In
another work in 1967, Fritchman [198] proposed a finite-state channel with J error
free and K − J error states. However, the model was complicated in terms of deriving
channel error statistics, unless there was a single error state or K − J = 1, which
effectively made the Fritchman model similar to the GEC model. In 1968, Gallager
further developed the information theory of FSMCs [199], making it a classical subject
in advanced information theory. Originally, Gallager used the term finite-state channel,
where channel states are assumed to be the output of a Markov chain. FSMC is more
clarifying and will be used throughout this work. In [199, pp. 97–111, 176–187], Gallager
provides rigorous definitions, coding theorems, error exponents, and several examples of
FSMCs with memory. Gallager also mentions fading channels in wireless radiotelephony
as physical channels with memory that can be represented by FSMCs. Gallager’s
definition of FSMCs is the standard definition used by researchers today. This model
accommodates for both cases where the channel state transition is driven and controlled
by the channel input (such as ISI channels), as well as the case where the channel state
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is statistically independent of the channel input (such as fading channels). From 1969
to the mid 1970s, research activity on applications of FSMCs was limited to modeling
error bursts in digital wireline telephone circuits. The proposed models were mainly
variations of earlier ones developed up to 1968, such as the Fritchman model [198].

From 1978 to 1989, research activity for finding new applications of FSMCs in digital
communications was more or less dormant. During this period, theory and techniques
for mobile radio communications were in early stages of development and cellular digital
telephone networks did not emerge (were not commercially available) until the early
1990s. This explains why research activity on applications of FSMC for digital mobile
communication systems did not receive impetus until the early to mid 1990s. There are
many research works from 1989 to the present focusing on mobile radio fading channels.

Fading channels with memory are common in mobile radio communications [200].
With the advent and commercial success of digital cellular networks in the early
1990s, there was an immediate need for accurate modeling of fading channels with
memory. The channel models helped system designers analyze and improve system
performance measures, such as the error correcting capability of channel codes or the
packet throughput. But more importantly, the use of channel models with memory
for decoding at the receiver would potentially result in higher information rates than
those achieved by assuming a memoryless channel [201].

In 1991, Semmar et al. [202] used the Fritchman model [198] with a single error
state and two to four error-free states to characterize error sequences in UHF digital
mobile radio channels at 910 MHz. In their work, the Fritchman model was fitted
to measured data by determining suitable values for transition probabilities between
channel states. In 1991, Vucetic [203] used a finite-state model for adaptive coding
over time-varying radio channels: each state in the model represented a Rician fading
channel with different Rician factors. The paper by Sivaprakasam and Shanmugan [204]
developed a modified Baum-Welch algorithm [205] to estimate the parameters of a
HMM based on the observation of actual error burst sequences in fading channels.

FSMC modeling of fading channels in mobile radio communications was improved
by Wang and Moayeri in 1995 [206]. The main novelty of this work was to explicitly
establish the link between the statistical Clarke’s model for fading channels [207]
and the FSMC states. In particular, each FSMC state in their model represented a
range of received signal-to-noise ratio, which in turn determined the error probability
in that state. Based on this assumption, Wang and Moayeri provided analytical
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expressions for states, state transition probabilities, and error probabilities in each
state. The original FSMC modeling of fading channels as proposed in [206] or its
variations are still widely used in the literature.

Almost concurrently with Wang and Moayeri, Goldsmith and Varaiya proposed
a new iterative method for computing the information rates and capacity of data-
independent FSMC models with i.i.d inputs. They also introduced a maximum-
likelihood decision feedback decoding technique for the receiver that took the inherent
channel memory into account [201]. The work by Goldsmith [201] was a gener-
alization of an earlier study by Mushkin and Bar-David in [208] on the capacity
and coding for the GEC.

In the design of wireless communication systems FSMCs have been traditionally
used to model error bursts in fading channels. This provides an improvement of
performance measures in the physical or media access control layers. Since 1997,
FSMC models have enabled closed-form or simulation-based analysis of system-level
performance measures, such as packet throughput [209,210], PED [211], and PER [212]
through bursty wireless channels. The BER in more sophisticated communications
systems that include receiver diversity has been studied using FSMC models in [190].

Since the late 1990s, an active area of research has been to develop practical
decoding techniques at the receiver using FSMC models for fading channels. FSMC
models enable implementation of mathematically tractable channel estimation and
data decoding algorithms for time-varying fading channels [213,214]. Since 1995 [206],
first-order FSMC models for fading channels have been the models of choice due to
their computational simplicity and the ease with which model parameters can be
determined. A first-order Markovian assumption in the FSMC model means that
given the previous fading channel state, the current state is statistically independent
of all other past and future fading channel states. Ever since, the accuracy of first-
order FSMC models for fading channels, compared with higher-order FSMC models,
has been the subject of research.

2.4.2 Wireless link

This paragraph provides the mathematical description of single-hop wireless com-
munication links modeled by FSMCs.

Specifically, the sequence {νk}k∈N models the packet arrival process on the actuation
link. The value of the random variable νk is zero whenever the control packet is lost,
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and νk=1 if the control packet is correctly delivered, i.e., νk∈Sν,{0, 1}, for any k∈N.
Analogously, the sequence {γk}k∈N describes the packet arrival process on the wireless
sensing link. Particularly, γk=0 if the sensing packet is lost and γk=1 if it is successfully
delivered, i.e., for all k∈N, γk∈Sγ , {0, 1}. The processes νk and γk are collections
of binary random variables and the probability of having a packet loss or a correct
packet transmission over each link depends on its SINR. The SINR is determined by
propagational environment and related physical phenomena [62]. SINR is a stochastic
process and can be abstracted by a Markov chain. Each Markov mode is associated
with a certain PEP.
Consider the stochastic basis (Ω,F , {Fk}k∈N,P), where Ω is the sample space, F is
the σ-algebra of (Borel) measurable events, {Fk}k∈N is the related filtration, and P
is the probability measure. Sensing link and actuation link modes are the output of
the Markov chains η : N× Ω→ Sη ⊆ N and θ : N× Ω→ Sθ ⊆ N, respectively. Indeed,
the Markov modes of {ηk}k∈N and {θk}k∈N belong to finite sets Sη = {1, 2, . . . , I} and
Sθ = {1, 2, . . . , N}, respectively.

Remark 2 Previous works such as [48,49] do not consider the communication channel
mode, but actually the receiver has access to this information, by performing a channel
state estimation [61]. The novelty of this paper lies within the output-feedback control
in the FSMC setting.

Moreover, the described Markov chains are characterized by time-invariant TPMs: the
TPM P = [pij ]Ni,j=1 is associated with the Markov chain {θk} and the TPM Q = [qmn]Im,n=1

is associated with the Markov chain {ηk}.
Each TPM may be obtained by integrating the joint probability density function

of the SINR over two consecutive packet transmissions and over the desired regions
[1, 62]. The TPM values may also be validated through the empirical data from
a measurement campaign for calibrating the theoretical model parameters. The
uncertainties in TPM values neglected in this work can then be addressed via a
polytopic model [64, 67, 215–220].

Remark 3 The network-induced communication delays due to multiple path routing and
time-varying processing delays in relay nodes of multi-hop networks are not an issue
for single-hop sensing and actuation links with scheduled medium access considered in
this paper and extensively used in delay-sensitive control applications relying, e.g., on
the low latency deterministic network mode of IEEE 802.15.4e.
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The entries of TPMs P and Q are defined as follows,

pij , P (θk+1 = j | θk = i) , qmn , P (ηk+1 = n | ηk = m) , (2.2)

satisfying: ∑j∈Sθ pij = 1, ∑n∈Sη qmn = 1, i ∈ Sθ, m ∈ Sη.
Since the probability of a packet loss depends on the mode of the Markov chain,
the values of νk and γk are either zero or one, with certain probabilities depending
on the current Markov mode.

Remark 4 In this network scenario, up-link and down-link models are split up. This
separation already exists in literature [48,221]. However, unlike the previous literature,
the research presented in this thesis explicitly considers the channel mode (see Remark 2)
by providing two independent FSMCs for sensing link and actuation link, respectively.

Sensing FSMC

Let yk denote the measurement received by the output-feedback controller at time
k ∈ N. The general model for the sensing link is

yk = γky
s
k.

The value of the random variable γk when the current Markov mode is ηk ∈ Sη is a
function of ηk, and, for notational convenience, it is denoted as

γk = γ(ηk).

The probability of having a successful packet delivery on the sensing link depends
on the current Markov mode ηk = m, i.e.,

γ̂m , P(γk = 1 | ηk = m), P(γk = 0 | ηk = m) = 1− γ̂m, (2.3)

are the probability that the packet is successfully delivered at time k ∈ N, and the
likelihood of a packet loss occurrence conditioned to ηk = m, respectively. Fig. 2.2
provides a graphical representation of the FSMC model on the sensing link.
Let πm(k) denote the probability P(ηk = m), for m ∈ Sη, k ∈ N. The variable πm(k) can
also be written through the indicator function 1{ηk=m}, as πm(k) = E[1{ηk=m}], see [4].
Let us introduce π(k), given by π(k) = [πm(k)]Im=1.
For what concerns the process {γk}, applying Bayes Law, the Markov property, and the
independence between {γk} and {ηk}, for m,n ∈ Sη, the following equalities hold [92],

P (γk+1 = 1, ηk+1 = n | ηk = m) = γ̂nqmn,

P (γk+1 = 0, ηk+1 = n | ηk = m) = (1− γ̂n) qmn.
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Figure 2.2: FSMC model for sensing link: the Markov chain ηk represents the evolution of
the channel, while successful packet delivery and PER come from γ̂m, m ∈ Sη.

Actuation FSMC

In the sensing link, the controller is the receiver and has direct access to the channel
information (see Remark 2). For the actuation link, the controller is the transmitter
and can access the actuation channel information by an acknowledgement message, as
the reader may notice in Fig. 2.1. Obviously, the acknowledgement message is received
after the transmission, so there is a one time-step delay. Let uk ∈ Fnu denote the control
law computed by the controller, and let uck denote the digital control input received
by the D/A block at time k ∈ N. The general model for the actuation link is

uck = νkuk.

The value of the random variable νk when the current Markov mode is θk ∈ Sθ is a
function of θk, and, for notational convenience, it is denoted as follows,

νk = ν(θk).

The probability of the correct packet delivery on actuation link depends on the current
mode of the actuation link, that is, θk = i, i.e.,

ν̂i , P(νk = 1 | θk = i), P(νk = 0 | θk = i) = 1− ν̂i, (2.4)

are the probability that the packet is correctly delivered at time k ∈ N, and the likelihood
that the control packet is lost conditioned to θk = i, respectively. Fig. 2.3 provides a
graphical representation of the FSMC model on the actuation link.
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Figure 2.3: FSMC model for actuation link: the Markov chain θk represents the evolution
of the channel, while successful packet delivery and PER come from ν̂i, i ∈ Sθ.

For i ∈ Sθ, k ∈ N, the probability P (θk = i) is denoted by $i(k). For `, i ∈ Sθ, k ∈ N,
the joint probability of being in an augmented Markov state (θk−1, θk), P (θk−1 = `, θk = i)
is denoted by $̃`i(k). Moreover, the quantity $̃`i(k) may be written using the indicator
function 1{θk−1=`,θk=i}, as $̃`i(k) = E[1{θk−1=`,θk=i}] [4].

Let us introduce for k ∈ N, the variable $̃(k) given by $̃(k) = [$̃`i(k)]N`,i=1. The
probability $̃`i(k) evolves according to the following equations, for `, i ∈ Sθ, k ∈ N [79]:

P (θk+1 = j, θk = i | θk 6= i, θk−1 = `) = 0,

P (θk+1 = j, θk = i | θk = i, θk−1 = `) = pij.

Recalling that the availability of actuation link mode is affected by one time-step delay,
that is, θk−1 (see Fig.2.1), the aggregated Markov state (θk, θk−1) is considered [79].
This memory introduced by the presented aggregation is fictitious: the aggregated
Markov chain satisfies the Markov property of the memoryless chain {θk}. Moreover,
the probabilities of the joint process (νk, θk, θk−1) can be computed as shown in [79].

2.5 The information set

The scenario depicted in Fig. 2.4 shows the information flow of actuation and sensing
data between the plant and the controller, under TCP-like protocols, i.e., in the presence
of acknowledgement messages [48]. Transmissions and computations do not happen
instantly: as the reader may see in Fig. 2.4, actuation and sensing transmission time (δ3
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(a)

(b)

Plant

Controller

Controller

Plant

δ1 Sensing transmission time (from sensors to controller)

δ2 Computation time of the controller

δ3 Actuation transmission time (from controller to actuators)

δ4 Acknowledgment transmission time

δ5 Time needed for estimate correction with the current output measurement

Figure 2.4: Information flow timing between the plant and the controller used for the
next-step predictor (a) and the current estimator (b).

and δ1, respectively) are greater than zero, as well as the control law computation time
(denoted by δ2) and the acknowledgement transmission time δ4. Two different scenarios
may arise: either the time interval δ2 needed to the controller for the computations
of estimation and control law is comparable to the sampling period T (this may
happen when slow computers are used to control high-order systems) or the time
needed for the estimation is very small compared to the sampling period [181]. The
first case is depicted in Fig. 2.4-(a), where the computation time δ2 is comparable to
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the sampling period T . The suitable estimation technique in this case is provided
by the next-step predictor, that requires the measurements up through the previous
time instant [181, Chapter 8]. By considering the delay δ1 introduced by the sensing
transmission, the controller owns the whole information necessary for the estimation
needed in the computation of uk+1 exactly at kT + δ1.
Formally, the information set available to the output-feedback controller for the
computation of uk+1, based on the next-step predictor is

Fk+1
l = {(ut)kt=0, (yt)kt=0, (νt)kt=0, (γt)kt=0}.

The information set Fk+1
l implies that in the next-step predictor-based output-feedback,

the control law uk+1 does not depend on the most recent observation [181, Chapter 8].
Thus, the estimate vector might not be as accurate as the one obtained with the
most recent measurement. For high-order systems controlled by slow computers, or
whenever the sampling periods are comparable to the computation time, the time
interval between the observation instant and the validity time of the control output
allows the computer to complete the calculations [181].
In many systems however, the computation time required to evaluate the estimation
is quite short compared to the sampling period (see δ5 in Fig. 2.4-(b)), and the
delay of almost a cycle between the measurement and the proper time to apply
the resulting control calculation represents an unnecessary waste. Therefore, the
controller may exploit the current output measurement to obtain a more accurate state
estimation. Fig. 2.4-(b) shows the time diagram of a two-step estimation algorithm:
the first step predicts the state estimate based on the measurement from the previous
time-step, while the following step corrects the predicted estimate by integrating
the most recent measurement.

The time needed to perform the last step (concerning the estimate correction and
control law computations) denoted by δ5, is contained in δ2, and its brevity enables
the control law transmission within the proper time window, coherently with the
scenario described above of a controller with higher performance, [181, Chapter 8].
Notably, the current measurement is used within a different estimation technique
(hereafter, current estimator) that provides a more accurate estimated state vector
based on the most recent output information.
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The information set used for computing the control law uk during δ5, denoted by
Fkc , collects the information received up through kT + δ1, as follows,

Fkc , {(ut)k−1
t=0 , (yt)kt=0, (νt)k−1

t=0 , (γt)kt=0}.

Notice that the current control input based on Fkc has access to the most recent obser-
vation. Exploiting this additional information considerably increases the performance
resulting in lower estimation error cost, as also explained in the following sections.

Remark 5 A natural alternative to the considered estimators is the mode-independent
estimator based on Kalman filter described in [48] by Schenato et al., which does not
require a channel state estimation, and thus, results in a less complex design.
However, the estimator in [48] may fail to support a stable output-feedback controller
over FSMCs, as discussed in the numerical case study.

The necessary condition for a stable mode-independent estimation and control over
fading Markov channels is the system should behave well, i.e., it should be Strong-MSD
and Strong-MS stabilizable, as detailed in Section 2.11.

2.6 Wireless control network model

Given the system described by (2.1) and actuation and sensing FSMCs, the stochastic
system describing the WCN architecture in Fig. 2.1 can be written as follows,

xk+1 = Axk + νkBuk +Gwk,

yk = γkLxk + γkHwk,

zk = Cxk + νkDuk,

(2.5)

with zk ∈ Fnz (needed to define the performance index of the optimal controller), C
and D matrices of appropriate sizes.

Remark 6 Both νk and γk depend on the corresponding channel mode according to the
FSMC model, i.e., γk = γ(ηk) and νk = ν(θk), respectively (see Section 2.4.2). Therefore,
let us refer to the system described by (2.5) as MJLS.
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2.6.1 Assumptions on wireless control network model

The reader can find the main assumptions on the wireless control network scenario in
the following. The noise sequence {wk} is assumed to be independent of the initial
state x0 and the sequences {νk} and {γk}.

Moreover,

E[wk] = Onw , E[wkw∗k] = Inw , E[wkw∗l ] = Onw , (2.6)

For any k, l in N, k 6= l, see also [4].
Without loss of generality, the system matrices are assumed to be constant matrices
of appropriate sizes [4, Section 5.2], such that

GH∗ = 0, HH∗ � 0, C∗D = 0, D∗D � 0. (2.7)

Similarly to [4, Section 5.3], the following technical assumptions are provided, for k ∈ N:

a.1) initial conditions x0, θ0, and η0 are independent random variables,

a.2) white noise sequence {wk} is independent of initial conditions (x0, ν0, γ0) and of
processes {ν(θk)} and {γ(ηk)}, for any k,

a.3) Markov chains {θk}, {ηk} and the noise sequence {wk} are independent,

a.4) Markov chains {θk} and {ηk} are ergodic, with steady-state probability distribu-
tions

$̃∞`i , lim
k→∞

$̃`i(k),

$∞i , lim
k→∞

$i(k),

π∞m , lim
k→∞

πm(k),

for `, i ∈ Sθ and m ∈ Sη.

Let us set $̃∞=[$̃∞`i ]N`,i=1 and π∞=[π∞m ]Im=1.

This thesis aims to solve, as one of its contributions, the output-feedback control
problem over FSMCs with two different estimation techniques guaranteeing the infinite
horizon convergence of the state in MS. This property is known as MSS [4, Definition
3.8, pp. 36–37]. The mean square stability (MSS) notion involves the second moment
of the state and it is presented in the following.
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Definition 1 The MJLS described by (2.5) is MSS if there exist equilibrium points µ̂ and
Q̂ (independent from initial conditions) such that, for any initial condition (x0, ν0, γ0),
the following equalities are satisfied:

lim
k→∞
‖E(xk)− µ̂‖ = 0, (2.8)

lim
k→∞
‖E(xkx∗k)− Q̂‖=0. (2.9)

2.7 Output-feedback controller

This section shows two alternative output-feedback control systems for the problem
formalized in Section 2.2.

Moreover, this section reports the formal definition concerning the structural
property of MS stabilizability with delay introduced in [79].

2.7.1 Control synthesis based on next-step predictor

Consider the scenario introduced in Fig. 2.4-(a) and the related information set Fkl ,
k ∈ N.

The optimal next-step-predictor-based Markov jump output-feedback control system
relying on Fkl for the synthesis of uk is

Gl :

x̌k+1 = Ǎ(νk, θk−1, γk, ηk)x̌k + B̌(ηk)yk,
uk = F̌ (θk−1)x̌k,

(2.10)

with x̌k being the estimated state obtained by the next-step predictor. The controller
Gl (with optimal matrices Ǎ(νk, θk−1, γk, ηk), B̌(ηk), and F̌ (θk−1) to be found) should
guarantee MSS of the closed-loop system (see Definition 1). The sequences of matrices
F̌=[F̌ (`)]N`=1 and B̌ = [B̌(n)]In=1 are the solutions of the optimal control and of the
optimal filtering problem, respectively.

2.7.2 Output-feedback controller with current estimator

Consider the scenario in Fig. 2.4-(b) and the related information set Fkc . The optimal
Markov jump output-feedback control system based on the current estimator relies
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on Fkc for the synthesis of uk and it is given by

Gc :


x̃k+1 = Â (γk, ηk) x̃k + B̂(ηk)yk+Ĉ (νk, θk−1) x̂k,
x̂k+1 = x̃k+1+D̂(ηk+1) [yk+1−γk+1Lx̃k+1],
uk = F̂ (θk−1)x̂k,

(2.11)

with x̃k and x̂k, prediction state and correction state at time k ∈ N, respectively, obtained
using the current estimator. The controller Gc (with optimal matrices Â (γk, ηk), B̂(ηk),
Ĉ (νk, θk−1), D̂(ηk+1), and F̂ (θk−1) to be found) should guarantee the MSS of the
closed-loop system (see Definition 1). The sequences of matrices F̂ = [F̂ (`)]N`=1 and
D̂ = [D̂(n)]In=1 are the solutions of optimal control and filtering problem, respectively.

Remark 7 Both Gl and Gc should achieve the MSS of the closed-loop system.
The current estimator provides a valid alternative to the next-step predictor and

the proper control strategy should be chosen according to the calculating capacity of
the controller. Recall the computation time δ5, depicted in Fig. 2.4-(b): δ5 is required
for the correction of the predicted estimate. When δ5 is under a certain threshold, the
suitable controller is Gc, otherwise Gl should be preferred, as it is also pointed out in
Remark 8.

2.7.3 The Linear Quadratic Regulator

The necessary condition for an optimal infinite horizon solution of the wireless
control problem is the MS stabilizability with delay. The structural property of
MS stabilizability with delay is formally described by the following definition.

Definition 2 (MS stabilizability with delay) The MJLS described by (2.5) is MS stabi-
lizable with one time-step delayed actuation link mode observation if, for any initial
condition (x0, θ0), and for each mode ` ∈ Sθ, there exists a mode-dependent gain F`,
such that uk = Fθk−1xk (i.e., the control law with one time-step delay actuation link
mode observation) is the MS stabilizing state-feedback for (2.5).

Let F`∈Fnu×nx , ` ∈ Sθ, denote the optimal mode-dependent control gain with one time-
step delayed operational mode observation of the actuation link (see [79] for the solution
of the infinite horizon optimal control problem and [52] for a more general result).
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For any X = [Xl]Nl=1 ∈ HNnx,+, l ∈ Sθ, let us define Al(X) and Cl(X), as follows:

Al (X) , A∗
(

N∑
i=1

pliXi

)
A+ C∗C,

Cl (X) , A∗
(

N∑
i=1

pliν̂iXi

)
B,

respectively.
Let us also define Bl (X) and Xl (X) as,

Bl (X) ,
N∑
i=1

pliν̂i(B∗XiB +D∗D),

Xl(X) , Al(X)− Cl(X)B−1
l (X)C∗l (X),

respectively.
For l ∈ Sθ, the set of equations Xl = Xl(X) is the set of control coupled algebraic Riccati
equations (hereafter, control CAREs). The necessary condition for the existence of
the MS stabilizing solution X̃ ∈ HNnx,+ of the control CAREs is the MS stabilizability
with delay of the MJLS described by (2.5) (see Definition 2).

If X̃ ∈ HNnx,+ is the MS stabilizing solution of the control CAREs, then the state-
feedback control input Fθk−1xk stabilizes the system, with one time-step delay in the
observation of the actuation link mode in the MS sense (see [79]).
The optimal control problem solution is obtained by using the LMI approach [52].
The optimized performance index is given by

Jh = lim sup
t→∞

1
t
E
[

t∑
k=0

(zkz∗k) |Fkh
]
,

with zk in (2.5), h = L for the next-step predictor and h = C for the current estimator.
The performance index achieved by the optimal control law is

J∗h =
N∑
i=1

$∞i tr (G∗XiG) .

2.8 Estimation techniques

The output-feedback controllers introduced in Section 2.7 rely either on the next-step
predictor (Gl) or on the current estimator (Gc). The aim of the control law is ensuring
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the MSS of the closed-loop system. The aim of each estimator is ensuring MSS of the
estimation error dynamical system associated with the chosen estimation technique.
The structural property concerning the MSS is formally defined in the following.

Definition 3 The MJLS described by (2.5) is MSD if there exists an estimator such
that the corresponding estimation error system is MSS.

Remark 8 For the case in which the information on the output of the system and on
the Markov chain are available at each time-step, the best linear estimator of x(k) is the
Kalman filter (see [4, Remark 5.2]). In offline computations of the Kalman filter, the
solutions of the difference Riccati equations and of the time-varying Kalman gain are
sample-path dependent, and the number of sample paths grows exponentially in time.
Thus, Kalman filter offline implementation is inadvisable here [180].

On the other hand, an online implementation of the Kalman filter requires online
matrix inversions which might have a heavy computational burden. Therefore, this
work takes into account a different class of estimators with filtering gains pre-computed
offline. This avoids online matrix inversions and reduces the computational burden.

2.8.1 The Markovian next-step predictor

This subsection briefly recalls the Markovian next-step predictor presented in [92], given
by

Ǧ :


x̌k+1 =Ax̌k+νkBuk−M̌ηk(yk−γkLx̌k),
uk=Fθk−1x̌k,

x̌(0)= x̌0,

(2.12)

with M̌m, m ∈ Sη, mode-dependent filtering gain obtained as solution of the next-step
predictor filtering problem, which relies on the information set Fkl .

Note that when the controller makes the computations for x̌k+1, it knows whether
the packets containing the control law uk and the measurement yk have been received
or not. Indeed, this information is contained in Fk+1

l , which is exploited for computing
the proper control input to apply at time k + 1, that is uk+1 =Fθk x̌k+1. Let us define
the next-step predictor estimation error at time-step k ∈ N as ěk , xk − x̌k. The error
dynamics are derived as follows:

ěk+1 =
(
A+ γkM̌ηkL

)
ěk +

(
G+ γkM̌ηkH

)
wk. (2.13)
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2.8.2 The Markovian current estimator

The current estimator [181, Chapter 8] over the FSMC results in the following MJLS,

Ĝ :


x̂k+1 = x̃k+1 − M̂ηk+1 [yk+1 − γk+1Lx̃k+1],
yk+1 = γk+1Lxk+1 + γk+1Hwk+1,

uk = Fθk−1x̂k,

(2.14)

with M̂m, m ∈ Sη, mode-dependent filtering gain obtained by solving the current estima-
tor problem that relies on the information set Fkc [181]. The variables x̃k and x̂k are the
predicted and the estimated state vectors at time-step k ∈ N, respectively. The current
estimator is a two-step estimation algorithm: the first step computes the prediction

x̃k+1 = Ax̂k + νkBuk,

based on the measurement from the previous time-step, while the following step corrects
the predicted estimate by integrating the most recent measurement. The estimated
state vector resulting from this correction with yk+1 is x̂k+1.
Define the prediction error at time-step k ∈ N as

ek , xk − x̃k.

The resulting estimated state Markov jump system is

x̂k+1 = x̃k+1 − γk+1M̂ηk+1Lek+1 − γk+1M̂ηk+1Hwk+1. (2.15)

Remark 9 At time-step k + 1, the predicted state x̃k+1 is corrected exploiting the predic-
tion error ek+1, through the most recent output measurement.

By substituting x̂k, obtained from (2.15), in the prediction, the expression of x̃k+1

depends on the prediction error, as follows,

x̃k+1 = Ax̃k + νkBuk − γkAM̂ηkLek − γkAM̂ηkHwk. (2.16)

Therefore, the prediction error MJLS is given by

ek+1 =
(
A+ γkAM̂ηkL

)
ek +

(
G+ γkAM̂ηkH

)
wk. (2.17)
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Define the estimation error for the current estimator as êk , xk − x̂k. Consequently,
the following equality holds

êk+1 = ek+1 + γk+1M̂ηk+1Lek+1 + γk+1M̂ηk+1Hwk+1. (2.18)

Remark 10 In the next-step predictor, the estimation error coincides with the prediction
error. In the current estimator, when the prediction error ek converges to zero, by
(2.18), the estimation error goes to zero. Thus, (2.18) and (2.17) are equivalent at the
steady-state.

Remark 11 Neither the control input nor the Markov chain {θk} are involved in the
MJLSs (2.13) and (2.17). This implies that the optimal mode-dependent next-step
predictor gain M̌m and the current estimator gain M̂m, m ∈ Sη, can be designed
independently from the optimal mode-dependent control gain F`, ` ∈ Sθ.

2.8.3 Computational complexity

It is well known that the total number of floating-point operations or flops to carry out
the presented estimation algorithms may provide a rough estimate of the computation
time [222]. Given the state estimate vector, the number of flops needed for the
evaluation of the control law is O(nunx). Moreover, the computational complexity of
both the next-step predictor and the current state estimation numerical algorithms
is the same: O(n2

x + nxnu + ny + nxny).
The physical constraint for estimator implementation is obtained comparing δ2 (the

time needed for all the computations leading to the control law) and the sampling
time T . If the condition δ2 < T is satisfied, then the next-step predictor represents a
viable technique. Under this constraint, if δ5 (which is shorter than δ2 as already seen
in Section 2.5) is such that the control transmission remains inside the proper time
window, the current estimation is feasible and provides a more accurate result.

Remark 12 The physical constraints (concerning the computation time) discussed
above provide necessary conditions for implementation. However, taking into account
combined packet losses in both communication channels, as well as considering the
actuation delay, the infinite horizon output-feedback control is not easy to be modeled
and formally solved. Trivially, when all the communication is lost, an unstable plant
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cannot be stabilized remotely. The conditions concerning the theoretical existence of
the the infinite horizon estimators and controllers operating over FSMCs can be based
on the MS detectability and stabilizability notions (discussed in the following sections)
guaranteeing a MS stable behavior of estimators and controller with pre-computed gains.

2.9 Observer stability analysis

Let us recall that the MSD notion has been introduced by Definition 3 in Section 2.8.
This section provides the MSD specializations for the next-step predictor and the
current estimator, respectively.

2.9.1 The operators

This paragraph introduces the mathematical formalism [4] and the operators, that
have been exploited in the WCN investigations leading to the separation principle.
Specifically, the operators presented in the following are crucial to formalize the
mathematical problem concerning the separation principle over FSMCs. The operators
and the mathematical preliminaries introduced in this paragraph are instrumental for
the MSS analysis [4].
For all S = [Sm]Im=1, T = [Tm]Im=1, both in HInx , the inner product is given by

〈S; T〉,
I∑

m=1
tr (S∗mTm) .

Let us define the operators

E(·) , [Em(·)]Im=1,

D(·) , [Dm(·)]Im=1,

T (·) , [Tm(·)]Im=1,

L(·) , [Lm(·)]Im=1,

V(·) , [Vm(·)]Im=1.
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all in B
(
HInx

)
, for all S = [Sm]Im=1 in HInx , m,n ∈ Sη, as follows,

Em(S) ,
∑I

n=1 qmnSn, Dn(S) ,
∑I

m=1 qmnSm, (2.19)

Tn(S) ,
∑I

m=1qmn

{
γ̂mΓ̂m1SmΓ̂∗m1 + (1− γ̂m)Γ̂m0SmΓ̂∗m0

}
, (2.20)

Lm(S) , γ̂mΓ∗m1Em(S)Γm1 + (1− γ̂m)Γ∗m0Em(S)Γm0, (2.21)

Vn(S) , γ̂nΓn1Dn(S)Γ∗n1 + (1− γ̂n)Γn0Dn(S)Γ∗n0, (2.22)

where the matrices Γn1, Γn0, Γ̂n1, and Γ̂n0 are arbitrary matrices in Fnx×nx that will be
specialized later in this Chapter, while qmn and γ̂n are those defined by (2.2) and (2.3),
respectively.
Let us define the operators O and Ô, as follows,

• O(·, ·) : HInx,ny × RI → HInx , with O(·, ·) , [Om(·, ·)]Im=1,

• Ô(·, ·) : HInx,ny × RI → HInx , with Ô(·, ·) , [Ôm(·, ·)]Im=1,

for M , [Mn]In=1 arbitrary matrix in HInx,ny , and α = [αn]In=1 arbitrary vector in RI ,
n ∈ Sη, as

On(M,α) , αn (GG∗ + γ̂nMnHH
∗M∗

n) , (2.23)

Ôn(M,α) ,
I∑

m=1
qmnαm (GG∗ + γ̂mAMmHH

∗M∗
mA
∗) . (2.24)

Given Kmκ = Γ̄mκ ⊗ Γmκ, κ = 0, 1, define the matrices N and C, both in FIn2
x×In2

x , as,

N ,
I⊕

m=1
(γ̂mKm1) +

I⊕
m=1

((1− γ̂m)Km0) , C , Q′ ⊗ In2
x
. (2.25)

Remark 13 The matrices N and C are designed with the aim of providing a suitable
methodology for the test of detectability conditions in Definitions 4 and 5, as will be
discussed later. However, even though the aim is the same as in [4], differently from [4],
N and C account for the general FSMC scenario, i.e., they involve the probability γ̂m,
m ∈ Sη.

Proposition 1 Consider the operators T , L, V in B(HInx), defined in (2.20), (2.21),
and (2.22), respectively. Then, the following statements hold.
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i) The spectral radius of the operator L is equal to the spectral radius of the operator
V, i.e., ρ(L) = ρ(V),

ii) if Γ̂m0 = Γm0 and Γ̂m1 = Γm1 for all m ∈ Sη, then ρ(L)=ρ(V)=ρ(T ).

Proof 1 (Proof of Proposition 1) See Appendix A.

Remark 14 Proposition 1 shows the equivalence of operators V, T , and L, concerning
the spectral radius [4, Chapter 3].

2.9.2 Next-step predictor stability analysis

The next-step predictor stability analysis is based on the infinite horizon solution
of filtering CAREs, which are derived as on the asymptotic solution of difference
Riccati equations and obtained by defining the first and second moments of the
error ěk, k ∈ N, as follows,

m̌n(k) , E
[
ěk1{ηk−1=n}

]
, m̌(k) ,

[
m̌n(k)

]I
n=1
∈ FInx , (2.26)

Y̌n(k) , E
[
ěkě
∗
k1{ηk−1=n}

]
, Y̌(k) , [Y̌n(k)]In=1 ∈ HInx,+, (2.27)

for n ∈ Sη.
Consequently,

• the expected value of the next-step predictor estimation error ěk is given by

E[ěk] =
I∑

n=1
m̌n(k),

• the mean square of the next-step predictor estimation error is given by

E[ěkě∗k] =
I∑

n=1
Y̌n(k).

For arbitrary matrices Γn1 and Γn0 in Fnx×nx , n ∈ Sη, define B̌ ∈ FInx×Inx as

B̌ ,

((
I⊕

n=1
(γ̂nΓn1)

)
+
(

I⊕
n=1

((1− γ̂n)Γn0)
))

(Q′ ⊗ Inx) . (2.28)

Define also the sequence of matrices given by M̌ , [M̌m]Im=1, i.e., the sequence of mode-
dependent filtering gains in (2.12) providing the solution of the next-step predictor
filtering problem. Hence, the following statement can be proved.
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Proposition 2 Consider the error system described by (2.13). Then, for all k∈N, the
following equalities hold:

m̌(k + 1) = B̌m̌(k), Y̌(k + 1) = V(Y̌(k)) +O(M̌,π(k)), (2.29)

with B̌, V, and O defined in (2.28), (2.22) and (2.23), for Γn0 = A and Γn1 = A+ M̌nL,
n ∈ Sη.

Proof 2 (Proof of Proposition 2) See Appendix A.

The following definition provides a specialization of Definition 3 for the next-step
predictor scenario.

Definition 4 (MSD) The MJLS described by (2.5) is MSD if, for each Markov mode
n ∈ Sη, there exists a mode-dependent filtering gain M̌n ∈ Fnx×ny , such that ρ(V) < 1,
V ∈ B(HInx) defined in (2.22), for Γn1 = A+ M̌nL and Γn0 = A.

From now on, the expression MSD will refer to Definition 4.

Remark 15 By applying the results from [4, Section 3.4.2], the property provided by
Definition 4 is equivalent to the MSS of the error system (2.13) obtained for the
next-step predictor.

2.9.3 Current estimator stability analysis

Analogous steps for the next-step predictor stability analysis can be applied to the
current estimator and they are reported in the following.

Let us define for n ∈ Sη, k ∈ N, mn(k) and Zn(k), as follows,

mn(k) , E
[
ek1{ηk=n}

]
, m(k) , [mn(k)]In=1 ∈ FInx , (2.30)

Zn(k) , E
[
eke
∗
k1{ηk=n}

]
, Z(k) ,

[
Zn(k)

]I
n=1
∈ HInx,+. (2.31)

Consequently,

• the expectation of the prediction error is given by

E[ek] =
I∑

n=1
mn(k),
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• the mean square of the prediction error is given by

E[eke∗k] =
I∑

n=1
Zn(k).

For arbitrary matrices Γ̂n1 and Γ̂n0 ∈ Fnx×nx , n ∈ Sη, define B̂ ∈ FInx×Inx as

B̂ , (Q′ ⊗ Inx)
(

I⊕
n=1

(
γ̂nΓ̂n1

)
+

I⊕
n=1

(
(1− γ̂n)Γ̂n0

))
. (2.32)

Let us define the sequence of matrices given by M̂= [M̂m]Im=1, that is, a sequence of
mode-dependent filtering gains in (2.14) providing the solution of the filtering problem
in the current estimator setup.
The following proposition formalizes the dynamics of the observation error first
and second moments.

Proposition 3 Consider the error system described by (2.17). Then, for all k ∈ N, the
following equalities hold:

m(k + 1) = B̂m(k), Z(k + 1) = T (Z(k)) + Ô
(
M̂,π(k)

)
, (2.33)

with B̂, T , and Ô defined in (2.32), (2.20), and (2.24), respectively, for Γ̂n1 = A+AM̂nL

and Γ̂n0 = A, n ∈ Sη.

Proof 3 (Proof of Proposition 3) See Appendix A.

The following definition adapts Definition 3 to the current estimator scenario.

Definition 5 (Strict-MSD) The MJLS described by (2.5) is Strict-MSD if, for each
Markov mode n ∈ Sη, there exists a mode-dependent filtering gain M̂n ∈ Fnx×ny , such
that ρ(T ) < 1, with T ∈ B(HInx) defined in (2.20), for Γ̂n1 = A+AM̂nL and Γ̂n0 = A.

Proposition 4 Assume that the MJLS described by (2.5) is Strict-MSD. Then, (2.5) is
MSD according to Definition 4.

Proof 4 (Proof Proposition 4) See Appendix A.

Remark 16 By the results from [4, Section 3.4.2] applied to the operator T (with T as
in Definition 5), the condition on the spectral radius of the operator T , i.e., ρ (T ) < 1,
is equivalent to the property of the MSS of the error system described by (2.17).
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2.9.4 The next-step predictor filtering coupled algebraic Ric-
cati equations

In the next-step predictor setup, the optimal mode-dependent filtering gain results
from the optimization of the following performance index:

J∗L = lim sup
t→∞

1
t
E
[

t∑
k=0

(ěkě∗k) | Fkl
]
.

Obtaining the optimal performance index in the next-step predictor scenario necessitates
dealing with next-step predictor filtering CAREs, introduced as follows.
Let us define for any Y ∈ HInx,∗ and α = [αn]In=1 ∈ RI , the following operators,

Ǎn (Y,α) , ADn(Y)A∗ + αnGG
∗,

B̌n (Y) , ADn(Y)L∗,

Řn (Y,α) , αnHH
∗ + LDn(Y)L∗,

Čn (Y) , γ̂
1
2
n B̌n (Y) ,

for n ∈ Sη.
Consider the set W, defined as follows:

W = {(Y,α) ∈ HInx,∗ × RI , such that Řn (Y,α) is non-singular for any n ∈ Sη}.

