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Abstract
In this article, the tracking control problem for a class of nonlinear time-delay
systems is investigated. In particular, a new methodology for the design and
the digital implementation of observer-based tracking controllers is provided
for a class of control-affine nonlinear systems with state delays. First, a pro-
cedure for the design of continuous-time observer-based tracking controllers
ensuring the global asymptotic stability of the corresponding closed-loop track-
ing error system is provided for the considered class of systems. Then, sufficient
conditions are provided for the existence of a suitably fast sampling and of an
accurate quantization of the input/output channels such that the digital imple-
mentation of the proposed continuous-time observer-based tracking controller
ensures the semi-global practical stability property of the related sampled-data
quantized closed-loop tracking error system, with arbitrarily small final target
ball of the origin. Moreover, it is shown that, in the special case of delay-free
nonlinear systems, the sufficient conditions provided for the digital implemen-
tation of the proposed continuous-time observer-based tracking controller can
be strongly relaxed. In the theory here developed, time-varying sampling peri-
ods and nonuniform quantization of the input/output channels are taken into
account. The proposed results are validated through examples concerning a class
of neural networks systems and a class of time-delay systems including, as a
special case, a delay-free actuated inverted pendulum.

K E Y W O R D S

input-to-state stability, Lyapunov–Krasovskii functionals, nonlinear time-delay systems,
observer-based tracking control, quantized sampled-data controllers, stabilization in the
sample-and-hold sense

1 INTRODUCTION

In the last years, many efforts have been devoted to the development of methodologies for the design of observers and
static state/dynamic output feedback stabilizers for nonlinear time-delay systems.1–6 As far as tracking control systems
are concerned, it is well-known that, in the literature, tracking control problems are commonly addressed by considering
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the equivalent problem concerning the stabilization of the origin for a nonlinear time-varying system.7,8 Methodologies
for the design of observer-based tracking controllers are very few in the literature of systems with state delays. Recently, a
procedure for the design of dynamic output feedback tracking controllers has been provided for a class of continuous-time
periodic linear systems affected by time-varying state delay, uncertainties and external disturbances.9 On the other hand,
in the case of nonlinear systems with state delays, to our best knowledge, methodologies for the design of continuous-time
observer-based tracking controllers have never been provided in the literature.

The first contribution of this article is to fill this gap by providing sufficient conditions for the existence of
continuous-time observer-based tracking controllers for an important class of nonlinear systems in control affine form
and affected by state delays. In particular, the methodology proposed by Germani et al. for the design of continuous-time
observer-based stabilizers1 is here extended to the case of tracking control. A geometric approach and the notion of
input-to-state stability (ISS) are here suitably revised in order to deal with the tracking control problem and used as tools
to provide asymptotic stability results for the related closed-loop tracking error system.

Nowadays, it is well-known that, in engineering applications, the use of digital devices for the practical implemen-
tation of proposed control strategies is more and more growing leading to an increasing attention on the study of digital
control systems.10–18 In this context, an important aspect to take into account is the unavoidable presence of sampling
and quantization in the devices implementing the proposed control scheme. As far as tracking control problems are con-
cerned, few results are available for nonlinear systems with state delays concerning the digital implementation of tracking
controllers. Recently, a methodology for the design of sampled-data dynamic output feedback tracking controllers has
been proposed for a class of control affine nonlinear systems with state delays and practical stability results are provided
for the related closed-loop system.19 On the other hand, the presence of quantization in the input/output channels as well
as the digital implementation of the dynamical part of the proposed controller have not been addressed and theoretical
results are provided by considering that the designed observer evolves on a continuous-time basis.19 To our best knowl-
edge, results concerning quantized sampled-data observer-based tracking controllers, fully described by discrete-time
equations, are not available in the literature of nonlinear systems with state delays.

As a second contribution of this article, we provide sufficient Lyapunov–Krasovskii like conditions for the existence
of a suitably fast sampling and of an accurate quantization of the input/output channels such that the digital imple-
mentation of the proposed continuous-time observer-based tracking controller ensures the semi-global practical stability
property of the related quantized sampled-data closed-loop tracking error system with arbitrarily small final target ball of
the origin. The stabilization in the sample-and-hold sense theory20–23 and the notion of dynamic output steepest descent
feedbacks (DOSDFs)22,24 are used as a tool to prove the results. Time-varying sampling periods as well as the nonuniform
quantization of the input/output channels are taken into account. Furthermore, the stable inter-sampling system behav-
ior is proved. In the theory here developed, the special case of delay-free system is included. In particular, in such case,
by exploiting the converse Lyapunov theorems,25 it is shown that the sufficient conditions provided for the digital imple-
mentation of the proposed continuous-time observer-based tracking controller can be strongly relaxed. We highlight here
that, to our best knowledge, it is the first time in the literature of nonlinear systems with state delays that a methodology
for the design of quantized sampled-data observer-based tracking controllers, fully described by discrete-time equations,
is provided. The proposed methodology is validated through applications concerning a class of neural networks systems26

and a class of time-delay systems including, as a special case, a delay-free actuated inverted pendulum.27

Notation R denotes the set of real numbers, R⋆ denotes the extended real line [−∞,+∞], R+ denotes the set of
nonnegative reals [0,+∞). The symbol | ⋅ | stands for the Euclidean norm of a real vector, or the induced Euclidean
norm of a matrix. For a given positive integer n and for a symmetric, positive definite matrix P ∈ Rn×n, 𝜆max(P) and
𝜆min(P) denote the maximum and the minimum eigenvalue of P, respectively. For a given positive integer n and a given
positive real H, the symbol n

H denotes the subset {x ∈ Rn ∶ |x| ≤ H}. The essential supremum norm of an essentially
bounded function is indicated with the symbol || ⋅ ||∞. For a positive integer n, for a positive real Δ (maximum involved
time-delay): n and W1,∞

n denote the space of the continuous functions mapping [−Δ, 0] into Rn and the space of the
absolutely continuous functions, with essentially bounded derivative, mapping [−Δ, 0] into Rn, respectively. Notice that,
when Δ = 0, the spaces n and Rn are isomorphic and, for any 𝜙 ∈ n, ||𝜙||∞ = |𝜙(0)|. For a positive real H, for 𝜙 ∈ n,


n
H(𝜙) = {𝜓 ∈ n ∶ ||𝜓 − 𝜙||∞ ≤ H}. The symbol n

H denotes n
H(0). For a continuous function x ∶ [−Δ, c) → Rn, with

0 < c ≤ +∞, for any real t ∈ [0, c), xt is the function in n defined as xt(𝜏) = x(t + 𝜏), 𝜏 ∈ [−Δ, 0]. For a positive integer n,
for S = Rn (or R+): C1(S;R+) denotes the space of the continuous functions from S to R+, admitting continuous (partial)
derivatives; C1

L(S;R
+) denotes the subset of the functions in C1(S;R+) admitting locally Lipschitz (partial) derivatives. A

continuous function 𝛾 ∶ R+ → R+ is of class 0 if 𝛾(0) = 0; of class if it is of class 0 and increasing (not necessarily
strictly increasing); of class  if it is of class 0 and 𝛾(s) > 0, s > 0; of class  if it is of class  and strictly increasing; of
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class∞ if it is of class and unbounded; of class  if it monotonically decreases to zero as its argument tends to +∞. A
continuous function 𝛽 ∶ R+ ×R+ → R+ is of class if, for each fixed t ≥ 0, the function s → 𝛽(s, t) is of class and, for
each fixed s ≥ 0, the function t → 𝛽(s, t) is of class . For positive integers n, l, m, for a function f ∶ n ×  l × m → Rn,
and for a locally Lipschitz functional V ∶ n → R+, the derivative (upper right-hand Dini directional derivative in the case
Δ = 0, and derivative in Driver’s form in the case Δ > 028,29) D+V ∶ n ×  l × m → R⋆, of the functional V , is defined,
for 𝜙 ∈ n, 𝜙r ∈  l, 𝜙d ∈ m, as

D+V(𝜙, 𝜙r, 𝜙d) = lim sup
h→0+

V(𝜙h,𝜙r ,𝜙d) − V(𝜙)
h

, (1)

where, in the case Δ > 0, for 0 ≤ h < Δ, 𝜙h,𝜙r ,𝜙d ∈ 
n is defined, for s ∈ [−Δ, 0], as

𝜙h,𝜙r ,𝜙d (s) =

{
𝜙(s + h), s ∈ [−Δ,−h)
𝜙(0) + (s + h)f (𝜙, 𝜙r, 𝜙d), s ∈ [−h, 0],

(2)

and, for Δ = 0 and h ∈ [0, 1), as

𝜙h,𝜙r ,𝜙d(0) = 𝜙(0) + hf (𝜙, 𝜙r, 𝜙d).

For given triple (f , g, h) of smooth functions, where f ∶ Rn → Rn, g ∶ Rn → Rn, h ∶ Rn → R, the symbols Li
f h(x), LgLi

f h(x),
x ∈ Rn, i = 0, 1, … , denote the repeated Lie derivatives, defined as30

L0
f h(x) = h(x), Li

f h(x) =
𝜕Li−1

f h(x)

𝜕x
f (x), i = 1, 2, … ,

LgLj
f h(x) =

𝜕Lj
f h(x)

𝜕x
g(x), j = 0, 1, … . (3)

A triple (f , g, h) has full relative degree in an open set S ⊆ Rn if, for any x ∈ S,

LgLi
f h(x) = 0, i = 0, 1, … ,n − 2, LgLn−1

f h(x) ≠ 0. (4)

If S = Rn, then the triple is said to have full uniform relative degree. For positive integers n, m, the symbols 0n×m and In
denote the zero matrix in Rn×m and the identity matrix in Rn×n, respectively. For a positive integer n, Ab ∈ Rn×n, Bb ∈ Rn

and CT
b ∈ Rn denote the Brunovskii triple matrices, that is,

Ab =

[
0n−1×1 In−1

0 01×n−1

]

, Bb =

[
0n−1×1

1

]

, Cb =
[

1 01×n−1

]

. (5)

2 PRELIMINARIES

In the following, some useful notions and results very helpful for the presentation of the proposed control methodology
are introduced. In particular, the notion of ISS and some useful results related to such a notion28,29,31,32 are properly revised
in order to deal with tracking control problems.

Let us consider a nonlinear time-delay system described by the following RFDE

ẋ(t) = f (xt, rt, dt), t ≥ 0 a.e.
x(𝜏) = x0(𝜏), 𝜏 ∈ [−Δ, 0], (6)

where: x(t) ∈ Rn; x0, xt ∈ n; rt ∈  l is a continuously differentiable reference signal satisfying ||rt||∞ ≤ 𝛾r, ∀t ≥ 0, 𝛾r ≥ 0
and admitting bounded continuous derivatives up to the order n; Δ ≥ 0 is the maximum involved time delay, assumed to
be known; dt ∈ m is the input signal; f ∶ n ×  l × m → Rn is a function Lipschitz on bounded sets of n ×  l × m. It
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DI FERDINANDO et al. 6585

is assumed that f (0, rt, 0) = 0, ∀t ≥ 0. Furthermore, in the case Δ > 0, it is assumed that the initial state x0 ∈ W1,∞
n . In the

following, the notion of ISS,28,29,31,32 suitably modified in order to take into account the reference signal involved in the
system dynamics (6), is recalled.

Definition 1. The system described by (6) is said to be ISS if there exist a function 𝛽 of class  and a
function 𝛾 of class  such that, for any initial state x0 ∈ n, for any measurable, locally essentially bounded
input dt ∈ m, t ≥ 0, and for any continuously differentiable reference signal rt satisfying ||rt||∞ ≤ 𝛾r, ∀t ≥ 0,
𝛾r ≥ 0, and admitting bounded continuous derivatives up to the order n, the solution exists for all t ≥ 0 and,
furthermore, it satisfies

|x(t)| ≤ 𝛽(||x0||∞, t) + 𝛾(esssup
𝜏∈[0,t)

||d𝜏 ||∞). (7)

Theorem 1. If there exist a Lipschitz on bounded sets functional V ∶ n → R+, functions 𝛼1, 𝛼2 of class∞ and
functions 𝛼3, 𝜌 of class such that:

𝛼1(|𝜙(0)|) ≤ V(𝜙) ≤ 𝛼2(||𝜙||a), ∀𝜙 ∈ n
,

D+V(𝜙, 𝜙r, 𝜙d) ≤ −𝛼3(||𝜙||a), ∀𝜙 ∈ n
, 𝜙r ∈  l

𝛾r
, 𝜙d ∈ m ∶ ||𝜙||a ≥ 𝜌(||𝜙d||∞), (8)

where 𝛾r is a positive real denoting the bound of the reference signal (see (6)) and the symbol ||𝜙||a denotes any
semi-norm in n such that, for some positive reals 𝛾a, 𝛾a, the following inequalities hold,

𝛾a|𝜙(0)| ≤ ||𝜙||a ≤ 𝛾a||𝜙||∞, ∀𝜙 ∈ n
, (9)

then, system (6) is ISS with 𝛾 = 𝛼
−1
1 ◦𝛼2◦𝜌.

