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CONTENTS 5

Summary

Quantum computation could give an exponential speed-up to quantum sim-
ulations. Actually, in the so-called noisy-intermediate scale quantum (NISQ)
era, the available devices are composed of a few qubits, are affected by noise
and are prone to decoherence. Finding a way to simulate quantum systems
that can be run on these devices is not a trivial task and, to this scope,
many quantum algorithms have been developed. In particular, the varia-
tional quantum eigensolver (VQE) is one of the most promising algorithms
to simulate quantum systems on NISQ devices. Nevertheless, this algorithm
is affected by some limitations that do not allow us to use it for practical
scope. The goal of this thesis is to exploit the symmetries of the systems
under consideration to find new strategies to implement the VQE algorithm.
This work is divided into two parts: the first one is composed of introductory
material while the second one shows the original results achieved in this work.
In particular, in chapter 1 we give an overview of the most important con-
cepts of quantum computation and quantum information while 2 illustrate
some algorithms used in classical and quantum simulations. In chapter 3 we
define a method that optimizes the Hamiltonian to adapt it to the wavefunc-
tion through orbital rotations. Chapter 4 improve this method by reducing
the required quantum computational resources while 5 show that, for small
molecules, the algorithm converges to the natural orbitals single-particle ba-
sis set. In chapter 6 the algorithm is generalized to include quasiparticles
states and it is applied to SU(N) fermionic systems. Chapter 7 define a
strategy to create optimal hardware-efficient ansätze starting from the corre-
lations caught by an approximated groundstate. In chapter 8 we show how
to exploit the spin symmetry of the Hamiltonian to build ansätze preserving
it. Finally, in chapter 9 we summarize the obtained results and show how
they open the way to future developments.
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Chapter 1

Quantum computation and
quantum information

This chapter will give an overview of the basic concepts of quantum com-
putation and quantum information that are fundamentals to understand the
results shown in the next chapters [1, 2, 3].

1.1 Qubits

The building blocks of classical computation are the bits, which are variables
that can assume the value 0 or 1. It is possible to define the quantum bits or
qubits, that is the unit of information in the realm of quantum mechanics.
Consider a two-dimensional Hilbert space H and define a basis as

|0⟩ =

(
1
0

)
|1⟩ =

(
0
1

)
(1.1)

where the Dirac notation has been used. By defining the equivalence relation
∼ ”differ by a multiplicative constant different from zero”, the quotient space
H / ∼ can be defined. From now on this space will be the Hilbert space that
we will consider and we will use the terms ray, vector and ket indistinctly
to refer to the equivalence classes of it. These equivalence classes represent
the physical states used to describe a quantum system. A generic ket can be
written as

|ψ⟩ = α |0⟩ + β |1⟩ (1.2)

where α, β ∈ C and |α|2 + |β|2 = 1. A useful geometric representation of this
ket can be given by considering the following parametrization

|ψ⟩ = cos
θ

2
|0⟩ + eiφ sin

θ

2
|1⟩ (1.3)

7
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where θ ∈ [0, π] and φ ∈ [0, 2π). These parameters define a point on the sur-
face of the unit three-dimensional sphere, called Bloch Sphere, with cartesian
coordinate

r = (cosφ sin θ, sinφ sin θ, cosφ) (1.4)

This can be visualized in figure 1.1 where the basis vectors are on the vertical
axis. The mapping between the space of the parameters (θ, φ) ∈ R2 and the
sphere S2 is not one-to-one because, on the poles of the sphere, φ is unde-
termined. This does not have physical consequences because, as explained
above, we are considering a quotient space. The other kets |ψ⟩ are uniquely
determined by the value of the parameters θ and φ. The two-level system

Figure 1.1: Bloch Sphere

described so far is called qubit and the vectors |0⟩ and |1⟩ identify the so-
called computational basis. Unlike the classic bit which can assume just two
values, the qubit can be in a continuum of states. In principle, this means
that it is possible to associate an infinite amount of information into a qubit.
To determine the values of these parameters, it is necessary to prepare an
ensemble of identical systems and, through quantum tomography, perform
measurements to reconstruct the state, as explained in more detail below.
The ensemble is composed of a finite number of copies and as a consequence,
the coefficients in formulas 1.2 and 1.3 can be determined within a certain
error. Then only a finite amount of information can be encoded into a qubit.
It is possible to consider a system composed of n qubits, mathematically this
is represented as the product of n copies of the Hilbert space defined above

H n =
n⊗

i=1

Hi (1.5)
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Physically this describes a quantum system composed of n distinguishable
quantum systems. A basis of this space is composed of the 2n kets

|i1, ..., in⟩ =
n⊗

j=1

|ij⟩ (1.6)

where ij ∈ {0, 1} and |ψ⟩ ∈ H is a linear combination of these vectors

|ψ⟩ =
1∑

i1,...,in=0

Ci1...in |i1, ..., in⟩ (1.7)

with Ci1...in ∈ C and
∑1

i1,...,in=0 |Ci1...in|2 = 1. A state |ψ⟩ is called separable
if it can be written as

|ψ⟩ =
n⊗

j=1

|ψj⟩ (1.8)

where |ψj⟩ ∈ Hj. If this is not possible we say that the state is entangled, and
thus cannot be described as a product of states of individual subsystems. As
an example, consider the bipartite system H1⊗H2 composed of two qubits,
the vectors of the basis are |00⟩ , |01⟩ , |10⟩ , |11⟩. The state

|s⟩ =
1√
2
|0⟩ ⊗ (|0⟩ + |1⟩) (1.9)

is a separable state while

|e⟩ =
1√
2

(|00⟩ + |11⟩) (1.10)

is an entangled state. This means that the qubits of the system are correlated
and a measurement of one of them modifies the state of the other one.

1.2 Quantum computation

Classical circuits are made by gates and wires that manipulate and carry
around the information respectively. Wires, representing the bits, are drawn
with lines going from the left to the right and gates are applied on them
to modify the state of one or more bits. Similarly, we define a quantum
circuit made by a quantum wire for each qubit and unitary operators called,
quantum gates, that modify the state of the qubits. One-qubit gates are
represented as black boxes acting on a wire of the circuit

U
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and their matrix representation is expressed in the basis of the vectors 1.6.
Examples of one-qubit gates are the Pauli gates

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
(1.11)

that, with the identity operator, form a basis for the Hermitian matrices of
dimension two and are used to implement the Hamiltonian of a quantum
system on a quantum circuit. The matrices form of the useful Hadamard
(H), the phase (S) and the π/8 (T) quantum gates are

H =

(
1 1
1 −1

)
S =

(
1 0
0 i

)
T =

(
1 0

0 e
iπ
4

)
(1.12)

Some quantum gates can depend on parameters, like

RX(θ) = e−i θX
2 =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
(1.13)

RY (θ) = e−i θY
2 =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
(1.14)

RZ(θ) = e−i θZ
2 =

(
e−i θ

2 0

0 ei
θ
2

)
(1.15)

that will be used to create parametrized ansätze of physical systems on quan-
tum circuits. A widely used two-qubits gate is the controlled-not or CNOT
gate with the following matrix representation

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.16)

One of the qubits is called control and the other one is the target. The state
of the control qubit is not modified while the state of the target change if
the control is |1⟩. This gate is represented as

•

where the black dot identifies the control and the circled cross the target
qubit. Hadamard, phase, CNOT and the π/8 gates form the so-called stan-
dard set of the universal gates, this means that every unitary quantum gate
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can be approximated with arbitrary error just using this set. Consider the
three-bit Toffoli gate

x • x
y • y

z z ⊕ xy

where ⊕ is the modulo two addition. This is a universal gate for classical
computation because every gate, reversible or not, can be obtained with this.
As a consequence, every classical circuit can be built just using these gates.
Toffoli gate is unitary so it can be reproduced on a quantum computer, it
follows that every classical circuit can be simulated on a quantum one.