For (Y,α) ∈W, define the operators

M (·, ·) : W→ HInx,ny ,

Y (·, ·) : W→ HInx ,

as

M (Y,α) =
[
Mn (Y,α)

]I
n=1

,

Y (Y,α) =
[
Yn (Y,α)

]I
n=1

,

with

Mn (Y,α) , −B̌n (Y) Ř−1
n (Y,α) , (2.34)

Yn (Y,α) , Ǎn (Y,α)− Čn (Y) Ř−1
n (Y,α) Č∗n (Y) , (2.35)
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for any n ∈ Sη (see [4, Section A.1]).
For notational convenience, let us setM (Y) =M (Y,π∞), Y (Y) = Y (Y,π∞), and, for
n ∈ Sη, Řn (Y) = Řn (Y,π∞), Ǎn (Y) = Ǎn (Y,π∞).
In the next-step predictor setting, the filtering CAREs are the set of equations given by

Yn = Yn(Y), n ∈ Sη. (2.36)

The optimal infinite horizon mode-dependent filtering gain is obtained from the solution
of the following optimization problem:

max tr
(

I∑
n=1

Yn

)
(2.37a)

subject to [
−Yn + Ǎn(Y) Čn(Y)
Č∗n(Y) Řn(Y)

]
� 0, (2.37b)

Řn(Y) � 0, Y ∈ HInx,∗, n ∈ Sη. (2.37c)

Define the sets L and M as follows,

L , {Y ∈ HInx,∗; Řn (Y) non-singular for any n ∈ Sη},

M , {Y ∈ L; Ř(Y) � 0 and −Y + Y(Y) � 0}.

Then, the MS stabilizing filtering gain is given by

M̌n =Mn (Y) , n ∈ Sη, (2.38)

where Y ∈ L is the MS stabilizing solution of (2.36) [4, Section A.1].

Definition 6 (MS stabilizing solution of (2.36)) Y ∈ L is the MS stabilizing solution of
the filtering CAREs (2.36) if it satisfies (2.36) and ρ(V) < 1, with V ∈ B(HInx) defined
in (2.22), for Γn1 = A+Mn(Y)L and Γn0 = A, n ∈ Sη; i.e., Mn(Y) stabilizes the error
system (2.13) in the MS sense.

The maximal solution of equations (2.36) and the solution of the optimization problem
presented in (2.37) coincide, as stated in the following theorem.

Theorem 1 Assume that the MJLS described by (2.5) is MSD.
Then, the following statements are equivalent:
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i) there exists Y+ ∈M satisfying the filtering CAREs (2.36), such that Y+ � Y, for
all Y ∈M,

ii) there exists a solution Ŷ for the convex programming problem described in (2.37).

Moreover, the two solutions coincide, i.e., Ŷ = Y+.

Proof 5 (Proof of Theorem 1) See Appendix A.

The maximal solution and the MS stabilizing solution of the filtering CAREs (2.36)
are connected, as stated in the following theorem.

Theorem 2 There exists at most one MS stabilizing solution of the filtering CAREs
(2.36), which coincides with the maximal solution in the set M, that is, the solution of
the convex programming problem described in (2.37).

Proof 6 (Proof of Theorem 2) See Appendix A.

The MS stabilizing filtering gain (2.38) is computed exploiting the maximal solution
of the filtering CAREs (2.36), i.e., the solution of the convex programming problem
(2.37), as stated in Theorem 2.
Consequently, the optimal performance index achieved by the next-step predictor is

J∗L =
I∑

m=1
tr(Ym),

with Y = [Ym]Im=1 being the maximal solution of the filtering CAREs (2.36). The
necessary condition for the existence of the MS stabilizing solution of the filtering
CAREs is the MSD of system (2.5).

2.9.5 The current estimator filtering coupled algebraic Riccati
equations

The optimal mode-dependent filtering gain of the current estimator results from the
optimization of the following performance index,

J∗C = lim sup
t→∞

1
t
E
[

t∑
k=0

(eke∗k) | Fkc
]
.
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Remark 17 The current estimator performance index J∗C (computed exploiting the
prediction error) can be compared to the next-step predictor performance index J∗L

(computed exploiting the estimation error) because the estimation error for the next-
step predictor and the prediction error for the current estimator are equivalent at the
steady-state, see Remark 10.

For Z=[Zm]Im=1∈HInx,∗ and α=[αn]In=1∈RI , define Ân(Z,α), R̂n(Z,α), and Ĉn(Z), as

Ân(Z,α) ,AZnA∗+αnGG∗,

R̂n(Z,α) , LZnL
∗+αnHH∗,

Ĉn(Z) , AZnL
∗,

for n∈Sη.
Consider the set Wc, defined as follows,

Wc = {(Z,α) ∈ HInx,∗ × RI , such that R̂n (Z,α) is non-singular for any n ∈ Sη}.

For (Z,α) ∈Wc, let us define the operators

Z(·, ·) : Wc → HInx ,

M̂(·, ·) : Wc → HInx,ny ,

as follows [4, Section A.1],

Z(Z,α) = [Zn(Z,α)]In=1,

Zn(Z,α) ,
I∑

m=1
qmn{Âm(Z,α)− γ̂mĈm(Z)R̂−1

m (Z,α)Ĉ∗m(Z)},

M̂(Z,α) =
[
M̂n(Z,α)

]I
n=1

,

M̂n (Z,α) , −ZnL∗R̂−1
n (Z,α) .

For notational convenience, let us set M̂ (Z) = M̂ (Z,π∞) and Z (Z) = Z (Z,π∞).
The following equations are the current estimator filtering CAREs:

Zn(Z) ,
I∑

m=1
qmn{Âm(Z,π∞)− γ̂mĈm(Z)R̂−1

m (Z,π∞)Ĉ∗m(Z)}, (2.39)

M̂n (Z,π∞) , −ZnL∗R̂−1
n (Z,π∞) . (2.40)

The following lemma states the equivalence of the filtering CAREs solutions and the
filtering gains, for the next-step predictor and the current estimator.
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Lemma 1 The following statements are equivalent:

i) For any Y(0) ∈ HInx,+, Y(k) ∈ HInx,+, k ∈ N, satisfying Y(k + 1) = Y (Y(k),π(k)),
with Y defined in (2.35), converges to Y ∈ HInx,+ satisfying Y = Y (Y).

ii) For any Z(0) ∈ HInx,+, Z(k) ∈ HInx,+, k ∈ N, satisfying Z(k + 1) = Z(Z(k),π(k)),
converges to Z ∈ HInx,+ satisfying Z = Z (Z).

Moreover, the mode-dependent filtering gain that stabilizes the error system (2.17) in
the MS sense is M̂n = M̂n (Z), and the optimal performance index achieved by the cur-
rent estimator is J∗C =

∑I
n=1 tr(Zn), with Z = [Zn]In=1 ∈ HInx, Zn given by Zn = Dn (Y),

n ∈ Sη, and Y maximal solution of (2.36).

Proof 7 (Proof of Lemma 1) See Appendix A.

Remark 18 The next-step predictor and the current estimator are equivalent from
the steady-state point of view, as stated in Lemma 1. However, their difference
in performance (indicated by the indexes JL and JC) and physical constraints (see
Remark 12) allow for choosing the most suitable estimator for a specific scenario, as
shown in Sections 2.5 and 2.8.3.

Remark 19 If the matrix A is non-singular, then, from Lemma 1, the next-step predictor
filtering gain can be computed as follows, M̌n = A−1M̂n.

2.10 The separation principle

This paragraph illustrates the statements of the separation principle for the next-step
predictor and the current estimator scenarios, respectively.

2.10.1 The next-step predictor separation principle

Consider the optimal matrices in (2.10), that can be written as follows:

Ǎ(νk, θk−1, γk, ηk) = A+ νkBFθk−1 + γkM̌ηkL,

B̌(ηk) = −M̌ηk , F̌ (θk−1) = Fθk−1 .
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Then, the optimal output-feedback controller (2.10) coincides with (2.12), and the
closed-loop system dynamics are

xk+1 = (A+ νkBFθk−1)xk − νkBFθk−1 ěk +Gwk. (2.41)

Recalling the error dynamics described in (2.13), the closed-loop system is described as
follows,

Ǧcl : Ek+1 = Γ (νk, θk−1, γk, ηk) Ek + Σ (γk, ηk)wk, (2.42)

Ek ,
[
xk
ěk

]
, Σ (γk, ηk) ,

[
G

G+ γkM̌ηkH

]
,

Γ (νk, θk−1, γk, ηk) ,
(A+ νkBFθk−1

)
−νkBFθk−1

Onx

(
A+ γkM̌ηkL

) .

Theorem 3 Given the MJLS described by (2.5) and the next-step predictor described by
(2.12), the following statements are equivalent:

i) the closed-loop system dynamics (2.41) can be made MSS;

ii) the MJLS described by (2.5) is both

ii-a) MSD,

ii-b) MS stabilizable with one time-step delayed observation of actuation link
mode.

Proof 8 (Proof of Theorem 3) See Appendix A.

2.10.2 The current estimator separation principle

Consider the optimal matrices in (2.11), that can be written as follows:

Â(γk, ηk) , A+ γkAM̂ηkL, B̂(ηk) , −AM̂ηk ,

F̂ (θk−1) , Fθk−1 , Ĉ (νk, θk−1) , νkBFθk−1 , D̂(ηk) , −M̂ηk .
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Then, (2.14)-(2.16) coincide with (2.11), and the dynamics of the closed-loop system
are the following:

xk+1 =
(
A+ νkBFθk−1

)
xk +

(
G− γkνkBFθk−1M̂ηkH

)
wk

−
(
νkBFθk−1 + γkνkBFθk−1M̂ηkL

)
ek. (2.43)

By recalling the error dynamics described in (2.17), the closed-loop system is written
in a compact form, as follows:

Ĝcl : Xk+1 = Ψ (νk, θk−1, γk, ηk)Xk + Ω (νk, θk−1, γk, ηk)wk,

with Ψ (νk, θk−1, γk, ηk) ,
(A+ νkBFθk−1) −(νkBFθk−1 + γkνkBFθk−1M̂ηkL)

Onx

(
A+ γkAM̂ηkL

)  ,
Xk ,

[
xk
ek

]
, Ω(νk, θk−1, γk, ηk) ,

[
G− γkνkBFθk−1M̂ηkH

G+ γkAM̂ηkH

]
.

Remark 20 The matrices Ψ (νk, θk−1, γk, ηk) and Γ (νk, θk−1, γk, ηk) are upper triangular
block diagonal matrices as in [4], i.e., the error dynamics (driven by {ηk}) do not
depend on the state dynamics (induced by {θk}). Differently from [4], the closed-loop
dynamical matrices Γ and Ψ contain the Markov jumps not only of the Markov chain
{ηk} (sensing link mode observation) but of the Markov chain {θk} (actuation link
dynamics mode observation) too (see the FSMC model in Section 2.4.2). Moreover,
this model accounts for the mode observation delay affecting the Markov chain {θk}k∈N.

Theorem 4 Given the MJLS described by (2.5) and the current estimator described by
(2.14), the following statements are equivalent:

i) the closed-loop system dynamics (2.43) can be made MSS;

ii) the MJLS described by (2.5) is both

ii-a) Strict-MSD,

ii-b) MS stabilizable with one time-step delayed observation of actuation link
mode.

Proof 9 (Proof of Theorem 4) See Appendix A.
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2.11 Mode-independent output-feedback

Under the conditions presented in this section, the designer can use mode-independent
control and filtering gains. The advantage of mode-independence concerns the reduced
computational burden, especially when the number of modes increases. The strong MS
stabilizability (defined in the following) guarantees the existence of a mode-independent
control gain, which is MS stabilizing.

On the other hand, the following definitions of Strong-MSD and Strong-Strict-MSD
provide the basis for deriving sufficient conditions guaranteeing the existence of a
mode-independent filtering gain, which makes the estimation error system MSS.

Definition 7 (Strong-MS stabilizability) The MJLS described by (2.5) is Strong-MS
stabilizable with one time-step delayed actuation link mode observation if, for any initial
condition (x0, θ0), there exists a mode-independent control gain F b ∈ Fnu×nx such that
uk = F bxk is the MS stabilizing state-feedback for (2.5).

The following Strong-MSD and Strong-Strict-MSD notions instead concern the sensing
link.

Definition 8 (Strong-MSD) The MJLS described by (2.5) is Strong-MSD if there exists
a mode-independent filtering gain M̌ b ∈ Fnx×ny , such that ρ(V) < 1, with V ∈ B(HInx)
defined in (2.22), for Γn1 = A+ M̌ bL, Γn0 = A, and n ∈ Sη.

Definition 9 (Strong-Strict-MSD) The MJLS described by (2.5) is Strong-Strict-MSD
if there exists a mode-independent filtering gain M̂ b ∈ Fnx×ny , such that ρ(T ) < 1, with
T ∈ B(HInx) defined in (2.20), for Γ̂n1 = A+AM̂ bL, Γ̂n0 = A, and n ∈ Sη.

Proposition 5 Consider the MJLS described by (2.5). The following statements hold.

i) Strong-MSD implies MSD.

ii) Strong-Strict-MSD implies Strict-MSD and Strong-MSD.

Proof 10 (Proof of Proposition 5) See Appendix A.

Remark 21 Strong-Strict-MSD implies all the detectability notions concerning the
FSMC model. Thus, the Strong-Strict-MSD is the strongest detectability notion, while
MSD is the weakest one.
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Let us introduce the mode-independent output-feedback recalling the filtering and
control modified algebraic Riccati equations (MARE) reported in the following [48,223].
To this end, define

Åb
(
Y b
)
, AY bA∗ +GG∗, C̊b

(
Y b
)
, AY bL∗,

R̊b
(
Y b
)
, LY bL∗ +HH∗, M̊b

(
Y b
)

= −Y bL∗R̊b
(
Y b
)−1

,

Ab
(
Xb
)
, A∗XbA+ C∗C, Cb

(
Xb
)
, B∗XbA,

Rb
(
Xb
)
, B∗XbB +D∗D, F b

(
Xb
)

= −Rb
(
Xb
)−1
Cb
(
Xb
)
.

for Y b, Xb ∈ Fnx×nx∗ . Consider the sets

L̊b , {Y b ∈ Fnx×nx∗ such that R̊b
(
Y b
)

is non-singular},

Lb , {Xb ∈ Fnx×nx∗ such that Rb
(
Xb
)

is non-singular}.

For Y b
∞ ∈ L̊b, Xb

∞ ∈ Lb, the filtering and control MARE are

Y b
∞ = Åb

(
Y b
∞

)
− γ̊C̊b

(
Y b
∞

)
R̊b

(
Y b
∞

)−1
C̊b∗

(
Y b
∞

)
, (2.44)

Xb
∞ = Ab

(
Xb
∞

)
− ν̊Cb∗

(
Xb
∞

)
Rb

(
Xb
∞

)−1
Cb
(
Xb
∞

)
. (2.45)

Under the strong MS stabilizability condition, the mode-independent MS stabilizing
control gain exists, and it is given by F b = Fb(Xb

∞), with Xb
∞ ∈ Lb satisfying (2.45) [79].

Moreover, the critical arrival probability on the actuation link is defined as

νc , infν{0 ≤ ν ≤ 1 such that Xb
∞ � 0 satisfies (2.45)}

[48, Lemma 5.4 (a)], and the critical observation arrival probability on the sensing link
is denoted by γc [48, Theorem 5.5]. By [48, Lemma 5.4, Theorem 5.5], νc and γc satisfy

pmin ≤ νc ≤ pmax

and

pmin ≤ γc ≤ γmax ≤ pmax,

where

pmin , 1− 1
maxh |λuh(A)|2 and pmax , 1− 1∏

h |λuh(A)|2 (2.46)

with λuh(A) being the h-th unstable eigenvalue of A, and

γmax , infγ{0 ≤ γ ≤ 1 such that Y b
∞ � 0 satisfies (2.44)}.
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Remark 22 Strong-MSD condition guarantees the existence of the mode-independent
filtering gain, that can be computed as M̌ b = AM̊b(Y b

∞), with Y b
∞ ∈ L̊b satisfying (2.44).

Moreover, if Strong-Strict-MSD is satisfied, the existence of the current estimator
mode-independent filtering gain is guaranteed. In this case, the filtering gain can be
computed as follows: M̂ b = M̊b(Y b

∞), with Y b
∞ ∈ L̊b.

The results illustrated by the following theorem provide the evidence of the existing
connection between the optimal mode-dependent filtering CARE solution and the
mode-independent solutions of the filtering MARE. Specifically, the solutions of the
filtering problem are equivalent under particular conditions. The same holds for the
control problem [79, Theorem 3].

Theorem 5 Assume that ν̊ =
∑N
i=1$iν̂i, γ̊ =

∑I
m=1 π

∞
m γ̂m. Then, the following state-

ments hold.

i) The solution of the filtering MARE provides the mode-independent solution of
the filtering CAREs.

ii) The solution of the control MARE provides the mode-independent solution of the
control CAREs.

Proof 11 (Proof of Theorem 5) See Appendix A.

Structural properties such as stabilizability and detectability in the mean square sense
can be also studied by exploiting the mathematical instruments of LMIs [4, Section 3.5].
LMIs used for testing MS detectability conditions over FSMCs are introduced in the fol-
lowing.

A∗ZmA+ γ̂mA
∗Wm2L+ γ̂mL

∗W ∗
m2A+ γ̂mL

∗Wm3L−Wm1 ≺ 0; (2.47a)[
Zm Wm2
W ∗
m2 Wm3

]
� 0; (2.47b)

Zm � Em(W1), Wm1 � 0, Zm � 0, m ∈ Sη, (2.47c)

W1 = [Wm1]Im=1, Z = [Zm]Im=1 in HInx,+, W2 = [Wm2]Im=1 in HInx,ny , and W3 = [Wm3]Im=1

in HIny ,+.

Proposition 6 Consider the MJLS described by (2.5) and the following statements.
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i) The MJLS described by (2.5) is MSD.

ii) The MJLS described by (2.5) is Strict-MSD.

iii) there exist

W1 = [Wm1]Im=1, Z = [Zm]Im=1 ∈ HInx,+,

W2 = [Wm2]Im=1 ∈ HInx,ny , W3 = [Wm3]Im=1 ∈ HIny ,+,

satisfying conditions (2.47).

Then, statement (i) holds if and only if statement (iii) holds and statement (ii) implies
statement (iii). Furthermore, if the matrix A is non-singular, statement (ii) holds if
and only if statement (iii) is satisfied.

Proof 12 (Proof of Proposition 6) See Appendix A.

The following set of LMIs is exploited for testing Strong-MSD and Strong-Strict-MSD.

A∗ZA+ γ̂mA
∗W2L+ γ̂mL

∗W ∗
2A+ γ̂mL

∗W3L−Wm1 ≺ 0; (2.48a)[
Z W2
W ∗

2 W3

]
� 0; (2.48b)

Z � Em(W1) , Wm1 � 0, Z � 0, m ∈ Sη, (2.48c)

W1 =[Wm1]Im=1 in HInx,+, Z in Fnx×nx+ , W2 in Fnx×ny , W3 in Fny×ny+ .

Proposition 7 Consider the MJLS described by (2.5) and the following statements.

i) There exist W1 = [Wm1]Im=1 in HInx,+, Z ∈ Fnx×nx+ , W2 ∈ Fnx×ny , W3 ∈ Fny×ny+ ,
satisfying conditions (2.48).

ii) The MJLS described by (2.5) is Strong-MSD.

iii) The MJLS described by (2.5) is Strong-Strict-MSD.

Then, statement (i) implies statement (ii).
Moreover, if the matrix A is non-singular, statement (i) implies statement (iii).

Proof 13 (Proof of Proposition 7) See Appendix A.
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Figure 2.5: Inverted pendulum on a cart

2.12 Numerical case study

2.12.1 The inverted pendulum on a cart

This section presents the wireless output-feedback control of an inverted pendulum
on a cart [224], controlled remotely over TCP-like lossy sensing and actuation links.
The considered cart and pendulum masses are 0.5kg and 0.2kg, inertia about the
pendulum mass center is 0.006 kg·m2, distance from the pivot to the pendulum mass
center is 0.3m, coefficient of friction for the cart is 0.1. The system state is defined by
x=

[
δx, δẋ, δφ, δφ̇

]′
, with δx(t) = x(t)− x?, δφ(t) = φ(t)− φ?, where x is the cart position,

φ is the pendulum angle from vertical, x? and φ? are the equilibrium point position
and angle. The designed control law aims to stabilize the pendulum in the upright
position corresponding to unstable equilibrium point x? = 0 m, φ? = 0 rad. The optimal
Markov jump output-feedback controllers (2.10) and (2.11) have been applied to
the discrete-time linear model derived from the continuous-time nonlinear model by
linearization. The state-space model of the system is linearized around the unstable
equilibrium point and discretized with sampling period Ts = 0.01 s. The obtained
system matrices [92] are the following:

A =


1.000 0.010 0.000 0.000
0.000 0.998 0.027 0.000
0.000 0.000 1.002 0.010
0.000 −0.005 0.312 1.002

 ,

B = 10−1 ×


0.00091
0.182
0.0023
0.474

 .



2. Wireless control networks over finite-state Markov Channels: the separation
principle 65

Remark 23 With the matrix A defined above the probabilities pmin and pmax computed
according to equation (2.46) are given by

pmin = pmax = 0.10538.

The weighting matrices in zk are

C∗C =
⊕

(1000, 0.1, 10000, 0.1),

D = 1,

while matrices H and G are such that

HH∗ = Inx � 0, GG∗ =
[
I2 I2
I2 I2

]
.

The process noise is characterized by the covariance matrix E[wkw∗k] = Σw, with
Σw = 2 · 10−6I4.

The state matrix A is unstable since it has an eigenvalue in 1.057, but it is easy to
verify that D∗D � 0, the pair (A,B) is controllable, while (A,L) is observable, so the
closed-loop system is asymptotically stable if νk = 1 and γk = 1 for any k.

Moreover, the necessary conditions for the existence of the MS stabilizing solution
for the control and filtering CAREs are satisfied. FSMC models with TPMs in R4×4

describe the double-sided packet loss. These channels are obtained by following the
systematic procedure in [62] that accounts for path loss, shadow fading, transmission
power control, and interference. The partitioning of the SINR range is based on the
values of PEP so that each SINR threshold corresponds to a specific PEP value.
The following paragraphs show the simulation results obtained by applying output-
feedback control theory over FSMCs.

2.12.2 Detectability analysis

In this paragraph, the proposed methodology is applied to the study of the MSD
conditions.
Let us introduce the two main parameters for the FSMC configuration:

• the distance between the transmitter-receiver couple of interest denoted by d0,

• the distance between the interfering transmitter and receiver of interest denoted
by di.



2. Wireless control networks over finite-state Markov Channels: the separation
principle 66

Consider the following two configurations:

(i) d0 = 18 m and di = 15 m,

(ii) d0 = 16 m and di = 8 m.

Configuration (i)

The resulting sensing link TPM under configuration (i) is given by

Q =


0.6164 0.0381 0.1606 0.1849
0.6126 0.0382 0.1616 0.1876
0.6115 0.0382 0.1619 0.1884
0.6083 0.0384 0.1627 0.1906

 .
The probability of receiving the packet in each mode of the FSMC is

γ̂ =
[
0.014 0.5026469 0.9337680 1

]
.

Conditions (2.47) and conditions (2.48) are both satisfied.
Consequently,

• from Proposition 6, the system is MSD and Strict-MSD,

• from Proposition 7, the system is Strong-MSD and Strong-Strict-MSD.

From the spectral radius analysis, it follows that

ρ (V) = ρ (T ) = 0.979735651,

with Markovian filtering, i.e., with

• V defined in (2.22) for Γn1 = A+ M̌nL and Γn0 = A, M̌n Markovian mode-dependent
next-step predictor filtering gain,

• T defined in (2.20) for Γ̂n1 = A+AM̂nL and Γ̂n0 = A, M̂n Markovian mode-
dependent current estimator filtering gain.

The spectral radius obtained with the Bernoullian filtering is given by

ρ (V) = ρ (T ) = 0.979741917.

The mean square state trajectories in Fig. 2.6 highlight that the closed-loop system is
MSS.
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Figure 2.6: Closed-loop mean square state trajectories in configuration (i)
• blue obtained with the Markovian next-step predictor;
• red obtained with the Markovian current estimator;
• dashed blue obtained with the Bernoullian next-step predictor;
• dashed red obtained with the Bernoullian current estimator.

Configuration (ii)

The resulting sensing link TPM under configuration (ii) is given by

Q =


0.9265 0.0131 0.0403 0.0201
0.9241 0.0135 0.0415 0.0210
0.9237 0.0135 0.0417 0.0211
0.9227 0.0137 0.0422 0.0215

 .

The probability of receiving the packet in each mode of the FSMC is

γ̂ =
[
0.004 0.4993460 0.9209712 1.0000000

]
Conditions (2.47) and conditions (2.48) are not satisfied.
Consequently,

• from Proposition 6, the system is neither MSD nor Strict-MSD,

• as long as properties Strong-MSD and Strong-Strict-MSD, since conditions (2.48)
are only sufficient, the spectral radius analysis is needed to obtain appropriate
conclusions.
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Table 2.1: Performance indexes obtained by next-step predictor (J∗L), current estimator
(J∗C), Bernoullian filter (J∗B) in configuration (i) and in configuration (ii).

J∗
L J∗

C J∗
B

Configuration (i) ≈ 4× 10−4 ≈ 3× 10−4 ≈ 2× 102

Configuration (ii) ≈ 109 ≈ 108 ≈ 109

From the spectral radius analysis, it follows that

ρ (V) = ρ (T ) = 1.042641679,

with Markovian filtering, i.e., with

• V defined in (2.22) for Γn1 = A+ M̌nL and Γn0 = A, M̌n Markovian mode-dependent
next-step predictor filtering gain,

• T defined in (2.20) for Γ̂n1 = A+AM̂nL and Γ̂n0 = A, M̂n Markovian mode-
dependent current estimator filtering gain.

As the reader may notice both LMIs conditions (2.47) and spectral radius analysis
highlight that the system is is neither MSD nor Strict-MSD.
The spectral radius obtained with the Bernoullian filtering is given by

ρ (V) = ρ (T ) = 1.042641295.

From the spectral radius analysis for the Bernoullian observer provided above, it follows
that the system is not Strong-MSD nor Strong-Strict-MSD.
Finally, the mean square state trajectories in Fig. 2.7 and the average state trajectories
in Fig. 2.8 highlight that the closed-loop system is not MSS. Indeed, as the reader may
note both the mean square trajectories, in Fig. 2.7, as well as the average trajectories,
in Fig. 2.8, show a divergent behavior.

As the reader may note by observing Table 2.1, the values of the performance indexes
J∗L, J∗C and J∗B in configuration (ii) are larger with respect to the corresponding
values in configuration (i).
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Figure 2.7: Closed-loop mean square state trajectories in configuration (ii)
• blue obtained with the Markovian next-step predictor;
• red obtained with the Markovian current estimator;
• dashed blue obtained with the Bernoullian next-step predictor;
• dashed red obtained with the Bernoullian current estimator.

This is because configuration (i) satisfies the properties of MSD, Strict-MSD,
Strong-MSD, Strong-Strict-MSD.

Moreover, comparing the performance indexes in configuration (i), it follows that
J∗L > J∗C showing that the cost achieved by the next-step predictor is higher with respect
to the cost achieved by the current estimator. However, the highest cost is achieved by
the Bernoullian observer with J∗B ≈ 2× 102.
The two configurations presented (configuration (i) and configuration (ii)) highlight
two opposite scenarios in terms of MSD properties.

The following paragraph investigates the existence of a limit case, where MSD and
Strict-MSD are satisfied, while the Strong-MSD and Strong-Strict-MSD are not satisfied.

Limit case for detectability analysis

Simulation results highlight the existence of a limit case for detectability conditions.
When considering the distance between the transmitter-receiver couple of interest
d0 = 17.348 m and distance between the interfering transmitter and receiver of interest
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Figure 2.8: Closed-loop average state trajectories in configuration (ii)
• blue obtained with the Markovian next-step predictor;
• red obtained with the Markovian current estimator;
• dashed blue obtained with the Bernoullian next-step predictor;
• dashed red obtained with the Bernoullian current estimator.

di,1 = 9.548 m, the resulting sensing link TPM is given by

Q1 =


0.8855395 0.0184352 0.0603969 0.0356284
0.8825920 0.0187857 0.0617956 0.0368267
0.8820434 0.0188504 0.0620549 0.0370513
0.8806549 0.0190134 0.0627101 0.0376216

 .
The probabilities of receiving the packet in each mode of the sensing link are denoted by

γ̂1 =
[
0.005 0.5000509 0.9237605 1

]
.

Conditions (2.47) are satisfied. From Proposition 6, the system is MSD and Strict-MSD.
As far as strong conditions (2.48) go, they are not satisfied. Since conditions (2.48) are
only sufficient, the spectral radius analysis is needed to obtain appropriate conclusions.
From the spectral radius analysis, it follows that

ρ (V) = ρ (T ) = 0.999999983,

with Markovian filtering, i.e., with
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• V defined in (2.22) for Γn1 = A+ M̌nL and Γn0 = A, M̌n Markovian mode-dependent
next-step predictor filtering gain,

• T defined in (2.20) for Γ̂n1 = A+AM̂nL and Γ̂n0 = A, M̂n Markovian mode-
dependent current estimator filtering gain.

The spectral radius obtained with the Bernoullian filtering is given by

ρ (V) = ρ (T ) = 1.000000074,

• V defined in (2.22) for Γn1 = A+ M̌ bL and Γn0 = A, M̌ b Bernoullian mode-
independent next-step predictor filtering gain,

• T defined in (2.20) for Γ̂n1 = A+AM̂ bL and Γ̂n0 = A, M̂ b Bernoullian mode-
independent current estimator filtering gain.

In this case, the condition γ̊ > γmax from [48, Theorem 5.6] is satisfied.
However, the system is unstable with the Bernoullian filtering because the system

is neither Strong-MSD nor Strong-Strict-MSD.
This limit case reveals that the Bernoullian output-feedback controller may fail

in making the closed-loop system MSS when strong detectability conditions are not
satisfied, while the Markovian output-feedback controller achieves this aim over the
FSMCs.

2.12.3 Stabilizability analysis

The MS stabilizability analysis is presented through the limit case obtained under
the following configuration.

Consider d0 = 17.348 m and di,2 = 10 m.
Then, the actuation link TPM is

P2 =


0.8647302 0.0208232 0.0701174 0.0443292
0.8615749 0.0211698 0.0715631 0.0456922
0.8609554 0.0212373 0.0718457 0.0459616
0.8593737 0.0214086 0.0725659 0.0466518

 .
The probabilities of receiving the packet in each mode of the actuation link are given by

ν̂2 =
[
0.006 0.5003405 0.9248986 1

]
.
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Let us introduce the operator the operator L̂ [79] that will be exploited in the spectral
radius analysis.
For V = [Vij ]Ni,j=1 ∈ FNnx×Nnx , define L̂(·) = [L̂ij(·)]Ni,j=1 ∈ B(FNnx×Nnx), with

L̂ij(V) ,
{
A
∑N

l=1 VliA
∗ + ν̂iB

∑N

l=1 FlVliF
∗
l B
∗

+ ν̂iB
∑N

l=1 FlVliA
∗ + ν̂iA

∑N

l=1 VliF
∗
l B
∗
}
pij. (2.49)

From the spectral radius analysis it follows that

• ρ
(
L̂
)

= 1.000388084 using the Bernoullian control gain, i.e., F b,

• ρ
(
L̂
)

= 0.996248733 with the Markovian mode-dependent control gain, i.e., F`,
` ∈ Sη.

This case highlights that even though the condition ν̊ > νc from [48, Theorem 5.6] is
satisfied, the system is unstable with the Bernoullian controller because the system
is not Strong-MS stabilizable (recall Definition 7), see also Remark 24.

The Bernoullian control law is not able to make the closed-loop system MSS, while
the Markovian control achieves this aim.
Varying distances di between the interfering transmitter and receiver of interest
positioned at d0 = 17.348 m from its transmitter, we distinguish four cases:

(a) di ≤ 9.547 m,

(b) di = 9.548 m,

(c) di ∈ [9.549 m, 12.100 m],

(d) di ≥ 12.101 m.

Table 2.2 provides insights on the detectability and stabilizability for each of these
cases: the check mark indicates that the notion holds, while the cross mark reveals
that its required conditions are not satisfied.

Remark 24 The results presented in this Chapter are more general with respect to the
ones by Schenato et al. [48]. As also pointed out in the detectability and stabilizability
analysis, even though in this example the conditions by Schenato et al. are satisfied, the
system is not MSS with the Bernoullian mode-independent controller. This is because
Strong-MS stabilizability and Strong-MSD are not satisfied.
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Table 2.2: Detectability and stabilizability analysis summary

(a) (b) (c) (d)
MSD 7 3 3 3

Strict-MSD 7 3 3 3

Strong-MSD 7 7 3 3

Strong-Strict-MSD 7 7 3 3

MS stabilizability 7 7 3 3

Strong-MS stabilizability 7 7 7 3

Figure 2.9: The charts report:
• estimation error on cart position obtained by Monte Carlo simulations in yellow;
• the average error trajectory in red;
• the maximum error trajectory in blue;
• the minimum error trajectory in green,
concerning the next-step predictor (a) and the current estimator (b).
The top right of each panel reports a zoom in for each plot.

2.12.4 Performance analysis and comparison

Consider the distances d0 = 17.348 m, di,3 = 14 m (corresponding to the case (d) in
Table 2.2) and covariance matrix Σw provided above. The performance indexes
obtained in case (d) are:
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• J∗L = 0.0001109, that is, the performance index achieved by the Markovian next-
step predictor,

• J∗C = 0.0000746, that is, the performance index achieved by the Markovian current
estimator,

• J∗B = 209.8934328, that is, the performance index achieved by the Bernoullian
observer.

The reported performance indexes highlight the fact that the presented mode-independent
estimation techniques are easier to implement, but their average cost is larger than
the one obtained by the Markovian filtering.

Moreover, the spectral radius of T and V are the same for both mode-dependent
Markovian filters because these estimators are equivalent at the steady-state, see
Remark 10.
However, the advantage of the current estimator compared to the next-step predictor
is that it involves the most recent measurement in the estimation, yielding a smaller
performance index. Fig. 2.10 provides the evidence of the comparison described above:
the closed-loop mean square state trajectories depicted in Fig. 2.10 are obtained with
1000 independent Monte Carlo simulations. As the reader may notice, the current
estimator leads to the closed-loop mean square state trajectory that remains far below
the closed-loop mean square state trajectory provided by next-step predictor.

Consider now the scenario with distances d0 = 17.348 m, di,3 = 14 m, where Σw = qq′,
with q = [0.003, 1,−0.005,−2.150]′ [48].

This case is reported in Fig. 2.9 to emphasize the performance differences existing
between the next-step predictor and the current estimator.

The first difference can be individuated in the resulting performance indexes J∗L = 65
for the next-step predictor, and J∗C = 43 for the current estimator.

The performance index analysis shows that the cost achieved by the next-step
predictor is higher with respect to the one achieved by the current estimator, see
also Remark 17. Moreover, Fig. 2.9 highlights the behavior of the error trajectories
for each observer.

After the transient, the error trajectories obtained by the current estimator become
smooth faster with respect to the error trajectories obtained by the next-step predictor,
which takes 20 samples to become smooth.
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Figure 2.10: Mean square state trajectories in closed-loop in
• blue obtained with the Markovian next-step predictor;
• red obtained with the Markovian current estimator;
• dashed blue obtained with the Bernoullian next-step predictor;
• dashed red obtained with the Bernoullian current estimator.
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This chapter is based on the paper by Impicciatore et al., titled “Secure state estimation
over Markov wireless communication channels” [87], that presents results obtained
during the visiting period at the University of Pennsylvania, under the supervision
of Professor George J. Pappas and through the collaboration with Dr. Anastasios
Tsiamis.
This Chapter addresses the problem of remote state estimation with secrecy against
eavesdropping: this work moves from the secrecy notion proposed in [38, Definition 1
(perfect expected secrecy)] for a Bernoulli packet-dropping wireless link and provides
the definition of optimal mean square expected secrecy over FSMCs.
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The original notion of perfect expected secrecy [38, Definition 1] requires implementa-
tions of the Kalman filter over Bernoulli packet dropping links [49, 88].
However, under FSMCs, any offline computation of the Kalman filter gains would
require a combinatorially increasing, with the time-horizon, amount of memory.
For this reason, an alternative practical notion of expected secrecy is considered: optimal
mean square expected secrecy over FSMCs. This alternative definition accounts for
the minimum MSE, over minimum mean square Markov jump filters, with a finite
number of offline-computed gains.

In particular, the definition provided in this chapter requires the eavesdropper
MSE to grow unbounded, while the user MSE remains bounded. This new definition
requires the adoption of a different approach and utilize tools for the stability analysis
of MJLSs [4,79]. The employed secrecy mechanism randomly withholds information
with some probability, similarly to [38]. The aim of this chapter is providing bounds
for tuning the secrecy mechanism design.

3.1 Chapter outline

The Chapter is organized as follows.

• Section 3.2 provides the problem formulation.

• Section 3.3 introduces the optimal mean square expected secrecy notion over
FSMCs.

• Section 3.4 illustrates the main achievements in this research line.

• Section 3.5 presents an eavesdropper characterization.

• Section 3.6 shows the effectiveness of the proposed approach through an example.

• proofs and technical results are reported in Appendix B.

3.2 Problem formulation

This section presents a detailed description of the scenario investigated in this chapter.
Consider the remote architecture depicted in Fig. 3.1. A sensor transmits a system

state information to the estimator over a legitimate user link (in lightblue). The
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Plant
Secrecy

User

Eavesdropper

y(k) ŷ(k) ŷu(k)

ŷe(k)

x̂u(k)

x̂e(k)

Figure 3.1: Remote estimation architecture.

communication from the plant to the legitimate user occurs over a wireless connection
as the reader may see in Fig. 3.1. The shared nature of the wireless medium causes
an eavesdropping risk [34,37,38,86]. Indeed, a malicious agent, called eavesdropper,
may overhear the information on the wireless link. In Fig. 3.1, the presence of the
eavesdropper (in lightred) is modeled through the wireless eavesdropper link in lightred.

Each connection, either the user link or the eavesdropper link, may be affected
by packet losses [74] and is modeled by a FSMC. The FSMC [1] is an abstraction
widely used to design wireless communication systems, see Chapter 2 for more details.
The following discrete-time linear system describes the plantx(k + 1) = Ax(k) + w(k),

y(k) = Lx(k) + v(k),
(3.1)

where x(k) ∈ Rnx is the state and y(k) ∈ Rny is the system’s output, while k ∈ N is the
(discrete) time. The signals w(k) ∈ Rnx and v(k) ∈ Rny are the process and measurement
noise respectively: w(k) and v(k) are i.i.d. independent Gaussian random variables
with zero mean and covariance matrices Q,R � 0 respectively. The initial state x0 is
Gaussian with zero mean and covariance matrix Σ0 � 0.

Let us introduce the first assumption concerning the considered discrete-time linear
system.

Assumption 1 The system described by (3.1) is unstable, i.e., ρ (A) > 1.