Proof of Theorem 1. The same reasoning used in the work by Pepe et al.28 for proving Theorem 3.1 can be here
repeated in order to prove Theorem 1. On the other hand, suitable reformulations and considerations are here
required in order to deal with continuously differentiable reference signal rt and infinite dimensional inputs
dt introduced to address tracking control problems and which, in the work by Pepe et al.,28 are not considered.
Let the input dt ∈ m be such that esssup

t≥0
||dt||∞ = v, for a suitable v ∈ R+. Let c = 𝛼2(𝜌(v)) and introduce the

set S = {𝜓 ∈ n ∶ V(𝜓) ≤ c}. ▪

Claim 1. If the solution x(t) is such that, for a certain time t0 ≥ 0, xt0 ∈ S, then xt ∈ S for t ≥ t0.

Proof of Claim 1. First, taking into account the Lipschitz on bounded sets property of the functional V , we
notice that for any (component-wise) locally absolutely continuous solution x(t) of system (6) over a maximal
interval [0, b), 0 < b ≤ +∞ the following facts hold for the function w ∶ [0, b) → R+, given by w(t) = V(xt) (we
recall that x0 ∈ W1,∞

n ):

1. the function w is locally absolutely continuous in [0, b)29;
2. the upper right-hand derivative of the function w,

D+w(t) = lim sup
h→0+

w(t + h) − w(t)
h

,

is such that, for almost all t ∈ [0, b),29

D+w(t) = D+V(xt, rt, dt). (10)

It follows that the locally absolutely continuous function w(t) is non-increasing when D+V(xt, rt, dt) is
non-positive almost everywhere. Thanks to such a property, the same reasoning used in the work by Sontag32

for the case of delay-free systems can be applied here to prove that Claim 1 holds. For details, the reader can
refer to the proof of the claim reported after (37) in the work by Sontag.32 ▪
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Taking into account the first two inequalities in (8), it follows that when xt ∈ S, |x(t)| ≤ 𝛾(v) with

𝛾 = 𝛼
−1
1 ◦𝛼2◦𝜌. (11)

Claim 2. There exists a  function 𝛽 such that, for each initial state x0, with V(x0) > c, and each bounded
input dt, there exists a time instant T > 0 (possibly T = +∞) such that

|x(t)| ≤ 𝛽(||x0||∞, t), ∀t < T,
xt ∈ S, ∀t ≥ T, (12)

with 𝛽(s, t) = 𝛼
−1
1 (𝛽(𝛼2(𝛾as), t)).

Proof of Claim 2. Taking into account (9) and (10), for almost all t in some interval [0,T) (where V(xt) > c),
by (8), the following inequalities hold, for w(t) = V(xt),

D+w(t) = D+V(xt, rt, dt) ≤ −𝛼3(||xt||a) ≤ −𝛼3(𝛼−1
2 (V(xt))) = −𝛼3(𝛼−1

2 (w(t))), a.e. in [0,T). (13)

Then, from Lemma 4.4 in the work by Lin et al.,25 there exists a function 𝛽 such that for all t in the interval
[0,T) the following inequality holds

w(t) ≤ 𝛽(w(0), t). (14)

From (14) and taking into account (8), it follows that for all t in the interval [0,T) the following inequalities
hold

V(xt) ≤ 𝛽(V(x0), t) ≤ 𝛽(𝛼2(||x0||a), t) ≤ 𝛽(𝛼2(𝛾a||x0||∞), t). (15)

Then, taking into account (8) and (15), we obtain

|x(t)| ≤ 𝛼
−1
1 (𝛽(𝛼2(𝛾a||x0||∞), t)) = 𝛽(||x0||∞, t). (16)

The inequality (13) guarantees that the locally absolutely continuous function w(t) = V(xt) is non-increasing
in [0,T) and this, together with Claim 1, guarantees that the solution x(t) is defined for all t ≥ 0. Finally, (11)
and (16) yield the result. ▪

In the following, a crucial result which will be very helpful in the article from a technical point of view is provided.
In particular, Lemma 1 in the work by Germani et al.1 is extended to the case of nonlinear time-delay systems affected by
exogenous bounded signals.

Lemma 1. Let us consider the nonlinear time-delay system described by

ż(t) = fz(zt, rt, et), t ≥ 0 a.e.,
ė(t) = fe(et, rt, zt), t ≥ 0 a.e.,
z(𝜏) = z0(𝜏), e(𝜏) = e0(𝜏), 𝜏 ∈ [−Δ, 0], (17)

where: zt, et ∈ n are the state variables; rt ∈  l is a continuously differentiable reference signal satisfying
||rt||∞ ≤ 𝛾r, ∀t ≥ 0, 𝛾r ≥ 0 and admitting bounded continuous derivatives up to the order n; fz ∶ n ×  l × n →
Rn and fe ∶ n ×  l × n → Rn are smooth functions such that

1. the following conditions hold for any 𝜙z ∈ n and 𝜙r ∈  l
𝛾r

fz(0, 𝜙r, 0) = 0, fe(0, 𝜙r, 0) = 0, fz(𝜙z, 𝜙r, 0) = Ac𝜙z(0), (18)

with Ac a Hurwitz matrix;
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DI FERDINANDO et al. 6587

2. the following condition holds for any 𝜙z, 𝜙e ∈ n and 𝜙r ∈  l
𝛾r

|fz(𝜙z, 𝜙r, 𝜙e) − fz(𝜙z, 𝜙r, 0)| ≤ 𝛾fz ||𝜙e||∞, (19)

with some 𝛾fz ≥ 0.

Assume that system (17) is such that there exists a function 𝛽 of class such that

e(t) ≤ 𝛽(||e0||∞, t), t ≥ 0. (20)

Then, system (17) is globally asymptotically stable.

Proof of Lemma 1. Taking into account (18) and the reasoning exploited in the work by Yeganefar et al.31 to
prove Theorem 3.2, from the converse Lyapunov–Krasovskii theorem,31 it follows that for the unperturbed
system,

ż(t) = fz(zt, rt, 0), t ≥ 0 a.e., (21)

there exist a functional V ∶ n → R+, positive reals Ci, i = 1, 2, 3, 4, such that the following conditions hold
(with respect to the system (21))

C1||𝜙z||∞ ≤ V(𝜙z) ≤ C2||𝜙z||∞, ∀𝜙z ∈ n
,

D+V(𝜙z, 𝜙r, 0) ≤ −C3||𝜙z||∞, ∀𝜙z ∈ n
, ∀𝜙r ∈  l

𝛾r
,

|V(𝜙z1) − V(𝜙z2)| ≤ C4||𝜙z1 − 𝜙z2 ||∞, ∀𝜙z1 , 𝜙z2 ∈ 
n
. (22)

Notice that, from a technical point of view, the converse Lyapunov–Krasovskii theorem has been here applied
to a delay-free system dealt with as a delayed one (see (18) and (21)). By computing the upper right-hand Dini
derivative of the functional V (see (1)) with respect to the perturbed system

ż(t) = fz(zt, rt, et), t ≥ 0 a.e., (23)

we obtain, for 𝜙z, 𝜙e ∈ n and 𝜙r ∈  l
𝛾r

D+V(𝜙z, 𝜙r, 𝜙e) = lim sup
h→0+

V(𝜙h,𝜙r ,𝜙e) − V(𝜙z)
h

= lim sup
h→0+

V(𝜙h,𝜙r ,𝜙e ) − V(𝜙h,𝜙r ,0) + V(𝜙h,𝜙r ,0) − V(𝜙z)
h

≤ D+V(𝜙z, 𝜙r, 0) + lim sup
h→0+

V(𝜙h,𝜙r ,𝜙e ) − V(𝜙h,𝜙r ,0)
h

≤ −C3||𝜙z||∞ + lim sup
h→0+

V(𝜙h,𝜙r ,𝜙e) − V(𝜙h,𝜙r ,0)
h

. (24)

Taking into account (19), the following inequalities hold

|V(𝜙h,𝜙r ,𝜙e ) − V(𝜙h,𝜙r ,0)| ≤ C4||𝜙h,𝜙r ,𝜙e − 𝜙h,𝜙r ,0|| = C4 sup
s∈[−Δ,0]

|𝜙h,𝜙r ,𝜙e(s) − 𝜙h,𝜙r ,0(s)|

= C4 sup
s∈[−h,0]

|s + h||fz(𝜙z, 𝜙r, 𝜙e) − fz(𝜙z, 𝜙r, 0)| ≤ C4|h|𝛾fz ||𝜙e||∞. (25)

Let 𝜔 ∶ R+ → R+ be the function of class ∞ defined as 𝜔(s) = 𝜃s, where 0 < 𝜃 <
C3

C4𝛾fz

. Then, if ||𝜙z||∞ ≥

𝜔
−1(||𝜙e||∞), the following inequalities hold:

D+V(𝜙z, 𝜙r, 𝜙e) ≤ −C3||𝜙z||∞ + C4𝛾fz𝜃||𝜙z||∞ ≤ −𝛿||𝜙z||∞, (26)

where 𝛿 = C3 − C4𝛾fz𝜃 > 0. Let us choose 𝜃 = C3

2C4𝛾fz

so that 𝛿 = C3∕2. Hence, the conditions in Theorem 1

(see (8)) are satisfied with functions 𝛼1(s) = C1s, 𝛼2(s) = C2s, 𝛼3(s) = 𝛿s and 𝜌(s) = 𝜔
−1(s). Thus, it follows that
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6588 DI FERDINANDO et al.

the perturbed system

ż(t) = fz(zt, rt, et), t ≥ 0 a.e.,
z(𝜏) = z0(𝜏), 𝜏 ∈ [−Δ, 0], (27)

is ISS (see Definition 1). From the same reasoning used in the work by Chaillet et al.29 for the case of nonlin-
ear time-delay systems without exogenous disturbances, taking into account (20), the following implication
holds

lim
t→+∞

||et||∞ = 0 ⇒ lim
t→+∞

||zt||∞ = 0. (28)

Then, from (20), (28) and the ISS property of the perturbed system (27), it follows that system (17) is
globally asymptotically stable. ▪

3 PROBLEM STATEMENT

Let us consider a nonlinear time-delay system described by

ẋ(t) = f (x(t)) + g(x(t))(p1(xt)u(t) + p2(xt)), t ≥ 0 a.e.
yt(𝜏) = h(xt(𝜏)),
x(𝜏) = x0(𝜏), 𝜏 ∈ [−Δ, 0], (29)

where: x(t) ∈ Rn; x0, xt ∈ n;Δ ≥ 0 is the maximum involved time delay; u(t) ∈ R is the input signal, yt ∈  is the output
signal; f ∶ Rn → Rn, g ∶ Rn → Rn and h ∶ Rn → R are smooth functions admitting continuous partial derivatives of any
order; pi ∶ n → R, i = 1, 2, are continuously Frechet differentiable functionals. Furthermore, in the case Δ > 0, it is
assumed that the initial state x0 ∈ W1,∞

n .23 Let us introduce the following assumption for the system (29).1

Assumption 1.

(H1) The triple (f , g, h) has full uniform relative degree.
(H2) The function Φ ∶ Rn → Rn, defined, for x ∈ Rn, by

Φ(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

h(x)
Lf h(x)
⋮

Ln−1
f h(x)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (30)

is a diffeomorphism in Rn, and there exist positive reals 𝛾Φ and 𝛾Φ−1 such that, for any z1, z2 ∈ Rn, the
following inequalities hold

|Φ(z1) − Φ(z2)| ≤ 𝛾Φ|z1 − z2|, |Φ−1(z1) − Φ−1(z2)| ≤ 𝛾Φ−1 |z1 − z2|. (31)

(H3) There exist positive reals 𝛾Lf , 𝛾Lg such that

|Ln
f h(Φ−1(z1)) − Ln

f h(Φ−1(z2))| ≤ 𝛾Lf |z1 − z2|, ∀z1, z2 ∈ R
n
,

|LgLn−1
f h(Φ−1(𝜙1(0)))p2(Ψ−1(𝜙1)) − LgLn−1

f h(Φ−1(𝜙2(0)))p2(Ψ−1(𝜙2))| ≤ 𝛾Lg ||𝜙1 − 𝜙2||∞,

∀𝜙1, 𝜙2 ∈ n
, (32)

where Ψ ∶ n → n is the function defined, for any 𝜙 ∈ n, as Ψ(𝜙)(𝜏) = Φ(𝜙(𝜏)), 𝜏 ∈ [−Δ, 0].
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DI FERDINANDO et al. 6589

(H4) There exists a function G ∶  → R, such that, for any 𝜙 ∈ n

LgLn−1
f h(𝜙(0))p1(𝜙) = G(H(𝜙)), (33)

where H ∶ n →  is the function defined as H(𝜙)(𝜏) = h(𝜙(𝜏)), 𝜏 ∈ [−Δ, 0].
(H5) There exists a real p > 0 such that |p1(𝜙)| ≥ p, ∀𝜙 ∈ n.

In the following, the problems addressed in this article are introduced.

Problem 1. Under Assumption 1, for a given bounded continuously differentiable reference signal yd,t ∈ ,
t ∈ R+, admitting bounded continuous derivatives up to the order n, the problems addressed in this article
are the following ones:

(i) design an observer-based dynamic output feedback tracking controller for system (29) such that, for any
x0 ∈ n, the solution x(t) of the corresponding continuous-time closed-loop system is bounded and the
following condition holds

lim
t→∞

|yt(0) − yd,t(0)| = 0; (34)

(ii) provide sufficient conditions for the existence of a suitably fast sampling and of an accurate quantiza-
tion of the input/output channels such that the digital implementation of the dynamic output feedback
tracking controller designed in point (i) ensures the condition (34) in a semi-global practical sense with
arbitrarily small steady state tracking error.

