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Abstract. The aim of this paper is to prove a blow-up result of the solution for a semilinear scale invariant
damped wave equation under a suitable decay condition on radial initial data. The admissible range for the
power of the nonlinear term depends both on the damping coefficient and on the pointwise decay order of
the initial data. In addition, we give an upper bound estimate for the lifespan of the solution. It depends not
only on the exponent of the nonlinear term and not only on the damping coefficient but also on the size of
the decay rate of the initial data.

1. Introduction

In the recent years, the following Cauchy problem for the wave equation with scale
invariant damping spreads a new line of research onvariable coefficient-type equations.
More precisely, we are dealing with






vt t (t, x) − ∆v(t, x)+ µ
1+t vt (t, x)+ ν

(1+t)2
v(t, x) = |v(t, x)|p, t ≥ 0, x ∈ Rn ,

v(0, x) = 0,

vt (0, x) = εg(x),

(1)

with n ≥ 2, µ, ν ∈ R, p > 1 and g a radial smooth function. In [2,3,10,11], some
results on the global existence of a solution for (1) with non-compactly initial data
appeared assuming a suitable decay behavior for g.Many other results concern blowup
and global existence for this equation, see [12] for a summary of this problem. The
main point is to find a critical exponent, fixed a suitable space of data. More precisely,
a level p̄ is critical if for p > p̄, one can prove that for ε > 0 sufficiently small and
for any g chosen in the fixed space, there exists a unique global (in time) solution of
the problem, and conversely, if p ∈ (1, p̄), for any ε > 0 there exist some g in this
space such that the local solution cannot be prolonged over a finite time. Coming back
to (1), in dependence on µ, ν and n, a competition between two critical exponents
appeared. In some cases, the Strauss exponent is dominant; it is given by the wave
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equation theory, it will be denoted by pS(d), and it is the positive root of the quadratic
equation

(d − 1)p2 − (d + 1)p − 2 = 0 .

For other assumptions, the equation goes to an heat equation and a Fujita-type
exponent pF (h) := 1+ 2

h appears. In all known results, the quantities d > 1, h > 0
depend on ν, µ and n. Changing the space of data, a change of critical exponent may
appear. The novelty of our result consists in showing that if one takes into account the
decay rate of the initial data, then the Fujita-type exponent depends also on such decay
rate. In addition, we give an upper bound estimate for the lifespan of the solution, in
terms of the power of the nonlinear term, the size and the growth of the initial data. Let
us recall that the lifespan of the solution is a function of ε which gives the maximal
existence time:

T (ε) := sup {T > 0 such that the local solution u to (1) is defined on [0, T ) × Rn }.

Finally, we will prove the following.

Theorem 1. Let n ≥ 2. Let ε > 0 and g be a radial smooth function satisfying

g(|x |) ≥ M

(1+ |x |)k̄+1,
with k̄ > −1, (2)

for some M > 0 and for any x ∈ Rn. Assuming in addition that

k̄ + µ

2
> 0,

µ

2

(µ
2

− 1
)

≥ ν

and

1 < p < pF
(
k̄ + µ

2

)
,

then the classical solution of (1) blows up. More precisely, the lifespan of the solution
T (ε) > 0 is finite and satisfies

T (ε) ≤ Cε
− 2(p−1)

4−(µ+2k̄)(p−1) , (3)

with C > 0, independent of ε.

Remark 1. Recently, Ikeda, Tanaka, Wakasa in [6] consider a similar question for
cubic convolution nonlinearity and a critical decay appears.

Remark 2. In [4], we will also consider a variant of problem (1), in which the nonlin-
earity depends on v, t, vt combined in a suitable way.

Remark 3. The lifespan estimate for the same equation with compactly supported
data and ν &= µ

2

(µ
2 − 1

)
has been considered in [13]. If ν ≤ µ

2

(µ
2 − 1

)
, the lifespan

estimate is different from (3) due to the compactness of the support of the initial data.

The paper is organized as follows: In Sect. 2, we give an overview of the known
results and we state an auxiliary theorem; in Sect. 3, we prove the main results.
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2. Motivations

2.1. The case µ = 2, ν = 0

Let us start with a quite simple case





vt t − ∆v + 2
1+t vt = |v|p, t ≥ 0, x ∈ Rn,

v(0, x) = 0,

vt (0, x) = εg(x).