Even without eavesdroppers, estimation of unstable open-loop systems has been
a problem of independent interest in control systems (see [49] for instance). The
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ultimate goal is to close the loop and apply control, but first, estimation of the open-
loop system should be studied. Besides, if the system is stable, the eavesdropper
can predict the state with more accuracy, even without eavesdropping, since the
state remains close to the origin.

3.2.1 Secrecy mechanism

The secrecy mechanism adopted is introduced in [38]: the sensor transmits the output
of the plant y(k) with probability λ ∈ [0, 1] and it transmits no information (denoted
by the symbol ε) with probability 1− λ. Formally,

ŷ(k) =

y(k) if ν(k) = 1
ε if ν(k) = 0

∀k ≥ 0. (3.2)

As the reader may see in (3.2), the secrecy mechanism works by randomly withholding
the output of the plant y(k), according to the value of the binary variable ν(k), that
is the outcome of the secrecy mechanism.

Particularly, ν(k) is a binary random variable characterized by the secrecy pa-
rameter λ, as follows,

P (ν(k) = 1) = λ,

P (ν(k) = 0) = 1− λ.

For the sake of simplicity in the notation, in the rest of this chapter, the subscript i
will be used to indicate an agent operating at the receiver’s end.
Formally, i ∈ {u, e}, where

• u refers to the user,

• e marks the eavesdropper.

Finally, the i-th link denotes the wireless link between the plant and the agent i.

3.2.2 Wireless link

This section describes the mathematical model of the wireless link.
Let us introduce the variable ŷi(k), that denotes the measurement received by the
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agent i at time k ∈ N. The general model for the agent’s link is

ŷi(k) =

ŷ(k) if ξi(k) = 1
ε if ξi(k) = 0

∀k ≥ 0, (3.3)

where ε means no information. As the reader may notice observing equation (3.3),
ŷi(k) is equal to the variable ŷ(k), i.e., the output of the secrecy mechanism, or ε
according to the value assumed by ξi(k).

The value of ξi(k), k ∈ N, describes the packet arrival process on the i-th link:

• ξi(k) = 0 if the packet is lost,

• ξi(k) = 1 if the packet is correctly delivered.

The process ξi(k) is a binary random variable and the probability of having a packet
loss or a correct packet transmission over the link i depends on the SINR. The
SINR is determined by physical phenomena and model parameters (see [62]) such
as path loss, shadow fading, interference and also the nature of the environment
(domestic or industrial).

The SINR is a stochastic process and it is typically approximated by a finite
state Markov chain [1], denoted as ηi(k).

The i-th wireless link is mathematically described by a wireless channel model [74],
that is, the FSMC [1], composed by two stochastic processes:

• the process ξi(k), that describes packet arrival or packet loss occurrences on the
i-th link,

• the process ηi(k), that describes the current Markov mode of the i-th link in
terms of SINR.

In the FSMC model, the probability of having a zero or a one for the variable ξi(k)
depends on the current mode of the Markov chain ηi(k).

Let us introduce the set of Markov modes for the finite-state Markov chains
ηi(k), with i ∈ {u, e}, k ∈ N. Recall that each Markov chain ηi(k) approximates the
SINR on the link i.

Let the index set S of the Markov chains ηi be defined as follows, S , {1, . . . , N}.
Then, ηi(k) ∈ {si,m}m∈S (see [62]).
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Each agent i estimates the SINR process during a learning phase and thus, it knows
the number of modes, the transition probabilities, and the probability distribution of
the Markov chain ηi. For each mode of ηi(k), the value of ξi(k) can be either zero or
one with certain probabilities. For m ∈ S, let the variable γ̂i,m denote the probability
that ξi(k) = 1, given the mode of the Markov chain ηi(k) for k ∈ N,

P (ξi(k) = 1 | ηi(k) = si,m) = γ̂i,m,

P (ξi(k) = 0 | ηi(k) = si,m) = 1− γ̂i,m.

When a packet loss on the i-th link has occurred or the secrecy mechanism has
withheld the output information, the agent i interprets the system state message as lost.
Specifically, based on error detection and correction mechanisms the receiver decides
whether the packet is ε and should be dropped. For most communication protocols
receiver also performs SINR estimation for each received packet and thus the agent i
always knows the mode of the i-th link ηi(k).
From (3.2)-(3.3) the received measurement ŷi(k) is different from ε if and only if
the product between the secrecy mechanism outcome ν(k) and the process ξi(k) is
equal to one, i.e., ν(k)ξi(k) = 1.

Let us introduce a binary variable depending on the link i, for the product between
ν(k) and ξi(k). Let us define the variable ϕi(k), as follows,

ϕi(k) , ν(k)ξi(k).

For i ∈ {u, e}, m ∈ S,

P (ϕi(k) = 1 | ηi(k) = si,m) = λγ̂i,m,

P (ϕi(k) = 0 | ηi(k) = si,m) = 1− λγ̂i,m.

Each agent i owns an information set, that includes:

• the value of ŷi from the time instant zero to the current time instant,

• the value of the product between the value of ν and the value of ξi from the time
instant zero to the current time instant,

• the Markov mode of the wireless link ηi from the time instant zero to the current
time instant.
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Formally, the information set available to the agent i at time k ∈ N is given by

Fi(k) = {(ŷi(t))kt=0 , (ϕi(t))
k
t=0 , (ηi(t))

k
t=0}. (3.4)

Remark 25 Consider the information set Fi(k) in (3.4). Recall the definition of ŷi(k)
in (3.3) and the secrecy mechanism (3.2). It is straightforward to see that with the
knowledge of ŷi(k) and ϕi(k), the agent i is aware of y(k).

3.2.3 Probabilistic framework

This paragraph introduces more details on the probabilistic framework that is used to
describe the wireless link.
Let us introduce the probability πi,m(k), defined as follows,

πi,m(k) , P (ηi(k) = si,m) ,

with 0 < πi,m(k) < 1, for any k, for m ∈ S, i ∈ {u, e}.
A TPM associated with the Markov chain ηi(k) is denoted by Pi , [pi,mn]Nm,n=1,

pi,mn = P (ηi(k + 1) = si,n | ηi(k) = si,m) ,
N∑
n=1

pi,mn = 1.

The main technical assumptions (that are similar to [4, Section 5.3]) are presented
in the following (with i ∈ {u, e} and k ∈ N):

i) the initial conditions x0, ηi,0 are independent random variables,

ii) the white noise sequences {w(k)} and {v(k)} are independent of the initial
conditions (x0, ν(0)) and of the processes ξi(k), for any discrete-time k ∈ N,

iii) the Markov chains {ηi(k)} and the noise sequences {w(k)} and {v(k)} are inde-
pendent,

iv) the Markov chains {ηi(k)} are ergodic, with steady state probability distributions

π∞i,m = lim
k→∞

πi,m(k),

m ∈ S.
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This work aims to design an estimator of the class of mean square Markov jump filters
(see [4, Chapter 5.3]) together with a secrecy mechanism, such that the user MSE
remains bounded, while the eavesdropper MSE is unbounded. The formal guarantees
of this secrecy notion can be found in Section 3.3 (see Definition 10).
The variables ψi and ζi introduced in the following will be exploited in the statement
and in the proof of the main result.
For i ∈ {u, e},

• ψi denotes the average probability of intercepting a measurement on the i-th link,
when λ = 1,

• ζi is the average probability of intercepting a measurement for λ ∈ [0, 1).

Formally, for i ∈ {u, e}, ψi and ζi are defined as follows,

ψi ,
N∑
m=1

π∞i,mγ̂i,m,

ζi , ψiλ.

3.3 Optimal mean square expected secrecy

This section presents the infinite horizon minimum mean square Markov jump filter [4,
Chapter 5.3] with the estimation technique provided by an estimator called current
estimator [181, Chapter 8.2.4].

Specifically, the estimator provides at each step a model prediction obtained from
the estimated state at the previous step. This prediction is corrected by the current
measurement received ŷi(k).

Remark 26 It is well known that for the case in which the information on the output
of the system and on the Markov chain are available at each time step k ∈ N, the best
linear estimator of x(k) is the Kalman filter [4, Remark 5.2]. An offline computation
of the Kalman filter is inadvisable here as pointed out in [180]. The reason is that
the solution of the difference Riccati equation and the time varying Kalman gain are
sample path dependent and the number of sample paths grows exponentially in time.
On the other hand, an online computation of the Kalman filter requires online matrix
inversions which might require a lot of computation. For this reason, a different class
of estimators is taken into account: for this class of estimators filtering gains are
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pre-computed offline. This allows us to avoid online matrix inversions, thus, reducing
the computational burden.

Recall that the agent i receives a quantity that is different from ε if and only if
the following equality is satisfied,

ϕi(k) = 1,

(see Remark 25).
Consequently, the current estimated state dynamics can be written as follows (see

also [181, eq. (8.33)-(8.34)]), for i ∈ {u, e}:

x̂i(k) = xi(k)− ϕi(k)M̂i,ηi(k) [y(k)− Lxi(k)] , (3.5)

xi(k + 1) = Ax̂i(k), (3.6)

where M̂i,ηi(k) is the mode-dependent filtering gain, whose explicit expression can be
found later in (3.11).
Since the filtering gain depends on the mode of the Markov chain at time k, and the
Markov chain has a given finite set of modes, it can be computed offline (see Remark 28).

From (3.5)-(3.6), by defining the error as follows,

ẽi(k) = x(k)− xi(k), i ∈ {u, e},

the error system is given by

ẽi(k + 1) =
(
A+ ϕi(k)AM̂i,ηi(k)L

)
ẽi(k) + w(k) + ϕi(k)AM̂i,ηi(k)v(k), (3.7)

see also [181, eq. (8.36)].

Remark 27 The error system described by (3.7) is a discrete-time MJLS (see for
instance [4]).

The notation presented in [4] is adopted here: for i ∈ {u, e}, m ∈ S, let us define
Zi(k) , [Zi,m(k)]Nm=1 ∈ HNnx,+,

Zi,m(k) , E
[
ẽi(k)ẽ∗i (k)1{ηi(k)=si,m}

]
,

with 1{ηi(k)=si,m} denoting the indicator function defined in the usual way.
The MSE can be written as follows (see for instance [4], [92]),

E [ẽi(k)ẽ∗i (k)] =
N∑
m=1

Zi,m(k). (3.8)
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Given the MSE expression, the following definition introduces the notion of optimal
mean square expected secrecy over FSMCs, with the estimation error obtained
applying the minimum mean square Markov jump filter [4, Chapter 5.3], instead
of the Kalman filter [38].

Definition 10 (Secrecy over FSMCs) Given the system described by (3.1) and the FSMCs
(3.3), a secrecy mechanism (3.2) achieves optimal mean square expected secrecy over
FSMCs if and only if, for any initial condition Zi(0) ∈ HNnx,+, i ∈ {u, e}, both of the
following conditions hold:

lim
k→∞

tr {E [ẽu(k)ẽ∗u(k)]} <∞,

lim
k→∞

tr {E [ẽe(k)ẽ∗e(k)]} =∞.

Let us introduce an important assumption concerning the secrecy mechanism and
the user MSE (see also [38]).

Assumption 2 Let us assume that when the secrecy mechanism

ŷ(k) = y(k),

is employed for all k ≥ 0, i.e., when λ = ζu
ψu

= 1, the user MSE is bounded, i.e.,

lim
k→∞

tr {E [ẽu(k)ẽ∗u(k)]} <∞,

for any initial condition Zu(0) ∈ HNnx,+.

The following operator is instrumental for the presentation of the Algebraic Riccati
equation and for the technical results exploited in the proof of the main theorem.
Let us define the operator

Xλ : Fnx×nx+ × R+ × R+ → Fnx×nx+ ,

with λ ∈ [0, 1].
For X ∈ Fnx×nx+ , α > 0, φ ∈ R+, let Xλ (X,α, φ) be defined as follows,

Xλ (X,α, φ) , (1− λφ) {AXA∗ + αQ}

+ λφ
(
AXA∗ + αQ− AXL∗ (LXL∗ + αR)−1 LXA∗

)
. (3.9)
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Proposition 8 Consider the error system described by the MJLS (3.7).
Under Assumption 2, for m,n ∈ S, i ∈ {u, e}, the filtering coupled algebraic Riccati

equations (CAREs) are given by

Zi,n =
N∑
m=1

pi,mnXλ
(
Zi,m, π

∞
i,m, γ̂i,m

)
, (3.10)

M̂i,m = −Zi,mL∗
(
LZi,mL

∗ + π∞i,mR
)−1

. (3.11)

Proof 14 (Proof of Proposition 8) See Appendix B.

Remark 28 The filtering gain can be computed offline from the minimization of the
MSE, according to the procedure shown in [92] and reported in Appendix A of this
thesis. Particularly, each agent i knows the matrices of the system, as well as the mode
of the Markov chain ηi. Formally, for m ∈ S, the filtering gain M̂i,m is given by (3.11),
where Zi,m is the solution of (3.10).

3.4 Main result

This section presents necessary and sufficient conditions concerning the FSMC proba-
bilities such that optimal mean square expected secrecy over FSMCs is guaranteed.

Theorem 6 Consider the system described by (3.1), the secrecy mechanism given by
(3.2), and FSMCs described by (3.3).
Under Assumption 1 and Assumption 2, the secrecy mechanism achieves optimal mean
square expected secrecy over FSMCs if and only if

ψu > ψe. (3.12)

In particular, there exists a probability ζc ∈ [0, 1) such that optimal mean square expected
secrecy is guaranteed if and only if the probability λ in the secrecy mechanism satisfies
the following inequalities

ζc
ψu

< λ ≤ min
{
ζc
ψe
, 1
}
. (3.13)

Remark 29 The inequality ψu > ψe is a reasonable condition for secrecy in many cases
of interest. Indeed, it is plausible that the propagation environment leads to an average
probability of intercepting the measurement over the eavesdropper link, ψe, which is
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strictly less than ψu, for instance because the eavesdropper might be further away from
the source.

The result in (3.12) shows that optimal mean square expected secrecy over FSMCs
can be achieved if and only if there is channel disparity between the user and the
eavesdropper, i.e., the user has a higher probability of packet reception on average.

Specifically, under the condition on channel disparity, optimal mean square expected
secrecy over FSMCs can be achieved by properly tuning the withholding probability of
the secrecy mechanism. This fact implies that a criterion on the withholding probability
λ is needed for the secrecy mechanism designer. This criterion is shown in (3.13).

Proof 15 (Proof of Theorem 6) See Appendix B.

3.5 Eavesdropper characterization

Given the propagation environment, a designer can deduce possible positions of
eavesdroppers, decide which are of the most concern, and derive an eavesdropper’s
TPM.
This section provides link quality constraints used to design the secrecy mechanism
attempting to increase the eavesdropper MSE to infinity. More specifically, if the
eavesdropper TPM Pe is known, the designer is able to construct the matrix Ae,
defined as follows,

Ae ,
[
P ′e ⊗ In2

x

] [ N⊕
m=1

(1− λγ̂e,m)
(
A⊗ A

)]
.

For V = [Vm]Nm=1 ∈ HNnx,∗ define for n ∈ S,

Se,n (V) ,
N∑
m=1

pe,mn (1− λγ̂e,m)AVmA∗ + π∞e,nQ.

The following proposition proves that the operator Se,n defined above provides a
lower bound to the eavesdropper MSE, under the estimator defined in (3.5). Hence,
the above recursion can be exploited to test whether the eavesdropper has MSE
that increases to infinity.

Proposition 9 Consider the system described by (3.1) and the secrecy mechanism (3.2).
The following statements hold, for n ∈ S,
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• If the spectral radius of the matrix Ae is strictly less than one, i.e., ρ (Ae) < 1,
then

lim
k→∞

tr {Ze,n(k)} ≥ tr {Se,n} ,

with Se,n = Se,n (Se) and Se = [Se,n]Nn=1 ∈ HNnx,+.

• If the spectral radius of the matrix Ae is greater than or equal to one, i.e.,
ρ (Ae) ≥ 1, then

lim
k→∞

tr {Ze,n(k)} = +∞.

Proof 16 (Proof of Proposition 9) See appendix B.

Remark 30 Proposition 9 provides novel covariance lower bounds for the eavesdropper
MSE. Such a lower bound could be used as a guide to tune the withholding probability
of the secrecy mechanism.

3.6 Example

This section examines an inverted pendulum on a cart [224] whose parameters are
estimated remotely over a wireless link exposed to an eavesdropper. The considered
cart’s and pendulum’s masses are 0.5 kg and 0.2 kg, inertia about the pendulum’s mass
center is 0.006 kg ·m2, distance from the pivot to the pendulum’s mass center is 0.3 m,
coefficient of friction for the cart is 0.1. The discrete-time system has been obtained from
discretization with sampling Ts = 0.01 s and linearization of the dynamical continuous
time nonlinear model around the unstable equilibrium points x∗ = 0 m, φ∗ = 0 rad. The
resulting matrix A of the discrete-time system is such that ρ (A) ≈ 1.1 > 1, and thus,
Assumption 1 is satisfied. This unstable plant evolves in open-loop.
Recall that, when the propagation environment is known, a designer can deduce which
are the possible eavesdropping configurations allowing to overhear the user’s messages.
Consider two independent wireless links: one link for the user, the other one for
the eavesdropper.

The formal mathematical description of each propagation environment (either
the user propagation environment or the eavesdropper propagation environment)
accounts for the following couples:
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• transmitter/receiver couple,

• transmitter/interferer couple.

For each propagation environment, the transmitter/receiver couple is the couple
of interest, while the transmitter/interferer couple models some interference that
affects the propagation environment and that characterize both the user and the
eavesdropper wireless link.

Consider the following parameters:

• du denotes the distance of the couple of interest for the user,

• de denotes the distance of the couple of interest for the eavesdropper,

• d̃u denotes the distance of the couple transmitter/interferer for the user,

• d̃e denotes the distance of the couple transmitter/interferer for the eavesdropper.

3.6.1 Finite-state Markov channel scenario

Consider the following wireless link scenario resulting in the FSMC model [1, 79]),
with the following parameters:

• du = 17 m,

• d̃u = 15 m,

• de = 19 m,

• d̃e = 13 m.

Consider the configuration described above for the user and the eavesdropper.
The TPM describing the user FSMC, denoted by Pu, is given by

Pu =


0.5679349 0.0394557 0.1725174 0.220092
0.5642459 0.0395369 0.1733422 0.222875
0.56307 0.0395617 0.1736014 0.2237669

0.5596774 0.0396311 0.1743412 0.2263503

 .
The probabilities of receiving the packet in each mode of the user FSMC are given
by γ̂u,m, m = 1, 2, . . . , N , that are the entries of the vector γ̂u, as follows,

γ̂u =
[
0.016 0.5030050 0.9351091 1

]
.
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Figure 3.2: User MSE obtained with FSMC model resulting from user parameters du = 17 m,
d̃u = 15 m, and with secrecy parameter λ = 1.

The TPM describing the eavesdropper FSMC, denoted by Pe, is

Pe =


0.7663241 0.0298952 0.1116115 0.0921692
0.7626088 0.0301756 0.1130374 0.0941782
0.7617196 0.0302419 0.1133766 0.0946619
0.7593571 0.0304166 0.1142745 0.0959518


The probabilities of receiving the packet in each mode of the eavesdropper FSMC are
given by γ̂e,m, m = 1, 2, . . . , N , that are the entries of the vector γ̂e, as follows,

γ̂e =
[
0.009 0.5014132 0.9290699 1

]
.

When the secrecy mechanism is not applied, i.e., when the parameter λ = 1, the user
MSE is bounded, i.e., Assumption 2 is satisfied, as the reader can see in Fig. 3.2.
The limit probability of intercepting the measurement when secrecy is applied is
given by ζc ≈ 0.105.

The secrecy parameter λ guaranteeing the optimal mean square expected secrecy
over the FSMC scenario depicted above belongs to the interval (0.26, 0.48].
The results obtained in simulations are shown in Fig. 3.3 and in Fig. 3.4.
Fig. 3.3 shows the error trajectories ẽi(k), i ∈ {u, e}, obtained from 1000 Monte Carlo
simulations for the user (blue lines) and for the eavesdropper (red lines) with λ = 0.3.

As the reader can see, the user error trajectories have a convergent behavior, while
the eavesdropper error trajectories diverge.
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Figure 3.3: Error trajectories on cart’s position obtained with λ = 0.3.
• The figure at the top shows error trajectories on cart’s position for the user in blue.
• The figure at the bottom shows error trajectories on cart’s position for the eavesdropper in
red.

Consider now Fig. 3.4, that reports the eavesdropper MSE (red line) and the user
MSE (blue line) on cart’s position with λ = 0.3. The reader may notice that the
eavesdropper MSE shows a worse behavior with respect to the user MSE: this is
induced by the relation existing between the average probabilities of successfully
receiving the system state message, ψe and ψu, over the eavesdropper and the user
link, respectively. Particularly, in the reported example ψe = 0.219, ψu = 0.413, and
thus ψe < ψu, as required by Theorem 6.

Compare now Fig. 3.5 (obtained without a secrecy mechanism) and Fig. 3.4
(obtained with the proposed secrecy mechanism). The reader may notice that the
secrecy mechanism makes the eavesdropper MSE go to infinity, while the user MSE
remains bounded (see Fig. 3.4).

The example reported above concludes this chapter, where secure state estimation
over Markov wireless communication channels is presented.
The secrecy notion investigated in [38] is brought to the FSMC scenario, which
requires re-definition of estimation problem and a novel technical procedure for deriving
the secrecy conditions.
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Figure 3.4: The figure reports the MSE on cart’s position for the user (blue line) and for
the eavesdropper (red line) with λ = 0.3.

Figure 3.5: The figure reports the MSE on cart’s position for the user (blue line) and for
the eavesdropper (red line) with λ = 1.

Moreover, this chapter solves a secrecy design problem satisfying the described
formal requirements over FSMCs. Finally, the effectiveness of the proposed approach
is shown through the example of an inverted pendulum on a cart whose parameters
are estimated remotely over a wireless link exposed to an eavesdropper.
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Discrete-time Markovian switching systems provide a good approximation of WCNs
[62, 66, 67] because Markov chains are able to model bursts of packet losses [1].

There is a wide literature concerning stability investigations for discrete-time Markov
jump linear systems [4], while only few works such as [3, 145] investigate the mean
square stability notion in the nonlinear framework.

This chapter addresses the problems concerning stability [225] and input-to-state
stability [118] analysis of discrete-time Markovian switching nonlinear systems [3,

93
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100]. The challenges concerning discrete-time Markovian switching nonlinear systems
addressed by this PhD work are presented in the works by Impicciatore et al. [97, 142].
When the plant has a general mathematical model (that can be for instance nonlinear
[94]) the modeling strategies based on discrete-time Markovian switching nonlinear
systems [3] play a key role because Markovian switching nonlinear systems provide
good approximations of the analyzed system.

Discrete-time Markovian switching systems, also known as Markov jump systems,
are particularly useful for modeling systems subject to abrupt changes, such as WCNs.
As discussed in the previous chapters, a wireless channel may suffer from packet losses
[4, 67, 98, 99]. Markovian switching nonlinear systems [3, 100] are good approximations
of WCNs when the plant is characterized by nonlinear dynamics [94].

4.1 Chapter outline

This section provides a brief summary of the chapter, as follows.

• Section 4.2 reports the probabilistic space exploited in this chapter.

• Section 4.3 illustrates the formal description of the problem addressed by this
chapter.

• Section 4.4 provides the results obtained for EMSS.

• Section 4.5 presents the results obtained for EMS-ISS.

• Section 4.6 illustrates the notions of pth moment ISS and pth moment exponential
ISS.

• Section 4.7 provides the sufficient conditions guaranteeing pth moment ISS and
pth moment exponential ISS.

• Section 4.8 provides some examples validating the presented results.

• proofs of Lemmas and Theorems are reported in Appendix C.
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4.2 The probabilistic space

Consider the stochastic basis defined by the quadruple (Ω,F , {Fk}k∈N,P), where Ω is
the sample space, F is the corresponding σ-algebra of events, {Fk}k∈N is the filtration,
P is the probability measure.

Let E[·] denote the expectation of a random variable with respect to P, and let E[·|Fk]
denote the conditional expectation of a random variable on the filtration {Fk}k∈N.

Consider a switching signal given by the Markov chain {r(k)}k∈N defined on
the probability space (Ω,F , {Fk},P). For each time k ∈ N, r(k) takes values in the
set S , {1, . . . , N}.

For all operational modes of the Markov chain i, j ∈ S, and for all k ∈ N, the
transition probabilities are defined by

pij , P (r(k + 1) = j|r(k) = i) ≥ 0,
N∑
j=1

pij = 1. (4.1)

Consequently, the TPM of the Markov chain is defined as P , [pij ]Ni,j=1.
The realizations of the Markov chain are called switching paths. Some definitions

given in [3, 100] are reported in the following.

Definition 11 The set of all admissible transitions of the Markov chain {r(k)}k∈N, is
defined as follows,

E , {(i, j) ∈ S × S | pij > 0}.

Definition 12 For any given i ∈ S, let the set of reachable modes from i be defined as
follows,

Souti , {j ∈ S | (i, j) ∈ E}.

For any ` ∈ N, i ∈ S, let r`(i) denote an admissible switching path of length `, starting
from the mode i. Particularly, the path r`(i) contains ` modes of the switching
signal, included the initial mode.

Formally, r`(i) is defined for ` ∈ N, and i ∈ S, as:

r`(i) ,


{i}, ` = 0, 1,
{i, j1}, j1 ∈ Souti , ` = 2,
{i, j1, ..., j −̀1}, j1 ∈ Souti , jh+1 ∈ Soutjh

,

h = 1, 2, . . . , `− 2, ` ≥ 3.

(4.2)
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r(k) : 1 2 3

p11
p12

p21

p23

p32
p31

Figure 4.1: State diagram of the Markov chain considered in Example 1.

Definition 13 For any mode of the Markov chain, i ∈ S, the collection of all admissible
switching paths r`(i), ` ∈ N, defined in (4.2), is denoted by R`(i).

Remark 31 Notice that the collections R0(i) and R1(i), i ∈ S, contain only one path
r0(i), and r1(i), respectively. Thus, their cardinality is

|R0(i)| = |R1(i)| = 1,

for any i ∈ S.

Consider the Markov chain depicted in Fig. 4.1: in the following example different
sets of admissible switching paths are identified depending on the length of the path
and on the initial mode of the given Markov chain.

Example 1 Consider the Markov chain in Fig. 4.1. Let pij > 0 for (i, j) /∈ {(2, 2), (3, 3), (1, 3)}
and let p13 = p22 = p33 = 0. The set S = {1, 2, 3} contains all modes of the Markov chain,
while the set of admissible transitions is

E = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 1), (3, 2)}.

Notice that the self-loops (2, 2), (3, 3) are not admissible. We have, for instance, the
following collections of admissible switching paths.

• The collection of all admissible switching paths of length 2, emanating from the
mode i = 1 ∈ S is given by

R2(1) =
{
{1, 1}, {1, 2}

}
.

• The collection of all admissible switching paths of length 3, emanating from the
mode i = 2 ∈ S is given by

R3(2) =
{
{2, 1, 1}, {2, 1, 2}, {2, 3, 2}, {2, 3, 1}

}
.



4. On discrete-time Markovian switching nonlinear systems 97

Let the set Q`(i) be defined for any ` ∈ N, i ∈ S, as follows,

Q`(i) , N[1,|R`(i)|].

Then, each index q ∈ Q`(i) can be associated with an admissible switching path belonging
to the set R`(i), ` ∈ N (see [3, Section 4.2]).
Let the symbol rq`(i), q ∈ Q`(i), denote the qth admissible switching path belong-
ing to the set R`(i).

Clearly,

Q0(i) = Q1(i) = {1}.

Indeed, from Remark 31, R0(i) and R1(i) contain only one admissible switching path.
Thus, their cardinalities are given by

|R1(i)| = |R0(i)| = 1.

Since the switching signal r(k), k ∈ N, is a Markov chain with a certain TPM, each
admissible switching path rq`(i) ∈ R`(i) is associated with a certain probability of
occurrence, denoted by pq`(i), q ∈ Q`(i), for any ` ∈ N, i ∈ S.

Clearly,

p1
0(i) = p1

1(i) = 1.

4.3 Problem Formulation

Consider the following discrete-time Markovian switching nonlinear system, defined
on the aforementioned stochastic basis (Ω,F , {Fk},P):x(k + 1) = fr(k)(x(k), u(k)), k ∈ N,

x(0) = ξ ∈ Rn, r(0) = i ∈ S,
(4.3)

where x(k) ∈ Rn is the state of the system and u(k) ∈ Rm is the input signal. The
set of input sequences is defined by

U , {u : N→ Rm}.

For any i ∈ S,

fi : Rn × Rm → Rn
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is a locally bounded function satisfying fi(0, 0) = 0, continuous at zero.
The solution of (4.3) is denoted by Φ

(
k, ξ, i, rqk(i), u

), k ∈ N, and corresponds to initial
conditions ξ ∈ Rn, i ∈ S, switching path rqk(i) ∈ Rk(i), q ∈ Qk(i), and input signal u ∈ U .

Remark 32 The system is clearly forward complete, since for any k ∈ N, any given
initial condition ξ ∈ Rn, any given Markovian initial mode i ∈ S, any given input signal
u ∈ U , and any given admissible switching path of length k ∈ N, rqk(i) ∈ Rk(i), q ∈ Qk(i),
the solution of (4.3) exists at k, see [4].

Let

x(k) , x(k, ξ, i, u)

denote a trajectory, that evolves according to (4.3), with initial conditions ξ ∈ Rn,
i ∈ S, and input signal u ∈ U .

Remark 33 The value of x(k, ξ, i, u) is determined not only by the time instant k ∈ N,
by the initial conditions ξ ∈ Rn and i ∈ S, and by the input signal u ∈ U, but by the
admissible switching path in the set Rk(i) too. Without any priori knowledge (except
the initial mode i ∈ S) of the switching path, there are different possible values that the
variable x(k, ξ, i, u), k ∈ N, can assume, according to the TPM P . Indeed, x(k, ξ, i, u) is
a random variable on the stochastic basis (Ω,F , {Fk},P).

Let us consider the second moment of x(k, ξ, i, u), i.e., E [‖x(k, ξ, i, u)‖2
], that is given by

E
[
‖x(k, ξ, i, u)‖2

]
=

∑
q∈Qk(i)

pqk(i)‖Φ(k, ξ, i, rqk(i), u)‖2, (4.4)

k ∈ N, ξ ∈ Rn, i ∈ S, u ∈ U .
The usual definition of EMSS (see [3, 4, 67]) and the definition of EMS-ISS (see
[142]) are reported in the following.

Definition 14 (EMSS) The system described by (4.3), with u(·) ≡ 0, is said to be EMSS
if there exist positive constants θ, ζ ∈ R+ with θ ≥ 1, 0 < ζ < 1, such that for any initial
condition ξ ∈ Rn, for any i ∈ S, E

[
‖x(k, ξ, i, 0)‖2

]
satisfies the following inequality, for

any k ∈ N:

E
[
‖x(k, ξ, i, 0)‖2

]
≤ θζk‖ξ‖2. (4.5)
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Definition 15 (EMS-ISS) The system described by (4.3) is said to be EMS-ISS if
there exist positive constants θ, ζ ∈ R+ with θ ≥ 1, 0 < ζ < 1, and a K-function η, such
that for any initial condition ξ ∈ Rn, for any i ∈ S, and for any input signal u ∈ U,
E
[
‖x(k, ξ, i, u)‖2

]
satisfies the following inequality, for any k ∈ N:

E[‖x(k, ξ, i, u)‖2] ≤ θζk‖ξ‖2 + η

(
sup

s=0,...,k−1
(‖u(s)‖)

)
, (4.6)

where the second term of the sum in the right-hand side of (4.6) is taken equal to zero
for k = 0.

Remark 34 Definitions 14 and 15 concern EMSS and EMS-ISS, where expected values
of the state and other stochastic notions such as the transition probability matrix are
involved, which clearly are not involved in the deterministic case (see for instance
[134,136]). Lyapunov characterization of the global asymptotic stability and input-to-
state stability for deterministic non switching and switching discrete-time systems clearly
do not apply to the stochastic framework here considered (see [225,226] and [136]).

Lyapunov characterizations of EMSS and of EMS-ISS are provided in this chapter.
Here, it is proved that the sufficient conditions guaranteeing EMSS (introduced in [3])
are also necessary, complementing the results in [3]. The main result presented in [97]
concerns the Lyapunov characterization of EMS-ISS: sufficient conditions guaranteeing
pth moment exponential ISS [142, Corollary 1] with p = 2 (i.e., EMS-ISS) are proved to
be also necessary. This chapter involves both the results introduced in the conference
contribution [142], as well as the results in [97].

Remark 35 Previous works such as [136,137] do not consider the stochastic character
of the switching rule. But, in many cases such as wireless control network scenarios,
Markov jump systems are a viable mathematical model to lay some groundwork for the
development of suitable theoretical conditions for analysis and design of wireless control
networks.

Remark 36 A widely used mathematical setting for control, state estimation and secrecy
over wireless communication networks is based on Markov jump linear systems [62,
79,87,92]. Indeed, the process to control is typically linearized around an equilibrium
point [92, Section VI]. This work provides Lyapunov characterizations of EMSS and
EMS-ISS of discrete-time Markovian switching nonlinear systems, with focus on the
general nonlinear case.
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4.4 Exponential mean square stability character-
ization

Let us consider a scalar function

V : Rn × S → R+, (4.7)

with V (0, i) = 0, for all i ∈ S, and let us introduce the operator LV as follows,

LV : Rn × Rm × S → R,

associated with the scalar function V introduced above.
The operator LV is defined for ξ ∈ Rn, u ∈ Rm, and i ∈ S as:

LV (ξ, u, i) ,
∑
j∈S

pijV (fi(ξ, u), j)
− V (ξ, i). (4.8)

The following theorem provides necessary and sufficient conditions for EMSS of system
(4.3), with u(·) ≡ 0. The sufficiency part in the next theorem is already stated in [3,
Theorem 20 (b)]: the result concerning the necessity part is provided here.

Theorem 7 The following statements are equivalent:

a) the system described by (4.3), with u(·) ≡ 0, is EMSS;

b) there exist a function V : Rn × S → R+, positive real numbers αl, l = 1, 2, 3, such
that the following inequalities hold for all i ∈ S, ξ ∈ Rn,

b1) α1‖ξ‖2 ≤ V (ξ, i) ≤ α2‖ξ‖2;

b2) LV (ξ, 0, i) ≤ −α3‖ξ‖2.

Proof 17 (Proof of Theorem 7) All the details of the proof are reported in Appendix C.
Anyway, the reader can find here the main line of reasoning. The sufficiency part (i.e.,
(b) =⇒ (a)) has been already proved in [3, Theorem 20 (b)], as discussed above.
As far as the proof of the converse implication (i.e., (a) =⇒ (b)), the main idea consists
in the construction of the Lyapunov function V satisfying (b1) and (b2). The point is
to show that V satisfies conditions (b1) and (b2) exploiting the EMSS assumption (in
statement (a)) and applying the Markov property.
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4.5 Exponential mean square ISS characterization

The following theorem provides necessary and sufficient conditions for EMS-ISS of sys-
tem (4.3).

Theorem 8 The following statements are equivalent:

a) the system described by (4.3) is EMS-ISS;

a) there exist a function V : Rn × S → R+, positive real numbers αl, l = 1, 2, 3, and
a function α4 of class K, such that the following inequalities hold for all i ∈ S,
ξ ∈ Rn, u ∈ Rm,

b1) α1‖ξ‖2 ≤ V (ξ, i) ≤ α2‖ξ‖2;

b2) LV (ξ, u, i) ≤ −α3‖ξ‖2 + α4(‖u‖).

Remark 37 The results on Lyapunov characterizations of EMSS and EMS-ISS here
provided are the first necessary and sufficient Lyapunov conditions in literature for
stability of discrete-time Markovian switching nonlinear systems. Extension of these
necessary and sufficient conditions for instance to the case of mean square (not
necessarily exponential) input-to-state stability seems extremely challenging. There is
indeed a serious obstacle to the use of nonlinear functions in the stochastic framework,
due to the well known fact that in general, for a nonlinear function α of class K, the
equality

α
(
E
[
‖x‖2

])
= E

[
α
(
‖x‖2

)]
does not hold.
For the sufficiency part, in Theorem 8, one could replace positive reals αi, i = 1, 2, 3,
with suitable functions αi, i = 1, 2, 3 of class K∞. But then the following inequalities
are needed to be satisfied:

α1
(
E
[
‖x(k)‖2

])
≤ E

[
α1
(
‖x(k)‖2

)]
,

E
[
α2
(
‖x(k)‖2

)]
≤ α2

(
E
[
‖x(k)‖2

])
,

E
[
α3
(
‖x(k)‖2

)]
≥ α3

(
E
[
‖x(k)‖2

])
,
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which, by [141, Jensen’s inequality], require the functions α1, α3 to be convex and α2 to
be concave. Furthermore, clearly we also need the standard inequality

α1(s) ≤ α2(s),

for any s ∈ R+, which is in this case an interesting constraint (as α1 is needed convex
and α2 is needed concave). Sufficient Lyapunov conditions for the mean square input-to-
state stability are given by conditions (b1), (b2) in Theorem 8, where the positive reals αi,
i = 1, 2, 3, there used, are replaced by functions α1, α2, α3 satisfying the above properties.
Whether or not these conditions could be also necessary for the mean square input-to-
state stability, is a challenging question. We conjecture here that, due to the particular
properties required for the comparison functions, these conditions are not necessary.
Proving, or disproving, this conjecture, is a not easy task, beyond the aims of this
work. We highlight that, for instance, if one would try the disproof, [114, Proposition
7], a key result for the Lyapunov characterization of ISS in the deterministic case
(see [136, Lemmas 2,3,4]), would be inconclusive for a general function β of class KL,
involved in the mean square ISS inequality, because of the required above properties of
related comparison functions.

Proof 18 (Proof of Theorem 8) All the details of the proof are reported in the Ap-
pendix C. Anyway, the reader can find here the main line of reasoning.
The first part of the proof shows that the statement (a) implies robust exponential mean
square stability of system (4.3) (see Definition 19). The last part shows that robust
exponential mean square stability of system (4.3) implies statement (b). Finally, the
proof of the implication (b) =⇒ (a) is provided.

Remark 38 The proof of Theorem 8 makes use of a standard procedure (see [113,114,
225–227]) for deterministic nonlinear systems, here deeply re-elaborated in a stochastic
discrete-time setting. The proof provided in this article involves expected values of
the state and other stochastic notions, such as the transition probability matrix (see
references [3, 4]), which clearly are not involved in the deterministic case (see for
instance [113, 134, 226]). The standard procedure in the deterministic case makes
use of the Lyapunov characterization of robust asymptotic stability (see [113, Section
2.2], [226, Lemma 3.8, Lemma 3.11] for deterministic non switching systems and [136,
Lemma 1] for deterministic switching systems). The approach adopted in this proof
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exploits the Lyapunov characterization of the robust exponential mean square stability
(see Appendix C, Definition 19).

Remark 39 The presented Lyapunov characterization makes use of multiple Lyapunov
functions. The common Lyapunov function approach is a particular case. Moreover, the
proposed methodology accounts for the stochastic insight of the switching rule. Indeed,
the operator LV contains the transition probabilities of the Markovian switching rule in
its expression.