Let us introduce the function Q ∶ Rn → Rn×n defined for any x ∈ Rn as follows

Q(x) = 𝜕Φ(x)
𝜕x

. (35)

Notice that H2 in Assumption 1 implies that Q(x) is nonsingular in all Rn.

4 DESIGN OF THE CONTINUOUS-TIME OBSERVER-BASED TRACKING
CONTROLLER

In order to address Problem 1, let us introduce the following extended tracking output error variable

z(𝜃) = Φ(x(𝜃)) − r(𝜃), r(𝜃) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yd(𝜃)

dyd(𝜃)
d𝜃

d2yd(𝜃)
d𝜃2

⋮

dn−1yd(𝜃)
d𝜃n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yd(𝜃)

y(1)d (𝜃)

y(2)d (𝜃)

⋮

y(n−1)
d (𝜃)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝜃 ∈ [−Δ,∞). (36)

From (29), taking into account Assumption 1 and (36), we obtain the following tracking error system

ż(t) = Abz(t) + Bb(F(zt, rt) + G(Hz(zt), rt)u(t) − y(n)d (t)), t ≥ 0 a.e.

yz,t(𝜏) = Hz(zt)(𝜏) = Cbzt(𝜏), 𝜏 ∈ [−Δ, 0], (37)
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6590 DI FERDINANDO et al.

where: the function Hz ∶ n →  is defined, for𝜙 ∈ n as, Hz(𝜙)(𝜏) = Cb𝜙(𝜏), 𝜏 ∈ [−Δ, 0]; zt ∈ n; yz,t ∈ ; rt ∈ n, rt(𝜏) =
r(t + 𝜏), 𝜏 ∈ [−Δ, 0]; the function G ∶  × n → R is defined as (see (H4) in Assumption 1)

G(Hz(zt), rt) = LgLn−1
f h(Ψ−1(zt + rt)(0))p1(Ψ−1(zt + rt)) = G(H(Ψ−1(zt + rt))); (38)

the function F ∶ n × n → R is defined for any 𝜙z, 𝜙r ∈ n as

F(𝜙z, 𝜙r) = Ln
f h(Φ−1(𝜙z(0) + 𝜙r(0))) + LgLn−1

f h(Φ−1(𝜙z(0) + 𝜙r(0)))p2(Ψ−1(𝜙z + 𝜙r)). (39)

We highlight here that, in the following, point (i) in Problem 1 will be addressed by considering the problem of design-
ing a continuous-time global asymptotic observer-based stabilizer for the system described by (37). Indeed, point (i) in
Problem 1 follows from the global asymptotic stability (GAS) property of the system (37).

Remark 1. Notice that, system (37) is in a lower triangular form with trivial zero dynamics. Many method-
ologies have been provided in the literature for the design of continuous-time stabilizers for class of systems
in lower triangular form with trivial/non-trivial zero dynamics.6,33 For instance, in the work by Lin and
Zhang,6 a methodology for the design of continuous-time dynamic output feedback stabilizers is provided
for a class of lower triangular systems with discrete-time delays and non-trivial zero dynamics. The method-
ologies provided in the work by Lin and Zhang6 and in the work by Zhao and Lin33 cannot be directly
applied here due to the presence: (i) of known exogenous disturbances mimicking the chosen reference
signal as common in the tracking control framework; (ii) of possible distributed time-delays in the func-
tions describing the system at hand (see (37)). In particular, we highlight that, to our best knowledge,
methodologies for the design of dynamic output feedback stabilizers for the class of systems reported in (37)
have never been provided in the literature. Here, for the first time in the literature, a methodology for the
design of dynamic output feedback stabilizers and results concerning their quantized sampled-data imple-
mentation are provided for the class of systems described by (37) in order to solve the tracking control
problem considered in Problem 1. On the other hand, the study of a methodology for the design of track-
ing controllers taking into account the presence of possible non-trivial zero dynamics in the corresponding
tracking error system (see (37)) is beyond the aims of this article and is left for future investigations. Such
an interesting topic could be addressed, for instance, by exploiting the techniques provided in the work by
Lin and Zhang.6

Remark 2. Notice that, in (29), the functions p1(⋅) and p2(⋅) are affected by state-delays. On the other hand,
the triple (f , g, h) is required to be delay-free. Such requirement together with the conditions (H1) and (H2)
in Assumption 1 ensure the existence of a suitable change of coordinates (see (30) and (36)) transform-
ing the nonlinear system (29) in the new structural form (37) where the top n − 1 equations are linear
delay-free dynamics and the time-delay nonlinearities together with the control input only appear in the
last equation. In the literature of nonlinear systems, such a configuration (see (37)) is commonly called
matching condition,34,35 which is both general and practical for control synthesis and, moreover, includes
a large class of systems as, for instance, vehicle systems and delay-free actuated inverted pendulum sys-
tems.36 We highlight also that, the conditions (H2) and (H3) concern the globally Lipschitz property of
the diffeomorphic transformation Φ(⋅), of its inverse Φ−1(⋅) and of the functions Ln

f h(⋅), LgLn−1
f h(⋅)p2(⋅).

Even though such conditions could appear demanding, they are satisfied by many classes of practical sys-
tems as, for instance, the ones cited above. Moreover, the results in the forthcoming Theorem 3 provide a
solution to relax the condition (H3) allowing the application of the proposed observer-based tracking con-
troller also to particular classes of locally Lipschitz nonlinear time-delay systems as the one studied in
Section 6.

Notice that, from (H3) in Assumption 1, there exists a positive real 𝛾F such that, for any 𝜙zi , 𝜙ri ∈ 
n, i = 1, 2, the

following inequality holds

|F(𝜙z1 , 𝜙r1) − F(𝜙z2 , 𝜙r2)| ≤ 𝛾F(||𝜙z1 − 𝜙z2 ||∞ + ||𝜙r1 − 𝜙r2 ||∞). (40)

In the following, the continuous-time observer-based stabilizer provided in the work by Germani et al.1 is suitably revised
in order to deal with point (i) in Problem 1. In particular, the proposed continuous-time observer-based tracking controller
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DI FERDINANDO et al. 6591

for the system (29), solving point (i) in Problem 1, is here described by

̇̂z(t) = Abẑ(t) + Bb(F(ẑt, rt) + G(Hz(zt), rt)u(t) − y(n)d (t)) − KCb(ẑ(t) − z(t)),

u(t) =
−F(ẑt, rt) + y(n)d (t) + Γẑ(t)

G(Hz(zt), rt)
,

ẑ(𝜏) = ẑ0(𝜏), 𝜏 ∈ [−Δ, 0], (41)

where: ẑ(t) = Φ(x̂(t)) − r(t) ∈ Rn with x̂(t) ∈ Rn denoting the estimation of the system state described by (29) (i.e., the
estimation of x(t) in (29)); ẑt, ẑ0 ∈ n; F and G are the functions in (37); y(n)d (t) is given in (37); K, ΓT ∈ Rn are suitable
tuning parameters.

Remark 3. Notice that, the proposed continuous-time observer-based tracking controller (41) is inspired by
the continuous-time observer-based stabilizer provided in the work by Germani et al.1 In particular, the
equation describing the observer dynamics are exactly the same proposed in (18) of the work by Germani
et al.1 here rewritten with respect to the tracking error variable z(t) for simplicity in the notation which will
be also used for the presentation of the proposed digital framework in the next section. On the other hand,
the control input (19) in the work by Germani et al.1 has been here suitably revised in order to address point
(i) in Problem 1 (see (41)). It is here highlighted also that for the practical implementation of the proposed
controller the explicit knowledge of the system state estimation x̂(t) is not required (see (41)).

In the following, the first main result of the article is provided. In particular, it is proved that there exist suitable control
tuning parameters K and Γ such that point (i) in Problem 1 is solved with the proposed continuous-time observer-based
tracking controller (41).

Theorem 2. Let Assumption 1 hold. Let yd,t ∈ , t ∈ R+, be a chosen reference signal as in Problem 1. Then,
there exist parameters K and Γ such that point (i) in Problem 1 is solved with the proposed continuous-time
observer-based tracking controller (41).

Proof of Theorem 2. In order to prove Theorem 2, we will show that the continuous-time closed-loop system
described by (37)–(41) is GAS. Indeed, the GAS property of the continuous-time closed-loop system (37)–(41)
implies point (i) in Problem 1. First, we notice that the continuous-time closed-loop system (37)–(41) is
described by

ż(t) = Abz(t) + Bb(F(zt, rt) − F(ẑt, rt) + Γẑ(t)),
̇̂z(t) = (Ab + BbΓ)ẑ(t) − KCb(ẑ(t) − z(t)). (42)

Let us now consider the estimation error variable defined as et = ẑt − zt ∈ n. Taking into account that ẑ(t) =
e(t) + z(t), from (42), we obtain

ż(t) = Abz(t) + Bb(F(zt, rt) − F(zt + et, rt) + Γ(z(t) + e(t))),
ė(t) = (Ab − KCb)e(t) + Bb(F(zt + et, rt) − F(zt, rt)). (43)

Notice that, the GAS property of the continuous-time closed-loop system (42) follows from the GAS property
of the corresponding closed-loop system (43). In the following, we will prove the GAS property of system (43)
by making use of the results in Lemma 1. Notice that, system (43) is in the form (17) with

fz(𝜙z, 𝜙r, 𝜙e) = Ab𝜙z(0) + Bb(F(𝜙z, 𝜙r) − F(𝜙z + 𝜙e, 𝜙r) + Γ(𝜙z(0) + 𝜙e(0))),
fe(𝜙e, 𝜙r, 𝜙z) = (Ab − KCb)𝜙e(0) + Bb(F(𝜙z + 𝜙e, 𝜙r) − F(𝜙z, 𝜙r)). (44)

First, we prove the existence of the function 𝛽. Let𝜆 =
[
𝜆1 𝜆2 · · · 𝜆n

]
be a n-tuple of negative real eigenval-

ues, with 𝜆1 > 𝜆2 > · · · > 𝜆n. Let K be such that the matrix A − KCb has the n-tuple of negative real eigenvalues
𝜆i, i = 1, … ,n. Let E(t) = V(𝜆)e(t), t ≥ −Δ, where V(𝜆) is the Vandermonde Matrix (see Lemma 1 in the work
by Ciccarella et al.37). From system (43), taking into account (40) and that |V(𝜆)Bb| =

√
n, we obtain, following
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6592 DI FERDINANDO et al.

the reasoning exploited in the work by Ciccarella et al.,37

|E(t)| ≤ e𝜆1t|E(0)| +
∫

t

0
e𝜆1(t−𝜏)|V(𝜆)Bb||F(z𝜏 + e𝜏 , r𝜏) − F(z𝜏 , r𝜏)|d𝜏

≤ e𝜆1t|E(0)| +
∫

t

0
e𝜆1(t−𝜏)|V(𝜆)Bb|𝛾F||e𝜏 ||∞d𝜏

≤ e𝜆1t|E(0)| +
∫

t

0
e𝜆1(t−𝜏)

√
n𝛾F|V−1(𝜆)|(||E𝜏 ||∞ + |E(𝜏)|)d𝜏, (45)

where E𝜏 ∶ [−Δ, 0] → Rn is defined as E𝜏(𝜃) = E(𝜏 + 𝜃), 𝜃 ∈ [−Δ, 0], 𝜏 ≥ 0. From here on steps (3.12)–(3.20),
provided in work by Germani and Pepe for proving Theorem 3.3,2 can be repeated to prove that there exists a
negative real c such that

|E(t)| ≤ |V(𝜆)|||e0||∞ect
, t ≥ 0. (46)

Then, we have that

|e(t)| = |V−1(𝜆)V(𝜆)e(t)| = |V−1(𝜆)E(t)| ≤ |V−1(𝜆)||V(𝜆)|||e0||∞ect
. (47)

Let Γ be such that the matrix Ab + BbΓ is Hurwitz. Then, all the hypotheses in Lemma 1 are here satisfied and,
consequently, the system described by (43) is GAS. The proof of the theorem is complete. ▪

In the forthcoming theorem, the continuous-time observer-based tracking controller provided in (41) is suitably
adapted to the case in which Assumption 1 is partially satisfied.

Theorem 3. Let H1, H2, H4, and H5 of Assumption 1 be satisfied. Let the first inequality in (32) be satisfied for
any z1, z2 ∈ Rn such that Cbz1 = Cbz2. Let the second inequality in (32) be satisfied for any 𝜙1, 𝜙2 ∈ n such
that Cb𝜙1(𝜏) = Cb𝜙2(𝜏), 𝜏 ∈ [−Δ, 0]. Let yd,t ∈ , t ∈ R+, be a chosen reference signal as in Problem 1. Then,
there exist parameters K and Γ such that point (i) in Problem 1 is solved with the continuous-time observer-based
tracking controller described by

̇̂z(t) = Abẑ(t) + Bb(F(z̃t, rt) + G(Hz(zt), rt)u(t) − y(n)d (t)) − KCb(ẑ(t) − z(t)),

u(t) =
−F(z̃t, rt) + y(n)d (t) + Γẑ(t)

G(Hz(zt), rt)
,

ẑ(𝜏) = ẑ0(𝜏), 𝜏 ∈ [−Δ, 0], (48)

where: ẑ(t) = Φ(x̂(t)) − r(t) =

[ẑ1(t)
⋮

ẑn(t)

]

∈ Rn with x̂(t) ∈ Rn denoting the estimation of the system state described

by (29) (i.e., the estimation of x(t) in (29)); ẑt, ẑ0 ∈ n;

z̃(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1(t)

ẑ2(t)

⋮

ẑn(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

F and G are the functions in (37); y(n)d (t) is given in (37).

