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Abstract

The efficiency of the devices is an increasingly central aspect in the design process.
Therefore, nowadays high-fidelity modeling of systems is a strongly necessary re-
quirement in the engineering reality. For this purpose, simulation has become a
central tool, taking on an indispensable role as an aid to planning. Through simula-
tion it is possible to analyze, in relatively short times, the performances of different
project alternatives, avoiding investing time and money, which would otherwise be
required, in order to build physical prototypes. Hence, the trend is more and more
oriented to virtual prototyping.

In particular, in the context of the design of electrical and electronic devices,
electromagnetic simulation is a popular tool. In fact, the use of a tool of this
kind allows to verify compliance with the provided apparatus specifications and,
above all, to conceptually optimize the performance characteristics. To do this,
relevant informations about complex phenomena affecting electronic systems such
as crosstalk, signal dispersion, reflections, radiation, conductors and dielectric losses
should be extracted. Moreover, these phenomena are increasingly evident as the
value of the operating frequencies increases, since the parasitic elements play a
crucial role on the interconnections behavior. Unfortunately, the high frequency
behavior of such passive structures can alter the global performances of a system
degrading significantly its efficiency, if adequate countermeasures are not taken.

For example, in digital electronic data transmission systems, in order to produces
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Chapter 0

increasingly faster and more performing calculators, speed processing is exponen-
tially growing from year to year, leading to an increase in the drive clock frequency.
As the capacitive and inductive couplings along the interconnections become impor-
tant, and the losses due to the skin effect continue to grow, undesired couplings and
losses are the primary cause of signal distortion and attenuation, undermining the
integrity of the digital system. Only in-depth studies, with consequent optimization,
in the simulation phase is able to guarantee this integrity.

Another current example concerns power converters such as: rectifiers, choppers
for direct current electric drives and inverters for alternating current electric drives.
Indeed, in power electronics, in order to improve electromechanical performance of
the drive, increasing switching frequencies are used to drive semiconductor elements.
Hence, in converters, it is usual to deal with conducted and radiated electromagnetic
emissions issues, with consequent decrease in efficiency. The emission spectrum of
disturbances in converters can even reach hundreds of MHz. As already mentioned
for digital devices, at these frequencies, the skin effect causes large losses, resulting
in overheating of the components. For this reason, even in this area, it is necessary
to resort to electromagnetic simulation tools, able to predict and optimize the overall
efficiency of the drive.

Several suitable numerical techniques able to perform full-wave analyses can be
found in literature. Among them, the most employed fall in the categories of differ-
ential or integral methods. The former are based on the discretization of Maxwell
equations over the volume computational domain and on the enforcing of appropri-
ate boundary conditions at the interface between different materials and over virtual
surfaces delimiting the domain for ensuring the radiation condition. The discretiza-
tion is performed both in time/frequency and space and the field computation is
carried out for each time/frequency sample and for each point of the resulting space
grid (mesh), including air-filled zones. The most known differential methods are the
Finite-Element Method (FEM) and the Finite-Differences method (FD).

On the other hand, volume Integral Equations (IE) methods are built around
the definition of the Electric Field Integral Equation (EFIE) or the Magnetic Field
Integral Equation (MFIE) in conjunction with the application of the Volume Equiv-
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Chapter 0

alence Principle for Maxwell Equations. The EFIE and MFIE are formulated and
discretized in space and time only in the volume portions occupied by material bod-
ies (e.g. metals and dielectrics), being not necessary to carry out the computations
in vacuum portions and to enforce boundary conditions on virtual surfaces surround-
ing the computational domain, since the radiation condition is an intrinsic feature
of the IE formulation. Throughout the years, volumetric IE methods have proved
to be robust tools for full-wave simulation of scattering EM problems for electronics
applications.

Another classification of numerical methods concerns their subdivision in frequency-
domain (FD) and time-domain (TD) methods. The latter, although more challeng-
ing, are often preferred to the former in their capability to produce broadband data
from a single simulation. Moreover, in electric and electronic applications a growing
number of non-linear devices of the semiconductor type is observed. This obviously
complicates FD-based analyses, rendering more feasible TD-based analyses. In this
context, Time Domain Integral Equations (TDIE) methods have gained a rising
interest for scattering problems, since they do not require approximate boundary
conditions and the time-step is not related to the mesh size by stability conditions
like the Courant-Friedrichs-Levy (CFL) one. Moreover, TDIE methods do not suffer
from numerical phase dispersion, one of the main causes of inaccuracy in differential
methods.

However, full-wave TDIE methods are often based on the approximation of the
model propagation delays, which can be the source of late-time instabilities show-
ing up in the TD solutions obtained with standard time-stepping solvers. Precise
measures for their prediction and management have not yet been investigated and
the finding of a systematic relation between the instabilities and the approximation
degrees employed in the propagation delays representation is still an open issue.

The Partial Elements Equivalent Circuit (PEEC) is an integral-equations method
that has gained particular attention in the last years, due to its peculiarity of trans-
lating a scattering EM problem into a circuit SPICE-like representation. This rep-
resentation has been demonstrated to be very useful since the connection of the
EM model to common devices represented by lumped elements is straightforward.
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In the standard volume PEEC (VPEEC), this is achieved by resorting to the vol-
ume equivalence principle applied to the volumes occupied by the scatterers. It is
then possible to obtain a volumetric Electric Field Integral Equation (EFIE), where
the currents flowing in the scatterer in the original problem represent at the same
time the unknowns and the sources of the scattered field. The discretization of the
problem is obtained by expanding the electric currents into constant basis functions
all over the computational domain and adopting Galerkin testing procedure, giving
rise to a volume mesh. The problem is then completed by applying the continuity
equation for the electric current over the scatterer surface, again assuming constant
basis functions, and using Galerkin testing process as well, giving rise to a surface
mesh. Finally, a global discretized dual-mesh EM model is achieved, where currents
flowing in the elementary volumes and charges residing over the elementary surfaces
are supposed to radiate in a free-space environment. The magnetic coupling be-
tween the mesh volumes is described by the so-called partial inductances, while the
electric coupling between the mesh surfaces is described by coefficients of potential,
two circuit-like quantities. In the circuit context, the full-wave mutual magnetic and
electric interactions are described by interaction integrals containing the free-space
Green function as a kernel.

v



Description of the Thesis

The purpose of this doctoral work is to explore alternative TD simulation techniques
in the context of the PEEC method. The key motivation arises from the necessity of
stable full-wave models, able to include propagation delays in the PEEC formulation.
Quasi-Static (QS) PEEC models have been widely employed in the past decades as
efficient and reliable tools for the analysis and verification of the EM behavior of
common structures typically employed in the electronic industry. Such models have
demonstrated to be robust and, above all, always stable.

In the last three decades, the technological evolution in electronics and the grow-
ing necessity of small and compact devices has led to an increase of the geometrical
complexity of signal interconnecting structures. Moreover, for efficiency and func-
tional purposes, an impressive increase of the working frequencies has been observed
throughout the years, especially in the signal electronics and microwave areas. Such
context has brought to the necessity of analyzing complex electrically long structures
in the simulation stage. This has required the development of full-wave solvers, able
to catch correctly the propagation delays and to represent more accurately all the
non-ideal loss mechanisms affecting such devices.

In the PEEC method, such delays are buried in the partial elements, complicating
the circuit representation and giving rise to computationally demanding models,
inevitably lengthening the simulation times. In order to keep the computational
burden within an acceptable level, several approximations have been introduced for
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the representation of delayed partial elements. Unfortunately, those approximations,
can lead to unpredictable instabilities showing up in the TD final results.

For the reasons already explained, two different approaches for obtaining stable
TD PEEC models have been investigated in this work.

A possibility is to resort to Inverse Laplace Transform (ILT) techniques, naturally
grounded in the frequency domain, collecting and combining the results obtained
through the evaluation of the Laplace-domain PEEC model over specified points
of the complex plane. Such a technique is relatively simple in its implementation,
being necessary few changes to standard FD PEEC solvers.

Another investigated option is the rigorous TD representation of partial elements
through the Cagniard deHoop (CdH) technique, giving rise to direct TD convolution-
based PEEC models.

In what follows, both these macro-techniques are deeply investigated, highlight-
ing rigorously all the advantages and disadvantages involved in their employment.
Where possible, several methods to overcome the limits of such techniques are pro-
posed, always paying particular attention to not excessively increase the computa-
tional burden.
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1
The PEEC method

Over the past 50 years many different numerical technique for the modeling of elec-
tromagnetic phenomena have been developed. Among such techniques the Partial
Element Equivalent Circuit (PEEC) method has proved to be particularly well suited
for the representation of parasitic effect rising in interconnects modeling. In its early
age the PEEC method was used for the modeling of inductive effects of multicon-
ductor systems in free space [1]. Immediately after also capacitive effects [2] were
included in the model through the general integral-equation-based approach and
then the method was expanded to full-wave conditions [3]. After about two decades
the modeling of dielectrics materials was included in the picture [4], exploiting the
volume equivalence principle and the introduction of an equivalent current includ-
ing part of the displacement component. In recent years many other materials with
different properties have been gradually included [5–13].

The main difference among the PEEC method and other integral equation based
techniques, such as the Method of Moments (MoM) [14], resides in the fact that it
provides a circuit interpretation of the Mixed Potential Integral Equation (MPIE)
[15] in terms of partial elements, namely resistances, partial inductances and coef-
ficients of potential. This makes the PEEC method particularly well suited for its
integration within design process where electronic engineers work, because the re-
sulting equivalent circuit can be studied by means of SPICE-like circuit solvers [16]
in both the time and frequency domains.

Over the years, several improvements of the PEEC method have been performed
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Chapter 1

thus allowing it to handle complex problems involving both circuits and electromag-
netic fields

To speed-up the equivalent circuit analysis, fast multipole based techniques [17]
as well as the adaptive cross approximation (ACA) [18–23] have been used. Moreover
effective model-order reduction techniques can be adopted leading to compact mod-
els preserving the accuracy at the ports and the physical properties of the original
system.

In the standard approach, volumes and surfaces are discretized into elementary
regions, hexahedra and quadrilateral patches respectively [24] over which the cur-
rent and charge densities are expanded into a series of basis functions. Pulse basis
functions are usually adopted as expansion and weight functions. Such choice of
pulse basis functions corresponds to assume constant current density and charge
density over the elementary volume (inductive) and surface (capacitive) cells, re-
spectively. Following the standard Galërkin’s testing procedure nodes and branches
are generated and electrical lumped elements are identified modeling both the mag-
netic and electric field coupling. Conductors are modeled by their ohmic resistance,
while dielectrics requires modeling the excess charge due to the dielectric polariza-
tion [4]. Magnetic and electric field coupling are modeled by partial inductances and
coefficients of potential, respectively.

The aim of this chapter is to describe the entire PEEC method by starting from
Maxwell’s Equations.

1.1 Integral Formulation of Maxwell’s Equations

Maxwell differential equation in time domain are [15]

∇×H (r, t) =
∂D (r, t)

∂t
+ J (r, t) (1.1)

∇×E (r, t) = −∂B (r, t)

∂t
(1.2)

∇ ·B (r, t) = 0 (1.3)

∇ ·D (r, t) = q(r, t) (1.4)

2
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where H (r, t) is the magnetizing field, D (r, t) is the displacement field, E (r, t)

is the electric field, B (r, t) is the magnetic field, q (r, t) is the charge density and
J (r, t) is the current density. For linear isotropic medium, the fields H ,B,E and
D satisfy the following constitutive relations

B (r, t) = µ0µrH (r, t) (1.5)

D (r, t) = ε0εrE (r, t) (1.6)

where µr and εr are the relative permeability and permittivity, respectively. It is
useful to express fields in terms of potentials. Because of the solenoidality of B,
(1.3), a magnetic vector potential can be defined as

B (r, t) = ∇×A (r, t) . (1.7)

Substituting (1.7) into (1.2) it follows that

∇×
(
E (r, t) +

∂A (r, t)

∂t

)
= 0. (1.8)

The previous equation allows to define the electric scalar potential Φ (r, t) such that

E (r, t) +
∂A (r, t)

∂t
= −∇Φ (r, t) . (1.9)

Such equation relates the electric field E with the potentials A and Φ. The
next step is to express such potentials A and Φ in terms of the sources J and q,
respectively. To this aim, by substituting (1.7) and (1.9) into (1.1), it follows that

∇×∇×A (r, t) = µ0ε0
∂

∂t

(
−∂A (r, t)

∂t
−∇Φ (r, t)

)
− µ0J (r, t) . (1.10)

Using the Laplacian identity

∇×∇×A (r, t) = ∇ (∇ ·A (r, t))−∇2A (r, t) (1.11)

and enforcing the Lorenz gauge

∇ ·A (r, t) = −µ0ε0
∂Φ (r, t)

∂t
(1.12)

3
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the Helmholtz equation for the magnetic vector potential is obtained

∇2A (r, t)− µ0ε0
∂A (r, t)

∂t2
= −µ0J (r, t) . (1.13)

If we replace (1.9) in (1.4) in free space we have

∇ ·
[
−∂A (r, t)

∂t
−∇Φ (r, t)

]
=
q(r, t)

ε0

(1.14)

and from (1.12) also the Helmholtz equation for the electric scalar potential can be
obtained

∇2Φ (r, t)− µ0ε0
∂Φ (r, t)

∂t2
= −q(r, t)

ε0

. (1.15)

In homogenous medium both equations (1.13) and (1.15) have a closed-form solution
for:

• the magnetic vector potential A (r, t) due to a current J (r, t) in the volume
V ′

• the electric scalar potential Φ (r, t) due to the charge distribution q (r′, t) over
the surface S ′.

They are

A (r, t) =
µ0

4π

∫
V ′
G (r, r′)J (r′, t′) dV ′ (1.16)

and
Φ (r, t) =

1

4πε0

∫
S′
G (r, r′) q (r′, t′)dS ′ (1.17)

where G (r, r′) is the homogeneous Green’s function

G (r, r′) =
e−jk|r−r

′|

|r − r′| (1.18)

being
k = ω

√
ε0µ0. (1.19)

In equations (1.16) and (1.17) t′ denotes the time at which the current and charge
distributions, J and q, act as sources of A and Φ respectively; it is different from

4
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t because of the finite value of the speed of light in the homogenous medium, c =

1/
√
µε. It means that they can be related by

t′ = t− |r − r′|
c

. (1.20)

For electrically small problems, the quasi-static approximation can be used. In such
condition (1.16) and (1.17) are simplified as

A (r, t) =
µ0

4π

∫
V ′

J (r′, t′)

|r − r′| dV
′ (1.21)

and
Φ (r, t) =

1

4πε0

∫
S′

q (r′, t′)

|r − r′|dS
′. (1.22)

In deriving relations (1.21) and (1.22) all the Maxwell’s equations (1.1)–(1.4) have
been used along with the Lorenz gauge (1.12). So far equation (1.9) for the electric
field has not been used yet.

In conductors the relation between current density and electric field is expressed
by the constitutive relation

E (r, t) =
J (r, t)

σ
(1.23)

where σ is the conductor conductivity. Substituting equation (1.23) into the electric
field equation (1.9) and taking into account that an external electric field E0 (r, t)

can be impressed at point r at time t, the Electric Field Integral Equation (EFIE)
is obtained as

E0 (r, t) =
J (r, t)

σ
+
∂

∂t

µ0

4π

∫
V ′

J (r′, t′)

|r − r′| dV
′ +∇Φ (r, t) (1.24)

which holds at any point in a conductor and where the electric scalar potential is
related to the charge distribution by equation (1.22). The continuity equation must
be enforced in order to ensure charge conservation

∇ · J (r, t) = −∂q (r, t)

∂t
. (1.25)

Assuming that the charge is located only on the surface of conductors, for any point
r located inside the conductors equation (1.25) becomes

∇ · J (r, t) = 0 (1.26)
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while on their surfaces, using the divergence theorem, it follows that

n̂ · J (r, t) =
∂q (r, t)

∂t
(1.27)

where n̂ is the outward normal to the surface S ′. If we put everything together, the
set of equations to be solved is

E0 (r, t) =
J (r, t)

σ
+
∂

∂t

µ0

4π

∫
V ′

J (r′, t′)

|r − r′| dV
′ +∇Φ (r, t) (1.28)

Φ (r, t) =
1

4πε0

∫
S′

q (r′, t′)

|r − r′|dS
′ r ∈ S ′ (1.29)

∇ · J (r, t) = 0 r ∈ V ′ (1.30)

n̂ · J (r, t) =
∂q (r, t)

∂t
r ∈ S ′. (1.31)

The unknowns of this problem are represented by the current density J (r, t), the
charge density q (r, t) on the surface of the conductors and the electric scalar poten-
tial distribution Φ (r, t) of conductors which can be directly expressed as a function
of the charge density for r ∈ S ′.
In the Laplace domain equations (1.28)–(1.31) can be rewritten, including the prop-
agation, as:

E0 (r, s) =
J (r, s)

σ
+
sµ0

4π

∫
V ′

J (r′, s) e−sτ

|r − r′| dV ′ +∇Φ (r, s) (1.32)

Φ (r, s) =
1

4πε0

∫
S′

q (r′, s) e−sτ

|r − r′| dS ′ r ∈ S ′ (1.33)

∇ · J (r, s) = 0 r ∈ V ′ (1.34)

n̂ · J (r, s) = sq (r, s) r ∈ S ′ (1.35)

where τ = |r − r′|/c and s is the Laplace variable.
The most popular method for the discretization of integral equations was called

by Harrington the Method of Moments (MoM) [14], such method has been used
in many different implementation [25–29]. Usually the solution is found in the
frequency domain, assuming s = jω. As a first step the unknown quantities J (r, s)

and q (r, s) are approximated by a weighted sum of finite set of basis functions
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b ∈ R3 and p ∈ R

J (r, s) ∼=
Nv∑
n=1

bn (r) In (s) (1.36)

q (r, s) ∼=
Ns∑
m=1

pm (r)Qm (s) (1.37)

where In (s) and Qm (s) are the basis function weights which must be determined at
each angular frequency s, Nv and Ns represent the number of volume and surface
basis functions and the corresponding elementary volume and surface sub-regions,
respectively. Expansion (1.36)–(1.37) are substituted into (1.32)–(1.33), evaluated
for s = jω, yielding

E0 (r, s) =
Nv∑
n=1

bn (r) In (s)

σ
+
sµ0

4π

Nv∑
n=1

∫
Vn

bn (rn) In (s)
e−sτ

|r − rn|
dVn +

+∇Φ (r, s) (1.38)

Φ (r, s) =
1

4πε0

Ns∑
m=1

∫
Sm

pm (rm)Qm (s)
e−sτ

|r − rm|
dSm. (1.39)

Next, the Galërkin’s testing or weighting process [28] is used to generate a sys-
tem of equations for the unknowns weights In (s) , n = 1, . . . , Nv and Qm (s) ,m =

1, . . . , Ns by enforcing the residuals of equations (1.32)–(1.33) to be orthogonal to a
set of weighting functions which are chosen to be coincident with the basis functions〈

−E0 (r, s) +

∑Nv
n=1 bn (r) In (s)

σ
+

+
sµ0

4π

(
Nv∑
n=1

∫
Vn

bn (rn) In (s)
e−sτ

|r − rn|

)
dVn +∇Φ (r, s) , bi (r)

〉
= 0

(1.40)〈
Φ (r, s)− 1

4πε0

Ns∑
m=1

∫
Sm

pm (rm)Qm (s)
e−sτ

|r − rm|
dSm, pj (r)

〉
= 0 (1.41)

where the inner products are defined as

〈f (r) , bi (r)〉 =

∫
Vi

f (r) · bi (r) dVi for i = 1, . . . , Nv (1.42)

〈g (r) , pj (r)〉 =

∫
Sj

g (r) · pj (r) dSj for j = 1, . . . , Ns. (1.43)
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1.1.1 Basis and weighting functions for conductor surfaces

A number of different typologies of basis and weighting functions can be chosen
to set equations (1.40) and (1.41). The most popular are the piecewise constant,
piecewise linear, RWG [26] set of basis and/or weighting functions. In the following
it will be assumed the piecewise constant set of functions which are more suited
to model Manhattan type structures. Thus, by assuming to deal with orthogonal
conductors whose surface is discretized intoNs elementary rectangular patches which
are electrically small compared with the wavelength of the highest frequency of
interest. More specifically, the unknown electrical current and charge densities are
taken to have constant values over each cell in the discrete model.
Under these assumption the basis functions used to expand the charge density are
chosen as

pm (r) =

{
1
Sm

if r ∈ Sm
0 otherwise.

(1.44)

With the basis function in (1.44) the corresponding weight Qm represents the charge
on patch m. Finally, equation (1.39) can be rewritten as

Φ (r, s) =
Ns∑
m=1

[
1

4πε0

1

Sm

∫
Sm

e−sτ

|r − rm|
dSm

]
Qm (s) (1.45)

which allows to evaluate the potential at point r, at frequency s, due to the charge
on the Ns patches covering the conductors. In a way equation (1.45) models the
electric field coupling in the background medium with permittivity ε0.

The Galërkin procedure results in the evaluation of the average value of scalar
potential Φ (r, s) over the surface of each patch. The potential term is

〈Φ (r, s) , p` (r)〉 =
1

S`

∫
S`

Φ (r`, s) dS` = Φ` for ` = 1, . . . , Ns (1.46)

being Φ` the potential of the surface `, that of course is assumed constant over all
the surface. The charge term, instead, becomes〈

Ns∑
m=1

[
Qm (s)

4πε0Sm

∫
Sm

e−sτ

|r − rm|
dSm

]
, p` (r)

〉
=

=
Ns∑
m=1

Qm (s)

4πε0SmS`

∫
S`

∫
Sm

e−sτ

|r − rm|
dSmdS` for ` = 1, . . . , Ns.

(1.47)
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Hence, equation (1.45) becomes

Φ` =
Ns∑
m=1

[P`,m (s)Qm (s)] for ` = 1, . . . , Ns (1.48)

where the coefficient of potential P`,m (s), defined in (1.48), is

P`,m (s) =
1

4πε0S`Sm

∫
S`

∫
Sm

e−sτ

|r` − rm|
dSmdS`. (1.49)

Hence, the relation between the scalar potential, Φ (s) ∈ CNs , of the Ns patches and
the charges, Q (s) ∈ CNs , located on the same patches set is

Φ (s) = P (s) Q (s) (1.50)

where matrix P entries are the coefficients of potential in (1.49) and are, in gen-
eral, frequency dependent. In quasi static regime, since e−sτ → 1, the frequency
dependence can be suppressed and they can be expressed as

P`,m =
1

4πε0

1

S`Sm

∫
S`

∫
Sm

1

|r` − rm|
dSmdS`. (1.51)

The displacement currents in the background medium, Ic, can be computed as

Ic (s) = sQ (s) = sP (s)−1 Φ (s) . (1.52)

1.1.2 Basis and weighting functions for conductor volumes

Conductor volumes are discretized into Nv elementary orthogonal hexahedra (par-
allelepipeds) being, as before, electrically small compared with the wavelength of
the highest frequency of interest. Let `n and an the length and the cross section of
volume Vn, respectively.
The basis functions used to expand the current density are chosen as

bn (r) =

{
ûn

an
if r ∈ Vn

0 otherwise
(1.53)

where ûn is the unit vector indicating the current orientation in volume Vn. With
such a choice of the basis function the corresponding weight represents the current

9
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flowing in the volume Vn with orientation ûn. When the Galërkin scheme is applied,
the terms in equation (1.38) rewrite as

〈E0 (r, s) , bi (r)〉 =
1

ai

∫
ai

∫
`i

E0 (ri, s) · ûi d`i dai

=

∫
`i

E0 (ri, s) d`i

= `iE0 (ri, s) for i = 1, . . . , Nv

(1.54)

where E0 (ri, s) = E0 (ri, s) · ûi is the component of E0 (ri, s) directed as ûi. It can
be noticed that in 1.54 the component of the extern electric field has been assumed
constant in the section of the volume. The conductivity term result in〈∑Nv

n=1 bn (r) In (s)

σ
, bi (r)

〉
=

Nv∑
n=1

In (s)

σ

∫
ai

∫
`i

bn (r) · bi (r) d`i dai

=
In (s)

σ

∫
ai

∫
`i

1

a2
i

d`i dai

=
In (s)

σ

`i
ai

for i = 1, . . . , Nv

(1.55)

since by definition

bn (r) · bi (r) =

{
1
a2n

if i = n

0 otherwise.
(1.56)

The Green’s function term〈
sµ0

4π

(
Nv∑
n=1

∫
Vn

bn (rn) In (s)
e−sτ

|r − rn|

)
dVn, bi (r)

〉
=

=
sµ0

4π

Nv∑
n=1

∫
V

∫
Vn

In (s)
e−sτ

|r − rn|
bn (rn) ·bi (r) dVn dV

=
sµ0

4π

Nv∑
n=1

In (s)

aian

∫
Vi

∫
Vn

e−sτ

|ri − rn|
ûn · ûi dVn dVi

for i = 1, . . . , Nv

(1.57)

10
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and finally

〈∇Φ (r, s) , bi (r)〉 =
1

ai

∫
ai

∫
`i

∇Φ (r, s) · ûid`i dai

=

∫
`i

∂Φ (ri, s)

d`i
d`i

= Φi2 (s)− Φi1 (s) for i = 1, . . . , Nv

(1.58)

where Φi1 (s) and Φi2 (s) represent the potential at the extremes of the volume Vi
along the ûi direction. Hence equation (1.38) becomes

E0 (ri, s) `i =
`iIi (s)

σai
+
sµ0

4π

Nv∑
n=1

1

ai

1

an

∫
Vi

∫
Vn

In (s)
e−sτ

|ri − rn|
ûi · ûndVndVi +

+ Φ2i (s)− Φ1i (s) for i = 1, . . . , Nv. (1.59)

Each term of equation (1.59) represents a voltage drop across volume Vi along the
ûi direction and, thus, it can be rewritten as

Φi1 (s)− Φi2 (s) = V0i (s) +RiIi + s
Nv∑
n=1

Lpi,nIn (s) (1.60)

where the following definitions have been made

V0i (s) = −E0 (ri, s) `i (1.61)

Ri =
`i
σai

(1.62)

Lpi,n (s) =
µ0

4π

1

aian

∫
Vi

∫
Vn

e−sτ

|ri − rn|
ûi · ûndVndVi. (1.63)

V0i represents the voltage source due to external fields, Ri is the resistance of the
i−th cell, where current flows along in the direction identified by `i, and Lpi,n is the
partial inductance [1] between the i−th and the n−th volume cells .
The set of equation like (1.60), that are generated after the Galërkin procedure, can
be expressed in matrix form as

−AΦ (s)−RI (s)− sLp (s) I (s)−V0 (s) = 0 (1.64)

where Φ ∈ CN is the set of potentials to infinity and I ∈ CNv are all the currents
flowing through the longitudinal branches. It is worth noticing that N ≥ Ns, this
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1 2 3

nodes branches

1 2 3

Sn1 Sn2 Sn3 Sb1 Sb2

Figure 1.1: Strip of conductor and its discretization with 3 nodes and 2 branches
and associated surfaces.

happens because in the most general case of 3D structures, nodes interior to the
conductors may occur. A is the connectivity matrix whose entries are

an,k =


+1 if current In enters node k
−1 if current In leaves node k
0 otherwise.

(1.65)

The discretization process described above has allowed to achieve topological circuit
elements such as branches and nodes. A is the matrix describing such graph.

Once the elements in (1.64) are known, the generation of the equivalent circuit
is straightforward.

1.2 Equivalent Circuit Models from EM structures

In previous section we saw as circuit-like equation can be used to achieved from
Maxwell equation to describe an electromagnetic problem. For sake of clarity we will
apply the procedure in simplified conditions. Let us consider a strip of conductor,
and let us assume that we are discretizing such strip along one direction as shown in
Fig. 1.1. Such process yields a graph with three nodes, 1,2 and 3, and two branches,
connecting them. The corresponding unknowns are the potential to infinity of the
nodes, Φ1,Φ2 and Φ3, and the currents I1 and I2 flowing through the branches.
For each node there is a surface cell, Sni, in which the potential is assumed to be

12
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constant. For each branch there is a surface cell, Sbi, where the current is assumed
to be constant. After the discretization process it is possible to define the matrix A
by (1.65) leading, for the example in Fig. 1.1, to

A =

[
−1 1 0

0 −1 1

]
. (1.66)

1.2.1 Model for electric field coupling

The electric field coupling is derived from equation (1.50) which in this example
writes as

Φ1 = P1,1Q1 + P1,2Q2 + P1,3Q3 (1.67)

Φ2 = P2,1Q1 + P2,2Q2 + P2,3Q3 (1.68)

Φ3 = P3,1Q1 + P3,2Q2 + P3,3Q3 (1.69)

where Qi is the charge on the surface Sni for i = 1, 2, 3 and Pi,j is the coefficient
of potential computed by (1.49). I we divide each of the (1.67)–(1.69) for the self
coefficient Pi,i we have

Φ1

P1,1

= Q1 +
P1,2

P1,1

Q2 +
P1,3

P1,1

Q3 (1.70)

Φ2

P2,2

=
P2,1

P2,2

Q1 +Q2 +
P2,3

P2,2

Q3 (1.71)

Φ3

P3,3

=
P3,1

P3,3

Q1 +
P3,2

P3,3

Q2 +Q3 (1.72)

now we can derive the total currents (towards the infinity node) from the charges as

Itk = sQk for k = 1, . . . , 3 (1.73)

if we move the currents to the left hand side we get

It1 = s
Φ1

P1,1

− sP1,2

P1,1

Q2 − s
P1,3

P1,1

Q3 (1.74)

It2 = s
Φ2

P2,2

− sP2,1

P2,2

Q1 − s
P2,3

P2,2

Q3 (1.75)

It3 = s
Φ3

P3,3

− sP3,1

P3,3

Q1 − s
P3,2

P3,3

Q2. (1.76)
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Last equations allow the identification of two contributions: the self terms, which
can be modeled as currents flowing in capacitors with values

C1 =
1

P1,1

(1.77)

C2 =
1

P2,2

(1.78)

C3 =
1

P3,3

(1.79)

and the mutual coupling, that can be modeled by current controlled current sources
(CCCSs) as

If1 = s
P1,2

P1,1

Q2 + s
P1,3

P1,1

Q3 (1.80)

If2 = s
P2,1

P2,2

Q1 + s
P2,3

P2,2

Q3 (1.81)

If3 = s
P3,1

P3,3

Q1 + s
P3,2

P3,3

Q2. (1.82)

With the last definitions (1.74)–(1.76) can be rewritten as

It1 = sC1Φ1 − If1 (1.83)

It2 = sC2Φ2 − If2 (1.84)

It3 = sC3Φ3 − If3 . (1.85)

It can be seen that the three KCL (1.83)–(1.85) lead to the circuit in Fig. 1.2 where
the ground is the infinity node.
When the graph has more than three nodes, the k−th CCCS can be defined as

Ifk =
Ns∑
m=1
m 6=k

Pk,m
Pk,k

sQm =
Ns∑
m=1
m 6=k

Pk,m
Pk,k

Itm . (1.86)

The relation between mutual coupling currents, If , and total currents, It, can be
expressed in matrix form as

If = KIt (1.87)
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1
P1,1

Φ1 If1

Ic1

1

It1

1
P2,2

Φ2 If2

Ic2

2

It2

1
P3,3

Φ3 If3

Ic3

3

It3

Figure 1.2: Equivalent circuit model for electric field coupling.

where

K =


0 P1,2

P1,1
· · · P1,Ns

P1,1

P2,1

P2,2
0 · · · P2,Ns

P2,2

...
... . . . ...