4.6 The pth moment ISS

This section introduces input-to-state stability notions concerning the pth moment of
the state of system (4.3), i.e., E [‖x(k)‖p], with p > 0.
Specifically, pth moment ISS generalizes the input-to-state stability notions in the
mean square sense.
Let us consider the pth moment of the state of system (4.3) x(k, ξ, i, u), i.e., E [‖x(k, ξ, i, u)‖p],
that is given by

E [‖x(k, ξ, i, u)‖p] =
∑

q∈Qk(i)
pqk(i)‖Φ(k, ξ, i, rqk(i), u)‖p, (4.9)

with p > 0.

Definition 16 (pth moment ISS) The system described by (4.3) is said to be pth moment
ISS if there exist p > 0, a function β of class KL and a K-function η, such that for all
initial conditions (x0, i) ∈ Rn × S, for all input signals u ∈ U, the pth moment of x(k),
denoted by E [‖x(k)‖p], satisfies the following inequality, for any k ∈ N:

E[‖x(k)‖p] ≤ β(‖x0‖p, k) + η

(
sup

s=0,...,k−1
(‖u(s)‖)

)
, (4.10)

where the second term of the sum in the right-hand side of (4.10) is taken equal to zero
for k = 0.

The following definition introduces the pth moment exponential ISS, that is con-
cerned the classical ISS notion, with the KL function β, which is exponential in
the time argument [3, 94].
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Definition 17 (pth moment exponential ISS) The system described by (4.3) is said to
be pth moment exponentially ISS if there exist p > 0, θ, ζ ∈ R+, with θ ≥ 1, 0 < ζ < 1,
and a K-function η, such that for all initial conditions (x0, i) ∈ Rn × S, for all input
signals u ∈ U, the pth moment of x(k), denoted by E [‖x(k)‖p], satisfies the following
inequality, for any k ∈ N:

E[‖x(k)‖p] ≤ θζk‖x0‖p + η

(
sup

s=0,...,k−1
(‖u(s)‖)

)
, (4.11)

where the second term of the sum in the right-hand side of (4.11) is taken equal to zero
for k = 0.

4.7 Sufficient conditions for pth moment ISS

Consider the scalar function V : Rn × S → R+, defined in (4.7). The following theorem
provides sufficient conditions for the pth moment ISS property.

Theorem 9 (Sufficient conditions for pth moment ISS) Let there exist a function

V : Rn × S → R+,

positive real numbers α1, α2 > 0, a K∞ convex function γ and a function δ of class K,
such that the following conditions hold for all i ∈ S, ξ ∈ Rn, u ∈ Rm:

a) α1‖ξ‖p ≤ V (ξ, i) ≤ α2‖ξ‖p;

b) LV (ξ, u, i) ≤ −γ(‖ξ‖p) + δ(‖u‖).

Then, the system described by (4.3) is pth moment ISS.

Proof 19 (Proof of Theorem 9) See Appendix C.

Remark 40 If p = 2, then the system described by (4.3) is second moment ISS, i.e.,
mean square ISS (see Definition 16 with p = 2). Note that second moment ISS implies
the stability of the second moment, i.e., the mean-square stability (see [3, Definition
18]).
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Corollary 1 (Sufficient conditions for pth moment exponential ISS) Let there exist a
function

V : Rn × S → R+,

positive real numbers α1, α2 > 0, a K-function δ and a K∞ linear function γ(s) = γ̃s, s ∈
R+, with γ̃ positive real, such that the following conditions hold, for all i ∈ S, ξ ∈ Rn,
u ∈ Rm:

a) α1‖ξ‖p ≤ V (ξ, i) ≤ α2‖ξ‖p;

b) LV (ξ, u, i) ≤ −γ̃‖ξ‖p + δ(‖u‖).

Then, the system described by (4.3) is pth moment exponentially ISS.

Proof 20 (Proof of Corollary 1) See Appendix C.

4.8 Illustrative examples

This section illustrates some examples [97, 142] showing the effectiveness of the
methodology presented in this chapter.

The aforementioned examples are summarized in the following.

• Paragraph 4.8.1 provides the first example of this section, that is here called
Example 2, see also [97, Example 1]. Specifically, the example illustrated in
Paragraph 4.8.1 moves from an example provided in literature on a discrete-time
switching nonlinear system, that is, [228, Example 4.1], where the setting is
deterministic. In Example 2 a Markov chain governing the switching rule is
introduced and the EMS-ISS analysis is applied.

• Paragraph 4.8.2 provides (with Example 3 and Example 4) an application of the
proposed methodology to stability analysis of WCNs.
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4.8.1 Example 2

Consider the discrete-time switching model analysed in [228, Example 4.1], where for
any i ∈ {1, 2, 3} the function fi : R2 × R→ R2 is defined, for x = [x1 x2]T ∈ R2, u ∈ R, as

f1(x, u) =
[
0.5x2 + 0.4x2 exp(−|x2|) + exp(−|x1|)u

0.6x1 + exp(−|x2|)u

]
,

f2(x, u) =
[
1.4x1 sin(x1) + exp(−|x1|)u√

2x2 + exp(−|x2|)u

]
,

f3(x, u) =
[

1.3x1 + exp(−|x1|)u
1.2x2cos(x2) + exp(−|x2|)u

]
.

(4.12)

The subsystem 1 is ISS, while the subsystems 2 and 3 are not ISS (see [228]). Consider
a switching signal given by the Markov chain r(k) ∈ {1, 2, 3} depicted in Fig. 4.2
and characterized by the TPM

P =

 p 1− p 0
1− q1 − q2 q1 q2

1 0 0

 , (4.13)

with

0 < p < 1,

0 < q1 < 1,

0 < q2 < 1,

q1 + q2 < 1.

Notice that system (4.12), with switching signal given by the Markov chain {r(k)}k∈N
is in the class of systems considered in (4.3).
The ISS analysis presented in [228] refers to a switching system with both ISS and not
ISS modes and with deterministic switching signals characterized by edge dependent
dwell-time constraints. Thus, the approach proposed in [228] cannot be applied to the
scenario presented in this work, where the switching rule obeys to a Markov chain with
a given TPM. This is the reason why the example provided in this paragraph focuses
on the relevant study of EMS-ISS of system (4.12) with respect to the input u.

In particular, notice that the probability of the self-loop on the unstable subsystem
2 is not zero. Therefore, the switching signal may rest in the unstable subsystem 2 for
a finite arbitrary number K of steps with non-zero probability (1− q1)qK1 [138].
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r(k) : 1 2 3

p 1− p

1− q1 − q2

q2

1

q1

Figure 4.2: State diagram of the Markov chain r(k) in Example 2.

Remark 41 The model considered in this chapter, i.e., discrete-time nonlinear systems
with Markovian switching rule, allows for both arbitrary and non arbitrary switching.

For instance, if for some i, j ∈ S, pij = 0, then the switching from mode i to mode j
is not allowed.

Consider Example 2. The transition probabilities p13, p32, p33 are zero: the
transitions (1, 3), (3, 2) and (3, 3) are not admissible. Example 2 shows how the proposed
Lyapunov approach can be applied also in this case.

Consider the following candidate Lyapunov function

V : R2 × {1, 2, 3} → R+,

defined for ξ = [ξ1 ξ2]T in R2 and for i ∈ {1, 2, 3} as

V (ξ, i) = λiξ
2
1 + σiξ

2
2 , (4.14)

with

λi, σi > 0.

By choosing

α1 = min
i=1,2,3

{λi, σi},

α2 = max
i=1,2,3

{λi, σi},

it follows that, for any ξ ∈ R2, any i ∈ {1, 2, 3}, the following inequalities hold,

α1‖ξ‖2 ≤ V (ξ, i) ≤ α2‖ξ‖2,

and consequently, condition (b1) of Theorem 8 is satisfied by the candidate Lyapunov
function V introduced in (4.14).
Consider LV defined in (4.8).
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The following inequalities hold, for any ξ ∈ R2, any u ∈ R, any i ∈ {1, 2, 3}.

LV (ξ, u, 1) = pV (f1(ξ, u), 1) + (1− p)V (f1(ξ, u), 2)− V (ξ, 1)

≤pλ1ξ
2
2 + (1− p)λ2ξ

2
2 + (pσ1 + (1− p)σ2)0.72ξ2

1 − λ1ξ
2
1 − σ1ξ

2
2 + S̃u2

≤− λ1

[
1−

(
p
σ1

λ1
+ (1− p)σ2

λ1

)
0.72

]
ξ2

1

− σ1

[
1−

(
p
λ1

σ1
+ (1− p)λ2

σ1

)]
ξ2

2 + S̃u2,

LV (ξ, u, 2) = (1− q1 − q2)V (f2(ξ, u), 1) + q1V (f2(ξ, u), 2) + q2V (f2(ξ, u), 3)− V (ξ, 2)

= 3.4 [(1− q1 − q2)λ1 + q1λ2 + q2λ3] ξ2
1 + 3.4 [(1− q1 − q2)σ1 + q1σ2 + q2σ3] ξ2

2

− λ2ξ
2
1 − σ2ξ

2
2 + S̃u2

≤− λ2

[
1− 3.4

(
q1 + q2

λ3

λ2
+ (1− q1 − q2)λ1

λ2

)]
ξ2

1

− σ2

[
1− 3.4

(
q1 + q2

σ3

σ2
+ (1− q1 − q2)σ1

σ2

)]
ξ2

2 + S̃u2,

LV (ξ, u, 3) = 1× V (f3(ξ, u), 2)− V (ξ, 3)

≤ 3λ2ξ
2
1 + 2.64σ2ξ

2
2 − λ3ξ

2
1 − σ3ξ

2
2 + S̃u2

≤ −λ3

[
1− 3λ2

λ3

]
ξ2

1 − σ3

[
1− 2.64σ2

σ3

]
ξ2

2 + S̃u2,

with S̃ positive real number.
Consequently, the following inequalities are satisfied, for any ξ ∈ R2, any u ∈ R, any
i ∈ {1, 2, 3},

LV (ξ, u, i) ≤ −min
{
λ1

[
1−

(
p
σ1

λ1
+ (1− p)σ2

λ1

)
0.72

]
, λ3

(
1− 3λ1

λ3

)
,

σ1

[
1−

(
p
λ1

σ1
+ (1− p)λ2

σ1

)
1.2
]
, σ3

(
1− 2.64σ1

σ3

)
,

λ2

[
1− 3.4

(
q1 + q2

λ3

λ2
+ (1− q1 − q2)λ1

λ2

)]
,

σ2

[
1− 3.4

(
q1 + q2

σ3

σ2
+ (1− q1 − q2)σ1

σ2

)]}
‖ξ‖2 + S̃u2,

with S̃ positive real number.
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Define the function α3 : R+ → R+, for s ∈ R+, as α3 , α̃3s, with α̃3 defined as follows,

α̃3 , min
{
λ1

[
1−

(
p
σ1

λ1
+ (1− p)σ2

λ1

)
0.72

]
, λ3

(
1− 3λ1

λ3

)
,

σ1

[
1−

(
p
λ1

σ1
+ (1− p)λ2

σ1

)
1.2
]
, σ3

(
1− 2.64σ1

σ3

)
,

λ2

[
1− 3.4

(
q1 + q2

λ3

λ2
+ (1− q1 − q2)λ1

λ2

)]
,

σ2

[
1− 3.4

(
q1 + q2

σ3

σ2
+ (1− q1 − q2)σ1

σ2

)]}
.

Consequently, the following inequality holds for any ξ ∈ R2, any u ∈ R, any i ∈ {1, 2, 3},

LV (ξ, u, i) ≤ −α̃3‖ξ‖2 + α4 (‖u‖) ,

where α4 is a function of class K.
Condition (b2) of Theorem 8 is satisfied if α̃3 > 0, i.e., under the following constraints
for λi, σi > 0, i = 1, 2, 3:

0.72
(
p
σ1

λ1
+ (1− p)σ2

λ1

)
< 1, (4.15a)

1.2
(
p
λ1

σ1
+ (1− p)λ2

σ1

)
< 1, (4.15b)

3.4
(
q1 + q2

λ3

λ2
+ (1− q1 − q2)λ1

λ2

)
< 1, (4.15c)

3.4
(
q1 + q2

σ3

σ2
+ (1− q1 − q2)σ1

σ2

)
< 1, (4.15d)

λ1

λ3
<

1
3 ,

σ1

σ3
< 0.38, (4.15e)

0 < p < 1, 0 < q1 < 1, 0 < q2 < 1, q1 + q2 < 1. (4.15f)

Thus, by Theorem 8, system (4.12) is EMS-ISS for all probabilities p, q1, q2 such that
the constraints (4.15) are satisfied.
For an analysis of allowed probability sets and related statistics and simulations,
see Paragraph 4.8.3.

Remark 42 The Lyapunov functions are chosen as quadratic ones, with coefficients
λi, σi, i = 1, 2, 3 (see (4.14)). The presented methodology finds the coefficients λi, σi,
i = 1, 2, 3, and the transition probabilities p, q1, q2, such that the parametric constraints
(4.15) are satisfied. The choice does not distinguish a-priori among ISS (i = 1) and not
ISS (i = 2, 3) modes.
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+

Wireless channel

Plant

Controller

d(k) x(k)

v(k)

hr(k)v(k)

Figure 4.3: Block diagram showing a wireless control network architecture.

4.8.2 Application to wireless control network scenarios

Consider the WCN scenario in Fig. 4.3: the following example highlights the impact
of the wireless channel on the control loop concerning the property of EMS-ISS.

Consider a nonlinear discrete-time plant controlled through a nonlinear state
feedback (see Fig. 4.3). In Fig. 4.3 the control law v(k), k ∈ N, is sent to the actuators
through a wireless communication channel that may suffer from packet losses. If the
packet is successfully delivered, the actuators execute the control law, otherwise the
system evolves in open-loop until a successful delivery of the control input occurs.
Indeed, when a packet loss occurs the input is zero. The discrete-time Markov chain r(k),
k ∈ N, in Fig. 4.4 provides the mathematical model of the wireless channel (see [1, 62]
and the references therein). The mode r(k) corresponds to the mode of the wireless
communication channel at time k ∈ N, and r(k) takes values in the finite set {1, 2}: the
channel mode is r(k) = 1 when the packet containing the control input is successfully
delivered, while it is r(k) = 2 otherwise.
The TPM containing the transition probabilities of the Markov chain in Fig. 4.4 is pro-
vided by

P =
[

p 1− p
1− q q

]
, p, q ∈ (0, 1).
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r(k) : 1 2

p 1− p

1− q

q

Figure 4.4: State diagram of the Markov chain r(k) modeling the wireless channel in
Example 3: p is the probability of having two consecutive correct packet deliveries, while q is
the probability of having two consecutive packet losses.

For k ∈ N, let hr(k) be equal to 1 if the channel mode is r(k) = 1, and let hr(k) be
equal to 0 if the channel mode is r(k) = 2.

Formally,

hr(k) =

1, if r(k) = 1,
0, if r(k) = 2.

(4.16)

The term hr(k) multiplies the control input v(k) and if the mode of r(k) is 1, then
the control input is correctly delivered, otherwise the packet containing the control
input is lost and the input is zero.

Consequently, we have h1 = 1 and h2 = 0.
Assume that the system is affected by an additive time-varying disturbance on the
actuators d(k) (see Fig. 4.3) independent from the control input and uniformly bounded
for k ∈ N.
The following example provides the Lyapunov analysis of EMS-ISS with respect
to disturbance d.

4.8.2.1 Example 3

Consider the setting presented above for WCNs, where for any i ∈ {1, 2} the plant
is described by the function

gi : R2 × R2 × R2 → R2,

defined, for k ∈ N,

x(k) =
[
x1(k)
x2(k)

]
∈ R2, v(k) =

[
v1(k)
v2(k)

]
∈ R2,

d(k) =
[
d1(k)
d2(k)

]
∈ R2,
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as follows,

gr(k)(x(k), v(k), d(k)) =


6
5x1(k) tanh(x2(k)) + hr(k)v1(k) + d1(k)

3
2x2(k) (sin(x1(k)) + cos(x1(k))) + hr(k)v2(k) + d2(k)

 ,
where x(k), v(k) are the state and the control input, respectively.

The additive time-varying disturbance d(k), k ∈ N, is independent from the control
input v(k) and uniformly bounded.
The nonlinear control law v(k) is given by:

v(k) =

 −6
5x1(k) tanh(x2(k)) + 1

4x1(k)

−3
2x2(k) (sin(x1(k)) + cos(x1(k))) + 1

4x2(k)

 .
When the mode of the communication channel is r(k) = 1, k ∈ N, the control input
v(k) is correctly delivered and applied.

The closed-loop system is thus described by the function

f1 : R2 × R2 → R2,

defined, for

x =
[
x1
x2

]
∈ R2 d =

[
d1 d2

]
∈ R2,

as follows,

f1(x, d) =


1
4x1 + d1

1
4x2 + d2

 . (4.17)

When the mode of the communication channel is r(k) = 2, k ∈ N, i.e., the input is
zero, the open-loop subsystem is described by the function

f2 : R2 × R2 → R2,

defined, for

x =
[
x1
x2

]
∈ R2 d =

[
d1 d2

]
∈ R2,
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as follows,

f2(x, d) =


6
5x1 tanh(x2) + d1

3
2x2(sin(x1) + cos(x1)) + d2

 . (4.18)

Notice that system fi(x, d), with i = 1, 2, is exactly the one considered in (4.3),
where the switching signal is r(k) ∈ {1, 2}, k ∈ N, and the input signal is the dis-
turbance d(k), k ∈ N.

Moreover, the subsystem obtained for r(k) = 1 in (4.17) is ISS, while the subsystem
obtained for r(k) = 2 in (4.18) is not ISS.

This example provides the EMS-ISS analysis of system fi(x, d), i = 1, 2, with respect
to the disturbance d.
Consider the candidate Lyapunov function

V : R2 × {1, 2} → R+,

defined for ξ = [ξ1 ξ2]T ∈ R2 and for i ∈ {1, 2} as

V (ξ, i) = λiξ
2
1 + σiξ

2
2 , (4.19)

with λi, σi > 0. By choosing

α1 = min
i∈{1,2}

{λi, σi},

α2 = max
i∈{1,2}

{λi, σi},

it follows that, for any ξ ∈ R2, any i ∈ {1, 2}, the following inequalities hold,

α1‖ξ‖2 ≤ V (ξ, i) ≤ α2‖ξ‖2,

and consequently, condition (b1) of Theorem 8 is satisfied by the candidate Lyapunov
function V introduced in (4.19).

The next step consists in verifying condition (b2) of Theorem 8.
Consider LV defined in (4.8).
From equations (4.17) and (4.18), by applying the expression of LV in (4.8),

from Young’s inequality [229], the following inequalities hold, for any ξ ∈ R2, any
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d ∈ R2, any i ∈ {1, 2},

LV (ξ, d, 1) =
2∑
j=1
p1jV (f1(ξ, d), j)− V (ξ, 1) =

= pV (f1(ξ, d), 1) + (1− p)V (f1(ξ, d), 2)− λ1ξ
2
1 − σ1ξ

2
2 =

= pλ1

(1
4ξ1 + d1

)2
+ pσ1

(1
4ξ2 + d2

)2
+

+ (1− p)λ2

(1
4ξ1 + d1

)2
+ (1− p)σ2

(1
4ξ2 + d2

)2
− λ1ξ

2
1 − σ1ξ

2
2

≤ −λ1

[
1−

(
p+ (1− p)λ2

λ1

)
1
8

]
ξ2

1+

− σ1

[
1−

(
p+ (1− p)σ2

σ1

) 1
8

]
ξ2

2 + S̃‖d‖2,

LV (ξ, d, 2) =
2∑
j=1
p2jV (f2(ξ, d), j)− V (ξ, 2) =

≤ [(1− q)λ1 + qλ2]
(36

25ξ
2
1 + d2

1 + 6
5ξ

2
1 + 6

5d
2
1

)
+

+ [(1− q)σ1 + qσ2]
(9

2ξ
2
2 + d2

2 + 3
2 × 2ξ2(sin(ξ1) + cos(ξ1))∗d

)
+

− λ2ξ
2
1 − σ2ξ

2
2 ≤

≤ [(1− q)λ1 + qλ2]
(36

25ξ
2
1 + d2 + 6

5ξ
2
1 + 6

5d
2
)

+

+ [(1− q)σ1 + qσ2]
(9

2ξ
2
2 + d2 + 3

2ξ
2
2 + 3d2

)
− λ2ξ

2
1 − σ2ξ

2
2

≤ −λ2

[
1−

(
q + (1− q)λ1

λ2

)
66
25

]
ξ2

1+

− σ2

[
1−

(
q + (1− q)σ1

σ2

)
6
]
ξ2

2 + S̃‖d‖2,

with S̃ positive real number.
Consequently, the following inequality holds, for any ξ ∈ R2, any d ∈ R2, any i ∈ {1, 2},

LV (ξ, d, i) ≤ −α3‖ξ‖2 + α4(‖d‖),
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with α4 function of class K, and α3 defined as follows,

α3 , min
{
λ1

(
1−

(
p+ (1− p)λ2

λ1

)
1
8

)
,

σ1

(
1−

(
p+ (1− p)σ2

σ1

) 1
8

)
,

λ2

(
1−

(
q + (1− q)λ1

λ2

)
66
25

)
,

σ2

(
1−

(
q + (1− q)σ1

σ2

)
6
)}

.

Recall that condition (b2) of Theorem 8 is satisfied if α3 > 0.
The real number α3 is strictly positive if the following conditions hold for λi, σi > 0,

i = 1, 2:

L1,B <
λ2

λ1
< U1,B, (4.20a)

L2,B <
σ2

σ1
< U2,B, (4.20b)

0 < p < 1, 0 < q < 1, (4.20c)

where the quantities L1,B, L2,B, and U1,B, U2,B are given by

L1,B = 66(1− q)
(25− 66q) ,

L2,B = 6(1− q)
(1− 6q) ,

U1,B = U2,B = (8− p)
(1− p) .

Thus, the considered Markovian switching system fi(x, d), i = 1, 2 is EMS-ISS by
Theorem 8, for all the pairs of probabilities (p, q) ∈ (0, 1)× (0, 1) such that the constraints
(4.20) are satisfied.

For an analysis of allowed probability sets and related statistics and simulations,
see Paragraph 4.8.3.

4.8.2.2 Example 4

Consider a WCN scenario where a nonlinear system is controlled through a nonlinear
state feedback, and the control law is sent to the actuators through a communication
channel that may suffer from packet-losses, see Fig. 4.3.



4. On discrete-time Markovian switching nonlinear systems 116

If the packet is successfully delivered, the actuators are able to execute the control
law, otherwise the system evolves in open-loop until a successful delivery of the control
input occurs.
Let us also assume that the system is affected by an additive bounded disturbance
on the actuators, independent from the control input.

Let us model the closed-loop system, using a discrete-time nonlinear Markovian
switching system, as follows,

x(k + 1) = 2
√
a2x2(k) + hr(k)v(k) + cd2(k), (4.21)

where x(k), v(k) ∈ R are the state and the control input, respectively.
The additive time-varying disturbance d(k) ∈ R is a bounded quantity for any k ∈ N.
The quantities a ∈ R, c ∈ R+ are constant values: let us choose a = 2, c = 1. The

discrete-time time-homogeneous Markov chain r(k) depicted in Fig. 4.4, k ∈ N, accounts
for the mode of the communication channel and takes values in the finite set S = {1, 2}.
The value of hr(k) defined in (4.16) depends on the mode r(k) = i ∈ S of the Markov
chain.

The mode i = 1 corresponds to the situation in which the control input is successfully
delivered, then h1 = 1, while the mode i = 2 corresponds to the situation in which a
packet-loss occurs and the system evolves in open-loop, i.e. h2 = 0.
Consider the nonlinear control law given by equation (4.22):

v(k) = −Rx2(k). (4.22)

Thus, the closed-loop system is:

x(k + 1) = fr(k)(x(k), d(k)), (4.23)

with

fr(k)(x(k), d(k)) = 2
√

(a2 − hr(k)R)x2(k) + cd2(k)

In order to have the root well defined, the feedback gain R should be such that:

a2 − hiR ≥ 0,

for any i ∈ S.
Therefore, the feedback gain R is chosen such that

a2 −R = 1
5 , =⇒ R = 19

5 .
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The aforementioned control stabilizes the closed-loop system in case of absence of
packet losses and disturbances.

Indeed, under the following conditions,

• hr(k) = 1, for any k ∈ N, i.e., absence of packet losses,

• d(k) = 0, for any k ∈ N, i.e., absence of disturbances,

the closed-loop system is given by:

x(k + 1) = 2

√
1
5x

2 = 2

√
1
5 |x|. (4.24)

The system (4.24) is clearly globally asymptotically stable, since 2

√
1
5 < 1.

Taking into account the occurrence of packet losses and the presence of the disturbances,
the closed-loop system can be formally written as follows,

G :


f1(x, d) = 2

√
1
5x

2 + d2,

f2(x, d) = 2
√

4x2 + d2,

(4.25)

which is a discrete-time nonlinear Markovian switching system, as the one introduced
in (4.3), with the bounded disturbance d, as input.

The aim of this example is studying the second moment of the state, i.e., what
happens when the exponent p equals 2, that is, the mean square input-to-state stability
of the system described by (4.25), with respect to the disturbance d.
Let us apply the conditions provided by Theorem 9, considering three different cases,
corresponding to three different TPMs.

Specifically, each case shows what happens considering a given TPM (with given
transition probabilities from one mode of the communication channel to the other one).

• Case 1.

P1 =


3
4

1
4

1 0

 ,
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• Case 2.

P2 =


3
4

1
4

4
5

1
5

 ,
• Case 3.

P3 =


3
4

1
4

3
5

2
5

 .
The probabilities of transitions starting from the mode i = 1 are always the same in
the three cases, while the probability of a transition from the mode i = 2 to the mode
i = 2 (corresponding to the occurrence of bursts of packet losses) increases.

Consequently, the probability of a transition from the mode i = 2 to the mode i = 1
(corresponding to control recover after packet loss occurrence) decreases in the three
cases.

Multiple Lyapunov functions can be chosen in the three cases, such as, V (ξ, i),
defined for ξ ∈ R, i ∈ S, as follows,

V (ξ, i) = λiξ
2, (4.26)

with the coefficients λi > 0, for all i ∈ S.
Particularly, by choosing α1 and α2 as,

α1 = min
i∈S
{λi},

α2 = max
i∈S
{λi},

the candidate Lyapunov function introduced in (4.26) satisfies condition (a) in Theo-
rem 9.

Case 1

Consider the TPM P1.
Then, LV (ξ, d, 1) and LV (ξ, d, 2) can be computed applying the expression introduced
in (4.8), as follows,

LV (ξ, d, 1) = −λ1

[
1−

(
3
4 + 1

4
λ2

λ1

)
1
5

]
ξ2 +

(3
4λ1 + 1

4λ2

)
d2, (4.27)

LV (ξ, d, 2) = −λ2

(
1− λ1

λ2
4
)
ξ2 + λ1d

2. (4.28)
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From the expressions of LV (ξ, d, 1) in (4.27) and LV (ξ, d, 2) in (4.28), the candidate
Lyapunov function introduced in (4.26) satisfies condition (b) in Theorem 9 if the
following inequalities are satisfied, i.e.,

1−
(

3
4 + 1

4
λ2

λ1

)
1
5 > 0, (4.29)

1− λ1

λ2
4 > 0. (4.30)

Inequality (4.29) and inequality (4.30) are satisfied if and only if

4 < λ2

λ1
< 17.

Then, let us define the function γ1 ∈ K∞, as follows,

γ1(s) , min
{
λ1

[
1−

(
3
4 + 1

4
λ2

λ1

)
1
5

]
, λ2

(
1− λ1

λ2
4
)}

s,

with s ∈ R+.
Let us also introduce the K-function δ1 as follows,

δ1(s) , max
{3

4λ1 + 1
4λ2, λ1

}
s2,

with s ∈ R+.
Then, the following inequality is satisfied for any ξ, d in R, any i ∈ S,

LV (ξ, d, i) ≤ −γ1(|ξ|2) + δ1(|d|). (4.31)

From (4.31), it follows that the system described by (4.25) is second moment exponen-
tially ISS by Corollary 1, i.e., the system described by (4.25) is EMS-ISS.

Case 2

Consider now the TPM P2.
Then, LV (ξ, d, 1) and LV (ξ, d, 2) can be computed applying the expression introduced
in (4.8), as follows,

LV (ξ, d, 1) = −λ1

[
1−

(
3
4 + 1

4
λ2

λ1

)
1
5

]
ξ2 +

(3
4λ1 + 1

4λ2

)
d2, (4.32)

LV (ξ, d, 2) = −λ2

[
1−

(
1
5 + 4

5
λ1

λ2

)
4
]
ξ2 +

(4
5λ1 + 1

5λ2

)
d2. (4.33)
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Applying the same reasoning presented in Case 1, from the expressions of LV (ξ, d, 1) in
(4.32) and LV (ξ, d, 2) in (4.33), the candidate Lyapunov function introduced in (4.26)
satisfies condition (b) in Theorem 9 if the following inequalities are satisfied, i.e.,

1−
(

3
4 + 1

4
λ2

λ1

)
1
5 > 0, (4.34)

1−
(

1
5 + 4

5
λ1

λ2

)
4 > 0. (4.35)

Inequality (4.34) and inequality (4.35) are satisfied if and only if

16 < λ2

λ1
< 17.

Then, let us define the function γ2 ∈ K∞, as follows,

γ2(s) , min
{
λ1

[
1−

(
3
4 + 1

4
λ2

λ1

)
1
5

]
, λ2

[
1−

(
1
5 + 4

5
λ1

λ2

)
4
]}

s,

with s ∈ R+.
Let us also introduce the K-function δ2 as follows,

δ2(s) , max
{(3

4λ1 + 1
4λ2

)
,
(4

5λ1 + 1
5λ2

)}
s2,

with s ∈ R+.
Then, the following inequality is satisfied for any ξ, d in R, any i in S,

LV (ξ, d, i) ≤ −γ2(|ξ|2) + δ2(|d|). (4.36)

From (4.36), it follows that the system described by (4.25) is second moment exponen-
tially ISS by Corollary 9, i.e., the system described by (4.25) is EMS-ISS.

Remark 43 Note that the condition concerning λ2/λ1 is more restrictive with respect to
the previous case.

Case 3

Consider now the TPM P3.
Then, LV (ξ, d, 1) and LV (ξ, d, 2) can be computed applying the expression introduced
in (4.8), as follows,

LV (ξ, d, 1) = −λ1

[
1−

(
3
4 + 1

4
λ2

λ1

)
1
5

]
ξ2 +

(3
4λ1 + 1

4λ2

)
d2, (4.37)

LV (ξ, d, 2) = −λ2

[
1−

(
2
5 + 3

5
λ1

λ2

)
4
]
ξ2 +

(3
5λ1 + 2

5λ2

)
d2. (4.38)
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Applying the same reasoning presented in Case 1 and in Case 2, from the expression
of LV (ξ, d, 1) in (4.37) and LV (ξ, d, 2) in (4.37), the candidate Lyapunov function
introduced in (4.26) satisfies condition (b) in Theorem 9 if the following inequalities
are satisfied, i.e.,

1−
(

3
4 + 1

4
λ2

λ1

)
1
5 > 0, (4.39)

1−
(

2
5 + 3

5
λ1

λ2

)
4 > 0. (4.40)

Inequality (4.39) and inequality (4.40) are satisfied if and only if

λ2

λ1
< 17,

which follows from inequality (4.39), and

λ1

λ2
< −1

4 ,

which follows from inequality (4.40).
Since λ1, λ2 > 0, the sufficient conditions given by Theorem 9 are not satisfied

and, in this case, the use of this candidate Lyapunov function does not provide any
conclusion concerning the second moment ISS of the system described by (4.25).

4.8.3 Statistical results

Fig. 4.5 illustrates Monte Carlo simulations of trajectories generated by the system
described by (4.12) in Example 2: the input signal is a bounded disturbance generated
as a random process with uniform distribution between ±0.02.

Moreover, the transition probabilities of the Markov chain in simulations are chosen
such that conditions (b1) and (b2) of Theorem 8 are satisfied, see (4.15) a− f .
Fig. 4.6 depicts Monte Carlo simulations of trajectories generated by the system fi(x, d),
i = 1, 2 in Example 3: the process disturbances are assumed to be random processes
with uniform distribution between ±0.02.

Also in this case, the transition probabilities of the Markov chain in simulations
are chosen such that conditions (b1) and (b2) of Theorem 8 are satisfied.
Consider Fig. 4.5 and Fig. 4.6:
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• the state trajectories associated with switching paths generated by Monte Carlo
simulations are denoted by (x1,aggr., x2,aggr.) and are plotted in yellow,

• the maximum trajectories are denoted by (x1,max, x2,max) and are plotted in blue,

• the minimum trajectories are denoted by (x1,min, x2,min) and are plotted in green,

• the average evolution of state trajectories are denoted by (x1,avg, x2,avg) and are
plotted in red.

As the reader can see from Fig. 4.5 and from Fig. 4.6, the state trajectories have
an exponential decrease and finally remain bounded. Thus, the results reflect the
analysis presented in this section. Fig. 4.7 shows the region determined by the values

Figure 4.5: Traces obtained in Example 2 with p = 0.98, q1 = q2 = 0.039.

Figure 4.6: Traces obtained in Example 3 with p = 0.43, q = 0.099.

of transition probabilities p and q1 = q2 = q, such that condition (b) of Theorem 8 is
satisfied for Example 2.
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Figure 4.7: Pairs (1− p, q) : EMS-ISS holds in Example 2, with q1 = q2 = q.

Figure 4.8: Pairs (1− p, q) : EMS-ISS holds in Example 3.

Fig. 4.8 shows the region of pairs (1− p, q) (in Example 3) such that condition (b) of
Theorem 8 is satisfied (lightblue region) and the evolution of the maximum probability
q (the probability of a burst of packet losses) with respect to 1− p (with p probability
of a burst of successful packet delivery) such that condition (b) of Theorem 8 is
satisfied (darkblue line).

Remark 44 An interesting insight of the presented methodology is the key role played
by the transition probabilities, that can be interpreted in terms of average time spent
in each subsystem (ISS and not ISS). Indeed, from Markov chain theory (see [138]),
once entered in subsystem i, the exit-time from i follows a geometric distribution with
parameter 1− pii (pii is the self-loop probability of the mode i). The time spent in i is
characterized by the average value 1/(1− pii), and also by the variance pii/ (1− pii)2.

Fig. 4.9 depicts statistical results for Monte Carlo simulations of the trajectories
generated by the system described by (4.25) for Case 1 and Case 2 of Example 4,
respectively. The aforementioned trajectories have been obtained using the MATLAB
environment and considering 1000 simulations.
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Figure 4.9: Traces of system state obtained in Case 1 and in Case 2, respectively.

The initial condition is x0 = 7 and the additive time-varying disturbance is given by
d(t), with |d(t)| ≤ 1 for any t ∈ N, in both the cases.

Consider Fig. 4.9 and Fig. 4.10:

• the yellow trajectories denoted by x1,aggr., x2,aggr. are state trajectories associated
to different switching paths, that are admissible according to the TPMs P1 (for
Case 1) and P2 (for Case 2),

• the maximal trajectories are denoted by (x1,max, x2,max) and are illustrated by
the blue trace,

• the minimum trajectories are denoted by (x1,min, x2,min) and are plotted by the
green trace,

• the average evolution of state trajectories are denoted by (x1,avg, x2,avg) and are
plotted in red,

• the black line shows the 90th percentile of the state, this means that the 90% of
trajectories can be found below the black line.

Moreover, Fig. 4.10 shows the traces of the 90th percentile of the state, considered
without other trajectories, in order to focus on the decrease characterizing the largest
number of trajectories. Indeed, in these two cases, after a transient, the trajectories
have an exponential decrease, as we expected.

Furthermore, they finally remain bounded, since the disturbance is bounded. The
transient has not the same duration in the two cases, as highlighted by Fig. 4.10.
In Case 1, the transient is approximately 10 s, while in Case 2 it is approximately
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Figure 4.10: Traces of 90th percentile obtained in CASE 1 and in CASE 2, respectively.

15 s (see Fig. 4.10). In Case 1, the probability of control recover after failure is
equal to 1, while the probability of consecutive packet-losses is 0. In Case 2, the
probability of recover after failure (given by 4/5) decreases and, consequently, the
probability of consecutive failures (given by 1/5) increases with respect to the previous
case. This is the reason why the transient duration is larger in Case 2 with respect
to the transient duration in Case 1.

This chapter illustrates a complete Lyapunov characterization for EMSS and EMS-
ISS of discrete-time Markovian switching nonlinear systems. Some examples of the
proposed approach are provided.

Particularly, the examples reveal the effectiveness of the presented methodology
especially in the stability analysis of WCNs. Indeed, the proposed methodology
allows to carry out the stability analysis of a discrete-time nonlinear system involved
in a wireless control loop taking into account the probability of bursts of packet
losses on the wireless channel.
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Among the challenges addressed by WCN literature the reader may find the
problems caused by delays, that may affect transmissions [74, 148] and lead to sta-
bility degradation.

Discrete-time systems subject to Markovian delays are able to provide the math-
ematical description of WCNs with delays modeled by Markov chains.

This chapter addresses the problems concerning exponential mean square stability
analysis of discrete-time nonlinear systems [94] subject to Markovian delays.

Exponential mean square stability notion has been already investigated for discrete-
time Markovian switching linear systems without delays [4]. Only few works such
as [3, 145] investigate this stability notion in the nonlinear framework.

126
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However, when considering discrete-time nonlinear systems with Markovian delays,
the mean square stability notion results to be particularly useful for investigating the
behavior of the system, given the stochastic property provided by the Markovian delays.

The research line presented in this chapter is based on the paper by Impicciatore
et al. [173] and provides two main contributions.

• Firstly, this chapter shows that when considering discrete-time delay systems with
delay signals constrained to follow a delay digraph [160,169,170], the discrete-time
delay system can be rewritten as a discrete-time Markov jump system [3,4] if the
delay switching rule satisfies the Markov property.

• Secondly, this part of the thesis extends sufficient Lyapunov conditions existing
for the global asymptotic stability property of discrete-time delay systems with
delays digraphs [169,170] to the study of mean square stability.

Particularly, this research moves from the work by Pepe [169] that focuses on delay-
dependent Lyapunov functions for discrete-time systems with constrained time delays.

In this chapter, the stability analysis is carried out via multiple Lyapunov functions
[136, 142] depending on the mode of the Markov chain, that governs the switching
delay.
An important feature of the involved Lyapunov inequalities, shared with the cases of
delay-dependent and delay-independent Lyapunov functions [160,169], is that lower and
upper bounds of Lyapunov functions, as well as the related difference operators, are given
in the weakest form, as far as norms and seminorms of the (memory) state are concerned.

5.1 Chapter outline

The chapter is organized as follows.

• Section 5.2 provides some useful notation concerning time-delay systems that is
exploited only in this chapter.

• Section 5.3 introduces discrete-time delay systems with Markovian delay signals.

• Section 5.4 illustrates the main result concerning sufficient Lyapunov conditions
guaranteeing exponential mean square stability.
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• Section 5.5 provides an example that illustrates the effectiveness of the presented
result.

• Proofs of Lemmas and theorems are reported in Appendix D.