Proof of Theorem 3. The proof is similar to the one of Theorem 2 and, for this reason, it is here omitted. ▪
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DI FERDINANDO et al. 6593

5 DIGITAL IMPLEMENTATION OF THE PROPOSED CONTINUOUS-TIME
OBSERVER-BASED TRACKING CONTROLLER

In this section, sufficient conditions for the digital implementation of the continuous-time observer-based controller (41)
(see also (48)) are provided. In particular, under suitable conditions, it is proved that there exist a suitably fast sampling
and an accurate quantization of the input/output channels such that the digital implementation of the continuous-time
observer-based tracking controller (41) (see also (48)) ensures the semi-global practical stability of the related quan-
tized sampled-data closed-loop tracking error system, with arbitrarily small final target ball of the origin. The notion of
DOSDF22,24 and the stabilization in the sample-and-hold sense theory will be used as tools to provide the sufficient condi-
tions for the digital implementation of the continuous-time observer-based tracking controller (41) (see also (48)). First,
we notice that system (37) is in the following form

ż(t) = f z(zt, r̃t,u(t)), t ≥ 0 a.e.
yz,t(𝜏) = Hz(zt)(𝜏) = Cbzt(𝜏), (49)

z(𝜏) = z0(𝜏), 𝜏 ∈ [−Δ, 0],

where: zt ∈ n; r̃t =
[ rt

y(n)d,t

]

∈ n+1, y(n)d,t (𝜏) = y(n)d (t + 𝜏), 𝜏 ∈ [−Δ, 0], t ≥ 0; u(t) ∈ R is the input signal in (37) (see also (29));

yz,t ∈  is the output signal in (37); Hz is the function in (37); f z ∶ n × n+1 ×R → Rn is the function defined, for any

𝜙z ∈ n, 𝜙r̃ =
[
𝜙r
𝜙y(n)

]

∈ n+1, 𝜙r ∈ n, 𝜙y(n) ∈  and u ∈ R, as follows

f z(𝜙z, 𝜙r̃,u) = Ab𝜙z(0) + Bb(F(𝜙z, 𝜙r) + G(Hz(𝜙z), 𝜙r)u − 𝜙y(n) (0)). (50)

Remark 4. We highlight here that, taking into account Problem 1 and (37), ||r̃t||∞ ≤ 𝛾r̃,∀t ≥ 0 with 𝛾r̃ a positive
real.

Assumption 2. It is assumed that the reference signal yd,t in Problem 1 is such that there exists a function 𝜌

of class satisfying

||r̃t1 − r̃t2 ||∞ ≤ 𝜌(|t1 − t2|), ∀t1, t2 ∈ R
+
. (51)

In order to provide sufficient conditions for the digital implementation of the continuous-time observer-based con-

troller (41) (see also (48)), let Fz ∶ 2n × n+1 ×Rn+1 → R2n be the function defined, for any 𝜙 =
[
𝜙z
𝜙ẑ

]

∈ 2n, 𝜙z, 𝜙ẑ ∈ n,

𝜙r̃ ∈ n+1, v =
[

v1
v2

]

∈ Rn+1, v1 ∈ R, v2 ∈ Rn, as24

Fz(𝜙, 𝜙r̃, v) =

[
f z(𝜙z, 𝜙r̃, v1)

v2

]

, (52)

where f z is the function in (50).
First, for the reader’s convenience, the notion of smoothly separable functionals is recalled.23

Definition 2. A functional V ∶ 2n → R+ is said to be smoothly separable if there exist a function V1 ∈
C1

L
(
R2n;R+), a locally Lipschitz functional V2 ∶ 2n → R+, functions 𝛽i of class∞, i = 1, 2, such that, for any

𝜙 ∈ 2n, the following equality/inequalities hold

V(𝜙) = V1(𝜙(0)) + V2(𝜙),
𝛽1(|𝜙(0)|) ≤ V1(𝜙(0)) ≤ 𝛽2(|𝜙(0)|). (53)

In the following, for a given positive integer n, for a function Fz ∶ 2n × n+1 × Rn+1 → R2n, and for a locally Lipschitz
functional V ∶ 2n → R+, the derivative (upper right-hand Dini directional derivative in the caseΔ = 0, and derivative in
Driver’s form in the caseΔ > 028) D+V ∶ 2n × n+1 ×Rn+1 → R⋆, of the functional V , is defined, for 𝜙 ∈ 2n, 𝜙r̃ ∈ n+1,
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6594 DI FERDINANDO et al.

v ∈ Rn+1, as

D+V(𝜙, 𝜙r̃, v) = lim sup
h→0+

V(𝜙h,𝜙r̃ ,v) − V(𝜙)
h

, (54)

where, in the case Δ > 0, for 0 ≤ h < Δ, 𝜙h,𝜙r̃ ,v ∈ 
n is defined, for s ∈ [−Δ, 0], as

𝜙h,𝜙r̃ ,v(s) =

{
𝜙(s + h), s ∈ [−Δ,−h)
𝜙(0) + (s + h)Fz(𝜙, 𝜙r̃, v), s ∈ [−h, 0],

and, for Δ = 0 and h ∈ [0, 1), as

𝜙h,𝜙r̃ ,v(0) = 𝜙(0) + hFz(𝜙, 𝜙r̃, v).

We denote here with  the set of Lyapunov–Krasovskii functionals V ∶ 2n → R+ with the following properties22,24:

1. V is smoothly separable, with V2 ≡ 0 in the case Δ = 0, according to Definition 2 (recall V = V1 + V2);
2. in the case Δ > 0, the function (𝜙, 𝜙r̃, v)→ D+V2(𝜙, 𝜙r̃, v), 𝜙 ∈ 2n, 𝜙r̃ ∈ n+1, v ∈ Rn+1, is Lipschitz on bounded sub-

sets of 2n × n+1 ×Rn+1, where the derivative in Driver’s form (see (54)) of the functional V2 is computed with respect
to the function Fz in (52);

3. there exist functions 𝛾1, 𝛾2 of class∞ such that for any 𝜙 ∈ 2n, the following inequalities hold:

𝛾1(|𝜙(0)|) ≤ V(𝜙) ≤ 𝛾2(||𝜙||∞). (55)

Let us consider k ∶ n × n+1 ×  → Rn+1 be the function defined, for any 𝜙 =
[
𝜙z
𝜙ẑ

]

∈ 2n, 𝜙z, 𝜙ẑ ∈ n, 𝜙r̃ =
[
𝜙r
𝜙y(n)

]

∈ n+1, 𝜙r ∈ n, 𝜙y(n) ∈  (see (41) and also (48))

k(𝜙ẑ, 𝜙r̃,Hz(𝜙z)) =

⎡
⎢
⎢
⎢
⎢
⎣

−F(𝜙ẑ, 𝜙r) + 𝜙y(n) (0) + Γ𝜙ẑ(0)
G(Hz(𝜙z), 𝜙r)

(Ab + BbΓ)𝜙ẑ(0) − KCb𝜙ẑ(0) + KHz(𝜙z)(0)

⎤
⎥
⎥
⎥
⎥
⎦

. (56)

In the following, sufficient conditions for the quantized sampled-data implementation of the continuous-time
observer-based controller (41) (see also (48)) are provided.

Assumption 3. There exist a Lyapunov–Krasovskii functional V ∈  , positive reals 𝜂, 𝜇, a function p in
C1

L
(
R+;R+), of class∞, a function 𝛼 of class such that Id − 𝛼 is of class∞, a real 𝜈 ∈ {0, 1}, such that for

any 𝜙 =
[
𝜙z
𝜙ẑ

]

∈ 2n, 𝜙z, 𝜙ẑ ∈ n, 𝜙r̃ ∈ n+1, the following inequality holds:

𝜈D+V(𝜙, 𝜙r̃, k(𝜙ẑ, 𝜙r̃,Hz(𝜙z))) + 𝜂 max{0,D+p◦V1(𝜙, 𝜙r̃, k(𝜙ẑ, 𝜙r̃,Hz(𝜙z))) + 𝜇p◦V1(𝜙(0))}
≤ 𝛼(𝜂𝜇e−𝜇Δp◦𝛽1(||𝜙||∞)), (57)

where: k is the function in (56), 𝛽1 is the function of class ∞ in Definition 2; the derivative in Driver’s form
(see (1)) of the functional V is computed with respect to the function Fz in (52).

Proposition 1. In the caseΔ = 0, if there exists a function F̃ ∶ n × n → R such that for any 𝜙z, 𝜙ẑ, 𝜙r ∈ n,
the following condition holds

F(𝜙z, 𝜙r) − F(𝜙ẑ, 𝜙r) = F̃(𝜙z, 𝜙ẑ), (58)

where F is the function in (39), then Assumption 3 holds.
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DI FERDINANDO et al. 6595

Proof of Proposition 1. First, we notice that from (58), it follows that the continuous–time closed–loop system
(37)–(41) (or alternatively (37)–(48)) does not involve the reference signal rt. Then, the proof follows from the
use of the converse Lyapunov theorem25 and the reasoning provided in Remark 1 of the work by Di Ferdinando
et al.22 ▪

In the following, the proposed digital implementation of the observer-based continuous-time tracking controller (41)
(see also (48)) is presented. First, in order to introduce the considered quantized sampled-data framework, we recall the
notion of partition,20,23 the notion of spline approximation23 and the notion of quantizers.11,12

Definition 3. For a positive integer l, a partition 𝜋 = {tj, j = −l,−l + 1, …} of [−lΔ,+∞) is a countable,
strictly increasing sequence tj ∈ [−lΔ,+∞), with t0 = 0, such that tj → +∞ as j → +∞. The diameter of 𝜋,
denoted diam(𝜋), is defined as supj≥−l tj+1 − tj. The dwell time of 𝜋, denoted dwell(𝜋), is defined as inf j≥−l tj+1 −
tj. For a given a ∈ (0, 1], 𝛿 > 0, 𝜋a,𝛿 is any partition 𝜋 with a𝛿 ≤ dwell(𝜋) ≤ diam(𝜋) ≤ 𝛿.

For given 𝛿 < Δ (Δ > 0), a ∈ (0, 1], let l be the smallest positive integer such that la𝛿 ≥ Δ. Let l,a,𝛿 ⊂ Rl+1 be the set
defined as follows23

l,a,𝛿 =
⎧
⎪
⎨
⎪
⎩

w =
⎛
⎜
⎜
⎜
⎝

w0

⋮

wl

⎞
⎟
⎟
⎟
⎠

∈ R
l+1

, wk ∈ [−l𝛿, 0], k = 0, 1, … , l, w0 = 0, w0 − wl ≥ Δ,

𝛿 ≥ wk − wk+1 ≥ a𝛿, k = 0, 1, … , l − 1
⎫
⎪
⎬
⎪
⎭

. (59)

Let Pl,a,𝛿 ∶ Rl+1 × l,a,𝛿 →  be the map defined, for z =

(z0
⋮
zl

)

∈ Rl+1, w =

(w0
⋮
wl

)

∈ l,a,𝛿 and 𝜏 ∈ [−Δ, 0], as follows23

(Pl,a,𝛿(z,w))(𝜏) = zk+1 +
𝜏 − wk+1

wk − wk+1
(zk − zk+1), (60)

where k is the smallest integer in {0, 1, … , l − 1} such that wk ≥ 𝜏 ≥ wk+1.
We recall that an output quantizer and an input quantizer are piece-wise constant functions qy ∶ R → y and qu ∶

R → u, where y, u, are suitable finite subsets of Rq and R, respectively. These quantizers are characterized, for some
given positive reals Ey, U1, 𝜇y, 𝜇u, by the following implications11,12

|y| ≤ Ey ⇒ |qy(y) − y| ≤ 𝜇y,

|u| ≤ U1 ⇒ |qu(u) − u| ≤ 𝜇u, (61)

where: the positive reals Ey, U1 are called ranges of the output and input quantizers; the positive reals 𝜇y, 𝜇u, are called
error bounds of the output and input quantizers.11,12

Under Assumptions 1 and 3, for a given partition 𝜋a,𝛿 , a given output quantizer qy and a given input quantizer qu, we
propose here the following quantized sampled-data observer-based tracking controller for the system (29)

u(t) = qu

([

1 01×n

]

k
(

ẑtj , r̃tj ,Pqy

j

))

= qu

⎛
⎜
⎜
⎝

−F(ẑtj , rtj) + y(n)d (tj) + Γẑ(tj)

G
(

Pqy

j

)
, rtj

)

⎞
⎟
⎟
⎠

,

t ∈ [tj, tj+1), tj ∈ 𝜋a,𝛿 , 𝛿j = tj+1 − tj, j = 0, 1, … ,

ẑtj+1(𝜃) =
⎧
⎪
⎨
⎪
⎩

ẑtj(𝜃 + 𝛿j), 𝜃 ∈ [−Δ,−𝛿j),

ẑtj(0) + (𝜃 + 𝛿j)
[

0n×1 In

]

k
(

ẑtj , r̃tj ,Pqy

j

)
, 𝜃 ∈ [−𝛿j, 0], Δ > 0,

(62)

ẑ(tj+1) = ẑ(tj) + 𝛿j

[

0n×1 In

]

k
(

ẑtj , r̃tj ,Pqy

j

)
, Δ = 0,
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6596 DI FERDINANDO et al.

where: k is the function in (56);

Pqy

j = Pl,a,𝛿(B
qy

S (j),B (j));

Pl,a,𝛿 is the map defined in (60); Bqy

S ∶ N → Rl+1 and B ∶ N → Rl+1 are defined (recursively) as

Bqy

S (0) =
⎛
⎜
⎜
⎜
⎝

qy(yz,0(0))
⋮

qy(yz,0(t−l))

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

qy(Hz(z0)(0))
⋮

qy(Hz(z0)(t−l))

⎞
⎟
⎟
⎟
⎠

, yz,0(𝜏) = Hz(z0)(𝜏) =

{
yz,0(𝜏) = Hz(z0)(𝜏) 𝜏 ∈ [−Δ, 0]
yz,0(−Δ) = Hz(z0)(−Δ) 𝜏 ∈ [t−l,−Δ]

Bqy

S (j) =

(
qy(Hz(ztj)(0))

0l×1

)

+

(
01×l 0

Il 0l×1

)

Bqy

S (j − 1), B (0) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
t−1

⋮

t−l

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (63)

B (j) =

(
01×l 0

Il 0

)⎛
⎜
⎜
⎜
⎝

B (j − 1) − (tj − tj−1)
⎛
⎜
⎜
⎜
⎝

1
⋮

1

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

, j = 1, 2, … ;

u(t) ∈ R is the input signal in (29).