PNs,1
PNs,Ns

PNs,2
PNs,Ns

· · · 0

 . (1.88)

In the same way we can express the relation between the potentials Φ and the self
induced effects Ic as

Ic = sΛΦ (1.89)

where

Λ =


1

P1,1
0 · · · 0

0 1
P2,2

· · · 0
...

...
...

...
0 0 · · · 1

PNs,Ns

 . (1.90)

1.2.2 Model for magnetic field coupling

The circuit model for the magnetic field coupling is obtained working on the branches
of Fig. 1.1. It is derived form equation (1.59) and after the Galërkin procedure is
expressed in matrix form from (1.64). For the considered example it writes as

Φ1 − Φ2 = R1 + sLp1,1I1 + sLp1,2I2 + V01 (1.91)

Φ2 − Φ3 = R2 + sLp2,2I2 + sLp2,1I1 + V02 . (1.92)
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1

R1 I1
Lp1,1 − +

sLp1,2I2

− +

V01

R2

2
I2

Lp2,2 − +

sLp2,1I1

− +

V02

3

Figure 1.3: Equivalent circuit model for magnetic field coupling.

where Lp2,1 = Lp1,2 . It can be noticed that the two KVL (1.91)–(1.92) describe the
circuit in Fig. 1.3.

1.2.3 PEEC equivalent circuit

At this stage the equivalent circuits for the electric and magnetic field coupling have
been drawn, the next process is to connect the equivalent circuits shown in Figs. 1.2
and 1.3. This is accomplished connecting the three pieces in Fig. 1.2 to the three
nodes 1,2 and 3 in Fig. 1.3. When the connection is performed the circuit in Fig.
1.4 is achieved.

1 R1 I1
Lp1,1 − +

sLp1,2I2

− +

V01

R22 I2
Lp2,2 − +

sLp2,1I1

− +

V02

3

1
P1,1

If1

It1

1
P2,2

If2

It2

1
P3,3

If3

It3

Figure 1.4: Equivalent circuit model for the simple example in Fig. 1.1.

1.2.4 Kirchhoff’s current and voltage laws in the equivalent

circuit

Once the equivalent circuit is generated, Kirchhoff’s current and voltage laws can
be enforced. As stated above the first set of equation comes from the KVL (1.64)

16



Chapter 1

applied to a mesh constituted by the resistive-inductive branch connecting each
couple of nodes and the capacitive branch connecting each node to infinity. For
practical reason, equation (1.64) is repeated here

−AΦ (s)−RI (s)− sLp (s) I (s)−V0 (s) = 0. (1.93)

The Kirchhoff’s current law (KCL) is enforced as a continuity equation. If we name
the set of branches currents I and that external current sources set Is, the KCL can
be written as

It (s)−AT I (s) = Is (s) (1.94)

where It is the set of currents defined in (1.73) and AT denotes the transpose matrix
A. Considering that the displacement currents It can be expressed as a function of
the potentials Φ as

Φ = PQ ⇒ It = sQ = P−1Φ (1.95)

it is possible to write

sP (s)−1 Φ (s) + YleΦ (s)−AT I (s) = Is (s) (1.96)

where Yle is the admittance matrix used to include lumped elements which might
eventually connect nodes (i.e. port admittances).

From the implementation point of view it may be desirable to avoid the matrix
inversion P (s)−1 because of its complexity (O(n3)). A possible solution is achieved
by premultiplying (1.96) with P (s), allowing to re-write the previous equation as

sΦ (s) + PYleΦ (s)−P (s) AT I (s) = P (s) Is (s) . (1.97)
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1.3 The partial elements

In section 1.2 we saw as the equivalent circuit can be built, by Galërkin procedure,
from the Maxwell equations (1.1)–(1.4). In this section we show how the values of
the partial elements (partial inductance, coefficients of potential and resistances),
which constitute the equivalent circuit, can be computed.

1.3.1 Partial inductances

In the most general condition, the evaluation of partial inductance between two cells
i and j requires the computation of double folded volume integral

Lpi,j (s) =
µ0

4πaiaj

∫
Vi

∫
Vj

e−sτ

|ri − rj|
ûi · ûj dVjdVi. (1.98)

The integral in (1.98) can be computed by numerical integration techniques, but the
time needed for performing accurately such integration makes this road impractical
sometimes. In many conditions, good results can be achieved assuming electrically
small objects, since the geometrical sizes are much smaller than the wavelength. In
such condition the exponential e−sτ → 1 and the quasi-static approximation can be
used

Lpi,j (s) ≈ L(qs)
pi,j

=
µ0

4πaiaj

∫
Vi

∫
Vj

1

|ri − rj|
ûi · ûj dVjdVi (1.99)

The analytical solutions of (1.99) for orthogonal geometries are available.
If the discretization matches the λmin/20 rule: max(dim) < λmin/20, being

max(dim) the maximum dimension of cells and λmin the minimum wavelength of
interest, a center to center approximation can be assumed and the partial inductance
can be computed as:

Lpi,j (s) ≈ µ0e
−sτcci,j

4πaiaj

∫
Vi

∫
Vj

1

|ri − rj|
ûi · ûj dVjdVi = L(qs)

pi,j
e−sτ

cc
i,j (1.100)

where τ cci,j is the center to center time delay between volume cells i and j. Such
approximation is accurate for sufficiently far apart domains, while it is poor for near
and adjacent domains.
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It has been recently considered in [30] the evaluation of partial elements, for rect-
angular coordinates, using special Taylor series expansions of Green’s function. The
results exhibit superior accuracy and speed compared to the conventional numerical
integration. To simplify the notation, we use

R = |ri − rj| =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (1.101)

This leads to the simpler notation of the partial inductance as:

Lpi,j(s) =
µ0

4πaiaj

∫
Vi

∫
Vj

e−sτ

R
ûi · ûjdVj dVi. (1.102)

The Taylor series of the exponential term around zero is

e−sτ =
∞∑
l=0

(− s
c
)l

l!
Rl ≈ 1− s

c
R +

s2

2c2
R2 − s3

6c3
R3 + . . . . (1.103)

This leads to the expanded version of (1.102) to be

Lpi,j(s) =
µ0

4πaiaj

N∑
l=0

[
(− s

c
)l

l!

∫
Vi

∫
Vj

Rl−1ûi · ûjdVj dVi
]

(1.104)

Assuming a λ/30 mesh, a preliminary analysis of the Taylor’s based expansions
described in this section compared to the numerical computation of the full wave
partial elements, has proven that the relative error remains smaller than 10−3 when
at least four coefficients are considered in the expansion. Hence, in the following
only four terms will be considered and partial inductance (1.104) reads

Lpi,j(s) ≈ Lp
(qs)
i,j + Lp

(1)
i,j (s) + Lp

(2)
i,j (s) + Lp

(3)
i,j (s) (1.105)

where the first term

Lp
(qs)
i,j =

µ0

4πaiaj

∫
Vi

∫
Vj

1

R
ûi · ûjdVj dVi (1.106)

is the conventional quasi-static partial inductance, and the remaining three terms
are

Lp
(1)
i,j (s) = −s

c

µ0

4πaiaj

∫
Vi

∫
Vj

ûi · ûjdVj dVi, (1.107)
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x

y

z

(xi{1}, zi{1})

(xi{2}, zi{2})

(xi{1}, yi{1})

(xi{2}, yi{2})

(xj{1}, yj{1})

(xj{2}, yj{2})

(xj{1}, zj{1})

(xj{2}, zj{2})

Vi

Vj

Figure 1.5: Partial inductance geometry for a pair of volume cells.

Lp
(2)
i,j (s) =

s2

c2

µ0

8πaiaj

∫
Vi

∫
Vj

Rûi · ûj dVj dVi, (1.108)

Lp
(3)
i,j (s) = −s

3

c3

µ0

24πaiaj

∫
Vi

∫
Vj

R2ûi · ûj dVj dVi. (1.109)

In what follows a brief review of partial inductances computations is presented.
A more detailed description of closed formula for partial inductances evaluation for
standard configurations can be found in [1, 31,32].

Mutual partial Inductances for orthogonal volume cells :
First of all, in order to avoid misunderstanding, we need to clarify what we mean
with orthogonal volume cells. For orthogonal volume cells we mean parallel paral-
lelepipeds, as the one shown in Fig. 1.5. The name orthogonal comes from the fact
that all the faces of the cells are orthogonal to one of the cartesian axis. As it can
be noticed from (1.99), because of the scalar product for orthogonal geometries the
partial inductances are 6= 0 only when the two versors associated with the cells are
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parallel to each other, or ûi = ûj. In such configuration the solution of (1.99) is

L(qs)
pi,j

=
µ0

4πaian

4∑
c1=1

4∑
c2=1

4∑
c3=1

7∑
h=1

(−1)c1+c2+c3 γh (c1, c2, c3) (1.110)

where

γ1 (c1, c2, c3) =
1

60

(
x4
c1

+ y4
c2

+ z4
c3
− 3x2

c1
y2
c2
− 3y2

c2
z2
c3
− 3x2

c1
z2
c3

)
R (c1, c2, c3) ;

γ2 (c1, c2, c3) =

(
y2
c2
z2
c3

4
− y4

c2

24
− z4

c3

24

)
xc1 log

(
xc1 +R (c1, c2, c3)

)

γ3 (c1, c2, c3) =

(
y2
c2
x2
c1

4
− y4

c2

24
− x4

c1

24

)
zc3 log

(
zc3 +R (c1, c2, c3)

)

γ4 (c1, c2, c3) =

(
z2
c3
x2
c1

4
− z4

c3

24
− x4

c1

24

)
yc2 log

(
yc2 +R (c1, c2, c3)

)
γ5 (c1, c2, c3) = −1

6
x3
c1
yc2zc3 tan−1

(
yc2zc3

xc1R (c1, c2, c3)

)
γ6 (c1, c2, c3) = −1

6
xc1y

3
c2
zc3 tan−1

(
xc1zc3

yc2R (c1, c2, c3)

)
γ7 (c1, c2, c3) = −1

6
xc1yc3z

3
c5

tan−1

(
xc1yc2

zc3R (c1, c2, c3)

)
(1.111)

being
R (c1, c2, c3) =

√
x2
c1

+ y2
c2

+ z2
c3

(1.112)

and

x1 = xi{2} − xj{2} x2 = xi{2} − xj{1} x3 = xi{1} − xj{1} x4 = xi{1} − xj{2}
y1 = yi{2} − yj{2} y2 = yi{2} − yj{1} y3 = yi{1} − yj{1} y4 = yi{1} − yj{2}
z1 = zi{2} − zj{2} z2 = zi{2} − zj{1} z3 = zi{1} − zj{1} z4 = zi{1} − zj{2}.

(1.113)
In equation (1.110) ai and aj are the surfaces orthogonal to the versors, ûi and ûn,
associated with the cells i and n respectively. Hence they depend on the direction
in space of the branches. If, for instance, we are computing the partial inductance
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for branches parallel to the x axis

ai = (yi{2} − yi{1}) (zi{2} − zi{1})
aj = (yj{2} − yj{1}) (zj{2} − zj{1})

(1.114)

Self Partial Inductance of orthogonal volume cells :
When the cell is like one of those depicted in Fig. 1.5, the solution above holds even
for the self term using the same cell for twice. In order to achieve better accuracy
when the aspect ratios of the cell are high the self term can be computed as

Lpi,i
L

=
2µ0

π
{ ω

2

24u

[
log

(
1 + A2

ω

)
− A5

]
+

1

24uω
[log (ω + A2)− A6] + (1.115)

+
ω2

60u
(A4 − A3) +

ω2

24
[log

(
u+ A3

ω

)
− A7] +

ω2

60u
(ω − A2) +

1

20u
(A2 − A4) +

+
u

4
A5 −

u2

6ω
arctan

(
ω

uA4

)
+

u

4ω
A6 −

ω

6
arctan

(
u

ωA4

)
+
A7

4
+

− 1

6ω
arctan

(
uω

A4

)
+

1

24ω2
[log(u+ A1)− A7] +

u

20ω2
(A1 − A4) +

+
1

60ω2u
(1− A2) +

1

60uω2
(A4 − A1) +

u

20
(A3 − A4) +

+
u3

24ω2

[
log

(
1 + A1

u

)
− A5

]
+

u3

24ω

[
log

(
ω + A3

u

)
− A6

]
+

+
u3

60ω2
[(A4 − A1) + (u− A3)]}

where
u = L/W, ω = T/W,

A1 =
√

1 + u2, A2 =
√

1 + ω2

A3 =
√
ω2 + u2, A4 =

√
1 + ω2 + u2

A5 = log
(

1+A4

A3

)
, A6 = log

(
ω+A4

A1

)
A7 = log

(
u+A4

A2

)
(1.116)

and L, T and W are length, thickness and width of the cell respectively.

Partial inductances for 2D rectangular cells :
When the structure is like the one in the example in Fig. 1.1 in Section 1.2, the
partial inductances can be computed as
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Wi

Li
Lij

Wj

Lj

Wij

C

Figure 1.6: Partial inductance cells for 2 D structures.

L(qs)
pi,j

=
µ0

4π

1

WiWj

4∑
k=1

4∑
m=1

(−1)m+k

4∑
h=1

γh (1.117)

where
γ1 = −1

6
(y2
m − 2C2 + x2

k)Rk,m

γ2 =
x2
k − C2

2
ym log (ym +Rk,m)

γ3 =
y2
m − C2

2
xk log (xk +Rk,m)

γ4 = −ymC xk arctan

(
xk bm
Rk,mC

)
(1.118)

being
Rk,m =

√
a2
k + b2

m + C2,

x1 = Wij − Wi

2
− Wj

2
, x2 = Wij + Wi

2
− Wj

2

x3 = Wij + Wi

2
+

Wj

2
, x4 = Wij − Wi

2
+

Wj

2

y1 = Lij − Li
2
− Lj

2
, y2 = Lij + Li

2
− Lj

2

y3 = Lij + Li
2

+
Lj
2
, y4 = Lij − Li

2
+

Lj
2
.

(1.119)

The geometrical meanings of all the lengths are shown in Fig. 1.6. Because of how
(1.117) has been written all the "L"s are parallel to the branches of the cells i and
j, while the "W"s are orthogonal to them.

Partial inductances of wires :
When two dimensions are much smaller than the third one (i.e. wires), 3D cells can
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be approximated as lines. In such hypothesis a closed formula for the mutual partial
inductance between parallel filaments with equal length exists.

L

D

i

j

Figure 1.7: Two parallel filaments.

L(qs)
pi,j

=
µ0

2π
L

log

L

D
+

√(
L

D

)2

+ 1

+
D

L
−
√(

D

L

)2

+ 1

 . (1.120)

A good approximation of the self partial inductance can be obtained by substituting
d with the radius r of conductors

L(qs)
pi,i

=
µ0

2π
L

log

L
r

+

√(
L

r

)2

+ 1

+
r

L
−
√( r

L

)2

+ 1

 . (1.121)

1.3.2 Coefficients of potential

The evaluation of coefficients of potential requires the computation of double folded
surface integrals as (1.49)

P`,m (s) =
1

4πε0S`Sm

∫
S`

∫
Sm

e−sτ

|r` − rm|
dSmdS`. (1.122)

As for partial inductances, the integral in (1.122) can be computed by numerical
integration techniques, and though the time needed for performing accurately such
integration is usually smaller than the one for partial inductances (since integrating
over surfaces is usually lighter than over volumes) this road can be impractical some-
times. As for partial inductances, in many condition good results can be achieved
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if assume to work with electrically small objects. In such condition the exponential
e−sτ → 1 and the quasi-static approximation can be used

P`,m (s) ≈ P
(qs)
`,m =

1

4πε0S`Sm

∫
S`

∫
Sm

1

|r` − rm|
dSmdS` (1.123)

For selected geometry closed-form solution equation (1.123) are available. This
allows to achieve good accuracy and fast evaluation for the coefficients of potential
of basic geometries, which can be used as building blocks of the model.

As before, if the discretization matches the λmin/20 rule, a center to center
approximation can be assumed and the coefficient of potential can be computed as:

P`,m (s) ≈ e−sτ
cc
`,m

4πε0S`Sm

∫
S`

∫
Sm

1

|r` − rm|
dSmdS` = P

(qs)
`,m e

−sτcc`,m (1.124)

where τ cc`,m is the center to center distance between volume cells ` and m.
Also the coefficients of potential can be approximated through a Taylor’s ex-

pansion of the exponential term inside the integral (1.122). Similarly to the partial
inductances, we simplify the notation using:

R = |r` − rm| =
√

(x` − xm)2 + (y` − ym)2 + (z` − zm)2 (1.125)

leading to:

P`,m (s) =
1

4πε0

1

S`Sm

∫
S`

∫
Sm

e−sτ

R
dSmdS` (1.126)

Applying the Taylor series expansion leads to

P `,m(s) =
1

4πε0S`Sm

∞∑
l=0

[
(− s

c
)l

l!

∫
S`

∫
Sm

Rl−1dSm dS`

]
. (1.127)

Similar to the partial inductance, a four term expansion results in

P`,m(s) ≈ P
(qs)
`,m + P

(1)
`,m(s) + P

(2)
`,m(s) + P

(3)
`,m(s) (1.128)

The first term of (1.127) is the usual quasi-static term:

P
(qs)
`,m =

1

4πε0S`Sm

∫
S`

∫
Sm

1

R
dSm dS` (1.129)
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Figure 1.8: Geometry for the evaluation of coefficient of potential for parallel surface
cells.

The other three elements are

P
(1)
`,m(s) = −s

c

1

4πε0S`Sm

∫
S`

∫
Sm

dSm dS`, (1.130)

P
(2)
`,m(s) =

s2

c2

1

8πε0S`Sm

∫
S`

∫
Sm

R dSm dS`, (1.131)

P
(3)
`,m(s) = −s

3

c3

1

24πε0S`Sm

∫
S`

∫
Sm

R2 dSm dS`. (1.132)

For each basic geometry a formulation for the evaluation of the partial coefficient
of potential is given. The interested reader may refer to [2,33] for a complete overview
of coefficients of potential computation. The two most basic configuration for the
surface cells involved in the computation of coefficients of potential can have two
different configurations, parallel and orthogonal.

Coefficients of Potential for parallel surface cells :
The graphical representation of two parallel surface cells is shown in Fig. 1.8. The
solution of (1.123) for such configuration is given by

P
(qs)
i,j =

1

4πε0SiSj

4∑
k=1

4∑
m=1

(−1)m+k

4∑
h=1

γh (1.133)
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Wj

Li

Wi

Hj

Lij

Wij

Cij

Figure 1.9: Geometry for the evaluation of coefficient of potential for orthogonal
surface cells.

where
γ1 = −1

6
(y2
m − 2C2 + x2

k)Rk,m

γ2 =
x2
k − C2

2
ym log (ym +Rk,m)

γ3 =
y2
m − C2

2
xk log (xk +Rk,m)

γ4 = −ymC xk arctan

(
xk bm
Rk,mC

)
(1.134)

being
Rk,m =

√
a2
k + b2

m + C2,

x1 = Wij − Wi

2
− Wj

2
, x2 = Wij + Wi

2
− Wj

2

x3 = Wij + Wi

2
+

Wj

2
, x4 = Wij − Wi

2
+

Wj

2

y1 = Lij − Li
2
− Lj

2
, y2 = Lij + Li

2
− Lj

2

y3 = Lij + Li
2

+
Lj
2
, y4 = Lij − Li

2
+

Lj
2

Si = WiLi Sj = WjLj.

(1.135)

The geometrical meanings of all the lengths are shown in Fig. 1.6.

Coefficients of Potential for orthogonal surface cells :
The second basic geometry made by two cells oriented perpendicularly to each

other is depicted in Fig. 1.9. The evaluation of the coefficient of potential in such
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configuration can be carried out with

P
(qs)
i,j =

1

4πε0SiSj

4∑
c1=1

2∑
c2=1

2∑
c3=1

(−1)c1+c2+c3

7∑
h=1

γh(c1, c2, c3) (1.136)

where
γ1(c1, c2, c3) = −yc2zc3

3
R(c1, c2, c3)
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2
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6

)
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2
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c2

6

)
yc2 log (cc3 +R(c1, c2, c3))
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6
arctan

(
yc2zc3
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)
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6
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(
xc1zc3
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)
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2
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2
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(
xc1yc2

zc3R(c1, c2, c3)
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(1.137)

being

R(c1, c2, c3) =
√
a2
c1

+ b2
c2

+ z2
c3
,

x1 = Wij − Wi

2
− Wj

2
, x2 = Wij + Wi

2
− Wj

2

x3 = Wij + Wi

2
+

Wj

2
, x4 = Wij − Wi

2
+

Wj

2

y1 = Lij + Li
2
, y2 = Lij − Li

2

z1 = Cij +
Hj
2
, z2 = Cij − Hj

2

Si = WiLi Sj = WjHj.

(1.138)

The geometrical meaning of the lengths is shown in Fig. 1.9.

Self Coefficient of Potential The evaluation of the partial self coefficient of
potential can be performed by a modified version of (1.115), which is used for the
evaluation of the partial self inductance for thin conductors, and it is

Pi,i =
1

4πε0L

2

3

{
3 log

[
u+ (u2 + 1)

1
2

]
+ u2 +

1

u
+

+3 u log

[
1

u
+ (

1

u2
+ 1)

1
2

]
−
[
u

4
3 +(

1

u
)
2
3

]
3
2

}
(1.139)

where u = L/W using the and L and W are as in Fig. 1.10.
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W

L

Figure 1.10: Rectangular conductor geometry for the evaluation of the self coefficient
of potential.

1.3.3 Partial Resistances

The partial resistances in the PEEC models account for the losses in the conduc-
tors. They are evaluated by applying the second Ohm’s Law at the volume cells
representing the branches of the equivalent circuit. For the i branch it yields

Ri =
`i
aiσi

(1.140)

where `i is the length of the volume cell in the current direction, ai is the cross
section normal to the current direction, and σi is the conductivity of the volume cell
material.

A more general approach to the computation of partial elements for non-orthogonal
geometries can be found in [24,34].
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1.4 Dielectrics Modeling in PEEC

The key idea for modeling dielectrics is to represent the displacement current due
to the bound charges for dielectrics with εr > 1 separately from the conducting
currents due to the free charges. Maxwell’s equation for the displacement current is
written as

∇ ·E =
qF + qB

ε0

(1.141)

where qF is the free charge and qB is the bound charge due to the dielectric regions.
Thus, the global charge is qT = qF + qB.

The dielectric volumes can be taken into account in terms of the polarization
current density associated with their presence. This can be accomplished by adding
and subtracting the displacement current in the background medium

ε0
∂E(r, t)

∂t
(1.142)

in the right hand side of the Maxwell equation for the rotor of H [35] as

∇×H(r, t) = JC(r, t) + ε0εr
∂E(r, t)

∂t
=

= JC(r, t) + ε0(εr − 1)
∂E(r, t)

∂t
+ ε0

∂E(r, t)

∂t
. (1.143)

In the last equation it is possible to notice that we have 3 different current contri-
bution, the first is the conductivity current JC , the last is the background medium
displacement current and the second is the excess displacement current because of
the dielectric medium. We can define a total current in the equation (1.143) which
takes into account both the electric current related to the conductivity of the medium
and the polarization current due to the dielectrics

JT (r, t) = JC(r, t) + ε0(εr − 1)
∂E(r, t)

∂t
= JC(r, t) + JD(r, t). (1.144)

The magnetic vector potential at point r, given in (1.21) writes as

A (r, t) =
µ0

4π

∫
V ′

JT (r′, t′)

|r − r′| dV
′. (1.145)
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For points located inside conductors (1.28) reads

E0 (r, t) =
JC(r, t)

σ
+
∂

∂t

µ0

4π

∫
V ′

JC(r′, t′)

|r − r′| dV
′ + (1.146)

+ε0(εr − 1)
µ0

4π

∫
V ′

1

|r − r′|
∂2E(r′, t′)

∂t2
dV ′ +∇Φ (r, t)

it can be noticed that when εr = 1 (1.146) is as in the regular case of conductors
seen before. At a point r inside a dielectric region with relative permittivity εr

(1.28) becomes

E0 (r, t) = E (r, t) +
∂

∂t

µ0

4π

∫
V ′

JC (r′, t′)

|r − r′| dV
′ + (1.147)

+ ε0(εr − 1)
µ0

4π

∫
V ′

1

|r − r′|
∂2E(r′, t′)

∂t2
dV ′ +∇Φ (r, t)

where Φ (r, t) is

Φ (r, t) =
1

4πε0

∫
S′

qT (r′, t′)

|r − r′| dS
′ r ∈ S ′. (1.148)

It can be observed that the electric field at a point r, E(r), is determined by the
first time derivative of the current density distribution JT (r, t), the gradient of the
electric scalar potential ∇Φ (r, t) but also by the second derivative of the electric
field itself ∂2E(r′, t′)/∂t2.

As stated before, the charges qF , qB and qT are on the surface of the conductors
and dielectrics while the currents flow through volumes. The continuity equation
cannot be enforced as in the conventional moment type solutions [14]

∇ · JT +
∂qT

∂t
= 0 (1.149)

but it will be implemented in the form of Kirchhoff’s current law enforced to each
node. Thus, within each conductor and each homogeneous block of dielectric it
follows that

∇ · JC(r) = 0 (1.150)

∇ · JD(r) = 0. (1.151)
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Furthermore, on each conductor and dielectric the current normal to the surface
causes accumulation of surface charge

n̂ · JC(r) =
∂qF

∂t
(1.152)

n̂ · JD(r) =
∂qB

∂t
. (1.153)

On the surface between touching conductor and dielectric blocks, equation (1.152)
becomes

n̂ · JT (r) =
∂qT

∂t
. (1.154)

Let’s refer to Fig. 1.11. It is possible to divide the conductors and dielectrics
into blocks for which the conduction or displacement currents are assumed to be
uniform. Further, the surfaces of conductors and dielectrics are completely laid out
with panels to represent free and bound charges, respectively.

d

g

bb

a

Figure 1.11: Cell structure for finite conductors and dielectrics.

Cells α and β represent conductors and free charge qF is located on their surfaces.
Dielectric cell γ is an internal cell and has no outside surface; there is no charge
on its surface; finally, dielectric cell δ is on the surface of the dielectric body and
presents bound charge qB on its surface. In the following it will be referred to the
total charge qT to be general.
The vector quantities can be represented in terms of the Cartesian coordinates.
For this case the vector quantities are J = Jxx̂ + Jyŷ + Jzẑ and E = Exx̂ +
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Eyŷ + Ezẑ. The three integral equations are identical in form with the exception
of the space directions x, y and z. It is possible to consider cells in the y-direction
only, without loss of generality Equations (1.146) and (1.147) become three coupled
integral equations. Vectors r and r′ indicate the point where the electric field is
evaluated and where the source, current or charge, is located, respectively.
Two different cases must be considered depending on the location of the field point
r. In the first case the field point r is located in a conductor, in the second one it
is within a dielectric block.
Let’s assume first that r is located inside a conductive cell and no external field E0

exists: equation (1.146) applied to the conductor cell α is

JCy (r, t)

σα
+
∂

∂t

µ0

4π

∫
Vα′

JC(r′, t′)

|r − r′| dV
′
α +

∂

∂t

µ0

4π

∫
V ′β

JC(r′, t′)

|r − r′| dV
′
β +

+ ε0(εγ − 1)
µ0

4π

∫
V ′γ

1

|r − r′|
∂2Ey(r

′, t′)

∂t2
dV ′γ + (1.155)

+ ε0(εδ − 1)
µ0

4π

∫
V ′δ

1

|r − r′|
∂2Ey(r

′, t′)

∂t2
dV ′δ +

1

4πε0

∫
S′α

∂

∂y

1

|r − r′|q
T (r′, t′)dS ′α +

+
1

4πε0

∫
S′β

∂

∂y

1

|r − r′|q
T (r′, t′)dS ′β +

1

4πε0

∫
S′δ

∂

∂y

1

|r − r′|q
T (r′, t′)dS ′δ = 0

where σα represents the electrical conductivity of cell α.
Applying the Galerkin solution each single term of (1.155) has a circuit interpre-
tation. In the following it is assumed that density current JCy is uniform across
the cross section aα of cell α. Further, for the sake of simplicity, the quasi-static
assumption will be used, e.g. t = t′, thus neglecting the delay due to the speed of
light in the background medium. The first term of (1.155) represents the voltage
drop across the resistance of the cell α

1

aα

∫
Vα

JCy (rα, t)

σα
dVα =

1

aα

∫
aα

∫
lα

JCy (rα, t)

σα
daαdlα = ρα

lα
aα

(aαJ
C
y ) = RαI

C
y .