(4)

The global existence of small data solutions for this problem was first solved in [1]
for a suitable range of n and p. Some nonexistence results were also established for
p < pF (n) := 1+ 2

n . Except for the one-dimensional case, a gap between this value
and the admissible exponents in [1] appeared. In [3] for dimension n = 2, 3, this gap
was covered with an unexpected result. Indeed, in that paper the Strauss exponent
came into play. Afterward, the global existence of small data solutions to (4) has been
proved for any p > pS(n + 2) also in odd dimension n ≥ 5 in [2] and in even
dimension n ≥ 4 in [10].

Moreover, we know that the exponent p2(n) := max{pS(n+2), pF (n)} is optimal;
in fact, in [3], the authors prove the blowup of solutions of (4) for each 1 < p ≤ p2(n)
in each dimension n ∈ N. In [2,3,10], the authors prove a global existence result not
necessarily when the initial datum g = g(x) has compact support. More precisely,
let n ≥ 3, given a radial initial datum g(x) = g(|x |) with g ∈ C1(R), for any
p > pS(n + 2) it is possible to choose k̄ > 0 and ε0 > 0 such that (4) admits a radial
global solution u ∈ C([0,∞) × Rn) ∩ C2([0,∞) × Rn\{0}) provided

ε ≤ ε 0, |g(h)(r)| ≤ ε〈r〉−(k̄+1+h) for h = 0, 1. (5)

In the present paper, we discuss the dependence of k̄ from n and p. In (5), the exponent
k̄ has to belong to a suitable interval [k1(n, p), k2(n, p)]. It is interesting to investigate
the case of k̄ &∈ [k1(n, p), k2(n, p)]. In the sequel, we will see that the bound k2(n, p)
can be easily improved (see Remark 4). On the contrary, if k < k1(n, p), then a new
result appears. The known situation is the following:

– k1(3, p) = max
{ 3−p
p−1 ,

1
p−1

}
and k2(3, p) = 2(p − 1), see [3].

– k1(n, p) = max
{ 3−p
p−1 ,

n−1
2

}
and k2(n, p) = min

{ (n+1)p
2 − 2, n2−2n+13

2(n−3)

}
if

n ≥ 5 odd, see [2].
– k1(n, p) = max

{ 3−p
p−1 ,

n−1
2

}
and k2(n, p) = min

{
(n+1)p

2 − 2, n − 1
}
if n ≥ 4,

see [10].

We can write in a different way the previous conditions. Firstly, we concentrate on the
case n = 3. For p ∈ (1, 2), we have k̄ ≥ 3−p

p−1 that is equivalent to

p ≥ 1+ 2

k̄ + 1
= pF (k̄ + 1).
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Figure 1. n = 3, µ = 2, ν = 0

From above, we have k̄ ≤ 2(p − 1) that is

p ≥ k̄
2
+ 1.

The intersection of p = pF (k̄ + 1) and p = 1 + k̄/2 is exactly in k̄ = −1+
√
17

2 and
p = pS(5). We summarize the situation in Fig. 1. In the following graphs, we denote
in blue the zone of the known global existence results, in red the zone of the known
blow-up results. In this paper, we want to cover the white zones.
Reading [2], we see that the same situation appears for any odd n ≥ 5. The critical
curve

p = pF (k̄ + 1)

intersects the line

p = 2(k̄ + 2)
n + 1

in the Strauss couple

(
k̄0,

2(k̄0 + 2)
n + 1

)
=

(
n − 5+

√
n2 + 14n + 17
4

, pS(n + 2)

)

.

The only difference with the case n = 3 is that, in the global existence zone, a bound
from above appears for p and this has some influence on k2(n, p). More precisely,
one can take

p ≤ n + 1
n − 3

, k̄ ≤ n2 − 2n + 13
2(n − 3)

if n ≥ 7,

and p ≤ 2, k̄ ≤ 3 if n = 5. Hence, the result of such paper can be represented as in
Fig. 2. Our aim is to prove blowup in the white zone below the Fujita curve.
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Figure 2. n ≥ 5 odd, µ = 2, ν = 0

Even dimension is more delicate. In [10], the global existence result is established
in the blue zone below the line p = n+5

n+1 except on the curve p = pF (k̄ + 1). For
convenience of the reader, we precise that in the notation of [10], the role of k̄ is taken
by the quantity k + n+1

2 .