Remark 5. We highlight here that, the observer-based tracking controller proposed in this article (see (41),
(48), and (62)) is of delay-dependent type. From a practical point of view, in the continuous-time frame-
work, the implementation of the observer-based tracking controller (41) necessarily requires the knowledge
of the infinite dimensional variables ẑt and yz,t which, in real practice, are often unavailable due to techno-
logical constraints. On the other hand, from a theoretical point of view, the knowledge of the function yt and,
consequently, of the function yz,t (see (29) and (37)) is introduced in order to potentially consider further infor-
mations on the system at hand which, in the case of their availability, could turn out to be very helpful for the
design of the proposed dynamic output feedback controller. For instance, the knowledge of the delayed out-
put measurements: (i) could increase the possibility to satisfy the condition (H4) in Assumption 1; (ii) could
be helpful to relax the requirements in (H3) (see Theorem 3). In the literature concerning nonlinear systems
in lower triangular form, many approaches have been provided for the design of delay-free dynamic output
feedback stabilizers also in the sampled-data context.33,38 On the other hand, such design procedures cannot
be directly applied here due to: (i) the presence of possible distributed time-delays in the functions describ-
ing the system at hand; (ii) the presence of known exogenous disturbances mimicking the chosen reference
signal; (iii) the consideration, in the digital context, of quantization in both input/output channels. To our
best knowledge, such a framework has never been investigated in the literature. In this article, for the first
time in the literature of nonlinear systems with state delays, a methodology for the design of observer-based
tracking controllers is proposed and results are provided in both continuous-time and digital frameworks
(see Theorems 2, 3, and forthcoming Theorem 4). We highlight also that, in the digital framework here pro-
posed, the drawback concerning the knowledge of the infinite dimensional variables yz,t and ẑt is overcome
(see (62), (63)). In particular, the problems related to the knowledge of the signal yz,t are here overcome by
exploiting a spline approximation approach23 to obtain, from the available quantized sampled-data output
measurements yz(tj), an approximation of the function yz,tj required for the implementation of the controller.
Indeed, in (63), Bqy

S and B describe buffers of length l + 1 collecting the quantized sampled-data measure-
ments yz(tj) and the lengths of the times elapsed between a sampling and the following. The informations in
Bqy

S and B (see (63)) are used in order to obtain an approximation of the output signal yz,tj via (60). Moreover,
within the proposed digital framework, the function ẑt which characterizes the estimation of the system state
zt can be easily computed, without the introduction of particular computational devices and sensors, because
its evolution is described by simple difference equations (see (62)). Then, the problems related to the practi-
cal implementation of the proposed delay-dependent type controller are overcome in the digital framework
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DI FERDINANDO et al. 6597

making no more an issue the presence of delayed terms in the function describing the controller which could
be useful from a practical point of view (see, for instance, Section 6).

In the following theorem, we provide results concerning the semi-global practical stability property of the quantized
sampled-data closed-loop system described by (49) (see also (37)) with (62). In particular, it is shown that there exist a
suitably fast sampling 𝛿 and an accurate quantization of the input/output channels (i.e., ranges Ey, U1 and error bounds
𝜇y, 𝜇u for the quantizers qy and qu in (62)) such that, the semi-global practical stability property, with arbitrarily small
final target ball, of the quantized sampled-data closed-loop system described by (49) (see also (37)) with (62) is ensured.
We highlight that, from the semi-global practical stability property of the quantized sampled-data closed-loop system (49)
(see also (37)) with (62), it follows that point (ii) in Problem 1 is solved.

Theorem 4. Let Assumptions 1–3 hold. Let 𝛾r̃ be the positive real in Remark 4. Let a be an arbitrary real in
(0, 1]. Then, for any positive reals q̃, r, R with 0 < r < R, there exist positive reals 𝛿, T, E, Ey, U1, 𝜇y, and 𝜇u such
that: for any partition 𝜋a,𝛿 , for any output quantizer qy ∶ R → y with range Ey and error bound 𝜇y, for any
input quantizer qu ∶ R → u with range U1 and error bound 𝜇u, for any initial states z0 ∈ n

R ∩W1,∞
n , ẑ0 ∈ n

R ∩

W1,∞
n and, in the case Δ > 0, satisfying esssup

𝜃∈[−Δ,0]

|
|
|
|
|
|

[ dz0(𝜃)
d𝜃

dẑ0(𝜃)
d𝜃

]|
|
|
|
|
|

≤ q̃, the corresponding solution of the quantized

sampled-data closed-loop system described by (49) (see also (37)) with (62) exists for all t ∈ R+, and, furthermore,
the following inequalities hold:

‖
‖
‖
‖
‖
‖

[
zt

ẑtj

]‖
‖
‖
‖
‖
‖∞

≤ E, ∀t ∈ R
+
, j = 0, 1, … ;

‖
‖
‖
‖
‖
‖

[
zt

ẑtj

]‖
‖
‖
‖
‖
‖∞

≤ r, ∀t ≥ T, ∀j ∈ {i ∈ N|ti ≥ T, ti ∈ 𝜋a,𝛿}. (64)

Remark 6. Notice that, from conditions (64) in Theorem 4, it follows that the solution of the quantized
sampled-data closed-loop system described by (29)–(62) exists for all t ∈ R+, and, furthermore, satisfies

|y(t) − yd(t)| ≤ E, ∀t ≥ 0,
|y(t) − yd(t)| ≤ r, ∀t ≥ T, (65)

that is, point (ii) in Problem 1 is solved.

5.1 Proof of Theorem 4

In the following, the stabilization in the sample-and-hold theory20–24 and the notion of DOSDF22,24 are used as tools
in order to prove the results. First, for the reader’s convenience, the notion of DOSDF is recalled.22,24 Such a notion is
inherited by the definition of steepest descent feedback20,21,23 which is directly connected with the well-known Artstein’s
methodologies exploiting control Lyapunov–Krasovskii functionals V for the design of controllers.20–24,39,40 We highlight
that, in the following definition, in the caseΔ = 0, the spaces n, n+1, 2n are isomorphic with Rn, Rn+1, R2n, respectively.

Definition 4. Let V ∈  . A locally bounded function k ∶ n × n+1 ×  → Rn+1, continuous or not, is said to
be a DOSDF for the system described by (49) (see also (37)), induced by V , if there exist positive reals 𝜂, 𝜇, a
function p in C1

L(R
+;R+), of class∞, a function 𝛼 of class such that Id − 𝛼 is of class∞, a real 𝜈 ∈ {0, 1},

such that, for any 𝜙 =
[
𝜙z
𝜙ẑ

]

∈ 2n, 𝜙z, 𝜙ẑ ∈ n, 𝜙r̃ ∈ n+1, the following inequality holds:

𝜈D+V(𝜙, 𝜙r̃, k(𝜙ẑ, 𝜙r̃,Hz(𝜙z))) + 𝜂 max{0,D+p◦V1(𝜙, 𝜙r̃, k(𝜙ẑ, 𝜙r̃,Hz(𝜙z))) + 𝜇p◦V1(𝜙(0))} ≤ 𝛼(𝜂𝜇e−𝜇Δp◦𝛽1(||𝜙||∞)),
(66)

where: 𝛽1 is the function of class∞ in Definition 2; the derivative in Driver’s form (see (54)) of the functional
V is computed with respect to the function Fz in (52).
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6598 DI FERDINANDO et al.

The following proof is based on the results recently provided in the work by Di Ferdinando et al.24 where the stabiliza-
tion in the sample-and-hold sense theory20–24 is used as a tool in order to show that: there exists a suitably small sampling
and an accurate quantization of the input/output channels such that the digital implementation of DOSDFs (continuous
or not) guarantees the semi-global practical stability property of the related quantized sampled-data closed-loop system,
with arbitrarily small final target ball of the origin (see Theorem 1 in the work by Di Ferdinando et al.24). It is here high-
lighted that, the proof of Theorem 1 provided in the work by Di Ferdinando et al.24 cannot be directly applied here due
to new considerations regarding: (i) the case of observer-based tracking controllers; (ii) the problems related to the possi-
ble non-availability in the buffer of suitable past values of the output signal required for the correct implementation of a
proposed delay-dependent observer-based tracking controller. Then, a new devoted proof is required to cope with track-
ing control problems and the use of spline methodologies for the approximation of the infinite dimensional output signal
yz,t which, in the work by Di Ferdinando et al.,24 are not considered. In the following, by taking into account that, under
Assumption 3, the function k in (56), derived from the proposed observer-based continuous-time tracking controller (41)
(see also (48)), is a DOSDF for the system described by (49) (see Definition 4), the stabilization in the sample-and-hold
sense theory is properly reformulated to show that there exist a suitably fast sampling 𝛿 and an accurate quantization of
the input/output channels (i.e., ranges Ey, U1 and error bounds 𝜇y, 𝜇u for the quantizers qy and qu in (62)) such that, the
semi-global practical stability property, with arbitrarily small final target ball, of the quantized sampled-data closed-loop
system described by (49) (see also (37)) with (62) is ensured (i.e., the results in Theorem 4 hold). First, we recall a result
provided in the work by Pepe,23 which is very helpful in the forthcoming proof. In particular, Theorem 2.3 in the work by
Pepe23 is here suitably adapted in order to cope with observer-based tracking controllers (see forthcoming Lemma 2).

Lemma 2. Let Assumptions 1–3 hold. Let 𝛾r̃ be the positive real in Remark 4. Let 𝛼i, i = 1, 2, 3, be the
functions of class ∞, defined for s ∈ R+, as 𝛼1(s) = 𝜂e−𝜇Δp◦𝛽1(s), 𝛼2(s) = 𝜈𝛾2(s) + 𝜂p◦𝛽2(s), 𝛼3(s) = (Id −

𝛼)(𝜂𝜇e−𝜇Δp◦𝛽1(s)). Let V3 ∶ 2n → R+, V∞ ∶ 2n → R+ be the functionals defined, for 𝜙 =
[
𝜙z
𝜙ẑ

]

∈ 2n, 𝜙z, 𝜙ẑ ∈


n, as

V3(𝜙) = sup
𝜃∈[−Δ,0]

e𝜇𝜃p◦V1(𝜙(𝜃)), V∞(𝜙) = 𝜈V(𝜙) + 𝜂V3(𝜙).

Let ∞ ∶ 2n × n+1 ×Rn+1 → R be the functional defined, for 𝜙 =
[
𝜙z
𝜙ẑ

]

∈ 2n, 𝜙z, 𝜙ẑ ∈ n, 𝜙r̃ ∈ n+1, v ∈

Rn+1, as

∞(𝜙, 𝜙r̃, v) = 𝜈D+V(𝜙, 𝜙r̃, v) − 𝜂𝜇V3(𝜙) + 𝜂 max{0,D+p◦V1(𝜙, 𝜙r̃, v) + 𝜇p◦V1(𝜙(0))}.

