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Abstract: Nonlocality is a fundamental concept in pho-
tonics. For instance, nonlocal wave-matter interactions in
spatially modulated metamaterials enable novel effects,
such as giant electromagnetic chirality, artificial mag-
netism, and negative refraction. Here, we investigate the
effects induced by spatial nonlocality in temporal meta-
materials, i.e., media with a dielectric permittivity rapidly
modulated in time. Via a rigorous multiscale approach,
we introduce a general and compact formalism for the
nonlocal effective medium theory of temporally periodic
metamaterials. In particular, we study two scenarios: (i) a
periodic temporal modulation, and (ii) a temporal bound-
ary where the permittivity is abruptly changed in time and
subject to periodicmodulation.We show that these config-
urations can give rise to peculiar nonlocal effects, and we
highlight thesimilaritiesanddifferenceswith respect to the
spatial-metamaterial counterparts. Interestingly, by tailor-
ing the effective boundary wave-matter interactions, we
also identify an intriguing configuration for which a tem-
poralmetamaterial canperform thefirst-order derivative of
an incidentwavepacket. Our theoretical results, backed by
full-wave numerical simulations, introduce key physical
ingredients that may pave the way for novel applications.
By fully exploiting the time-reversal symmetry breaking,
nonlocal temporalmetamaterials promise agreat potential
for efficient, tunable optical computing devices.
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1 Introduction
Spatial dispersion [1, 2] implies that the electromagnetic
(EM) constitutive relationships are nonlocal, i.e., the elec-
tric and/or magnetic inductions at a given point also
depend on the fields applied in a spatial neighborhood
(and, because of causality, at previous time instants).
From a mathematical viewpoint, this can be modeled in
termsof spatial derivatives in the constitutive relationships
or, equivalently, via wavevector-dependent constitutive
parameters in the reciprocal domain. Such behavior is typ-
ically negligible in most natural materials; nevertheless,
it can become a dominant effect in artificial materials,
such as metamaterials and photonic crystals, character-
izedby spatiallyperiodic (oralmostperiodic)arrangements
of basic constituents [3–6]. Although in some cases non-
locality is viewed as a detrimental effect to suppress or
mitigate [7], its proper harnessing can be very beneficial
in a variety of application scenarios, including artificial
magnetism [8], chirality [6], ultrafast nonlinear optics [9],
advanced dispersion engineering [10, 11], and wave-based
analog computing [12].

Currently, in metamaterials engineering, there is a
surge of interest in exploiting the temporal dimension as
well,motivatedby the increasingavailability of fast, recon-
figurable “meta-atoms” whose response can be dynami-
cally modulated in time [13–16]. This has led to revisiting
with renewed attention some old studies on wave interac-
tions with time-varying media or structures [17–19], and
to the demonstration of a variety of intriguing effects
and applications, ranging from nonreciprocity to broad-
band light manipulation (see, e.g., [20–38] for a sparse
sampling).

Interestingly, by exploiting the space-time duality, the
concept of effective medium theory (EMT) has been trans-
lated from conventional spatial multilayers to temporal
“multisteps” featuringa time-varyingpermittivity [30], and
higher-order homogenization schemes have also been put
forward to study nonlocal effects [31].

In this paper, we revisit these concepts via first-
principle calculations based on a multiscale approach
[6]. We show that nonlocality in temporal metamaterials
can induce an effective diamagnetic response, in anal-
ogy with the nonlocal effects observed in conventional
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spatial metamaterials of infinite extent. Moreover, in anal-
ogy with the boundary-type nonlocal effects observed in
truncated spatial metamaterials, we also consider a tem-
poral scenario where the permittivity of an unbounded
nondispersive medium is abruptly changed in time and
subject to a temporally periodic modulation. Remarkably,
we show that this temporal boundary can give rise to pecu-
liar nonlocal effects which, in suitably tailored parameter
regimes, can be harnessed to perform elementary analog-
computing operations, such as computing the first-order
derivative of an incident wavepacket. Finally, for valida-
tion, we also carry out full-wave numerical simulations,
which are in good agreement with our theoretical deriva-
tions. Our results indicate that nonlocality in temporal
metamaterials may play a key role in engineering novel
effects in nanophotonics and optical computing.