2.2. The case µ > 2 and ν = µ
2 (

µ
2 − 1)

In [10,11], the author considers the Cauchy problem (1) for the semilinear wave
equation with scale invariant damping and mass terms, that is ν = µ

2 (
µ
2 − 1) ≥ 0. We

see that for µ = 2, it reduces to (4). Global existence of solutions to (1) holds under
the conditions

µ ∈ [2,M(n)], M(n) = n − 1
2

(

1+
√
n + 7
n − 1

)

.

In the even case [10], the initial data satisfy (5) for k̄ ∈ (k1(n, p, µ), k2(n, p, µ)] such
that

k1(n, p, µ) = max
{n − 1

2
,

2
p − 1

− µ

2

}
; (6)

k2(n, p, µ) = min
{
n − 1,

n + µ − 1
2

p − µ+ 2
2

}
. (7)

Rewriting these conditions in terms of p, we find that

p > pF
(
k̄ + µ

2

)
, p ≥ 2k̄ + µ+ 2

n + µ − 1
.

The intersection of the curves those define the global existence zone gives p = pS(n+
µ). Hence, the condition p > pS(n+µ) appears.Moreover, another bound from above
appears:

p < p̄ := min
{
pF (µ), pF

(
n + µ − 1

2

)}
.
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Figure 3. n ≥ 4 even, µ = 2, ν = 0

Figure 4. n ≥ 4 even, ν = µ
2 (

µ
2 − 1) ≥ 0

This means that different results for large µ and small µ hold. This influences the
positions of k1 and k2. For our purpose, it is sufficient to say that for µ &= 2 and
even n, the situation is similar to Fig. 3. More precisely, in Fig. 4 pS(n +µ) appears.
The blow-up result is indeed given in [9]. The zone between p = pS(n + µ) and
p = pF

(
k̄ + µ

2

)
is not covered by any known result.

The corresponding global existence result for the Cauchy problem (1) in odd space
dimension n ≥ 1 is studied in [11] for radial and small data, assuming condition (5)
with k̄ ∈ [k1(n, p, µ), k2(n, p, µ)] where k2 satisfies (7) and it holds:

k1(3, p, µ) = max
{
1,

2
p − 1

− µ

2
,

1
p − 1

}
;

k1(n, p, µ) = max
{n − 1

2
,

2
p − 1

− µ

2

}
, n ≥ 5 µ ∈ [2, n − 1];

k1(n, p, µ) = max
{n − 1

2
,

2
p − 1

− µ

2
,

1
p − 1

,
}
, n ≥ 5 µ ∈ (n − 1,M(n)].

In any case, the condition p > pF (k̄ + µ
2 ) appears. Hence, in odd space dimension

n ≥ 5 the situation is not different from Fig. 4.



Vol. 21 (2021) Fujita modified exponent for scale invariant damped NLWE 2741

Reading Theorem 1 in the case ν = µ
2 (

µ
2 − 1), it is clear that the aim of this paper

is to find blowing-up solutions to (1) even for p > pS(n + µ) by considering initial
data with slow decay. More precisely, let us consider

g(x) , M

(1+ |x |)k̄+1
, for

n − 1
2

< k̄ < k̄0 , (8)

where k̄0 is such that

pF
(
k̄0 +

µ

2

)
= pS(n + µ).

We will prove the blow-up result in the left white side zones in Figs. 1, 2, 3 and 4
where k̄ < k̄0, p > pS(n + µ) and p < pF (k̄0 + µ

2 ). Under the same assumption
on g, the quoted results assure that for p ≥ pF (k̄ + µ

2 ) and p > pS(n + µ), there is
global existence. Hence, p = pF (k̄ + µ

2 ) is a critical curve for the Cauchy problem
(1), provided ν = µ

2 (
µ
2 − 1) ≥ 0.

Remark 4. Still fixing ν = ν
2 (

ν
2 − 1) ≥ 0, let us consider k̄ > k̄0 and p > pS(n+µ).