Then, the following hold

(i) 𝛼1(||𝜙||∞) ≤ V∞(𝜙) ≤ 𝛼2(||𝜙||∞), ∀𝜙 ∈ 2n;
(ii) the function (𝜙, 𝜙r̃, v)→ ∞(𝜙, 𝜙r̃, v), 𝜙 ∈ 2n, 𝜙r̃ ∈ n+1, v ∈ Rn+1, is Lipschitz on bounded subsets of


2n × n+1 ×Rn+1;

(iii) D+V∞(𝜙, 𝜙r̃, v) ≤ ∞(𝜙, 𝜙r̃, v), ∀𝜙 ∈ 2n
, ∀𝜙r̃ ∈ n+1

𝛾r̃
, ∀v ∈ Rn+1;

(iv) ∞(𝜙, 𝜙r̃, k(𝜙ẑ, 𝜙r̃,Hz(𝜙z))) ≤ −𝛼3(||𝜙||∞), ∀𝜙 =
[
𝜙z
𝜙ẑ

]

∈ 2n, 𝜙z, 𝜙ẑ ∈ n, ∀𝜙r̃ ∈ n+1
𝛾r̃

.

Let us consider the open-loop system described by Di Ferdinando et al.22 and Di Ferdinando and Pepe41

ż(t) = f z(zt, r̃t, v1(t)), t ≥ 0 a.e.,
̇̂z(t) = v2(t),

yz,t(𝜏) = Hz(zt)(𝜏) = Cbzt(𝜏),
z(𝜏) = z0(𝜏), ẑ(𝜏) = ẑ0(𝜏), 𝜏 ∈ [−Δ, 0], (67)

where: z0 is the initial state in (49) (see also (37)); zt ∈ n; z(t) ∈ Rn; r̃t ∈ n+1
𝛾r̃

, ∀t ∈ R+ (see (49) and Remark 4); ẑt ∈ n;
ẑ(t) ∈ Rn; ẑ0 ∈ W1,∞

l is the initial state related to the new variable ẑ(t); f z is the function in (49), (50); v1(t) = u(t) ∈ R is
the input in (49) (see also (37) and (29)); v2(t) ∈ Rn is a new input (Lebesgue measurable and locally essentially bounded);
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DI FERDINANDO et al. 6599

yz,t ∈  is the output in (49); Hz is the function in (49). Let (as long as the solution of (67) exists) 𝜒(t) =
[

z(t)
ẑ(t)

]

∈ R2n,

𝜒t =
[

zt
ẑt

]

∈ 2n, v(t) =
[

v1(t)
v2(t)

]

∈ Rn+1. The open-loop system (67) can be rewritten as follows

.

𝜒(t) =

[ .

z(t)
.

ẑ(t)

]

=

[
f z(zt, r̃t, v1(t))

v2(t)

]

= Fz(𝜒t, r̃t, v(t)),

𝜒(𝜏) = 𝜒0(𝜏) =

[
z0(𝜏)
ẑ0(𝜏)

]

, 𝜏 ∈ [−Δ, 0], (68)

where Fz is the function defined in (52). Let:

1. the functionals V∞ ∶ 2n → R+ and∞ ∶ 2n × n+1 ×Rn+1 → R be as in Lemma 2;
2. 𝛼i, i = 1, 2, 3, be the functions of class∞ as in Lemma 2;
3. r, R, be any positive reals, 0 < r < R;
4. R =

√
2R;

5. e1, e2, E be positive reals satisfying:

0 < e2 < e1 < r < R < E, 𝛼1(r) > 𝛼2(e1), 𝛼1(E) > 𝛼2(R);

6. (involved 𝜙 =
[
𝜙z
𝜙ẑ

]

∈ 2n, 𝜙z, 𝜙ẑ ∈ n)

Ey = sup
𝜙∈2n

E

||Hz(𝜙z)||∞, H = Ey + 1,

U1 = sup
𝜙∈2n

E , 𝜙r̃∈n+1
𝛾r̃

, y∈H

|
|
|
|

[

1 01×n

]

k(𝜙ẑ, 𝜙r̃, y)
|
|
|
|
, U2 = U1 + 1, U = sup

𝜙∈2n
E , 𝜙r̃∈n+1

𝛾r̃
, y∈H

|
|
|
|
|
|
|

⎡
⎢
⎢
⎣

U2[

0n×1 In

]

|k(𝜙ẑ, 𝜙r̃, y)|

⎤
⎥
⎥
⎦

|
|
|
|
|
|
|

,

(69)

where k is the function defined in (56);

7. M, Lk K be positive reals such that, for any 𝜙1 =
[
𝜙z1
𝜙ẑ1

]

, 𝜙2 =
[
𝜙z2
𝜙ẑ2

]

∈ 2n
E , 𝜙zi , 𝜙ẑi ∈ 

n, i = 1, 2, 𝜙r̃1 , 𝜙r̃2 ∈ 
n+1
𝛾r̃

,

v1, v2 ∈ n+1
U and y1, y2 ∈ H , the following conditions hold:

|Fz(𝜙1, 𝜙r̃1 , v1)| ≤ M; (70)

|k(𝜙ẑ1 , 𝜙r̃1 , y1) − k(𝜙ẑ2 , 𝜙r̃2 , y2)| ≤ Lk(||𝜙1 − 𝜙2||∞ + ||𝜙r̃1 − 𝜙r̃2 ||∞ + |y1 − y2|); (71)

|∞(𝜙1, 𝜙r̃1 , v1) −∞(𝜙2, 𝜙r̃2 , v2)| ≤ K(||𝜙1 − 𝜙2||∞ + ||𝜙r̃1 − 𝜙r̃2 ||∞ + |v1 − v2|), (72)

where k is the function defined in (56);
8. 𝛽 = 𝛼3(e2);
9. a ∈ (0, 1] be arbitrarily fixed;

10. T = 3𝛼2(R)
𝛽a

+ 1;

11. q̃ be any positive real;

12. q =
{

max {q̃, M}, Δ > 0,
0, Δ = 0; qH =

⎧
⎪
⎨
⎪
⎩

sup
𝜙∈2n

E

(

esssup
𝜃∈[−Δ,0]

|
|
|

dHz(𝜙z)(𝜃)
d𝜃

|
|
|

)

, Δ > 0,

0, Δ = 0;
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6600 DI FERDINANDO et al.

13. 𝛿, 𝜇y, 𝜇u ∈ R+ such that:

𝛿 < max{1,Δ}, 0 < 𝜇y ≤ 1, 0 < 𝜇u ≤ 1, e2 + 𝛿M < e1,

R + 𝛿M < E, 𝛼1(r) > 𝛼2(e1) +
2
3
𝛽𝛿,

𝛽

3
> K(2q𝛿 + 𝜌(𝛿) + 𝜇u + 3Lk𝜇y + 2LkqH𝛿), (73)

where 𝜌 is the function of class in (51);

14. 𝜒0 =
[

z0
ẑ0

]

∈ 2n ∩W1,∞
2n , z0 ∈ n

R ∩W1,∞
n , ẑ0 ∈ n

R ∩W1,∞
n and, in the case Δ > 0, such that esssup

𝜃∈[−Δ,0]

|
|
|
|
|
|

[ dz0(𝜃)
d𝜃

dẑ0(𝜃)
d𝜃

]|
|
|
|
|
|

≤ q̃;
15. an output quantizer qy ∶ R → y and an input quantizer qu ∶ R → u such that, ∀y ∈ Ey and ∀u ∈ U1 , inequalities

(61) are satisfied.

Notice that, 𝜒0 =
[

z0
ẑ0

]

∈ 2n
R
∩W1,∞

2n . Let us consider a partition 𝜋a,𝛿 . Let us consider the system described by (68) with

(as long as the related solution exists)

v(t) =
⎡
⎢
⎢
⎣

qu

([

1 01×n

]

k
(

ẑtj , r̃tj ,Pqy

j

))

[

0n×1 In

]

k
(

ẑtj , r̃tj ,Pqy

j

)

⎤
⎥
⎥
⎦

= kqu
(

ẑtj , r̃tj ,Pqy

j

)
,

tj ≤ t < tj+1, tj ∈ 𝜋a,𝛿 , j = 0, 1, … , (74)

where k is the function defined in (56) and kqu ∶ n × n+1 ×  → n+1 is the function readily defined by (74). Notice

that, taking into account steps (6), (13), and (15), ∀𝜙 =
[
𝜙z
𝜙ẑ

]

∈ 2n
E , 𝜙z, 𝜙ẑ ∈ n, Hz(𝜙z) ∈ Ey and, consequently,

qy(Hz(𝜙z)(𝜏)) ∈ H , ∀𝜏 ∈ [−Δ, 0]. From such a consideration, it follows that, Pqy
0 ∈ H . Then, kqu (ẑ0, r̃0,Pqy

0 ) ∈ 
n+1
U . Let

𝜒(t) =
[

z(t)
ẑ(t)

]

be the solution of the quantized sampled-data closed-loop system (68), (74), in a maximal time interval [0, b),

0 < b ≤ +∞. Let BS ∶ N → Rl+1 be defined (recursively) as

BS(0) =
⎛
⎜
⎜
⎜
⎝

yz,0(0)
⋮

yz,0(t−l)

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

Hz(z0)(0)
⋮

Hz(z0)(t−l)

⎞
⎟
⎟
⎟
⎠

, BS(j) =

(
Hz(ztj)(0)

0l×1

)

+

(
01×l 0

Il 0l×1

)

BS(j − 1), j = 1, 2, … . (75)

In order to simplify the involved notation, in the following, for tj ∈ 𝜋a,𝛿 , j = 0, 1, … , we will denote with: (i) Pj the function
Pl,a,𝛿(BS(j),B (j)); (ii) k∗j the function kqu (ẑtj , r̃tj ,Pqy

j ); (iii) k̃j the function k(ẑtj , r̃tj ,Pqy

j ); (iv) kj the function k(ẑtj , r̃tj ,Pj); (v) kj
the function k(ẑtj , r̃tj ,Hz(ztj)). We show first that the solution exists in [0, t1]. Otherwise, by contradiction, if the solution
blows up, there exists a time 𝜏 ∈ [0, t1) such that |𝜒(t)| < E, t ∈ [0, 𝜏), and |𝜒(𝜏)| = E. But, from (70), (73), for t ∈ [0, 𝜏],
the inequalities hold:

|𝜒(t)| ≤ |𝜒0(0)| +
∫

t

0
|Fz(𝜒𝜃, r̃𝜃, k∗0)|d𝜃 ≤ R + 𝛿M < E. (76)

Thus, taking t = 𝜏, the absurd inequality arises E < E. Therefore, the solution exists in [0, t1] and, by (76), it follows that
𝜒t ∈ 2n

E , t ∈ [0, t1]. Taking into account (70) and q, qH provided in step (12), for any t ∈ [0, t1], the following inequality

holds in the caseΔ > 0: esssup
𝜃∈[−Δ,0]

|
|
|
|
|
|

[ dzt(𝜃)
d𝜃

dẑt(𝜃)
d𝜃

]|
|
|
|
|
|

≤ q; esssup
𝜃∈[−Δ,0]

|
|
|

dHz(zt)(𝜃)
d𝜃

|
|
|
≤ qH . Let W(t) = V∞(𝜒t), t ∈ [0, t1], with V∞ ∶


2n → R+ given in step (1). Taking into account point (iii) and (iv) in Lemma 2, (51) and (72) for any fixed t ∈ (0, t1], for

some t∗ ∈ [0, t], the following equalities/inequalities hold:

W(t) −W(0) =
∫

t

0
D+V∞(𝜒𝜏, r̃𝜏 , k∗0)d𝜏 ≤ t

(
1
t ∫

t

0
∞(𝜒𝜏, r̃𝜏 , k∗0)d𝜏

)
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DI FERDINANDO et al. 6601

= t∞(𝜒t∗ , r̃t∗ , k∗0) − t∞(𝜒0, r̃0, k̃0) + t∞(𝜒0, r̃0, k̃0)

≤ tK(||𝜒t∗ − 𝜒0||∞ + ||r̃t∗ − r̃0||∞ + 𝜇u) + t∞(𝜒0, r̃0, k̃0) − t∞(𝜒0, r̃0, k0) + t∞(𝜒0, r̃0, k0)

≤ tK(||𝜒t∗ − 𝜒0||∞ + 𝜌(𝛿) + 𝜇u + 3Lk𝜇y) + t∞(𝜒0, r̃0, k0) − t∞(𝜒0, r̃0, k0) + t∞(𝜒0, r̃0, k0)
≤ tK(||𝜒t∗ − 𝜒0||∞ + 𝜌(𝛿) + 𝜇u + 3Lk𝜇y + Lk||P0 −Hz(z0)||∞) + t∞(𝜒0, r̃0, k0)
≤ tK(||𝜒t∗ − 𝜒0||∞ + 𝜌(𝛿) + 𝜇u + 3Lk𝜇y + Lk||P0 −Hz(z0)||∞) − t𝛼3(||𝜒0||∞). (77)

Taking into account (70) and q provided in step (12), the following inequality holds in both casesΔ = 0 andΔ > 0: ||𝜒t∗ −
𝜒0||∞ ≤ 2q𝛿. Moreover, for given 𝜏 ∈ [−Δ, 0], let j be the smallest integer in {1, 2, … , l} such that B (0)j ≥ 𝜏 ≥ B (0)j+1.
Thus, the equality/inequalities hold (see (60), (63))

|(P0)(𝜏) −Hz(z0)(𝜏)| =
|
|
|
|
BS(0)j+1 +

𝜏 − B (0)j+1

B (0)j − B (0)j+1
(BS(0)j − BS(0)j+1) −Hz(z0)(𝜏)

|
|
|
|

≤ |BS(0)j+1 −Hz(z0)(𝜏)| +
|
|
|
|

𝜏 − B (0)j+1

B (0)j − B (0)j+1
(BS(0)j − BS(0)j+1)

|
|
|
|

≤
|
|
|
|
BS(0)j+1 − BS(0)j+1 − ∫

𝜏

B

(0)j+1

dHz(z0)(𝜃)
d𝜃

d𝜃
|
|
|
|
+
|
|
|
|
BS(0)j+1 + ∫

B

(0)j

B

(0)j+1

dHz(z0)(𝜃)
d𝜃

d𝜃 − BS(0)j+1
|
|
|
|
≤ 2qH𝛿. (78)

From (77) and taking into account (73), (78), we obtain

W(t) ≤ W(0) + tK(2q𝛿 + 𝜌(𝛿) + 𝜇u + 3Lk𝜇y + 2LkqH𝛿) − t𝛼3(||𝜒0||∞) ≤ W(0) + t𝛽
3
− t𝛼3(||𝜒0||∞). (79)

Let us now consider the following two cases20: (1) ||𝜒0||∞ ≤ e2; (2) ||𝜒0||∞ > e2. As far as case (1) is concerned, by using
again the first inequality in (76) and from (73), the following inequality holds, for any t ∈ [0, t1], |𝜒(t)| ≤ e2 + 𝛿M < e1.
From point (i) in Lemma 2, it follows W(t) ≤ 𝛼2(e1), t ∈ [0, t1]. As far as case (2) is concerned, taking into account 𝛽 given
in step (8), we have that 𝛽 < 𝛼3(||𝜒0||∞). Therefore, from (79), we have, for any t ∈ [0, t1],

W(t) ≤ W(0) − 2
3
𝛽t.