1.3 Quantum information

The states considered up to now are called pure states and, for a qubit, they
live on the surface of the Bloch Sphere. If a system must be considered
a statistical mixture of n quantum states |ψi⟩ ∈ H with probability pi,
we introduce the ensemble of pure state {pi, |ψi⟩} and define the density
operator, or density matrix, as

ρ =
n∑

i=1

pi |ψi⟩ ⟨ψi| (1.17)

If n = 1, the density operator for a pure state is obtained, otherwise we say
that the system is in a mixed state. Thus, this formalism generalizes the one
introduced above. If a closed system evolves under the unitary operator U ,
the density matrix becomes

ρ(U) =
n∑

i=1

piU |ψi⟩ ⟨ψi|U † = UρU † (1.18)

It is possible to show that an operator ρ is the density operator associated
to some ensemble {pi, |ψi⟩} if and only if:

tr(ρ) = 1 ∧ ⟨ϕ| ρ |ϕ⟩ ≥ 0 ∀ |ϕ⟩ ∈ H (1.19)

By noting that tr(ρ2) ≤ 1, we have

• tr(ρ2) = 1 for a pure state

• tr(ρ2) < 1 for a mixed state
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Consider the Hilbert space LH of linear operators on H with the Hilbert-
Schmidt inner product

⟨O1, O2⟩ ≡ tr(O†
1O2) (1.20)

where O1, O2 ∈ LH . Each linear operator can be written as a linear combi-
nation of an orthonormal basis of LH . For the density operator, this basis
is composed of Hermitian matrices. In particular, for a qubit, we can define
the vector

σ =
1√
2

(X, Y, Z, I) (1.21)

where I is the identity matrix of dimension two and X, Y, Z are the Pauli
matrices defined in 1.11. It can be easily seen that

⟨σi, σj⟩ = δij ∀i, j ∈ {1, 2, 3, 4} (1.22)

Thus these four matrices form an orthonormal basis for the Hilbert space of
the qubit and, for a n qubits system, the basis set is built by considering the
tensor product of them. The density operator corresponding to a state living
in H n can be expanded as

ρ =
4∑

i1,...,in=1

tr(σi1 ⊗ ...σinρ)σi1 ⊗ ...σin
2n

(1.23)

To univocally determine the density operator we need to obtain in some
way the value of the coefficients tr(σi1 ⊗ ...σinρ) from the experiments. This
procedure is called quantum state tomography and, to be performed, requires
the concept of measurement. We start by defining a set of measurement
operators {Mm} such that ∑

m

M †
mMm = I (1.24)

where I is the identity operator and the index m refers to the measurement
outcomes that can be obtained from the measure. The probability that the
experiment gives the result m is

p(m) = tr(M †
mMmρ) (1.25)

and the density operator after the measurement is

ρm =
MmρM

†
m

tr(M †
mMmρ)

(1.26)
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As an example, consider the density operator of a qubit that, from 1.23 and
1.19, can be written as

ρ =
1

2
(I +

3∑
i=1

riσi) ∥r∥ ≤ 1 (1.27)

where r =
(
tr(Xρ), tr(Y ρ), tr(Zρ)

)
is called Bloch vector and can be repre-

sented on the Block sphere: if ∥r∥ = 1 we have a pure state on the surface
of the sphere, otherwise the state is mixed and live in the interior part of it.
Now we define the measurement operators in the computational basis

M0 = |0⟩ ⟨0| M1 = |1⟩ ⟨1| (1.28)

It follows that

r3 = tr(Zρ) = tr(M †
0M0ρ) − tr(M †

1M1ρ) = p(0) − p(1) (1.29)

Thus r3 can be determined, within a statistical precision, by performing
measurements in the computational basis on a set of qubits prepared in the
same conditions. Moreover, by noting that X = HZH and Y = HSZS†H,
we deduce the following relations

r1 = tr(Xρ) = tr(ZρX) = p(0) − p(1) ρX = HρH (1.30)

r2 = tr(Y ρ) = tr(ZρY ) = p(0) − p(1) ρY = HSρS†H (1.31)

To prepare ρX and ρY on a quantum circuit, we apply respectively the quan-
tum gates H and HS at the end of the one corresponding to the density
operator ρ. Physically, this is equivalent to performing rotations along the
X and Y axis on the Bloch Sphere before the measurement. So the r can be
reconstructed by measuring in the computational basis the two new density
operators. On a quantum circuit, the measurement operation is graphically
represented with the following symbol

In conclusion, we want to resume the differences between bits and qubits.
As shown in the previous sections, a qubit can be in a superposition of the
states |0⟩ , |1⟩ and not only assume the two mutually excluding values 0, 1
of a classical bit. Nevertheless, giving access to the information encoded in
a qubit is not trivial like for a bit because the measurement of a quantum
system is involved. As an example, consider the following quantum circuit

|0⟩ H •
|0⟩ X
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The two qubits system is initialized in the state |ψ⟩ = |00⟩. After the appli-
cation of the quantum gates the state becomes |ψ⟩ = 1√

2
(|01⟩ + |10⟩) and,

to determine it, a set of measurement must be performed reinitializing the
circuit after each measure.



Chapter 2

Simulating quantum systems

One of the most promising applications of quantum computation is the sim-
ulation of quantum systems. We focus our attention on quantum systems
composed of atomic nuclei and electrons. In this chapter, we give an overview
of some of the ab-initio classical techniques [4] used to determine the elec-
tronic structure of these systems and how a quantum computer could be
useful for this purpose [5].

2.1 The electronic structure problem

Considering a system composed by M atomic nuclei and N electrons in the
non-relativistic regime interacting through the Coulomb potential. In the
following, capital letters refer to nuclei while lowercase ones to the electrons.
To the electron i ∈ 1, ..., N we can associate the spatial coordinate ri ∈ R3,
in the same manner we can define the spatial coordinates RS ∈ R3 for the
nucleus S ∈ 1, ...,M . We collect these variables with the vectors r and
R respectively. Since there are no time-dependent potentials, we can write
down the time-independent Schrödinger equation in the coordinate space [6]

HΨ(r,R) = EΨ(r,R) (2.1)

where Ψ(r,R) = ⟨r,R|Ψ⟩ is an eigenfunction of the system corresponding
to the ket |Ψ⟩, E is the corresponding eigenenergy and H is the Hamiltonian
expressed in atomic units [4]

H = −
N∑
i=1

∇2
i

2
−

M∑
S=1

∇2
S

2MS

−
N∑
i=1

M∑
S=1

ZS

riS
+

M∑
S=1

M∑
T>S

ZSZT

RST

+
N∑
i=1

N∑
j>i

1

rij
(2.2)

MS is the mass of nucleus S, ZS is the atomic number of nucleus S and

RST = |RS −RT | RiS = |ri −RS| rij = |ri − rj | (2.3)

15
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The electronic Hamiltonian, including all the terms depending on the elec-
tronic degree of freedom, can be defined as

H = −
N∑
i=1

∇2
i

2
−

N∑
i=1

M∑
S=1

ZS

riS
+

N∑
i=1

N∑
j>i

1

rij
(2.4)

We write the wavefunction as

Ψ(r,R) =
∑
α

Cα(R)ψα(r,R) α = 1, 2, ... (2.5)

where ψα(r,R) are the electronic wavefunctions satisfying the Schrödinger
equation supposing that the electrons move in the field generated by fixed
nuclei (

H +
M∑
S=1

M∑
T>S

ZSZT

RST

)
ψα(r,R) = Eα(R)ψα(r,R) (2.6)

The eigenenergies Eα(R) and the eigenfunctions depend parametrically on
the nuclear coordinates. The coefficient Cα(R) represent the wavefunction
of the nuclear motion. Since the ratio between the electron mass and nuclear
masses is O(10−3, 10−5), we can take into account the Born-Oppenheimer
approximation [7]: we suppose that the nuclear motion is much slower than
the electronic one, so |∇Rψα(r,R)| ≪ |∇RCα(R)| and the following equation
is obtained (

−
M∑
S=1

∇2
S

2MS

+ Eα(R)

)
Cα(R) = ECα(R) (2.7)

To find the solutions of 2.1 under this approximation, one solves the electronic
problem and then uses the obtained information to determine the nuclear
motion. From now on we fix the nuclear positions and focus on the electronic
wavefunction, so we drop the R variables from the equations. Moreover, for
each electron, we consider the variables

xi = (ri, ωi) i = 1, ..., N (2.8)

,collected into the vector x, to include the spin variables ωi in our discussion.
Thus given a set of fixed nuclei, the problem we want to solve is(

H +
M∑
S=1

M∑
T>S

ZSZT

RST

)
ψ(x) = Eψ(x) (2.9)

The nuclear-nuclear interaction is a constant term and will be dropped in
the following discussion. Moreover, the state |ψ⟩ will be used instead of
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its representation in the space of the positions ψ(x) = ⟨x|ψ⟩. Now, given
an Hilbert space H , consider a complete set of orthonormal single-particle
states {ϕj} for j = 1, 2, .... It is convenient that the corresponding functions
⟨y|ϕj⟩ are chosen in order to verify the boundary condition of the Schrödinger
equation: for a system in a periodic nuclear potential, we could use the Bloch
wavefunctions [8] while, for a molecule, molecular spin-orbitals are a good
choice. Taking into account the indistinguishability of quantum particles and
the fermionic statistics of electrons, the n-particles state |ψ⟩ can be expanded
on this basis set

|ψ⟩ =
∞∑

i1>i2>...>iN=1

ci1,i2...,iN |i1, i2, ..., iN⟩ (2.10)

where

|i1, i2, ..., iN⟩ =
1√
N !