As discussed, the global existence results in the previous literature require p above a
line which depends on k̄, because of a restriction of type k̄ ≤ k2(n, p, µ) which every
time appears. Actually, this restriction can be avoided; indeed, if the initial datum
satisfies (8) with k̄ > k2(n, p, µ), then we can say that the initial datum also satisfies
(5) with k̄ = k2(n, p, µ). Hence, the global existence of a solution to (1) follows from
the known results.

Remark 5. For ν = µ
2 (

µ
2 − 1) ≥ 0, Theorem 1 provides some new information about

the solution of (1) also when p belongs to the red zone of Figs. 1, 2, 3, 4 and 5. In
fact, for

p < min
{
pS(n + µ), pF

(
k̄ + µ

2

)}

by the previous literature we know that the solution blows up in finite time, whereas
Theorem 1 gives a lifespan estimate in the case of radial initial data with non-compact
support, relating this estimate with the decay rate of the data.

2.3. The case µ = 0 and ν = 0

In Fig. 5, we summarize the wave equation case µ = ν = 0. The red blow-up zone
was covered by many authors, see [14] and the reference therein for the whole list
of blow-up results. For µ = ν = 0, the global existence result has been completely
solved in [5], where the interested reader can find a long bibliography of previous
contributes. In particular, the blue zone for radial solution without compact support
assumption for the initial data has been exploited by Kubo, see, for example, [7,8].
Before these papers, Takamura obtained a blow-up result in the green zone. In [15],
the point is to find a critical decay level k0 = 2

p−1 , equivalently p ≤ 1 + 2
k0
. We

underline that this is a Fujita-type exponent.
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p

k̄

1

3

1

pS(n)

2
pS(n)−1

Figure 5. µ = ν = 0

In Theorem 1, we generalize Takamura’s result when µ &= 0 and ν ≤ µ
2 (

µ
2 − 1).

To this aim, it is sufficient to consider a peculiar wave equation with nonlinear term
having a decaying time-dependent variable coefficient. Thismeans that wewill deduce
Theorem 1 from the following result.

Theorem 2. Let n ≥ 2. Given a smooth function g = g(|x |) with x ∈ Rn, we set
r = |x | and we consider g = g(r) satisfying

g(r) ≥ M

(1+ r)k̄+1
, with k̄ > −1, (9)

for some M > 0. Let u = u(t, r) be the radial local solution to





utt − urr − n−1
r ur = (1+ t)−

µ
2 (p−1)|u|p, r > 0,

u(0, r) = 0,

ut (0, r) = εg(r).

(10)

with p > 1 and p < pF (
µ
2 − 1) if µ > 2. Assume in addition that

− 1 < k̄ <
2

p − 1
− µ

2
. (11)

Then, given ε > 0, the lifespan T (ε) > 0 of classical solutions to (10) satisfies

T (ε) ≤ Cε
− 2(p−1)

4−(µ+2k̄)(p−1) , (12)

with C > 0, independent of ε.

Remark 6. The assumption p < pF (
µ
2 − 1) if µ > 2 guarantees that the range of

admissible k̄ in (11) is not empty.

In the caseµ = 0, Theorem 2 coincides with Takamura’s result in [15]. In the proof
of Theorem 2, we will follow the same approach of that paper.
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3. Proof of the main results

3.1. Proof of Theorem 2

We recall the crucial lemma of [15].

Lemma 1. Let n ≥ 2 and m = [n/2]. Given a smooth function g = g(|x |) with
x ∈ Rn, we set r = |x | and we consider g = g(r). Let us denote by u0(t, r) the
solution of the free wave problem

{
!u0 = 0 (t, r) ∈ [0,∞) × [0,∞)

u0(0, r) = 0, u0t (0, r) = g(r) .

Let u = u(t, r) be a solution to

utt − urr − n − 1
r

ur = F(t, u) (13)

with the initial condition

u(0, r) = 0, ut (0, r) = εg(r), r ∈ [0,∞). (14)

If F is nonnegative, there exists a constant δm > 0 such that

u(t, r) ≥ εu0(t, r)+ 1
8rm

∫ t

0
dτ

∫ r+t+τ

r−t+τ
λmF(t, u(t, λ))dλ, (15)

u0(t, r) ≥ 1
8rm

∫ r+t

r−t
λmg(λ)dλ, (16)

provided

r − t ≥ 2
δm

t > 0.