(1.156)
The second term is the voltage drop across the self inductance of the cell α(

µ0

4πaαaα

∫
V ′α

∫
Vα

1

|rα − r′α|
dV ′αdVα

)
d

dt
(aαJ

C
y ) = Lpα,α

dICy
dt

. (1.157)
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This allows to identify the self partial inductance of cell α as

Lpα,α =
µ0

4πaαaα

∫
V ′α

∫
Vα

1

|rα − r′α|
dV ′αdVα. (1.158)

Following the same procedure it is possible to recognize in the third term of (1.155)
the mutual partial inductance between the conductor cells α and β

Lpα,β =
µ0

4πaαaβ

∫
Vα

∫
Vβ

1

|rα − rβ|
dVαdVβ. (1.159)

The fourth and fifth terms model the coupling among the conductor cell α and
dielectric cells γ and δ: as clearly seen, although the different nature of materials,
such term still represents an inductive coupling

ε0(εγ − 1)
µ0

4πaα

∫
Vα

∫
V ′γ

1

|rα − r′γ|
∂2Ey(r

′
γ, td)

∂t2
dV ′γdVα = (1.160)

=

(
µ0

4πaα

∫
Vα

∫
Vγ

1

|rα − r′γ|
dV ′γdVα

)
d

dt

(
aγε0(εγ − 1)

dEy
dt

)
= Lpα,γ

dIPy
dt

where the polarization current IPy appears. Again, the mutual partial inductance
between cells α and γ can be evaluated by means of the same formula (1.159). The
same consideration apply to the fifth term.
The last three terms of (1.155) describe the electric field produced in cell α by the
charge located on the surface of cells α, β and δ. It is worth pointing out that the
coefficients of potential describing such couplings are the same as in the free space.
Let’s consider what happens when the point r is located inside a dielectric cell γ;
equation (1.147) becomes

Ey(r, t) +
µ0

4π

∫
V ′α

K(r, r′)
∂JCy (r′, td)

∂t
dV ′α +

µ0

4π

∫
V ′β

K(r, r′)
∂JCy (r′, td)

∂t
dV ′β

+ ε0(εγ − 1)
µ0

4π

∫
V ′γ

K(r, r′)
∂2Ey(r

′, td)

∂t2
dV ′γ +

+ ε0(εδ − 1)
µ0

4π

∫
V ′δ

K(r, r′)
∂2Ey(r

′, td)

∂t2
dV ′δ +

+
1

4πε0

∫
S′α

∂K(r, r′)

∂y
qT (r′, t)dS ′α +

1

4πε0

∫
S′β

∂K(r, r′)

∂y
qT (r′, t)dS ′β +

+
1

4πε0

∫
S′δ

∂K(r, r′)

∂y
qT (r′, t)dS ′δ = 0. (1.161)
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The Galerkin’s testing procedure is applied leading to find the corresponding equiv-
alent circuits. The integration of the first term in (1.161) allows to define a voltage
drop across a volume dielectric cell

1

aγ

∫
aγ

∫
`γ

Ey(r, t)d`γdaγ =
1

aγ
aγ`γEy(t) = vcγ . (1.162)

A polarization current flows through the dielectric cell γ

IPOLy = JPOLy aγ =

(
ε0(εγ − 1)

dEγ
dt

)
aγ =

(
ε0(εγ − 1)

dEγ
dt

)
`γ
`γ
aγ =

=
d

dt

[(
ε0(εγ − 1)aγ

`γ

)
(`γEy)

]
= Ce

dvcγ
dt

(1.163)

where the capacitance Ce, named excess capacitance, is defined as

Ce =
ε0(εγ − 1)aγ

`γ
. (1.164)

The second and third terms in (1.161) describe an inductive coupling. The fourth
term allows to define the partial self inductance of dielectric cell γ

ε0(εγ − 1)
µ0

4π

1

aγ

∫
Vγ

∫
V ′γ

K(rγ, r
′
γ)
∂2Ey(rγ, td)

∂t2
dV ′γdVγ = (1.165)

=

(
µ0

4π

1

aγaγ

∫
Vγ

∫
V ′γ

K(rγ, r
′
γ)dV

′
γdVγ

)
d

dt

(
aγε0(εγ − 1)

dEy
dt

)
= Lpγ,γ

dIPOLy

dt
.

The last term allows to evaluate the mutual partial inductance between dielectric
cells γ and δ

Lpγ,δ =
µ0

4πaγaδ

∫
Vγ

∫
V ′δ

1

rγ − r′δ
dV ′δdVγ. (1.166)

Again, the last three terms are analogous to those evaluated in the free space. To
summarize, ideal (lossless) dielectrics are modeled by volume cells characterized by
the excess capacitance in series to the equivalent circuit for the inductive coupling
described in terms of self and partial inductances, computed in free space. Fig. 1.12
shows the PEEC equivalent circuit of a dielectric bar assuming Nv = 2, Ns = N = 3.

35



Chapter 1

1
Ce1

I1
Lp1,1 − +

sLp1,2I2

− +

V01

Ce2
2 I2

Lp2,2 − +

sLp2,1I1

− +

V02

3

1
P1,1

If1

It1

1
P2,2

If2

It2

1
P3,3

If3

It3

Figure 1.12: PEEC equivalent circuit for dielectrics.

More recent PEEC models of dispersive and lossy dielectrics have been proposed
in [11,36–38].

1.4.1 External incident Electric Fields

In the analysis of EMC problems the excitation can be represented by current,
voltage-sources and external electric fields as well. The incorporation of incident
fields in the PEEC method is explained in detail in [39] where a source equivalence,
V0, is derived from the left hand side in (1.28). The equivalent voltage source, V0,
is placed in series with each inductive volume cell equivalent circuit and calculated
for a volume cell m using

V0m(t) =
1

am

∫
am

∫
`m

Ei(r, t)da dl (1.167)

where
Ei(r, t) = Ei

x(r, t)x̂+ Ei
y(r, t)ŷ + Ei

z(r, t)ẑ. (1.168)
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1.5 Solution of PEEC models

PEEC models, as circuit problems, can be solved in both frequency and time domain.
One of the advantages of such method is that most of the numerical techniques
developed for circuits problem can be efficiently used. Moreover, as stated previously,
because of the circuital interpretation the PEEC models can be easily solved by
SPICE-like softwares.

1.5.1 Frequency domain

A PEEC frequency domain solver can be obtained just collecting equations (1.93)
and (1.94). Omitting for simplicity the presence of dielectric materials (dielectric
branches), we have:[

−A − (R + sLp(s))

Yle + sP−1(s) −AT

]
·
[

Φ(s)

I(s)

]
=

[
V0(s)

Is(s)

]
. (1.169)

Solution of dense linear systems

An efficient and accurate solution of the linear system (1.169) is extremely important
for the performance of the PEEC solver. The most common technique to solve
linear systems is the LU decomposition [40]. Although elegant such method is not
practical for solving large and dense linear systems as its complexity is O(n3), being
n the number of the unknowns. It is much more convenient to use Krylov subspace
iterative methods [40]. Many different implementation variants are available; the
most popular is GMRES [41] whose complexity is O(n2) as requires matrix-vector
products and converges in a very small number of iterations if an efficient pre-
conditioner is used. Furthermore, the matrix-vector product can be accelerated
by using fast-multipole techniques [42–45] or precorrected-FFT methods [46] which
may reduce the complexity to O(n log(n)).
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1.5.2 Time domain

The development of time domain PEEC solver needs to consider the delay in the
coupling terms. In order to keep things easy let us assume that partial inductances
and coefficients of potential are evaluated as static coefficients, by (1.99) and (1.123).
If such assumption is not made, the mutual coefficients lead to the Delay Differential
Equation of the Neutral Type (NDDE) because of the finite propagation time in the
physical spacing between the cells. From (1.169), the time domain form for quasi
static condition can be achieved as[

−A −
(
R + Lp

d
dt

)
Yle + P−1 d

dt
−AT

]
·
[

Φ(t)

i(t)

]
=

[
v0(t)

is(t)

]
. (1.170)

The same system can be expressed in descriptor state-space form as:[
0 −Lp

P−1 0

][
Φ̇(t)

i̇(t)

]
+

[
−A −R

Yle −AT

][
Φ(t)

i(t)

]
=

[
v0(t)

is(t)

]
(1.171)

or more compactly
C ẋ(t) + Gx(t) = Bu(t). (1.172)

When the delays are included using the center to center approximation introduced
in (1.100) and (1.124) the propagation time between the cells m and n as given by

t′m,n = t− |rm − rn|
c

= t− τ. (1.173)

The mutual inductive coupling between those cells takes the form

vm,n = Lpm,n
din(t′m,n)

dt
(1.174)

being Lpm,n the mutual partial inductance. The capacitive coupling, whose general
form is Φ (s) = PQ (s) where P (s) is the coefficient of potential matrix, is affected
in the exact same way. The equation describing the total current flowing from the
node k to the infinity node changes as

itk(t) =
1

Pk,k

∂Φk

∂t
−

Ns∑
m=1
m 6=k

Pk,m
Pk,k

icm(t′k,m) (1.175)
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where ick is the total capacitive current for cell k. It is possible to assign more than
one delay for each cell pair leading to potentially multiple distances Rk,m between
points on two cells k and m.

The above formulation for a linear PEEC circuit consisting of PEEC models,
using the Modified Nodal Analysis (MNA) technique [47], can be written as the
following NDDE

C0 ẋ + G0x =
∑
i

Gi x(t− τi) +
∑
i

Ci ẋ(t− τi) + Bu(t) (1.176)

where C0 and G0 represent non-delayed part of the system, while Ci and Gi are
the elements having delay equals to τi. Finally, B is the input selector matrix and
u are the inputs or forcing voltages and currents. The resulting electromagnetic
and circuit (EM/Ckt) problem can be extremely large where the Lp and P coupling
coefficients matrices are dense and very large. However the solution of the left
hand part is importantly very sparse since it contains only the non-retarded part or
the slightly retarded part of the matrix, depending on the time step h. In a time
domain solver, the couplings have to be computed by picking up values in the past,
delayed by the appropriate τ for the time domain from stored waveforms. Hence,
the couplings are already known and the values are stamped into the known right
hand side of the system rather than the MNA circuit coefficient matrix. The basic
solution complexity is O(n2) where n is the system size.

One of the most important aspects which at present reduces the generality of
the time domain approach is the long time stability of the solution. Improvements
to the stability have been made over thirty years by numerous researchers. In [48],
the general stability issue with full-wave time domain integral equation solution is
described. Since then, much more progress has been made on the stability issue. For
example. the impact of the delay points on the conductors was studied in [49] and
the introduction of further delay points or cell subdivisions of the conductors on the
stability issue was considered for PEEC models in [50]. A refinement strategy for
the delay assignment is presented in [51]. More recently the stability of quasi-static
PEEC models has been investigated [52].

The choice of the numerical integration method is very important for several
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aspects of the solution. Early work on the solution of time domain electromagnetic
integral equation solvers used explicit methods [48]. However, it became clear that
explicit forward Euler type methods could only lead to stable solutions for very spe-
cial cases and for extremely small time steps. For this reason, several researchers
started to employ implicit methods for the time domain PEEC methods which are
especially suited for this type of problem, e.g., [53, 54]. One of the key consider-
ations for the choice of the method is the behavior of the stability function R(z)

where z = λh, λ is the eigenvalue and h is the time step [55]. It is clearly required
that the stability functions which decay with z →∞. This is evident from the last
section since there are several mechanisms in the model to dampen the amplitude
above fM such that a strong feedback reduction occurs without impacting the solu-
tion behavior below fM . Three methods which are well suited for the task are the
backward Euler method, the θ method for θ > 0.5, and the Lobatto III-C method.
In fact, the Lobatto III-C method decays as 1/(z2), which is very desirable. How-
ever, as shown below, the size of the system matrix is a factor 2 larger than for the
θ or the BE methods. The frequently used trapezoidal rule was shown to be one of
the worst methods for these systems [54]. The stability function of the BE formula
decays asymptotically as 1/(z), which is also very desirable. NDDE equations can
be solved by an adaptation of the RK methods for ODEs, e.g., [56]. Finally, it is
also to be pointed out that the solution of (1.176) can be accelerated by means of
the fast multipole method and multi-function techniques [17, 45,57].
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Inverse Laplace Transform techniques

In the last decades, time domain (TD) methods have found an increasing employ-
ment in electromagnetic (EM) simulations. The reasons for that are various and
very different from each other. The most practical of them is connected to the com-
putational efficiency: standard TD differential equations based simulations are able
to produce broadband data in the frequency domain (FD) from a single run in the
TD. Essentially, for implicit time marching methods, this fact is due to the struc-
ture of the system of equations that has to be solved, being necessary to perform the
inversion of the system only one time. The corresponding frequency response can
then be easily obtained through the Fourier Transform applied to the TD data. The
same is not valid for FD solvers, since the inversion is necessarily repeated for each
frequency sample in the band of evaluation. For this reason, using direct FD solvers,
the computational complexity is highly connected to the number of frequency sam-
ples of interest within the selected band. The employment of TD analysis methods
is also dictated by the increase of semiconductor elements in electronic circuits. The
non-linear behavior of such elements makes it not possible a FD analysis, only ap-
plicable to linear models. On the other hand, TD resolution methods permit to
directly incorporate those elements in the analysis, leading to global, complete TD
models.

Nowadays, a growing complexity in integrated circuit technology is observed, due
to the need of smaller structures, higher density of components and higher operating
frequencies, leading to strongly coupled electrically long structures. For this reason,
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the modeling and simulation of modern devices has become a critical stage in the
design process. In this framework, it is clear that full-wave simulation tools are
more and more required. In the PEEC method, the full-wave nature of the model is
embedded in the partial elements, since they express the electric and magnetic cou-
plings involved in the EM behavior of the structure. In this sense, a quasi-full-wave
model can be reached introducing the center to center propagation delays in par-
tial elements described in (1.100) and (1.124), obtaining the NDDE-TD formulation
described in (1.176). Such kind of differential equations can be numerically solved
using standard discretization techniques like the Gear’s method, the trapezoidal rule
(TR) and the backward Euler (BE) [58], in conjunction with an appropriate strat-
egy able to manage the propagation delays [59]. However, the approximation of
the model propagation delays is often the source of late-time instabilities showing
up in the TD solutions obtained with standard time-stepping solvers [60]. Precise
measures for their prediction and management have not yet been investigated and
the finding of a systematic relation between the instabilities and the approximation
degrees employed in the propagation delays representation is still an open issue.
Effectively, the exact prediction of the instability behavior of a given PEEC model
can be reasonably performed only when dealing with small problems, since a study
of the poles of the MNA matrix has to be implemented [61]. In this framework, to
circumvent the problem, several studies have been conducted about the employment
of Inverse Laplace Transform (ILT) techniques in IE solvers. For the already cited
reasons, in the context of this doctoral project, ILT techniques have been applied
for the first time to PEEC retarded models.

Technically, all the ILT techniques are based on the approximation of the well
known inverse Laplace integral expressed as:

x(t) =
1

j2π

∫ γ+j∞

γ−j∞
X(s)estds (2.1)

Where γ > Re(pk)∀pk, where pk are the poles of X(s), being x(t) a time dependent
function and X(s) its Laplace transform, and the complex exponential est is the
kernel of the inverse transformation. The analytical solution is possible only for a
limited set of cases. In general, the integral in (2.1) has to be performed in the
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complex plane and this requires considerable analytical efforts that could lead to
closed-form solutions only for a restricted class of functions. Fortunately, many ap-
proximation algorithms widely used in engineering modeling applications have been
proposed in the last century. Among them, we remind the Weeks method (1966) [62],
the Dubner-Abate method (1968) [63], the Stehfest method (1970) [64] (widely used
in groundwater flow and petroleum reservoir applications) and the Durbin method
(1974) [65]. A detailed comparison and description of all the approximate Laplace
inverse transform methods was provided by B. Davies and B. Martin in [66] (1979).
As pointed out in [67], it is difficult to recommend just one inversion method, since
the performance is strictly dependent on the function type and, hence, on the ap-
plication.

In the field of TD EM modeling and circuit simulation, there are two methods
that have shown the best compromise between computational efficiency and accu-
racy:

• the Numerical Inversion of the Laplace Transform method (NILT) was pro-
posed by M. Nakhla, K. Singhal and J. Vlach in 1973 [68] and is based on the
Padé approximation of the kernel in (2.1);

• the method proposed by Hosono in 1981 [69], more recently referred to as the
Fast Inverse Laplace Transform (FILT) method, is based on the approximation
of the kernel in (2.1) by a trigonometric hyperbolic function.

Although these two methods are suitable for both EM and circuit modeling areas,
the former has become more popular in TD circuit analysis and the latter in the
transient EM modeling of antennas and microwave devices. Moreover, the NILT/-
FILT techniques represent a valid alternative to the well-established Inverse Fast
Fourier Transform (IFFT) method. Indeed, in order to restore aberrations-free TD
results starting from an FD (s = jω) discrete representation of a given system, it is
required to compute the system response solution over a pertinent frequency range
using an appropriate number of frequency samples on the imaginary axis of the com-
plex plane. These requirements often lead to significant computational efforts. On
the contrary, NILT/FILT techniques return the TD response by taking advantage
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of Cauchy’s theorem that requires computing the response only on the singulari-
ties of the kernel. This implies that a reduced number of computations need to be
performed in the complex plane.

This chapter is devoted to the presentation of the main results obtained through
the employment of the two mentioned ILT techniques (NILT and FILT) to PEEC
models. The main features of the NILT technique and its application to PEEC mod-
els are presented in Sec. 2.1 and 2.2, respectively. Subsequently, the computational
advantages brought by the improvement of NILT, called NILTn, are discussed in
Sec. 2.3. Finally, the description and the application of FILT to PEEC models are
widely described in Sections 2.4 and 2.5 .
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2.1 The Numerical Inversion of the Laplace Trans-

form for circuit transient analysis

As mentioned before, the NILT technique is based on the approximation of the
exponential kernel in (2.1) through its Padé approximant [70], leading to:

xN,M(t) =
1

j2πt

∫ γ+j∞

γ−j∞
X
(z
t

)
EN,M(z)dz (2.2)

where the change of variable z = st is assumed, being xN,M(t) the approximated
TD circuit output of interest. The exponential function ez in NILT is approximately
evaluated using Padé functions of the usual form

ez ≈ EN,M(z) =
PN(z)

QM(z)
=∑N

i=0(M +N − i)!(
(
N
i

)
)zi∑M

i=0(−1)i(M +N − i)!(
(
M
i

)
)zi

=
M∑
i=1

Ki

z − zi

(2.3)

where PN(z) and QM(z) are polynomials of order N andM ≥ N+2, respectively; zi
andKi denote the poles and residues of the rational function PN (z)

QM (z)
, respectively. It is

possible to demonstrate that the Padé approximant EN,M(z) has the firstM+N+1

terms of its Taylor’s expansion exactly equal to the Taylor’s expansion of ez [71].
The choice M = N + 2 has been shown to guarantee the solution stability [72]. By
enclosing the integral along on the infinite arc in the right-half plane, we avoid the
need to know the specific locations of the poles of the circuit. Only the poles of
the Padé approximation of e(z) contribute to the value of the integral. A sufficient
condition for the integral along the semicircle infinite arc in the right-half plane
to vanish is that M >= N + 2. As far as this condition is satisfied, the integral
on the arc has no effect on the accuracy of NILT. It is important to mention that
the Padé approximation has to be programmed only once with high accuracy for
variable degrees. Hence, the same formulation can be used for different problems.
Finally, the integral (2.2) is evaluated using closed path Cauchy integration around
the poles of EN,M(z) in the right half plane and xN,M(t) can be evaluated as

xN,M(t) = −1

t

W∑
i=1

Re{KiX
(zi
t

)
} (2.4)
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where

W =

M/2, if M is even

(M + 1)/2 if M os odd.
(2.5)

When M is odd eq. (2.4) can also be expressed as:

xN,M(t) = −1

t

M−1
2∑
i=1

2Re{KiX
(zi
t

)
} − 1

t
K0X

(z0

t

)
(2.6)

because the residue-pole duo (K0, z0) is real, while the others couples are complex-
conjugate [72]; In the Padé approximation, M = 3 to 8 poles are usually sufficient
to accurately estimate a time response. In what follows, M will be taken as even
assuming that odd values can be treated in a similar manner. Since, the Padé
approximation of the exponential function in terms of rational function of orderN/M
matches the first (N +M + 1) terms of the Taylor series expansion, higher values of
M and N lead to better accuracy on the TD. However, this comes at the expense
of increasing the computational cost. As can be seen from Eq. (2.4), evaluation
of the response at a given time point requires computing the frequency response at
M/2 complex frequencies. ThoseM/2 points are pre-specified, problem-independent
points in the complex-domain, namely, points that coincide with the poles of the
rational function of EN,M(z). It is also to be noticed that the evaluation at a specific
time does not depend on the response at previous time points. This is fundamentally
different for time-stepping algorithms where the evaluation of previous time points
are used to evaluate the next time-point. Of course, time-stepping results in an
accumulation of errors with time.

For illustrative purposes, in Fig. 2.1 are reported two different sets of poles of
the kind zi/t: s6 and s12, corresponding respectively to the choices: M = 6 and
M = 12, with N = M − 2. The two sets are computed over the same generic time
interval: [1 − 5] ns. It is clear that, fixing a time sample, the higher is the integer
M , the wider is the bandwidth covered by the set of poles. Moreover, it is to be
noticed that going forward with the evaluation time, the bandwidth covered by each
set tends to shrink around the origin of the complex plane.

The main drawback of the technique is that the achieved inversion formula (2.4)
is very accurate for small values of time, but errors grow with time. This advantage
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Figure 2.1: Two Padé poles sets moving in the complex plane as the evaluation time
increases.

is shown by the error formula [72]

x(t)− xN,M(t) = ΨN,M
dN+M+1

dtN+M+1
x(t)

∣∣∣∣
t=0

tN+M+1 +O(tN+M+2) (2.7)

where:
ΨN,M =

(−1)MM !N !

(M +N)! · (M +N + 1)!
(2.8)

Moreover, by the inspection of (2.7) it is clear that the error is related to the shape
of the function that has to be inverse-transformed, being more severe when dealing
with functions with small rising times or exhibiting a marked impulsive nature. As
discussed earlier, the higher the parameter M (and hence N) is chosen, the smaller
the error will be, and this is clearly reflected also in (2.7). Unfortunately, it is
not feasible to employ arbitrarily large values of M without that rounding errors
in the residues Ki affect significantly the solution. This issue is easily explained
through a simple example regarding the NILT-based computation of the function
f(t) = sin(ωt), with ω = 6.28 · 109 rad/s. In Fig. 2.2 it is shown that employing
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M = 24 for the inverse transform guarantees a good accuracy until to 6 ns but is
not enough for larger times. In order to preserve the accuracy over the entire time
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-0.5

0

0.5

Figure 2.2: NILT-based computation of the sin function.

window, an option is to increase further the number of terms in the summation
(2.4) choosing M = 28, but round errors in the high Padé residues blow up the
solution (in this case the NILT results are scaled by a 10−11 factor). Hence, for this
example, the choice is limited to values M < 28. Obviously, this is valid for general
inverse Laplace transforms: every inversion has its expansion limit when approached
through the Padé method.
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2.2 The Numerical Inversion of the Laplace Trans-

form applied to PEEC models

In the previous chapter it has been shown that collecting the PEEC circuit equations,
written in the Laplace domain assuming zero initial conditions, it is possible to
obtain the following compact matrix MNA representation:[

−A − (Z(s) + sLp(s))

Yle + sP−1(s) −AT

]
·
[

Φ(s)

I(s)

]
=

[
V0(s)

Is(s)

]
. (2.9)

It is to be remarked that Z(s) is the generalized impedance diagonal matrix ac-
counting for the self impedance of the volume branches both of the conductor and
the dielectric type. Therefore, depending on the nature of the branch i, the ith di-
agonal entry Zi(s) will be described by a resistive or a capacitive impedance. Hence,
decomposing the matrix, we can write:

Z(s) = R +
1

s
C−1
d (2.10)

being R the resistances matrix and Cd the excess capacitances matrix.
Such kind of representation results in an algebraic system of equations that can

be schematized as:

A(s)X(s) = U(s) (2.11)

being A(s) the characteristic matrix of the system, X(s) the unknowns vector and
U(s) the vector containing the sources acting on the system.

As long as it is desired to obtain the TD vector x(t) associated to its Laplace
counterpart X(s) in an assigned time window of evaluation, it is clear that, accord-
ing to (2.4), for each time sample t it is required a number of M/2 evaluations of
the system (2.11) on the complex plane, over known points defined by the Padé
poles. Hence, the computational complexity appears to be strictly connected to the
number of time samples employed. On the other hand, we have seen that, unlike
time-stepping solvers, using NILT the number of samples involved in the computa-
tion (and hence the time-step) does not affect the accuracy of the obtained solution.
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In operational terms, the inversion algorithm can be built on a digital computer
by a slight modification of a yet existing program for frequency domain analysis of
linear networks, without disposing particular structural changes. Moreover, since
each complex plane evaluation is entirely independent from the others, the process
is "embarassingly parallel", that is it is possible to resort to the parallel calculus
subdividing the entire computation in work packages and delivering each work pack-
age to a "worker". The maximum number of workers that work in parallel on each
work package depends on the number of cores of the digital computer.

For analysis purposes, it is useful to arrange the system (2.9) in the standard
descriptor form. This can be accomplished introducing a new variable vector Vd(s)

containing the capacitive voltage drops across the volume dielectric cells and noting
that 1

s
C−1
d I(s) = ΓTVd(s), being Γ a matrix introduced to select the dielectric

branches from the entire set of branches. Following this procedure and assuming
zero initial conditions it is immediate to obtain from (2.9):

s


0 −Lp (s) 0

P−1 (s) 0 0

0 0 Cd


︸ ︷︷ ︸

C(s)

·


Φ (s)

I (s)

Vd (s)


︸ ︷︷ ︸

X (s)

= −


−A −R −Γ

Yle −AT 0

0 −ΓT 0


︸ ︷︷ ︸

G

·


Φ (s)

I (s)

Vd (s)


︸ ︷︷ ︸

X (s)

(2.12)

+


Inn 0 0

0 Inb 0

0 0 0


︸ ︷︷ ︸

B

·


V0 (s)

Is (s)

0


︸ ︷︷ ︸

U(s)

which can be formalized in a more compact form as:

sC (s) · X (s) = −G · X (s) + B ·U (s) (2.13)

where C(s) is generally a complex frequency dependent matrix including the poten-
tial coefficients P(s), the partial inductances Lp(s) and the excess capacitances Cd.
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Also, the matrix G contains the connectivity matrix A and matrices R and Yle rep-
resent distributed and lumped losses. The matrices Inn and Inb are identity matrices
of size equal to the number of nodes nn and branches nb, respectively. Lumped and
distributed input sources are represented by vector U (s). Finally, X (s) is the new
augmented variables vector (the state vector of the descriptor model).
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2.2.1 Quasi-static PEEC models

As argued in the previous chapter, when dealing with electrically small objects the
quasi-static assumption is suitable for partial elements, which results in the very
simple formulas (1.99) and (1.123). Such assumptions leads the dependence on s to
disappear in the matrix C(s) of the descriptor model (2.12). Hence, it is immediate
to verify that the TD counterpart of the system (2.12) is a standard state-space
representation:

d

dt


0 −Lp 0

P−1 0 0

0 0 Cd


︸ ︷︷ ︸

C

·


φ (t)

i (t)

vd (t)


︸ ︷︷ ︸

x(t)

= −


−A −R −Γ

Yle −AT 0

0 −ΓT 0


︸ ︷︷ ︸

G

·


φ (t)

i (t)

vd (t)


︸ ︷︷ ︸

x(t)

(2.14)

+


Inn 0 0

0 Inb 0

0 0 0


︸ ︷︷ ︸

B

·


v0 (t)

is (t)

0


︸ ︷︷ ︸

u(t)

in compact form:
C · d

dt
x (t) = −G · x (t) + B · u (t) (2.15)

being the vector x(t) the TD counterpart of the Laplace domain unknowns vector
X (s). The Laplace domain version of (2.15), assuming non-zero initial conditions
is:

(sC + G)X (s) = B ·U (s) + Cx (0) (2.16)

and the TD state vector can be recovered from the NILT formula:

xN,M(t) = −1

t

W∑
i=1

Re{KiX
(zi
t

)
} (2.17)
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Numerical examples

With the aim of providing an application of the NILT technique a numerical example
of NILT applied to a quasi-static PEEC model is presented.

The loaded microstrip

The structure under examination is a 20 cm long stubs loaded microstrip, illustrated
in Fig. 2.3. The copper structure, placed over a lossless dielectric substrate with
εr = 4.4 and thickness 1.6 mm, is composed by a microstrip which is periodically
loaded by four microstrip stubs of length 38.5 mm, that are left open at the end of
the dielectric. All the signal conductors have a width of 3 mm and a thickness of
35 µm. The distance between the microstrip line and the free edge of the dielectric
is 8 mm. The device has two 50 Ω ports placed between the two ends of the main
microstrip and the ground plane.

Figure 2.3: Loaded microstrip geometry.

For example purposes the PEEC 3D mesh is selected to satisfy the λmin/30

condition in the three cartesian directions, being λmin the free-space wavelength
at fmax = 500 MHz. The PEEC model built exhibits 1128 inductive branches,
among them 432 are dielectric branches, and 188 potential nodes. The model is
excited with a step waveform at one of the two highlighted ports and both the port
step responses are then observed. The transient is evaluated in the time window
[0− 20] ns calculating the system (2.16) with zero initial conditions for each t over
a set of points of the complex plane dictated by the Padé poles. The input port
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step response is obtained via NILT using M = 6 and M = 24 and compared to
a reference solution computed through a time-stepping solver. The results for the
input port step response are collected and shown In Fig. 2.4. Considering (2.4),

Figure 2.4: Input port step response of the loaded microstrip using two different
NILT expansion orders.

using NILT withM = 6 means the resolution of the system (2.16), for each fixed time
sample, for three different values of the complex variable s. It is evident from Fig.
2.4 that this choice is not adequate to provide a satisfactory accuracy in the time
window of evaluation. Therefore, in order to obtain a more accurate step transient,
the NILT results are recomputed employing an expansion order M = 24 (twelve
evaluation per time-sample). This last choice certainly improve the accuracy of the
results, but at the cost of increasing four times the computational burden. Analogous
considerations are valid for the results of the output non-fed port, depicted in Fig.
2.5.