∑
σ∈P

sgn(σ)
N⊗
j=1

|ij⟩ (2.11)

is called Slater determinant. P is the set of permutations of the indices
i1, i2, ..., iN and sgn(σ) is the signature of the permutation σ. The Slater de-
terminants in equation 2.10 form an orthonormal basis of the antisymmetric
product of N identical Hilbert spaces FN . To include states with different
numbers of particles we define the Fock space for fermions as

F =
∞⊕
k=0

F k (2.12)

where F 0 ≡ C is the one-dimensional Hilbert space corresponding to the
state without particles |0⟩ called vacuum state. We note that to define a basis
for this space, we only need the occupation of states and the order we give
them. Thus, to avoid the redundancy of the notation in 2.10, we introduce the
so-called occupation number representation or second quantization [9, 10, 11].
We start by defining the orthonormal basis vectors of the Fock space

|n1, n2, ..., n∞⟩ (2.13)

where ni is the number of particles in the state i = 1, ..,∞, so 0 or 1. A
generic state in this basis can be expressed as

|ψ⟩ =
1∑

n1,n2,...,n∞=0

cn1,n2,...,n∞ |n1, n2, ..., n∞⟩ (2.14)



2.1. THE ELECTRONIC STRUCTURE PROBLEM 18

Now, for each single particle state, we introduce the linear operators a†i and
(a†i )

† called, respectively, creation and annihilation operators. They satisfy
the anticommutation relations

{ai, aj} = {a†i , a
†
j} = 0 {ai, a†j} = δij i, j = 1, 2, ... (2.15)

From these algebraic relations, it is easy to show that the number operators
n̂i = a†iai are Hermitian with eigenvalues 0 and 1. Since [n̂i, n̂j] = 0, it is
possible to find a set of simultaneous eigenstates, with eigenvalues 0 or 1, for
each operator and the states in 2.13 do this. Thus

n̂i |n1, n2, ..., n∞⟩ = ni |n1, n2, ..., n∞⟩ (2.16)

and define the vacuum state |∅⟩ as the one such that

n̂i |∅⟩ = 0 ∀i = 1, 2, ... (2.17)

All the other basis states can be obtained by the creation operators

|n1, n2, ..., n∞⟩ ≡ (a†1)
n1(a†2)

n2 ...(a†∞)n∞ |∅⟩ =
∞∏
j=1

(a†j)
nj |∅⟩ (2.18)

that is valid because verify the equation 2.16. Now, the effect of the ap-
plication of creation and annihilation operators on the basis states can be
computed directly from the 2.15

ai

∞∏
j=1

(a†j)
nj |∅⟩ = (−1)Sini

∞∏
j=1

(a†j)
nj⊕δij |∅⟩ (2.19)

a†i

∞∏
j=1

(a†j)
nj |∅⟩ = (−1)Si(ni ⊕ 1)

∞∏
j=1

(a†j)
nj⊕δij |∅⟩ (2.20)

where ⊕ denote the modulo two addition and Si = n1 + n2 + ...ni−1. So,
ai destroy a particle in mode i if it exists or annihilate the vacuum if it is
not, a†i create a particle in the same mode if it does not exist or annihilate
the vacuum if it exists. Thus, starting from the vacuum state, every state
can be constructed by applying the creation operators of the mode on which
we want a particle. It is possible to show [10] that the basis states 2.18
can be obtained without introducing the Fock space and the occupation
number representation basis states. We just impose the relations 2.15 on
an algebra of objects ai,a

†
i . As a consequence of the irreducibility of the

representation in some vector space F , we obtain the basis state 2.18. Now,
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to conclude our discussion, we need to represent the Hamiltonian H in the
second quantization. It is possible to show [9] that

H =
∑
ij

hija
†
iaj +

1

2

∑
klst

hklsta
†
ka

†
lasat (2.21)

where

hij =

∫
ϕ∗
i (r)

(
− ∇2

2
−

M∑
S=1

ZS

|r −RS|

)
ϕj(r)dr (2.22)

hklst =

∫
ϕ∗
k(r2)ϕ∗

l (r1)ϕt(r2)ϕs(r1)

|r2 − r1|
dr1dr2 (2.23)

hij is called one-body integral and represents the kinetic and the external
potential terms that, in this case, correspond to the Coulomb interaction be-
tween electrons and nuclei. hklst is called two-body integral and corresponds
to the Coulomb electron-electron interaction.

2.2 Classical simulations

Our goal is to find the eigenvalues and the eigenstates of the Hamiltonian
operator 2.21. In particular, we focus on the groundstate, the eigenstate
corresponding to the lowest eigenvalue. This section briefly illustrates some
of the classical algorithms usually used in molecular systems to approximate
the groundstate. First of all one need to select a finite set of M single-particle
orthonormal states, the spin-orbitals {|ψ⟩i} for a molecule, to which associate

the set of operators {ai, a†i} for i = 1, ...,M . Obviously, the truncation
introduces an approximation because it is equivalent to set ni = 0 in the
linear combination 2.14 for i > M , we lost the completeness of the basis set.
Now, the first method we investigate is the Hartree-Fock one. The idea is
to find an effective Hamiltonian, quadratic in the creation and annihilation
operators, such that the groundstate is supposed to approximate the one
corresponding to 2.21. The advantage is that such an effective Hamiltonian
can be easily diagonalized [12]. We consider a Hamiltonian that includes
just terms that conserve the number of particles, even if terms that do not
conserve the number of particles can also be included, as done in the BCS
theory of superconductivity [13, 14]. Suppose that the effective Hamiltonian
that we are looking for, written in diagonal form, is

HHF =
∑
i

(
hii + V HF

ii

)
a†iai (2.24)
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where hij is the one-body term of 2.21 and V HF
ij is the unknown Hartree-

Fock potential that must be determined. The groundstate for a system of N
particles is the Slater determinant

|ψHF ⟩ =
N∏

α=1

a†α |∅⟩ (2.25)

Now, consider the unitary transformation U = ek, with k† = −k, then one
can define the operators b†α =

∑
i Uiαa

†
i that satisfy the anticommutation

relations 2.15. These operators define a new basis set and we know that [15]

b†α = ek̂a†αe
−k̂, where k̂ =

∑
ij kija

†
iaj. The Slater determinants

|ψHF (k)⟩ =
N∏

α=1

b†α |∅⟩ = e
∑

ij kija
†
iaj |ψHF ⟩ (2.26)

are the groundstate of other effective Hamiltonians diagonal in b† operators.
The groundstate of 2.24 is the best approximation of the one of the Hamilto-
nian thus the expectation value of the energy E(k) = ⟨ψHF (k)|H |ψHF (k)⟩
has a minimum in k = 0. From the necessary conditions for a minimum
dE(k)
dk

= 0, one obtains

hij +
N∑
l=1

(hillj − hiljl) = 0 i ̸= j (2.27)

Comparing with 2.24, one finds that, defining V HF
ij =

∑N
l=1(hillj − hiljl),

the unitary transformation that diagonalizes the effective Hamiltonian is the
one that verifies the optimum condition. This potential and the one-body
term both depend on the chosen basis set thus, to find the solution, the self-
consistency condition must be satisfied. In practice, we start from a basis
set and calculate hij and V HF

ij , then diagonalize the effective Hamiltonian to
obtain a new basis set and the cycle starts again until convergence is reached.
The Hartree-Fock energy is