5.2 Notation and basic definitions

This section provides the notation concerning time-delay systems that is used only in
this chapter. For positive real ∆ and positive integer n, the symbol C denotes the space
of functions mapping the set {−∆,−∆ + 1, . . . , 0} into Rn.
For φ ∈ C,

‖φ‖∞ = max{‖φ(−j)‖ : j = 0, 1, . . . ,∆}.

For any non-negative integer c (or for c = +∞), for any function

x : {−∆,−∆ + 1, . . . , c} → Rn,

for any integer k ∈ [0, c], xk is the function in C defined, for

τ ∈ {−∆,−∆ + 1, . . . , 0},

as

xk(τ) = x(k + τ).

Consider in this chapter the stochastic basis defined by the quadruple (Ω,G, {Gk},P),
where Ω is the sample space, G is the corresponding σ-algebra of events, {Gk}k∈N is
the filtration, P is the probability measure.

5.3 Problem formulation

This chapter focuses on the discrete-time delay system [160] introduced in the following
as,

x(k + 1) = f(x(k), x(k − d1(k)), . . . , x(k − dr(k))),

x(θ) = ξ0(θ), θ ∈ {−∆,−∆ + 1, . . . , 0}, (5.1)

where:



5. Discrete-time systems with Markovian delays 129

• k ∈ N,

• the maximum involved time delay denoted by ∆ is a known positive integer,

• x(j) ∈ Rn, j ≥ −∆,

• for 1 ≤ i ≤ r, r known positive integer, di(k) ∈ {0, 1, . . . ,∆}, k ∈ N, is a time-
varying time delay,

• the function f : Rn(r+1) → Rn satisfies the equality f(0, 0, . . . , 0) = 0,

• ξ0 ∈ C.

Let the vector d(k), k ∈ N,

d(k) =
[
d1(k) d2(k) . . . dr(k)

]T
,

denote the vector collecting all time delays at time k.
For r known positive integer, let

D ⊂ {0, 1, . . . ,∆}r,

be the set of allowed values for the time-delays vector d(k), that is, for any k ∈ N,
d(k) ∈ D.
The system (5.1) can be rewritten by using the following equation, (see [160] and
references therein):

xk+1 = F (xk, d(k)), (5.2)

x0 = ξ0, ξ0 ∈ C,

with

• xk ∈ C,

• xk (θ) = x (k + θ), k ∈ N.

The map

F : C ×D → C
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is defined, for φ ∈ C, d ∈ D, as follows,

F (φ, d)(θ) =

f(φ(0), φ(−d1), . . . , φ(−dr)), θ = 0,
φ(θ + 1), θ = −∆,−∆ + 1, . . . ,−1.

(5.3)

Let us define the Markov chain as follows,

η : N→ S,

with S , {1, . . . , s}, where s is the cardinality of D, s = |D|.
The TPM of the Markov chain η is defined as P , [pij ]i,j∈S , with the transition

probabilities pij defined for i, j ∈ S, as follows,

pij , P (η(k + 1) = j|η(k) = i) , (5.4)∑
j∈S

pij = 1, 0 ≤ pij ≤ 1. (5.5)

Let us make the following assumptions.

Assumption 3 The delay d(k + 1) depends only on the delay at the previous step d(k),
k ∈ N.

Assumption 4 The prior knowledge on the transition from d(k) to d(k + 1) is given by
a transition probability.

Let the function H : D → S be a bijective function defined for all δi ∈ D, and for
all i ∈ S, as follows,

H(δi) , i. (5.6)

The inverse function of H is

H−1 : S → D,

defined for all i ∈ S and for all δi ∈ D, as follows,

H−1(i) , δi. (5.7)

Consider for i, j ∈ S, the transition probability pij defined in (5.4).
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By applying the definition of pij in (5.4) and the definition of the functions H
and H−1, the following equalities hold:

pij = P (η(k + 1) = j|η(k) = i)

= P
(
H(d(k + 1)) = H(δj)|H(d(k)) = H(δi)

)
= P (d(k + 1) = δj|d(k) = δi) , (5.8)

for all δi, δj ∈ D, for all i, j ∈ S.
Consequently, the modes of the Markov chain {η(k)}k∈N, with TPM P = [pij ]i,j∈S , pij
transition probabilities defined by (5.4), are associated to the delays in the set D,
through the function H−1.
Let E(D) denote the finite set of all pairs (δi, δj) ∈ D ×D, i, j ∈ S such that, for any
k ∈ N, if d(k) = δi, then d(k + 1) = δj is allowed.

The set E(D) is formally defined as follows,

E(D) , {(δi, δj) ∈ D ×D, δi, δj ∈ D, i, j ∈ S | pij > 0}. (5.9)

Thus, the system described by (5.2) can be written as a Markov jump system (see [4,67]
and the references therein) defined on the stochastic basis (Ω,G,Gk,P), as follows,

xk+1 = F (xk, H−1(η(k))), (5.10)

x0 = ξ0, ξ0 ∈ C,

with

• xk ∈ C,

• xk(θ) = x(k + θ),

• k ∈ N.

Thus, the map F defined by (5.3), can be rewritten for all φ ∈ C, for all H−1(i) ∈ D,
for all i ∈ S, as follows:

F (φ,H−1(i))(θ) =

f(φ(0), φ(−H−1
1 (i)), . . . , φ(−H−1

r (i))), if θ = 0,
φ(θ + 1), if θ = −∆,−∆ + 1, . . . ,−1,

(5.11)
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with

H−1(i) =
[
H−1

1 (i) . . . H−1
r (i)

]T
∈ D, (5.12)

for all i ∈ S.
Let xk(ξ0), k ∈ N, denote the trajectory that evolves according to (5.10), corresponding
to initial state ξ0 ∈ C.

Recall that the following equality holds,

xk(ξ0)(0) = x(k, ξ0),

k ∈ N.

Remark 45 Notice that the variable x(k, ξ0) ∈ Rn, ξ0 ∈ C, k ∈ N, is a random variable
on the stochastic basis (Ω,G,Gk,P), since the delay evolves according to a discrete-time
Markov chain, with given transition probabilities.

Thus, the investigation illustrated in this chapter focuses on the behaviour of the
second moment of x(k, ξ0), k ∈ N, ξ0 ∈ C.

The following definition introduces the notion of EMSS for the system described by (5.1).

Definition 18 The system described by (5.1) is EMSS if there exist M, ζ ∈ R+ with
M ≥ 1 and 0 < ζ < 1 such that for any ξ0 ∈ C, the following inequality holds,

E[‖x(k, ξ0)‖2] ≤Mζk
(
‖ξ0‖∞

)2
. (5.13)

5.4 Main result

In this section, we provide the main result of the chapter.
The following theorem illustrates sufficient Lyapunov conditions guaranteeing the
EMSS of the system described by (5.1).

Theorem 10 Let there exist a function

V : C ×D → R+,

real positive numbers αi, i = 1, 2, 3, such that, for all φ ∈ C, for all H−1(i) ∈ D, for all
i ∈ S, the following inequalities hold:
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i) α1‖φ(0)‖2 ≤ V (φ,H−1(i)) ≤ α2‖φ‖2
∞

ii) LV (φ,H−1(i)) , ∑
j∈S

pijV (F (φ,H−1(i)) , H−1(j))−V (φ,H−1(i)) ≤ −α3‖φ(0)‖2.

Then, the system described by (5.1) is EMSS.

Proof 21 (Proof of Theorem 10) See Appendix D.

5.5 Example

This section presents a numerical example with the aim of providing an application of
the methodology illustrated by Theorem 10.
Consider the following scalar nonlinear system (see [169, Example 2]) described by
the equation, for k ∈ N,x(k + 1) = sat(x(k))− γsat(x(k − d(k))),

x(τ) = ξ0(τ), τ ∈ {−2,−1, 0},
(5.14)

with

• ξ0 ∈ C, x(k) ∈ R, γ ∈ [1, 1.2],

The system described by (5.14) is unstable if d(k) = 2 for all k ∈ N.
Consider the set of delays D = {0, 2}, and consider the Markov chain {ηk}k∈N in Fig. 5.1,
with the set of Markov modes given by S = {1, 2}.

Let the bijective function H : D → S, be defined as follows,

H(d) =

1, if d = 0,
2, if d = 2,

(5.15)

for all d ∈ D. Let the function H−1 : S → D be defined as follows,

H−1(i) =

0 if i = 1,
2 if i = 2,

(5.16)

for all i ∈ S.
The TPM associated with the Markov chain {ηk}k∈N is given by

P =
[

p 1− p
1− q q

]
, (5.17)
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η(k) :

1 2

p 1− p

1− q

q

Figure 5.1: The Figure depicts the state diagram of the Markov chain η(k) modeling the
switching delay: p stands for the probability of having a delay d(k + 1) = 0, provided that the
previous delay is d(k) = 0, while q stands for the probability of having a delay d(k + 1) = 2,
provided that the previous delay is d(k) = 2.

with p, q ∈ (0, 1).
The set E(D) is given by

E(D) = {(0, 0), (0, 2), (2, 0), (2, 2)}. (5.18)

The aim of this example is studying the EMSS property of the system described by
(5.14) by applying Theorem 10.
Consider a candidate Lyapunov function

V : C ×D → R+,

defined by

V (φ,H−1(i)) = λi sup
j=0,1,2

2j−1γje−j‖φ(−j)‖2, (5.19)

for all φ ∈ C, all H−1(i) ∈ D, all i ∈ S, with λi ∈ R+, i ∈ S, γ ∈ [1, 1.2].
Pick α1, α2 ∈ R+ as follows,

α1 = min
i∈S

λi, α2 = 2γ2 max
i∈S

λi, (5.20)

with γ ∈ [1, 1.2].
Thus, condition (i) of Theorem 10 is satisfied.
In order to verify condition (ii), we consider the expression of LV (φ,H−1(i)), for all
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φ ∈ C, for all H−1(i) ∈ D, for all i ∈ S. We obtain the following equalities/inequalities

LV
(
φ,H−1(1)

)
= pV

(
F
(
φ,H−1(1)

)
, H−1(1)

)
+ (1− p)V

(
F (φ,H−1(1)), H−1(2)

)
− V (φ,H−1(1))

= (pλ1 + (1− p)λ2) sup
j=0,1,2

2j−1γje−j‖F
(
φ,H−1(1)

)
(−j)‖2

− λ1 sup
j=0,1,2

2j−1γje−j‖φ(−j)‖2

≤ (pλ1 + (1− p)λ2)2−1‖(1− γ)sat(φ(0))‖2

+ (pλ1 + (1− p)λ2) sup
j=1,2

2j−1γje−j‖φ(−j + 1)‖2

− λ1 sup
j=0,1,2

2j−1γje−j‖φ(−j)‖2

≤ (pλ1 + (1− p)λ2)
(

2−1(1− γ)2‖φ(0)‖2+

+ 2γe−1 sup
θ=0,1,2

2θ−1γθe−θ‖φ(−θ)‖2
)

+

− λ1 sup
θ=0,1,2

2θ−1γθe−θ‖φ(−θ)‖2

≤ (pλ1 + (1− p)λ2)
(
(1− γ)2 + 2γe−1

)
sup
θ=0,1,2

2θ−1γθe−θ‖φ(−θ)‖2

− λ1 sup
θ=0,1,2

2θ−1γθe−θ‖φ(−θ)‖2

≤ −ω1 sup
θ=0,1,2

2θ−1γθe−θ‖φ(−θ)‖2, (5.21a)

ω1 , λ1

[
1−

(
p+ (1− p)λ2

λ1

)(
(1−γ)2+2γe−1

)]
, (5.21b)
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LV
(
φ,H−1(2)

)
= (1− q)V

(
F
(
φ,H−1(2)

)
, H−1(1)

)
+ qV

(
F
(
φ,H−1(2)

)
, H−1(2)

)
− V

(
φ,H−1(2)

)
= ((1− q)λ1 + qλ2) sup

j=0,1,2
2j−1γje−j‖F

(
φ,H−1(2)

)
(−j)‖2

− λ2 sup
j=0,1,2

2j−1γje−j‖φ(−j)‖2

≤ ((1− q)λ1 + qλ2)
(

2−1‖F (φ,H−1(2))(0)‖2

+ sup
j=1,2

2j−1γje−j‖φ(−j + 1)‖2
)

− λ2 sup
j=0,1,2

2j−1γje−j‖φ(−j)‖2

≤ ((1− q)λ1 + qλ2)
(

2−1‖F (φ,H−1(2))(0)‖2

+ sup
j=1,2

2j−1γje−j‖φ(−j + 1)‖2
)

− λ2 sup
j=0,1,2

2j−1γje−j‖φ(−j)‖2

≤ ((1− q)λ1 + qλ2)
(

2−1‖sat(φ(0))− γsat(φ(−2))‖2+

+ 2γe−1 sup
j=1,2

2(j−1)−1γj−1e−j+1‖φ(−j + 1)‖2
)

− λ2 sup
θ=0,1,2

2θ−1γθe−θ‖φ(−θ)‖2

≤ ((1− q)λ1 + qλ2)
(
‖φ(0)‖2 + γ2‖φ(−2)‖2

+ 2γe−1 sup
θ=0,1,2

2θ−1γθe−θ‖φ(−θ)‖2
)

− λ2 sup
θ=0,1,2

2θ−1γθe−θ‖φ(−θ)‖2

≤ ((1− q)λ1 + qλ2)
( (

2 + 2−1e2 + 2γe−1
)

× sup
θ=0,1,2

2θ−1γθe−θ‖φ(−θ)‖2
)

− λ2 sup
θ=0,1,2

2θ−1γθe−θ‖φ(−θ)‖2

≤ −ω2 sup
θ=0,1,2

2θ−1γθe−θ‖φ(−θ)‖2, (5.21c)

ω2 , λ2

[
1−

(
q + (1− q)λ1

λ2

)(
2 + 1

2e
2 + 2γe−1

)]
. (5.21d)
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Under the following constraints

LB <
λ2

λ1
< UB, (5.22a)

with
UB = 1− ((1− γ)2 + 2γe−1)p

((1− γ)2 + 2γe−1)(1− p) , (5.22b)

LB = (4 + e2 + 4γe−1) (1− q)
2− (4 + e2 + 4γe−1) q , (5.22c)

(p, q) ∈ (0, 1)× (0, 1), q < 2
4 + e2 + 4γe−1 , γ ∈ [1, 1.2]; (5.22d)

the coefficients ω1 and ω2 belong to R+.
Consequently, the following inequality holds for all φ ∈ C, all H−1(i) ∈ D, all i ∈ S,

LV
(
φ,H−1(i)

)
≤ −α3‖φ(0)‖2, (5.23)

with α3 ∈ R+, defined as follows,

α3 ,
1
2 min{ω1, ω2}. (5.24)

Thus, condition (ii) of Theorem 10 is satisfied and the system described by (5.14) is
EMSS.

5.5.1 Statistical results

In Fig. 5.2 the reader can see the Monte Carlo simulations of the trajectories generated
by the system (5.14), considering values of the pairs (p, q) such that conditions (i) and
(ii) of Theorem 10 are satisfied. Fig. 5.2 reports five different colors.

• The yellow trajectories, denoted as xaggr, correspond to the state trajectories
associated with different switching paths (that are admissible according to the
TPM P ),

• the maximum trajectory is denoted as xmax and it is plotted in blue,

• the minimum trajectory is denoted as xmin and it is plotted in green,

• the average evolution of the state trajectories is denoted as xavg,
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Figure 5.2: Traces of system state obtained with γ = 1.2,p = 0.992, and q = 0.007.

• the evolution of the 90-th percentile of the state trajectories denoted as x90prc, is
given by the black line.

Fig. 5.3, Fig. 5.4, and Fig. 5.5 show the regions of pairs (p, q) such that conditions (i) and
(ii) of Theorem 10 are satisfied (light blue region) and the evolution of the maximum q

with respect to p such that the condition (i) and (ii) of Theorem 10 are satisfied (dark
blue line). By comparing Figures 5.3, 5.4, and 5.5, the reader may notice that the
aforementioned region becomes smaller and smaller when the parameter γ increases.

This chapter establishes a transformation of nonlinear time-delay systems where
delays signals are driven by a Markov chain to nonlinear time-delay Markov jump
systems. It also introduces the definition of EMSS property for nonlinear time-delay
Markov jump systems. Finally, sufficient Lyapunov conditions for the EMSS property
are here illustrated.



5. Discrete-time systems with Markovian delays 139

Figure 5.3: The figure shows the region of couples (p, q) ∈ (0, 1)× (0, 1) such that conditions
of Theorem 10 are satisfied with γ = 1.

Figure 5.4: The figure shows the region of couples (p, q) ∈ (0, 1)× (0, 1) such that conditions
of Theorem 10 are satisfied with γ = 1.1.

Figure 5.5: The figure shows the regions of couples (p, q) ∈ (0, 1)×(0, 1) such that conditions
of Theorem 10 are satisfied with γ = 1.2.



6
Conclusions

This chapter provides some concluding remarks on this research work whose main
achievements are summarized in the following.

• The introduction of structural properties specific for the finite-state Markov
channel scenario, such as stabilizability with one time step delay and detectability
over finite-state Markov channels. The investigations on proper guarantees of the
separation principle over finite-state Markov channels [77,92] (topic illustrated in
Chapter 2).

• The applications of the modeling approach based on the finite-state Markov
channel and Markov jump linear system theory for the development of privacy
guarantees [87] (topic illustrated in Chapter 3).

• The extension of the Markov jump model to the nonlinear case (as good
approximation of wireless control networks with nonlinear plant dynamics) and the
Lyapunov characterizations for discrete-time Markov jump systems of exponential
mean square stability and exponential mean square input-to-state stability [97]
(topic illustrated in Chapter 4).

• The application of the theory developed for exponential mean square stability
and exponential mean square input-to-state stability to the case of discrete-
time nonlinear systems subject to Markovian delays [173] (topic illustrated in
Chapter 5).
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Chapter 2 presents estimation techniques and detectability conditions for WCNs
modeled via MJLSs (under TCP-like communication scheme). The results on the
separation principle for double-sided packet loss scenarios over finite-state Markov
channels generalize the results from [48] by using the Markov modeling of the wireless
channel and introducing the stabilizability and detectability conditions accounting
for the communication link mode, see also Remark 24. As future developments on
this research line, the author aims to investigate the same WCN scenario under a
UDP-like communication scheme.

Chapter 3 provides secure state estimation over Markov wireless communication
channels.

The secrecy notion in [38] is conveyed to FSMCs, which require re-definition of
estimation problem and a novel technical procedure for deriving the secrecy conditions.

Moreover, Chapter 3 illustrates the design of a secrecy mechanism satisfying the
described formal requirements over FSMCs, and the effectiveness of the achieved result
is shown in the example of an inverted pendulum on a cart whose parameters are
estimated remotely over a wireless link exposed to an eavesdropper.

Chapter 4 illustrates a complete Lyapunov characterization for EMSS and EMS-
ISS of discrete-time Markovian switching nonlinear systems. Some examples of the
proposed approach are provided. Particularly, the examples reveal the effectiveness
of the presented methodology especially in the stability analysis of WCNs.

Indeed, the proposed methodology allows to carry out the stability analysis of a
discrete-time nonlinear system involved in a wireless control loop taking into account
the probability of bursts of packet losses on the wireless channel.

Control design strategies for packet-loss effect mitigation can be object of future
investigations. Further very challenging research topic is the proof of the existence, or
of the non-existence, of Lyapunov functions satisfying conditions (b) in Theorem 8 with
suitable convex-concave K∞ comparison functions, for the (general, not exponential)
mean square ISS.
Chapter 5 establishes a transformation of nonlinear time-delay systems where de-
lays signals are driven by a Markov chain to nonlinear time-delay Markov jump
systems. The presented work also provides related sufficient Lyapunov conditions
for the EMSS property.



Appendix A

Appendix outline

This appendix reports the proofs of theorems and lemmas concerning the results
presented in Chapter 2.

Technical preliminaries

Since, for finite-dimensional linear spaces, all norms are equivalent, [230, Theorem 4.27]
from a topological viewpoint, as vector norms we use variants of vector p-norms. For
what concerns the matrix norms, we use `1 and `2 norms [231, p. 341], which treat nr × nc
matrices as vectors of size nrnc, and use one of the related p-norms. The definition of
`1 and `2 norms is based on the operation of vectorization of a matrix, vec(·), which is
further used in the definition of the operator ϕ̂(·), to be applied to any block matrix,
e.g., Φ = [Φ m ]Cm=1: ϕ̂ (Φ) , [vec (Φ 1 ) , . . . , vec (Φ C )]′. The linear operator ϕ̂(·) is a
uniform homeomorphism, its inverse operator ϕ̂−1(·) is uniformly continuous [232], and
any bounded linear operator in B(FCnr×nc) can be represented in B(FCnrnc) through ϕ̂(·).

Mode-dependent estimation techniques

Proof 22 (Proof of Proposition 1) Let us prove that condition (i) is satisfied.
Define matrices Λ1 and Λ2, as follows,

Λ1 , NC, Λ2 , N ∗C∗

with C and N in (2.25).
By linear algebra arguments (see also [4, Remark 3.3]), it follows that

ρ (Λ1) = ρ (Λ2) .
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For all S = [Sm]Im=1 in HInx, the following equalities hold,

ϕ̂ (V (S)) = Λ1ϕ̂ (S) , ϕ̂ (L (S)) = Λ2ϕ̂ (S) ,

see, e.g., [4, Proposition 3.2, Remark 3.5], and thus, ρ (L) = ρ (V), i.e., condition (i) is
satisfied.

Let us prove now that condition (ii) is satisfied.
For all m ∈ Sη, consider the matrices Γ̂m0 and Γ̂m1, such as,

Γ̂m0 = Γm0, Γ̂m1 = Γm1.

Moreover, define the matrix Λ3, as follows,

Λ3 , CN .

Then, by linear algebra arguments, the following equalities hold:

ρ (Λ1) = ρ (Λ2) = ρ (Λ3) .

Recalling that ϕ̂ (T (S)) = Λ3ϕ̂ (S), for all S ∈ HInx, condition (ii) follows.

Proof 23 (Proof of Proposition 2) The first part of the proof shows the validity of
equation

m̌(k + 1) = B̌m̌(k),

in (2.29). From equations (2.26) and (2.13), applying the assumption on the noise
sequence E[wk] = Onw , the following equality holds,

m̌n(k + 1) =
I∑

m=1
E
[(
A+ γkM̌ηkL

)
ěk1{ηk=n}1{ηk−1=m}

]
. (1)

From (1), applying the definition of indicator function, the definition of the probability
γ̂m, m ∈ Sη in (2.3), and the definition of transition probabilities qmn, m,n ∈ Sη in (2.2),
it follows that:

m̌n(k + 1) =
I∑

m=1
qmn

(
A+ γ̂nM̌nL

)
E
[
ěk1{ηk−1=m}

]
. (2)

From (2), by applying the definition of m̌m(k), m ∈ Sη in (2.26), it follows that

m̌n(k + 1) =
I∑

m=1
qmn

(
A+ γ̂nM̌nL

)
m̌m(k). (3)
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From (3), applying the definition of m̌(k) in (2.26) and the definition of B̌ in (2.28)
for Γn0 = A and Γn1 = A+ M̌nL, n ∈ Sη,

m̌(k + 1) = B̌m̌(k).

The second part of the proof shows the validity of equation

Y̌(k + 1) = V(Y̌(k)) +O(M̌,π(k)),

in (2.29).
From equations (2.27) and (2.13), applying the following properties,

• the independence between the noise sequence wk, k ∈ N, and the estimation error
ěk,

• the independence of wk, k ∈ N, and {ηk}k∈N (see assumption a.3 in Chapter 2),

• the the property E[wk] = Onw ,

the following equality is obtained.

Y̌n(k + 1) =
I∑

m=1
E
[(
A+ γkM̌ηkL

)
ěkě
∗
k

(
A+ γkM̌ηkL

)∗
1{ηk=n}1{ηk−1=m}

]

+
I∑

m=1
E
[(
G+ γkM̌ηkH

)
wkw

∗
k

(
G+ γkM̌ηkH

)∗
1{ηk=n}1{ηk−1=m}

]
. (4)

From (4), applying the following properties,

• the definition of indicator function,

• the definition of the probability γ̂m, m ∈ Sη in (2.3),

• the definition of transition probabilities qmn, m,n ∈ Sη in (2.2),

• the assumption GH∗ = 0 in (2.7),

• the definition of Y̌m(k) in (2.27),
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it follows that:

Y̌n(k + 1) =
I∑

m=1
qmn{AY̌m(k)A∗ + γ̂nM̌nLY̌m(k)A∗ + γ̂nAY̌m(k)L∗M̌∗

n+

γ̂nM̌nLY̌m(k)L∗M̌∗
n}+

+
I∑

m=1
qmn{πm(k − 1)GE [wkw∗k]G∗ + πm(k − 1)γ̂nM̌nHE [wkw∗k]H∗M̌∗

n}.

(5)

Let us recall that ∑I
m=1 qmnπm(k − 1) = πn(k) and that E [wkw∗k] = Inw in (2.6). It follows

that:

Y̌n(k + 1) =
I∑

m=1
qmn{AY̌m(k)A∗ + γ̂nM̌nLY̌m(k)A∗ + γ̂nAY̌m(k)L∗M̌∗

n+

γ̂nM̌nLY̌m(k)L∗M̌∗
n}+

+ πn(k)GG∗ + πn(k)γ̂nM̌nHH
∗M̌∗

n. (6)

Define now for n ∈ Sη, Γn0 = A and Γn1 = A+ M̌nL.
From (6), applying the definition of Y̌(k) in (2.27), the definition of V in (2.22) for
Γn0 and Γn1 defined above, the definition of O in (2.23), the following equality holds:

Y̌(k + 1) = V(Y̌(k)) +O(M̌,π(k)), (7)

with M̌ =
[
M̌m

]I
m=1

, π(k) = [πm(k)]Im=1.

Proof 24 (Proof of Proposition 3) The first part of the proof shows the validity of
equation

m(k + 1) = B̂m(k),

in (2.33).
From equations (2.30) and (2.17), applying the assumption on the noise sequence

E[wk] = Onw in (2.6), the following equality holds,

mn(k + 1) =
I∑

m=1
E
[(
A+ γkAM̂ηkL

)
ek1{ηk+1=n},1{ηk=m}

]
. (8)

From (8), applying the definition of indicator function, the definition of the probability
γ̂m, m ∈ Sη in (2.3), and the definition of transition probabilities qmn, m,n ∈ Sη in (2.2),
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it follows that:

mn(k + 1) =
I∑

m=1
qmn

(
A+ γ̂mAM̂mL

)
E
[
ek1{ηk=m}

]
. (9)

From (9), by applying the definition of mm(k), m ∈ Sη in (2.30), it follows that

mn(k + 1) =
I∑

m=1
qmn

(
A+ γ̂mAM̂mL

)
mm(k). (10)

From (10), applying the definition of m(k) in (2.30) and the definition of B̂ in (2.32)
for Γ̂n0 = A and Γ̂n1 = A+AM̂nL, n ∈ Sη,

m(k + 1) = B̂m(k).

The second part of the proof shows the validity of equation

Z(k + 1) = T (Z(k)) + Ô
(
M̂,π(k)

)
,

in (2.33).
From equations (2.31) and (2.17), applying the following properties,

• the independence between the noise sequence wk, k ∈ N, and the prediction error
ek,

• the independence of wk, k ∈ N, and {ηk}k∈N (see assumption a.3 in Chapter 2),

• the the property E[wk] = Onw in (2.6),

the following equality is obtained,

Zn(k + 1) =
I∑

m=1
E
[(
A+ γkAM̂ηkL

)
eke
∗
k

(
A+ γkAM̂ηkL

)∗
1{ηk+1=n},1{ηk=m}

]
+

+
I∑

m=1
E
[(
G+ γkAM̂ηkH

)
wkw

∗
k

(
G+ γkAM̂ηkH

)∗
1{ηk+1=n},1{ηk=m}

]
.

(11)

From (11), applying the following properties,

• the definition of indicator function,

• the definition of the probability γ̂m, m ∈ Sη, in (2.3),
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• the definition of transition probabilities qmn, m,n ∈ Sη in (2.2),

• the assumption GH∗ = 0 in (2.7),

• the definition of Zm(k) in (2.31),

it follows that:

Zn(k + 1) =
I∑

m=1
qmnγ̂m

(
A+ AM̂mL

)
Zm(k)

(
A+ γηk−1AM̂mL

)∗
+

I∑
m=1

qmn(1− γ̂m) (AZm(k)A∗)

+
I∑

m=1
qmnπm(k)

(
GE [wkw∗k]G∗ + γ̂mAM̂mHE [wkw∗k]H∗M̂∗

mA
∗
)
. (12)

Let us recall that E [wkw∗k] = Inw in (2.6). It follows that:

Zn(k + 1) =
I∑

m=1
qmnγ̂m

(
A+ AM̂mL

)
Zm(k)

(
A+ γηk−1AM̂mL

)∗
+

I∑
m=1

qmn(1− γ̂m) (AZm(k)A∗)

+
I∑

m=1
qmnπm(k)

(
GG∗ + γ̂mAM̂mHH

∗M̂∗
mA
∗
)

(13)

Define now for n ∈ Sη, Γ̂n0 = A and Γ̂n1 = A+AM̂nL.
From (13), applying the definition of Z(k) in (2.27), the definition of T in (2.20) for
Γ̂n0 and Γ̂n1 defined above, the definition of Ô in (2.23), the following equality holds:

Z(k + 1) = T (Z(k)) + Ô(M̂,π(k)), (14)

with M̂ =
[
M̂m

]I
m=1

, π(k) = [πm(k)]Im=1.

Proof 25 (Proof of Proposition 4) Assume that the MJLS described by (2.5) is Strict-
MSD.

Then, by Definition 5 there exists a mode-dependent filtering gain M̂n ∈ Fnx×ny such
that

ρ(T ) < 1,
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with T ∈ B(HInx) in (2.20), for Γ̂n1 = A+AM̂nL, Γ̂n0 = A, n ∈ Sη.
Pick the next-step predictor filtering gain as follows:

M̌n = AM̂n ∈ Fnx×ny .

By setting

• Γn1 = A+ M̌nL,

• Γn0 = A,

the following equalities hold,

Γ̂n1 = Γn1, Γ̂n0 = Γn0.

Consider now the operator V from (2.22), for Γn1 and Γn0 defined above.
By Proposition 1,

ρ(V) = ρ(T ),

which implies

ρ(V) < 1.

Thus, (2.5) is MSD.

Lemma 2 Suppose that Y ∈ L and for some M = [Mn]In=1 ∈ FInx×ny , Ŷ ∈ Hnx,∗ satisfies
for n ∈ Sη,

Ŷn − γ̂n (A+MnL)Dn
(
Ŷ
)

(A+MnL)∗ − (1− γ̂n)ADn
(
Ŷ
)
A∗ = On (M) ,

On(M) , π∞n (GG∗ + γ̂nMnHH
∗M∗

n) , (15)

then, for n ∈ Sη,

(Ŷn − Yn)− γ̂n (A+MnL)Dn(Ŷ −Y) (A+MnL)∗

− (1− γ̂n)ADn
(
Ŷ −Y

)
A∗

= Yn (Y)− Yn + γ̂n (Mn −Mn(Y)) R̃n(Y) (Mn −Mn(Y))∗ . (16)
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Moreover, if Ŷ ∈ L, for n ∈ Sη,(
Ŷn − Yn

)
− γ̂n

(
A+Mn(Ŷ)L

)
Dn

(
Ŷ −Y

) (
A+Mn(Ŷ)L

)∗
− (1− γ̂n)ADn

(
Ŷ −Y

)
A∗

= γ̂n
(
Mn(Ŷ)−Mn(Y)

)
R̃n(Y)

(
Mn(Ŷ)−Mn(Y)

)∗
+ γ̂n

(
Mn −Mn(Ŷ)

)
R̃n

(
Ŷ
) (
Mn −Mn(Ŷ)

)∗
+ Yn(Y)− Yn. (17)

Furthermore, if X̂ ∈ HInx,∗ and satisfies, for n ∈ Sη, the following equality,

X̂n − γ̂n
(
A+Mn(Ŷ)L

)
Dn(X̂)

(
A+Mn(Ŷ)L

)∗
− (1− γ̂n)ADn(X̂)A∗ = On(M(Ŷ)),

(18)

for n ∈ Sη then,(
Ŷn − X̂n

)
− γ̂n

(
A+Mn(Ŷ)L

)
Dn(Ŷ − X̂)

(
A+Mn(Ŷ)L

)∗
−

(1− γ̂n)ADn(Ŷ − X̂)A∗

= γ̂n
(
Mn −Mn(Ŷ)

)
R̃n(Ŷ)

(
Mn −Mn(Ŷ )

)∗
. (19)

Proof 26 (Proof of Lemma 2) Let us show that (16) holds. Consider the left-hand side
of (16) for n ∈ Sη, applying (15) and the definitions of Mn(Y), the right-hand side of
(16) is easily obtained.
To show that (17) holds for n ∈ Sη, consider the left-hand side of equality (17), applying
the definitions of R̃n(Ŷ), R̃n(Y), Mn(Y), and (15), equality (17) holds.
Let us show that equality (19) holds. Consider the left-hand side of equality (19),
applying the definition of Mn(Ŷ) and R̃n(Ŷ), and (18), the reader can easily obtain
equality (19).

Lemma 3 Consider V defined in (2.22).
Define the operator Ṽ as follows,

Ṽn(S) = γ̂nΛn1Dn(S)Λ∗n1 + (1− γ̂n)Λn0Dn(S)Λ∗n0,

with matrices Λn1, Λn0, matrices in Fnx×nx.
Assume now that ρ (V) < 1, and for some Y ∈ HInx,+ and δ > 0,

Yn − Ṽn(Y) � δγ̂n (Kn −Mn) (Kn −Mn)∗ , n ∈ Sη, (20)

with Λn1 = A+KnL, Λn0 = A.
Then, ρ(Ṽ) < 1.
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Proof 27 Set J̃ = Ṽ∗.
Note that for arbitrary ε > 0 and V ∈ HInx,+,

0 �γ̂n
[
ε (A+MnL)− 1

ε
(Kn −Mn)L

]∗
Vn

[
ε (A+MnL)− 1

ε
(Kn −Mn)L

]
+ (1− γ̂n)ε2A∗VnA. (21)

By applying the previous inequality (21), the following inequality holds,

0 �
(
1 + ε2

)
Jm(V) +

(
1 + 1

ε2

)
Qm(V),

where

Q(·) , [Qm(·)]Im=1,

Qm(V) ,
I∑

n=1
qmnγ̂nL

∗(Kn −Mn)∗Vn(Kn −Mn)L,

Q̂(V) ,
(

1 + 1
ε2

)
Q(V).

Moreover, let us define

Ĵ (·) ,
(
1 + ε2

)
J (·).

Since J = V∗, and ρ(V) < 1 by hypothesis, it follows that

ρ(J ) = ρ(V) < 1.

Let us choose ε > 0, such that ρ(Ĵ ) < 1.
Let us define for t = 0, . . . , the sequences

U(t+ 1) , J̃ (U(t)), U(0) � 0,

Z(t+ 1) , Ĵ (Z(t)) + Q̂(U(t)), Z(0) = U(0).

At this point, the following inequality should be proved
∞∑
s=0
‖Q̂ (U(s))‖1 <∞. (22)

Recalling the definition of the norm, the properties of the trace operator, inequality (20)
and the definition of inner product, the following equality is satisfied

‖Q̂ (U(s))‖1 =
I∑

m=1
‖Q̂m (U(s))‖ ≤ c0

〈
Y − Ṽ(Y); U(s)

〉
.
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with

c0 ,
1
δ

(
1 + 1

ε2

)
‖L‖2I

By the properties of the inner product, taking the sum from s = 0 to τ , the following
inequality is satisfied

τ∑
s=0
‖Q̂ (U(s))‖1 ≤ c0 〈Y; U(0)〉 .

Taking the limit for τ →∞, (22) holds. Following the same steps provided by [4, Lemma
A.8], the following inequality can be proved

0 ≤
∞∑
t=0
‖J̃ t(U(0))‖1 =

∞∑
t=0
‖U(t)‖1 ≤

∞∑
t=0
‖Z(t)‖1 <∞.

By [4, Proposition 2.5], ρ(J̃ ) < 1. Therefore, ρ
(
Ṽ
)

= ρ
(
J̃
)
< 1. This completes the

proof.

Lemma 4 Assume that the MJLS described by (2.5) is MSD.
Then, there exists Y+ ∈M, Y+ � Y for any Y ∈M, satisfying (2.36).

Proof 28 (Proof of Lemma 4) Consider an arbitrary Y ∈M.
Let us show that there exists a decreasing sequence {Yl}∞l=0, Yl ∈ HInx,+, satisfying

equations (23), for l = 0, 1, . . ., with Ml ,
[
M l
n

]I
n=1

Y l
n − V ln

(
Yl
)

= On
(
Ml

)
, with V l(·) ,

[
V ln(·)

]I
n=1

, (23)

V ln(·) , γ̂nA
l
n1Dn(Yl)Al∗n1

+ (1− γ̂n)Aln0Dn(Yl)Al∗n0

M l
n ,Mn(Yl−1), Aln1 , A+M l

nL, Aln0 , A, n ∈ Sη;

with Yl such that

Yl � Y,

and

ρ
(
V l
)
< 1,

for all l.
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Let us use inductive arguments starting from l = 0.
Since the MJLS described by (2.5) is mean square detectable, there exists a mode-

dependent filtering gain

M0 = [M0
n]In=1,

such that ρ
(
V0) < 1 and from [4, Proposition 3.20], there exists a unique Y0 ∈ HInx,+,

solution of (23), for l = 0.
From Lemma 2-(16), recalling that ρ(V0) < 1 applying again [4, Proposition 3.20],

it follows that Y0 � Y.
Assume now that there exists a decreasing sequence sequence {Yl}k−1

l=0 , with Yl ∈ HInx,+,
unique solution of (23) and such that

Y0 � Y1 � . . . � Yk−1 � Y,

for any Y ∈M, with ρ
(
V l
)
< 1.

Let us set

R̃k−1
n , R̃n(Yk−1),

Mk
n ,Mn(Yk−1),

Akn1 , A+Mk
nL.

Apply now Lemma 2 -(17), the following inequality is satisfied:

Y k−1
n − Yn − Vkn

(
Yk−1
n −Y

)
� γ̂n

(
Mk

n −Mk−1
n

)
R̃k−1
n

(
Mk

n −Mk−1
n

)∗
.

Recall that R̃k−1
n has been defined as R̃k−1

n , R̃n(Yk−1). Thus, it follows that
R̃k−1
n � R̃n(Y) � 0, for any n ∈ Sη.
Therefore, it is possible to find a δk−1 > 0, such that

R̃k−1
n � δk−1Inx .

Thus, the following inequality is satisfied.

Y k−1
n − Yn − Vkn(Yk−1 −Y) � δk−1γ̂n(Mk

n −Mk−1
n )(Mk

n −Mk−1
n )∗.
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Applying Lemma 3, it follows that ρ(Vk) < 1, and from [4, Proposition 3.20], there exists
a unique solution Yk ∈ HInx,+ of equation (23) for l = k. Thus, from Lemma 2-(19), it
follows that(

Y k−1
n − Y k

n

)
− γ̂n

(
A+Mk

nL
)
Dn(Yk−1 −Yk)

(
A+Mk

nL
)∗

−(1− γ̂n)ADn
(
Yk−1 −Yk

)
A∗

= γ̂n
(
Mk

n −Mk−1
n

)∗
R̃k−1
n

(
Mk

n −Mk−1
n

)∗
� 0.