For completeness, the Padé poles and the corresponding residues for M = 6 and
M = 24 are reported in Tabs. 2.1 and 2.2, respectively.
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Figure 2.5: Output port step response of the loaded microstrip using two different
NILT expansion orders.

Table 2.1: Padé poles and residues for the choice M = 6.
Poles Value Residues Value

p1 3.048 + 7.65i R1 9.31− 13.11i

p2 5.47 + 4.52i R2 −37.16 + 124.63i

p3 6.48 + 1.50i R3 27.84− 315.06i

The resetting procedure

The NILT method is extremely simple to apply, but, as explained, has the disad-
vantage that accuracy decreases as time increases. Consequently, to overcome this
limitation, it has been found to be very useful to use the method with small time
intervals and reset the problem so that in the next evaluation the previous result
is considered as the initial point for the new step. Indeed, in lumped network the-
ory, any time can be selected as zero time by taking into account the charges on
the capacitors and the currents through the inductors. Those initial conditions are
sufficient to reset the problem and move forward to the next computational step
without any reference to the previous history of the transient. Practically speaking,
given a fixed time-step h and being k the grid index corresponding to a given com-
putation point t = kh, it is possible to compute the TD NILT state vector xN,M(t)

by evaluating the system (2.16) accounting for the state vector computed at the
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Table 2.2: Padé poles and residues for the choice M = 24.
Poles Value Residues Value

p1 6.73 + 41.54i R1 −95.77 + 1151.76i

p2 12.44 + 37.01i R2 −252730.37− 41804.24i

p3 16.59 + 33.01i R3 9.5e6 − 9.7e6i

p4 19.85 + 29.24i R4 −2e7 − 3.12e8i

p5 22.48 + 25.61i R5 −1.92e9 − 3.48e9i

p6 24.63 + 22.08i R6 2.64e10 + 1.77e10i

p7 26.38 + 18.60i R7 −1.69e11 − 3.07e10i

p8 27.77 + 15.17i R8 6.55e11 − 1.25e11i

p9 28.86 + 11.77i R9 −1.65e12 + 9.54e11i

p10 29.65 + 8.39i R10 2.76e12 − 3.06e12i

p11 30.17 + 5.03i R11 −2.87e12 + 6.19e12i

p12 30.43 + 1.68i R12 1.26e12 − 8.68e12i

previous step xN,M [(k − 1)h]. Hence for the computation in t, the Laplace system
to be inverted is:

(sC + G)X (s) = B ·U (s) + Cx [(k − 1)h] (2.18)

and the unknowns vector can be expressed as:

X (s) = (sC + G)−1 B ·U (s) + Cx [(k − 1)h] (2.19)

to which it is applied the following modified NILT formula:

xN,M(t = kh) = −1

h

W∑
i=1

Re{KiX
(zi
h

)
} (2.20)

The procedure can be repeated for each time-step. Otherwise, it is possible to per-
form a single reset at a chosen time point t0, applying the standard NILT procedure
to the system with zero initial conditions in the range t = [tin, t0], saving the state
vector xN,M(t0) and using it to re-initialize the procedure for the all computations
in the range t = [t0, tend]. Obviously, the number of reset points can be arbitrarily
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chosen. It is important to highlight that in case of continuous resetting, the system
has to be evaluated only once over the set of poles zi/h and each computational step
consists on an update of the RHS products in (2.18).

In order to explore the efficiency of the resetting procedure, the step response
of the loaded microstrip structure illustrated in Fig. 2.3 is reconsidered. The same
PEEC model is generated and NILT with M = 6 is applied in conjunction with the
continuous resetting procedure already explained. It is evident from Figs. 2.6 and
2.7 that there is a perfect superposition of the NILT and the reference results using
M = 6. Hence, using the resetting it is not required to increase the computational
complexity to obtain an accurate transient in the overall time window.

Figure 2.6: Input port step response of the loaded microstrip using NILT assisted
by the resetting procedure.

2.2.2 Retarded PEEC models

When dealing with electrically long structures (or high frequency excitations) the
quasi-static assumption on partial elements does not hold anymore. For this reason,
a full-wave representation is needed, which means that the model mutual couplings
expressed by the partial inductances and the coefficients of potential are those de-
scribed in (1.98),(1.122) containing the free-space Green’s function. At a system
level, this is reflected by the s-dependence of the matrix C(s) in (2.12). Therefore,
the standard state-space model (2.14) is not a valid TD represenation in such case.
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Figure 2.7: Output port step response of the loaded microstrip using NILT assisted
by the resetting procedure.

The full-wave representation requires the computation of the integrals appearing in
(1.98),(1.122) for each frequency sample for FD models, and for each point of the
complex plane in case of NILT computations. With the aim of lighten the compu-
tational efforts in building PEEC models in the complex frequency domain, some
approximation are usually employed. As shown in the previous chapter, the center
to center approximation expressed in (1.100),(1.124) concentrate the distributed re-
tardation effects in one single retardation related to the center to center distance
between the two domains, while the Taylor’s approximation (1.104), (1.127) is based
on the Taylor’s series expansion of the Green’s function exponential inside the in-
teraction integrals. Such kind of approximations permit avoiding the evaluation of
the integrals for each complex frequency sample.

Stability considerations

As argued in the introduction of this chapter, the various approximations involving
the exponential terms in the Green’s functions can be the cause of instability issues
rising in the direct TD resolution of the retarded PEEC system. Indeed, unstable
oscillations are often observed in the TD responses of approximated retarded mod-
els. Such unstable responses are caused by the fact that might exist model’s poles
exhibiting a positive real part, leading to unstable system modes that evolve with
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continuously growing up oscillations. The residues for such poles are very small
since they are artificial and are not part of the actual problem solution. For this
reason, we speak more properly of the so called "late-time instability", because the
unstable oscillations usually become large enough only later in time.

In order to illustrate this issues, a small problem consisting in the PEEC EM
model of a thin metal sheet of width 2 cm and length 10 cm is proposed. The simplest
mesh related to this structure consists in two inductive branches that connect three
potential surfaces, giving rise to the equivalent circuit illustrated in Fig. 2.8. The
circuit is terminated through a resistor RL.

cc ii
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3
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Figure 2.8: Simple example PEEC circuit for high frequency poles testing.

After several passages, for this specific problem, the characteristic matrix can be
rearranged as:

A(s) =



s
P11

0 P13(s)
P11RL

1− P12(s)
P11

P12(s)
P11
− P13(s)

P11

0 s
p22

P23(s)
P22RL

−1 + P21(s)
P22

1− P23(s)
P22

0 0 s
P33

+ 1
RL

P13(s)
P33
− P23(s)

P33
−1 + P23(s)

P33

1 −1 0 −(R1 + sLp11) −sLp12(s)
0 1 −1 −sLp21(s) −(R2 + sLp22)


(2.21)

while the known term reads as:

U(s) =

[
Ii

P21(s)

P22

Ii
P31(s)

P33

Ii 0 0

]T
(2.22)

The partial mutual elements, Lp12(s), P12(s) = P21(s), P13(s) = P31(s) and
P23(s) = P32(s) are assumed dependent on the s Laplace variable, while the s-
dependence is neglected for self partial elements. A self resistance R1 = R2 = 10

59



Chapter 2

mΩ has been assumed for each of the two cells. The poles of the circuit can be com-
puted as the zeros of the determinant of matrix A(s). Figure 2.9 shows the poles in
the complex plane using a first-order Taylor series expansion of the exponential term
in the Green’s function presented in (1.104) along with the poles obtained using the
quasi-static assumption. It is evident that even for this small example, unstable
poles appear when the exponential retardation term is considered and, in this case,
approximated by a first-order Taylor series expansion.

-5 -4 -3 -2 -1 0 1 2

Re(s) 10
8

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
(s
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Figure 2.9: Poles in the complex plane using a first order Taylor series expansion of
the exponential term in the Green’s function.

When the direct TD simulation of a PEEC model exhibiting poles with positive
real parts is run through conventional time marching algorithms, it is very likely,
depending on the size of the time-step, that the unstable behavior will manifest itself
in the solution. On the other hand, the NILT technique is based on the evaluation
of the system in the complex plane only over the Padé poles, i.e. the TD waveforms
are totally independent on the various poles of the model. Consequently, as it is
often said, the NILT technique is able to filter the unstable poles, always providing
aberrations-free and bounded responses, preserving their physical meaning.

Numerical examples

With the aim of underlying the advantages offered by the NILT method with respect
standard time-stepping solvers in the TD resolution of retarded PEEC models, two
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Figure 2.10: Structure of the three-port micro-strip power divider circuit.

numerical examples are presented. In the following examples, the retarded PEEC
models are all obtained through the center to center approximation.

Three-port microstrip power divider

The three-port micro-strip power-divider circuit shown in Fig. 2.10 is considered in
this paragraph. It is assumed that the input at P1 is excited using a 50 Ω impedance
source with a trapezoidal pulse. The other ports P2 and P3 are also terminated with
50 Ω. The dimensions of the circuit are [20, 20, 0.5] mm in the [x, y, z] directions.
The width of the micro-strips is 0.8 mm and the dielectric is lossless exhibiting
a relative dielectric constant εr = 2.2. In this example, the Port 1 is excited by a
trapezoidal pulse of width 4 ns, rise/fall times 0.2 ns. The equivalent circuit consists
of 4216 branches and 1092 nodes.

The NILT algorithm has been run setting the order of the Padé approximation
as M = 16 (8 poles) at the largest time point. The time window [0-6] ns has been
sampled with 120 time samples for visualization purposes. The same problem has
been analyzed by a frequency-domain PEEC solver and the time-domain results
have been obtained by using the IFFT. For the comparison, further results have
been obtained by using a BD2 time-stepping scheme applied to the center to center
NDDE PEEC model. Figure 2.11 shows the waveform at the input P1. Since the
results at the ports P2 and P3 are very similar, we only show the result for port P3

in Fig. 2.12.
We observe that all three methods agree well for this example problem. Not

surprising, the late time instability dominates the solution for the time-stepping
solution. The late-time instability shows up in the solution after about 1 ns in time.
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Figure 2.11: Port 1 voltage - power divider.
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Figure 2.12: Port 3 voltage - power divider.

It is also worth mentioning that it is necessary to use a number of times/frequency
samples quite high to get a reasonable accuracy of the IFFT results compared to
the NILT ones. Figure 2.13 shows the error of the IFFT-based results compared to
NILT for an increasing number of time samples. It is clearly seen that increasing the
time samples from 115 to 800 allows to reduce the difference with respect to NILT.

As an additional test for this problem, we apply an approximated unit step
response to Port 1 and the output waveform is observed at Port 2. In NILT, the
first time point determines how steep the step is. The same signal is applied again
for the three methods and the resultant waveforms at Port 2 are shown in Fig.
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Figure 2.13: Port 3 voltage error of IFFT compared to NILT - power divider.

2.14. As expected, the result from the time-stepping method results in an unstable
solution at an earlier time. Further, the inverse fast Fourier transform (IFFT) of
port 2 voltage and the NILT approach result in reasonable waveforms. Both NILT
and IFFT are stable and in a good agreement and are stable in spite of the fast
input waveform result. As a further accuracy test, an approximate impulse response

0 0.5 1 1.5 2
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Figure 2.14: Port 2 step response with a higher bandwidth step - power divider.

which is the derivative of the step response has been computed. The good accuracy
at the output port P2 is shown in Fig. 2.15, confirming a good agreement of NILT
with the IFFT. We see a slightly earlier time where the time-stepping is observed.
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Figure 2.15: Port 2 impulse response with a higher bandwidth step - power divider.

Four-layer board

In this example, a four-layer 10 cm by 16 cm board structure shown in Fig. 2.16 is
modeled. The h = 700 µm black layers are dielectrics with εr = 4.1. The conductors
are t = 50 µm metal layers. Each of the numbered vertical lines in the side views in
Fig. 2.16 represents a 100 mΩ connection port between a pair of metallic planes. In
a somewhat arbitrary way, a voltage trapezoidal pulse is applied to port 1 while the
voltage at the different ports is observed. The resulting equivalent circuit comprises
4480 branches and 616 nodes. We again applied the three different solver techniques
to study the coupling results.

In the test, Port 1 is driven by a voltage trapezoidal pulse with rise time 3 ns
and width 20 ns in series to the resistor.

Figures 2.17-2.18 show the first two port voltages comparing the results obtained
using the time-stepping method through the BD2 scheme, the inverse fast Fourier
transform (IFFT) and the NILT approach (NILT) of order M = 16 (8 poles). The
time-stepping method becomes unstable after about 5 ns. At the first three ports
which are located between the driven planes (Figs. 2.17-2.18), the IFFT and NILT
are in a good agreement. The voltages obtained through IFFT at the ports 4-6
between the non-driven planes are affected by numerical oscillations around the
NILT voltages. Figure 2.19 shows the voltage at port 6. Hence, it is clearly seen
that the NILT approach results to be the most reliable method unlike the time-
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stepping approach which is affected by instability and the IFFT-based approach
which suffers from poor accuracy unless small time steps are adopted, resulting in
a wideband frequency analysis, and large time windows are used leading to small
frequency steps and, as a consequence, to many frequency samples.

Figure 2.16: Geometry of the four-layer power bus.
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Figure 2.17: Port 1 voltage - four-layer power bus.
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Figure 2.18: Port 2 voltage - four-layer power bus.
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Figure 2.19: Port 6 voltage - four-layer power bus.

2.3 The Modified Numerical Inversion of the Laplace

Transform

The NILT technique has demonstrated to be a powerful numerical tool for transient
evaluations. As shown in the final formula (2.4), its implementation is grounded in
the frequency domain and it is quite easy. In paragraph 2.2.2 are reported several
numerical examples highlighting the usefulness of NILT when applied to retarded
PEEC models, providing always stable and aberrations-free results if compared to
standard time-stepping techniques and the IFFT. However, in several cases the
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transients to be evaluated might be significant for long time periods and, hence,
a good accuracy in larger time windows should be needed. The most immediate
solution could be to increase the number of terms in the summation (2.4) for high
values of t, reaching a better accuracy at this samples. This kind of strategy is
surely valid, but at the cost of increasing the computational efforts, since the PEEC
system (2.12) has to be solved over an increased number of Padé poles. Another
way is represented by the achievement of a modified NILT formula which, fixed the
computational burden, provides an higher accuracy order or, equivalently, fixed the
accuracy degree shows a reduced computational burden. This possibility has been
firstly investigated in [72], where a modified NILT formula is proposed. In particular,
NILT is reformulated to scale down the approximation error in (2.7) by a factor of
(n+ 1)N+M , where n is an integer n ≥ 1, i.e.:

x(t)− x[n]
N,M(t) =

ΨN,M

(n+ 1)N+M

dN+M+1

dtN+M+1
x(t)

∣∣∣∣
t=0

tN+M+1 +O(tN+M+2) (2.23)

The new formulation was conveniently termed NILTn to distinguish it from the
traditional NILT, which was referred to as NILT0. The NILTn approach provided
the following computational advantage over NILT0: for the roughly the same compu-
tational cost, i.e., for a given value of M , NILTn reduces the error of approximation
by several orders of magnitudes. Alternatively put, for a given acceptable level
of approximation accuracy, NILTn reduces the computational cost needed in using
NILT0 by requiring smaller value of the order M of the Padé approximant. For the
purposes of this project, the choices n = 1 and n = 2 have been found very effective
to improve the accuracy of the NILT solution, hence we will focus directly on these
particular choices. In particular, for the choice n = 1, the NILT1 formula can be
obtained as [72]:

x
[1]
N,M(t) = −8

t

M/2∑
i=1

Re

K2
i

t

dX (s)

ds
+KiX(s)

M∑
j=1
j 6=i

Kj

zi − zj


∣∣∣∣∣∣∣∣
s=

2zi
t

(2.24)
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for the choice n = 2, the NILT2 formula reads [72]:

x
[2]
N,M(t) = −9

t

M/2∑
i=1

Re

3K̃3
i

8t2
d2X(s)

ds2
+

3K̃2
i

2t

dX (s)

ds

M∑
j=1
j 6=i

Kj

zi − zj
+ (2.25)

+ X(s)

K̃i

M∑
j=1
j 6=i

M∑
ν=1
ν 6=i

KjKν

(zi − zj)(zi − zν)
− K̃2

i

2

M∑
j=1
j 6=i

Kj

(zi − zj)2



∣∣∣∣∣∣∣∣
s=

3zi
t

being K̃i = 2Ki.
With the aim of illustrating the benefits brought by NILTn in terms of accuracy

we reconsider the numerical inverse transform of the same sinusoidal waveform in-
troduced in Paragraph 2.1. The function is built starting from its known Laplace
transform using NILT0, NILT1 and NILT2, using an expansion withM = 6. Hence,
the same Padé poles and residues are used for the three methods. The results are
illustrated in Fig. 2.20 where it is evident that increasing the index n the approxi-
mated inverse transforms tend to overlap with the exact function for longer times.
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Figure 2.20: Sinusoidal waveform rebuilding varying n.
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2.3.1 The Modified Numerical Inversion of the Laplace Trans-

form applied to retarded PEEC models

The objective in this section is to show how the NILTn technique can be applied in
the context of retarded PEEC circuits. We will refer to the special case of n = 2.

Let’s consider a PEEC system expressed in the complex frequency domain in the
compact form (2.11):

A(s)X(s) = U(s) (2.26)

To start the derivation process, we consider the first order derivative. This
derivative can be found by differentiating both sides of (2.11) and rearranging the
terms to obtain:

dX

ds
= A−1

(
dU

ds
− dA

ds
X

)
(2.27)

The computation of dA/ds calls for the computation of dLp/ds, dP−1/ds and dZ/ds.
The first derivative of the inverse of coefficient potential matrix P−1 can be obtained
from P(s) as:

dP−1

ds
= −P−1dP

ds
P−1 (2.28)

Moreover, the second order derivative is necessary and can be found taking the
second derivatives of both sides of (2.11) and rearranging the terms:

d2X

ds2
= A−1

(
d2U

ds2
− 2

dA

ds

dX

ds
− d2A

ds2
X

)
(2.29)

Hence, the computation of d2Lp/ds
2, d2P−1/ds2 and d2Z/ds2 is required. In partic-

ular, for the second derivative of the inverse coefficient of potential matrix, we can
write:

d2P−1

ds2
= −P−1

(
d2P

ds2
P−1 + 2

dP

ds

dP−1

ds

)
(2.30)

In the following, we assume the center to center approximation. If we write (1.100),
(1.124) respectively as:

Lpi,j (s) = Lqspi,je
−sτcci,j (2.31)

P`,m (s) = P qs
`,me

−sτcc`,m (2.32)
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where Lqspi,j and P qs
`,m are the static single partial elements, it is possible to express

their first derivatives respectively as:

dLpi,j
ds

= −τ cci,jLQSpm,ne−sτ
cc
mn (2.33a)

dP`,m
ds

= −τ cc`,mPQS
`,me

−sτcc`,m (2.33b)

and their second derivatives as:

d2Lpi,j
ds2

= (τ cci,j)
2L(qs)

pi,j
e−sτ

cc
i,j (2.34a)

d2P`,m
ds2

= (τ cc`,m)2P
(qs)
`,m e

−sτcc`,m (2.34b)

The computation of the first and second order derivatives has to be repeated
for each time sample t and for each 3zi

t
. Thus, fixed M the modified algorithm

requires an additional cost with respect to a standard NILT0, since are required the
additional computations of dX

ds
, d2X
ds2

.

Hermite interpolation

The above-described NILT2, for PEEC circuits, derives its advantage from the com-
bination of high-order approximation (order N + M) and the scaling down of the
approximation error by the factor 1/3N+M [72]. This advantage enables covering
the interval of time-domain simulation with a large step size using a small number of
sparsely-spaced points, H, requiring the computation of X(s) at a limited number
of points for s in the complex domain.

However, from a user’s standpoint, the savings in simulation time may be viewed
as less advantageous if the waveforms obtained lack sufficiently dense points to offer a
detailed picture of its behavior. On the other hand, trying to satisfy the requirement
of densely populated waveforms using NILT2 will need more computations of X(s),
erasing the gains in simulation time.

The core idea proposed in this regard is to reuse the points generated from the
NILT2 technique to construct a polynomial interpolant that fills the gaps between
those NILT2 points. This idea is principled on the following identity of the Laplace
transform
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dnx(t)

dtn
= L−1

{
snX(s)−

n∑
ϑ=1

x (0)(ϑ−1) sn−ϑ

}∣∣∣∣∣
t=0

= L−1

{
snX(s)−

n−1∑
ϑ=1

x (0)(ϑ−1) sn−ϑ

}∣∣∣∣∣
t=0

− L−1
{
x(0)n−1}∣∣

t=0︸ ︷︷ ︸
x(0)(n−1)δ(t)|

t=0
=0

(2.35)

where x(k)(0) defines dkx(t)
dtk

computed at t = 0. The above identity provides the
means to compute high-order derivatives at the points generated by NILT. The
NILT framework is used for this purpose. For simplicity, this process is illustrated
for the case of NILT0, which computes the derivatives at the points tj generated
using

x̃(tj)
(n) =

−1

tj

M/2∑
i=1

2Re

zni kiX(zitj
)

+
1

tj

M/2∑
i=1

n−1∑
ϑ=1

2Re
zn−ϑi x(0)(ϑ)

 (2.36)

(2.36) shows that computing the derivatives at the points t = tj can be achieved
by reusing the values for X(s) computed at s = zi

tj
. This observation confirms that

computing the derivatives will not require any significant computational burdens.
Beyond the computation of the time-domain derivatives at t = 0, which can be done
as shown in [73], the general implementation in the context of NILTn is provided
in [74].

With those derivatives computed as shown above, a polynomial interpolant of the
Hermite type can be constructed that produces the waveform in between the points
tj, j = 1, · · · , H. A Hermite interpolant is a polynomial that matches a given func-
tion and its higher-order derivatives at a selected set of points. The work presented
in [75] shows that the coefficients of such polynomials can be explicitly expressed
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in terms of the values of the functions, its derivatives, and intervals between the in-
terpolation points. This approach [75] is then used to form the polynomial, which
can be sampled at arbitrarily high density time points with negligible computational
overhead.

Numerical examples

With the aim of validating the modified NILT technique, several numerical examples
concerning the application of NILT2 in conjunction with the Hermite interpolation
applied to PEEC retarded models are presented in this section. For comparison, the
NILT2 results are presented with an emphasis on the main computational advantages
brought with respect to the standard NILT0. The reference results are generated
with the IFFT routine applied to the results coming from the frequency domain
evaluation of the same retarded PEEC models.

Three-port microstrip power-divider

The three-port micro-strip power-divider (PWD) circuit shown in Fig. 2.21 has been
modeled. In this example, we assume that the input port P1 is excited using a 50
Ω impedance source with a trapezoidal pulse with width 2 ns, rise/fall times 0.4 ns.
The other ports P2 and P3 are also terminated with 50 Ω. The dimensions of the
circuit are [20, 20, 0.5] mm in the [x, y, z] directions. The width of the micro-strips
is 0.8 mm and the relative dielectric permittivity is εr = 2.2. The spectrum of the
source is significant up to around 8 GHz. Hence, the PEEC model is built so to
be accurate up to this frequency. At 8 GHz, the minimum free-space wavelength is
λmin = 37.5 mm, and the maximum dimension of the mesh elementary volumes and
surfaces is set so that it does not exceed the quantity:

DMAX =
λmin
30

(2.37)

Applying this constraint on the mesh, the resulting equivalent circuit consists of
3428 branches and 874 nodes.

All the NILT final port responses are built starting from the knowledge of the
port ramp responses. In particular, a ramp signal source with the same slope of the

72



Chapter 2

wP1

P3P2

lX,1

lY,1 lY,3

lY

lX

Figure 2.21: Microstrip PWD circuit.

trapezoidal rising edge is applied at the input port and the corresponding responses
are observed at the output ports. Finally, each global response to the trapezoidal
signal is easily obtained through the linear combination of four delayed replicas of
the principal ramp response. In Fig. 2.22 it is shown the third port ramp voltage
response computed through the NILT2-Hermite technique, starting from 15 NILT2
starting points (encircled in red). The interpolant is computed using the derivatives
up to the fifth order (the zero one included) in the initial 15 points. More samples are
required at the beginning of the response where the ramp response has its transient.
In this work, the initial time samples selected for the construction of the interpolator
are empirically chosen. A more in-depth study aimed at the optimal choice of
temporal samples will be conducted in the near future. The final voltage signal
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Figure 2.22: PWD port 3 voltage ramp response.

at the third output port is shown in Fig. 2.23. The NILT2 results are in a good
agreement with the IFFT results. It is evident the superiority of NILT2 compared
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to NILT0 where the two NILT techniques are compared by adopting order M = 4.
It is apparent that the NILT0 results do not reproduce well the signal transitions
while the NILT2 results are in a better agreement with the IFFT-based results. This
numerically confirms the error factor of (n+ 1)N+M [72].
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Figure 2.23: PWD port 3 voltage.

Two dipoles system

In the second example, two dipoles are considered. they are shown in Fig. 2.37.
The transmitting dipole is fed at the port 1 by a trapezoidal voltage source in series
with 1 kΩ resistor, while the port 2 of the receiving dipole is terminated on a load
resistor of 1 kΩ. In Table 2.5 are summarized the geometric size of the dipole.

Table 2.3: Geometric features of the two dipoles system.
Data Length [m]

d 0.05

l 0.05

w 0.001

t 0.001

g 0.001
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The trapezoidal pulse has width 2 ns, and rise/fall times 0.4 ns. As in the previous
example, the maximum significant frequency in the spectrum of the source is around
8 GHz, corresponding to a minimum free-space wavelength of about λmin = 37.5

mm. Following the criterion (2.37), the resulting equivalent circuit comprises 1264

branches and 640 nodes.

Figure 2.24: The two dipoles system.

The NILT2 voltage ramp response and its first five derivatives in 14 initial se-
lected points, depicted in Fig. 2.25, are used for obtaining the interpolated Hermite
results. It is evident from Fig. 2.25 that, in general, it is a good practice to select
more initial samples where the behavior is less regular. The global Hermite inter-
polated voltage is obtained, as usual, by an appropriate superposition of the ramp
response, properly shifted.
In Fig. 2.26 the global voltage response at the dipole receiving port is represented.
The NILT-based results are compared to the IFFT reference results. All the wave-
forms in Fig. 2.26 are in a good agreement with the exception of the NILT0-based
results, even if computed with M = 12. This fact is quantitatively confirmed in Fig.
2.27, where the absolute errors of NILT0 and NILT2 are sketched, assuming IFFT
as a reference.

Table 2.4 compares the performance of the proposed approach in regards to the
CPU computational time. The first row in the table shows the CPU time taken
by the IFFT approach to produce the waveforms shown in Fig. 2.26 with 1170
time samples. The second and third rows show the total CPU time taken by the
NILT approaches, using NILT0 and NILT2, respectively, supported by the Hermite

75



Chapter 2

0 1 2 3 4 5

-0.005

0

0.005

0.01

0.015

0.02

0.025

Figure 2.25: Dipoles port 2 voltage ramp response.
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Figure 2.26: Dipoles port 2 voltage.

interpolation, to produce the waveforms at the same number of time samples. It is
clear that the NILT0 - Hermite with M = 12 and the NILT2- Hermite with M = 6

require almost the same computational time, but the NILT0-based technique is
affected by evident late-time inaccuracies.
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Figure 2.27: Absolute error of the NILT results assuming IFFT as a reference in the
dipoles example.

Table 2.4: Computational performances for the example 2.3.1.
Technique CPU time (s)

IFFT 541

NILT0 - Hermite 77.5

NILT2 - Hermite 70

Wide-band E-shaped patch antenna

In the last example, we consider the wide-band E-shaped antenna illustrated in Fig.
2.28, for wireless applications [76]. The antenna, placed 15 mm over a ground plane,
is fed by a coaxial wire entering from a hole in the ground plane. Its upper end is
soldered to the bottom side of the patch. While in [77] the ground plane has been
considered as an infinite perfect electric conductor (PEC), in this work its finite size
and finite electric conductivity have been taken into account.
The geometric sizes of the antenna are sketched in Fig. 2.29, where they are ex-
pressed in millimeters. The antenna is driven by a 50 Ω voltage source located at
the base of the feeding wire, between the wire and the ground plane. The waveform
of the voltage source is triangular as proposed in [77], with 500 ps rising and falling
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Figure 2.28: E-shaped patch antenna.

Figure 2.29: E-shaped patch antenna geometry (top view).

times. Being the source again a piecewise - linear (PWL) source, the results can be
obtained also in this case by the superposition of ramp responses. For this example,
the adoption of the λmin/30 rule at 1 GHz results in an equivalent circuit consisting
of 2540 current branches and 867 potential nodes.
In Fig. 2.30, it is shown the interpolated input ramp response voltage waveform

78



Chapter 2

along with the 35 initial points encircled in red. It is interesting to observe that most
of the initial NILT2 samples are placed at the beginning of the response, because
it is at the early points that there is a significant variability of the derivatives and,
hence, it must be properly sampled in order to build the interpolants. Finally, the
port current ramp response is computed and the final NILT2 - Hermite waveform
is obtained by an appropriate superposition of delayed versions of the current ramp
response. The input current waveform is obtained and shown in Fig. 2.31. The
NILT2 results, computed with M = 4, exhibit a good agreement with the MoM
results presented in [77]. The NILT0, computed with M = 6, requires almost the
same computational cost of the NILT2, but evidently shows late time inaccuracies.
Hence, a larger M would be required and, consequently, the computational cost
would overcome that of the NILT2.
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Figure 2.30: Feeding point voltage ramp response for the E-shaped patch antenna.
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Figure 2.31: Input current for the E-shaped patch antenna.