EHF = ⟨ψHF |H |ψHF ⟩ =
N∑
i

(hii +
1

2
V HF
ii ) (2.28)

and the correlation energy is defined as Ecorr = E − EHF when M → ∞,
where E is the groundstate energy. Since the size of the basis set is fixed
at the beginning of our calculations, we refer Ecorr,E , EHF to a basis com-
posed by M states. Hatree-Fock method is a mean-field theory, this can be
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inferred by factorizing the Hamiltonian [16]. By using the Wick theorem, the
Hamiltonian 2.21 can be written as

H =
∑
ij

(hij + V HF
ij )a†iaj +

∑
klst

hklst : a†ka
†
lasat :−1

2

N∑
i=1

V HF
ii (2.29)

where the last term is just a constant while the first one includes the one-
body part of the two-body interaction through V HF . The second term con-
tains the operators normal ordered with respect to the Hartree-Fock state
and represents the true two-body interaction because, when acting on |ψHF ⟩,
promotes two electrons from occupied to empty states. Thus this term does
not contribute to E(0) and dE(k)

dk
|k=0, if we neglect this fluctuation in the

Hamiltonian the 2.24 is recovered. With this procedure, we obtained a set
of M single-particle states that can be used as starting point for the post-
Hartree-Fock methods, used in quantum chemistry, which we illustrate in the
following. First of all, we note that, for a system composed of N particles,
a set of

(
M
N

)
different Slater determinants can be constructed. The configu-

ration interaction (CI) method writes down the wavefunction of the system
as

|ψFCI⟩ =
M∑

iN>...>i2>i1=1

ci1,i2,...,iN

N∏
j=1

a†ij |∅⟩ (2.30)

and find the values of the coefficients of this expansion corresponding to the
groundstate. This method is named full CI because all the determinants
are included. The full CI groundstate is exact within the subspace spanned
by the one-electron basis and is used as a reference for the other methods.
Even for small systems and M , the number of determinants is huge and
the simulation is classically intractable. Thus, one truncates the expansion
by considering a small number of excitations above the Hartree-Fock state:
CISD include single and double excitations, CISDT add triple excitations
and so on. Suppose that we know the groundstate of the system |ψGS⟩. We
can define the set of natural orbitals {b†i} from the relation

bi =
∑
j

Ujiaj such that D = U †γU (2.31)

where D is a diagonal matrix and U is the unitary matrix that diagonalizes
the first-order reduced density matrix γij = ⟨ψGS| a†jai |ψGS⟩. This new set is
important because to obtain a given accuracy with the CI method, one re-
quires fewer configurations formed from natural orbitals than configurations
formed from any other orthonormal basis set [17]. Since the natural orbitals
can be obtained only if one knows the groundstate, many strategies have been
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developed to approximate them. For example, one could perform a CI calcu-
lation with a small number of Slater determinants. Then one constructs the
γ matrix from the obtained state, diagonalizes it and finds a set of approxi-
mated natural orbitals that construct the new determinants [18]. The cycle
is repeated until energy or natural orbitals converge. So the Hartree-Fock
spin-orbitals are not the best choice, thus they can be optimised together
with the coefficient of a multiconfiguration expansion. This method, called
multiconfiguration self-consistence field (MCSCF), considers the state

|ψMCSCF ⟩ = e
∑

ij kija
†
iaj
∑
α

Cα |α⟩ (2.32)

and optimize both set of parameters k and Cα, where |α⟩ are the configu-
rations under consideration. If the number of determinants is just one the
method reduces to the Hartree-Fock one. Finally, we introduce the coupled
cluster method (CC), initially developed for nuclear physics [19, 20] and then
applied to study molecules [21]. CC take into account an ansatz with the
following form

|ψCC⟩ = eT |ψHF ⟩ T =
∑
k

Tk (2.33)

with
Tn =

∑
i1,...in∈unocc

∑
j1,...,jn∈occ

tj1...jni1...1n
a†i1 ...a

†
in
aj1 ...ajn (2.34)

where occ and unocc indicate respectively the occupied orbitals and the un-
occupied one respect |ψHF ⟩. Usually, just the T1 and T2 operators are con-
sidered in the exponential (CCSD). If all the excitations are included the
|ψFCI⟩ is recovered. The CC method generates an ansatz that includes all
the determinants and then converges faster than the CI one. Nevertheless,
the method is not variational [15] and is suitable for multireference states.
To overcome these problems the unitary coupled cluster has been developed
(UCC). This method is exponentially costly to implement with a classical
computer while it is efficient to do on a quantum computer and, for this
reason, will be described in the next section.

2.3 Quantum simulations

Noisy Intermediate-Scale Quantum (NISQ) devices are quantum computers
composed of O(102) qubits that are not fault-tolerant [22]. In this section, we
show how to encode an electronic structure problem in second quantization
on a quantum computer and illustrate one of the most promising algorithms
for NISQ devices: the variational quantum eigensolver (VQE) algorithm.
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2.3.1 Encoding methods

To simulate a quantum system on a quantum computer, the Fock space 2.12
must be encoded on the Hilbert space of qubits 1.5. In other words, an
encoding method is a map from the states of indistinguishable fermions to
states of distinguishable qubits. To perform any computational task both
the states and the operators must be mapped. In the following, we consider
a system composed of M single-particle quantum state and N particles.

In the Jordan-Wigner encoding method [23] the occupation number of a
single-particle quantum state is stored in the state of a qubit: |0⟩ if the state
is unoccupied and |1⟩ if it is occupied

|n1, n2, ..., nM⟩ → |q1, q2, ..., qM⟩ nk = qk ∈ {0, 1} (2.35)

where nk is the number of particles in state k and qk is the state of the
k-qubit, with k = 1, 2, ...,M . To map the Hamiltonian we need to encode
the creation and annihilation operators, this can be done by considering how
they act on a quantum state 2.20. Taking into account these considerations
one obtains that

ak → Z1 ⊗ ...⊗ Zk−1 ⊗Qk (2.36)

a†k → Z1 ⊗ ...⊗ Zk−1 ⊗Q†
k (2.37)

where the strings of Pauli operator Z recover the phase factor due to the
anticommutation fermionic relations (−1)

∑k−1
k=1 nk and

Q = |0⟩ ⟨1| =
1

2
(X + iY ) (2.38)

Thus the Hamiltonian is mapped to a linear combination of products of Pauli
operators

Hq =
∑
l

hl
⊗
k

σl
k (2.39)

where hj are coefficients associated to the Pauli string j and σj
k ∈ {X, Y, Z, I}.

The advantage of the Jordan-Wigner encoding is the readability of the states
because the occupation number is stored locally. Nevertheless, the parity
is stored non-locally and computes the phase due to the application of a
fermionic operator requiring the application of O(M) operators.

In the parity encoding [24], the kth qubit store the parity of all the states
up to

|n1, n2, ..., nM⟩ → |q1, q2, ..., qM⟩ qk = ⊕k
k=1nk (2.40)
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where ⊕ denotes the module two addition. The creation and annihilation
operators become

ak →
1

2

(
Zk−1 ⊗Xk + iYk

)
⊗n

l=k+1 Xl (2.41)

a†k →
1

2

(
Zk−1 ⊗Xk − iYk

)
⊗n

l=k+1 Xl (2.42)

and, in this case, the occupation number is non-locally stored.
The exact solution to our problem, the |ψFCI⟩ state, is a linear combina-

tion of O(MN) determinants [25]. Because of this exponential scaling, even
for small systems, the FCI solution can not be calculated on a classical com-
puter. Nevertheless, a register of M qubits can be in a superposition of 2M

states, which means that a quantum computer can store the FCI solution in
this quantum register. There exist other encoding methods as the Bravyi-
Kitaev [26], that partially store on each qubit the parity and the occupation
number, or [27] that efficiently encode the entire set of basis states. Mappings
that reduce the number of qubits by taking advantage of some symmetry have
been developed [28, 29] such as encoding methods that overcome the problem
of the non-locality of the qubit Hamiltonian [30, 31, 32, 33, 34].