Let us introduce the following claim, which will be proved later.

Claim 3. The solution 𝜒(t) of (68), (74), exists in [0,+∞) and, furthermore, 𝜒t ∈ 2n
E , ∀t ≥ 0.

Notice that, taking into account steps (6), (13), and (15), Claim 3 and the same reasoning used in the first interval [0, t1],
Pqy

j ∈ H and, consequently, k∗j ∈ 
n+1
U , j = 0, 1, … . Let W(t) = V∞(𝜒t), t ∈ R+. Then, in any interval

[
tj, tj+1

]
, j = 0, 1, … ,

by the same reasoning used in the interval [0, t1], we have, for t ∈
[
tj, tj+1

]
(see (77)–(79)),

W(t) −W(tj) ≤ (t − tj)K(||𝜒t∗ − 𝜒tj ||∞ + 𝜌(𝛿) + 𝜇u + 3Lk𝜇y + Lk||Pj − yz,tj ||∞) − (t − tj)𝛼3(||𝜒tj ||∞). (80)

Let yz,j ∶ [B (j)l+1, 0]→ R, j = 1, 2, … , be defined, for 𝜏 ∈ [B (j)l+1, 0], as follows

yz,j(𝜏) =
⎧
⎪
⎨
⎪
⎩

yz(tj + 𝜏), 𝜏 ∈ [−Δ, 0],
yz(tj + 𝜏), 𝜏 ∈ [B (j)l+1, −Δ], tj + 𝜏 ∈ [0, tj],
yz,0(tj + 𝜏), 𝜏 ∈ [B (j)l+1, −Δ], tj + 𝜏 ∈ [t−l, 0].

where yz(t) = Hz(zt)(0) and yz,0 is the function defined in (63). The function yz,j is absolutely continuous with essentially
bounded derivative, a bound given by qH . Thus, by the same reasoning used in (78), the following inequality holds (see
(60), (63)): |(Pj)(𝜏) − yz,tj(𝜏)| ≤ 2qH𝛿. From (80), taking into account (73), we obtain

W(t) ≤ W(tj) +
𝛽

3
(t − tj) − 𝛼3(||𝜒tj ||∞)(t − tj).

 10991239, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7182 by C

ochraneItalia, W
iley O

nline L
ibrary on [23/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6602 DI FERDINANDO et al.

Taking into account of both cases ||𝜒tj ||∞ ≤ e2 and ||𝜒tj ||∞ > e2 we obtain, for j ≥ 0:

W(t) ≤ (W(tj) −
2
3
𝛽(t − tj))H(||𝜒tj ||∞ − e2) + 𝛼2(e1)H0(e2 − ||𝜒tj ||∞).

The symbols H0 and H denote Heaviside functions defined, for s ∈ R, as follows: H0(s) = 1 if s ≥ 0, H0(s) = 0 if s < 0;
H(s) = 1 if s > 0, H(s) = 0 if s ≤ 0. In particular, for t = tj+1, j = 0, 1, … , the inequality holds:

W(tj+1) ≤ (W(tj) −
2
3
𝛽(tj+1 − tj))H(||𝜒tj ||∞ − e2) + 𝛼2(e1)H0(e2 − ||𝜒tj ||∞).

Notice that, for any integer j ≥ 0, the inequality holds W(tj) ≤ 𝛼2(R). From here on, the same steps used in the work
by Pepe23 for the proof of Theorem 4.1 can be suitably repeated here, in order to prove that: (i) the solution 𝜒(t) of the

closed–loop system (68), (74), exists for all t ∈ R+ and, furthermore, satisfies 𝜒t =
[

zt
ẑt

]

∈ 2n
E , ∀t ∈ R+, 𝜒t =

[
zt
ẑt

]

∈ 2n
r ,

∀t ≥ T, with T the positive real given in step (10); (ii) Claim 1 holds true. The reader can refer to steps from (4.26) to

(4.32) in the work by Pepe23 (taking, in such steps, k2 =
[ 3𝛼2(R)

𝛽a𝛿

]
+ 1). Now, from (68), (74), it follows that 𝜒t =

[
zt
ẑt

]

is the

solution, for t ∈ R+, of the closed-loop system described by the equations

.

z(t) = f z(zt, r̃t, qu(
[

1 01×n

]

k(ẑtj , r̃tj , qy(Hz(ztj))))),
.

ẑ(t) =
[

0n×1 In

]

k(ẑtj , r̃tj , qy(Hz(ztj))),

t ∈
[
tj, tj+1

)
, tj ∈ 𝜋a,𝛿 , j = 0, 1, … ,

z(𝜏) = z0(𝜏), ẑ(𝜏) = ẑ0(𝜏), 𝜏 ∈ [−Δ, 0]. (81)

From (81), it follows that
[

zt
ẑtj

]

is the solution, for t ∈ R+, tj ∈ 𝜋a,𝛿 , of the system described by (49)–(62). It follows that

(64) holds. The proof of the theorem is complete.

Remark 7. Notice that, in the proof of Theorem 4, a methodology for the computation of an upper bound for
the sampling period 𝛿, of upper bounds for the quantization errors 𝜇y, 𝜇u, of quantizers ranges Ey, U1 and of
a settling time T is provided (see steps (1)–(15)). According to our experience, such steps may well provide a
conservative upper bound for the sampling period as well as a conservative quantization of the input/output
channels. The source of such conservatism may be the use of Lipschitz constants of many involved func-
tions as well as lower and upper bounds of Lyapunov–Krasovskii functionals and derivatives. On the other
hand, the results provided in Theorem 4 are of the existence type, and the study of the conservativeness of
the sampling frequency as well as of the quantization in the input/output channels is beyond the aim of
this work, and is left for future investigations. We highlight here that, to our best knowledge, it is the first
time in the literature of nonlinear systems with state-delays that results concerning the design of quantized
sampled-data observer-based tracking controllers ensuring the semi-global practical stability property of the
related closed-loop system are provided.

6 APPLICATION TO A CLASS OF NONLINEAR TIME-DELAY SYSTEMS

In this section, we will show a class of nonlinear systems with state-delays for which all the assumptions needed to apply
the main results of the article (i.e., Theorems 3 and 4) are satisfied. Let us consider a nonlinear time-delay system described
by

ẋ1(t) = p1x1(t) + p2x2(t) + p3,

ẋ2(t) = p4x1(t) + p5x2(t) + f1(x1,t) + g1(x1(t))u(t),
yt(𝜏) = x1,t(𝜏), x(𝜏) = x0(𝜏), 𝜏 ∈ [−Δ, 0], (82)
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DI FERDINANDO et al. 6603

where: x1(t), x2(t) ∈ R;Δ is the maximum involved time delay; xt ∈ 2, x1,t, x2,t ∈ ; u(t) ∈ R is the input signal; yt ∈  is
the output signal; pi ∈ R, i = 1, … , 5 are the involved parameters with p2 ≠ 0; g1 ∶ R → R is a smooth function such that,
for any x ∈ R, gmin ≤ g1(x) ≤ gmax, with gmin and gmax given positive reals; f1 ∶  → R is a function Lipschitz on bounded
subsets of . Notice that, the class of systems in (82) includes many mathematical models describing, for instance, neural
networks systems26 (see Section 6.1) and, as a special case, a delay-free actuated inverted pendulum27 (see Section 6.2).

Chosen a desired reference signal yd(t) ∈ R as in Problem 1 and taking into account (36)–(39), in this case

ż1(t) = z2(t),

ż2(t) = F(zt, rt) + p2g1(z1(t) + yd(t))u(t) − y(2)d (t),

yz,t(𝜏) = z1,t(𝜏), z(𝜏) = z0(𝜏), 𝜏 ∈ [−Δ, 0], (83)

where: z1(t), z2(t) ∈ R; zt ∈ 2; u(t) ∈ R is the input signal in (82); yz,t ∈  is the output signal deriving from the output

signal y(t) in (82); rt =
[yd,t

y(1)d,t

]

∈ 2; F ∶ 2 × 2 → R is the function defined, for 𝜙z =
[
𝜙z1
𝜙z2

]

∈ 2, 𝜙z1 , 𝜙z2 ∈  and 𝜙r =
[
𝜙r1
𝜙r2

]

∈ 2, 𝜙r1 , 𝜙r2 ∈ , as follows

F(𝜙z, 𝜙r) = (p1 + p5)(𝜙z2(0) + 𝜙r2(0)) + (p2p4 − p1p5)(𝜙z1(0) + 𝜙r1(0)) − p3p5 + p2f1(𝜙z1 + 𝜙r1). (84)

Notice that all the assumptions in Theorem 3 are satisfied for the system (82). From (48), the continuous-time
observer-based tracking controller is here described by

̇̂z1(t) = ẑ2(t) − K1(ẑ1(t) − z1(t)),
̇̂z2(t) = F(z̃t, rt) + p2g(z1(t) + yd(t))u(t) − y(2)d (t) − K2(ẑ1(t) − z1(t)),

u(t) =
y(2)d (t) − F(z̃t, rt) + Γ1ẑ1(t) + Γ2ẑ2(t)

p2g(z1(t) + yd(t))
,

ẑ(𝜏) = ẑ0(𝜏), 𝜏 ∈ [−Δ, 0], (85)

where: ẑ1(t), ẑ2(t) ∈ R; ẑt ∈ 2; u(t) ∈ R is the input signal in (82) (see also (83)); Ki, Γi are the control tuning parameters

(see (48) and Theorem 3); z̃t(𝜏) =
[

z1(t + 𝜏)
ẑ2(t + 𝜏)

]

, 𝜏 ∈ [−Δ, 0]. In order to apply the results stated in Theorem 4, we have to

check that Assumption 3 is satisfied for the example under exam. We first notice that, from (83), (85), in this case, Fz ∶ 4 ×


3 ×R3 → R4 and k ∶ 2 × 3 ×  → R3 are the functions defined, for any 𝜙 =

[
𝜙z
𝜙ẑ

]

∈ 4, 𝜙z =
[
𝜙z1
𝜙z2

]

∈ 2, 𝜙ẑ =
[
𝜙ẑ1
𝜙ẑ2

]

∈


2, 𝜙zi , 𝜙ẑi ∈ , i = 1, 2, 𝜙r̃ =

[
𝜙r
𝜙y(2)d

]

∈ 3, 𝜙z̃ =
[
𝜙z1
𝜙ẑ2

]

=
[

Hz(𝜙z)
𝜙ẑ2

]

∈ 2, 𝜙r =
[
𝜙yd
𝜙y(1)d

]

, 𝜙yd , 𝜙y(1)d
, 𝜙y(2)d

∈ , v =
[

v1
v2

]

∈ R3,

v1 ∈ R, v2 ∈ R2, as (see (52) and (56))

Fz(𝜙, 𝜙r̃, v) =
⎡
⎢
⎢
⎢
⎣

F(𝜙z, 𝜙r) + p2g(𝜙z1 + 𝜙yd)v1 − 𝜙y(2)d
(0)

v2

⎤
⎥
⎥
⎥
⎦

,

k(𝜙ẑ, 𝜙r̃,Hz(𝜙z)) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−F(𝜙z̃, 𝜙r) + 𝜙y(2)d
(0) + Γ1𝜙ẑ1(0) + Γ2𝜙ẑ2(0)

p2g(𝜙z1 + 𝜙yd)

𝜙ẑ2(0) − K1(𝜙ẑ1(0) − 𝜙z1(0))

Γ1𝜙ẑ1(0) + Γ2𝜙ẑ2(0) − K2(𝜙ẑ1(0) − 𝜙z1(0))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (86)
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6604 DI FERDINANDO et al.