The constant δm in the previous lemma is described in [15, Lemma 2.5]; it depends
on the space dimension, and in particular, it changes accordingly with the different
representations of the free wave solution in odd and even dimension.

We are ready to prove that if (9) holds, then the solution of (10) blows up in finite
time even for small ε.

Let us fix δ > 0; we define a blow-up set,

(δ =
{
(t, r) ∈ (0,∞)2 : r − t ≥ max

{
2
δm

t, δ
}}

, (17)

where δm > 0 is the constant given in Lemma 1. Combining the assumption (10) with
the formulas (15) and (16), for any (t, r) ∈ (δ, it holds

u(t, r) ≥ εu0(t, r) ≥ ε

8rm

∫ r+t

r−t
λmg(λ)dλ ≥ Mε

8rm

∫ r+t

r−t
λm(1+ λ)−(k̄+1)dλ .
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Then, (17) implies that

u(t, r) ≥ Mε

8rm

(
1+ δ

δ

)−(k̄+1) ∫ r+t

r−t
λm−(k̄+1)dλ

≥ Mε

8rm

(
1+ δ

δ

)−(k̄+1)

(r + t)−(k̄+1)
∫ r+t

r−t
λmdλ

≥ Mε

8

(
1+ δ

δ

)−(k̄+1) (r − t)m2t

rm(r + t)k̄+1
.

Since (t, r) ∈ (δ , we have

u(t, r) ≥ C0tm+1

rm(r + t)k̄+1
,

where we set

C0 = ε
2m−2M

δmm

(
δ

1+ δ

)k̄+1

> 0. (18)

Now, we assume an estimate of the form

u(t, r) ≥ Cta

rm(r + t)b
for (t, r) ∈ (δ, (19)

where a, b and C are positive constant. In particular, (19) holds true for a = m + 1,
b = k̄ + 1 and C = C0.

Being g ≥ 0, from (16)wededuceu0 ≥ 0.Combining (15) and (19), for (t, r) ∈ (δ ,
we get

u(t, r) ≥ 1
8rm

∫ t

0
dτ

∫ r+t−τ

r−t+τ

λm

(1+ τ )
µ
2 (p−1)

|u(τ, λ)|pdλ

≥ C p

8rm

∫ t

0

τ pa

(1+ τ )
µ
2 (p−1)

dτ

∫ r+t−τ

r−t+τ
λm(1−p)(λ + τ )−pbdλ

≥ C p

8rm(r + t)pb+m(p−1)

∫ t

0

τ pa

(1+ τ )
µ
2 (p−1)

dτ

∫ r+t−τ

r−t+τ
dλ

≥ C p

4rm(r + t)pb+m(p−1)

∫ t

0

(t − τ )

(1+ τ )
µ
2 (p−1)

τ padτ. (20)

By means of integration by parts, we obtain

∫ t

0

(t − τ )τ pa

(1+ τ )
µ
2 (p−1)

dτ ≥ 1

(1+ t)
µ
2 (p−1)

∫ t

0
(t − τ )τ padτ

≥ 1

(1+ t)
µ
2 (p−1)

t pa+2

(pa + 1)(pa + 2)
.
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While searching a finite lifespan of a solution, it is not restrictive to assume t > 1. We
have

∫ t

0

(t − τ )τ pa

(1+ τ )p−1 dτ ≥ t p(a−µ
2 )+2+µ

2

2p−1(pa + 1)(pa + 2)
. (21)

Let (t, r) ∈ (δ , from (19)–(21), we can conclude

u(t, r) ≥ C∗ta
∗

rm(r + t)b∗ for (t, r) ∈ (δ, (22)

with

a∗ = p
(
a − µ

2

)
+ 2+ µ

2
, b∗ = pb + m(p − 1), C∗ = (C/2)p

2(pa + 2)2
.