2.3.2 Variational quantum eigensolver

The variational quantum eigensolver (VQE) algorithm is one of the most
promising that has been developed to determine the groundstate of a quan-
tum system on NISQ devices [35, 36] because it does not require long co-
herence times compared to other algorithms like quantum phase estimation
[37]. VQE is a hybrid quantum-classical algorithm that exploits the varia-
tional principle [6] to approximate the groundstate energy E with

⟨ψ(θ)|H |ψ(θ)⟩ ≥ E (2.43)

where θ ∈ Rk is a set of k parameters and |ψ(θ)⟩ is a trial state called ansatz.
As shown in figure 2.1, the algorithm is divided into three steps:

• prepare the state |ψ(θ)⟩ on a quantum computer. This is done by
initializing the qubit in a reference state |ref⟩, usually all qubits are
in the state |0⟩, and by applying a set of parametrized quantum gates
U(θi) such that

|ψ(θ)⟩ = U(θk)U(θk−1)...U(θ1) |ref⟩ (2.44)
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• The Hamiltonian is mapped on qubits and the expectation values of the
strings appearing in 2.39 are determined on the state |ψ(θ)⟩ by repeat-
ing the measurement process many times. This step, as the previous
one, is executed on the quantum computer.

• The expectation value of the energy is reconstructed from the measure-
ment process executed in the previous step

⟨ψ(θ)|H |ψ(θ)⟩ =
∑
j

hj
⊗
k

⟨ψ(θ)|σj
k |ψ(θ)⟩ (2.45)

The number of measurements needed to determine the energy with
a precision ϵ scale as O( 1

ϵ2
) [36, 38]. The vector of parameters θ is

updated by using a classical optimization method. This final step is
the one executed on a classical computer and makes the algorithm
hybrid.

Trial Wavefunction 

| ۧΨ(𝜽)

Quantum Computer
Classical Computer

Optimization 𝜽

Measure expectation values of Pauli strings of 𝐻𝑞

𝑃𝑙 = Ψۦ 𝜽 |۪𝑘 𝜎𝑘
𝑙 | ۧΨ 𝜽

Hamiltonian

𝐻 = σ𝑖,𝑗 ℎ𝑖𝑗𝑎𝑖
† 𝑎𝑗 +

1

2
σ𝑐,𝑑,𝑒,𝑓 ℎ𝑐𝑑𝑒𝑓 𝑎𝑐

†𝑎𝑑
†𝑎𝑒𝑎𝑓

Qubit Hamiltonian

𝐻𝑞 = σ𝑙 ℎ𝑙۪𝑘 𝜎𝑘
𝑙

Reconstruction Energy                                  

𝐸 = Ψۦ 𝜽 |𝐻𝑞| ۧΨ 𝜽 = σ𝑙 ℎ𝑙 𝑃𝑙

Figure 2.1: Scheme of the VQE algorithm described in text.

The three steps are repeated until energy convergence is reached. The con-
struction of the ansatz is fundamental because determines the subset of Fock
space spanned by the parameters. The ansätze can be divided into two main
classes: the physically or chemically inspired ansätze and the hardware effi-
cient ones. There are ansätze that lie between the two classes, as [39], that we
do not consider because out of the scope of the discussion. The first class of
ansätze adapt classical algorithms to run efficiently on quantum hardware.
In particular, taking inspiration from the unitary coupled cluster method
[40, 41], it can be defined the corresponding ansatz (UCC)

|ψ(θ)⟩ = eT (θ)−T (θ)† |ref⟩ T =
∑
i

Ti (2.46)
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with
Tn =

∑
i1,...in∈unocc

∑
j1,...,jn∈occ

θj1...jni1...1n
a†i1 ...a

†
in
aj1 ...ajn (2.47)

where occ and unocc indicate respectively the occupied states and the unoc-
cupied one with respect to |ref⟩. Usually, just single and double excitations
are considered (UCCSD) and a review of the application to quantum chem-
istry can be found in [38]. The hardware efficient ansätze are composed of
repeated blocks of quantum gates that are easy to implement on the quan-
tum device as, for example, the circuit shown in figure 3.2. If the parameters
are randomly initialized, the gradients strive to vanish [42] but, to overcome
this problem, techniques have been proposed [43]. It has been demonstrated
that they can be used to determine the groundstate of small molecules [44].
Compared to the hardware efficient ansätze, the UCC ones require the imple-
mentation of much more quantum gates and parameters. For these reasons,
we decided to focus our work on the hardware efficient ansätze.

2.3.3 Final considerations

The model of computation described until now belong to the realm of the
digital quantum simulations that maps the target problem onto a set of gates
which a quantum computer can implement. The NISQ digital hardware
suffers from some limitations: they are small because composed of O(102)
qubits, the decoherence affects the qubits state, the quantum gates are noisy
and there are errors in the measurement process. Quantum error correction
cannot be used in these devices [22] but error mitigation techniques can be
taken into consideration. [45, 46]

Classical simulators of quantum computers have been developed to avoid
problems related to the imperfection of the actual hardware. State vector
simulators simply represent quantum states as vectors of 2N components for
N qubits circuit, physically they are equivalent to an ideal quantum com-
puter that executes an infinite number of measurements. Obviously, the
required memory is exponential in the number of qubits, making it possi-
ble to use these simulators only on circuits with a small number of qubits.
Measurement-based simulators work as ideal quantum devices, thus the num-
ber of times that a circuit is repeated limits the performed measurement
introducing a statistical noise into the results. By introducing noise models
into the measurement-based simulators, it is possible to simulate real de-
vices. To implement a new algorithm the first step is to test it on benchmark
systems using a state vector simulator and, if it works, go ahead to include
statistical and hardware noise.
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Despite its wide use, the VQE algorithm presents some problems: many
measurements are required, the classical optimization procedure must opti-
mize many parameters and the hardware limitations illustrated above affect
the results. In part II of this work we show the strategies that we developed
to try to overcome these problems by defining methods to develop hardware-
efficient ansatz or by applying unitary operators to the Hamiltonian, as will
be explained in detail later. Except where expressly stated, the results de-
scribed below were obtained with simulations state vector to test the poten-
tialities of the methods on small molecules and model Hamiltonians.
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Results
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Chapter 3

Wavefunction Adapted
Hamiltonian Through Orbital
Rotations (WAHTOR)

The use of Variational Quantum Eigensolver (VQE) for Quantum Chem-
istry is one of the most promising applications for Noisy Intermediate-Scale
Quantum (NISQ) devices. A major limitation is represented by the need to
build compact and shallow circuits ansätze having the variational flexibility
to catch the complexity of the electronic structure problem. To alleviate this
drawback we introduce a modified VQE scheme in which the form of the
molecular Hamiltonian is adapted to the circuit ansatz through an optimiza-
tion procedure. Exploiting the invariance of the Hamiltonian by molecular
orbital rotations we can optimize it using gradients that can be calculated
without significant computational overload. The proposed method, named
Wavefunction-Adapted Hamiltonian Through Orbital Rotation (WAHTOR),
is applied to small molecules in numerical state vector simulations. The re-
sults demonstrate that, at variance with standard VQE, the method is less
dependent on circuit topology and less prone to be trapped into high-energy
local minima. It is able to recover a significant amount of electron correlation
even with only empirical ansätze with shallow circuit depth. Noisy calcula-
tions demonstrate the robustness and feasibility of the proposed methodology
and indicate the hardware requirements to effectively apply the procedure us-
ing forthcoming NISQ devices.