2 Results

2.1 Nonlocal effective medium theory
Let us consider an isotropic, generally inhomogeneous,
time-modulatedmedium, whose EM response is described
by a relative dielectric permittivity periodically modu-
lated in time, 𝜀(r, t) = 𝜀(r, t + 𝜏). In our study, we assume
that the operating frequencies are much lower than any
material resonance frequencies, so that temporal disper-
sion effects can be approximately neglected [17, 39]. From
Maxwell’s equations, the field dynamics can be described
by the vector wave equation for the electric induction D,
namely

𝜕
2D
𝜕t2 + c2L̂

[
𝜀
−1(r, t)D

]
= 0, (1)

where L̂ = ∇ ×∇× is the double-curl operator, and c
denotes the wavespeed in vacuum [31]. In the presence
of a rapid temporal modulation (i.e., with a modulation
angular frequency Ω = 2𝜋∕𝜏 much higher than the EM
carrier one 𝜔), it is convenient to introduce the parameter
𝜂 = 𝜔∕Ω. By exploiting the standard multiscale approach
[6], we can develop an asymptotic analysis in the regime
where 𝜂 ≪ 1. It is natural to assume for the EMobservables
a separatedependenceon the slowand fast temporal scales
(t and T = t∕𝜂, respectively), and to represent them as a
Maclaurin series expansion in the scale-parameter 𝜂, i.e.,

A(r, t,T) = A(r, t)+ Ã(r, t,T), (2)

withA = ∑+∞
m=0𝜂

mA(m) and Ã = ∑+∞
m=0𝜂

mÃ(m). Here,A repre-
sents a generic field component, the superscript (m) labels
the order of each term, whereas the overline and the tilde

label the averaged and rapidly varying contributions to
eachorder, respectively.Bynoticing that the relativedielec-
tric permittivity only depends on the fast coordinateT, and
by substituting the multiscale series expansion in Eq. (1)
(up to the second order in 𝜂), we obtain

𝜕
2D
𝜕t2 + c2L̂

[

𝜀
−1
effD+ c2𝜂2

∑

n≠0

a−n
n2Ω̃2

L̂
(
anD

)]

= 0,

D̃ = c2
∑

n≠0

einΩ̃T

n2Ω̃2
L̂
(
anD

)
, (3)

where we have separated the fast and slow contributions,
and we have assumed that the reciprocal of the relative
permittivity admits the Fourier series expansion

𝜀
−1(r,T) =

+∞∑

n=−∞
an(r)einΩ̃T , (4)

with 𝜀−1eff = a0, Ω̃ = 𝜂Ω, and i denoting the imaginary unit.
Equivalently, we can write Maxwell’s equations govern-
ing the dynamics of the average fields in our temporal
metamaterial as

∇ ⋅ D = 0, ∇ ⋅ B = 0,

∇× E = −𝜕B
𝜕t , ∇×H = 𝜕D

𝜕t ,
(5)

along with the constitutive relationships

E = 𝜀
−1
0

[

𝜀
−1
effD+ c2𝜂2

∑

n≠0

a−n
n2Ω̃2

L̂
(
anD

)]

,

B = 𝜇0H,

(6)

which are evidently nonlocal because of the presence of
field derivatives. By considering the limit 𝜂 → 0, it is appar-
ent that the term proportional to 𝜂

2 in the first of Eq. (3)
vanishes, and the temporal metamaterial behaves as a
dielectric medium with an effective relative permittivity
𝜀eff, thereby recovering the results in previous studies
[30, 31]. In the simplest case of spatial homogeneity (i.e.,
spatially unbounded, time-varying media [30]), the first of
Eq. (6) becomes

E = 𝜀
−1
0

(
𝜀
−1
effD− 𝛾

K2∇
2D

)
, (7)

where K = 2𝜋∕(c𝜏) and 𝛾 = 2∑+∞
n=1 |an|

2∕n2.
Next, we consider a monochromatic plane wave

propagating in a temporal metamaterial, i.e., D =
2 Re

[
d0eikz−i𝜔(k)t

]
. By substituting this expression in the
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effective Maxwell’s equations, and exploiting the consti-
tutive relationship in Eq. (7), we derive the dispersion
relationship

𝜔
2(k) = c2 k2

𝜀eff𝜇eff(k)
, (8)

where
𝜇eff(k) =

1
1+ 𝛾𝜀eff

k2
K2

(9)

plays the roleof aneffective relativemagneticpermeability.
Note that artificialmagnetism in time-modulateddielectric
media has been predicted in a recent study [31], suggest-
ing that a temporal metamaterial can behave as a resonant
magneto-dielectricmedium. Our results above confirm the
previous findings, and establish tighter bounds on the
attainable magnetic response. Specifically, for a tempo-
rally periodic metamaterial based on positive-permittivity
modulation [𝜀(t) = 𝜀(t + 𝜏) > 0], it is apparent fromEq. (9)
(recalling that 𝛾 ≥ 0) that only nonlocal diamagnetism
with 0 < 𝜇eff(k) < 1 can be attained, whereas resonant,
paramagnetic, and 𝜇-negative responses are forbidden.