2.4 The Fast Inversion of the Laplace Transform

Following the procedure introduced by Hosono [69], the inversion integral in (2.1) is
approximated as

xap(t) =
1

j2π

∫ γ+j∞

γ−j∞
X(s)Eap(st, α)ds (2.38)

by the introduction of the approximate inversion kernel

Eap(st, α) =
eα

2 cosh(α− st) (2.39)

being α a parameter that has to be properly chosen. Introducing (2.39) in (2.38), it
is possible to obtain

xap(t) '
eα

t

K∑
n=1

Xn (2.40)

where
Xn = (−1)nIm [X (s)]

s=
α+j(n−0.5)π

t

(2.41)

and K is the truncation number of the series.
The FILT approximation error εF = |x(t)− xap(t)| is given by:

εF = |e−2αx(3t)− e−4αx(5t) + e−6αx(7t)− . . . | (2.42)
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Hence, if |x(t)| ≤ EeLt for t > 0, we have

εF = O(|x(t)|e−2(α−Lt)) (2.43)

being L and E two finite constants [78]. In conclusion, the error is of exponential
order with α. Nevertheless, the parameter α cannot be chosen arbitrarily large,
because the numerical evaluation of the terms Xn(α, t) in (2.40) leads to overflow in
finite precision. Consequentially, also in this case, the error keeps growing with time.
For this reason, very often it is useful to speed up the convergence of the truncated
series by applying the Euler transformation presented in [69] and [79]. This results
in adding a few additional terms to the original series, for the purpose of limiting
K as much as possible for the convergence. Thus, Eq. (2.40) becomes

xap(t) '
eα

t

(
K∑
n=1

Xn +

p∑
q=1

2−(p+1)Ap,qXK+q

)
(2.44)

where p is the number of terms of the Euler transformation and

Ap,p = 1, Ap,q−1 = Ap,q +
(p+ 1)!

q!(p+ 1− q)! . (2.45)

It is clear from (2.41) that, in case of system’s evaluations, the state vector
variables must be sampled, for each t, on K + q different points on the complex
plane, which share all the same real part α/t. Fig. 2.32 shows the first 10 complex
points per time sample over which the state vector has to be evaluated assuming
α = 3. The trajectory is considered in the time interval [1-5] ns for illustrative
purposes.

With the aim of clarification, the example regarding the FILT computation of
the sin function employed in Section 2.1 is here reconsidered. In particular, in Fig.
2.33 it is evident that contrary to NILT, employing the parameters combination:
(K = 20, α = 2) it is possible to reproduce satisfactorily the exact sin waveform in
the overall time window. Unfortunately, it is also confirmed that it is not possible
to choose α arbitrarily large (here α = 5 is chosen) to reduce the approximation
error in (2.43) as much as possible.

The sin inverse transforms in Fig. 2.34 complete the comparison of the two
methods. The waveform is computed utilizing 12 terms for NILT (M = 24) and for
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Figure 2.32: Example of complex samples pattern employed in FILT (α = 3, K =

10).
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Figure 2.33: FILT-based computation of the sin function for two settings of the
parameters.

FILT (K = 12, α = 2). It is evident that by fixing the number of terms for each
series, the convergence is more easily reached by NILT when treating this kind of
waveform (this is true also for typical circuit waveforms).

In conclusion, if long transients have to be evaluated, the FILT technique permits
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a successful evaluation in the overall time window (no matter how large it is), at the
cost of an increase in the computational burden. If shorter transients are needed,
employing NILT guarantees a faster convergence and, hence, a significant saving in
computational costs.

It is just the case to observe that the two techniques can be combined to solve
the same problem, exploiting the advantages of both of them.

0 2 4 6 8

10
-9

-1.5

-1

-0.5

0

0.5

1

1.5

Exact

NILT

FILT

Figure 2.34: Comparison of the sin function computed using the NILT (M = 24)
and the FILT (K = 12, α = 2) techniques.

2.5 The Fast Inversion of the Laplace Transform ap-

plied to retarded PEEC models

The FILT is a well-established technique for the transient analysis of propagating
fields of nano-antennas. In this doctoral project, FILT has been applied for the
first time to retarded PEEC models, extending the applicability of CFD techniques
to PEEC models of antennas. Indeed, the FILT technique offers the possibility of
high-degree adjustments improving significantly the accuracy of the solution when
the interacting structures are very far from each other. For this reason, in this
section the attention is particularly focused on the transient modeling of interacting
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separated structures. A systematic comparison with NILT is provided in various
scenarios, highlighting how depending on the expected features of the transient it is
possible to choose the best technique in terms of efficiency and accuracy.

2.5.1 Minimum delay extraction for the modeling of sepa-

rated structures

In general, the TD response evaluated on a victim device due to a source located
far away from it has to satisfy the causality principle [80] and, thus, it cannot occur
before the minimum time delay td defined as:

td =
dmin
c

(2.46)

being dmin the minimum distance between the interacting objects and c the phase
velocity in the background medium where they are located. If td is too large (from
tens to hundreds of ns) the approximate inverse transform solution of the far-away
part of the system computed using NILT and FILT methods will be affected by a
significant error unless a countermeasure is taken. To this purpose, the Bromwich
integral can be recast through the introduction of the delay exponential term estd :

x(t) =
1

j2π

∫ γ+j∞

γ−j∞
X(s)estdest

′
ds (2.47)

being x(t) the TD vector state of a PEEC model, X(s) is the Laplace domain
PEEC state vector, with t′ = t − td > 0. It is then possible to apply the inversion
techniques to the Bromwich integral considering the delayed kernel est′ . Following
this procedure, the NILT expression for the state vector becomes

xN,M(t) = − 1

t′

M/2∑
i=1

2Re
[
KiX (s) estd

]
s=

zi
t′

(2.48)

while, the FILT expression for the state vector can be rewritten as

xap(t) '
eα

t′

(
K∑
n=1

X′n +

p∑
q=1

2−(p+1)Ap,qX
′
K+q

)
(2.49)
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where
X′h = (−1)nIm

[
X (s) estd

]
s=

α+j(h−0.5)π

t′
(2.50)

being h a generic index representing n or q. In conclusion, the effective inversion time
is t′ < t, and the inaccuracies introduced by long simulation times are dramatically
reduced.

2.5.2 Underflow issues in complex frequency domain far-field

PEEC models

When the procedure already described is applied in modeling separate distant struc-
tures, it is necessary to be careful in the numerical evaluation of the delayed partial
elements on the complex plane, especially if the distance between the objects is sig-
nificant. Let us focus on a single generic partial element describing an interaction
(magnetic/electric) between two mesh elements, each located on a different object.
Their interaction assuming a center-to-center propagation delay can be generically
written in the complex frequency domain as:

Hm,n(s) = H0
m,ne

−sτm,n (2.51)

where H0
m,n describes the static interaction and:

τm,n =
RCC
m,n

c0

' dmin
c0

(2.52)

is the propagation time delay in the background medium between the two elements,
being RCC

m,n their center-to-center (CC) distance and c0 the background medium
(free-space for the standard PEEC method) phase velocity. The expression (2.51)
has to be evaluated on different sets of points over the complex plane for each value
of t′, using both the NILT and FILT techniques. The argument of the exponential
can be written as:

sτm,n '
z

t′
dmin
c0

(2.53)

where z is a complex number that depends on the technique employed. For suffi-
ciently large values of dmin and small values of t′, it is very likely that the exponential
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e−sτm,n reaches an underflow condition if the absolute value of its argument exceeds
a fixed value Kmax. This value can be easily found through the knowledge of the
smallest positive normalized floating-point number in IEEE double precision. Hence,
in order to avoid the underflow of all the "far away" partial elements in the PEEC
system, the following condition should apply:

Re(z) <
Kmaxt

′c0

dmin
. (2.54)

Obviously, the latter condition is more severe at the first computation times, if the
distance dmin between the two elements is significant. The FILT method uses a set of
poles whose real part is highly adjustable in this sense. Indeed, for each computation
time t′, it is sufficient to enforce the condition:

α <
Kmaxt

′c0

dmin
(2.55)

still being able to maintain a reasonable accuracy at the first computation points.
On the contrary, when employing the NILT method, the only way to modify the
real part of the Padé poles at the first time samples t′ is to reduce the order M .
Unfortunately, also using small values for M does not avoid the underflow condition
if the structures are very far-apart. To better explain the underflow issues, Fig. 2.35
represents the behavior of the absolute value of the delay exponential function in
(2.51) for two far-apart elementary volumes, when computed over the FILT points
on the complex plane and over the Padé poles having a maximum real part, assuming
M = 20. The exponential analysis is carried out considering the distances: 10, 20, 40

m, and varying the quantity t′ = t−td. It is clear that, for any of the three distances,
the delay exponential reaches the underflow condition for a larger time interval when
it is computed over the Padé poles rather than using the FILT complex points. When
this case occurs, for sufficiently small values of t′, the partial elements describing
the mutual interactions between two or more far-away volumes or surfaces become
zero, compromising the accuracy of the computation. In Fig. 2.36, it is shown that
using small values of orderM , e.g., M = 4 for the NILT technique, the time interval
where condition (2.55) is not matched and the underflow occurs is reduced, but is
still present for the considered distances.

86



Chapter 2

1 2 3 4 5 6 7 8

10
-300

10
-200

10
-100

d
min

= 10 m

d
min

= 20 m

d
min

= 40 m
UNDERFLOW

Figure 2.35: Absolute value of the complex exponential computed for different dis-
tances between two elementary volumes using NILT (M = 20, lines with markers)
and FILT (adaptive α, lines without markers).
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Figure 2.36: Absolute value of the complex exponential computed for different dis-
tances between two elementary volumes using NILT (M = 4, lines with markers)
and FILT (adaptive α, lines without markers).

In this regard, despite the small values of the complex exponential in Figs. 2.35
and 2.36, it is important to point out that, in expressions (2.48) and (2.50), a
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compensation factor of the same order of magnitude as the complex exponential
is introduced in the final solution due to the exponential term estd . Hence, this
observation further confirms the importance to avoid the underflow condition.

Numerical results: Transmitting and Receiving Dipole Pair

To illustrate the concepts discussed in Section 2.5.2, the two dipoles sketched in Fig.
2.37 are considered, whose geometric features are described in Table 2.5. Precisely,
the TD receiver voltage response is computed firstly considering the near field in-
teraction between the dipoles, and, subsequently, the receiver dipole is moved away
from the transmitting dipole, in its far field. For illustrative purposes, the trans-
mitting dipole is driven by a voltage source in series to a resistor and we consider
the receiver terminated on a load resistor. The signal source considered has a trape-
zoidal waveform with rising and falling times τr = 3.2 ns and width τw = 9.5 ns
so that the spectrum is significant until fmax ' 1 GHz. Taking this frequency as
a reference, the dipoles are half-wave long. It is known that the transition from
the near field region to the far field Fraunhofer region of the transmitter occurs at
distances r such that [81]:

r ≥ Rf =
2D2

λ
(2.56)

where r is the radial distance measured from the center of the transmitting dipole,
D = 2` is its maximum physical length, and λ = c0/fmax is the wavelength in the
free space at the maximum frequency of interest fmax.

Figure 2.37: The two dipole system.
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Table 2.5: Geometric features of the two dipoles system.
Data Length [m]

` 0.075

w 0.001

t 0.001

g 0.001

Near Field Analysis

In the near field analysis, the distance between the two dipoles d is set as d = Rf/2.
The TD receiver voltage is computed through the inverse transform techniques and
compared to the results of a time-stepping reference solver adopting the backward
differentiation scheme of the second order (BD2). Fig. 2.38 shows the receiver volt-
age response assuming 50 Ω terminations for both ports. In this case, the transient
is quite long-lasting (more than 20 ns). The FILT solution is obtained by choos-
ing K = 20 and p = 8 in (2.49) so that it is observed a good match between the
FILT solution and the reference solution throughout the time window. For the Padé
expansion-based inverse transform, the modified NILT technique (NILT2) [72] has
been employed, to achieve a higher degree of accuracy. It is clear from Fig. 2.38 that
the maximum exploitable expansion order, in this case, isM = 8, while larger orders
cause the result to explode because of rounding errors in the residues Ki that impact
significantly the solution. In general, employing NILT2, this behavior is observed for
relatively small values of M , because terms of the type: K3

i , K2
i are involved in the

summation. Hence, it is not possible to achieve better accuracy using more terms in
the series. For this reason, in this case, the recommended method is FILT, because
it allows adjusting the accuracy by choosing the optimal number of series terms.
The latter becomes an important feature when dealing with long-lasting transients.

Fig. 2.39 shows the receiver voltage response assuming 1 kΩ termination for the two
ports, where it is evident that the transient is more time-limited compared to the
previous case. In this case, employing NILT2 with order M = 4 (two series terms)
ensures a very good accuracy over the entire time window, while for FILT the same
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Figure 2.38: Receiver near field voltage response in the case of 50 Ω terminations.

accuracy is reached considering K = 10 and p = 5 in (2.49) for a total of 15 series
terms. Hence, in this case, employing the NILT technique is more convenient in
terms of computational efforts since a smaller number of system evaluations on the
complex plane is sufficient to represent the response for each time sample compared
to the FILT method. In particular, the cpu simulation time running NILT was 43.4

s, while it was 163.3 s for FILT, considering the same number of time computation
points for the two techniques.

For completeness, the NILT2 and FILT relative errors at four different time
points are compared in Table 2.6, assuming the same number of series terms (M = 4

for NILT2, K = 2 for FILT). It is seen that NILT2 outperforms FILT in terms of
convergence. This confirms that employing NILT for moderately short transients
offers the opportunity to minimize the computational burden.

Far Field Analysis

In the far-field analysis, the receiver dipole is moved away from the transmitter to
a distance d = 20 m. In this configuration, the minimum propagation time delay
between the two structures is td = 66.67 ns. The computation of the receiver voltage
starts at a time td = r/c0. The port terminations are assumed 50 Ω.

90



Chapter 2

0 5 10 15 20

-4

-3

-2

-1

0

1

2

3

4
10

-3

Figure 2.39: Receiver near field voltage response in the case of 1 kΩ terminations.

Table 2.6: NILT vs FILT: relative error for the near fieldshort transient example.
Time NILT2 rel. err. FILT rel. err.

2 ns 13× 10−3 0.58

4 ns 23× 10−3 2.12

8 ns 8.3× 10−3 0.30

10 ns 2.5× 10−3 0.66

As already explained, because of the underflow issues, the delayed PEEC model
becomes inaccurate at the first computation time samples, when computed over the
Padé poles using NILT. This is clear by observing a zoom of the receiver voltage
response in Fig. 2.40, in which the NILT response is zero also after the propagation
delay td between the two dipoles.

Fig. 2.41 shows the pattern of the coefficients of the potential matrix P(s),
computed at one of the first computation instants (where the response is still wrongly
zero) over the Padé poles. It is known that the coefficients of the potential matrix
is full, but, when computed for small values of t′, the underflow issue causes the
coefficients of potential describing the mutual interactions to be zero, resulting in
null off-diagonal blocks. The same behavior is observed in the partial inductances
matrix Lp(s).
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Figure 2.40: Zoom of the receiver far field voltage response at the initial instants.

In the FILT series, with reference to (2.49), the K and p parameters have been
set as K = 20 and p = 8. For the choice of parameter α, the adaptive criterion
(2.55) has been adopted.
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Figure 2.41: Coefficients of potential matrix pattern at the initial instants computed
over the Padé poles.

Since the source is piecewise-linear (PWL), all the global responses are conve-
niently obtained, for each port, through the superposition of delayed versions of a
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unique ramp response. When the receiver voltage is computed, the wrong null ini-
tial portion affects considerably the final result. This is evident in Fig. 2.42, where
a satisfactory agreement is observed between the FILT results and the reference
time-stepping solution BD2, while the NILT results, obtained with M = 20, are
inadequate.
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Figure 2.42: Receiver far field voltage response with 50 Ω terminations.

2.5.3 FILT-PEEC TD modeling of Reconfigurable Intelligent

Surfaces

Reconfigurable Intelligent Surfaces (RISs) are an emerging technology that is gaining
more and more interest, especially in the field of future 6G communications [82].

RISs offer the opportunity to alter the properties of a given transmission chan-
nel through the introduction of an array of closely spaced passive scatterers. These
elements can be conveniently reconfigured in order to improve wireless communi-
cations performance and create a smart electromagnetic environment. The RISs
interdistances are typically in the order of fractions of the wavelength. Hence, an
electromagnetic (EM) model taking accurately into account the mutual couplings is
crucial in the design stage.
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RISs modeling techniques are usually based on Frequency Domain (FD) ap-
proaches [83] [84], but a Time Domain (TD) characterization of this kind of system
becomes of primary importance when the RIS elements interface with reconfigurable
non-linear elements. Furthermore, it becomes crucial when time-varying scenarios
are considered, as in urban environments due to moving scatters, or when time-
varying materials are considered in the RIS. A first approach developed entirely in
the TD can be found in [85].

Since in this kind of systems the propagation delays are not negligible, their
TD characterization usually requires time-stepping solvers able to handle Delayed
Differential Equations (DDE). The main drawback of this approach is that the com-
putational burden grows rapidly as the distances between the RISs and the trans-
mitter increase. Moreover, the stability of delayed solvers is highly dependent on
the spatial and temporal discretization, making almost impossible to predict it in
advance.

The main observed advantage of the application of FILT in such a contest is
that the solution accuracy is independent on the time-step. This attractive feature
turns out to be of fundamental importance in the TD modeling of systems composed
by widely spaced elements (e.g. RISs systems), permitting the optimization of the
distribution of the time samples and, consequently, a reduction of the computational
costs.

The purpose of this paragraph is to provide a preliminary TD analysis of a
RIS-aided communication channel, starting from a Laplace domain numerical rep-
resentation of the PEEC system and finally applying FILT.

The PEEC-FILT strategy for RIS modeling

Generally, a RIS aided communication system is composed by three separate antenna
groups: the transmitters system (Tx), the RIS array, and the receivers system (Rx).
The entire configuration can be schematized as in Fig. 2.43, where the transmitters
and receivers antenna systems are embedded in two single boxes.

The EM behavior of the RIS elements plays a fundamental role in characterizing
the transmission channel. In addition, the characterization of the transient response
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Figure 2.43: Generic RIS aided system configuration.

of such a system, given a certain excitation configuration for Tx, is of paramount
importance for the derivation of an effective channel abstraction. Also in this case,
the TD response evaluated over any element of the RIS group due to a source located
away from it must follow the delay causality principle [80]. Rigorously, over the i-th
antenna, no response should be observed earlier than the propagation delay time tdi,
defined in the free-space as

tdi =
di
c0

, (2.57)

being c0 the free-space propagation speed and di the minimum distance between Tx
and the i-antenna.

Typically, the minimum distance dmin between Tx and the RIS can reach sev-
eral tens of meters. Consequently, the transient responses require time evaluation
windows in the order of hundreds of ns. For this reason, the employment of time-
stepping resolution methods may lead to unacceptable computational burden and
inadequate accuracy of the results. Assuming that, for a given problem, the maxi-
mum allowable time step ∆tmax is fixed to guarantee the desired degree of accuracy,
the actual time step ∆t is always constrained to be less than or equal to ∆tmax. It
follows that, in the most favorable case, the necessary number of samples Ns for the
computation is given by

Ns =
tw

∆tmax
+ 1, (2.58)

where tw is the length of the time window. Hence, the number of time samples and,
consequently, the computational cost, scale as tw.
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Figure 2.44: RIS aided system geometry.

Moreover, if the distances between the RIS antennas are in the order of tens
of cm, FILT offers the opportunity of capturing the transient waveforms over each
element of the RIS by performing only the extraction of the minimum propagation
delay between Tx and the RIS array. Accordingly, the TD response evaluation of
each element of the RIS begins at the time

td =
dmin
c0

, (2.59)

which means that it is not needed to compute the solution of the PEEC system before
the effects have traveled the minimum propagation distance between the sources and
the RIS array. This feature allows to save a significant portion of computational time
if compared to standard time-stepping methods, where the response evaluation is
performed starting at t = 0.

Numerical results

With the aim of validating the proposed formulation, the transient analysis of the
eight-element RIS system depicted in Fig. 2.44 is carried out. Each RIS antenna
is supposed to be a linear dipole independently loaded with a 50 Ω resistance. An
in-depth analysis of a similar system considering a connected network for the RIS
load configuration has been proposed in [86]. All the geometric details of the system
are summarized in Table 2.7.

Tx consists of a single dipole driven by a 50 Ω voltage source applied at the gap
between its arms. For exemplification purposes we assume that the voltage source

96



Chapter 2

Table 2.7: Geometric features of the RIS aided system.
Description Data Value

distance Tx - RIS d1 50 m

distance RIS - Rx d2 2 m

RIS elements distance dRIS 10 cm

misalignment d3 2 m

dipoles arm length d 5 cm

waveform is a trapezoidal pulse with rising time 1 ns and width 5 ns. Rx consists
of a single dipole terminated on a 50 Ω resistance.

In Figs. 2.45 and 2.46 the voltages of the first and the last RIS dipoles are
depicted, respectively. In Fig. 2.47 it is shown the voltage induced at the Rx

terminals.
The results are obtained through the FILT technique by employing the delay

extraction procedure, which involves only the minimum delay between Tx and the
RIS array. The FILT voltages are compared with those obtained through the time-
stepping solver BD2. The effective FILT TD computation begins from td, and
the placement of the samples can be arbitrarily chosen in each interaction window.
Moreover, the chosen number of computation samples does not affect in any way the
accuracy of the solution, since each computed sample is independent of the others.
For this example, the number of samples for the FILT method is set to 600 for
each voltage response. Nevertheless, it is to be remarked that this choice is only for
visualization purposes and a lower number of samples would not affect the accuracy
of the proposed procedure. Furthermore, the time samples can be chosen only in the
time window starting at td and ending at the time when the transient is expected
to be reasonably extinguished.

97



Chapter 2

160 165 170 175 180 185 190

-4

-2

0

2

4

10
-6

v
first

 BD2

V
first

 FILT

Figure 2.45: First RIS dipole port voltage.

170 175 180 185 190

-3

-2

-1

0

1

2

3

10
-6

v
last

 BD2

v
last

 FILT

Figure 2.46: Last RIS dipole port voltage.

2.6 Complex frequency domain models for electri-

cally long MTLs

Approximate Inverse Laplace Transform techniques have been widely used for the
TD characterization of transmission line (TL) structures [87], [74].

Neglecting incident EM fields effects, the equations of multiconductor transmis-
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Figure 2.47: Receiver dipole port voltage.

sion lines composed by n conductors in the Laplace domain can be cast in a standard
state-space form as follows [88]

d

dx
X̂(x, s) = Â(s)X̂(x, s) (2.60)

where x is the line abscissa and

X̂(x, s) =

[
V̂(x, s)

Î(x, s)

]
(2.61)

is the state vector containing the n line voltages and currents. The state matrix
Â(s) reads

Â(s) =

[
0 −Ẑ(s)

−Ŷ(s) 0

]
(2.62)

where Z(s) = R(s) + sL(s) and Y(s) = G(s) + sC(s). It is well known that the
end voltages and currents can be related by the so-called chain parameters matrix
Φ̂(L, s) as [88] [

V̂(L, s)
Î(L, s)

]
= Φ̂(L, s) ·

[
V̂(0, s)

Î(0, s))

]
(2.63)
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where the 2n× 2n chain parameters matrix Φ̂(L, s) is:

Φ̂(L, s) = eÂ(s)L =
∞∑
k=0

Lk
k!

[
Â(s)

]k
. (2.64)

Pertinent boundary conditions need to be enforced at the line ends x = 0,L. As-
suming linear time-invariant terminations, they read[

V̂(0, s)

V̂(L, s)

]
=

[
V̂s0(s)

V̂sL(s)

]
−
[

Ẑ0 0

0 ẐL

][
Î(0, s)

Î(L, s)

]
(2.65)

where V̂s0(s), V̂sL(s), Ẑ0 and ẐL are the multiport Thevenin sources and impedances
of the circuits connected to the MTL at x = 0 and x = L, respectively. The resulting
problem described by equations (2.63) and (2.65) is well-posed for the end voltages
and currents V̂(0, s), Î(0, s)), V̂(L, s), Î(L, s).

The transient port voltages and currents can be obtained through the application
of inverse Laplace transform techniques to equations (2.63) and (2.65), upon the
evaluation of the chain parameters matrix over appropriate points of the complex
plane, depending on the chosen inverse transform technique.

In order to better illustrate the problems that may arise in computing (2.64) in
(2.63), we consider, without loss of generality, the case of perfect conductors (R = 0)
in a homogeneous lossy dielectric medium. The chain parameters submatrices can
then be expressed in a closed form as [88]:

Φ̂11 = cosh [γ̂(s)L]In (2.66a)

Φ̂12 = − sinh [γ̂(s)L]Ẑc (2.66b)

Φ̂21 = − sinh [γ̂(s)L]
[
Ẑc

]−1

(2.66c)

Φ̂22 = cosh [γ̂(s)L]In (2.66d)

where In is the n× n identity matrix and Ẑc is the characteristic impedance matrix
defined as:

Ẑc =
s

γ̂(s)
L (2.67)[

Ẑc

]−1

=
γ̂(s)

sµε
C. (2.68)
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The coefficient γ̂(s) =
√
sµσ + s2µε is the propagation constant in the Laplace

domain assuming known the electrical conductivity σ, the magnetic permeability µ,
and the dielectric permittivity ε of the surrounding medium.

When the physical length of the lines is large (L > 10 m), the TD computation
of the electric quantities in z = 0 can be very challenging. Indeed, the behavior of
the complex hyperbolic functions in (2.66a) evaluated on the complex plane plays
a crucial role. To explain this, we consider the generic complex point s = z/t,
where t is the time evaluation value and z is a complex point that depends on
the technique adopted to perform the inverse Laplace transform. In the limit of
vanishing losses, the propagation constant can be written as γ(z/t) ' z

t

√
µε and,

hence, the hyperbolic cosine function becomes:

fc

(z
t

)
=

1

2

(
e
zL
ct + e−

zL
ct

)
(2.69)

being c = 1/
√
µε the propagation speed in the homogeneous dielectric medium. The

function fc(s) reaches an underflow or an overflow condition if the absolute value
of the exponential arguments exceeds the value K− or K+ respectively. This value
can be found from the knowledge of the smallest and largest positive normalized
floating-point number in IEEE double precision. Hence, to avoid a data loss, it is
necessary that the following inequality is satisfied for each value of t:

Re(z) < min

[
K+tc

L ,
K−tc

L

]
. (2.70)

The condition (2.70) becomes more severe as t and c approach smaller values if the
line length L is significant. The FILT method is more flexible in this sense since it
is easy to enforce the condition:

α < min

[
K+tc

L ,
K−tc

L

]
(2.71)

providing an accurate TD solution at the initial computational points t. The same
holds for the hyperbolic sinusoidal function.

Employing the NILT technique, the only way to try to satisfy the inequality
(2.70) is to reduce as much as possible the Padé expansion number M , but unfor-
tunately, also with very small values of M it is not possible to match (2.70) when
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t is small. Hence, the TD computation of the MTL transients at z = 0, where the
port quantities are not negligible even at the first instants, becomes very difficult.

In Fig. 2.48 it is shown the trend of the absolute value of function fc(s) when
evaluated over the Padé poles assuming M = 24 and when computed over the FILT
complex points complying with (2.71). The behavior is plotted for two values of the
length of the line, L = 20 m, and L = 40 m.
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Figure 2.48: Absolute value of the complex hyperbolic cosine computed for different
line lengths (lossless medium) using NILT (M = 24, lines with markers) and FILT
(adaptive α, lines without markers).

It is evident that using the NILT method, significant portions of the time com-
putational window are compromised, as pointed out in Fig. 2.48. As expected, the
time interval where the overflow occurs increases with the length of the line. On
the contrary, the adaptive choice of α in the FILT technique allows outperforming
the NILT method avoiding the overflow condition also for small values of t. This
guarantees an accurate computation of the port transient voltages and currents at
z = 0, even at the beginning of the computational time window. On the other
hand, if the line length is intermediate (tens of meters) and the traveling signals
are smooth enough, the reconstruction of far-end signals could be more convenient
using NILT for the convergence reasons.
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Numerical results: Three-phase cable

In Section 2.6, it has been pointed out that the TD modeling of MTLs through
inverse Laplace transform techniques is feasible and easy to implement since the
formulation is closely connected to the classic frequency domain representation in
terms of per-unit-length (p.u.l.) parameters. In this example, a three-phase cable
is considered. Its cross-section is represented in Fig. 2.49. It is assumed that the
shield is a perfectly conducting cylinder, filled with a uniform dielectric material
characterized by a dielectric relative permittivity εr = 3.0. The line length is as-
sumed as L = 10 m, which is a standard value employed in motor drive systems
applications. The cable geometrical quantities are summarized in Table 2.8.

Figure 2.49: Cable cross-section geometry.

Table 2.8: Geometric features of the three wires cable.
Data Value

rw 3.3 mm

di 10 mm

rs 13.4 mm

θ 120◦

L 10 m

The cable can be modeled as a six ports MTL system. The p.u.l. inductances matrix
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of the MTL model is analytically known [88], exhibiting diagonal elements Ls

Ls =
µ0

2π
ln

(
r2
s − d2

i

rsrw

)
(2.72)

and off-diagonal elements Lm

Lm =
µ0

2π
ln

(
di
rs

√
d2
i + r4

s − 2d2
i r

2
s cos θ

d2
i + d4

i − 2d4
i cos θ

)
. (2.73)

Since the conductors are placed in a homogeneous dielectric medium, the per-unit-
length capacitance matrix is easily obtained:

C = µ0εL
−1 (2.74)

The same holds for the per-unit-length conductance matrix

G = σµ0L
−1 (2.75)

being σ the equivalent DC conductivity of the dielectric material.
For example purposes, only one conductor is fed at one end through a 19 Ω voltage
source, while the other five ports are terminated on 19 Ω passive loads. The voltage
waveform is chosen as a double exponential pulse:

vs = e−αt − e−βt (2.76)

with α = 20 ps and β = 33 ps. The near-end crosstalk voltage induced in one of the
victim lines is shown in Fig. 2.50. The focus should be put on the NILT solution
behavior in the rising portion of the signal, shown in detail in Fig. 2.51, where it
is evident that the results are unavailable for a significant part of the rising edge.
The reason resides in the fact that the chain matrix reaches an overflow condition
due to the very large real part of the Padé poles at the beginning of the analysis,
e.g., at the first time samples. The converse is true for the FILT results, where, as
described in the previous section, an adaptive choice of the real part of the FILT
complex points permits an accurate representation at the early times.