29
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3.1 Introduction

Computational Quantum Chemistry is among the most promising applica-
tion that quantum computers will be able to tackle in the following years [47,
22]. As example, Proof-of-concepts calculations solving the time-independent
Scrödinger equation for small molecular systems has paved the way for the
development of robust and efficient algorithms that can exploit the expo-
nential speed-up offered by quantum co-processors [48, 49, 50]. To exploit
the capabilities of the quantum computing devices, the original eigenvalue
problem involving the molecular Hamiltonian acting on fermionic particles
has to be reformulated in terms of a qubit Hamiltonian using different map-
ping schemes such as Jordan-Wigner [23], Bravyi-Kitaev [26], or parity [24].
The resulting qubit Hamiltonian is a cost function composed by a sum of
Pauli strings, that can be tackled by different quantum algorithms such as
the phase estimator [51, 52, 53, 54, 25, 55] and the Variational Quantum
Eigensolver (VQE) [56, 35, 57]. The ground state energy is estimated us-
ing the variational principle by measuring expectation values of the Pauli
strings on a parametrized quantum circuit, i.e. wavefunction ansatz [50].
The choice of such ansatz turned to be crucial for the effectiveness of the
procedure. Many proposed circuits are inspired by theoretical techniques
used in quantum chemistry [58, 59, 60, 38, 61, 62]. Another class of cir-
cuits, the so-called heuristic ansätze are, on the contrary, build on hard-
ware capabilities, regardless of the chemical interpretation. Although for
the quantum-chemistry-inspired circuits approximations and accuracies are
under control, such circuits are longer than the heuristic ones, which can
provide, in general, better results at the same cost in terms of circuit depth
[44, 63]. Since the short coherence time and/or the high level of noise is
limiting the depth of the circuits (i.e. wavefunctions) that can be effectively
evaluated on quantum computers, the search for compact circuit ansätze is
a crucial issue for Theoretical Chemistry. To achieve this goal, it has been
also recently proposed a strategy based on the optimization of non-unitary
wavefunction through the nu-VQE method [64, 65]. In addition to its in-
fluence on noise level and decoherence, circuit length is also related to the
problem of the presence of barren plateau in the energy landscape [66]. In the
present work, we propose a method to enhance the effectiveness of any given
variational ansatz by optimizing the Molecular Hamiltonian together with
the variational parameters. We exploited the invariance of the Hamiltonian
under molecular orbitals transformation in order to adapt its formulation to
circuits with limited number of gates and parameters [67]. The optimization
of the orbitals has been already proposed by W. Mizukami and coworkers
with an approximate approach in the context of the UCC (Unitary Coupled
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Cluster) ansätze [68]. Here, we fully exploit the potential of this additional
optimization strategy by applying a general unitary transformation to the
molecular orbitals using hardware-inspired ansätze. As shown in the present
work, our approach is not only able to achieve a lower variational energy
with respect to standard VQE, but it possesses the capability to significantly
reduce the depth of the circuits as well as to alleviate the problems of being
trapped into local minima.

The algorithm is described in the next section whereas in 3.3 are reported
the computational details of the calculations and a full description of the
anzätze we have used. Results and conclusions are following in section 3.4
and 3.5.

3.2 The WAHTOR algorithm

In this section, we will illustrate the algorithm we have developed to vari-
ationally adapt the molecular Hamiltonian to a given wavefunction ansatz
using an optimization procedure based on orbital rotations which is driven
by the calculations of energy gradients. The electronic molecular Hamilto-
nian is written as H = T + V + Ue, where T is the kinetic energy operator
for electrons, V is the external potential operator due to the interaction with
nuclei and external fields and Ue is the electron-electron interaction operator.
Given a basis set of m orbitals |i⟩ with i = 0, ..,m, the electronic molecular
Hamiltonian in second quantization is given by:

H =
∑
i,j

hija
†
iaj +

1

2

∑
c,d,e,f

hcdefa
†
ca

†
daeaf (3.1)

where i, j, c, d, e, f = 0, ..,m and ai,a
†
i are the annihilation and creation op-

erators of an electron on the ith orbital respectively and

hij = ⟨i|T + V |j⟩ ; hcdef = ⟨cd|Ue |fe⟩ (3.2)

are the one-body and two-bodies integrals. We can transform this fermionic
Molecular Hamiltonian in a corresponding bosonic Qubit Hamiltonian using
an encoding method such as Jordan-Wigner [23], parity [28] or Bravyi-Kitaev
mappings. [24] After these transformations the Hamiltonian can be repre-
sented in terms of Qubits:

Hq =
∑
l

ĥl
⊗
k

σl
k (3.3)

where ĥl represents the one-body and two bodies integrals upon mapping
transformations and σl

k are the Pauli matrices. The sum is running over
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a single index l which is of the order of 4m, where m is the basis set size.
Here, we point out that since the spectrum of the original Molecular Hamil-
tonian Eq. 3.1 is invariant upon a linear combination of the orbitals, also the
transformed Qubit Hamiltonian Eq. 3.3 will not be univocally defined. If
we introduce a unitary transformation U (namely a rotation) of the original
orbitals such as:

|i⟩ =
∑
α

Uαi |α⟩ (3.4)

both Hamiltonians H and Hq will change, without changing their correspond-
ing eigenvalues. The main idea of the present paper comes from the fact
that, although all the resulting rotated Hamiltonians are in principle equiva-
lents, they are in general not equivalent when evaluated on a given variational
ansatz. We can therefore use this additional flexibility to optimize the unitary
operator U for a given variational ansatz (such as for instance the heuristic
ansatz in refs. [44, 69]). Since the creation and annihilation operators of the
orbitals of the two basis are related by the following transformation rules

a†i =
∑
α

a†αUαi; ai =
∑
α

aαU
†
iα (3.5)

the Hamiltonian in the new basis can be now written as:

H =
∑
α,β

hαβa
†
αaβ +

1

2

∑
γ,δ,ϵ,ζ

hγδϵζa
†
γa

†
δaϵaζ (3.6)

where
hαβ = UαihijU

†
jβ; hγδϵζ = UγcUδdhcdefU

†
eϵU

†
fζ (3.7)

A generic unitary matrix U can be expressed, as a consequence of the Spectral
Theorem [1] in the following form:

U = eiR·T = U(R) (3.8)

where T is a complete set of Hermitian m×m matrices and R ∈ Rm2
. Using

such representation the Hamiltonian can be now expressed as a function of
the real vector R:

H(R) =
∑
α,β

h(R)αβa
†
αaβ +

1

2

∑
γ,δ,ϵ,ζ

h(R)γδϵζa
†
γa

†
δaϵaζ (3.9)

A generic wavefunction ansatz can be expressed as |Ψ(θ)⟩ = O(θ) |ref⟩,
with O(θ) an operator that depends on θ variational parameters and |ref⟩
the reference initial state (for instance the HF state). Given a certain R



3.3. COMPUTATIONAL DETAILS 33

(i.e. fixing the Hamiltonians), the standard Variational Quantum Eigensolver
algorithm can be used to minimize the energy expectation value E(R,θ) =
⟨Ψ(θ)|H(R) |Ψ(θ)⟩ as a function of the ansatz parameters θ:

E[|Ψ⟩R ,R] = ⟨Ψ|RH(R) |Ψ⟩R (3.10)

where |Ψ⟩R = |Ψ(θopt)⟩ represent the wavefunction that minimize the energy
for fixed R and parametrically depends on those parameters. We obtained
a functional that depends on R explicitly and impicitly, indicated here by
E(R) = E[|Ψ⟩R ,R]. Keeping in mind that at fixed R the energy is op-
timized with respect to the θ parameters, by using the Hellmann-Feynman
theorem, it is possible to calculate explicitly the derivative of the expectation
value of the energy with respect to the Hamiltonian parameters R:

dE(R)

dR
= ⟨Ψ|R

dH(R)

dR
|Ψ⟩R =

∑
l

dĥl(R)

dR

⊗
k

⟨Ψ|R σ
l
k |Ψ⟩R (3.11)

The above equation shows that to evaluate these derivatives is necessary
to calculate a weighted average of expectation values of Pauli strings, analo-
gously to what has been already calculated in the VQE algorithm [70, 36, 71].
Remarkably, the number of the Pauli strings scale as 4m, where m is the basis
set size, as for the standard VQE procedure. For this reason, as discussed in
the next sections, the additional computational cost requested for the gradi-
ent evaluation is only a small additional overload for the quantum processor.
Following the gradients calculated in Eq. 3.11, the R vector can be therefore
updated to minimize the total energy with respect to these external parame-
ters. The new Hamiltonian can be therefore optimized again with respect to
the wavefunction parameters θ by a standard VQE and the procedure can
be iterated until convergence threshold is reached. A scheme of the method
is illustrated in Figure 3.1.