Recall now that ρ
(
Vk
)
< 1. From [4, Proposition 3.20], it follows that

Yk−1 −Yk � 0,

i.e.,

Yk−1 � Yk � Y.

This completes the induction argument. Since {Yl}∞l=0 is a decreasing sequence, i.e.,
Yl � Y, for all l = 0, 1, . . . ,, it follows that there exists Y+, such that (see [233], p.79)
Yl → Y+, as l→∞. Clearly, Y+ � Y, for all Y ∈M, because Y is arbitrary.

Furthermore, Yl
n satisfies (23), and taking the limit for l → ∞, it follows that

Y+ = Y(Y+).
Moreover, R̃n(Y+) � R̃n(Y) � 0, i.e. Y+ ∈M, this completes the Proof.

Proof 29 (Proof of Theorem 1) The implication (i) =⇒ (ii) follows from the Schur
complement [4, Lemma 2.23]. Specifically, from the Schur complement (see [4, Lemma
2.23]) it follows that Y ∈ HInx,∗, satisfies (2.37) if and only if

−Y + Y(Y) � 0,

and

R̃n(Y) � 0,

for any n ∈ Sη, that is, Y ∈M.
Thus, if Y+ ∈M is such that Y+ � Y, for any Y ∈M, then

tr
(
Y+

1 + . . .+ Y+
I

)
≥ tr (Y1 + . . .+ YI) ,
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and it follows that Y+ is a solution of the convex programming problem described in
(2.37).

On the other hand, assume that (ii) holds, i.e., there exists a solution Ŷ for the
convex programming problem described in (2.37).

From the optimality of Ŷ, it follows that

tr(Y+
1 − Ŷ1) + tr(Y+

I − ŶI) � 0,

for all Y+ ∈ M. Since the MJLS described by (2.5) is mean square detectable, from
Lemma 4, there exists Y+ � Ŷ satisfying (2.36). Therefore,

Y+
1 − Ŷ1 � 0, . . . , Y+

I − ŶI � 0.

The two inequalities above hold if and only if

Ŷ = Y+.

This completes the proof.

Proof 30 (Proof of Theorem 2) Assume that Ŷ =
[
Ŷn
]I
n=1

is a MS stabilizing solution
for filtering CAREs (2.36), so that system (2.5) is MSD, with M̌n =Mn(Ŷ), n ∈ Sη.

From Lemma 4, there exists a maximal solution Y+ ∈M, satisfying

Y+ = Y(Y+)

By applying Lemma 2-(17), the following equality holds:

Ŷn − Y +
n − γ̂n

(
A+Mn(Ŷ)L

)
Dn(Ŷ −Y+)

(
A+Mn(Ŷ)L

)∗
− (1− γ̂n)ADn

(
Ŷ −Y+

)
A∗

= γ̂n
(
Mn(Ŷ)−Mn(Y+)

)
R̃n

(
Y +

) (
Mn(Ŷ)−Mn(Y+)

)∗
,

for any n ∈ Sη. Since R̃(Y+) � 0,

γ̂n
(
Mn(Ŷ)−Mn(Y+)

)
R̃n(Y+)

(
Mn(Ŷ)−Mn(Y+)

)∗
� 0.

Recall that Ŷ is a MS stabilizing solution.
From [4, Proposition 3.20] it follows that Ŷ−Y+ � 0.
But this also implies R̃(Ŷ) � R̃(Y+) � 0.
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Therefore Ŷ ∈M.
From Lemma 4, Ŷ−Y+ � 0. The two inequalities above, given by

Ŷ −Y+ � 0,

Ŷ −Y+ � 0,

hold if and only if Ŷ = Y+.
This completes the proof.

The following result proves the equivalence of the two estimation techniques (next-step
predictor and current estimator) for the MSS.

Proof 31 (Proof of Lemma 1) Assume the statement (i) holds, i.e., for any Y(0) ∈ HInx,+,
Y(k) ∈ HInx,+, k ∈ N, satisfying Y(k + 1) = Y (Y(k),π(k)), with Y defined in (2.35),
converges to Y ∈ HInx,+ satisfying Y = Y (Y).

Let us set Y(0) = [Yn(0)]In=1 ∈ HInx,+, for any Z(0) = [Zn(0)]In=1 ∈ HInx,+, as follows,

Yn(0) = Ân (Z(0),π(0))− B̃n (Z(0),π(0)) ,

with B̃n(Z(0),π(0)) defined for n ∈ Sη, as follows,

B̃n(Z(0),π(0)) , γ̂nĈn(Z(0))R̂−1
n (Z(0),π(0))Ĉ∗n(Z(0)).

By (i), the limit for k →∞ of Y(k) converges to Y in HInx,+ satisfying Y = Y(Y).
Then, for n ∈ Sη and k ∈ N, the following equalities hold:

Yn(k) = Ân(Z(k),π(k))− B̃n(Z(k),π(k)),

Zn(k + 1) = Dn(Y(k)).

with B̃n (Z(k),π(k)) defined for n ∈ Sη, as follows,

B̃n (Z(k),π(k)) , γ̂nĈn (Z(k)) R̂−1
n (Z(k),π(k)) Ĉ∗n (Z(k)) .

This implies that the limit for k →∞ of Z(k) converges to D(Y) = Z(Z).
Assume that (ii) holds, i.e., for any Z(0) ∈ HInx,+, Z(k) ∈ HInx,+, k ∈ N, satisfying
Z(k + 1) = Z(Z(k),π(k)), converges to Z ∈ HInx,+ satisfying Z = Z (Z).

Let us set Z(0) = [Zm(0)]Im=1 ∈ HInx,+, for any Y(0) = [Ym(0)]Im=1 ∈ HInx,+, as Z(0) = D(Y(0)).
From (ii), it follows that limk→∞ Z(k) = Z, with Z = Z (Z).
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Then, for m ∈ Sη,

Ym(k + 1) = Âm(Z(k),π(k))− B̃m(Z(k),π(k)),

and Zn(k) = Dn(Y(k)), implying limk→∞Y(k) = Y, Y = Y(Y).
Assume that Y ∈M is the MS stabilizing solution of the filtering CAREs, i.e., Y = Y(Y).

Then, Mn(Y) defined by (2.34) is such that the spectral radius ρ (V) < 1, with
V ∈ B(HInx), defined in (2.22) for Γn1 = A+Mn(Y)L, Γn0 = A, and n ∈ Sη.

By setting Zn = Dn(Y), the following equality holds for any n ∈ Sη:

Mn (Y) = AM̂n (Z) .

Considering Γ̂n1 = A+AM̂n(Z)L and Γ̂n0 = A, we obtain Γ̂n1 = Γn1 and Γ̂n0 = Γn0.
By Proposition 1, ρ (V) = ρ (T ), and, consequently, ρ (T ) < 1.
Moreover, the optimal performance index achieved by the current estimator is

J∗C =
∑I

n=1 tr(Zn).

This completes the proof.

In the following, all mathematical preliminaries and motivations leading to the separa-
tion principle are illustrated concerning the output-feedback controller designed with
the Markovian next-step predictor. A reduced version of the proof is reported in [92].

Define, for k ∈ N, `, i, j ∈ Sθ,

w`i(k) , E
[
xk1{θk−1=`,θk=i}

]
,

W`i(k) , E
[
xkx

∗
k1{θk−1=`,θk=i}

]
,

w(k) , [w`i(k)]N`,i=1,

W(k) , [W`i(k)]N`,i=1.

For V = [Vij ]Ni,j=1 in FNnx×Nnx , recall the operator L̂(·) = [L̂ij(·)]Ni,j=1 in B(FNnx×Nnx),
defined in (2.49), given by

L̂ij(V) ,
{
A
∑N

l=1 VliA
∗ + ν̂iB

∑N

l=1 FlVliF
∗
l B
∗+

ν̂iB
∑N

l=1 FlVliA
∗ + ν̂iA

∑N

l=1 VliF
∗
l B
∗
}
pij.
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For Y = [Ym]Im=1 ∈ HInx , β = [β`i]N`,i=1 ∈ RN×N , i, j ∈ Sθ, define the operator

H (·, ·) : HInx × RN×N → FNnx×Nnx ,

as

H (Y,β) , [Hij (Y,β)]Ni,j=1 ,

with

Hij (Y,β) , ν̂iB
N∑
`=1

β`iF`

(
I∑

m=1
Ym

)
F ∗` B

∗pij +GG∗βij.

Proposition 10 Consider the MJLS described by (2.5) and the closed-loop system
dynamics given by equation (2.41).

Then, the following equality holds for any k ∈ N, i, j ∈ Sθ,

Wij(k + 1) =L̂ij(W(k)) +Hij(Y̌(k), $̃(k))−

2R
{
ν̂iB

∑N

`=1 F`

(∑I

m=1 m̌m(k)
)
w∗`i(k)A∗+

ν̂iB
∑N

`=1 F`

(∑I

m=1 m̌m(k)
)
w∗`i(k)F ∗` B∗

}
pij. (24)

Proof 32 (Proof of Proposition 10) From (2.41) and (2.13), recalling the definition of
L̂ in (2.49), by assumptions (a.2)− (a.3), applying (2.6) and the independence of
sequences θk and ěk,

Wij(k + 1) =L̂ij (W(k)) +
(
ν̂iB

∑N

`=1 $̃`i(k)F`E [ěkě∗k]F ∗` B∗ +GG∗
∑N

`=1 $̃`i(k)

− ν̂i2R
(
B
∑N

`=1 F`E [ěk]w∗`i(k)A∗ +B
∑N

`=1 F`E [ěk]w∗`i(k)F ∗` B∗
))
pij,

and thus, equation (24) follows. The proof of the proposition is complete.

Proof 33 (Proof of Theorem 3) Assume that (ii) holds, i.e., the MJLS described by
(2.5) is both

ii-a) MSD,

ii-b) MS stabilizable with one time-step delayed observation of actuation link mode.
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Then, by Definition 2, there exists a mode-dependent control gain F`, ` ∈ Sθ, that makes
the dynamics of xk MSS.

Consequently, by [79, Proposition 3], ρ
(
L̂
)
< 1, with L̂ in (2.49).

By Definition 4, there exists a mode-dependent filtering gain M̌n, n ∈ Sη, such that
ρ (V) < 1, with V ∈ B

(
HInx

)
in (2.22), for Γn1 = A+ M̌nL and Γn0 = A.

By Proposition 2, it follows that

Y̌(k + 1) = V(Y̌(k)) +O(M̌,π(k)). (25)

Since ρ (V) < 1, by (a.4), from (25), limk→∞ Y̌(k) = Y̌,

Y̌ = V
(
Y̌
)

+O
(
M̌,π∞

)
, (26)

and thus, for i, j ∈ Sθ, limk→∞Hij
(
Y̌(k), $̃(k)

)
= Hij

(
Y̌, $̃∞

)
.

From (2.29) and (26), by [4, Propositions 3.6 and 3.36], the following equality is
satisfied limk→∞ m̌(k) = OInx. By Proposition 10, for i, j ∈ Sθ,

lim
k→∞

Wij(k + 1) = L̂ij (W) +Hij

(
Y̌, $̃∞

)
,

and thus, there exists W = [Wij ]Ni,j=1, with Wij ∈ Fnx×nx+ satisfying Wij = limk→∞Wij(k).
Moreover, by [79, Proposition 2], limk→∞w`i(k) = w`i ∈ Fnx, `, i ∈ Sθ.
Therefore, the closed-loop system is MSS by Definition 1, implying (i). To prove

the converse of the theorem, assume now that (i) holds, i.e., the closed-loop system
dynamics (2.41) can be made MSS.

Then, there exists W = [Wij ]Ni,j=1, with Wij = limk→∞Wij(k).
By Proposition 10, Wij, i, j ∈ Sθ, can be written as follows. Wij = limk→∞Wij(k + 1),

with Wij(k + 1) in (24). Thus, there exists Y̌ in HInx,+, such that limk→∞ Y̌(k) = Y̌,
with Y̌ satisfying (26).

Therefore, the error system (2.13) is MSS. By [4, Theorem 3.33, Theorem 3.9],
it follows that condition (ii-a) holds. Moreover, by [4, Propositions 3.6 and 3.36],
limk→∞ m̌(k) = OInx, and thus, the following equality holds for i, j ∈ Sθ,

Wij = L̂ij (W) +Hij

(
Y̌, $̃∞

)
,

implying that the mode-dependent control gain F`, ` ∈ Sθ, stabilizes the dynamics (2.41)
in the MS sense, i.e., condition (ii-b) holds.
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The detailed proof of the separation principle concerning the output-feedback control
based on the current estimator is presented in the following.
Define the operator Ĥ(·, ·, ·), as follows,

Ĥ(·, ·, ·) : HInx × RN×N × RI → FNnx×Nnx ,

for Z = [Zm]Im=1, in HInx , β = [β`i]N`,i=1 in RN×N , σ = [σm]Im=1 ∈ RI , i, j ∈ Sθ, as

Ĥ(Z,β,σ) ,
[
Ĥij(Z,β,σ)

]N
i,j=1

,

with

Ĥij(Z,β,σ) ,
∑N

`=1

∑I

m=1

{
β`iν̂iBF`ZmF

∗
` B
∗ + β`iν̂iγ̂mBF`M̂mLZmL

∗M̂∗
mF

∗
` B
∗

+ β`iν̂iγ̂mBF`ZmL
∗M̂∗

mF
∗
` B
∗ + β`iν̂iγ̂mBF`M̂mLZmF

∗
` B
∗

+ β`iσmGG
∗ + β`iσmν̂iγ̂mBF`M̂mHH

∗M̂∗
mF

∗
` B
∗
}
pij. (27)

Proposition 11 Consider the MJLS described by (2.5) and the closed-loop system
dynamics given by equation (2.41).

Then, the following equality holds for any k ∈ N, i, j ∈ Sθ,

Wij(k + 1) = L̂ij(W(k)) + Ĥij (Z(k), $̃(k),π(k))

+ 2R
( N∑
`=1

I∑
m=1

{
ν̂iBF`mm(k)w∗`i(k)A∗ + ν̂iγ̂mBF`M̂mLmm(k)w∗`i(k)A∗

+ ν̂iBF`mm(k)w∗`i(k)F ∗` B∗ + ν̂iγ̂mBF`M̂mLmm(k)w∗`i(k)F ∗` B∗
})
pij, (28)

where L̂ij and Ĥij are defined in (2.49) and (27), respectively.

Proof 34 (Proof of Proposition 11) Recall the closed-loop system dynamics in in (2.43)
and the error dynamics in (2.17).

Consider the expression of the operator L̂ in (2.49). By assumptions (a.2)− (a.3),
applying the properties E[wk] = Onw in (2.6), the definition of transition probabilities
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in (2.2), the independence of sequences {ek} and {θk}, k ∈ N,

Wij(k + 1) =L̂ij (W(k)) +
N∑
`=1

I∑
m=1

{
$̃`i(k)ν̂iBF`E

[
eke
∗
k1{ηk=m}

]
F ∗` B

∗

+ $̃`i(k)ν̂iγ̂mBF`M̂mLE
[
eke
∗
k1{ηk=m}

]
L∗M̂∗

mF
∗
` B
∗

+ $̃`i(k)ν̂iγ̂mBF`E
[
eke
∗
k1{ηk=m}

]
L∗M̂∗

mF
∗
` B
∗

+ $̃`i(k)ν̂iγ̂mBF`M̂mLE
[
eke
∗
k1{ηk=m}

]
F ∗` B

∗
}
pij

+
N∑
`=1

I∑
m=1

{
$̃`i(k)πm(k)GE [wkw∗k]G∗

+ $̃`i(k)πm(k)ν̂iγ̂mBF`M̂mHE [wkw∗k]H∗M̂∗
mF

∗
` B
∗
}
pij

− 2R
{ N∑
`=1

I∑
m=1

{
ν̂iBF`E

[
ek1{ηk=m}

]
E
[
x∗k1{θk−1=`}1{θk=i}

]
A∗

+ ν̂iγ̂mBF`M̂mLE
[
ek1{ηk=m}

]
E
[
x∗k1{θk−1=`}1{θk=i}

]
A∗

+ ν̂iBF`E
[
ek1{ηk=m}

]
E
[
x∗k1{θk−1=`}1{θk=i}

]
F ∗` B

∗

+ ν̂iγ̂mBF`M̂mLE
[
ek1{ηk=m}

]
E
[
x∗k1{θk−1=`}1{θk=i}

]
F ∗` B

∗
}}
pij. (29)

From (29), by applying the property E[wkw∗k] = Inw in (2.6) (see Remark 11), it follows
that,

Wij(k + 1) =L̂ij (W(k)) +
N∑
`=1

I∑
m=1

{
$̃`i(k)ν̂iBF`Zm(k)F ∗` B∗

+ $̃`i(k)ν̂iγ̂mBF`M̂mLZm(k)L∗M̂∗
mF

∗
` B
∗

+ $̃`i(k)ν̂iγ̂mBF`Zm(k)L∗M̂∗
mF

∗
` B
∗

+ $̃`i(k)ν̂iγ̂mBF`M̂mLZm(k)F ∗` B∗

+ $̃`i(k)πm(k)GG∗

+ $̃`i(k)πm(k)ν̂iγ̂mBF`M̂mHH
∗M̂∗

mF
∗
` B
∗
}
pij

− 2R
{ N∑
`=1

I∑
m=1

{
ν̂iBF`mm(k)w∗`i(k)A∗

+ ν̂iγ̂mBF`M̂mLmm(k)w∗`i(k)A∗

+ ν̂iBF`mm(k)w∗`i(k)F ∗` B∗

+ ν̂iγ̂mBF`M̂mLmm(k)w∗`i(k)F ∗` B∗
}}
pij. (30)
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Thus, from (30), it follows that equation (28) holds.
The proof of the proposition is complete.

Proof 35 (Proof of Theorem 4) Assume that (ii) holds, i.e., the MJLS described by
(2.5) is both

ii-a) Strict-MSD,

ii-b) MS stabilizable with one time-step delayed observation of actuation link mode.

Then, there exists a mode-dependent control gain F`, ` ∈ Sθ, that makes the dynamics
of xk MSS.

Consequently, by [79, Proposition 3], ρ(L̂) < 1, with L̂ in (2.49).
By Definition 5, there exists a mode-dependent filtering gain M̂n, n ∈ Sη, such that

ρ(T ) < 1, with T in B(HInx) in (2.20), Γ̂n1 = A+AM̂nL and Γ̂n0 = A.
By Proposition 3,

Z(k + 1) = T (Z(k)) + Ô(M̂,π(k)).

Thus, from ρ (T ) < 1 and the assumption (a.4),

lim
k→∞

Z(k) = Z ∈ HInx,+,

with

Z = T (Z) + Ô(M̂,π∞). (31)

Therefore,

lim
k→∞
Ĥij(Z(k), $̃(k),π(k)) = Ĥij(Z, $̃∞,π∞),

i, j ∈ Sθ. From (2.33) and (31), by [4, Propositions 3.6 and 3.36], limk→∞m(k) = OInx.
By Proposition 11,

lim
k→∞

Wij(k + 1) = L̂ij(W) + Ĥij(Z, $̃∞,π∞),

i, j ∈ Sθ.
Thus, there exists W = [Wij ]Ni,j=1, with Wij in Fnx×nx+ , satisfying, for i, j ∈ Sθ,

Wij = lim
k→∞

Wij(k + 1).
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Moreover, by [79, Proposition 2], the following equality is satisfied,

lim
k→∞

w`i(k) = w`i,

with w`i ∈ Fnx `, i ∈ Sθ. Therefore, the closed-loop system is MSS, i.e., (i) holds.
To prove the converse statement, assume (i) holds, i.e., the closed-loop system dynamics
(2.43) can be made MSS.

Then, there exists W = [Wij ]Ni,j=1, with

Wij = lim
k→∞

Wij(k).

By Proposition 11, Wij, i, j ∈ Sθ, satisfies (28), with Z(k) satisfying (2.33).
This implies that there exists Z in HInx,+ such that

lim
k→∞

Z(k) = Z

with Z satisfying (31).
Therefore, the error system (2.17) is MSS, and, by [4, Theorem 3.33, Theorem 3.9],

condition (ii-a) holds.
Moreover, by [4, Proposition 3.6, Proposition 3.36], it follows that

lim
k→∞

m(k) = OInx .

Thus, the following equality holds for i, j ∈ Sθ:

Wij = L̂ij (W) + Ĥij (Z, $̃∞,π∞) ,

implying that the mode-dependent control gain F`, ` ∈ Sθ, makes the dynamics (2.43)
MSS, i.e., condition (ii-b) holds.

Proofs for the mode-independent output-feedback

This section reports the results on the mode-independent output-feedback controller.

Proof 36 (Proof of Proposition 5) Consider the MJLS described by (2.5).
Assume that (2.5) is Strong-MSD.
Then, there exists a mode-independent filtering gain M̌ b in Fnx×ny , such that

ρ (V) < 1, with V ∈ B(HInx) in (2.22), for Γn1 = A+ M̌ bL, Γn0 = A and n ∈ Sη. Pick
the mode-dependent filtering gain

M̌n = M̌ b, (32)
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for any n ∈ Sη.
Consider the operator V defined in (2.22), with

Γn1 = A+ M̌nL, Γn0 = A,

with M̌n in (32). Then condition ρ(V) < 1 is again satisfied, and the statement (i)
holds.
Assume now that (2.5) is Strong-Strict-MSD.

Then, there exists a mode-independent filtering gain M̂ b in Fnx×ny , such that
ρ(T ) < 1, with T ∈ B(HInx) in (2.20), for Γ̂n1 = A+AM̂ bL, Γ̂n0 = A and n ∈ Sη.

Pick the mode-dependent filtering gain, as follows,

M̂m = M̂ b, (33)

for any m ∈ Sη, and consider T defined in (2.20), with

Γ̂m1 = A+ AM̂mL, Γ̂m0 = A,

with M̂m in (33), for m ∈ Sη.
The condition ρ(T ) < 1 is again satisfied, and the implication Strong-Strict-MSD =⇒ Strict-MSD
holds.

Moreover, if (2.5) is Strong-Strict-MSD, then, there exists a mode-independent
filtering gain M̌ b = AM̂ b, such that, setting Γn1 = A+ M̌ bL and Γn0 = A, the following
equalities are satisfied:

Γ̂n0 = Γn0, Γ̂n1 = Γn1

for any n ∈ Sη.
Consider now V, with Γn1, Γn0 defined above.
By Proposition 1, ρ(V) = ρ(T ), which implies ρ(V) < 1, and thus,

Strong-Strict-MSD =⇒ Strong-MSD.

Proof 37 (Proof of Theorem 5) Condition (ii) follows from [79, Theorem 3], and thus,
it remains to prove condition (i).

Recall that γ̊ =
∑I
m=1 π

∞
m γ̂m by assumption.
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Moreover, by assumption, π∞ = [π∞m ]Im=1 is the stationary distribution of the sensing
link modes, and thus,

π∞n =
I∑

m=1
qmnπ

∞
m .

The probability γ̊, given by

γ̊ =
I∑

n=1
π∞n γ̂n,

can be written as follows,

γ̊ =
I∑

m=1
π∞m

I∑
n=1

qmnγ̂n

By applying the property ∑I
m=1 π

∞
m = 1, the filtering MARE (2.44) can be rewritten as

follows,

I∑
m=1

π∞m {Y b
∞ − Åb(Y b

∞) +
I∑

n=1
qmnγ̂n

(
C̊b(Y b

∞)R̊b(Y b
∞)−1C̊b∗(Y b

∞)
)
} = 0, (34)

holding for all π∞ = [πm]Im=1, if and only if, for all m ≤ I, the following equality is
satisfied

Y b
∞ = Åb

(
Y b
∞

)
− ζmC̊b

(
Y b
∞

)
R̊b

(
Y b
∞

)−1
C̊b∗

(
Y b
∞

)
, (35)

with

ζm =
I∑

n=1
qmnγ̂n.

Equation (35) is exactly equation (2.44), where, as required by the mode-independence,

Ym = Y b
∞,

for any m ∈ Sη.
The proof of the theorem is complete.

Technical results concerning MSD are proved in the following.
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Proof 38 (Proof of Proposition 6) Let us prove the equivalence of statement (i) and
statement (iii). Assume that statement (i) holds, i.e., the MJLS described by (2.5) is
MSD.

Then, there exists a mode-dependent filtering gain M̌n ∈ Fnx×ny , n ∈ Sη, such that
ρ(V) < 1, with V ∈ B(HInx) in (2.22), for Γn1 = A+ M̌nL and Γn0 = A.

Consider the operator L ∈ B(HInx) in (2.21), with the same Γn1 and Γn0 given for V.
By Proposition 1, ρ(V) = ρ(L), and, therefore, ρ(L) < 1. By applying [4, Theorem 3.9],
for V = [Vm]Im=1 ∈ HInx,+, Vm � 0, m ∈ Sη, the difference Lm(V)− Vm results to be
Lm(V)− Vm ≺ 0, since the following computations hold, for m ∈ Sη

Lm(V)− Vm =

γ̂m
(
A+ M̌mL

)∗
Em(V)

(
A+ M̌mL

)
+ (1− γ̂m)A∗Em(V)A− Vm =

A∗Em(V)A+ γ̂mA
∗Em(V)M̌mL+ γ̂mL

∗M̌∗
mEm(V)A+ γ̂mL

∗M̌∗
mEm(V)M̌mL− Vm ≺ 0.

(36)

Taking W1 = V and Zm = Em (W1), condition (2.47c) is satisfied.
Let us choose

Wm2 = ZmM̌m, Wm3 = W ∗
m2Z

−1
m Wm2,

Substituting the expressions above in Lm(V)− Vm, condition (2.47a) follows.
Let us recall that

Wm3 � W ∗
m2Z

−1
m Wm2,

by the Schur complement [4, Lemma 2.23], condition (2.47b) follows.
Thus, statement (i) =⇒ (iii). Let us prove now that (iii) =⇒ (i). Assume that

(iii) holds, i.e., there exist

W1 = [Wm1]Im=1, Z = [Zm]Im=1 ∈ HInx,+,

W2 = [Wm2]Im=1 ∈ HInx,ny , W3 = [Wm3]Im=1 ∈ HIny ,+,

satisfying conditions (2.47).
Let us choose the filtering gain as M̌m = Z−1

m Wm2. Consider again the operator L
defined above. For W1 ∈ HInx,+, as in conditions (2.47), the following equalities are
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satisfied, for m ∈ Sη,

Lm(W1)−Wm1

= γ̂m
(
A+ M̌mL

)∗
Em(W1)

(
A+ M̌mL

)
+ (1− γ̂m)A∗Em(W1)A−Wm1

= A∗Em(W1)A+ γ̂mA
∗Em(W1)M̌mL+ γ̂mL

∗M̌∗
mEm(W1)A

+ γ̂mL
∗M̌∗

mEm(W1)M̌mL−Wm1

= A∗Em(W1)A+ γ̂mA
∗Em(W1)Z−1

m Wm2L

+ γ̂mL
∗W ∗

m2Z
−1
m Em(W1)A+ γ̂mL

∗W ∗
m2Z

−1
m Em(W1)Z−1

m Wm2L−Wm1. (37)

From (2.47b), by the Schur complement, it follows that

Wm3 � W ∗
m2Z

−1
m Wm2, (38)

and, from (2.47c),

Zm � Em(W1),

and thus, from (37),

Lm(W1)−Wm1 � A∗ZmA+ γ̂mA
∗Wm2L+ γ̂mL

∗W ∗
m2A+ γ̂mL

∗W ∗
m2Z

−1
m Wm2L−Wm1.

(39)

By recalling (38) and condition (2.47a), from (39), it follows that,

Lm (W)−Wm1 � A∗ZmA+ γ̂mA
∗Wm2L+ γ̂mL

∗W ∗
m2A+ γ̂mL

∗Wm3L−Wm1 ≺ 0,
(40)

for any n ∈ Sη.
Thus, Lm (W1)−Wm1 ≺ 0, for any n ∈ Sη. By [4, Theorem 3.9], ρ (L) < 1. Consider

the operator V in (2.22), for Γm1 = A+ M̌mL, Γm0 = A, and m ∈ Sη.
By Proposition 1: ρ(V) = ρ(L), and, consequently, ρ(V) < 1. Thus, the MJLS

described by (2.5) is MSD, and statement (i) holds.
Assume that statement (ii) holds, i.e., the MJLS described by (2.5) is Strict-MSD.

Then, there exists a mode-dependent filtering gain M̂n ∈ Fnx×ny , n ∈ Sη, such that
ρ(T ) < 1, with T ∈ B(HInx) in (2.20), for Γ̂n1 = A+AM̂nL and Γ̂n0 = A, n ∈ Sη. Con-
sider the operator L ∈ B(HInx) in (2.21), with Γn1 = Γ̂n1 and Γn0 = Γ̂n0, for all n ∈ Sη.
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By Proposition 1, ρ(T ) = ρ(L), and, therefore, ρ(L) < 1. By applying [4, Theorem 3.9],
we have that, for V = [Vm]Im=1 ∈ HInx,+, Vm � 0, m ∈ Sη, Lm(V)− Vm ≺ 0.

By taking W1 = V, Zm = Em(W1), condition (2.47c) is satisfied. By choosing
Wm2 = ZmAM̂m, Wm3 = W ∗m2Z

−1
m Wm2, and substituting these expressions in Lm(V)− Vm,

condition (2.47a) follows.
Recalling that Wm3 �W ∗m2Z

−1
m Wm2, by the Schur complement condition (2.47b) is

satisfied, and (iii) holds.
Let us prove that if the matrix A is non-singular, the converse implication, i.e.,
(iii) =⇒ (ii), is true.

Assume (iii) holds, i.e.,
Moreover, assume that the matrix A is non-singular. Then, the filtering gain can

be chosen as M̂m = A−1Z−1
m Wm2. Consider again the operator L defined above. From

(2.47b), by the Schur complement (see [4, Lemma 2.23]), we have Wm3 �W ∗m2Z
−1
m Wm2

and, from (2.47c), Zm � Em(W1). Thus, by condition (2.47a), we get Lm(W1)−Wm1 ≺ 0
and, by [4, Theorem 3.9], ρ(L) < 1. Consider the operator T in (2.20), with Γ̂n1 = A+AM̂nL,
Γ̂n0 = A, and n ∈ Sη. This implies that Γ̂n0 = Γn0, Γ̂n1 = Γn1, for all n ∈ Sη, and, by
Proposition 1, ρ(T ) = ρ(L). Therefore, ρ(T ) < 1, and condition (ii) holds.

Proof 39 (Proof of Proposition 7) Assume that (2.48) holds for some W1 = [Wm1]Im=1

in HInx,+ Z in Fnx×nx+ , W2 in Fnx×ny , W3 in Fny×ny+ , for any m ∈ Sη. From (2.48b), by
the Schur complement (see [4, Lemma 2.23]), the inequalities below follow,

W3 −W ∗
2Z
−1W2 � 0,

and thus,

W3 � W ∗
2Z
−1W2. (41)

Let us choose the mode-independent next-step predictor filtering gain as follows,

M̌ b = Z−1W2,

and consider the operator L in B
(
HInx

)
in (2.21), for

Γm1 = A+ M̌ bL, Γm0 = A,

for any m ∈ Sη. From (2.48c), Em(W1) � Z, for all m ∈ Sη.
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By applying the definition of operator L and by substituting the expression of the
filtering gain M̌ b, the following equalities/inequalities hold,

Lm (W1)−Wm1 =

= γ̂m
(
A+ M̌ bL

)∗
Em (W1)

(
A+ M̌ bL

)
+ (1− γ̂m)A∗Em (W1)A−Wm1

= A∗Em (W1)A+ γ̂mA
∗Em (W1)M bL

+ γ̂mL
∗M̌ b∗Em (W1)A+ γ̂mL

∗M̌ b∗Em (W1) M̌ bL−Wm1

= A∗Em (W1)A+ γ̂mA
∗Em (W1)Z−1W2L

+ γ̂mL
∗W ∗

2Z
−1Em (W1)A

+ γ̂mL
∗W ∗

2Z
−1Em (W1)Z−1W2L−Wm1

� A∗ZA+ γ̂mA
∗W2L+ γ̂mL

∗W ∗
2A

+ γ̂mL
∗W ∗

2Z
−1W2L−Wm1. (42)

Thus, by recalling (41) and condition (2.48a), from (42), it follows that

Lm(W1)−Wm1 ≺ 0.

By [4, Theorem 3.9], it follows that ρ(L) < 1.
Consider now the operator V in B

(
HInx

)
, defined in (2.22), with Γm1 = A+ M̌ bL,

Γm0 = A, and m ∈ Sη.
By Proposition 1, ρ(V) = ρ(L), and, consequently, ρ(V) < 1.
Therefore, the MJLS described by (2.5) is Strong-MSD, and, thus, the proof of the

implication (i) =⇒ (ii) is complete.
Now, assume that conditions (2.48) hold for some Z in Fnx×nx+ , W1 = [Wm1]Im=1 in
HInx,+, W2 in Fnx×ny , and W3 in Fny×ny+ .

From (2.48b), by the Schur complement (see [4, Lemma 2.23]), we have that

W3 −W ∗
2Z
−1W2 � 0,

and thus,

W3 � W ∗
2Z
−1W2. (43)

Let us recall that the matrix A is non-singular by assumption and let us choose the
mode-independent current estimator filtering gain as follows,

M̂ b = A−1Z−1W2.
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Consider the operator L in B(HInx) defined in (2.21) with

Γm1 = A+ AM̂ bL, Γm0 = A,

for any m ∈ Sη.
From (2.48c) it follows that, Em (W1) � Z, for any m ∈ Sη.

Lm (W1)−Wm1 =

= γ̂m
(
A+ AM̂ bL

)∗
Em (W1)

(
A+ AM̂ bL

)
+ (1− γ̂m)A∗Em (W1)A−Wm1

= A∗Em (W1)A+ γ̂mA
∗Em (W1)AM̂ bL

+ γ̂mL
∗M̂ b∗A∗Em (W1)A+ γ̂mL

∗M̂ b∗A∗Em (W1)AM̂ bL−Wm1

= A∗Em (W1)A+ γ̂mA
∗Em (W1)Z−1W2L

+ γ̂mL
∗W ∗

2Z
−1Em (W1)A+ γ̂mL

∗W ∗
2Z
−1Em (W1)Z−1W2L−Wm1.

� A∗ZA+ γ̂mA
∗W2L+ γ̂mL

∗W ∗
2A

+ γ̂mL
∗W ∗

2Z
−1W2L−Wm1. (44)

Thus, by recalling (43) and condition (2.48a), from (44) it follows that,

Lm(W1)−Wm1 ≺ 0.

By [4, Theorem 3.9], ρ(L) < 1.
Consider T in B

(
HInx

)
defined in (2.20), for Γ̂m1 = A+AM̂ bL, Γ̂m0 = A, m ∈ Sη.

This implies Γ̂m0 = Γm0 and Γ̂m1 = Γm1. By Proposition 1, ρ (L) = ρ (T ), and,
consequently, ρ(T ) < 1. Thus, the system (2.5) is Strong-Strict-MSD.



Appendix B

Proof of Theorem 6

Proof 40 (Proof of Proposition 8) Consider the MJLS described by equation (3.7) that
describes the dynamics of the error ẽi, with i ∈ {u, e} denoting the agent (either the
user or the eavesdropper).

Consider the MSE expression in (3.8). If there exists a mode-dependent filtering
gain such that the MSE is bounded, from Assumption 2, the difference Riccati equation is
equivalent to the algebraic Riccati equation (3.10), and the mode-dependent filtering gain
is given by (3.11). By applying the reasoning illustrated in the proof of Proposition 3
in Chapter 2 (see Appendix A) and in the proof of [4, Proposition A.23], equations
(3.10)-(3.11) follow.
The proof of the proposition is complete.

The following lemmas extend the result presented in [49, Theorem 2] and they are
instrumental for the proof of Theorem 6.

Lemma 5 Consider for λ ∈ [0, 1], the operator

Xλ : Fnx×nx+ × R+ × R+ → Fnx×nx+ ,

defined for X ∈ Fnx×nx+ , α > 0, φ ∈ R+ in (3.9).
Let us recall the expression of Xλ, as follows,

Xλ (X,α, φ) , (1− λφ) {AXA∗ + αQ}

+ λφ
(
AXA∗ + αQ− AXL∗ (LXL∗ + αR)−1 LXA∗

)
. (45)

Then, the following conditions hold.

(a) Consider X,Y ∈ Fnx×nx+ . If

X � Y,

170
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then,

Xλ (X,α, φ) � Xλ (Y, α, φ)

(b) Consider λ̂, λ̃ ∈ [0, 1]. If

λ̂ ≥ λ̃,

then

Xλ̂ (X,α, φ) � Xλ̃ (X,α, φ) .

(c) Consider the positive constant β > 1.
Then,

Xλ (βX, α, φ) � βXλ (X,α, φ) .

Proof 41 (Proof of Lemma 5) Let us show that condition (a) is satisfied.
Let us define the gain KX as follows,

KX , −XL∗ (LXL∗ + αR)−1 .

Then, the reader can easily verify that

Xλ (X,α, φ) = (1− λφ) {AXA∗ + αQ}

+ λφ
{

(A+ AKXL)X (A+ AKXL)∗ + αQ

+ αAKXRK
∗
XA
∗
}
.

By applying an approach based on matrix derivatives, it can be shown that KX minimizes
the function Xλ (X,α, φ) (see [49, Lemma 1]), and thus, recalling that X � Y , the
following inequality is obtained

Xλ (X,α, φ) � Xλ (Y, α, φ)

Let us show that condition (b) is satisfied, i.e., if

λ̂ ≥ λ̃,
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then

Xλ̂ (X,α, φ) � Xλ̃ (X,α, φ) .

with λ̂, λ̃ ∈ [0, 1].
Assume that λ̂ ≥ λ̃.
Then,

Xλ̂ (X,α, φ) �AXA∗ + αQ

− λ̃φAXL∗ (LXL∗ + αR)−1 LXA∗

= Xλ̃ (X,α, φ) .

Let us show that condition (c) is satisfied.
Assume that β > 1.

Then,

Xλ (βX, α, φ) � (1− λφ) (βAXA∗ + βαQ)

+ λφ
(
βAXA∗ + βαQ

− βAXL∗ (LβXL∗ + βαR)−1 LβXA∗
)

= βXλ (X,α, φ) ,

and thus, condition (c) is satisfied.
The proof of the lemma is complete.

The results presented in Lemma 6 and Lemma 7 are exploited in order to study
the interval of probabilities in which

lim
k→∞

tr {Zi,n(k)} = +∞,

and

lim
k→∞

tr {Zi,n(k)} <∞,

for any initial condition Z0 in ∈ HNnx,+, for n ∈ S, i ∈ {u, e}.
For Ỹ =

[
Ỹm
]N
m=1

in HNnx,+, a TPM given by P̃ = [p̃mn]Nm,n=1, and probabilities αm > 0,
m ∈ S, consider the following expression for k ∈ N, n ∈ S,

Ỹn(k + 1) =
N∑
m=1

p̃mnXλ
(
Ỹm(k), αm(k), γ̃m

)
, (46)
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with λ ∈ [0, 1], given by λ = δ
σ , σ ∈ (0, 1] and δ ∈ [0, 1].