We highlight that, as in conventional spatially modu-
latedmetamaterials, opticalmagnetism stems from spatial
dispersion. As previouslymentioned, in spatial metamate-
rials, nonlocality can strongly affect the EM response, and
it can produce undesirable effects [7]. Conversely, in an
isotropic temporal metamaterial, the spatial dispersion up
to the second order (i.e., up to 𝜂2) is fully equivalent to opti-
cal magnetism described by the effective relative magnetic
permeability 𝜇eff(k) in Eq. (9) (see the Methods Section 4.1
for further details).

For some quantitative assessments, we assume that
the relative permittivity profile is given by

𝜀(t) = 𝜀

[
1+Δ cos(2𝜋t∕𝜏 + 𝜙)

]
, (10)

withΔ parameterizing themodulation depth, and𝜙 being
an arbitrary phase. To validate and calibrate the predic-
tions of our proposed nonlocal EMT model, we compare
themwith the results from a rigorous full-wave theory (see
theMethods Section 4.1 for further details), as well as with
the conventional (local) EMT [16]. Figure 1 compares these
three predictions for the dispersion relationship 𝜔(k), for
𝜀 = 5, and three different values of the modulation depth
Δ. Here and henceforth, consistently with our assumption
of a negligible temporal dispersion, parameters are chosen
so that the relative permittivity in time is always greater
than one. Note that the effective parameters 𝜀eff and𝜇eff(k)
do not depend on𝜙, since this lattermerely corresponds to
a time shift. As expected, our nonlocal EMT is in fair agree-
mentwith the full-waveresultsandtheconventional (local)
EMT in the quasi-homogenized (weak-dispersion) regime
k∕K ≪ 1, and we observe that it works well within the
regions 𝜔(k)∕Ω < 0.45,0.47,0.49 for Δ = 0.5,0.65,0.8,
respectively, as shown in Figure 1. Note that𝜔(k)∕Ω corre-
sponds to the scale parameter 𝜂 that rules the multiscale
homogenization process (see Section 2.1). By increasing
the modulation depth Δ, we expect the nonlocal effects
to become more pronounced. This is evident in the three
panels of Figure 1, as the wavenumber region where the
temporal metamaterial exhibits a homogeneous behav-
ior [i.e., where 𝜔(k) is approximately linear] progressively
shrinks asΔ increases.

Figure 2(A) shows the effective relative permittivity 𝜀eff
as a function of Δ, whereas Figure 2(B) shows the effec-
tive relative permeability 𝜇eff(k) as a function of k∕K, for
different values of Δ; these effective parameters are only
shownwithin the regionwhere thenonlocal EMT is in good
agreement with the full-wave theory (corresponding to the
light-blue shaded area in Figure 1). We observe that, in the
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Figure 1: Comparison between the predictions from the full-wave theory and both local an nonlocal EMT models for a temporal metamaterial
with relative permittivity as in Eq. (10), with 𝜀 = 5.
(A)–(C) Normalized angular frequency𝜔∕Ω as function of the normalized wavenumber k∕K, forΔ = 0.5,0.65, and 0.8, respectively.The
light-blue shaded area indicates the region where the nonlocal EMT works well (≲ 10% error with respect to full-wave theory).
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Figure 2: Effective parameters for the temporal metamaterial
considered in Figure 1.
(A) Effective relative permittivity 𝜖eff as a function ofΔ; (B) effective
relative permeability 𝜇eff (k) as a function of k∕K, for different values
of the modulation depthΔ. Note that 𝜇eff (k) is only shown within the
region where the nonlocal EMT holds (≲ 10% error with respect to
full-wave theory).

case of a deep temporal modulation (e.g., Δ = 0.8), the
metamaterial exhibits a significant diamagnetic response
(e.g., 𝜇eff ≃ 0.91 for k∕K = 0.73).

2.2 Nonlocal temporal boundary
In analogy with the spatial scenario, the results derived
in Section 2.1 play the role of the “bulk” response of
an infinite-extent metamaterial. Since a series of recent
studies on spatially truncatedmultilayereddielectricmeta-
materials (see, e.g., [40–42]) have indicated the possible
onset of intriguing “boundary” effects in critical parameter
regimes, it appears suggestive to explore similar effects in
our temporal scenario here. To this aim, we derive the con-
ditions at the boundary of a nonlocal temporal metamate-
rial. More precisely, we consider a spatially homogeneous,
unbounded, temporal metamaterial exhibiting a temporal
boundary at a given time instant t = t0, at which the rela-
tive permittivity abruptly changes from a constant value 𝜀1
to a time-varying periodic function 𝜀(t), viz.,

𝜀b(t) =
{
𝜀1, t < t0,
𝜀(t), t > t0.