3.3 Computational details

Simulated systems.
The molecular Hamiltonian in Eq. 3.1 is calculated using the PySCF Python
package [72]. The reference value of the correlation energy, i.e. the exact en-
ergy, is calculated by full-CI. The percentage of recovered correlation energy
is estimated as follows:

Ecorr =
Ecalculated − EHF

Efull−CI − EHF

(3.12)
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Figure 3.1: Wavefunction-Adapted Hamiltonian Though Orbital Rotations
(WAHTOR). Exploiting the invariance of the Molecular Hamiltonian by or-
bital unitary transformation U(R), we optimized the variational parameters
R using the energy gradient of optimized VQE ansätze. The procedure is
iterated as detailed in the above scheme.

where Efull−CI is the exact energy, Ecalculated is the energy calculated using
VQE or WAHTOR algorithm and EHF is the Hartree-Fock energy. The cor-
responding qubit Hamiltonian (Eq. 3.3) is calculated using Qiskit Python
package [73] with three different mapping schemes: Jordan Wigner (JW) [23],
parity (P) [28] and Bravyi-Kitaev (BK)[26]. The majority of the simulations
are carried out using JW mapping since it better preserves the physical mean-
ing of the systems under consideration. The WAHTOR algorithm has been
implemented by a Python program exploiting the QuTip [74, 75] and Qiskit
[73] Python libraries. According to the molecule, the mapping and the choice
of the basis set, we have considered four different molecular systems, ranging
from 8 to 12 qubits:

• H2-8qubits: molecular hydrogen at the equilibrium distance of 0.74 Å.
We used the 6-31g basis set with three different mappings (JW,P,BK).

• LiH-12qubits: lithium hydride at the equilibrium distance of 1.595 Å.
We used the sto-3g basis set with three different mappings (JW,P,BK).

• LiH-10qubits: same system as before but using parity mapping with
the two qubits reduction. [28]
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• H4-8qubits: dissociation curve of the square H4 molecule as example of
strongly correlated system. We used sto-3g basis set and JW mapping.

Wavefunction ansätze.
As parametrized quantum circuit we have chosen the heuristic ansatz [44]
which is built as follows: starting from the n-qubit Hartree-Fock reference
state, single qubit rotations around y axis are applied, each one by a different
angle θ. After such rotations, an entangling block composed by CNOT gates
followed by another set of independent rotations on each qubit is applied, as
reported in Figure 3.2. This entangling block (n Ry + n − 1 CNOT gates)

|0⟩ Ry(θ0) • • • Ry(θ8)

|1⟩ Ry(θ1) Ry(θ9)

|2⟩ Ry(θ2) • Ry(θ10)

|3⟩ Ry(θ3) Ry(θ11)

|4⟩ Ry(θ4) • • • Ry(θ12)

|5⟩ Ry(θ5) Ry(θ13)

|6⟩ Ry(θ6) Ry(θ14)

|7⟩ Ry(θ7) Ry(θ15)

Figure 3.2: Circuit ansatz for 8 qubits with 8 initial rotations around the
y-axis, 1 entangling block composed by 7 CNOTs gates and another set of 8
rotations around the y-axis.

can be therefore repeated a number of times, each one using different varia-
tional parameters. The total number of blocks determines the circuit depth.
In particular, in our simulations, we consider mainly heuristic ansatzes with
depth 2. One important issue we have investigated is that the arrangement
of the CNOT gates in the block, referred hereafter as the entangler map, is
an important topological variable of the ansatz that can deeply influence the
variational energy. To investigate the effect of CNOT topology on the VQE
and WAHTOR optimization for the H2-8qubits system (data reported in Fig-
ure 3.5(a)), we considered a particular set of 144 entangler maps selected as
described below. As shown in Figure 3.3, qubits are arranged such that qubits
from 0 to 3 represent spin-up orbitals (orange registers), whereas qubits from



3.3. COMPUTATIONAL DETAILS 36

4 to 7 represent spin-down orbitals (green registers). The target qubits of all
the 7 CNOTs are taken fixed in a ladder-type scheme, whereas the control
qubits of each CNOT are varied among all the combinations described by
the squares of Figure 3.3. Following these rules, we therefore considered 144
possible circuits. On the right side of the figure, three of such realizations
are displayed as examples. Each entangler map is distinguished by a list of

⟩|0

⟩|1

⟩|2

⟩|3

⟩|4

⟩|5

⟩|6

⟩|7

Figure 3.3: Scheme of construction of the entangler maps for H2-8qubits
calculations: the orange (spin up) and green (spin down) qubits are entangled
using 7 CNOTs such that the target qubits of each CNOT are kept fixed and
the control is varying. On the right are displayed, as an example, 3 out of
144 of such entangler maps.

number pairs, for instance [[0, 1], [0, 2], [0, 3], [2, 4], [4, 5], [4, 6], [4, 7]], in which
each pair of numbers represent a CNOT gate having as control the first qubit
and as target the second.

VQE and WAHTOR optimization and computational details.
For the VQE calculations, the initial rotation angles θ of the chosen ansatz
are generated randomly in the range [0, 2π]. For each ansatz we have re-
ported the best energy obtained by 50 independent VQE calculations. As
VQE optimizers we have used the L-BFGS-B [76] algorithm for state vec-
tor calculations and COBYLA [77] or L-BFGS-B [76] for the measure-based
simulations, for which we used the QASM simulator of Qiskit [73]. The pa-
rameters were optimized up to a convergence threshold 10−8 Hartree. In the
case of H4-8qubits system, we have observed that HF orbitals were not a good
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starting point, probably the due to the extreme multi-determinant character
of the ground state. We have therefore decided to change our starting point
for WAHTOR optimization by considering the localized molecular orbitals
obtained using the Boys criterion [78], since localized orbitals let correlated
systems be more computationally tractable [79, 80]. All WAHTOR calcu-
lations have been set up starting from the best VQE result and following a
simple steepest descent procedure to optimize the R parameters according
to the scheme illustrated in Figure 3.1.

3.4 Results

3.4.1 State Vector Simulations

We apply the new developed WAHTOR method and the traditional VQE
to study two molecules: molecular hydrogen H2-8qubits and lithium hydride
LiH-12/10qubits. We used here an empirical ansatz defined by one or more
blocks, each one built by a set of single qubit rotations followed by an entan-
gling map of CNOTs connecting all qubits. As detailed before, the WAHTOR
algorithm uses the gradient with respect to the parameters of the orbital ro-
tation matrix to rotate the molecular Hamiltonian in order to ‘adapt it’ to
the wavefunction ansatz. A remarkable and unique feature of such procedure
is that the optimization is done adiabatically, i.e. the orbital and circuit pa-
rameters are always taken from the previous run, without the necessity to
explore a large number of different starting points for the VQE parameters,
as often happens to avoid local minima [64, 65]. We first consider noiseless
simulations. To illustrate the effectiveness of the WAHTOR optimization
we report in Figure 3.4 the values of the gradient norm with respect to R
parameters and the correlation energy percentage as a function of the op-
timization steps (H2-8qubits system with Jordan-Wigner mapping, depth 2
and the entangler map shown in Figure 3.2). As shown in the graph in figure
3.4, the gradient smoothly decreases to zero, whereas the correlation energy
reaches the asymptotic value of about 98%. We remark here that the WAH-
TOR optimization is performed ‘adiabatically’ in the sense that the R and
the circuit parameters are always taken from the previous run, without the
necessity to explore a large number of different VQE runs at each WAHTOR
optimization step. Since, as expected, the quality of the obtained results does
depend on the entangler map, namely the arrangements of the CNOT gates
in each entangler block of the ansatz, we have decided to compare systemati-
cally the performance of WAHTOR with those of VQE on a simple case. For
this purpose, considering an H2-8qubits system, we have chosen a set of 144
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Figure 3.4: WAHTOR work for H2 molecule. Energy optimization following
the gradient on R parameters provided by the WAHTOR algorithm. Gradi-
ent norm (red line) and percentage of correlation energy (blue dashed line)
are shown as a function of the optimization steps during adiabatic optimiza-
tion. We used the H2-8qubits system with Jordan-Wigner mapping, depth 2
and entangler map shown in Figure 3.2.