Assumption 5 Assume that for λ = 1, for any initial condition Ỹ0 in HNnx,+, there
exists a positive constant UỸ0

depending on the initial condition Ỹ0, satisfying the
following inequality,

UỸ0 <∞,

such that

lim
k→∞

tr
{
X1
(
Ỹm(k), αm(k), γ̃m

)}
≤ UỸ0 ,

for any m ∈ S.

Lemma 6 Consider for k ∈ N, n ∈ S, the expression of Ỹn(k) in (46).
Under Assumption 1 and Assumption 5, there exists a limit probability δc ∈ [0, 1) such
that

(i) there exists Ỹ0 in HNnx,+, for

0 ≤ λ ≤ δc
σ
,

such that

lim
k→∞

tr
{
Ỹn(k)

}
= +∞,

(ii) For any Ỹ0 in HNnx,+, for

δc
σ
< λ ≤ 1,

there exists WỸ0,λ
, satisfying

0 < WỸ0,λ <∞,

such that

lim
k→∞

tr
{
Ỹn(k)

}
≤ WỸ0,λ,

with WỸ0,λ
positive constant depending on Ỹ0 and on λ.
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Proof 42 (Proof of Lemma 6) Consider (46) for λ = 0, i.e., (46) becomes

Ỹn(k + 1) =
I∑

m=1
p̃mnX0

(
Ỹm(k), αm(k), γ̃m

)
, (47)

with

X0
(
Ỹm(k), αm(k), γ̃m

)
= AỸm(k)A∗ + αm(k)Q

By Assumption 1, the matrix A is unstable, i.e., ρ (A) > 1.
Then, from (47), it follows that for some initial condition Ỹ0 in HNnx,+,

lim
k→∞

tr
{
Ỹn(k)

}
= +∞,

for n ∈ S, and condition (i) is satisfied.
When λ = 1, the expression of X1

(
Ỹm(k), αm(k), γ̃m

)
becomes

X1
(
Ỹm(k), αm(k), γ̃m

)
= AỸm(k)A∗ + αm(k)Q

− γ̃mAỸm(k)L∗
(
LỸm(k)L∗ + αm(k)R

)−1
LỸm(k)A∗.

By Assumption 5, for any initial condition Ỹ0 in HNnx,+, there exists a positive constant
UỸ0

satisfying the inequalities,

0 < UỸ0 <∞,

such that

lim
k→∞

tr
{
X1
(
Ỹm(k), αm(k), γ̃m

)}
≤ UỸ0 ,

for any m ∈ S.
Consequently, for λ = 1 there exists a positive constant WỸ0

depending on the initial
condition Ỹ0, satisfying

UỸ0 ≤ WỸ0 <∞,

such that

lim
k→∞

N∑
m=1

p̃mntr
{
X1
(
Ỹm(k), αm(k), γ̃m

)}
≤ WỸ0 ,
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and thus, from (46), condition (ii) is satisfied for λ = 1.
Fix a 0 < λ̃ ≤ 1, such that for any initial condition Ỹ0 ∈ HNnx,+ there exists 0 < UỸ0,λ̃

<∞,
for which

lim
k→∞

tr
{
Xλ̃

(
Ỹm(k), αm(k), γ̃m

)}
≤ UỸ0,λ̃

(48)

(see [49, Theorem 2]), m ∈ S.
Consequently, from (48), by applying (46), there exists a positive constant WỸ0,λ̃

depending on the initial condition Ỹ0 an on λ̃, with

UỸ0,λ̃
≤ WỸ0,λ̃

<∞,

such that

lim
k→∞

N∑
m=1

p̃mntr
{
Xλ̃

(
Ỹm(k), αm(k), γ̃m

)}
≤ WỸ0,λ̃

.

Pick δ̃ as follows,

δ̃ = λ̃σ.

Then, for

δ̂ > δ̃,

there exists

λ̂ = δ̂

σ
>
δ̃

σ
= λ̃,

and by Lemma 5 (b), for any initial condition Ỹ0 in HNnx,+, there exists WỸ0,δ̂/σ
, such

that

lim
k→∞

N∑
m=1

p̃mntr
{
Xδ̂/σ

(
Ỹm(k), αm(k), γ̃m

)}
≤ WỸ0,δ̂/σ

,

and thus, condition (ii) is satisfied for λ̂ = δ̂

σ
.

Define

δc , inf
{
δ∗ : ∀δ > δ∗,∀ Ỹ0 ∈ HNnx,+,∃ 0 < WỸ0,δ/σ <∞,

lim
k→∞

N∑
m=1

p̃mntr{Xδ/σ(Ỹm(k), αm(k), γ̃m)} ≤ WỸ0,δ/σ

}
.

(see [49, Theorem 2]).
Consequently, condition (ii) is satisfied.

The proof of the lemma is complete.
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Lemma 7 Consider for k ∈ N, n ∈ S, the expression of Ỹn(k) in (46).
Under Assumptions 1 and 5, there exists a limit probability δc ∈ [0, 1) such that, for
any initial condition Ỹ0 HNnx,+, n ∈ S,

(i) for 0 ≤ λ ≤ δc
σ
: lim
k→∞

tr
{
Ỹn(k)

}
= +∞,

(ii) for δc
σ
< λ ≤ 1, there exists a positive constant WỸ0,λ depending on Ỹ0, λ,

satisfying

0 < WỸ0,λ <∞,

such that

lim
k→∞

tr
{
Ỹn(k)

}
≤ WỸ0,λ.

Proof 43 (Proof of Lemma 7) From Assumption 1 and Assumption 5, by Lemma 6 (ii),
condition (ii) in Lemma 7 follows.
Let us prove that Lemma 6 (i) implies condition (i) in Lemma 7.

Let Ỹ′0 in HNnx,+ be one initial condition for which the sequence Ỹ ′m(k) is such that

lim
k→∞

tr
{
Ỹ ′n(k)

}
= +∞

according to Lemma 6 (i), for m,n ∈ S.
Also let Ỹm(k), m ∈ S, k ∈ N, be the sequence with some arbitrary initial condition Ỹ0

in HNnx,+.
Notice that if Ỹm(0) = Onx, then Ỹm(1) � 0, m ∈ S, since Q � 0.
Thus, it is possible to find a large enough positive constant β > 1, such that the

following inequality holds,

βỸm(1) � Ỹ ′m(1), (49)

for any m ∈ S.

Claim 1 There exists a positive constant β > 1, such that

βỸm(k) � Ỹ ′m(k),

for any m ∈ S, for all k ≥ 1.
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Proof 44 (Proof of Claim 1) Assume that at time k ∈ N,

βỸm(k) � Ỹ ′m(k),

m ∈ S.
Let us write the expression of

βỸn(k + 1),

for n ∈ S.
By the linearity of the sum and by the properties (c) and (a) in Lemma 5, we obtain

βỸn(k + 1) �
N∑
m=1

p̃mnXλ
(
Ỹ ′m(k), αm(k), γ̃m

)
= Ỹ ′n(k + 1),

and thus, the following inequality is obtained,

βỸn(k) � Ỹ ′n(k),

for any k ≥ 1, n ∈ S.

From (49), by applying Claim 1, it follows that

lim
k→∞

tr{Ỹm(k)} ≥ 1
β

lim
k→∞

tr{Ỹ ′m(k)},

n ∈ S implying condition (i).
The proof of the lemma is complete.

Proof 45 (Proof of Theorem 6) Let us show the sufficiency part. Consider for n ∈ S,
i ∈ {u, e}, k ∈ N, the following equality,

Zi,n(k + 1) =
N∑
m=1

pi,mnXλ (Zi,m(k), πi,m(k), γ̂i,m) .

Under Assumption 2, if

lim
k→∞

tr {E [ẽe(k)ẽ∗e(k)]} = +∞,

the secrecy mechanism designer can choose

λ = 1.
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Otherwise, since Assumptions 1-2 hold, by Lemma 7, (in Appendix B) for any Z0 ∈ HNnx,+,
m,n ∈ S, i ∈ {u, e},

lim
k→∞

tr {Zi,n(k)} = +∞, for 0 ≤ λ ≤ ζc
ψi
, (50)

lim
k→∞

tr {Zi,n(k)} <∞, for ζc
ψi

< λ ≤ 1. (51)

This implies that the probability λ in the secrecy mechanism should be designed such
that the following inequality holds,

λ >
ζc
ψu
,

in order to guarantee (51) for the user MSE.
Since the user MSE is bounded by assumption when λ = 1, the following inequality is
satisfied,

ψu × 1 > ζc,

and thus, ψu > ζc, implying ζc/ψu < 1.
Consider now the eavesdropper MSE. The secrecy parameter λ should be chosen
sufficiently small, such that, the inequality

λ ≤ ζc
ψe
,

is satisfied.
Therefore, by choosing λ satisfying the following inequalities,

ζc
ψu

< λ ≤ min
{
ζc
ψe
, 1
}
,

the secrecy mechanism guarantees optimal mean square expected secrecy over FSMCs
by Lemma 7.
Notice that the interval (ζc/ψu,min {ζc/ψe, 1}] is nonempty: ζc/ψu < 1, and ψu > ψe

implies that ζc/ψu < ζc/ψe.
Let us show the necessity part. If the optimal mean square expected secrecy over FSMCs
is achieved by the secrecy mechanism in (3.2), by Lemma 7, the following inequalities
are satisfied,

ζc
ψu

< λ ≤ 1,

λ ≤ ζc
ψe
,
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implying

ζc
ψu

< λ ≤ ζc
ψe
.

Consequently, λψe < λψu, and finally ψe < ψu.
The proof of the theorem is complete.

Eavesdropper characterization

The following result will be exploited in the proof of Proposition 9, used for the
eavesdropper characterization.

Let us recall, for V = [Vm]Nm=1 in HNnx,∗, for n ∈ S, the definition of Se,n (V) (de-
fined in Chapter 3),

Se,n (V) ,
N∑
m=1

pe,mn (1− λγ̂e,m)AVmA∗ + π∞e,nQ.

Let us also recall the definition of Ae provided in Chapter 3 and defined as follows,

Ae ,
[
P ′e ⊗ In2

x

] [ N⊕
m=1

(1− λγ̂e,m)
(
A⊗ A

)]
.

Proposition 12 There exists Se = [Se,n]Nn=1 in HNnx,+, satisfying

Se,n = Se,n (Se) ,

if and only if

ρ (Ae) < 1.

Proof 46 (Proof of Proposition 12) By applying the vectorization to the equation Se,n = Se,n (Se),
for Se = [Se,n]Nn=1 in HNnx,+, exploiting the properties of the Kronecker product (see for
instance [187]), the following equality can be easily obtained,

vec2 (Se) = Aevec2 (Se) + vec2 (π∞e ⊗Q) , (52)

with π∞e =
[
π∞e,m

]N
m=1

.
By [4, Proposition 3.36, Proposition 3.38], (52) has a unique solution Se in ∈ HNnx,+,

if and only if
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ρ (Ae) < 1.

The proof of the proposition is complete.

Proof 47 (Proof of Proposition 9) Consider for k ∈ N, n ∈ S, the equation

Se,n(k + 1) = Se,n (Se(k)) ,

Se = [Se,n]Nn=1 in HNnx,+.
Notice that Se,n(k), k ∈ N, n ∈ S, is a monotonically increasing sequence, since

Q � 0.
Recall that Ze,n(0) � 0 for any n ∈ S. Clearly,

Onx = Se,n(0) � Ze,n(0).

Moreover,

Se,n(k) � Ze,n(k)

implies

Se,n(k + 1) = Se,n (Se(k)) � Ze,n(k + 1).

By induction arguments,

Se,n(k) � Ze,n(k),

for any k ≥ 0.
If

ρ (Ae) < 1,

by Proposition 12

lim
k→∞

tr {Ze,n(k)} ≥ tr {Se,n} ,

with

Se,n = Se,n (Se) ,
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Se in HNnx,+.
If ρ (Ae) ≥ 1, the sequence Se,n(k), k ∈ N, n ∈ S, does not converge.

Since Se,n(k), k ∈ N, n ∈ S, is a monotonically increasing sequence, the following
equality holds,

lim
k→∞

tr {Se,n(k)} = +∞,

implying that

lim
k→∞

tr {Ze,n(k)} = +∞,

n ∈ S.
The proof of the proposition is complete.



Appendix C

Proof of Theorem 7.

Some technical definitions and lemmas, that are useful in the proof of Theorem
7, are reported in the following.

Let us define the function

V : N× Rn × S → R+,

for k ∈ N, ξ ∈ Rn, i ∈ S as

V(k, ξ, i) ,
∑

q∈Qk(i)
pqk(i)‖Φ(k, ξ, i, rqk(i), 0)‖2. (53)

Remark 46 Notice that, for any i ∈ S, for k = 0, 1, the index q belongs to the singleton
set Qk(i) = {1}. Indeed, r1

0(i) = {i} (recall the definition of admissible switching paths
(4.2)), as well as r1

1(i) = {i}.
Consider the time instant k = 0, any Markov mode i ∈ S, any initial condition ξ ∈ Rn:
r1

0(i) is the admissible switching path containing only the initial mode of the Markov
mode i ∈ S and that corresponds to the index q in Q0(i) = {1}. The corresponding
solution at time k = 0, denoted by Φ(0, ξ, i, r1

0(i), 0), is given by ξ, since the initial
condition ξ ∈ Rn is given. The initial mode of the Markov chain, denoted by i ∈ S, is
also given. Thus, the probability of occurrence for the switching path r1

0(i), denoted by
p1

0(i), is equal to one.
Consider now the time instant k = 1, any Markov mode i ∈ S, any initial condition
ξ ∈ Rn: r1

1(i) is the admissible switching path that contains only the mode i ∈ S, and
that corresponds to the index q in Q1(i) = {1}.

The corresponding solution at time k = 1, denoted by

Φ(1, ξ, i, r1
1(i), 0),

182
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is given by fi(ξ, 0). Since the initial Markov mode i ∈ S is given, the probability of
occurrence of the switching path r1

1(i), denoted by p1
1(i), is equal to one again.

Thus, by evaluating (53) in k = 0 and in k = 1,

V(0, ξ, i) = ‖ξ‖2, (54a)

V(1, ξ, i) = ‖fi(ξ, 0)‖2, (54b)

for any ξ ∈ Rn, i ∈ S.

Lemma 8 Assume that (4.3), with u(·) ≡ 0, is EMSS.
Let θ, ζ be the positive reals in (4.5).

Then, for any ξ ∈ Rn, i ∈ S, the following inequality holds,

V(k, ξ, i) ≤ θζk‖ξ‖2, ∀k ∈ N. (55)

Proof 48 (Proof of Lemma 8) From Remark 33, by applying (4.4) for u(·) ≡ 0, and
(53), the following equality holds:

V(k, ξ, i) = E
[
‖x(k, ξ, i, 0)‖2

]
. (56)

Since (4.3) is EMSS, by Definition 14, (55) follows from (56).

Lemma 9 Consider the system described by (4.3), with u(·) ≡ 0, and consider the
function V, defined by (53).
Then, for any ξ ∈ Rn, i ∈ S, the following equality holds

∑
j∈Souti

pijV(k, fi(ξ, 0), j) = V(k + 1, ξ, i), ∀k ∈ N. (57)

Proof 49 (Proof of Lemma 9) Let, for i ∈ S, f i : Rn → Rn be the function defined for
x ∈ Rn, as f i(x) = fi(x, 0).

In order to show that equality (57) holds for any k ∈ N, the proof will treat the
following cases separately:

• k = 0,

• k = 1,

• k = 2,
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• k ≥ 3.

From (4.2), for k = 0 we have

r0(i) = r1(i) = {i}.

with i ∈ S.
For k = 2 we have

r2(i) = {i, j1},

with i ∈ S, j1 ∈ Souti .
The values of the time index k, given by k = 0, 1, 2, are treated as particular cases in

order to write equations that are well posed according to the definition of the admissible
switching paths (recall (4.2)).
Consider the left-hand side of (57) for k = 0.

From (53), by applying (54a), with f i(ξ) ∈ Rn as second argument of V, j ∈ S as
third argument of V, recalling (4.1) and (54b), we get the following equalities∑

j∈Souti

pijV(0, f i(ξ), j) =
∑

j∈Souti

pij‖f i(ξ)‖2 = V(1, ξ, i),

i.e., (57) is satisfied for k = 0.
Consider the left-hand side of (57) for k = 1.

From (53), by applying (54b), with f i(ξ) ∈ Rn as second argument of V, j ∈ S as
third argument of V, we obtain:∑

j∈Souti

pijV
(
1, f i(ξ), j

)
=

∑
j∈Souti

pij‖f j(f i(ξ))‖2.

For any i ∈ S, the switching path {i, j}, j ∈ Souti , is a switching path of length 2
emanating from the mode i ∈ S.

Indeed, the probability pij of the transition (i, j) ∈ E, corresponds to the probability
of a path of length 2, emanating from the mode i ∈ S, that is pq2(i).

Any mode j ∈ Souti can be associated with an index q ∈ Q2(i), obtaining the following
equalities: ∑

j∈Souti

pij‖f j
(
f i(ξ)

)
‖2 =

∑
q∈Q2(i)

pq2(i)‖Φ (2, ξ, i, rq2(i), 0) ‖2

= V(2, ξ, i),
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so, (57) is satisfied for k = 1.
Consider the left-hand side of (57) for k = 2.
By applying (53), we obtain

∑
j∈Souti

pijV(2, f i(ξ), j) =
∑

j∈Souti

pij
∑

q∈Q2(j)
pq2(j)

∥∥∥Φ(2, f i(ξ), j, r
q
2(j), 0)

∥∥∥2
. (58)

For any j ∈ S, rq2(j), q ∈ Q2(j), is a switching path such as rq2(j) = {j, j1}, j1 ∈ Soutj ,
where any mode j1 ∈ Soutj is associated with an index q ∈ Q2(j). From (58), we get

∑
j∈Souti

pijV(2, f i(ξ), j) =
∑

j∈Souti

pij
∑

j1∈Soutj

pjj1
∥∥∥f j1 ◦ f j ◦ f i(ξ)∥∥∥2

=
∑

j∈Souti

∑
j1∈Soutj

pijpjj1
∥∥∥f j1 ◦ f j ◦ f i(ξ)∥∥∥2

. (59)

By associating with each path of length 3 emanating from the mode i ∈ S, {i, j, j1},
j ∈ Souti , j1 ∈ Soutj , an index q ∈ Q3(i), recalling the definition of pq3(i), from (59), the
following equalities hold:

∑
j∈Souti

pijV(2, f i(ξ), j) =
∑

q∈Q3(i)
pq3(i) ‖Φ(3, ξ, i, rq3(i), 0)‖2 = V(3, ξ, i), (60)

i.e., (57) is satisfied for k = 2.
Consider the left-hand side of (57) for k ≥ 3.
From (53), we obtain
∑

j∈Souti

pijV
(
k, f i(ξ), j

)
=

∑
j∈Souti

pij
∑

q∈Qk(j)
pqk(j)

∥∥∥Φ (k, f i(ξ), j, rqk(j), 0)∥∥∥2
. (61)

From (4.2), it follows that rqk(j), q ∈ Qk(j), k ≥ 3, is a switching path such as

rqk(j) = {j, j1, . . . , jk−1},

j1 ∈ Soutj , jh+1 ∈ Soutjh
, h = 1, . . . , k − 2. (62)

For any mode j ∈ S, each admissible switching path of length k emanating from j, given
by {j, j1, . . . , jk−1} (see (62)), is associated with an index q ∈ Qk(j).
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Recalling the definition of pqk(j), q ∈ Qk(j), j ∈ S, applying the Markov property,
from (61), the following equalities hold:

∑
j∈Souti

pijV(k, f i(ξ), j) =
∑

j∈Souti

pij
∑

j1∈Soutj

· · ·
∑

jk−1∈Soutjk−2

pjj1 · · · pjk−2jk−1

×
∥∥∥f jk−1

◦ · · · ◦ f j1 ◦ f j ◦ f i(ξ)
∥∥∥2

=
∑

j∈Souti

∑
j1∈Soutj

· · ·
∑

jk−1∈Soutjk−2

pijpjj1 · · · pjk−2jk−1×

×
∥∥∥f jk−1

◦ · · · ◦ f j1 ◦ f j ◦ f i(ξ)
∥∥∥2
. (63)

Notice that for any j ∈ Souti the path {i, j, j1, . . . , jk−1} is an admissible switching path
of length k + 1 starting from the mode i ∈ S.

Thus, we are able to associate with each switching path

{i, j, j1, . . . , jk−1},

with j ∈ Souti , j1 ∈ Soutj , jh+1 ∈ Soutjh
, h = 1, . . . , k − 2, an index q̄ belonging to the set

Qk+1(i).
By applying the definition of pq̄k+1(i), q̄ ∈ Qk+1(i), from (63), we obtain the following

equalities, for all k ≥ 3:
∑

j∈Souti

pijV(k, f i(ξ), j) =
∑

q̄∈Qk+1(i)
pq̄k+1(i)×

∥∥∥Φ (k + 1, ξ, i, rq̄k+1(i), 0
)∥∥∥2

= V (k + 1, ξ, i) .

The proof of the lemma is complete.

Proof 50 (Proof of Theorem 7) See [3, Theorem 20 (b)] for the proof of the sufficiency
part of the theorem.
As far as the proof of the necessity part is concerned, assume that the system described
by (4.3), with u(·) ≡ 0, is EMSS.

Pick an arbitrary ξ ∈ Rn, and an arbitrary i ∈ S.
Consider the function

V (ξ, i) =
∞∑
k=0
V(k, ξ, i), (64)

with V defined in (53).
Notice that the sum is convergent by Lemma 8.



6. Conclusions 187

Since

V(k, ξ, i) ≥ 0,

for any k ∈ N, and

V(0, ξ, i) = ‖ξ‖2,

the following inequality holds,

‖ξ‖2 ≤ V (ξ, i).

Since system (4.3) is EMSS by assumption, by Lemma 8, for all initial conditions
ξ ∈ Rn, and for all i ∈ S, we obtain:

V (ξ, i) ≤
∞∑
k=0

θζk‖ξ‖2 = θ

1− ζ ‖ξ‖
2,

where θ and ζ are the positive reals in (4.5).
Thus, condition (b1) of the theorem holds, with

α1 = 1, α2 = θ

1− ζ .

It follows that, for any h ∈ S, V (·, h) is locally bounded and continuous at ξ = 0.
By recalling that pij = 0 for all j /∈ Souti , the following equality is satisfied:∑

j∈S
pijV (fi(ξ, 0), j) =

∑
j∈Souti

pijV (fi(ξ, 0), j). (65)

From (65) and (64), by applying Lemma 9, the following equalities hold

∑
j∈S

pijV (fi(ξ, 0), j) =
∑

j∈Souti

pij
∞∑
k=0
V (k, fi(ξ, 0), j)

=
∞∑
k=0

∑
j∈Souti

pijV (k, fi(ξ, 0), j)

=
∞∑
k=0
V (k + 1, ξ, i) . (66)

From (66), by changing the index in the last sum, we obtain:

∑
j∈S

pijV (fi(ξ, 0), j) =
∞∑
k=1
V(k, ξ, i). (67)
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By adding and subtracting the quantity V(0, ξ, i) to the right-hand side of (67), and by
recalling (54a), for any ξ ∈ Rn, the following equality is satisfied,∑

j∈S
pijV (fi(ξ, 0), j) = V (ξ, i)− ‖ξ‖2,

and, finally, the inequality

LV (ξ, 0, i) ≤ −‖ξ‖2

is obtained.
Thus, condition (b2) of the theorem is satisfied with α3 = 1.

The proof of the theorem is complete.

Remark 47 Notice that the methodology proposed in the proof of Theorem 7 involves the
expected values (see equation (56)) and also the transition probabilities of the switching
rule. Indeed, this procedure accounts for admissible transitions (see the definition of
Souti , for i ∈ S) and for the probabilities of occurrence of the admissible switching paths,
as the reader can easily see from equations (53)-(67). The aforementioned equations
are completely different from the ones in the procedure adopted in the proof of global
(exponential) asymptotic stability for the deterministic discrete-time switching and
non switching case. This work makes use of a deep re-elaboration of the procedures
in the deterministic case, where the transition probabilities are not considered at all
(see [133], [225, Section 4.3.4. Proof of Theorem 1: the necessity] and [136, Proof of
Theorem 1: the necessity]).

Proof of Theorem 8.

In the following, the reader will find some technical definitions and lemmas, that are
useful in the proof of Theorem 8.
Let us define as in [136] the set MB as follows,

MB , {v : N→ Bm
1 }.

Consider the following discrete-time Markovian switching system defined on the
stochastic basis (Ω,F , {Fk},P) as

xR(k + 1) = fr(k)
(
xR(k), ρ

(
E
[
‖xR(k)‖2

])
δ(k)

)
, k ∈ N, (68)
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where ρ is a globally Lipschitz function of class K∞, δ ∈MB is the input signal;
xR(k) , xR(k, ξ, i, δ) is the random variable that evolves according to (68), with initial
conditions ξ ∈ Rn, i ∈ S, input signal δ ∈MB. The variable ΦR

(
k, ξ, i, rqk(i), δ

) denotes
the solution of (68), at time k ∈ N, corresponding to initial conditions ξ ∈ Rn, i ∈ S,
switching path rqk(i) ∈ Rk(i), q ∈ Qk(i), input signal δ ∈MB.

Remark 48 Notice that for any ξ ∈ Rn, i ∈ S, δ ∈MB, the argument of the function ρ,
that is E

[∥∥∥xR(k)
∥∥∥2
]
, is given by

E
[∥∥∥xR (k, ξ, i, δ)

∥∥∥2
]

=
∑

q∈Qk(i)
pqk(i)

∥∥∥ΦR (k, ξ, i, rqk(i), δ)
∥∥∥2
, (69)

for any k ∈ N.
Indeed, the argument of ρ(·) does not depend on the current value of the Markov

mode r(k), but it is computed by considering the probabilities of all admissible switching
paths of length k, starting from the mode i ∈ S of the Markov chain.

Definition 19 The system described by (4.3) is said to be robustly exponentially mean
square stable (REMSS) if there exist a globally Lipschitz function ρ of class K∞, positive
real numbers µ ≥ 1, and 0 < ω < 1, such that for any ξ ∈ Rn, i ∈ S, δ ∈MB, the random
variable xR(k), that evolves according to discrete-time Markovian switching system (68)
satisfies the following inequality, for any k ∈ N:

E
[∥∥∥xR (k, ξ, i, δ)

∥∥∥2
]
≤ µωk‖ξ‖2. (70)

Remark 49 The following lemma plays a key role in the proof of the implication
EMS-ISS =⇒ REMSS. This is a difference with respect to the procedure in the
deterministic switching framework (see [136]). Specifically, two main challenges arise
with respect to [136].

Firstly, in [136] the expected value is not considered.
Secondly, in [136] the robust characterization is not an exponential characterization,

and thus, the proof of the implication ISS =⇒ robust stability does not take into
account the exponential decrease rate.

Lemma 10 Let θ, ζ, γ, be positive reals such that:

θ ≥ 1, 0 < ζ < 1, γ > 1, γθ

γθ − 1 < γ. (71)
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Let a function g : N→ R+ satisfy the following inequality

Σ : g(k) ≤ θζk−k0g(k0) + 1
γθ

sup
t=k0,k0+1,...,k

g(t), (72)

for all k ≥ k0 ≥ 0.
Then, there exist positive reals µ and ω, with µ ≥ 1 and 0 < ω < 1, such that the following
inequality is satisfied, for all k ∈ N,

g(k) ≤ µωkg(0). (73)

Proof 51 (Proof of Lemma 10) From (72), taking k0 = 0, the following inequality holds,

sup
t=0,1,...,k

g(t) ≤ θg(0) + 1
γθ

sup
t=0,1,...,k

g(t),

which implies the following inequalities(
1− 1

γθ

)
sup

t=0,1,...,k
g(t) ≤ θg(0),

g(k) ≤ γθ

γθ − 1θg(0), ∀k ≥ 0. (74)

Taking (71) into account, let r > 1 be a real such that

1
r

+ 1
γ

γθ

γθ − 1 < 1.

We choose a positive integer k̄ such that

ζ k̄ <
1
rθ
. (75)

From (72) with k0 = 0 and k = k̄, we obtain

g(k̄) ≤ θζ k̄g(0) + 1
γθ

sup
t=0,1,...,k̄

g(t). (76)

From (76), by applying (75) and (74) it follows that

g(k̄) ≤
(

1
r

+ 1
γ

γθ

γθ − 1

)
g(0). (77)

Consider (72), choose k0 = k̄, and consider the interval
[
k̄, 2k̄

]
.
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The following inequality holds

g(k) ≤ θζk−k̄g(k̄) + 1
γθ

sup
t=k̄,k̄+1,...,k

g(t), ∀k ∈ [k̄, 2k̄],

which implies:

sup
t=k̄,k̄+1,...,k

g(t) ≤ θg(k̄) + 1
γθ

sup
t=k̄,k̄+1,...,k

g(t), k ∈
[
k̄, 2k̄

]
. (78)

From (78), we obtain the following inequality:(
1− 1

γθ

)
sup

t=k̄,k̄+1,...,k
g(t) ≤ θg(k̄), ∀k ∈ [k̄, 2k̄]. (79)

From (79), by applying (77), it follows that:

g(k) ≤ γθ

γθ − 1θ
(

1
r

+ 1
γ

γθ

γθ − 1

)
g(0), ∀k ∈

[
k̄, 2k̄

]
.

Let us prove now that the following inequalities hold for any integer l ≥ 0,

g(lk̄) ≤
(

1
r

+ 1
γ

γθ

γθ − 1

)l
g(0), (80)

and

g(k) ≤ γθ

γθ − 1θ
(

1
r

+ 1
γ

γθ

γθ − 1

)l
g(0), ∀k ∈ [lk̄, (l + 1)k̄]. (81)

The proof proceeds using inductive arguments.
Assume that there exists l̄ ≥ 0, such that inequalities (80) and (81) hold for all l ≤ l̄.
Indeed, for l = 0, 1, (80) and (81) are satisfied.
Choose k0 = l̄ k̄.

By applying (72) for k = (l̄ + 1)k̄, we obtain

g((l̄ + 1)k̄) ≤ θζ(l̄+1)k̄−l̄ k̄g(l̄ k̄) + 1
γθ

sup
t=l̄ k̄,...,(l̄+1)k̄

g(t)

≤ θζ k̄g(l̄ k̄) + 1
γθ

γθ

γθ − 1θ
(

1
r

+ 1
γ

γθ

γθ − 1

)l̄
g(0)

≤ θ
1
rθ

(
1
r

+ 1
γ

γθ

γθ − 1

)l̄
g(0)+

+ 1
γ

γθ

γθ − 1

(
1
r

+ 1
γ

γθ

γθ − 1

)l̄
g(0)

≤
(

1
r

+ 1
γ

γθ

γθ − 1

)(l̄+1)
g(0). (82)
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Thus, (80) holds for l = l̄ + 1.
Consider now the interval [(l̄ + 1)k̄, (l̄ + 2)k̄]. By applying (72) for k0 = (l̄ + 1)k̄, we get
the following inequalities

g(k) ≤ θζk−(l̄+1)k̄g((l̄ + 1)k̄) + 1
γθ

sup
t=(l̄+1)k̄,...,k

g(t),

sup
t=(l̄+1)k̄,...,k

g(t) ≤ θg((l̄ + 1)k̄) + 1
γθ

sup
t=(l̄+1)k̄,...,k

g(t), (83)

for any k ∈ [(l̄ + 1)k̄, (l̄ + 2)k̄].
From (83), by applying (82), it follows that for all k ∈

[
(l̄ + 1)k̄, (l̄ + 2)k̄

]
,

g(k) ≤ γθ

γθ − 1θ
(

1
r

+ 1
γ

γθ

γθ − 1

)(l̄+1)

g(0). (84)

The previous steps have proved that (81) holds for l = l̄ + 1.
So (80) and (81) hold for any integer l ≥ 0.

Let us define

α ,
γθ

γθ − 1θ, β ,
1
r

+ 1
γ

γθ

γθ − 1 .

Notice that by construction α > 1 and β satisfies 0 < β < 1.
From (81),

g(k) ≤ αβlg(0),

for any k in
[
lk̄, (l + 1)k̄

]
, and for any integer l ≥ 0.

Thus, g(k) satisfies the following inequalities/equalities for any k ∈ N,

g(k) ≤ αβ[k/k̄]g(0) ≤ αβ(k/k̄−1)g(0) = α

β

(
β(1/k̄)

)k
g(0),

and finally,

g(k) ≤ µωkg(0),

with

µ ,
α

β
, ω , β1/k̄

Notice that µ ≥ 1 and 0 < ω < 1.
The proof of the lemma is complete.
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The following lemma shows that the property of EMS-ISS implies the property of
REMSS.

Lemma 11 If the system described by (4.3) is EMS-ISS, then it is REMSS.

Proof 52 (Proof of Lemma 11) Consider the positive real numbers θ and ζ, and the
function η of class K, as in (4.6).

Without any loss of generality, let us assume η(s) ≥ s, s ∈ R+ (otherwise, just
replace η with η̄ defined, for s ∈ R+, as η̄(s) = max{s, η(s)}).

Let ρ be a globally Lipschitz function of class K∞ such that, for s ∈ R+, ρ(s) ≤ η−1
(

1
θγ s
)
,

with γ positive real greater than 1 satisfying (71) (see [94, p.130], [234]).
Consider the expected value E

[
‖x(k, ξ, i, u)‖2

]
, where x (k, ξ, i, u) is the random variable

that evolves according to Markovian switching system (4.3).
From (4.6), taking into account that system (4.3) is time invariant, for any k, k0 ∈ N
satisfying 0 < k0 ≤ k, for any q ∈ Qk0(i), i ∈ S, the following inequality holds,

E
[∥∥∥x (k,Φ(k0, ξ, i, rqk0(i), u), jk0 , u

)∥∥∥2
]
≤ θζk−k0

∥∥∥Φ(k0, ξ, i, rqk0(i), u)
∥∥∥2

+ η

(
sup

t=k0,...,k−1
‖u(t)‖

)
, (85)

where:

rqk0(i) = {j0, j1, . . . , jk0−1}

is an admissible switching path associated with the index q ∈ Qk0(i), given by j0 = i;
jk0 ∈ Soutjk0−1

, i.e., the mode jk0 can be reached in one step from the mode jk0−1.
Consider the information set

Fk0 =
{

Φ
(
k0, ξ, i, rqk0(i), u

)
, jk0

}
. (86)

From (86), the inequality (85) is equivalent to the following inequality

E
[
‖x (k, ξ, i, u)‖2 |Fk0

]
≤ θζk−k0E

[
‖x(k0, ξ, i, u)‖2 |Fk0

]
+ η

(
sup

t=k0,...,k−1
‖u(t)‖

)
. (87)
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From (87), applying the linearity of expectation, the following inequality holds

E
[
E
[
‖x(k, ξ, i, u)‖2|Fk0

] ]
≤ θζk−k0E

[
E
[
‖x(k0, ξ, i, u)‖2|Fk0

] ]
+ E

[
η

(
sup

t=k0,...,k−1
‖u(t)‖

)]
.

From [141, Theorem 6.5.4] it follows that

E
[
‖x(k, ξ, i, u)‖2

]
≤ θζk−k0E

[
‖x(k0, ξ, i, u)‖2

]
+ E

[
η

(
sup

t=k0,...,k−1
‖u(t)‖

)]
. (88)

Moreover, η
(
supt=k0,...,k−1‖u(t)‖

)
is a deterministic non-negative real and its expectation

is thus

E
[
η

(
sup

t=k0,...,k−1
‖u(t)‖

)]
= η

(
sup

t=k0,...,k−1
‖u(t)‖

)
. (89)

From (88) and (89) the following inequality holds

E
[
‖x(k, ξ, i, u)‖2

]
≤ θζk−k0E

[
‖x(k0, ξ, i, u)‖2

]
+ η

(
sup

t=k0,...,k−1
‖u(t)‖

)
. (90)

From (90) and (4.6) it follows that for any k0, k ∈ N, 0 ≤ k0 ≤ k, for any u ∈ U satisfying
the inequality

‖u(s)‖ ≤ ρ
(
E
[
‖x(s)‖2

])
, s ∈ N, (91)

the expected value E
[
‖x(k, ξ, i, u)‖2

]
, satisfies the inequalities

E
[
‖x(k, ξ, i, u)‖2

]
≤ θζk−k0E

[
‖x(k0, ξ, i, u)‖2

]
+ η

(
sup

t=k0,...,k−1
‖u(t)‖

)

≤ θζk−k0E
[
‖x(k0, ξ, i, u)‖2

]
+ η

(
sup

t=k0,...,k−1
ρ
(
E
[
‖x(t, ξ, i, u)‖2

]))

≤ θζk−k0E
[
‖x(k0, ξ, i, u)‖2

]
+ η

(
ρ

(
sup

t=k0,...,k−1
E
[
‖x(t, ξ, i, u)‖2

]))

≤ θζk−k0E
[
‖x(k0, ξ, i, u)‖2

]
+ 1
γθ

sup
t=k0,...,k−1

E
[
‖x(t, ξ, i, u)‖2

]
≤ θζk−k0E

[
‖x(k0, ξ, i, u)‖2

]
+ 1
γθ

sup
t=k0,...,k

E
[
‖x(t, ξ, i, u)‖2

]
. (92)
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For any δ ∈MB, there exists u satisfying (91), such that the expected value E
[
‖x(k, ξ, i, u)‖2

]
is equal to E

[
‖xR(k, ξ, i, δ)‖2

]
.

Thus, from (92), for any δ ∈MB, for any k0, k ∈ N, 0 ≤ k0 ≤ k, the following
inequality is satisfied

E
[
‖xR(k, ξ, i, δ)‖2

]
≤ θζk−k0E

[
‖xR(k0, ξ, i, δ)‖2

]
+ 1
γθ

sup
t=k0,...,k

E
[
‖xR(t, ξ, i, δ)‖2

]
. (93)

Remark 50 The variable xR (k, ξ, i, δ) is a random variable, but E
[
‖xR (k, ξ, i, δ)‖2

]
is a

function that associates to each k ∈ N a value in R+. Thus, setting

g(k) = E
[
‖xR (k, ξ, i, δ)‖2

]
,

the hypothesis of Lemma 10 holds.
Lemma 10 is a technical result that is instrumental for the proof of Lemma 11,

which is the key step involved in the necessity part of the proof of Theorem 8: the aim
of this strategy is remapping standard procedures for deterministic systems (whose state
is x(k)) into the stochastic case which involves the expected value E

[
‖x(k, ξ, i, u)‖2

]
(see

equations (4.4)-(4.5)-(4.6)).

From (93), by Lemma 10, it follows that there exist positive reals µ ≥ 1 and ω satisfying
0 < ω < 1, such that

E
[
‖xR(k, ξ, i, δ)‖2

]
≤ µωk‖ξ‖2.

The proof of the lemma is complete.

In order to prove Theorem 8, let us introduce the following technical results.
Let us define the function

J : N× Rn × S → R+,

for k ∈ N, ξ ∈ Rn, i ∈ S as

J (k, ξ, i) , sup
δ∈MB

∑
q∈Qk(i)

pqk(i)
∥∥∥ΦR (k, ξ, i, rqk(i), δ)

∥∥∥2
. (94)
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From the definition of J , by following the same reasoning presented above for the
operator V (see (54a)), by evaluating the function J in k = 0, the following equality holds

J (0, ξ, i) = ‖ξ‖2 , (95)

for any ξ ∈ Rn, i ∈ S.