Then, taking into account (86), for any 𝜙 =
[
𝜙z
𝜙ẑ

]

∈ 4, 𝜙z =
[
𝜙z1
𝜙z2

]

∈ 2, 𝜙ẑ =
[
𝜙ẑ1
𝜙ẑ2

]

∈ 2, 𝜙zi , 𝜙ẑi ∈ , i = 1, 2 and

𝜙r̃ ∈ 3,

Fz(𝜙, 𝜙r̃, k(𝜙ẑ, 𝜙r̃,Hz(𝜙z))) = A𝜙(0), A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

0 (p1 + p5) Γ1 Γ2 − (p1 + p5)

K1 0 −K1 1

K2 0 Γ1 − K2 Γ2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Notice that, from Theorem 3, A is an Hurwitz matrix. In the delay-free case (i.e., Δ = 0), Assumption 3 holds for
this example. Indeed, taking into account (84), condition (58) holds and, consequently, by applying Proposition 1,
Assumption 3 follows. In the case Δ > 0, Assumption 3 is here satisfied by choosing, for instance:

(i) the Lyapunov–Krasovskii functional V ∶ 4 → R+, defined, for 𝜙 ∈ 4, as V(𝜙) = V1(𝜙(0)) + V2(𝜙), where, V1 ∶
R4 → R+ is defined, for 𝜒 ∈ R4, as V1(𝜒) = 𝜒

TP𝜒 with P the symmetric positive definite matrix satisfying ATP +
PA = −0.5I4 and V2 ∶ 4 → R+ is defined, for 𝜙 ∈ 4, as V2(𝜙) = 0;

(ii) functions 𝛽i, 𝛾i of class∞, i = 1, 2, defined, for s ∈ R+, as 𝛽1(s) = 𝛾1(s) = 𝜆min(P)s2 and 𝛽2(s) = 𝛾2(s) = 𝜆max(P)s2;
(iii) 𝜈 = 1, 𝜂 = 1, 𝜇 ≤ 1

2𝜆max(P)
;

(iv) p = Id and 𝛼 = 0.

It follows that all the assumptions required to apply Theorem 4 hold for the case under study. In the following,
numerical examples are provided concerning: (i) a particular class of neural network systems with various activation
functions and time-delays26; (ii) a class of time-delay systems including, as a special case, a delay-free actuated inverted
pendulum.27

6.1 Example 1

Inspired by the mathematical models describing neural networks systems with various activation functions and
time-delays,26 let us consider the following nonlinear time-delay system

ẋ1(t) = −1.2x1(t) + x2(t),

ẋ2(t) = 0.39x2(t) + sech(x1(t − Δ1)) + 0.2
∫

t

t−Δ2

arctan(x1(𝜏))d𝜏 + 4u(t),

yt(𝜏) = x1,t(𝜏), x(𝜏) = x0(𝜏), 𝜏 ∈ [−Δ, 0], (87)

where: x1(t), x2(t) ∈ R; Δ1 = 1, Δ2 = 2 are the involved time delays; xt ∈ 2, x1,t, x2,t ∈ ; u(t) ∈ R is the input signal;
yt ∈  is the output signal. Notice that, system (87) is in the form (83) and, consequently, we can apply Theorems 3 and
4. Taking into account Remark 7 by choosing, for instance, the controller parameters equal to Γ1 = −6, Γ2 = −5, K1 = 3,
K2 = 3 and q̃ = 1, r = 1, R = 2 and a = 1, by the use of steps (1)–(15) we obtain: 𝛿 = 4.76 × 10−6, Ey = 20.25, U1 = 63.39,
𝜇y = 2.8 × 10−6 and 𝜇u = 5.2 × 10−6. Taking into account Remark 7, as expected, the use of steps (1)–(15) provides con-
servative upper bounds for the sampling period (i.e., 𝛿 = 4.76 × 10−6) and for the quantization errors (i.e., 𝜇y = 2.8 × 10−6

and 𝜇u = 5.2 × 10−6). On the other hand, taking into account Remark 7, a campaign of simulations has been performed
by choosing sampling periods and quantization errors greater than the ones obtained by the use of steps (1)–(15) and
good performances of the proposed digital tracking controller have been observed for sampling periods 𝛿 equal to 10−6,
10−3, 10−1, 0.2, output quantization errors 𝜇y equal to 2 × 10−6, 10−3, 10−2 and input quantization errors 𝜇u equal to
5 × 10−6, 10−2, 10−1. Figure 1 shows the simulations results for both cases of continuous-time and digital controller in
which the following choices have been performed: yd(t) = 0.1 sin(2t), t ∈ [−Δ,∞); the initial states of the system and of
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DI FERDINANDO et al. 6605

F I G U R E 1 In the left column, the simulation results for the case of continuous-time controller are reported: (a) in the first two panels,
the system state variables x1(t), x2(t), the controller state variables x̂1(t), x̂2(t) and the reference signal yd(t) are reported with continuous black
lines, dashed blue lines and dashed red line, respectively; (b) in the third panel the control input signal is reported. In the left right column,
the simulation results for the case of digital controller are reported: (a) in the first two panels, the system state variables x1(t), x2(t), the
controller state variables x̂1(t), x̂2(t) and the reference signal yd(t) are reported with continuous black lines, dashed blue lines and dashed red
line, respectively; (b) in the third panel the control input signal is reported.

the observer-based tracking controller equal to
[

x1(𝜏)
x2(𝜏)

]

=
[

1
1

]

, ẑ0(𝜏) =
[

ẑ1(𝜏)
ẑ2(𝜏)

]

=
[

0
0

]

, 𝜏 ∈ [−Δ, 0]; an output quantizer

and an input quantizer with

Qy = {y ∈ R| yi = ±0.01k, i = 1, 2, k = 0, 1, … , 103};

Qu = {u ∈ R| u = ±0.1k, k = 0, 1, … , 102};

an uniform sampling period 𝛿 = 0.1[s]. In the left column of Figure 1, the system variables x1(t), x2(t), the con-
troller variables x̂1(t) = ẑ1(t) + yd(t), x̂2(t) = ẑ2(t) + 1 + y(1)d (t) and the control input signal u(t) are plotted in the case
of continuous-time controller (i.e., (87)–(85)). Simulations fully validate the theoretical results stated in Theorem 3.
In the right column of Figure 1, the system variables x1(t), x2(t), the controller variables x̂1(t) = ẑ1(t) + yd(t), x̂2(t) =
ẑ2(t) + 1.2(ẑ1(t) + yd(t)) + y(1)d (t) (linear interpolations of discrete-time available values x̂1(j𝛿) = ẑ1(j𝛿) + yd(j𝛿), x̂2(j𝛿) =
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6606 DI FERDINANDO et al.

F I G U R E 2 In the left column, the simulation results for the case of continuous-time controller are reported: (a) in the first two panels,
the system state variables x1(t), x2(t), the controller state variables x̂1(t), x̂2(t) and the reference signal yd(t) are reported with continuous black
lines, dashed blue lines and dashed red line, respectively; (b) in the third panel the control input signal is reported. In the left right column,
the simulation results for the case of digital controller are reported: (a) in the first two panels, the system state variables x1(t), x2(t), the
controller state variables x̂1(t), x̂2(t) and the reference signal yd(t) are reported with continuous black lines, dashed blue lines and dashed red
line, respectively; (b) in the third panel the control input signal is reported.

ẑ2(j𝛿) + 1 + y(1)d (j𝛿), j = 0, 1, … ) and the control input signal u(t) are plotted in the case of digital controller. In par-
ticular, the right column of Figure 1 shows the simulation results concerning the closed-loop system described
by (87) with the proposed digital observer-based tracking controller (62) where, for the example under exam,
according to (56), the function k is described by (86). Simulations fully validate the theoretical results stated
in Theorem 4.

6.2 Example 2

Let us consider the nonlinear time-delay system described by

ẋ1(t) = x2(t),
ẋ2(t) = 𝛾1 sin(x1(t)) + 𝛾2x2(t) + 𝜎x2

1(t − Δ) + 𝛾3u(t),
yt(𝜏) = x1,t(𝜏), x(𝜏) = x0(𝜏), 𝜏 ∈ [−Δ, 0], (88)
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DI FERDINANDO et al. 6607

where: x1(t), x2(t) ∈ R; xt ∈ 2, x1,t, x2,t ∈ ; Δ = 0.5 is the involved time delay; 𝜎, 𝛾i ∈ R are the involved parameters;
u(t) ∈ R is the input signal; yt ∈  is the output signal. Notice that, system (88) is in the form (83) and, consequently,
we can apply Theorems 3 and 4. We highlight also that, in the special case 𝜎 = 0, (88) describes the delay-free actuated
inverted pendulum considered in the work of Khalil27 where: x1(t) is the angular position and x2(t) is the angular velocity
of the pendulum; 𝛾1 =

g
l

, 𝛾2 = −
K0

ml2 , and 𝛾3 =
1

ml2 . In the following, the model parameters have been taken equal to the

ones of the inverted pendulum considered in the work of Khalil27 with 𝜎 =
g
l

and l = 1, m = 0.1, K0 = 0.2, g = 9.8. Taking
into account Remark 7 by choosing, for instance, the controller parameters equal to Γ1 = −6, Γ2 = −5, K1 = 3, K2 = 3 and
q̃ = 1, r = 1, R = 2 and a = 1, by the use of steps (1)–(15) we obtain: 𝛿 = 1.12 × 10−5, Ey = 9.29, U1 = 32.2, 𝜇y = 9.35 ×
10−6, and 𝜇u = 9.85 × 10−6. Taking into account Remark 7, as expected, the use of steps (1)–(15) provides conservative
upper bounds for the sampling period (i.e., 𝛿 = 1.12 × 10−5) and for the quantization errors (i.e., 𝜇y = 9.35 × 10−6 and
𝜇u = 9.85 × 10−6). On the other hand, taking into account Remark 7, a campaign of simulations has been performed by
choosing sampling periods and quantization errors greater than the ones obtained by the use of steps (1)–(15) and good
performances of the proposed digital tracking controller have been observed for sampling periods 𝛿 equal to 10−5, 10−2,
10−1, 0.2, output quantization errors 𝜇y equal to 9 × 10−6, 10−2, 10−1 and input quantization errors 𝜇u equal to 9 × 10−6,
10−1, 1. Figure 2 shows the simulations results for both cases of continuous-time and digital controller in which the
following choices have been performed: yd(t) = sin(t); the initial states of the system and of the observer-based tracking

controller equal to
[

x1(0)
x2(0)

]

=
[

1
1

]

,

[
ẑ1(0)
ẑ2(0)

]

=
[

0
−1

]

, an output quantizer and an input quantizer with

Qy = {y ∈ R| y = ±0.01k, i = 1, 2, k = 0, 1, … , 103};

Qu = {u ∈ R| u = ±k, k = 0, 1, … , 102};

a uniform sampling period 𝛿 = 0.1[s]. In the left column of Figure 2, the system variables x1(t), x2(t), the controller vari-
ables x̂1(t) = ẑ1(t) + yd(t), x̂2(t) = ẑ2(t) + y(1)d (t) and the control input signal u(t) are plotted in the case of continuous-time
controller (i.e., (88)–(85)). Simulations fully validate the theoretical results stated in Theorem 3. In the right column of
Figure 2, the system variables x1(t), x2(t), the controller variables x̂1(t) = ẑ1(t) + yd(t), x̂2(t) = ẑ2(t) + y(1)d (t) (linear interpo-
lations of discrete-time available values x̂1(j𝛿) = ẑ1(j𝛿) + yd(j𝛿), x̂2(j𝛿) = ẑ2(j𝛿) + y(1)d (j𝛿), j = 0, 1, … ) and the control input
signal u(t) are plotted in the case of digital controller. In particular, the right column of Figure 2 shows the simulation
results concerning the closed-loop system described by (88) with the proposed digital observer-based tracking controller
(62) where, for the example under exam, according to (56), the function k is described by (86). Simulations fully validate
the theoretical results stated in Theorem 4.

7 CONCLUSION

In this article, the tracking control problem for a class of nonlinear time-delay systems has been studied. In particular: (i)
a procedure for the design of continuous-time observer-based tracking controllers ensuring the GAS of the corresponding
closed-loop tracking error system has been provided for a class of control-affine nonlinear systems with state delays; (ii)
sufficient conditions have been provided for the existence of a suitably fast sampling and of an accurate quantization of
the input/output channels such that the digital implementation of the proposed continuous-time observer-based tracking
controller ensures the semi-global practical stability property of the related quantized sampled-data closed-loop tracking
error system, with arbitrarily small final target ball of the origin. The result (i) has been proved by exploiting a geometric
approach and the notion of the ISS. On the other hand, a Lyapunov–Krasovskii approach and, in particular, the stabi-
lization in the sample-and-hold sense theory has been used as a tool to prove the result (ii). Moreover, by exploiting the
converse Lyapunov theorems, it has been shown that, in the special case of delay-free nonlinear systems, the sufficient
conditions provided for the digital implementation of the proposed continuous-time observer-based tracking controller
can be strongly relaxed. In the theory here developed, time-varying sampling periods and the nonuniform quantization
of the input/output channels have been taken into account. The proposed results have been validated through examples
concerning a class of neural networks systems and a class of time-delay systems including, as a special case, a delay-free
actuated inverted pendulum.
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