(11)

Obviously, since the medium response to modulation can-
not be infinitely fast, the assumption of abrupt temporal
transitions is highly idealized, and a finite rise/fall time
should be considered. However, for fall/rise times much
shorter than the period of the incident wave, our approach
remains valid. Within this framework, it is also worth
pointing out that, in our numerical simulations (see the
Methods Section 4.3), we actually assume smooth transi-
tions with sufficiently short rise/fall times in order to favor
convergence. As for the canonical temporal boundary [43],

where thedielectric permittivity exhibits a temporal transi-
tion between two constant values, themicroscopic electric
induction D and magnetic induction B remain continu-
ous across the boundary. Here, we consider plane waves,
D = 2 Re[d(k, t)eik⋅r] and B = 2 Re[b(k, t)eik⋅r], experienc-
ing the temporal boundary describedbyEq. (11). By enforc-
ing the standard boundary conditions [43], and taking
into account the second of Eq. (3) and the microscopic
Maxwell’s curl equation∇× B = 𝜇0

𝜕D
𝜕t , we obtain

d− =
(
1+ 𝛼0

k2
K2

)
d+,

b− =
(
1+ 𝛼0

k2
K2

)
b+ − ic𝜇0𝛽0

k
K × d+.

(12)

where d± = d
(
k, t±0

)
and b± = b

(
k, t±0

)
, with

𝛼0 = 2 Re
(+∞∑

n=1

an
n2
einΩt0

)

,

𝛽0 = 2 Im
(+∞∑

n=1

an
n einΩt0

)

.

(13)

From Eq. (12), it is evident that, in the limit k∕K → 0, the
inductions d and b are continuous, and our approach
reproduces the known results for the canonical temporal
boundary [43]. Generally, the homogenization process can
hide the asymmetry of the system. In the spatial domain,
the EM chirality is washed out in the conventional homog-
enized response of a composite metamaterial [6, 42]. Here,
the systemexhibits a time-reversal symmetry breaking due
to the permittivitymodulation in time and,while this effect
is lost in the effective “bulk” response, it is restored in
the boundary conditions expressed by Eq. (12). This is
somehow analogous to what is observed in spatial mul-
tilayered metamaterials, which exhibit chiral boundary
effects attributable to the parity symmetry breaking [42].
The abrupt switching of the permittivity breaks the time-
reversal symmetry. On the other hand, by comparisonwith
the conventional boundary conditions (i.e., continuity of
d and b at the temporal boundary), we highlight that,
in Eq. (12), the term proportional to 𝛽0 breaks explicitly
the time-reversal symmetry. The nonlocality preserves the
time-reversal asymmetry of the “microscopic” permittiv-
ity modulation, and this peculiar wave-matter interaction
endows uswith novel degrees of freedom formanipulating
the wave propagation.

As an example, we consider once again the temporal
metamaterial described by Eq. (10), with 𝜀 = 5. Figure 3
shows the nonlocal effective parameters 𝛼0 and 𝛽0 as a
function of the phase parameter𝜙, forΔ = 0.5,0.65,0.8. It
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Figure 3: Nonlocal temporal boundary. (A) and (B) Nonlocal effective
boundary parameters 𝛼0 and 𝛽0, respectively, as a function of the
modulation phase 𝜙. Here, t0 = 0, and a metamaterial with the
permittivity profile in Eq. (10) is considered with 𝜀 = 5.

is evident that theEMboundary response stronglydepends
on 𝜙, which thus constitutes an additional “knob” for tai-
loring thewave propagation. As a general result, it isworth
noting that 𝛼0 = 0 for 𝜙 = 𝜋∕2, 3𝜋∕2, whereas 𝛽0 = 0 for
𝜙 = 0, 𝜋. By exploiting Eq. (13), one can prove that the
parameters 𝛼0 and 𝛽0 vanish when the dielectric func-
tion exhibits even [𝜀(t − t0) = 𝜀(t0 − t)] or odd [𝜀(t − t0) =
−𝜀(t0 − t)] parity, respectively. Similar and related effects
have been investigated in multilayered dielectric metama-
terials [42], and topologicalphotonic crystals [44]. Tobetter
understand the impact of the novel nonlocal terms in the
boundary conditions expressed by Eq. (12), Figure 4 shows
the two nonlocal contributions