Lemma 12 Assume that the system described by (4.3) is REMSS.
Let µ, ω be the positive reals in (70).
Then, for any ξ ∈ Rn, i ∈ S, the following inequality holds

J (k, ξ, i) ≤ µωk ‖ξ‖2 , ∀k ∈ N. (96)

Proof 53 (Proof of Lemma 12) From (94), by applying (69), the following equality
holds for any ξ ∈ Rn, i ∈ S, k ∈ N,

J (k, ξ, i) = sup
δ∈MB

E
[∥∥∥xR (k, ξ, i, δ)

∥∥∥2
]
. (97)

By recalling that the system described by (4.3) is REMSS by assumption, from (97) we
obtain (96).
The proof of the lemma is complete.

Lemma 13 Consider the system described by (68) and consider the function J , defined
by (94).
Then, for any ξ ∈ Rn, i ∈ S, δ ∈ Bm

1 , the following inequality holds for any k ∈ N,∑
j∈Souti

pijJ (k, fi(ξ, ρ(‖ξ‖2)δ), j) ≤ J (k + 1, ξ, i). (98)

Proof 54 (Proof of Lemma 13) Consider an arbitrary ξ ∈ Rn, and an arbitrary i ∈ S.
From (94), the left-hand side of (98) can be written as follows∑
j∈Souti

pijJ (k, fi(ξ, ρ(‖ξ‖2)δ), j) =
∑

j∈Souti

pij sup
δ̃∈MB

∑
q∈Qk(j)

pqk(j)

× ‖ΦR(k, fi(ξ, ρ(‖ξ‖2)δ), j, rqk(j), δ̃)‖2, k ∈ N. (99)

In (99) all j ∈ Souti are considered. This means that the transition (i, j) is admissible
according to the considered Markov mode (i.e., (i, j) ∈ E). Thus, each admissible
switching path of length k ∈ N, starting in the mode j ∈ S, can be included in a switching
path of length k + 1, starting in the mode i ∈ S.
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Formally, for any j ∈ Souti , let Rk+1(i, j) be defined as follows,

Rk+1(i, j) ,
{
{i, rqk(j)}, q ∈ Qk(j)

}
,

with Qk+1(i, j) , N[1,|Rk+1(i,j)|].
Let us define the admissible switching path

rq̄k+1(i) , {i, rqk(j)}, q̄ ∈ Qk+1(i, j), j ∈ Souti . (100)

Remark 51 The sets Rk+1(i, j) and Qk+1(i, j) are introduced in the proof of Lemma 6.
For k ∈ N and Markov modes i, j (j is a Markov mode reachable from the mode i) the set
Rk+1(i, j) contains all admissible switching paths of length k + 1, starting in the Markov
mode i, and having the transition (i, j) as first transition. The set Qk+1(i, j) contains
all the positive integers from 1 to the cardinality of the set Rk+1(i, j), providing the
proper indexing for the elements of Rk+1(i, j). Finally, notice that Rk+1(i, j) ⊆ Rk+1(i).

Let us call

ξ+ , fi
(
ξ, ρ

(
‖ξ‖2

)
δ
)

(see [225, Section 4.3.4]).
Recall that for any given initial condition ξ ∈ Rn, for any i ∈ S, for any δ̃ ∈MB,

xR
(
0, ξ, i, δ̃

)
= ξ.

Thus, xR(0) = ξ is deterministic, and it follows that

ρ
(
E
[
‖xR(0)‖2

])
= ρ

(
‖ξ‖2

)
.

For any initial mode of the Markov mode r(0) = i ∈ S, the following equality holds

fr(0)
(
xR(0), ρ

(
E
[
‖xR(0)‖2

])
δ̃(0)

)
= fi

(
ξ, ρ

(
‖ξ‖2

)
δ
)
, (101)

where δ̃(0) = δ ∈ Bm
1 .

Since r(0) = i ∈ S is known, the left-hand side of (101) is the solution of (68)
for k = 1, with an admissible switching path that contains only the mode r(0) = i ∈ S.
Indeed, there is only one admissible switching path of length 1, starting in the mode
i ∈ S, and it is given by r1(i) = {i}.
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By the reasoning presented above, it follows that

fr(0)

(
xR(0), ρ

(
E
[∥∥∥xR(0)

∥∥∥2
])
δ̃(0)

)
= ΦR

(
1, ξ, i, r1(i), δ̃

)
,

which implies

ξ+ = fi
(
ξ, ρ

(
‖ξ‖2

)
δ
)

= ΦR
(
1, ξ, i, r1(i), δ̃

)
,

with δ̃(0) = δ in Bm
1 .

Then, for any k ∈ N, i ∈ S, j ∈ Souti , the following equality holds

ΦR
(
k, ξ+, j, rqk(j), δ̃

)
= ΦR

(
k + 1, ξ, i, rq̄k+1(i), δ̃

)
,

where rq̄k+1(i) is defined in (100), with q ∈ Qk(j), q̄ ∈ Qk+1(i, j), δ̃ ∈MB, δ̃(0) = δ. Thus,
the right-hand side of (99) can be written as follows:∑

j∈Souti

pij sup
δ̃∈MB ,δ̃(0)=δ

{ ∑
q̄∈Qk+1(i,j)

P
(
rq̄k+1(i)|j1 = j

)
‖ΦR

(
k + 1, ξ, i, rq̄k+1(i), δ̃

)
‖2
}

≤ sup
δ̃∈MB ,δ̃(0)=δ

{ ∑
q∈Qk+1(i)

P
(
rqk+1(i)

)
‖ΦR(k + 1, ξ, i, rqk+1(i), δ̃)‖2

}

≤ sup
δ̃∈MB ,δ̃(0)=δ

{ ∑
q∈Qk+1(i)

pqk+1(i)‖ΦR
(
k + 1, ξ, i, rqk+1(i), δ̃

)
‖2
}

≤ sup
δ̃∈MB

{ ∑
q∈Qk+1(i)

pqk+1(i)‖ΦR
(
k + 1, ξ, i, rqk+1(i), δ̃

)
‖2
}

= J (k + 1, ξ, i).

The proof of the lemma is complete.

Remark 52 The following lemma provides necessary Lyapunov conditions for REMSS
property. This stage is different from the standard procedure adopted in the deterministic
non switching and switching framework (see [113,136,225–227]).Indeed, such procedure
makes use of Lyapunov characterization for the robust global asymptotic stability
(see [113, Section 2.2]), while the procedure here presented makes use of the converse
result for the robust exponential stability notion in the mean square sense (see Definition
19).

Lemma 14 Assume that the system described by (4.3) is REMSS, with ρ globally
Lipschitz function of class K∞, and positive reals µ ≥ 1, and 0 < ω < 1 as in Definition
19.
Then, there exist a function V : Rn × S → R+, positive real numbers αl > 0, l = 1, 2, 3
such that the following inequalities hold for any i ∈ S, ξ ∈ Rn, δ ∈ Bm

1 :
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a) α1 ‖ξ‖2 ≤ V (ξ, i) ≤ α2 ‖ξ‖2;

b) LV
(
ξ, ρ

(
‖ξ‖2

)
δ, i
)
≤ −α3 ‖ξ‖2.

Remark 53 Notice that it is not known whether these conditions are also sufficient for
the REMSS. Indeed, in (68) the expected value is involved, which can well be different
from the current solution. Therefore, condition (b) may well not hold for ξ = xR(k),
k ∈ N.

Proof 55 (Proof of Lemma 14) Assume that the system described by (4.3) is REMSS
according to Definition 19, with constants µ ≥ 1, and 0 < ω < 1, as in (70). Let

V : Rn × S → R+

be the function defined, for ξ ∈ Rn, i ∈ S, as

V (ξ, i) =
∞∑
k=0
J (k, ξ, i), (102)

where J is defined in (94). Notice that, by Lemma 12, the sum in (102) is convergent.
Since J (k, ξ, i) ≥ 0 for any k ∈ N, and J (0, ξ, i) = ‖ξ‖2, the inequality ‖ξ‖2 ≤ V (ξ, i)
follows.
From Lemma 12, the following inequality is satisfied

V (ξ, i) ≤
∞∑
k=0

µωk‖ξ‖2 = µ
1

1− ω‖ξ‖
2.

Thus, condition (a) of the theorem is satisfied, with α1 = 1, and α2 = µ/(1− ω).
Recalling that for any j /∈ Souti , pij = 0, we obtain the following equality:

∑
j∈S

pijV
(
fi
(
ξ, ρ

(
‖ξ‖2

)
δ
)
, j
)

=
∑

j∈Souti

pijV
(
fi
(
ξ, ρ

(
‖ξ‖2

)
δ
)
, j
)

(103)

δ ∈ Bm
1 .

From (103), by applying (102), we obtain the following equalities

∑
j∈S

pijV (fi(ξ, ρ(‖ξ‖2)δ), j) =
∑

j∈Souti

pij
∞∑
k=0
J (k, fi(ξ, ρ(‖ξ‖2)δ), j)

=
∞∑
k=0

∑
j∈Souti

pijJ (k, fi(ξ, ρ(‖ξ‖2)δ), j). (104)
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From (104), by Lemma 13, the following inequality holds,
∞∑
k=0

∑
j∈Souti

pijJ
(
k, fi

(
ξ, ρ

(
‖ξ‖2

)
δ
)
, j
)
≤
∞∑
k=0
J (k + 1, ξ, i) . (105)

From (104) and (105), by changing the variable of the sum in the right-hand side of
(105), the following is obtained,

∑
j∈S

pijV
(
fi
(
ξ, ρ

(
‖ξ‖2

)
δ
)
, j
)
≤
∞∑
k=1
J (k, ξ, i) . (106)

Recalling that J (0, ξ, i) = ‖ξ‖2 (see (95)), by adding and subtracting ‖ξ‖2 to the right-
hand side of (106), we obtain

∑
j∈S

pijV
(
fi
(
ξ, ρ

(
‖ξ‖2

)
δ
)
, j
)
≤
∞∑
k=0
J (k, ξ, i)− ‖ξ‖2 ,

and recalling that
∞∑
k=0
J (k, ξ, i)− ‖ξ‖2 = V (ξ, i)− ‖ξ‖2 ,

we get

LV
(
ξ, ρ

(
‖ξ‖2

)
δ, i
)
≤ −‖ξ‖2 .

So, condition (b) of the theorem is satisfied with α3 = 1.
The proof of the lemma is complete.

Remark 54 The novelty in Lemma 14 is the existence of a Lyapunov function for
REMSS of a discrete-time Markovian switching nonlinear system: the Markov property
of the switching rule is exploited. Clearly, in the proof of the Lyapunov characterization
of ISS for the deterministic discrete-time switching and non switching case the transition
probabilities and the expected value are not considered in the robust global asymptotic
stability characterization (see [136, Lemma 1] and [226, Lemma 3.8, Lemma 3.11]).
The proposed methodology accounts for the transition probabilities (see (103)-(106)), as
well as admissible transitions (see the definition of Souti , for i ∈ S).

Lemma 15 For a locally bounded function V : Rn × S → R+, satisfying, for any i ∈ S,
V (0, i) = 0 and V (·, i) continuous at zero for any i ∈ S, the following conditions are
equivalent.



6. Conclusions 201

i) There exist a positive real number α, and a function ρ of class K∞ such that, for
any ξ ∈ Rn, u ∈ Rm, satisfying ‖ξ‖2 ≥ ρ−1 (‖u‖), the following inequality holds, for
any i ∈ S,

LV (ξ, u, i) ≤ −α‖ξ‖2. (107)

ii) There exist a positive real number γ1, and a function γ2 of class K∞ such that,
for any ξ ∈ Rn, u ∈ Rm, the following inequality holds, for any i ∈ S,

LV (ξ, u, i) ≤ −γ1‖ξ‖2 + γ2 (‖u‖) . (108)

Proof 56 (Proof of Lemma 15) Let us show that (i) implies (ii).
Pick γ1 = α, where α is the positive real involved in (107), and consider a function

γ2 as follows,

γ2(s) = s+ sup
{
LV (y, µ, h) + αρ−1 (‖µ‖) ,

‖µ‖ ≤ s, ‖y‖2 ≤ ρ−1(‖µ‖), y ∈ Rn, µ ∈ Rm, h ∈ S
}
.

(109)

The supremum involved in the definition of γ2(s) belongs to R+. Indeed, V : Rn × S → R+

is a locally bounded function satisfying V (0, h) = 0, for any h ∈ S, and the functions
fh : Rn × Rm → Rn, h ∈ S, are locally bounded.

Moreover, the supremum involved in (109) is evaluated for a finite number of times
(recall that the cardinality of the set S is finite). The function γ2 is strictly increasing.

Since fh and V (·, h), h ∈ S, are zero at zero and continuous at zero, the function γ2
is such that γ2(0) = 0, and lims→0+ γ2(s) = 0. By [94, Lemma 2.4], there exists a K∞
function γ2 : R+ → R+, such that γ2(s) ≥ γ2(s), for any s ∈ R+. For any given ξ ∈ Rn,
u ∈ Rm, one of the following cases holds: ‖ξ‖2 ≤ ρ−1(‖u‖) or ‖ξ‖2 > ρ−1(‖u‖).

In the first case, from (109) the following inequalities hold for all i ∈ S, and u ∈ Rm

γ2(‖u‖) ≥ ‖u‖+ LV (ξ, u, i) + α‖ξ‖2 ≥ LV (ξ, u, i) + α‖ξ‖2. (110)

Thus, if ‖ξ‖2 ≤ ρ−1(‖u‖), from (110), the following inequality is satisfied,

LV (ξ, u, i) ≤ −α‖ξ‖2 + γ2(‖u‖),



6. Conclusions 202

for any i ∈ S. In the second case, that is ‖ξ‖2 > ρ−1(‖u‖), by condition (i), the following
inequality holds,

LV (ξ, u, i) ≤ −α‖ξ‖2,

and thus, inequality (108) follows.
Let us prove now that condition (ii) implies condition (i). Assume that condition (ii)
holds.

Pick

ρ(s) = γ−1
2

(1
2γ1s

)
.

For ‖ξ‖2 ≥ ρ−1(‖u‖),

‖u‖ ≤ ρ(‖ξ‖2) =⇒ LV (ξ, u, i) ≤ −γ1‖ξ‖2 + γ2(‖u‖)

≤ −γ1‖ξ‖2 + γ2

(
γ−1

2

(1
2γ1‖ξ‖2

))
≤ −1

2γ1‖ξ‖2. (111)

Pick

α = 1
2γ1,

and so

‖u‖ ≤ ρ
(
‖ξ‖2

)
=⇒ LV (ξ, u, i) ≤ −α‖ξ‖2.

The proof of the lemma is complete.

Proof 57 (Proof of Theorem 8) Let us prove first that (a) =⇒ (b). Assume that con-
dition (a) holds. By Lemma 11, we obtain that system (4.3) is REMSS according to
Definition 19. By applying Lemma 14 and Lemma 15, we obtain that condition (b)
holds. Notice that V (0, i) = 0 for any i ∈ S, and V (·, i) is continuous at zero, for any
i ∈ S, so Lemma 15 can be applied.
Let us prove now that (b) =⇒ (a). Assume that condition (b) holds. Assume that
u ∈ U is bounded.

Let

v = sup
k∈N
‖u(k)‖.



6. Conclusions 203

Consider, for k ∈ N, V (x(k), r(k)).
By condition (b2) computed in (x(k), u(k), r(k)), the following inequality is satisfied,

LV (x(k), u(k), r(k)) ≤ −α3 ‖x(k)‖2 + α4 (‖u(k)‖) . (112)

From (4.8), the following equality follows:

LV (x(k), u(k), r(k)) =
∑

r(k+1)∈S
pr(k)r(k+1)V

(
fr(k) (x(k), u(k)) , r(k + 1)

)
− V (x(k), r(k)) .

(113)

From (113), by applying the Markov property, and the definition of conditional expecta-
tion, it follows that:

LV (x(k), u(k), r(k)) = E
[
V
(
fr(k) (x(k), u(k)) , r(k + 1)

)
|Fk

]
− V (x(k), r(k)) .

(114)

From (112), by applying the linearity of expectation, the following inequalities hold:

E [LV (x(k), u(k), r(k))] ≤ −α3E
[
‖x(k)‖2

]
+ α4 (‖u(k)‖)

≤ −α3E
[
‖x(k)‖2

]
+ α4(v). (115)

Furthermore, V (x(k), r(k)), k ∈ N, is a random variable on (Ω,F , {Fk}k∈N,P).
By applying [141, Theorem 6.5.4],

E
[
E
[
V
(
fr(k)(x(k), u(k)), r(k + 1)

)
|Fk

]]
= E

[
V
(
fr(k) (x(k), u(k)) , r(k + 1)

)]
.

(116)

Define

y(k) , E [V (x(k), r(k))] ,

from equations (114)-(116), the following inequality is obtained:

y(k + 1)− y(k) ≤ −α3E
[
‖x(k)‖2

]
+ α4(v). (117)

Recalling condition (b1), by the linearity of expectation,

E
[
‖x(k)‖2

]
≥ 1
α2
y(k).
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Let

α5 ∈
(

0,min
{

1, α3

α2

})
.

From (117), it follows that

y(k + 1)− y(k) ≤ −α5y(k) + α4(v),

and thus,

y(k + 1) ≤ (1− α5) y(k) + α4(v). (118)

Remark 55 Notice that inequalities

E
[
‖x(k)‖2

]
≥ 1
α2
y(k)

and

y(k + 1)− y(k) ≤ −α5y(k) + α4(v)

hold even though

α3‖ξ‖2 < V (ξ, i),

for some ξ ∈ Rn, i ∈ S. Indeed, the inequality

E[‖x(k)‖2] ≥ 1
α2
y(k)

follows from condition (b1). Thus, if the following condition occurs,

α3‖ξ‖2 < V (ξ, i)

this fact does not perturb stability.
Actually, the situation

α3‖ξ‖2 ≤ V (ξ, i)

occurs always, otherwise the inequality (b2) in the Theorem would not hold for u = 0.
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Let ρ ∈ (0, 1). Let j0 ≤ ∞ be the minimum time such that

y(k) ≤ 1
α5ρ

α4(v) . (119)

We will prove later the following claim.

Claim 2 Assume that there is some k0 ∈ N, such that

y(k) ≤ 1
α5ρ

α4(v), for k = k0. (120)

Then, (120) holds for all k ≥ k0.

By Claim 2, (119) holds for any k ≥ j0.
For all k ∈ [0, j0 − 1], the following inequality holds:

ρα5y(k) > α4(v). (121)

By adding and subtracting the quantity ρα5y(k) on the right-hand side of (118), the
following inequality is obtained:

y(k + 1) ≤ [1− (1− ρ)α5] y(k). (122)

Let

ζ = 1− (1− ρ)α5.

Notice that 0 < ζ < 1.
From (122), it follows for any k in [0, j0 − 1]:

y(k) ≤ ζky(0). (123)

Since the initial conditions x(0) = ξ in Rn and r(0) = i in S are given, the quantity
V (x(0), r(0)) is deterministic.

Thus, y(0) = V (x(0), r(0)), and (123) can be written as

y(k) ≤ ζkV (x(0), r(0)). (124)

Consider inequalities (124) and (119).
Let

θ = α2

α1
≥ 1, η(s) = 1

α1α5ρ
(α4(s)) , s ∈ R+.
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The function η is a function of class K because α4 is a function of class K.
Applying condition (b1), the following inequality holds,

E
[
‖x(k)‖2

]
≤ θζk‖ξ‖2 + η (v) .

By causality arguments, the assumption on the boundedness of the input u can be
removed and the following inequality is obtained,

E
[
‖x(k)‖2

]
≤ θζk‖ξ‖2 + η

(
sup

s=0,...k−1
‖u(s)‖

)
.

It remains to prove Claim 2.

Proof 58 (Proof of Claim 2) Assume that (120) holds for k = k0.
Then, ρα5y(k0) ≤ α4(v).
By (118), the following inequality holds for k = k0:

y(k0 + 1) ≤ (1− α5)y(k0) + α4(v). (125)

Let

b = 1
α5ρ

α4(v).

Then, from (125), we get

y(k0 + 1) ≤ (1− α5) b+ α4(v). (126)

By adding and subtracting ρα5b in the right-hand side of inequality (126), we obtain:

y(k0 + 1) ≤ (1− α5)b+ α4(v) + ρα5b− ρα5b = −(1− ρ)α5b+ b ≤ b. (127)

Therefore, by induction reasoning, it follows that

y(k0 + l) ≤ b,

for all l ∈ N, i.e.,

y(k) ≤ 1
α5ρ

α4(v),

for all k ≥ k0. The claim is proved.

The implication (b) =⇒ (a) in Theorem 8 is proved.
The proof of the theorem is complete.

Remark 56 The proof of implication (b) =⇒ (a) follows the lines of reasoning used
in [226]. The novelty consists in evaluating the Lyapunov function on the random
variables x(k) and r(k), and suitably dealing with its expectation, by applying the Markov
property of the switching signal.
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Proof of Theorem 9

This section reports the proof of Theorem 9 in the following.

Proof 59 (Proof of Theorem 9) Assume that conditions (a) and (b) of Theorem 9 are
satisfied. Let us prove that the system described by (4.3) is pth moment ISS.

Let v be an arbitrary positive real. For any u ∈ U, with ‖u(k)‖ ≤ v, k ∈ N, for any
r(k) ∈ S, x(k) ∈ Rn, k ∈ N, consider the inequality provided by condition (b) computed
in (x(k), u(k), r(k)):

LV (x(k), u(k), r(k)) ≤ −γ (‖x(k)‖p) + δ (‖u(k)‖) . (128)

From (4.8), it follows that

LV (x(k), u(k), r(k)) =
 ∑
r(k+1)∈S

pr(k)r(k+1)V
(
fr(k) (x(k), u(k)) , r(k + 1)

)
− V (x(k), r(k)) .

Applying the Markov property, and the definition of conditional expectation, the following
equation is satisfied

LV (x(k), u(k), r(k)) = E
[
V
(
fr(k)(x(k), u(k)), r(k + 1)

)
|Fk

]
− V (x(k), r(k)). (129)

By (128), applying the linearity of expectation, the following inequality holds,

E [LV (x(k), u(k), r(k))] ≤ −E [γ (‖x(k)‖p)] + E [δ (‖u(k)‖)] . (130)

Since γ is a convex function of class K∞, by [141, Jensen’s inequality], it follows that,

E [γ (‖x(k)‖p)] ≥ γ (E [‖x(k)‖p]) , ∀k ∈ N.

Moreover, the input u is such that

‖u(k)‖ ≤ v,

for any k ∈ N, and δ is a function of class K.
Consequently,

E [δ (‖u(k)‖)] ≤ E [δ(v)] ,
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for any k ∈ N.
Since v is an arbitrary positive real, δ(v) is a number in R+, and thus,

E [δ(v)] = δ(v),

and the following holds

E [LV (x(k), u(k), r(k))] ≤ −γ (E [‖x(k)‖p]) + δ (v) . (131)

Furthermore, V is a function of the random variable (x(k), r(k)), defined on the proba-
bility space (Ω,F , {Fk}k∈N,P), therefore it is a random variable on (Ω,F , {Fk}k∈N,P).

By [141, Theorem 6.5.4], it follows that:

E
[
E
[
V
(
fr(k)(x(k), u(k)), r(k + 1)

)
|Fk

]]
= E

[
V
(
fr(k)(x(k), u(k)), r(k + 1)

)]
. (132)

Consider (129), (131), (132).
Let us apply the definition of LV operator, the following inequality is satisfied:

E [V (x(k + 1), r(k + 1))]− E [V (x(k), r(k))] ≤ −γ (E [‖x(k)‖p]) + δ(v). (133)

Applying condition (a), by the linearity of expectation, inequality (134) holds,

E [‖x(k)‖p] ≥ 1
α2

E [V (x(k), r(k))] (134)

Let us define the function

α4 , γ ◦ 1
α2
Id.

Particularly, α4 is of class K∞, because γ is a function of class K∞ and α2 > 0.
By the reasoning presented above, it follows that,

E [V (x(k + 1), r(k + 1))]− E [V (x(k), r(k))] ≤ −α4 (E [V (x(k), r(k))]) + δ(v). (135)

Let us assume, without loss of generality, that

Id − α4 ∈ K,

cf. [226, Lemma B.1].
Let us complete the Proof, by following the same reasoning in [226, Lemma 3.5].
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Since V evaluated on (x(k), r(k)) is a random variable on the probability space
(Ω,F , {Fk}k∈N,P), this proof focuses on the expectation of the function V .

This is the main difference between our approach and the one adopted in [226],
where the function V is deterministic.

Let ρ be any K∞ function, such that Id − ρ ∈ K∞.
Let us define

b , α−1
4 ◦ ρ−1 ◦ δ(v).

Let us illustrate the following Claim that will be exploited to complete the proof.

Claim 3 Assume that there exists some k0 ∈ N, such that

E [V (x(k0), r(k0))] ≤ b.

Then,

E [V (x(k), r(k))] ≤ b,

for any k ≥ k0.

Proof 60 (Proof of Claim 3) Assume that

E [V (x(k0), r(k0))] ≤ b.

Then,

ρ ◦ α4 (E [V (x(k0), r(k0))]) ≤ δ(v).

By (135), inequality (136) holds,

E [V (x(k0 + 1), r(k0 + 1))] ≤ (Id − α4) (E [V (x(k0), r(k0))]) + δ(v). (136)

Let us recall that E [V (x(k0), r(k0))] is assumed to be such that E [V (x(k0), r(k0))] ≤ b.
Since Id − α4 ∈ K, inequality (137) holds:

E [V (x(k0 + 1), r(k0 + 1))] ≤ (Id − α4) (b) + δ(v). (137)

By adding and subtracting ρ ◦ α4(b) on the right-hand side of inequality (137),

E [V (x(k0 + 1), r(k0 + 1))] ≤ (Id − α4) (b) + δ(v) + ρ ◦ α4(b)− ρ ◦ α4(b) =

= − (Id − ρ) ◦ α4(b) + b ≤ b.
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Therefore, by induction arguments, it is proved that

E [V (x(k0 + l), r(k0 + l))] ≤ b,

for any l ∈ N, that is,

E [V (x(k), r(k))] ≤ b

for any k ≥ k0.
The proof of the claim is complete.

Consider the time instant

j0 = inf {k ∈ N : E [V (x(k), r(k))] ≤ b} ≤ ∞.

By Claim 3, it follows that,

E[V (x(k), r(k))] ≤ α−1
4 ◦ ρ−1 ◦ δ(v), (138)

for any k ≥ j0.
For k ∈ N[0,j0−1],

ρ ◦ α4 (E [V (x(k), r(k))]) > δ(v).

Consider inequality (135).
By adding and subtracting the quantity ρ ◦ α4 (E [V (x(k), r(k))]) on the right-hand

side of inequality (135), inequality (139) is obtained, as follows,

E [V (x(k + 1), r(k + 1))]− E [V (x(k), r(k))] ≤ −(Id − ρ) ◦ α4 (E [V (x(k), r(k))]) ,
(139)

for any k ∈ N[0,j0−1].
Let the function y : N→ R+ be defined as follows,

y(k) = E [V (x(k), r(k))] .

Then, (139) can be written as follows,

y(k + 1)− y(k) ≤ − (Id − ρ) ◦ α4 (y(k)) , (140)

for any k ∈ N[0,j0−1], where (Id − ρ) ◦ α4 is a function of class K∞, since (Id − ρ) and α4

are functions of class K∞.
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By [225, Lemma 4.3], there exists some KL-function β̂, such that :

y(k) ≤ β̂(y(0), k), (141)

for any k ∈ N[0,j0−1].
Applying the definition of y(k), inequality (141) becomes:

E [V (x(k), r(k))] ≤ β̂ (E [V (x(0), r(0))] , k) ,∀k ∈ N[0,j0−1]. (142)

Considering both (138) and (142), applying condition (a), together with the linearity of
the expected value, the following inequalities are satisfied for any k ∈ N.

α1E [‖x(k)‖p] ≤ E [V (x(k), r(k))] ≤

≤ β̂ (E [V (x(0), r(0))] , k) + α−1
4 ◦ ρ−1 ◦ δ(v) ≤

≤ β̂ (α2E [‖x(0)‖p] , k) + α−1
4 ◦ ρ−1 ◦ δ(v) =

= β̂ (α2‖x0‖p, k) + α−1
4 ◦ ρ−1 ◦ δ(v).

Let us define

β(s, t) , 1
α1
β̂(α2s, t), s ∈ R+, t ∈ R+.

The function β is a function of class KL, since β̂ is a function of class KL and α1, α2

are positive real numbers.
Let us define

η(r) , 1
α1
α−1

4 ◦ ρ−1 ◦ δ(r), r ∈ R+.

Note that the function η is of class K. After these definitions,

E [‖x(k)‖p] ≤ β (‖x0‖p, k) + η

 sup
s∈N[0,k−1]

(‖u(s)‖)
 , (143)

for any k ∈ N.
Then, the system described by (4.3) is pth moment ISS, according to Definition 16.
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Proof of Corollary 1

This section shows the proof of Corollary 1.

Proof 61 (Proof of Corollary 1) Let us define the function

α4(s) , γ̃

α2
s,

with s ∈ R+.
By applying an analogous reasoning as the one presented in the Proof of Theorem 9,

the following inequality is satisfied,

E [V (x(k + 1), r(k + 1))] ≤ (Id − α4) (E [V (x(k), r(k))]) + δ(v). (144)

Let us assume, without loss of generality,

0 < γ̃

α2
< 1.

Let us define

ρ(s) , ρ̃s,

with 0 < ρ̃ < 1.
Let us consider j0 ≤ ∞. Let j0 be the minimum time such that:

E [V (x(k), r(k))] ≤ α−1
4 ◦ ρ−1 ◦ δ(v). (145)

Then, by Claim 3, (145) holds for any k ≥ j0.
For k ∈ N[0,j0−1], inequality (146) can be written as follows,

ρ ◦ α4 (E [V (x(k), r(k))]) > δ(v). (146)

By adding and subtracting the quantity

ρ ◦ α4 (E [V (x(k), r(k))])

on the right-hand side of inequality (144), the quantity E [V (x(k + 1), r(k + 1))] satisfies
the following inequality,

E [V (x(k + 1), r(k + 1))] ≤
[
1− (1− ρ̃) γ̃

α2

]
E [V (x(k), r(k))] . (147)
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Let us define

ζ ,
[
1− (1− ρ̃) γ̃

α2

]
.

Particularly, 0 < ζ < 1.
Applying recursively (147), inequality (148) follows,

E [V (x(k), r(k))] ≤ ζkE [V (x(0), r(0))] , (148)

for any k ∈ N[0,j0−1].
Consider both (145) and (148).
Let us define

θ ,
α2

α1
≥ 1, η(r) , 1

α1
α−1

4 ◦ ρ−1 ◦ δ(r).

The function η is a function of class K, since ρ and α4 are functions of class K∞ and δ
is a function of class K.

Applying condition (a), the following inequality holds,

E [‖x(k)‖p] ≤ θζk‖x0‖p + η

 sup
s∈N[0,k−1]

‖u(s)‖
 .



Appendix D

Preliminary Results necessary for the Proofs of Theo-
rem 10

Let us introduce some technical results that are useful in the proof of Theorem 10.
Consider the scalar function

V : C ×D → R+.

Let us define the operator L̂V as follows,

L̂V : C ×D → R,

associated with the scalar function V defined above.
The operator L̂V is defined for Φ ∈ C, H−1(i) ∈ D, i ∈ S

L̂V
(
φ,H−1(i)

)
,
∑
j∈S

pijV
(
F
(
φ,H−1(i)

)
, H−1(j)

)
− V

(
φ,H−1(i)

)
. (149)

The following Lemma provides a preliminary result for the Proof of Theorem 10.

Lemma 16 Let there exist a function

V : C ×D → R+,

real positive numbers αi, i = 1, 2, 3, such that, for all φ ∈ C, for all H−1(i) ∈ D, for all
i ∈ S, the following inequalities hold,

a1) α1‖φ(0)‖2 ≤ V (φ,H−1(i)) ≤ α2‖φ‖2
∞,

a2) L̂V (φ,H−1(i)) ≤ −α3‖φ(0)‖2,

214
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with L̂V defined in (149).
Then, there exist a function

W : C ×D → R+,

real positive numbers βi, i = 1, 2, 3, such that, for all φ ∈ C, for all H−1(i) ∈ D, for all
i ∈ S, the following inequalities hold:

b1) β1‖φ(0)‖2 ≤W
(
φ,H−1(i)

)
≤ β2‖φ‖2∞,

b2) LW (
φ,H−1(i)

)
,
∑
j∈S

pijW
(
F
(
φ,H−1(i)

)
, H−1(j)

)
−W

(
φ,H−1(i)

)
≤ −β3‖φ‖2∞.

Proof 62 (Proof of Lemma 16) Let us consider the function

W : C ×D → R+,

defined, for φ ∈ C, H−1(i) ∈ D for all i ∈ S, as

W
(
φ,H−1(i)

)
= V

(
φ,H−1(i)

)
+ max

θ=1,2,...,∆
e−θα3‖φ (−θ)‖2.

Then, from condition (a1), it follows that,

β1‖φ(0)‖2 ≤ W (φ,H−1(i)) ≤ β2‖φ‖2
∞, (150)

with

β1 = α1, β2 = α2 + α3.

From (a2), the following equalities/inequalities hold,∑
j∈S

pijW
(
F
(
φ,H−1(i)

)
, H−1(j)

)
−W

(
φ,H−1(i)

)
=
∑
j∈S

pijV
(
F
(
φ,H−1(i)

)
, H−1(j)

)
− V

(
φ,H−1(i)

)
+ max

θ=1,2,...,∆
e−θα3‖φ(−θ + 1)‖2 − max

θ=1,2,...,∆
e−θα3‖φ(−θ)‖2

≤ −α3‖φ(0)‖2 + e−1 max
θ=1,2,...,∆

e1−θα3‖φ(−θ + 1)‖2 − max
θ=1,2,...,∆

e−θα3‖φ(−θ)‖2

≤ −α3‖φ(0)‖2 + e−1 max
θ=0,1,...,∆−1

e−θα3‖φ(−θ)‖2 − max
θ=1,2,...,∆

e−θα3‖φ(−θ)‖2

≤ −α3‖φ(0)‖2 + e−1α3‖φ(0)‖2 + e−1 max
θ=1,2,...,∆

e−θα3‖φ(−θ)‖2

− max
θ=1,2,...,∆

e−θα3‖φ(−θ)‖2

≤ −(1− e−1)α3‖φ(0)‖2 − (1− e−1)α3e
−∆ max

θ=1,2,...,∆
‖φ(−θ)‖2

≤ −(1− e−1)α3e
−∆‖φ‖2

∞.
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Let us define

β3 =
(
1− e−1

)
α3e

−∆.

Then,
∑
j∈S

pijW
(
F
(
φ,H−1(i)

)
, H−1(j)

)
−W

(
φ,H−1(i)

)
≤ −β3‖φ‖2

∞,

and thus, the function W satisfies conditions (b1), (b2).
This completes the proof.

Theorem 11 Assume that there exist a function

V : C ×D → R+,

real positive numbers γi, i = 1, 2, 3 such that, for all φ ∈ C, for all H−1(i) ∈ D, for all
i ∈ S, the following inequalities hold:

c1) γ1‖φ(0)‖2 ≤ V
(
φ,H−1(i)

)
≤ γ2‖φ‖2∞,

c2) L̂V (φ,H−1(i)
)
≤ −γ3‖φ‖2∞,

with L̂V defined in (149).
Then, the system described by (5.1) is EMSS.

Proof 63 (Proof of Theorem 11) From condition (c2), by evaluating L̂V in xk ∈ C, H−1(η(k)) ∈ D,
for all η(k) ∈ S, k ∈ N, it follows that,

L̂V
(
xk, H

−1(η(k))
)

=
∑

η(k+1)∈S
pη(k)η(k+1)V

(
xk+1, H

−1(η(k + 1))
)
− V

(
xk, H

−1(η(k))
)

≤ −γ3‖xk‖2
∞. (151)

From (151), by applying the Markov property, we obtain:

E
[
(V (xk+1, H

−1(η(k + 1)))− V (xk, H−1(η(k))))|Gk
]
≤ −γ3‖xk‖2

∞. (152)

From (152), applying the property of the expected value conditioned to a filtration, the
following inequality holds:

E
[
V (xk+1, H

−1(η(k + 1)))− V (xk, H−1(η(k)))
]
≤ −γ3E

[
‖xk‖2

∞

]
. (153)
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Exploiting the linearity of the expected value, from (153), the following inequality is
satisfied,

E
[
V (xk+1, H

−1(η(k + 1)))
]
− E

[
V
(
xk, H

−1(η(k))
)]
≤ −γ3E

[
‖xk‖2

∞

]
. (154)

From (c1), it follows that,

E
[
‖xk‖2

∞

]
≥ 1
γ2

E
[
V
(
xk, H

−1(η(k))
)]
. (155)

From (154) and (155), the following inequality is obtained

E
[
V (xk+1, H

−1(η(k + 1)))
]
− E

[
V (xk, H−1(η(k)))

]
≤ −γ3

γ2
E
[
V
(
xk, H

−1(η(k))
)]
.

(156)

Let us define γ4, as follows,

γ4 ,
γ3

γ2
.

Notice that γ4 > 0, since γ3 > 0, γ2 > 0.
Without loss of generality, pick γ4 < 1.

From (156), it follows that

E
[
V
(
xk+1, H

−1(η(k + 1))
)]
≤ (1− γ4)E

[
V
(
xk, H

−1(η(k))
)]
. (157)

By applying recursive arguments, from (157), it follows that,

E
[
V
(
xk, H

−1(η(k))
)]
≤ (1− γ4)k E

[
V
(
ξ0, H

−1(η(0))
)]
. (158)

From (c1),

γ1E[‖x(k)‖2] ≤ E[V (xk, H−1(η(k)))],

(1− γ4)kE[V (ξ0, H
−1(η(0)))] ≤ (1− γ4)kγ2E[‖ξ0‖2

∞]. (159)

From (158) and (159), it follows that

γ1E[‖x(k)‖2] ≤ (1− γ4)kγ2E[‖ξ0‖2
∞]. (160)

From (160), the following inequalities hold

E
[
‖x(k)‖2

]
≤ (1− γ4)k γ2

γ1
E
[
‖ξ0‖2

∞

]
≤ (1− γ4)k γ2

γ1
‖ξ0‖2

∞. (161)
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Let us define

M ,
γ2

γ1
≥ 1, q , (1− γ4),

with 0 < q < 1, from (161),

E
[
‖x(k)‖2

]
≤Mqk (‖ξ0‖∞)2 . (162)

Thus, the system described by (5.1) EMSS.

Proof of Theorem 10

From (i)-(ii), by Lemma 16, it follows that there exist a function

V : C ×D → R+,

γi ∈ R+,i = 1, 2, 3, such that, for all φ ∈ C, for all H−1(i) ∈ D, for all i ∈ S, the fol-
lowing inequalities hold:

c1) γ1‖φ(0)‖2 ≤ V (φ,H−1(i)) ≤ γ2‖φ‖2∞,

c2) L̂V (φ,H−1(i)) ≤ −γ3‖φ‖2∞.

From Theorem 11, it follows that the systems described by (5.1) is EMSS.
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