Let us define the sequences {ak}, {bk}, {Ck} for k ∈ N by

ak+1 = p
(
ak − µ

2

)
+ 2+ µ

2
, a1 = m + 1, (23)

bk+1 = pbk + m(p − 1), b1 = k̄ + 1, (24)

Ck+1 =
(Ck/2)p

2(pak + 2)2
,C1 = C0, (25)

where C0 is defined by (18). Hence, we have

ak+1 = pk
(
m + 1 − µ

2
+ 2

p − 1

)
+ µ

2
− 2

p − 1
, (26)

bk+1 = pk(k̄ + 1+ m) − m, (27)

Ck+1 ≥ K
C p
k

p2k
(28)

for some constant K = K (p, µ,m) > 0 independent of k. The relation (28) implies
that for any k ≥ 1, it holds

Ck+1 ≥ exp
(
pk

(
log(C0) − Sp(k)

))
, (29)

Sp(k) = (k
j=0d j , (30)

d0 = 0 and d j =
j log(p2) − log K

p j for j ≥ 1. (31)

We note that d j > 0 for sufficiently large j. Since lim j→∞ d j+1/d j = 1/p, the
sequence Sp(k) converges for p > 1 by using the ratio criterion for series with
positive terms. Hence, there is a positive constant Sp,K ≥ Sp(k) for any k ∈ N, so
that

Ck+1 ≥ exp(pk(log(C0) − Sp,K )). (32)
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Therefore, by (22), (26)–(29), we obtain

u(r, t) ≥ (r + t)m

rmt−
µ
2 + 2

p−1

exp(pk J (t, r)), (33)

where

J (t, r) := log(C0) − Sp,K +
(
m + 1 − µ

2
+ 2

p − 1

)
log t − (k̄ + 1+ m) log(r + t).

Thus, if we prove that there exists (t0, r0) ∈ (δ such that J (t0, r0) > 0, then we can
conclude that the solution to (10) blows up in finite time, in fact

u(t0, r0) → ∞ for k → ∞.

By the definition of J = J (t, r), we find that J (t, r) > 0 if

( 2
p − 1

− µ

2
− k̄

)
log t > log

(eSp,K
C0

(
2+ r − t

t

)k̄+1+m)
.

In particular, we can take (t, r) = (t, t+max{ 2tδm
, δ}) ∈ (δ; then, it is enough to prove

that
( 2
p − 1

− µ

2
− k̄

)
log t > log

(eSp,K
C0

(
2+ 2

δm

)k̄+1+m)
.

Now, the crucial assumption (9) comes into play. The coefficient in the left side is
positive, and by using (18), we find that J (t, r) > 0 provided

t > Cε
−

(
2

p−1−µ
2 −k̄

)−1

, (34)

where

C =
(eSp,K δmm
2m−2M

(1+ δ

δ

)k̄+1(
2+ 2

δm

)1+k̄+m) 1
2

p−1−µ
2 −k̄

,

which is positive. As by-product, the inequality (34) gives the lifespan estimate (12)
and concludes the proof of Theorem 2.

3.2. Proof of Theorem 1

We start rewriting the Cauchy problem (1) as a nonlinear wave equation with a
time-dependent potential. Let v = v(t, x) be a solution of (1); we define

u(t, x) := (1+ t)
µ
2 v(t, x).

Then, the function u = u(t, x) is a solution of the Cauchy problem





utt − ∆u = (1+ t)−
µ
2 (p−1)|u|p + (µ2 (

µ
2 − 1) − ν) u

(1+t)2 , t ≥ 0, x ∈ Rn,

u(0, x) = 0,

ut (0, x) = εg(x).

(35)
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If g is radial, then u is radial and it satisfies Eqs. (13) and (14) with

F(t, u) = (1+ t)−
µ
2 (p−1)|u|p +

(µ
2

(µ
2

− 1
)

− ν
) u
(1+ t)2

.

Let us fix δ > 0 and use the same notation of the proof of Theorem 2. Since we are
assuming µ

2 (
µ
2 − 1)− ν ≥ 0, by comparison lemma, see [15, Lemma 2.9], we deduce

u > 0 in (δ. Then, it holds

F(t, u) ≥ (1+ t)−
µ
2 (p−1)|u|p;

hence, by formula (15) in Lemma 1 we still derive the estimate (20). Thus, the proof
of Theorem 2 guarantees the result of Theorem 1.
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