𝛼(k) = 𝛼0k2∕K2
, 𝛽(k) = 𝛽0k∕K, (14)

as a function of k∕K and 𝜙, for Δ = 0.5 [panels (A) and
(B)],Δ = 0.65 [panels (C) and (D)], andΔ = 0.8 [panels (E)
and (F)]; as in previous examples, the parameters are only
shown within the region where the nonlocal EMT holds
(i.e., the deviation is less than 10% with respect to full-
wave theory).Recalling the results inFigure 1, the larger the
modulation depth Δ, the smaller the wavenumber region
where the nonlocal EMT is in agreement with the full-wave
theory. The results in Figure 4 indicate that the impact of
nonlocality at the temporal boundary increases for deeper
modulations. Inparticular, forΔ = 0.8,𝛼(k) and𝛽(k) reach
the values 0.21 and 0.26, respectively, for k∕K ≃ 0.74.

2.3 Reflection and transmission at a
nonlocal temporal boundary

Let us consider a plane wave propagating in a spa-
tially homogeneous unbounded medium with a relative

Figure 4: Nonlocal contributions in Eq. (14) as a function of k∕K and
𝜙, forΔ = 0.5 ((A) and (B)),Δ = 0.65 ((C) and (D)), andΔ = 0.8 ((E)
and (F)). Here, t0 = 0 and a temporal metamaterial with the
permittivity profile in Eq. (10) is considered, with 𝜀 = 5. The
parameters are only shown within the region where the nonlocal
EMT holds (≲ 10% error with respect to full-wave theory).

permittivity as described by Eq. (11). Without loss of
generality, we assume propagation along the positive
z direction, and an x-polarized electric induction, i.e.
D(t, z) = 2 Re[d(k, t)eikz]êx. Following the nonlocal EMT
model developed in Section 2.1, the average EM fields
are governed by Eq. (5), where the effective wave-matter
coupling is given by

D = 𝜀0𝜀1E, (15)

for t < t0, and by Eq. (7) for t > t0. As a consequence,
by neglecting the fast components, the electric induction
d(k, t) is merely given by

d(k, t) =
{
din(k)e−i𝜔1(k)t, t < t0,
dt(k)e−i𝜔(k)t + dr(k)ei𝜔(k)t, t > t0,

(16)
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where 𝜔1(k) = ck∕√𝜀1, 𝜔(k) = ck∕
√
𝜀eff𝜇eff(k), and din,

dr, dt are the incident, reflected (backward) and trans-
mitted (forward) amplitudes, respectively. By means of
the third of Eqs. (5) and (7), we can derive the mag-
netic field associated to the electric induction in Eq. (16).
Then, by enforcing the temporal boundary conditions in
Eq. (12), after some straightforward algebra, we obtain
the temporal transmission

[
td = dt

din
e−i[𝜔(k)−𝜔1(k)]t0

]
and

reflection
[
rd = dr

din
ei[𝜔(k)+𝜔1(k)]t0

]
coefficients for the electric

induction

td(k) =
n1 + neff(k)
2n1

[
1+ 𝛼(k)

] + i𝛽0
neff(k)

2
[
1+ 𝛼(k)

]2
k
K ,

rd(k) =
n1 − neff(k)
2n1

[
1+ 𝛼(k)

] − i𝛽0
neff(k)

2
[
1+ 𝛼(k)

]2
k
K ,

(17)

where n1 =
√
𝜀1 and neff(k) =

√
𝜀eff𝜇eff(k). In the weak-

dispersion regime (k∕K ≪ 1), the magnetic effect is neg-
ligible [i.e., 𝜔(k) ≃ ck∕√𝜀eff] and the temporal transmis-
sion and reflection coefficients can be approximated as
first-order Maclaurin series in k, viz.,

td(k) ≃
1
2

(

1+
√
𝜀eff√
𝜖1

+ i𝛽0
√
𝜀eff

k
K

)

,

rd(k) ≃
1
2

(

1−
√
𝜀eff√
𝜖1

− i𝛽0
√
𝜀eff

k
K

)

.

(18)

From Eq. (18), by taking into account Eqs. (15) and (7), and
maintaining terms up to the first order in k∕K, we obtain
the corresponding expressions for the electric field

te(k) ≃
1
2

(
𝜀1
𝜀eff

+
√
𝜀1√
𝜖eff

+ i𝛽0
𝜀1√
𝜀eff

k
K

)

,

re(k) ≃
1
2

(
𝜀1
𝜀eff

−
√
𝜀1√
𝜖eff

− i𝛽0
𝜀1√
𝜀eff

k
K

)

,

(19)

where the k-dependent terms account for the (weak) dis-
persion. By neglecting these nonlocal terms, we recover
the well-known analytical expressions derived in previous
studies on conventional (local) temporal boundaries [43].