For completeness, In Fig. 2.52 the far-end voltage response is sketched. In this
example, M = 24 (12 terms in the NILT series) was found to be the minimum NILT
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Figure 2.50: Near-end voltage response.
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Figure 2.51: Rising front of the near-end voltage response.

expansion number that guarantees an acceptable accuracy. For the same purpose,
FILT analysis is performed by adopting K = 12 and p = 8 in (2.44), for a total
number of 20 evaluations per time sample of the MTL system. As a consequence of
the chosen number of series terms, the simulation CPU-time for the NILT technique
was 2.67 s, while for FILT was 3.78 s, suggesting that if only the far-end responses
are needed the NILT technique is the most convenient since it reaches an acceptable
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accuracy with a lower computational effort. On the contrary, for the computation
of the near-end responses the FILT technique becomes necessary, since, due to its
flexibility, it provides accurate results also at early times without losing important
data. To combine the benefits offered by each technique, should not be excluded the
possibility to combine the two approaches using FILT to support NILT where it is
not able to provide data.
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Figure 2.52: Far-end voltage response.
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3
The Time Domain Representation of Partial

Elements

Owing to the ever increasing interest in accurate TD simulations in the field of Elec-
tromagnetic Compatibility (EMC), full-wave TD formulations of partial elements
are becoming more and more important.

When the full-wave free-space Green function is considered, the integrals are
typically computed in the frequency domain (FD) by resorting to Gaussian quadra-
ture schemes. This approach may result to be extremely time consuming because,
depending on the accuracy, the order of integration can become easily very high.
This is especially true for self coefficients of potential or mutual ones between close
patches where the Green function becomes singular or nearly singular. In this case,
the standard approach to recover the TD system response is based on the application
of the IFFT technique on the FD results. Unfortunately, to obtain aberrations-free
results in the TD, a pertinent number of frequency samples should be selected,
performing the numerical integrations for the total number of partial elements em-
bedded in to the system for each frequency sample, being the frequency a parameter
appearing inside each interaction integral.

In this Chapter, the Cagniard-deHoop (CdH) technique [89] to calculate full-
wave partial elements exactly in the TD is presented. The resulting analytical
results apply to the interaction between two rectangular surfaces or two bricks (=
right parallelepipeds). The CdH technique is a joint-transform method that has

107



Chapter 3

been originally developed to analytically analyze the seismic-wave propagation in
horizontally layered media (e.g. [90, 91]).

The analytical evaluation of TD partial elements through the CdH technique is
presented in sections 3.1 and 3.2 for rectangular parallel and orthogonal patches,
respectively. Subsequently, the evaluation of both rectangular and volume TD in-
teractions through the NILT technique is explained in Sec. 3.3. In this context, such
method represents a valid alternative when the integrals involved in the CdH com-
putation become excessively expensive. In particular, such problem is found when
dealing with the TD computation regarding adjacent bricks. Finally, the description
and the explanation of the convolution-based PEEC solver arising from the employ-
ment of TD partial elements is presented in 3.4, where different prototype numerical
example highlighting the several advantages brought by this rigorous approach over
standard TD solvers often prone to stability issues.

3.1 Time-domain surface interactions of the poten-

tial type

In this paragraph the analytic derivation of the TD coefficients of potential is pre-
sented. The possible geometrical configurations involve mutually parallel and or-
thogonal patches. Depending on the considered configuration, a specifical derivation
is used.

3.1.1 Parallel patches

In this paragraph the focus is put on the interaction between two rectangular surface
elements m, n, of surfaces Sm, Sn, lying in two parallel planes as described in Fig.
3.1. To localize the position in the problem configuration, we employ coordinates
{x, y, z} with respect to an orthogonal Cartesian reference frame with the origin
O and the standard basis {ix, iy, iz}. Consequently, the position vector is r =

xix + yiy + ziz.
Considering the configuration in Fig. 3.1, we reconsider the retarded coefficient
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Figure 3.1: Two interacting parallel surface elements.

of potential describing the electric interaction between two rectangular surfaces ex-
pressed through a 2-D integral

P̂mn(s) =
1

SmSn

∫
r∈Am

dS

∫
r′∈An

ĝ(r − r′, s)dS ′ (3.1)

where {xm, ym, zm} and {xn, yn, zn} are the reference centers of the relevant surface
mesh elements, Am = {−∆x/2 < x−xm < ∆x/2,−∆y/2 < y−ym < ∆y/2, z = zm}
and An = {−∆x/2 < x − xn < ∆x/2,−∆y/2 < y − yn < ∆y/2, z = zn} are the
rectangular regions occupied by the interacting surfaces, where ∆x > 0 and ∆y > 0

denote the spatial discretization steps in the x- and y-direction, respectively, and
z0 = zm − zn. Consequently, the center-to-center distance between the surfaces is
Rmn = (r2

mn+ z2
0)1/2 > 0, where rmn = [(xm−xn)2 + (ym−yn)2]1/2 > 0 denotes their

horizontal offset. Furthermore, s is the (real-valued and positive) Laplace-transform
parameter, Sm,n = ∆x∆y is the surface area of domains Am,n, respectively, and

ĝ(r − r′, s) =
e−s|r−r

′|/c

4π|r − r′| (3.2)

is the free-space Green’s function pertaining to a homogeneous, isotropic and loss-
free medium with the EM wave speed c > 0.

The retarded partial coefficient as expressed through Eq. (3.1) will be next re-
formulated via a spatial Fourier representation. To that end, the Green’s function
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in the s-domain is represented via the wave slowness representation as

ĝ(r− r′, s) =
( s

2ßπ

)2
∫ ß∞

κ=−ß∞
exp[−sκ(x− x′)]dκ∫ ß∞

σ=−ß∞

exp{−s[σ(y − y′) + Γ(κ, σ)|z − z′|]}
2sΓ(κ, σ)

dσ (3.3)

where

Γ(κ, σ) = (1/c2 − κ2 − σ2)1/2 with <(Γ) ≥ 0 (3.4)

has the meaning of the wave slowness normal to surfaces Am,n. Making use of the
representation (3.3) in Eq. (3.1), we get

P̂mn(s) =
( s

2ßπ

)2
∫ ß∞

κ=−ß∞
i20(sκ∆x/2)

× exp[−sκ(xm − xn)]dκ

∫ ß∞

σ=−ß∞
i20(sσ∆y/2)

× exp{−s[σ(ym − yn) + Γ(κ, σ)|z0|]}
2sΓ(κ, σ)

dσ (3.5)

where i0(x) denotes the modified spherical Bessel function of the first kind. Upon
expanding the product of the modified spherical Bessel functions into their exponen-
tial factors it is found that P̂mn(s) can be expressed in terms of a generic integral.
Accordingly, we may write

P̂mn(s) =
[
K̂(xm − xn + ∆x, ym − yn + ∆y, |z0|, s)

− 2K̂(xm − xn + ∆x, ym − yn, |z0|, s)
+ K̂(xm − xn + ∆x, ym − yn −∆y, |z0|, s)
− 2K̂(xm − xn, ym − yn + ∆y, |z0|, s)
+ 4K̂(xm − xn, ym − yn, |z0|, s)
− 2K̂(xm − xn, ym − yn −∆y, |z0|, s)
+ K̂(xm − xn −∆x, ym − yn + ∆y, |z0|, s)
− 2K̂(xm − xn −∆x, ym − yn, |z0|, s)

+ K̂(xm − xn −∆x, ym − yn −∆y, |z0|, s)
]
/SmSn (3.6)
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Transforming the latter to the TD, we end up with

Pmn(t) =
[
K(xm − xn + ∆x, ym − yn + ∆y, |z0|, t)

− 2K(xm − xn + ∆x, ym − yn, |z0|, t)
+K(xm − xn + ∆x, ym − yn −∆y, |z0|, t)
− 2K(xm − xn, ym − yn + ∆y, |z0|, t)
+ 4K(xm − xn, ym − yn, |z0|, t)
− 2K(xm − xn, ym − yn −∆y, |z0|, t)
+K(xm − xn −∆x, ym − yn + ∆y, |z0|, t)
− 2K(xm − xn −∆x, ym − yn, |z0|, t)

+K(xm − xn −∆x, ym − yn −∆y, |z0|, t)
]
/SmSn (3.7)

where the TD function K(x, y, z, t) is specified by Eq. (3.13) in the next paragraph.

Computation of the integral in the TD for the parallel case

The integral representation to be transformed to TD has the following form

K̂(x, y, z, s) =
( s

2ßπ

)2
∫
κ∈K0

exp(sκx)

s2κ2
dκ

×
∫
σ∈S0

exp{−s[−σy + Γ(κ, σ)z]}
s2σ2

dσ

2sΓ(κ, σ)
(3.8)

for x ∈ R, y ∈ R, {z ∈ R; z ≥ 0} and {s ∈ R; s > 0}, where K0 and S0 are
the integration paths extending along <(κ) = 0 and <(σ) = 0, respectively, that
are indented to the right with semi-circular arcs with centers at the origins and
vanishingly small radii (see Fig. 3.2). Recall that the vertical slowness parameter,
Γ(κ, σ), was defined in Eq. (3.4).

To transform Eq. (3.8) to TD, we shall next pursue the CdH method as described
in [92]. Hence, by virtue of Jordan’s lemma and Cauchy’s theorem, we start by
deforming S0 in the complex σ-plane into the CdH path that is defined via

−σy + Γ(κ, σ)z = udΩ(κ) (3.9)
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0

Re(σ)

Im(σ)

σ-planeS0

Ω(κ)

L

L∗

a

0

Re(κ)

Im(κ)

κ-planeK0

1/c

G

G∗

b

Figure 3.2: Complex slowness planes. (a) σ-plane with the CdH-path for y < 0; (b)
κ-plane with the CdH-paths for x < 0.

for {1 ≤ u <∞}, where Ω(κ) = (1/c2−κ2)1/2 with <(Ω) ≥ 0 and d = (y2 +z2)1/2 >

0. It is found that Eq. (3.9) is satisfied along a hyperbolic path, say L ∪ L∗ (here ∗
denotes the complex conjugate), where

L =
{
σ(u) =

[
− (y/d)u+ ß(z/d)(u2 − 1)1/2

]
Ω(κ)

}
(3.10)

for all {1 ≤ u < ∞} (see Fig. 3.2a). Further, upon introducing parameter u as the
new variable of integration and accounting for the contribution of the (double) pole
singularity at the origin σ = 0, the inner integral with respect to σ can be written
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as

s

2ßπ

∫
σ∈S0

exp{−s[−σy + Γ(κ, σ)z]}
s2σ2

dσ

2sΓ(κ, σ)

=
yH(y)

2sΩ(κ)
exp[−sΩ(κ)z]

+
d2

2πs2Ω2(κ)

∫ ∞
u=1

exp[−sudΩ(κ)]
y2u2 − z2(u2 − 1)

[y2u2 + z2(u2 − 1)]2

× du

(u2 − 1)1/2
(3.11)

Equation (3.11) is subsequently substituted in the starting Eq. (3.8), which yields

K̂(x, y, z, s) = P̂‖(x, y, z, s) + Q̂‖(x, y, z, s) (3.12)

where the TD counterparts of P̂‖(x, y, z, s) and Q̂‖(x, y, z, s) are derived in the fol-
lowing subsections. Relying on these results, we finally obtain

K(x, y, z, t) =
c

4π2

d2

y2

∫ ct

v=R

(ct− v)2F‖(x, y, z, v)dv

+
dx

2π
c

{(
c2t2

d2
− 1

)1/2

− |y|
d

tan−1

[
d

|y|

(
c2t2

d2
− 1

)1/2
]}

× H(x)H(ct− d)

+
%y

2π
c

{(
c2t2

%2
− 1

)1/2

− |x|
%

tan−1

[
%

|x|

(
c2t2

%2
− 1

)1/2
]}

× H(y)H(ct− %) +
xy

2
cH(x)H(y)H(ct− z) (3.13)

where % = (x2 + z2)1/2 > 0, R = (x2 + y2 + z2)1/2 > 0 and F‖(x, y, z, v) is given
by Eq. (3.24). The convolution integral on the right-hand side of Eq. (3.13) can be
carried out via standard integration routines or the recursive convolution technique
along the lines specified in [92, Appendix H]. Expression (3.13) can be finally used
in Eq. (3.7) to evaluate the desired TD coefficient.

For the sake of completeness, we shall further discuss limiting cases of Eq. (3.13)
that are useful for describing the interaction of overlapping surface elements. First,
it is noted that the limit z ↓ 0 has been derived previously in closed form, that is,
K(x, y, 0, t) = I(x, y, t) [93, Eq. (21)]. Consequently, it is straightforward to deduce
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the following limiting cases K(x, 0, 0, t) = I(x, 0, t) with K(0, y, 0, t) = I(0, y, t)

(see [93, Eq. (22)]) and K(0, 0, 0, t) = I(0, 0, t) (see [93, Eq. (23)]). Furthermore, for
the non-zero vertical offset, we find

K(x, 0, z, t) =
|x|z
4π

c

{
|x|
2z
− z

2|x| −
(
c2t2

z2
− 1

)1/2

+
c2t2

2|x|z

}
H(ct− %) +

zx

2π
c

(
c2t2

z2
− 1

)1/2

H(x)H(ct− z) (3.14)

and a similar expression applies to K(0, y, z, t). Finally, for the planar surfaces with
the zero horizontal offset, we find

K(0, 0, z, t) =
z2

8π
c

(
c2t2

z2
− 1

)
H(ct− z) (3.15)

which completes the analysis.

Generic integral P̂‖(x, y, z, s)

The first integral to be transformed to the TD has the following form

P̂‖(x, y, z, s) =
d2

2πs

∫ ∞
u=1

y2u2 − z2(u2 − 1)

[y2u2 + z2(u2 − 1)]2
du

(u2 − 1)1/2

× 1

2πß

∫
κ∈K0

exp{−s[−κx+ udΩ(κ)]}
s2κ2

dκ

Ω2(κ)
(3.16)

To derive P‖(x, y, z, t), the integration contour in the complex κ-plane is deformed
into the CdH path that is defined by

−κx+ udΩ(κ) = τ (3.17)

for {τ ∈ R; τ > 0}. Solving Eq. (3.17) for κ, we obtain hyperbolic arcs, further
denoted by G ∪ G∗, that are described by

G =

{
κ(τ) = − x

R2(u)
τ + ß

ud

R2(u)

[
τ 2 −R2(u)/c2

]1/2} (3.18)

for all τ ≥ R(u)/c, where R(u) = (x2 + u2d2)1/2 > 0. Introducing next the time
parameter τ as the new variable of integration and combining the contributions from
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G and G∗, we get

P̂‖(x, y, z, s) = P̂0,‖(x, y, z, s)

+
d2

2π2s3

∫ ∞
u=1

y2u2 − z2(u2 − 1)

[y2u2 + z2(u2 − 1)]2
du

(u2 − 1)1/2

×
∫ ∞
τ=R(u)/c

<
{

1

κ2(τ)Ω[κ(τ)]

}
dτ

[τ 2 −R2(u)/c2]1/2
(3.19)

where the values along G are taken and P̂0,‖(x, y, s) denotes the contribution from
the pole at κ = 0 that reads

P̂0,‖(x, y, z, s) =
d2xH(x)c2

2πs2

∫ ∞
u=1

exp(−sud/c)

× y2u2 − z2(u2 − 1)

[y2u2 + z2(u2 − 1)]2
du

(u2 − 1)1/2
(3.20)

In the second term of Eq. (3.19), we change the order of integration according to∫ ∞
u=1

du

∫ ∞
τ=R(u)/c

dτ →
∫ ∞
τ=R/c

dτ

∫ U(τ)

u=1

du (3.21)

in which R = R(1) and U(τ) = (c2τ 2 − x2)1/2/d and we arrive at

P̂‖(x, y, z, s) = P̂0,‖(x, y, z, s)

+
c4d2

2π2s3y2

∫ ∞
τ=R/c

exp(−sτ)dτ∫ U(τ)

u=1

cτ [3x2c2τ 2 − 2x4 − u2d2(c2τ 2 − u2d2 + x2)]

d2U2(τ)(c2τ 2 − u2d2)2

u2 − (u2 − 1)(z2/y2)

[u2 + (u2 − 1)(z2/y2)]2
udu

(u2 − 1)1/2[U2(τ)− u2]1/2
(3.22)

The inverse square-root singularities at the end points of the integration with respect
to u can be handled via the substitution u2 = cos2(ψ) +U2(τ) sin2(ψ) for {0 ≤ ψ ≤
π/2}. Consequently, the inner integral can be carried out at once either analytically
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or numerically via a standard integration routine. In this way, we end up with

P̂‖(x, y, z, s) =
d4xH(x)

2πs2y2

∫ ∞
τ=d/c

exp(−sτ)

× τ 2 − (τ 2 − d2/c2)(z2/y2)

[τ 2 + (τ 2 − d2/c2)(z2/y2)]2
dτ

(τ 2 − d2/c2)1/2

+
c4d2

2π2s3y2

∫ ∞
τ=R/c

exp(−sτ)F‖(x, y, z, cτ)dτ (3.23)

where the first integral represents the pole contribution (3.20), where we substituted
τ = ud/c and the integrand of the second term follows from

F‖(x, y, z, v) =
v

d2U2

{
D2(3U2 +D2)

×
∫ π/2

ψ=0

cos2(ψ) + A2 sin2(ψ)

[cos2(ψ) +B2 sin2(ψ)]2

× dψ

[C2 cos2(ψ) +D2 sin2(ψ)]2

−
∫ π/2

ψ=0

cos2(ψ) + A2 sin2(ψ)

[cos2(ψ) +B2 sin2(ψ)]2

× cos2(ψ) + U2 sin2(ψ)

C2 cos2(ψ) +D2 sin2(ψ)
dψ

−D2

∫ π/2

ψ=0

cos2(ψ) + A2 sin2(ψ)

[cos2(ψ) +B2 sin2(ψ)]2

× cos2(ψ) + U2 sin2(ψ)

[C2 cos2(ψ) +D2 sin2(ψ)]2
dψ

}
(3.24)

where

U2 = v2/d2 −D2 (3.25)

A2 = U2 − (U2 − 1)(z2/y2) (3.26)

B2 = U2 + (U2 − 1)(z2/y2) (3.27)

C2 = v2/d2 − 1 (3.28)

D2 = x2/d2 (3.29)
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With the aid of Lerch’s uniqueness theorem [94, appendix], the integrals in (3.23)
can be transformed to the TD and we get

P‖(x, y, z, t) =
c

4π2

d2

y2

∫ ct

v=R

(ct− v)2F‖(x, y, z, v)dv

+
dx

2π
c

{(
c2t2

d2
− 1

)1/2

− |y|
d

tan−1

[
d

|y|

(
c2t2

d2
− 1

)1/2
]}

× H(x)H(ct− d) (3.30)

where the second term, in fact, represents (the TD counterpart of) the pole con-
tribution (3.20). This expression is used to derive the main result represented by
Eq. (3.13).

Generic integral Q̂‖(x, y, z, s)

The second integral to be transformed to the TD has the following form

Q̂‖(x, y, z, s) =
yH(y)

4ßπ

∫
κ∈K0

exp{−s[−κx+ Ω(κ)z]}
s2κ2

dκ

Ω(κ)
(3.31)

The transformation of Q̂(x, y, z, s) to the TD is accomplished by deforming K0 into
the corresponding CdH path, which is permissible thanks to Jordan’s lemma and
Cauchy’s theorem. The resulting CdH path is a hyperbolic arc, denoted by G ∪ G∗,
along which the following equality is satisfied

−κx+ Ω(κ)z = τ (3.32)

where τ is the (real-valued and positive) time parameter. Solving Eq. (3.32) for κ,
we then obtain

G = {κ(τ) = − x

%2
τ + ß

z

%2

(
τ 2 − %2/c2

)1/2} (3.33)

for all τ ≥ %/c and recall that % = (x2 + z2)1/2 > 0. Introducing now τ as the new
variable of integration and accounting for the presence of the double pole singularity
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at κ = 0, we arrive at

Q̂‖(x, y, z, s) =
cxH(x)yH(y)

2s
exp(−sz/c)

+
c2yH(y)

2πs2

∫ ∞
τ=%/c

exp(−sτ)
x2c2τ 2 − z2(c2τ 2 − %2)

(c2τ 2 − z2)2

× dτ

(τ 2 − %2/c2)1/2
(3.34)

The transformation of the first term in Eq. (3.34) is straightforward. The integral
term leads to a convolution-type integral that is amenable to analytical solution.
Hence, relying on Lerch’s uniqueness theorem [94, appendix], again, we after a few
steps of algebra end up with

Q‖(x, y, z, t) =
%y

2π
c

{(
c2t2

%2
− 1

)1/2

− |x|
%

tan−1

[
%

|x|

(
c2t2

%2
− 1

)1/2
]}

H(y)H(ct− %)

+
xy

2
cH(x)H(y)H(ct− z) (3.35)

This expression is finally used to derive the main result (3.13).

3.1.2 Orthogonal patches

Now we shall assume the interaction of two rectangular surface elements lying in
two mutually orthogonal planes sketched in Fig. 3.3. As before, the interacting sur-
faces are assumed to be located in an unbounded, linear homogeneous and isotropic
medium that is characterized by constants ε0 and µ0.

In this section, we study a retarded partial coefficient expressed through a 2-D
integral where now, An = {−∆x/2 < x − xn < ∆x/2, y = yn,−∆z/2 < z − zn <
∆z/2} and Sm = ∆x∆y and Sn = ∆x∆z are the surfaces area of domain Am and
An, respectively.

Again the free-space Green’s function in the s-domain is represented via the wave
slowness representation.

118



Chapter 3

×O
iz

iy

ix

∆x

∆z

×

×

Am

An

Rmn

D0 {ǫ0, µ0}

Figure 3.3: Two interacting mutually orthogonal surface elements.

Making use of the representation (3.3) in Eq. (3.1), we get

P̂mn(s) =
( s

2ßπ

)2
∫ ß∞

κ=−ß∞
i20(sκ∆x/2)

× exp[−sκ(xm − xn)]dκ

∫ ß∞

σ=−ß∞
i0(sσ∆y/2)

× exp[−sσ(ym − yn)]ζ(κ, σ, zm|zn)dσ (3.36)

where i0(x) denotes the modified spherical Bessel function of the first kind and
ζ = ζ(κ, σ, zm|zn) has the following form

ζ =
1

∆z

∫ zn+∆z/2

z′=zn−∆z/2

exp[−sΓ(κ, σ)|zm − z′|]
2sΓ(κ, σ)

dz′ (3.37)

The result of integration depends on the mutual position of the interacting surfaces.
Indeed, we get

ζ∆z =
exp[−sΓ(κ, σ)(zm − zn −∆z/2)]

2s2Γ2(κ, σ)

−exp[−sΓ(κ, σ)(zm − zn + ∆z/2)]

2s2Γ2(κ, σ)
(3.38)
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if zm > zn + ∆z/2, and

ζ∆z =
exp[−sΓ(κ, σ)(zn − zm −∆z/2)]

2s2Γ2(κ, σ)

−exp[−sΓ(κ, σ)(zn − zm + ∆z/2)]

2s2Γ2(κ, σ)
(3.39)

if zm < zn −∆z/2, and, finally,

ζ∆z =
1

s2Γ2(κ, σ)
− exp[−sΓ(κ, σ)(zm − zn + ∆z/2)]

2s2Γ2(κ, σ)

−exp[−sΓ(κ, σ)(zn − zm + ∆z/2)]

2s2Γ2(κ, σ)
(3.40)

if {zn − ∆z/2 < zm < zn + ∆z/2}. The form of constituent in Eqs. (3.38)–(3.40)
suggests to define

Π̂mn(z, s) =
1

∆z

( s

2ßπ

)2
∫ ß∞

κ=−ß∞
i20(sκ∆x/2)

× exp[−sκ(xm − xn)]dκ

∫ ß∞

σ=−ß∞
i0(sσ∆y/2)

× exp{−s[σ(ym − yn) + Γ(κ, σ)|z|]}
2s2Γ2(κ, σ)

dσ (3.41)

Consequently, we may rewrite the coefficient as

P̂mn(s) = Π̂mn(zm − zn −∆z/2, s)

− Π̂mn(zm − zn + ∆z/2, s) (3.42)

for zm > zn + ∆z/2, and

P̂mn(s) = Π̂mn(zn − zm −∆z/2, s)

− Π̂mn(zn − zm + ∆z/2, s) (3.43)

for zm < zn −∆z/2, and

P̂mn(s) = 2 Π̂mn(0, s)− Π̂mn(zm − zn + ∆z/2, s)

− Π̂mn(zn − zm + ∆z/2, s) (3.44)
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for {zn − ∆z/2 < zm < zn + ∆z/2}. Upon expanding the product of the modified
spherical Bessel functions into their exponential factors it is found that Π̂mn(s, z)

can be expressed in terms of a generic integral. Therefore, we may write

Π̂mn(z, s) =
[
Λ̂(xm − xn + ∆x, ym − yn + ∆y/2, |z|, s)

− Λ̂(xm − xn + ∆x, ym − yn −∆y/2, |z|, s)
− 2Λ̂(xm − xn, ym − yn + ∆y/2, |z|, s)
+ 2Λ̂(xm − xn, ym − yn −∆y/2, |z|, s)
+ Λ̂(xm − xn −∆x, ym − yn + ∆y/2, |z|, s)

− Λ̂(xm − xn −∆x, ym − yn −∆y/2, |z|, s)
]
/SmSn (3.45)

Transforming the latter to the TD, we end up with

Πmn(z, t) =
[
Λ(xm − xn + ∆x, ym − yn + ∆y/2, |z|, t)

− Λ(xm − xn + ∆x, ym − yn −∆y/2, |z|, t)
− 2Λ(xm − xn, ym − yn + ∆y/2, |z|, t)
+ 2Λ(xm − xn, ym − yn −∆y/2, |z|, t)
+ Λ(xm − xn −∆x, ym − yn + ∆y/2, |z|, t)

− Λ(xm − xn −∆x, ym − yn −∆y/2, |z|, t)
]
/SmSn (3.46)

Once the TD expression for Πmn(z, t) is available, it can be used in the TD counter-
parts of Eqs. (3.42)–(3.44) to evaluate the desired TD coefficient Pmn(t). The TD
function Λ(x, y, z, t) is specified by Eqs. (3.30) and (3.70) via (the TD original of)
Eq. (3.12) as given in the next section.