2.4 Harnessing the temporal-boundary
nonlocality

As for the spatial case [10], it is insightful to explore to
what extent nonlocality in temporal metamaterials can
be harnessed to attain some elementary pulse-shaping or
analog-computing functionalities. By inspecting Eqs. (18)
and (19), it is apparent that, in theweak-dispersion regime,

backwardand forwardfieldsatanonlocal temporalbound-
ary are dominated by a linear combination of a local
(constant) term and a nonlocal correction that is propor-
tional to k, and hence corresponds to a first derivative.
Remarkably, in the temporal reflection coefficients rd(k)
and re(k), this nonlocal correction can be made dominant
by enforcing the impedance-matching condition 𝜀eff = 𝜀1,
so that the local terms vanish. Thus, the backward wave-
form is proportional to the first derivative of the incident
one.

Via Fourier transform, a generic wavepacket can be
synthesized as the superposition of the time-harmonic
modes in Eq. (16), i.e., D(z, t) = ∫

+∞
−∞ d(k, t)eikzdk. Then, by

recalling Eq. (17), we can calculate the forward and back-
ward wavepacket signals. As a representative example,
we consider a Gaussian pulse interacting with the time-
varying medium described by Eq. (11), where 𝜀 is given by
Eq. (10), with 𝜙 = 3𝜋∕2. For t < t0, we assume that the
incident pulse propagates in a dielectric medium (𝜀1 = 3)
with the following profile

Din(z, t) = D0e
−
[
z−𝑣1(t+t0)

𝑣1𝜎t

]2

êx, (20)

with 𝑣1 = c∕√𝜀1, 𝜎t = 4𝜏, t0 = 10𝜏, and D0 being a con-
stant. After the time instant t = t0, the pulse is par-
tially reflected by the temporal boundary, as illustrated
in Figure 5 (where the dielectric modulation depth is
Δ = 0.8). It is evident that, for impedance-mismatched
configurations, the backward pulses exhibit the same
shape as the incident one [see panels (A) and (C), where
𝜀 = 4, 6, corresponding to 𝜀eff = 2.4, 3.6, respectively]. On
the contrary, when the impedance is matched [see panel
(B), where 𝜀 = 5, corresponding to 𝜀eff = 3], the backward
pulse reproduces the spatial first derivative of the incident
one, as predicted by the second of Eq. (18). For com-
pleteness, Figure 6 shows the space-time maps for the
three cases considered: 𝜀eff = 2.4 [panels (A)–(C)], 𝜀eff = 3
[panels (D)–(F)], and 𝜀eff = 3.6 [panels (G)–(I)].

Finally, we validate these predictions from the non-
local EMT model against full-wave numerical simulations
(see theMethods Section 4.3 for details). Here, we consider
the same EM configuration analyzed above with 𝜀 = 5,
and Δ = 0.8, so that the impedance matching condition
𝜀eff = 𝜀1 = 3 is satisfied.

Figure 7 shows the results on three cases where 𝜙 =
3𝜋∕2 ((A)–(C)), 𝜙 = 0.67𝜋 ((D)–(F)), and 𝜙 = 𝜋 ((G)–(I)).
Specifically, we compare the electric induction and electric
field distributions predicted by the conventional (local),
nonlocal EMT, and full-wave simulations for both cases.
Panels (B), (E), and (H) show the backward pulse profiles
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Figure 5: Spatial profiles of reflected (backward) pulses Dr(z, t1) (t1 ≃ 20𝜏) in the configuration described by Eqs. (11) and (10), with 𝜀1 = 3,
t0 = 10𝜏, 𝜙 = 3𝜋∕2,Δ = 0.8, and 𝜀 = 4, 5,6 shown in panels (A)–(C), respectively. The blue curve represents the incident pulse profile
Din(z, t = 0), and the backward pulse Dr(z, t1) (orange-dashed) is superposed to the first spatial derivative of Din(z, t = 0) (red).