Computation of integrals in the TD: the orthogonal Case

The integral representation to be transformed to TD has the following form

Λ̂(x, y, z, s) =
( s

2ßπ

)2
∫
κ∈K0

exp(sκx)

s2κ2
dκ

×
∫
σ∈S0

exp{−s[−σy + Γ(κ, σ)z]}
sσ

dσ

2s2Γ2(κ, σ)
(3.47)
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for x ∈ R, y ∈ R, {z ∈ R; z ≥ 0} and {s ∈ R; s > 0}, where K0 and S0 are
the integration paths extending along <(κ) = 0 and <(σ) = 0, respectively, that
are indented to the right with semi-circular arcs with centers at the origins and
vanishingly small radii. Recall that the vertical slowness parameter, Γ(κ, σ), was
defined in Eq. (3.4). To transform Eq. (3.47) to TD, we shall next pursue the CdH
method as described in [92]. Hence, by virtue of Jordan’s lemma and Cauchy’s
theorem, we start by deforming S0 in the complex σ-plane into the CdH path as
defined in Eq. (3.9). It is found that Eq. (3.9) is satisfied along a hyperbolic path,
say L ∪ L∗ (here ∗ denotes the complex conjugate), where

L =
{
σ(u) =

[
− (y/d)u+ ß(z/d)(u2 − 1)1/2

]
Ω(κ)

}
(3.48)

for all {1 ≤ u <∞}. Further, upon introducing parameter u as the new variable of
integration and accounting for the contribution of the (double) pole singularity at
the origin σ = 0, the inner integral with respect to σ can be written as

s

2ßπ

∫
σ∈S0

exp{−s[−σy + Γ(κ, σ)z]}
sσ

dσ

2s2Γ2(κ, σ)

=
H(y)

2s2Ω2(κ)
exp[−sΩ(κ)z]

− yz/d2

2πs2Ω2(κ)

∫ ∞
u=1

exp[−sudΩ(κ)]

× 2u2 − 1

(u2 − y2/d2)(u2 − z2/d2)

u.
(u2 − 1)1/2

(3.49)

Equation (3.49) is subsequently substituted in the starting Eq. (3.47), which yields

Λ̂(x, y, z, s) = Q̂⊥(x, y, z, s)− P̂⊥(x, y, z, s) (3.50)

where the TD counterparts of P̂⊥(x, y, z, s) and Q̂⊥(x, y, z, s) are derived in the
following subsections.
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Generic integral P̂⊥(x, y, z, s)

The first integral to be transformed to the TD has the following form

P̂⊥(x, y, z, s) =
yz/d2

2πs

∫ ∞
u=1

2u2 − 1

(u2 − y2/d2)(u2 − z2/d2)

× u.
(u2 − 1)1/2

1

2πß

∫
κ∈K0

exp{−s[−κx+ udΩ(κ)]}
s2κ2

dκ

Ω2(κ)
(3.51)

To derive P⊥(x, y, z, t), the integration contour in the complex κ-plane is deformed
into the CdH path that is defined by

−κx+ udΩ(κ) = τ (3.52)

for {τ ∈ R; τ > 0}. Solving Eq. (3.52) for κ, we obtain hyperbolic arcs, further
denoted by G ∪ G∗, that are described by

G =

{
κ(τ) = − x

R2(u)
τ + ß

ud

R2(u)

[
τ 2 −R2(u)/c2

]1/2} (3.53)

for all τ ≥ R(u)/c, where R(u) = (x2 + u2d2)1/2 > 0. Introducing next the time
parameter τ as the new variable of integration and combining the contributions from
G and G∗, we get

P̂⊥(x, y, z, s) = P̂0,⊥(x, y, z, s)

+
yz/d2

2π2s3

∫ ∞
u=1

2u2 − 1

(u2 − y2/d2)(u2 − z2/d2)

du

(u2 − 1)1/2

×
∫ ∞
τ=R(u)/c

<
{

1

κ2(τ)Ω[κ(τ)]

}
dτ

[τ 2 −R2(u)/c2]1/2
(3.54)

where the values along G are taken and P̂0,⊥(x, y, z, s) denotes the contribution from
the pole at κ = 0 that reads

P̂0,⊥(x, y, z, s) =
(xyz/d2)H(x)c2

2πs2

∫ ∞
u=1

exp(−sud/c)

× 2u2 − 1

(u2 − y2/d2)(u2 − z2/d2)

du

(u2 − 1)1/2
(3.55)

In the second term of Eq. (3.54), we change the order of integration according to∫ ∞
u=1

du

∫ ∞
τ=R(u)/c

dτ →
∫ ∞
τ=R/c

dτ

∫ U(τ)

u=1

du (3.56)
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in which R = R(1) and U(τ) = (c2τ 2 − x2)1/2/d and we arrive at

P̂⊥(x, y, z, s) = P̂0,⊥(x, y, z, s)

+
c4

2π2s3

yz

d2

∫ ∞
τ=R/c

exp(−sτ)dτ∫ U(τ)

u=1

cτ [3x2c2τ 2 − 2x4 − u2d2(c2τ 2 − u2d2 + x2)]

d2U2(τ)(c2τ 2 − u2d2)2

2u2 − 1

(u2 − y2/d2)(u2 − z2/d2)

udu

(u2 − 1)1/2[U2(τ)− u2]1/2
(3.57)

The inverse square-root singularities at the end points of the integration with respect
to u can be handled via the substitution u2 = cos2(ψ) +U2(τ) sin2(ψ) for {0 ≤ ψ ≤
π/2}. Consequently, the inner integral can be carried out numerically via a standard
integration routine. In this way, we end up with

P̂⊥(x, y, z, s) =
xyzH(x)

2πs2

∫ ∞
τ=d/c

exp(−sτ)

× 2τ 2 − d2/c2

(τ 2 − y2/c2)(τ 2 − z2/c2)

dτ

(τ 2 − d2/c2)1/2

+
c4

2π2s3

yz

d2

∫ ∞
τ=R/c

exp(−sτ)F⊥(x, y, z, cτ)dτ (3.58)
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where the first integral represents the pole contribution (3.55), where we substituted
τ = ud/c and the integrand of the second term follows from

F⊥(x, y, z, v) =
v

d2U2

{
D2(3U2 +D2)

×
∫ π/2

ψ=0

cos2(ψ) + (2U2 − 1) sin2(ψ)

B2 cos2(ψ) + (U2 − A2) sin2(ψ)

× 1

A2 cos2(ψ) + (U2 −B2) sin2(ψ)

× dψ

[C2 cos2(ψ) +D2 sin2(ψ)]2

−
∫ π/2

ψ=0

cos2(ψ) + (2U2 − 1) sin2(ψ)

B2 cos2(ψ) + (U2 − A2) sin2(ψ)

× 1

A2 cos2(ψ) + (U2 −B2) sin2(ψ)

× cos2(ψ) + U2 sin2(ψ)

C2 cos2(ψ) +D2 sin2(ψ)
dψ

−D2

∫ π/2

ψ=0

cos2(ψ) + (2U2 − 1) sin2(ψ)

B2 cos2(ψ) + (U2 − A2) sin2(ψ)

× 1

A2 cos2(ψ) + (U2 −B2) sin2(ψ)

× cos2(ψ) + U2 sin2(ψ)

[C2 cos2(ψ) +D2 sin2(ψ)]2
dψ

}
(3.59)

where

U2 = v2/d2 −D2 (3.60)

A2 = y2/d2 (3.61)

B2 = z2/d2 (3.62)

C2 = v2/d2 − 1 (3.63)

D2 = x2/d2 (3.64)
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With the aid of Lerch’s uniqueness theorem [94, appendix], the integrals in (3.58)
can be transformed to the TD and we get

P⊥(x, y, z, t) =
c

4π2

yz

d2

∫ ct

v=R

(ct− v)2F⊥(x, y, z, v)dv

+
c

2π
x

{
ct tan−1

[
z

c0t

(c2t2 − d2)1/2

y

]
+ ct tan−1

[
y

c0t

(c2t2 − d2)1/2

z

]
− z tan−1

[
(c2t2 − d2)1/2

y

]
− y tan−1

[
(c2t2 − d2)1/2

z

]}
H(x)H(ct− d) (3.65)

where the second term, in fact, represents (the TD counterpart of) the pole contri-
bution (3.55).

Generic integral Q̂⊥(x, y, z, s)

The second integral to be transformed to the TD has the following form

Q̂⊥(x, y, z, s) =
H(y)

4ßπs

∫
κ∈K0

exp{−s[−κx+ Ω(κ)z]}
s2κ2

dκ

Ω2(κ)
(3.66)

The transformation of Q̂⊥(x, y, z, s) to the TD is accomplished by deforming K0 into
the corresponding CdH path, which is permissible thanks to Jordan’s lemma and
Cauchy’s theorem. The resulting CdH path is a hyperbolic arc, denoted by G ∪ G∗,
along which the following equality is satisfied

−κx+ Ω(κ)z = τ (3.67)

where τ is the (real-valued and positive) time parameter. Solving Eq. (3.67) for κ,
we then obtain

G = {κ(τ) = − x

%2
τ + ß

z

%2

(
τ 2 − %2/c2

)1/2} (3.68)
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for all τ ≥ %/c and recall that % = (x2 + z2)1/2 > 0. Introducing now τ as the new
variable of integration and accounting for the presence of the double pole singularity
at κ = 0, we arrive at

Q̂⊥(x, y, z, s) =
c2xH(x)H(y)

2s2
exp(−sz/c)

+
c3zH(y)

2πs3

∫ ∞
τ=%/c

exp(−sτ)

× 3x2c2τ 2 − z2(c2τ 2 − z2)− 2x4 − x2z2

(c2τ 2 − x2)(c2τ 2 − z2)2

cτ dτ

(τ 2 − %2/c2)1/2
(3.69)

The transformation of the first term in Eq. (3.69) is straightforward. The integral
term leads to a convolution-type integral that is amenable to analytical solution.
Hence, relying on Lerch’s uniqueness theorem [94, appendix], again, we after a few
steps of algebra end up with

Q⊥(x, y, z, t) =
c

4π

{
(c2t2 + x2) tan−1

[
(c2t2 − %2)1/2

z

]
+ 2xz tan−1

[
(c2t2 − %2)1/2

x

]
− 2xct tan−1

[
ct

z

(c2t2 − %2)1/2

x

]
− z(c2t2 − %2)1/2

}
H(y)H(ct− %)

+ (c/2)x(ct− z)H(x)H(y)H(ct− z) (3.70)

which can be used with Eq. (3.65) to evaluate Λ(x, y, z, t) via (the TD original of)
Eq. (3.50).

3.1.3 Numerical examples

To demonstrate the analytical results derived in the previous sections, we next report
some numerical examples for both cases of parallel and orthogonal patches. The
results obtained using the proposed approach are compared with those obtained
through the NILT technique.
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Parallel patches

To provide illustrative examples, the derived closed-form TD formula (3.7) has been
implemented in Matlabr. For simplicity, the parallel rectangular surfaces under
consideration are chosen to be unit squares of size ∆x = ∆y = 1.0mm. Their di-
mension is assumed to be relatively small with respect to c0×(incident wave pulse
time width) or the wavelength at the frequency of analysis). With no loss of gener-
ality, the two patches are Am = {0 ≤ |x− xm| ≤ ∆x/2, 0 ≤ |y− ym| ≤ ∆y/2, z = 0}
and An = {0 ≤ |x − xn| ≤ ∆x/2, 0 ≤ |y − yn| ≤ ∆y/2, z = zn} with xm = ∆x/2,
ym = ∆y/2, xn = xm + k∆x, yn = ym + k∆y, zn = ∆x, and k being an integer
k ∈ [2−7]. The geometrical configuration of the patches is sketched in Fig. 3.4. The
results are shown in Fig. 3.5, where the proposed technique is validated through the
comparison with NILT. The CdH formulation requires to carry out the convolution
integral in (3.30) and, to this aim, the quadgk Matlab function is used. The agree-
ment is very satisfactory. It is also worth to observe that the property of causality,
ensuring the zero response before the arrival time, is accurately preserved in all
cases. The arrival time can be estimated rigorously from the minimum distance
between the two patches and the speed of the EM field in the background medium.

Figure 3.4: Geometrical configurations for parallel patches example: patch An in
the xy-plane at increasing distances along the diagonal of the xy-plane.
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Figure 3.5: Time domain coefficients for the parallel patches example: patch An in
the xy-plane at increasing distances along the diagonal of the xy-plane.

Orthogonal patches

For the case of orthogonal patches, two different geometries are considered in the
following. Again, without loss of generality, the patches are characterized by a
square geometry with sizes ∆x = ∆y = 1.0 mm.

Patch An in the xz-plane at increasing distances along the y-axis the
two patches are Am = {0 ≤ |x − xm| ≤ ∆x/2, 0 ≤ |y − ym| ≤ ∆y/2, z = 0} and
An = {0 ≤ |x − xn| ≤ ∆x/2, y = yn, 0 ≤ |z − zn| ≤ ∆x/2} where xm = ∆x/2,
ym = ∆y/2, xn = xm + ∆x, yn = ym + k∆y, zn = ∆x/2, k being an integer
k ∈ [3− 8]. The geometrical configuration of the patches is sketched in Fig. 3.6.

The TD coefficients have been computed with the CdH technique and compared
with those obtained through the NILT method. The results are shown in Fig. 3.7,
exhibiting a very good agreement. As before, the computation of the convolution
integral (3.65) has been performed by using the quadgk Matlab function. The small
oscillations in the NILT results are explained by the loss of accuracy over long times
of the NILT method.
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Figure 3.6: Geometrical configurations for orthogonal patches example: patch An
in the xz-plane at increasing distances along the y-axis.
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Figure 3.7: Time domain coefficients for the orthogonal patches example: patch An
in the xz-plane at increasing distances along the y-axis.

Patch An in the xz-plane at increasing distances along the diagonal of

xy-plane the two patches are Am = {0 ≤ |x − xm| ≤ ∆x/2, 0 ≤ |y − ym| ≤
∆y/2, z = 0} and An = {0 ≤ |x− xn| ≤ ∆x/2, y = yn, 0 ≤ |z − zn| ≤ ∆x/2} where
xm = ∆x/2, ym = ∆y/2, xn = xm + k∆x, yn = ym + k∆y, zn = ∆x/2, k being an
integer k ∈ [3− 8]. The geometrical configuration of the patches is sketched in Fig.
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3.8.

Figure 3.8: Geometrical configurations for orthogonal patches example: patch An
in the xz-plane at increasing distances along the diagonal of the xy-plane.

The TD interaction integrals have been computed through the CdH technique and
compared with those obtained through the NILT method. The results are shown in
Fig. 3.9 exhibiting a very good agreement.
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Figure 3.9: Time domain coefficients for the orthogonal patches example: patch An
on the diagonal of the xy-plane at increasing distances.
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Induced electric potential by a transient charge

Finally, as a last case of study, two orthogonal patches have been considered again.
The electric potential induced on patch Am by the transient charge on patch An is
evaluated by convolution as:

vm(t) =

∫ t

0

Pmn(t− τ)qn(τ)dτ (3.71)

where Pmn(t) is the transient mutual coefficient of potential and qn(t) is the charge
on patch An. The exciting transient charge qn(t) is taken as the time derivative of
the unipolar, power-exponential (PE) pulse presented in [95,96]:

qn(t) =QpeakN(ν)

(
1− t

t0x

)(
t

t0x

)ν−1

× exp
[
−ν
(
t

t0x
− 1

)]
H(t) for ν > 1 (3.72)

where Qpeak is the first peak magnitude in qn(t), t0x is the pulse zero-crossing time
(corresponding to the pulse rise time of the PE pulse), ν is the initial rise power of
the PE pulse (which is related to the high-frequency asymptotic falloff in its Bode
plot), and N(ν) is the normalization constant

N(ν) = ν
1
2

(
ν

1
2

ν
1
2 − 1

)ν−1

exp
(
ν

1
2

)
. (3.73)

The Laplace transform of (3.73) is:

Q(s) = Qpeakt0xN(ν)
st0xΓ(ν)exp(ν)

(st0x + ν)ν+1 with Re(s) > −ν/t0x (3.74)

where Γ(·) is the Euler gamma function. The induced electric potential has been
computed by increasing the distance between the two patches, as sketched in Fig.
3.10.
The electric potential induced on patch Am has been evaluated in three different
ways:

• computing the convolution directly in the time domain, between the coefficient
of potential Pmn(t), evaluated by the CdH technique, and the charge qn(t)

(3.72);
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Figure 3.10: Geometrical configurations for the orthogonal patches: patch An in the
xz-plane at increasing distances along the xy-plane.

• computing the convolution again in the time domain between the coefficient
Pmn(t) computed by the NILT method, and the charge qn(t) (3.72);

• computing first the convolution in the frequency domain, e.g. multiplying the
fast Fourier transform of the coefficient of potential Pmn(t), evaluated by the
CdH technique, and the Fourier transform of qn(t), evaluated by using (3.74),
with s = jω; then the inverse Fourier transform is adopted to recover the
transient induced potential.

The results of the induced potential development are shown in Fig. 3.11 exhibiting a
very good agreement among the three methods. It is also worth to observe that the
property of causality, ensuring the zero response before the arrival time, is strictly
preserved only using the CdH and NILT techniques.
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Figure 3.11: Time domain induced potential on patch Am due to a charge located
on patch An at increasing distances on the xy-plane.

3.2 Time-domain volume interactions of the induc-

tive type

In this section we analyze the magnetic interaction between the two bricks Vm, Vn
depicted in Fig. 3.12. In particular, we consider study a retarded partial potential
coefficient expressed through a double volume integral

L̂mn(s) =
µ0

SmSn

∫
r∈Vm

dV

∫
r′∈Vn

ĝ(r − r′, s)dV ′, (3.75)

where Vm = {−∆m
x /2 < x − xm < ∆m

x /2,−∆m
y /2 < y − ym < ∆m

y /2,−∆m
z /2 <

z − zm < ∆m
z /2} and Vn = {−∆n

x/2 < x − xn < ∆n
x/2,−∆n

y/2 < y − yn <

∆n
y/2,−∆n

z/2 < z − zn < ∆n
z/2}, where ∆m,n

x > 0, ∆m,n
y > 0 and ∆m,n

z > 0

denote the spatial discretization steps in the x-, y− and z-direction, respectively.
Furthermore, s is the Laplace-transform parameter with <(s) > 0, and Sm,n are
cross sections of the volumes Vm,n, respectively, red that are perpendicular to the
corresponding electric-current flows. Next,

ĝ(r − r′, s) =
e−s|r−r

′|/c

4π|r − r′| (3.76)
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Figure 3.12: Two interacting brick elements.

is the free-space Green’s function of the 3-D scalar modified Helmholtz equation and
c = (εµ)−1/2 > 0 denotes the pertinent (real-valued and positive) EM wave speed.

3.2.1 Problem solution

The retarded partial inductance coefficient as expressed through Eq. (3.75) will be
next transformed to the TD analytically with the aid of the CdH technique. Pursuing
this approach and assuming that |zm − zn| > (∆m

z + ∆n
z )/2, one may express the

TD original of Eq. (3.75), further denoted by Lmn(t) red(in henry/second = ohm),
as follows:

Lmn(t) = (µ0/SmSn)[J(|zm − zn|+ ∆mn+
z , t)

− J(|zm − zn|+ ∆mn−
z , t)− J(|zm − zn| −∆mn−

z , t)

+ J(|zm − zn| −∆mn+
z , t)], (3.77)

where

J(z, t) = I(xm − xn + ∆mn+
x , z, t)

− I(xm − xn + ∆mn−
x , z, t)− I(xm − xn −∆mn−

x , z, t)

+ I(xm − xn −∆mn+
x , z, t), (3.78)
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and

I(x, z, t) = K(x, ym − yn + ∆mn+
y , z, t)

−K(x, ym − yn + ∆mn−
y , z, t)

−K(x, ym − yn −∆mn−
y , z, t)

+K(x, ym − yn −∆mn+
y , z, t), (3.79)

where we used

∆mn±
x,y,z = (∆m

x,y,z ±∆n
x,y,z)/2, (3.80)

respectively. Here, K(x, y, z, t) represents the TD original of the generic slowness
integral, the definition and inversion of which is presented in the following paragraph.
Finally, we emphasize that Eq. (3.77) applies to the configuration where |zm− zn| >
∆mn+
z . The case |zm − zn| < ∆mn+

z must be analyzed separately.

3.2.2 The Generic Integral

The integral representation to be transformed to TD has the following form

K̂(x, y, z, s) =
( s

2ßπ

)2
∫
κ∈K0

exp(sκx)

s2κ2
dκ

×
∫
σ∈S0

exp{−s[−σy + Γ(κ, σ)z]}
s2σ2

dσ

2s3Γ3(κ, σ)
(3.81)

for x ∈ R, y ∈ R, {z ∈ R; z ≥ 0} and {s ∈ R; s > 0}, where K0 and S0 are
the integration paths extending along <(κ) = 0 and <(σ) = 0, respectively, that
are indented to the right with semi-circular arcs with centers at the origins and
vanishingly small radii (see Fig. 3.13). Finally, Γ(κ, σ), being the slowness parameter
along the z-direction, is defined as

Γ(κ, σ) = (1/c2 − κ2 − σ2)1/2 with <(Γ) ≥ 0. (3.82)

The generic integral will next be transformed to the TD with the aid of the
CdH technique. To that end, the integration contour in the complex σ-plane, S0, is
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Figure 3.13: Complex slowness planes. (a) σ-plane with the CdH-path for y < 0;
(b) κ-plane with the CdH-paths for x < 0.

by virtue of Jordan’s lemma and Cauchy’s theorem deformed into a CdH path, say
L∪L∗ (here ∗ denotes the complex conjugate), along which −σy+Γ(κ, σ)z = udΩ(κ)

for {1 ≤ u < ∞} with d2 = y2 + z2 and Ω(κ) = (1/c2 − κ2)1/2 is satisfied (see
Fig. 3.13a). Upon combining the contributions from L and L∗, the inner integral
with respect to σ can be cast into the integral with respect to the (real-valued
and positive) parameters u. In addition, the contribution from the (double) pole
singularity at σ = 0 must be for y > 0 accounted for. The thus expressed inner
integral is subsequently substituted back in Eq. (3.81), which yields

K̂(x, y, z, s) = M̂(x, y, z, s) + N̂(x, y, z, s), (3.83)
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where

M̂ =
1

2πß

d4

2πs3

∫ ∞
u=1

y2z2 − u2(u2 − 1)(y4 − 6y2z2 + z4)

(u2d2 − y2)2(u2d2 − z2)2

× du

(u2 − 1)1/2

∫
κ∈K0

exp{−s[−κx+ Ω(κ)ud]} dκ

s2κ2Ω4(κ)
(3.84)

and

N̂ =
1

2πß

yH(y)

2s2

∫
κ∈K0

exp{−s[−κx+ Ω(κ)z]} dκ

s2κ2Ω3(κ)
, (3.85)

where H(y) has again the meaning of the Heaviside unit-step function, i.e. H(y) = 0

if y < 0, H(0) = 1/2, H(y) = 1 if y > 0.
In the first, we shall describe the transformation of M̂ as given by Eq. (3.84). For

this purpose, the integration contour in the complex κ-plane, K0, is deformed into a
CdH path, say G ∪ G∗, along which −κx+ Ω(κ)ud = τ for {R(u)/c ≤ τ <∞} with
R(u) = (x2 +u2d2)1/2 > 0 is satisfied (see Fig. 3.13b). In the resulting expression, we
combine the contributions from G and G∗ and change the order of the integrations
according to, symbolically∫ ∞

u=1

du

∫ ∞
τ=R(u)/c

dτ →
∫ ∞
τ=R(1)/c

dτ

∫ U(cτ)

u=1

du (3.86)

where U(cτ) = (c2τ 2/d2−x2/d2)1/2. Upon carrying out the integration with respect
to u, Eq. (3.84) can be cast into the following form

M̂ =
c6

2π2s5

∫ ∞
τ=R(1)/c

exp(−sτ)V(x, y, z, cτ)dτ

+ P̂ (x, y, z, s) (3.87)

where P̂ arises from the (double) pole singularity at κ = 0. Both terms on the right-
hand side of Eq. (3.87) have the form that allows their straightforward transform to
the original domain.

The transformation of N̂ (see Eq. (3.85)) follows similar lines of reasoning. In-
deed, the original integration contour, K0, is first replaced with a new CdH path
along which −κx + Ω(κ)z = τ is met for all {ρ/c ≤ τ < ∞}, where ρ2 = x2 + z2.
Combining again the contributions from the hyperbolic arcs in the lower and upper
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halves of the complex κ-plane, we end up with an integral with respect to τ that can
be expressed as P̂ (y, x, z, s) (cf. Eq. (3.87)). Representing further the contribution
from the (double) pole singularity at κ = 0 by Q̂(x, y, z, s), we arrive at

N̂ = P̂ (y, x, z, s) + Q̂(x, y, z, s). (3.88)

Upon substituting Eqs. (3.87) with (3.88) in (3.83) and transform the result to
the TD, we finally get

K(x, y, z, t) =
c

48π2

∫ ct

v=R

(ct− v)4V(x, y, z, v)dv

+ P (x, y, z, t) + P (y, x, z, t) +Q(x, y, z, t). (3.89)

The function behind the integral sign is given by

V(x, y, z, v) =

∫ π/2

ψ=0

f(x, y, z, v, ψ)

× p2 − q2(U2 − 1) sin2(ψ)[cos2(ψ) + U2 sin2(ψ)]

{(z2/d2) cos2(ψ) + [(v2 − r2)/d2] sin2(ψ)}2

× dψ

{(y2/d2) cos2(ψ) + [(v2 − ρ2)/d2] sin2(ψ)}2
, (3.90)

with r2 = x2 + y2, p2 = y2z2/d4, q2 = y4/d4 − 6p2 + z4/d4, U2 = v2/d2 − x2/d2 and

f =
v/d2

U3
[
(x2/d2) sin2(ψ) + (v2/d2 − 1) cos2(ψ)

]2
×
{(

3
x2

d2
+
v2

d2

)
[cos2(ψ) + U2 sin2(ψ)]3

+

(
4
x4

d4
− 11x2v2

d4
− v4

d4

)
[cos2(ψ) + U2 sin2(ψ)]2

−
(
x6

d6
+

5x4v2

d6
− 10

x2v4

d6

)
[cos2(ψ) + U2 sin2(ψ)]

− 2
x8

d8
+ 7

x6v2

d8
− 5

x4v4

d8

}
. (3.91)
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The remaining terms in the final TD result (3.89) can be expressed as follows

P (x, y, z, t) =
cxd3 H(x)

12π

{
6|y|zct
d3

×
{

tan−1

[ |y|(c2t2 − d2)1/2

zct

]

+ tan−1

[
z(c2t2 − d2)1/2

|y|ct

]}

− 3
z

d

c2t2 + y2

d2
tan−1

[
(c2t2 − d2)1/2

z

]
− 3
|y|
d

c2t2 + z2

d2
tan−1

[
(c2t2 − d2)1/2

|y|

]
+

(
2
c2t2

d2
+ 1

)(
c2t2

d2
− 1

)1/2
}
, (3.92)

and, finally,

Q(x, y, z, t) =
cxyH(x)H(y)

4
(ct− z)2H(ct− z). (3.93)

3.2.3 Numerical Examples

In this section, numerical examples related to three different geometries are pre-
sented. For validation purposes, the results obtained through the proposed method
are compared with those obtained through the NILT approach.

Two interacting cubes

As a particular application, the resulting TD expression (3.77) has been implemented
in MATLABr and applied to the case of two interacting cubes (see Fig. 3.14). The
evaluations are performed in the finite time window {0 ≤ ct/Rmn ≤ 2}, where
Rmn = [(xm − xn)2 + (ym − yn)2 + (zm − zn)2]1/2 represents the centre-to-centre
distance between two identical cubes located at

• (xm, ym, zm) = (0, 0, 0),

• (xn, yn, zn) = (2∆x, 2∆x, 2∆x).
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Figure 3.14: Two interacting cube elements.

In the present example we take ∆x = ∆m,n
x = ∆m,n

y = ∆m,n
z = 1.0 mm. The

resulting pulse shape of the TD coefficient is shown in Fig. 3.15. Here, for the
sake of validation, the results obtained through the proposed CdH-based and the
(referential) NILT technique are presented. Finally, the FD counterpart of the two
TD responses is sketched in Fig. 3.16.

As can be seen, the computed results show good correspondence with dissim-
ilarities occurring from 400 GHz up. These discrepancies are, however, virtually
negligible in technical applications.

Interactions of a system of cubes

As a further example we consider the geometry depicted in Fig. 3.17, where the
mutual partial inductance between the cube with the center located at the axes origin
and the others are considered. All the cubes have sides ∆x = ∆y = ∆z = 1.0 mm.
The cubes system is composed by 27 elements, three for each dimension. The
center coordinates span a range [2∆x − 8∆x]. In Fig. 3.18 are sketched all the
TD coefficients related to the system, each one computed through the proposed
technique and compared to NILT results.
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Figure 3.15: The TD coefficient for the two identical cubes: comparison between
the proposed technique and the NILT technique.

Induced voltage on a cube by the currents flowing in four bricks

In Fig. 3.19 are shown four identical parallelepipeds: 1, 2, 3, 4, with sides: ∆x =

1.5 mm,∆y = 0.5 mm,∆z = 0.25 mm, above a cube 0, with sides: ∆0
x = ∆0

y = ∆0
z =

1.0 mm, and center located at the axes origin. The parallelepipeds are considered at
the same height and are collocated unsymmetrically in the x−y plane, with respect
to the cube. In particular, the coordinates of the parallelepipeds are:

• (x1, y1, z1) = (−2.5 mm, 0.5 mm, 3∆0
x),

• (x2, y2, z2) = (−2.5 mm, 5 mm, 3∆0
x),

• (x3, y3, z3) = (11 mm, 0.5 mm, 3∆0
x),

• (x4, y4, z4) = (11 mm, 5 mm, 3∆0
x).

The overall induced voltage on the cube 0 by the system of parallelepipeds can be
computed through a combination of four convolution integrals as:

vL0(t) =
4∑

n=1

∫ t

0

Lp0,n(t− τ)
din(τ)

dτ
dτ (3.94)
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Figure 3.16: Spectrum comparison for the interaction between two identical cubes.

where in(t) is the impressed current on each parallelepiped, n = 1,· · · ,4, flowing in
the x direction. The impressed current in(t), for each parallelepiped, is assumed to
exhibit a windowed-power (WP) waveform [97]:

in(τ, t) = t′τ (2− t′)τH(t′)H(2− t′) (3.95)

where H(t) is the Heaviside unit-step function (H(t) = 0 if t < 0, H(0) = 1/2,
H(t) = 1 if t > 0), t′ = t/tr, tr being the pulse rise time. We choose τ = 2 and
tr = 4.6 ps. The induced voltage on the cube 0 is depicted in Fig. ??, where it
is observed an excellent agreement between the CdH method and the NILT-based
method.
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Figure 3.17: Cubes system geometry.

3.3 The computation of the TD partial inductances

employing NILT-based techniques

An alternative way to perform the computation of partial elements in the TD is
represented by the application of NILT to the Laplace domain integrals (3.1), (3.75).
This kind of approach is based on the numerical integration of such integrals that
has to be performed, for each sample t, over the points of the complex plane defined
by the Padé poles. Hence, again, the computational cost is strictly related to the
total number of computation points dictated byM/2 ·Nt, beingM the chosen NILT
order expansion and Nt the total number of the points of the time grid. On the other
hand, NILT offers the advantage of the arbitrary choice of the number of the samples
without loosing accuracy. Moreover, since each interaction is strictly time-limited
and well-localized in the time window, the samples placement can be appropriately
optimized.

In this section, the application of NILT and NILTn to inductive partial elements
is discussed (the application to potential interactions is straightforward). Moreover,
the Hermite interpolation technique is employed to minimize the effective computa-
tion points obtaining dense waveforms.
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Figure 3.18: TD coefficients for the cubes system geometry.

3.3.1 The delay extraction procedure

The inaccuracies of NILT over large time intervals can be reduced by introducing a
delayed version of the NILT method. We assume to know the spatial support of 2
basis functions m and n. Hence, the minimum distance Rm between the 2 spatial
supports is available and the minimum propagation delay is easily computed since
the propagation takes place in the background medium and the speed of propagation
is rigorously known.

Writing the domains distance as |r− r′| = R and defined the minimum distance
between the two volumes Rm, we can reformulate the free-space Green’s function
extracting the minimum delay Rm/c0:

ĝ(r − r′, s) = e
−sRm

c0
e
−s

(
R−Rm
c0

)
R

. (3.96)

which, substitued in (3.75), gives:

Lmn(t) =
1

j2π

∫ α+j∞

α−j∞

µ0

4π

1

SmSn

∫
r∈Vm

∫
r′∈Vn

e
−s

(
R−Rm
c0

)
R

dV dV ′

 e
s
(
t−Rm

c0

)
ds.