Figure 6: As in Figure 5, but space-time maps of the electric induction D and the corresponding forward (Dt ) and backward (Dr) components
for 𝜀eff = 2.4 ((A)–(C)), 𝜀eff = 3 ((D)–(F)), and 𝜀eff = 3.6 ((G)–(I)).
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Figure 7: Comparison between the backward wavepacket profiles predicted by full-wave simulations, local and non-local EMTs. The
considered temporal dielectric profiles ensuring the impedance-matching conditions [i.e., the configuration described by Eqs. (11) and (10),
with 𝜀1 = 3, t0 = 10𝜏,Δ = 0.8, and 𝜀 = 5] is plotted with 𝜙 = 3𝜋∕2 (panel (A)), 𝜙 = 0.67𝜋 (panel (D)), and 𝜙 = 𝜋 (panel (G)). Panels (B), (E),
and (H) show the corresponding normalized electric inductions Dr∕D0 for the backward pulses. Panels (C), (F), and (I) show the
corresponding normalized electric fields 𝜀0Er∕D0. All temporal profiles are evaluated at z = −30c𝜏.

Dr∕D0 at z = −30c𝜏 for the configurations in panels (A),
(D) and (G), respectively. At the impedance matching con-
dition, the local EMTpredicts zero temporal reflection, and
it doesnot properly describe thebackwardwavedynamics.
For 𝜙 = 3𝜋∕2 and 𝜙 = 0.67𝜋, our proposed nonlocal EMT
is in very good agreement with the full-wave simulations.
For𝜙 = 𝜋, the local and nonlocal EMT predict zero tempo-
ral reflection, whereas full-wave simulations yield a very
small backward reflection signal (about an order ofmagni-
tudeweaker than thepreviouscases). In this latter case, the
parameter 𝛽0 ruling the nonlocal effect vanishes, and the

temporal reflection is negligible [see Figure 3 along with
the second of Eq. (18)]. Also shown in panels (C), (F) and
(I) are the corresponding profiles of the normalized electric
fields 𝜀0Er∕D0. In panels (C), (F) and (I), we observe that
the full-wave predictions exhibit fast modulations due to
the temporal modulation of the permittivity, whereas the
nonlocal EMT prediction obtained from Eq. (19) is only
representative of the slow component. Clearly, Eq. (19)
describe the temporal transmission and reflection coef-
ficients of the average component of the electric field, and
all fast scales are not considered.
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Overall, the above results confirm the validity of
the nonlocal EMT predictions to harness the temporal-
boundarynonlocality. In the configurationswith𝜙 = 3𝜋∕2
and 𝜙 = 0.67𝜋, the nonlocal contributions, appearing in
Eqs. (18) and (19), are significant (𝛽0 = 0.31,−0.35 for
𝜙 = 3𝜋∕2,0.67𝜋, respectively), so that these results also
confirm the possibility to attain the spatial first derivative
of the incident wavepacket. Remarkably, by tailoring the
modulation phase 𝜙, the amplitude and the symmetry of
the backward pulse can be suitably tuned. Comparing the
field profiles in panels ((B) and (C)) with those in panels
((C) and (F)), it is evident that the pulse reverses its tem-
poral symmetry profile by switching𝜙 from 3𝜋∕2 to 0.67𝜋.
Quite interestingly, for𝜙 = 0.67𝜋, the relative-permittivity
function𝜀b(t) iscontinuous, thereby indicating that thepre-
dicted nonlocal effects do not depend critically on abrupt
temporal changes.

In principle, by exploiting more complex modulation
schemeswithadditionaldegreesof freedom(e.g., temporal
dielectric structures with multiple harmonics), it could be
possible to tailor the parameters so as to perform higher-
derivative orders (and their linear combinations).

3 Conclusions
In summary, via a rigorous multiscale approach, we have
developed a nonlocal EMT for temporal metamaterials
characterized by permittivity profiles rapidly modulated
in time. In analogy with the spatial case, we have eluci-
dated the nonlocal effects, occurring in specific parameter
regimes, manifested as an effective diamagnetic response
and thepossibility toperformbasic signal-processing (e.g.,
first derivative), respectively. In good agreement with full-
wave numerical simulations, these results bring about
new perspectives and degrees of freedom in the design
of temporal metamaterials for tunable nanophotonics and
optical computing.

Current and future studies are aimed at exploring
more general spatio-temporal modulation schemes, such
asmultifrequency and traveling-wave [24, 37]. Also crucial
from the application viewpoint is the exploration of pos-
sible implementations, based on technological platforms
that have been demonstrated at microwave [45], terahertz
[46], and optical [47] frequencies. Finally, of great interest
is a study of the possible effects of topological properties,
as in photonic time crystals [48, 49], which may enable
novel advanced functionalities.

4 Methods

4.1 Nonlocal magnetism

Recalling that the effective Maxwell’s equations are invariant with
respect to the Serdyukov–Fedorov transformation [50] D′ = D−∇ ×
Q andH′ = B∕𝜇0 − 𝜕tQ, after setting Q = 𝜕tM, we obtain the equiva-
lent effective constitutive relationships

D′ = 𝜀0𝜀effE′ (21a)

B′ = 𝜇0
(
H′ +M

)
, (21b)

where

∇2M− K2

𝛾𝜀eff
M+ 𝜀0𝜀eff

𝜕
2B′

𝜕t2
= 0, (22)

E′ = E, and B′ = B. In Eq. (21b), the vector M plays the role of an
effective magnetic polarization. Therefore, in an isotropic and spa-
tially homogeneous temporal metamaterial, the spatial dispersion up
to the second-order (i.e., up to 𝜂

2) is fully equivalent to optical mag-
netism with the magnetic polarization given by Eq. (22). Considering
the propagation of a monochromatic plane wave, we obtain that the
EM fields experience a nonlocal magnetic response described by the
effective relative magnetic permeability given in Eq. (9).

4.2 Rigorous dispersion relationship in time-periodic
varying media

Following the rigorousapproach in [51],we focusonthewaveequation
describing the electric field dynamics in a time-periodic varying
medium. The propagation of a plane wave E(z, t) = 2 Re

[
e(t)eikz

]
êx

is described by the equation

d2

dt2
[𝜀(t)e(t)]+ k2c2e(t) = 0, (23)

where 𝜀(t) = 𝜀(t + 𝜏). Since the permittivity is periodic in time, this
equation admits Bloch-type modes e(t) = ẽ(𝜔, t)e−i𝜔t, where ẽ(𝜔, t) is
a periodic function of period 𝜏. By expanding in Fourier series the
observables, Eq. (23) becomes

∑

n

[
(𝜔−Ωm)2c̃m−n − k2c2𝛿m,n

]
ẽn = 0, (24)

where c̃n, ẽn are the Fourier coefficients for the relative permittivity
and electric field, respectively, and 𝛿m,n is the standard Kronecker-
delta tensor (m, n = 0,±1,±2,… ). Eq. (24) is a set of linear equations
that exhibits a nontrivial solution only if the associated determinant
vanishes. By suitably truncating the Fourier series expansions, we
numericallyobtain the rigorousdispersionrelationship𝜔(k) forwaves
propagating in a periodic temporal medium.

4.3 Full-wave simulations

Weconsider anarbitrarywavepacket propagating in a spatially homo-
geneous unbounded, time-varying metamaterial, with the temporal
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boundary described by Eq. (11). The wavepacket electric induction
can be synthesized via Fourier transform as

D (z, t) = êx
∞

∫
−∞

d (k, t) eikzdk. (25)

Then, for each value of the wavenumber k, we define the auxiliary
functions

u1 (k, t) =
d (k, t)
D0

, u2 (k, t) =
b (k, t)
D0Z0

, (26)

where d (k, t) and b (k, t) are the plane-wave spectra of the electric
and magnetic inductions, respectively, at a given time t, with Z0 and
D0 denoting the vacuum intrinsic impedance and a dimensional nor-
malization constant, respectively. FromMaxwell’s curl equations, we
derive a pair of coupled ordinary differential equations, namely

du1
dt

= −icku2,

du2
dt = −ick u1

𝜀b
,

(27)

with initial conditions

u1 (k,0) =
din(k,0)

D0
, u2 (k,0) =

din(k,0)
D0

√
𝜀1

, (28)

where din(k,0) is the plane wave spectrum of the incident electric
induction field at t = 0. Next, we solve numerically Eq. (27) by means
of the NDSolve routine available in Mathematica™ [52]. This rou-
tine provides the numerical solution of generic systems of ordinary
differential equations, via a broad arsenal of methods (including
Runge–Kutta, predictor-corrector, implicit backward differentiation)
that can be tailored adaptively to the specific scenario of interest
and, in principle, it can automatically handle discontinuities in the
equations [52]. In our implementation, we utilize default settings and
parameters. Moreover, in order to favor numerical convergence, we
implement the abrupt permittivity changes via an analytical, smooth
unit-step function Us (t) = [tanh (t∕Ts)+ 1]∕2, where Ts = 𝜏∕100.

Once a numerical solution is available for Eq. (27), the elec-
tric induction is synthesized via Eq. (25) (where d = D0u1), whereas
the corresponding electric field can be readily obtained via division
by 𝜀b (t). In our numerical implementation, this synthesis is imple-
mented via fast-Fourier-transform by means of the Fourier routine
available in Mathematica™ [52].
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