(3.97)
Thus, an auxiliary delayed time variable t′ can be defined as

t′ = t− Rm

c0

. (3.98)
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Figure 3.19: Geometry for the computation of the induced voltage on a cube by the
currents flowing in the bricks system.

If the standard NILT approach is used, the NILT TD partial inductance can be
then reformulated as:

Lmn(t) ≈ − 1

t′

W∑
i=1

<e
{
K ′i

µ0

4π

1

SmSn

∫
r∈Vm

∫
r′∈Vn

e
− zi
t′
(
R−Rm
c0

)
R

dV dV ′

}
(3.99)

The effective time of inverse transform is t′ that is lower or equal than the evalu-
ation time t. Thus, the error of the NILT approach on late times is automatically
reduced. The delayed implementation of the NILT method will be referred to as
dNILT in the following text. It is clear from (3.99) that the delayed version of the
partial inductance in the Laplace domain is needed for the dNILT. The latter can
be expressed as:

Ldelmn (s) =
µ0

4π

1

SmSn

∫
r∈Vm

∫
r′∈Vn

e−sτ
′

R
dV dV ′ (3.100)

where τ ′ = (R − Rm)/c0. Indeed, it is possible to notice that (3.99) is just Ldelpm,n
in (3.100), evaluated for each time sample t over the Padé poles zi. This procedure
can be accomplished by Gaussian numerical integration schemes.

In the previous chapter it has been shown that higher degrees of accuracy with
a lower order M can be reached through the adoption of the modified NILTn, being
n = 2 an effective choice.
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Figure 3.20: Induced voltage on the cube by the currents flowing in the system of
bricks.

Further advantages can be reached combining the NILT2 and the delayed method,
as long as the first 2 s-derivatives of the delayed partial inductance are known:

dLdelmn
ds

= −µ0

4π

1

SmSn

∫
r∈Vm

∫
r′∈Vn

τ ′e−sτ
′

R
dV dV ′ (3.101a)

d2Ldelmn
ds2

=
µ0

4π

1

SmSn

∫
r∈Vm

∫
r′∈Vn

(τ ′)2e−sτ
′

R
dV dV ′. (3.101b)

The combined use of dNILT and NILT2 will be referred as dNILT2 in the following
sections. The mixed dNILT2 method requires the numerical computation of (3.101a)
and (3.101b), in addition to (3.100), for each time sample t, over the Padé poles zi.
Using the dNILT2 approach, the computation of 3 numerical integrals instead of the
only one as in dNILT0 adds computational costs to the overall procedure but the
resulting interpolation greatly reduces the number of time samples and leads to a
significant speed-up. Furthermore, the use of dNILT2 with a lower orderM requires
the numerical integrations to be performed over a smaller number of Padé poles if
compared to dNILT0. This also allows to speed-up the computation.

It is clear that if a dense TD waveform is needed, then the computational com-
plexity may overcome that of the classic inverse fast Fourier transform (IFFT). The
Hermite interpolation is a useful tool to generate dense waveforms starting from a
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relatively low number of samples. In order to compute the interpolant, the values
of the function evaluated over a starting set of time samples and its high order
derivatives at the same points (typically, up to the 5-th order is good enough) are
required. This approach is particularly useful when applied to TD partial induc-
tances. Indeed, each function Lmn(t) is strictly time limited and the time window is
known a-priori, depending on the geometry of the 2 volumes interacting. The time
window is defined in the interval [tmin = Rm/c0, tmax = RM/c0], where Rm and RM

are, respectively, the minimum and the maximum distance between the 2 spatial
supports, e.g. elementary volumes or surfaces. Hence, a few number of initial points
can be strategically selected in the defined interval.

The Hermite interpolant polynomial Γ(t) can be expressed by:

Γ(t) =
H∑
α=1

mα−1∑
β=0

θβ(tα)

β!

H∏
γ=1
γ 6=α

(
t− tγ
tα − tγ

)mγ mα−1∑
k=β

(t−tα)kzk−β

(∑
γ 6=α

mγ

(tγ − tα)r
, r ∈ [k − β]

)
(3.102)

where:

• tα are the initial time samples;

• H is the number of initial time samples;

• (mα − 1) is the maximum order of differentiation employed for the sample
evaluated in tα;

• zn(xi|i ∈ [n]) are the cycle index polynomials [?], using the notation zn(xi|i ∈
[n]) to represent the multinomial zn(x1, x2, . . . , xn).

Certainly, if the function presents points where its derivatives are less regular, more
initial samples have to be placed around them.

3.3.2 Numerical results

This section is dedicated to the presentation of some numerical examples. In the
first example the TD partial inductance of 2 2-D patches is obtained through the
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dNILT2 method and compared to the dNILT0 and analytical results. In the second
example, the partial inductance of 2 volumes at increasing distances is computed by
dNILT2 with and without interpolation. In the third example, the induced voltage
on a (victim) cube due to 4 (source) volumes, where the current flows is obtained
through the techniques here introduced. The fourth example deals with the FD
computation of the total inductance of a thin loop.

In each example, also the NILT based Hermite interpolation results are shown, in
order to emphasize the strength of the dNILT2 method when powered by an efficient
interpolation scheme.

Two coplanar patches

The geometry under consideration is shown in Fig. 3.21. The 2 patches can be

Figure 3.21: Geometrical configuration of 2 patches.

considered, in the limit, as 2 very thin volumes. Analytical results are available for
coplanar patches that are based on the CdH technique yet discussed. The dNILT0
results are computed upon implementing (3.99), while the dNILT2 results are ob-
tained by applying (2.25) to the expression (3.97) for the delayed partial inductance.
The TD responses are sketched in Fig. 3.22, all showing a very good agreement.
Due to the lower error of NILT2 compared to NILT0, for the same orderM , dNILT0
and dNILT2 schemes are applied using M = 12 and M = 4, respectively. The rising
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Figure 3.22: TD mutual partial inductance between 2 patches: NILT and analytical
results.

edge is the most critical to reproduce. Indeed, all the NILT results are necessarily
computed by numerical integration, performed over the surfaces covered by the 2
patches. At the initial points, the delayed parameter t′ is very small, making the
exponential in the integrals very oscillating. Hence, if the integration order is not
large enough, it is likely to obtain inaccuracies at the first time samples. For the
same reason, the higher the order M is, the higher the integration order required
to perform the integration. Indeed, if M increases, also the number of Padé poles
does, and they move in the upper part of the complex plane, as sketched in Fig.
3.23 where only the poles with positive imaginary part are shown.

Hence, choosing a higher M increases the imaginary part of the poles and makes
the exponential term inside the integral more oscillating. Thus, the better error of
the dNILT2 approach compared to dNILT0, allows to limit the order M making the
first one less prone to numerical integration issue.

Still, the computational cost can be high if a fine set of time samples is chosen
and, thus, interpolation is highly recommended. A set of 10 samples have been
selected in the time window where the interaction takes place and the first 5 TD
derivatives of the function are computed at the same points and used to interpolate.
Then, the Hermite interpolants are built over 442 samples. The results obtained
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Figure 3.23: Significant poles of the Padé expansion for increasing order M .

using dNILT0 and dNILT2 are reported in Figs. 3.24 and 3.25. The red crosses
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Figure 3.24: TD mutual partial inductance between 2 patches: CdH and dNILT0-
Hermite interpolation based results.

indicate the starting dNILT0 and dNILT2 points computed withM = 12 andM = 4,
respectively.
From Fig. 3.24, it is clearly seen that the interpolation based on the dNILT0 ap-
proach is inadequate, while the dNILT2 results shown in Fig. 3.25 are in a very good
agreement with the analytical solution. Evidently, for a fixed order of integration,
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Figure 3.25: TD mutual partial inductance between 2 patches: CdH and dNILT2-
Hermite interpolation based results.

the TD derivatives computed with dNILT2 are more accurate than those computed
with dNILT0, making dNILT2 more suitable for the interpolation.

Coplanar cubes

The second example concerns the TD partial inductance between 2 cubes, in 3
different relative positions, as shown in Fig. 3.26.

Figure 3.26: Cubes geometrical configurations.
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The second cube is shifted along the x axis at increasing distances 3∆x, 6∆x, 9∆x, 20∆x.
For 3D geometries, no analytical results exist so far, but the NILT techniques pro-
vide reasonable results also in this case. For each case, the dNILT2-Hermite results
are obtained starting from the knowledge of Lpm,n(t) and its first 5 derivatives on 10
points and building the interpolants over 442 samples. The initial points are cho-
sen equidistant inside the time window of interaction that is known a priori. The
waveforms obtained for the 4 configurations are sketched in Figs. 3.27, 3.28. It is

Figure 3.27: TD partial inductance Lpm,n(t) for 2 cubes at increasing distances
3∆x, 6∆x.

to be noticed that the dNILT2-Hermite technique strictly preserves the causality of
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Figure 3.28: TD partial inductance Lpm,n(t) for 2 cubes at increasing distances
9∆x, 20∆x.

the TD partial inductance Lpm,n(t), i.e. it remains zero until time tmin = Rm/c0,
Rm being the minimum distance between 2 volumes.

Induced voltage by a system of currents

Once the transient inductance Lpm,n(t) between 2 volumes m and n is computed, it
can be used to compute the induced voltage (FEM) in the volume m by the current
in(t) flowing in a volume n, at the time t, through a convolution integral.

The geometry is sketched in Fig. 3.29, where the cube 0 is the "victim" volume.
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Firstly, the 4 TD partial inductances Lp0,1(t), Lp0,2(t), Lp0,3(t), Lp0,4(t) are computed
by the proposed dNILT2-Hermite technique. The 4 TD partial inductances are
computed starting from 10 samples placed in the time window when the interaction
occurs. The circles in Fig. 3.30 are the initial points employed for the interpolation,
while the straight line responses are the obtained interpolants. Then, the overall

Figure 3.29: Cubes system geometry.
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Figure 3.30: TD partial inductances between cube 0 and cubes 1-4 in Fig. 3.29
computed through the dNILT2-Hermite method.
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induced voltage on the cube 0 can be computed as:

vL0(t) =
4∑

n=1

∫ t

0

Lp0,n(t− τ)
din(τ)

dτ
dτ (3.103)

where in(t) is assumed to be the same for each "aggressor" cube, n = 1,· · · ,4, and
flowing in the x direction. For the impressed current in(t), a windowed-power (WP)
prototype [97] is chosen:

in(τ, t) = t′τ (2− t′)τH(t′)H(2− t′) (3.104)

where H(·) is the Heaviside unit step function, t′ = t/tr, tr being the pulse rise time.
We choose τ = 2 and tr = 11.8 ps. The dNILT2-Hermite based results are compared
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Figure 3.31: Total induced voltage on the central cube.

to the standard approach in which the partial inductances and the impressed current
are firstly computed in the FD, then the overall induced voltage on the cube 0 is
restored by IFFT:

vL0(t) =
4∑

n=1

IFFT
(
jωLp0,n(f)In(f)

)
. (3.105)

The induced voltage is reported in Fig. 3.31 showing a very good agreement between
the 2 approaches. Hence the dNILT2-Hermite based computation of the TD partial
inductances can be suitable for more general PEEC convolution-based solvers.
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Total inductance of a thin loop

As a final example, the computation of the FD total inductance (internal and ex-
ternal) of a thin loop is proposed. The loop has a radius r = 1 cm, a thickness
t = 1 µm and a width w = 0.1 mm. The structure comprises N = 31 thin volumes.
The loop is discretized as shown in Fig. 3.32. It is known that, through the concept
of partial inductance, it is possible to compute the total inductance of conductors
within a complex geometry. In this particular case, the FD total loop inductance is:

L`oop(jω) =
N∑
m=1

N∑
n=1

Lpm,n(jω) (3.106)

where Lpm,n(jω) is the partial inductance between the volumes m and n. Each
term Lpm,n(jω) can be computed directly in the FD resorting to Gaussian numerical
integration. For the sake of comparison, firstly each TD partial inductance Lpm,n(t)

is computed through the dNILT2-Hermite scheme. Then, the TD loop inductance
is obtained as:

L`oop(t) =
N∑
m=1

N∑
n=1

Lpm,n(t). (3.107)

Finally, the FD L`oop(jω) is obtained via the Fourier transform (FT). All the TD
mutual partial inductances are sketched in Fig. 3.33. As expected, each response
is window limited and retarded of the time Rm/c0, where Rm is the minimum
distance between the volumes m and n. Because of the symmetries of the geometry,
the responses are equal in pairs (continous and dashed lines superimposed). Each
mutual interaction is computed via dNILT2-Hermite from 10 starting points equally
spaced and placed in the window. The self interactions Lpm,m(t) are computed
using the CdH technique, since the volumes are very thin. The TD mutual partial
inductances obtained by the dNILT2-Hermite approach are shown in Fig. 3.33 where
the continuous line is used for the inductances Lp1,n(t) with n = 2, · · · , 16 and the
dashed line for the inductances Lp1,n(t) with n = 17, · · · , 31. As seen, there are
pairs of overlapping curves, as expected because of the geometrical symmetry. The
comparison between the 2 approaches is shown in Fig. 3.34 exhibiting a very good
agreement.
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It is worth to remark that the proposed method presents a significant improve-
ment in the computational complexity. Indeed, when using the dNILT2-Hermite
method, most of the CPU time is spent in the computation of 10 initial samples in
each window. The densely sampled final waveforms are then obtained by applying
the Hermite interpolation, with a negligible additional CPU cost, no matter how
many TD points are required. On the contrary, the computational cost of each par-
tial inductance in the FD is directly related to the number of frequency points used
and this is typically very large to guarantee high accuracy and avoid any aberration.
In this test, the TD partial inductances in Fig. 3.33 are computed over 10.000 sam-
ples. Hence, in the direct approach, their FT counterparts are computed over 5001

samples. The performances of the 2 methods are summarized in Table 3.1, where
the computational advantages of the proposed method are evident.

Table 3.1: Computational performance.
Technique Samples CPU time (s) Speed-up

Standard approach 5001 (FD) 6.1 · 103 1

dNILT2-Hermite 10.000 (TD) 1.8 · 103 3.4
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Figure 3.32: The set of thin volumes forming the closed loop geometry.

Figure 3.33: dNILT2-Hermite TD mutual partial inductances between the volumes
in the loop.

3.4 Convolution-based TD PEEC solver

The rigorous full-wave representation of partial elements leads to a mathematical
model which contains convolution operations between the TD partial elements and
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Figure 3.34: Magnitude spectrum of the total loop inductance.

the equivalent currents/potentials. The resulting system can be schematized through
the usual state-space MNA form as:

C(t)
dx(t)

dt
= −G(t)x(t) + Bu(t). (3.108)

It is to be remarked that, in this case, the characteristic matrices multiplying the
derivative of the state vector and the state vector itself are assumed time-dependent,
since they contains the partial elements submatrices.

Referring to a PEEC formulation which avoids the inversion of the P submatrix,
the unknowns vector x(t) is given as

x(t) = [i(t) φsr(t) φi(t) vd(t) qs(t)]
T , (3.109)

where i(t) are the branch currents, φsr(t) are the scalar potentials for surface nodes,
φi(t) are the scalar potentials for internal nodes, vd(t) are the excess capacitance
voltages for dielectric branches, and qs(t) represent the surface charges. Further-
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more, the state space matrices C(t), G(t) and B are:

C(t) =



Lp(t)∗
nb×nb

0
nb×nns

0
nb×nni

0
nb×nbd

0
nb×np

0
nns×nb

0
nns×nns

0
nns×nni

0
nns×nbd

MT

nns×np

0
nni×nb

0
nni×nns

0
nni×nni

0
nni×nbd

0
nni×np

0
nbd×nb

0
nbd×nns

0
nbd×nni

Cd
nbd×nbd

0
nbd×np

0
np×nb

0
np×nns

0
np×nni

0
np×nbd

0
np×np


, (3.110)

G(t) =



R
nb×nb

As
nb×nns

Ai
nb×nni

Γ
nb×nbd

0
nb×np

−AT
s

nns×nb
Gle

nns×nns
0

nns×nni
0

nns×nbd
0

nns×np

−AT
i

nni×nb
0

nni×nns
0

nni×nni
0

nni×nbd
0

nni×np

−ΓT

nbd×nb
0

nbd×nns
0

nbd×nni
0

nbd×nbd
0

nbd×np

0
np×nb

−M
np×nns

0
np×nni

0
np×nbd

P(t)∗
np×np


, (3.111)

B =
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, (3.112)

where ∗ represents the convolution operator, and nb, nns, nni, nbd and np represent
the cardinality of branches, surface nodes, internal nodes, dielectric cells and surface
cells, respectively. Moreover, Cd is the excess capacitance matrix, R is the branches
resistance matrix, As is the incidence matrix for the surface nodes, Ai is the inci-
dence matrix for the internal nodes, Γ is the dielectric region selection matrix, M is
the surface-to-node reduction matrix and Gle is the load conductance matrix.

3.4.1 Applications and preliminary results

In this section some simple 2D geometries without dielectrics are examined through
the technique proposed in this chapter. Hence, focusing on thin conductors and
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assuming the absence of dielectrics, the unknowns vector x(t) reduces to:

x(t) = [i(t) φs(t) qs(t)]
T (3.113)

Furthermore, the state space matrices C(t), G(t) and B become:

C(t) =
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 , (3.114)
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0
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0
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I
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0
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 , (3.116)

The TD partial inductance between two surfaces Am, An is easily obtained from
the equivalent coefficient of potential related to the two surfaces. If the direction of
current flowing is supposed in the y direction, we have:

Lmn(t) =
µ0ε0AmAn
∆xm∆xn

Pmn(t) (3.117)

where ∆xm and ∆xn are the sizes of the two rectangles in the x direction, being
supposed the surface currents flowing in the y direction. If the direction of current
flowing is assumed in the x direction, similar considerations apply.

Two coupled transmission lines

We consider the configuration depicted in Fig. 3.35, consisting of two nearby patch
transmission lines (TL). The source TL is supposed to be fed by a Thevenin equiva-
lent, where the generator represents a trapezoidal voltage signal characterized by a

162



Chapter 3

rising time tr = 0.3 ns and width tw = 1 ns. The source and the load impedances are
supposed to be equal and purely resistive with values Zs = ZL = 50 Ω. The victim
TL is closed on both sides on resistive loads ZL = 50 Ω. With reference to Fig. 3.35,
the length and the width of each strip are L = 1 cm and W = 1 mm, respectively,
while the distances occurring between the strips are S1 = S2 = S3 = 1.2 mm.

Figure 3.35: Transmission lines geometry.

The structure is discretized into elementary zero-thickness cells of size not exceed-
ing λmin/20, being λmin the minimum wavelength corresponding to the maximum
frequency that is significant in the spectrum of the source signal. Subsequently,
TD partial elements have been computed through the CdH technique. This kind of
representation of the partial elements leads to a convolution-based solver, where two
groups of convolutions are performed: those between the TD partial inductances and
the electric currents flowing in the branches of the inductive mesh and those between
the TD coefficients of potential and the electric charges residing over the surfaces
of the capacitive mesh. The load voltage of the source line and the TD far-end
and near-end voltages induced over the victim line are depicted in Figs. 3.36-3.37,
where the proposed CdH approach is compared to established TD techniques for
the analysis of retarded PEEC systems using the backward difference scheme of the
second order (BD2). It is evident that the results obtained through the CdH ap-
proach match perfectly those obtained through the application of the Inverse Fast
Fourier Transform (IFFT CC) to the results obtained through the FD analysis of the
model. On the other side, the TD solution using the BD2 time-stepping technique
clearly exhibits an unstable behavior that is related to the approximations of the
propagation delays occurring between the partial elements employed in the retarded
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TD model. On the other hand, the PEEC solver using TD partial elements obtained
through the CdH technique remains stable. The different behavior in terms of sta-
bility can only be related to the most accurate representation of the propagation
delays and convolution integrals.
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Figure 3.36: Driven line: load voltage.

Input impedance of a patch dipole

We now consider the center-fed patch dipole antenna depicted in Fig. 3.38. The two
patches constituting the structure are squares with dimensions W = L = 4.5 mm.

Our analysis considers two different frequency ranges: the active frequency range
extending up to the maximum frequency fmax = 20 GHz, and the extended frequency
range up to fe = 200 GHz.

The EM model of the structure is built by subdividing the geometry into surface
inductive cells whose dimensions are no longer than λmin/60, being λmin the ref-
erence minimum wavelength at fmax. The dipole is characterized in the frequency
domain by its input impedance. The computation is performed through a PEEC-
based solver in conjunction with the TD-CdH-based representation of the partial
elements, carrying out the analysis directly in the TD by resorting to the numeri-
cal evaluation of convolution integrals. In particular, the dipole is excited with an
arbitrary voltage source with a series impedance Zs = 73 Ω and, subsequently, the
TD input port voltage and current are obtained. Finally, the input impedance is
obtained as the ratio of the Fourier transforms of the port quantities. The results
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Figure 3.37: Victim line: (a) Near-end voltage, (b) Far-end voltage.

obtained through the proposed technique are compared with those achieved directly
in the frequency domain by solving the FD PEEC model, expressing the partial
elements through the Gaussian numerical integration along the two dimensions of
each mesh patch, employing integration orders labeled as ox and oy for the x- and y
directions, respectively. The input impedance is sketched in Fig. 3.39, in terms of
input resistance (Fig. 3.39(a)) and input reactance (Fig. 3.39(b)). The results ob-
tained by the PEEC solver using TD partial elements match very well in the active
frequency range, those reported in [50], where the same geometry was considered,
being the 18 GHz peak perfectly reproduced. The same holds for the reactance
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Figure 3.38: Patch dipole geometry.

behavior in the active range. Not surprisingly, the FD results show a better match
with TD-CdH-based results with the increasing integration order.

Furthermore, it is worth noticing that, in the extended frequency range (i.e. 20

GHz < f < 200 GHz), TD-CdH results preserve the passivity while the direct FD
results do not since passivity violations are observed above 74 GHz. This aspect
is crucial when dealing with TD solvers since passivity violations in the extended
range (at frequencies f > fmax) cause late-time instabilities of the TD model.

Transient response of a receiver dipole placed near a transmitter dipole

We are concerned with a pair of transmitter and receiver dipoles, placed at a distance
d = 20 cm. The geometry of each one is the same as the single dipole analyzed before.
The source and the load impedance are set as Zs = ZL = 73 Ω. The configuration
is sketched in Fig. 3.40. We are concerned with the computation of the transient
response at the receiver dipole load.

The source signal driving the transmitter feeding port is a windowed-power pulse
(WP) with rising time tr = 20 ps and ν = 0.2, which is a parameter that shapes
the pulse [97]. The transient receiver voltage is computed through the CdH-based
PEEC solver and is reported in Fig. 3.41. Also in this example, a comparison with
the results obtained through the FD solver using partial elements computed resort-
ing to the Gaussian integration is provided. The transient responses are obtained
through the inverse Fourier transform (IFT) of the FD results. Also in this case, the
transient results based on the Gaussian integration exhibit a better matching with
those obtained through the TD-CdH-based method when the order of integration is
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Figure 3.39: Patch dipole (a) input resistance, (b) input reactance.

Figure 3.40: Transmitter and receiver patch dipoles configuration.
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increased, confirming the results of the previous example. Further, the voltage at
the receiver port is computed through a time-stepping solver that adopts a back-
ward difference scheme of the second order (BD2). In this case, the partial elements
take propagation delays into account through the widely used center-to-center (CC)
approximation. It is evident that the BD2-based solver results are inaccurate if
compared to the CdH-based PEEC solver. This is also highlighted by the fact that
the signal propagation delay between the two dipoles is not reproduced accurately.
This might happen especially when the structures are placed very close to each
other, being in this case the CC approximation inadequate to correctly reproduce
the propagation delay.
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Figure 3.41: Receiver TD voltage response.
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[71] Jĭrí Vlach and Kishore Singhal. Computer Methods for Circuit Analysis and
Design. Kluwer Academic, Boston, MA, USA, second edition, 2003.

180



Chapter 4

[72] Ye Tao, Emad Gad, and Michel Nakhla. Fast and stable time-domain simulation
based on modified numerical inversion of the Laplace transform. IEEE Trans-
actions on Components, Packaging and Manufacturing Technology, 11(5):848–
858, 2021.

[73] E. Gad, M. Nakhla, R. Achar, and Y. Zhou. A-stable and L-stable high-order
integration methods for solving stiff differential equations. 28(9):1359–1372,
Sep. 2009.

[74] Emad Gad, Ye Tao, and Michel Nakhla. Fast and stable circuit simula-
tion via interpolation- supported numerical inversion of the laplace transform.
IEEE Transactions on Components, Packaging and Manufacturing Technology,
12(1):121–130, 2022.

[75] F J Hickernell and S. Yang. Explicit hermite interpolation polynomials via the
cycle index with applications. International Journal of Numerical Analysis and
Modeling, 5(3):457–465, 2008.

[76] F. Yang, Xue-Xia Zhang, Xiaoning Ye, and Y. Rahmat-Samii. Wide-band E-
shaped patch antennas for wireless communications. IEEE Transactions on
Antennas and Propagation, 49(7):1094–1100, 2001.

[77] Sergey V. Kochetov and Guenter Wollenberg. Stable and effective full-wave
PEEC models by full-spectrum convolution macromodeling. IEEE Transactions
on Electromagnetic Compatibility, 49(1):25–34, 2007.

[78] Yue-Kuen Kwok and Daniel Barthez. An algorithm for the numerical inversion
of Laplace transforms. Inverse Problems, 5:1089–1095, 1989.

[79] Seiya Kishimoto, Tatsuichiro Okada, Shinichiro Ohnuki, Yoshito Ashizawa, and
Katsuji Nakagawa. Efficient analysis of electromagnetic fields for designing
nanoscale antennas by using a boundary integral equation method with fast
inverse Laplace transform. Progress In Electromagnetics Research, 146:155–
165, 2014.

181



Chapter 4

[80] Mikheil Tsiklauri, Mikhail Zvonkin, Jun Fan, James Drewniak, Qinghua Bill
Chen, and Alexander Razmadze. Causality and delay and physics in real sys-
tems. In 2014 IEEE International Symposium on Electromagnetic Compatibility
(EMC), pages 961–966, 2014.

[81] C. A. Balanis. Antenna Theory: Analysis and Design. John Wiley and Sons,
New York, 2005.

[82] Cunhua Pan, Hong Ren, Kezhi Wang, Jonas Florentin Kolb, Maged Elkashlan,
Ming Chen, Marco Di Renzo, Yang Hao, Jiangzhou Wang, A. Lee Swindlehurst,
Xiaohu You, and Lajos Hanzo. Reconfigurable intelligent surfaces for 6g sys-
tems: Principles, applications, and research directions. IEEE Communications
Magazine, 59(6):14–20, 2021.

[83] Gabriele Gradoni and Marco Di Renzo. End-to-end mutual coupling aware com-
munication model for reconfigurable intelligent surfaces: An electromagnetic-
compliant approach based on mutual impedances. IEEE Wireless Communica-
tions Letters, 10(5):938–942, 2021.

[84] Placido Mursia, Sendy Phang, Vincenzo Sciancalepore, Gabriele Gradoni, and
Marco Di Renzo. Modeling and optimization of reconfigurable intelligent sur-
faces in propagation environments with scattering objects, 2023.

[85] Giuseppe Pettanice, Fabrizio Loreto, Piergiuseppe Di Marco, Daniele Romano,
Fortunato Santucci, Roberto Alesii, and Giulio Antonini. Time-domain charac-
terization of reconfigurable intelligent surfaces for wireless communications. In
2022 International Symposium on Electromagnetic Compatibility EMC Europe,
pages 566–571, 2022.

[86] Shanpu Shen, Bruno Clerckx, and Ross Murch. Modeling and architecture
design of reconfigurable intelligent surfaces using scattering parameter network
analysis. IEEE Transactions on Wireless Communications, 21(2):1229–1243,
2022.

182



Chapter 4

[87] L. Lu, M.S. Nakhla, and Q.-J. Zhang. A resetting algorithm for transient
analysis of coupled transmission line circuits. IEEE Transactions on Microwave
Theory and Techniques, 42(3):494–500, 1994.

[88] C. R. Paul. Analysis of Multiconductor Transmission Lines. John Wiley &
Sons, New York, NY, second edition, 2008.

[89] A. T. De Hoop. A modification of Cagniard’s method for solving seismic pulse
problems. Applied Scientific Research, B(8):349–356, 1960.

[90] A. T. De Hoop. Large-offset approximations in the modified cagniard method
for computing synthetic seismograms: a survey. Geophys. Prosp., 36(5):465–
477, 1988.

[91] A. T. De Hoop. Reflection and transmission of a transient, elastic, line-source
excited SH wave by a planar, elastic bonding surface in a solid. Int. J. Solids
Struct., 39(21):5379–5391, 2002.

[92] M. Štumpf. Time-Domain Electromagnetic Reciprocity in Antenna Modeling.
Hoboken, NJ: IEEE Press–Wiley, 2019.

[93] Martin Štumpf, Giulio Antonini, and Albert E Ruehli. Cagniard-DeHoop
technique-based computation of retarded partial coefficients: the coplanar case.
IEEE Access, 8:148989–148996, 2020.

[94] M. Štumpf. Electromagnetic Reciprocity in Antenna Theory. Hoboken, NJ:
IEEE Press–Wiley, 2018.

[95] Ioan E. Lager, Adrianus T. de Hoop, and Takamaro Kikkawa. Model pulses for
performance prediction of digital microelectronic systems. IEEE Transactions
on Components, Packaging and Manufacturing Technology, 2(11):1859–1870,
2012.

[96] Ioan E Lager, Vincent Voogt, and Bert Jan Kooij. Pulsed EM field, close-range
signal transfer in layered configurations – a time-domain analysis. 62(5):2642–
2651, 2014.

183



Chapter 4

[97] Ioan E. Lager and Sven L. van Berkel. Finite temporal support pulses for em
excitation. IEEE Antennas and Wireless Propagation Letters, 16:1659–1662,
2017.

184


	Microsoft Word - frontespizio tesi dottorato Fabrizio Loreto non firmato
	597a60212e4197ca4b920b6ccb49158e5f90d95e7898acbc4f154924a58005c8.pdf