different hardware-efficient ansätze with depth 2. Details on the structure
of the wavefunctions are shown in the computational details section. Figure
3.5(a) reports for each of the 144 entangler maps considered, the best VQE
energy values (green crosses) and the final energy obtained by WAHTOR op-
timization (blue circles). The VQE energies are spread out in a range from
20% to 60% of correlation energy, with the exception of two entangler maps
that reach approximately 79% and 98% of the correlation energy. The effect
of using the WAHTOR algorithm lead to a significant improvement. The
results are all clearly spanning a small set of three local minima that corre-
spond approximately to 24%, 79% and 98% of the correlation energy. The
majority of the optimizations (about 80%) reached the 79% of correlation en-
ergy whereas 12% the 98% and only the 8% remain at 24% of the correlation
energy. We will investigate later in the text whether these minima corre-
spond to the same physical state. One of the main problems troubling VQE
is represented by the presence of a large number of local minima. This issue
requires performing a significant amount of VQE evaluations when starting
from circuit parameters randomly distributed [64, 65]. To investigate the
effect of WAHTOR on this issue we consider 100 independent VQE opti-
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Figure 3.5: (a) Comparison between WAHTOR (blue circles) and VQE
(green crosses) energies obtained using 144 ansätze with different entangler
maps. We used the H2-8qubits system with Jordan-Wigner mapping and
circuit depth equal to 2. (b) Energies and Percentage correlation energies
for different VQE initial ansatz parameters. The VQE (green crosses) and
WAHTOR (blue circles) energies from different independent simulations of
the H2-8qubits system: the encoding method used is the Jordan-Wigner and
the ansatz is composed by 2 blocks with fixed entangler map, shown in fig-
ure 3.2. (c) Solid green squares represent VQE energies obtained with an
increasing circuit depth. The system considered is the H2-8qubits obtained
with Jordan-Wigner mapping and the entangler map used in each ansatz is
the same and equal to the one shown in figure 3.2. The blue line represents
the WAHTOR energy obtained with the same system and a circuit ansatz
with depth 2.
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VQE WAHTOR

entangler map mapping energy %corr energy energy %corr energy
[[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]] JW -1.84818 24.6 -1.86134 78.2
[[0, 1], [0, 2], [0, 3], [2, 4], [4, 5], [4, 6], [4, 7]] JW -1.85359 47.1 -1.86629 98.0
[[0, 1], [1, 2], [2, 3], [1, 4], [4, 5], [4, 6], [4, 7]] JW -1.85332 46.0 -1.86175 79.8
[[0, 1], [0, 2], [2, 3], [2, 4], [4, 5], [4, 6], [6, 7]] JW -1.85363 47.2 -1.86647 98.8
[[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]] P -1.85426 49.8 -1.86646 98.7
[[0, 1], [0, 2], [0, 3], [2, 4], [4, 5], [4, 6], [4, 7]] P -1.84987 32.2 -1.86134 78.2
[[0, 1], [1, 2], [2, 3], [1, 4], [4, 5], [4, 6], [4, 7]] P -1.85406 49.0 -1.86646 98.7
[[0, 1], [0, 2], [2, 3], [2, 4], [4, 5], [4, 6], [6, 7]] P -1.85426 49.8 -1.86646 98.8
[[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]] BK -1.86121 77.6 -1.86134 78.2
[[0, 1], [0, 2], [0, 3], [2, 4], [4, 5], [4, 6], [4, 7]] BK -1.86634 98.3 -1.86638 98.4
[[0, 1], [1, 2], [2, 3], [1, 4], [4, 5], [4, 6], [4, 7]] BK -1.86161 79.3 -1.86175 79.8
[[0, 1], [0, 2], [2, 3], [2, 4], [4, 5], [4, 6], [6, 7]] BK -1.86634 98.3 -1.86638 98.4

Table 3.1: VQE and WAHTOR results for H2 molecule using different map-
ping and starting from different initial ansatz with depth 2.

mizations using the same fixed entangler map (green crosses of figure 3.5(b))
for an empirical ansatz with depth equal to 2 and 24 variational parameters.
Starting from these points, WAHTOR energies (blue circles) show that if the
starting VQE energies are sufficiently good (below 24% of correlation energy)
the algorithm is able to jump the region of the VQE local minima (42.01% if
correlation energy) often achieving 98.75% of the correlation energy. We note
that to reach the same correlation energy value using VQE is necessary to
increase the circuit depth at least by a factor 5 (using 48 variational param-
eters), as shown in Figure 3.5(c). We have also observed that although the
unitary transformation depends in principle on 16 parameters, in practice,
due to orbital symmetries, only one of such parameters is relevant for energy
optimization. Therefore, in this example, the total number of variational pa-
rameters optimized in the WAHTOR procedure can be considered as 25, just
one more than the VQE procedure. We have therefore demonstrated that
we can obtain the same result using a much shorter circuit depth, with less
than half CNOT gates, which is a crucial ingredient to avoid noise dominance
in NISQ devices [81, 82]. Using the same method we tested the algorithm
for different encoding methods. VQE and WAHTOR energies with different
wavefunction ansatzes and mapping schemes have been reported in Table
3.1. The blue circles at 98% correlation energy in figures 3.5(a) and 3.5(b)
are associated with WAHTOR optimized wavefunctions having all different
θ and R parameters. To investigate whether these points represent the same
physical state we have rotated back for each case the final wavefunction on
the original starting Hamiltonian and analysed the major components of such
wavefunctions with respect to the exact solution (diagonalization). Figure
3.6 shows that the 98% points using different entangler maps (blue crosses
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Figure 3.6: Image shows the seven states of the ground state to which the
highest absolute values of the weights correspond (Hartree-Fock term is not
included). Magenta points correspond to the exact ground state while red,
green and blue points correspond to wavefunctions that characterize the local
minima at, respectively, 24%, 79% and 98% of correlation energy. For each
minimum two different wavefunctions (corresponding to the different entan-
gler maps of Figure 3.5(a)) are shown and it follows that these correspond
to the same physical state.

and triangles) do actually represents the same physical states since they pos-
sess all the most important excitations which are present in the exact result
(magenta squares). Analogously, 24% and 79% data with different entangler
maps also represent the same physical minima as shown by red and green
points. In these latter cases, the wavefunctions are clearly missing some of
the ingredients of the ground state; for instance, the 78% cases do not in-
clude the first double excitation. An important characteristic of a quantum
chemistry calculation is the capability to describe chemically different situ-
ations (such as bonding, transition states or atomic limit). We investigate
this flexibility property by measuring the percentage of the correlation energy
along the H2 dissociation curve using Jordan-Wigner mapping as reported
in Figure 3.7. For each atomic distance, the best result obtained from 50
VQE simulation and the corresponding WAHTOR result are reported along
the entire dissociation curve. Data shows that the new algorithm is able to
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Figure 3.7: Performance of VQE and WAHTOR along the dissociation curve
for H2 molecule.

adapt to different chemical regimes, from bond formation to single atoms.
To test the algorithm on a more complex system with a greater number of
qubits, we consider the LiH molecule sto-3g basis set (system LiH-10qubits
and LiH-12qubits with and without the two qubits reduction, respectively,
as described in computational details section). The ansatz used consists of
two blocks in which the entangler map is of ladder type. The typical trends
for the energy and gradient norm for a LiH-12qubits are shown in Figure 3.8.
In this case, despite the initial ansatz parameters not being optimized, the
algorithm reached anyway the value of 93% of correlation energy. As in the
case of the H2 molecule, 50 simulations of the VQE algorithm and one WAH-
TOR simulation were carried out starting from the wave function parameters
corresponding to the best energy result among out of 50 VQEs. Similarly
to what was observed for the case of H2-8qubits, WAHTOR is able to sig-
nificantly improve the correlation energy of the minimal circuit depth of 2,
reaching 93% of the correlation energy, whereas the VQE value only reaches
72%. Different lithium hydride systems have been considered in order to
compare the WAHTOR and the VQE algorithm. Table 3.2 shows results ob-
tained considering different encoding maps with the same ansatz structure.
Note that the lowest energies reached by VQE and WAHTOR algorithms
do not depend on the encoding method used. We also consider a system
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Figure 3.8: WAHTOR work for LiH molecule. The percentage of correlation
energy (red line) and gradient norm (blue dashed line) for LiH-12qubits
system, Jordan-Wigner mapping and simple ladder entangler map is reported
as a function of the optimization steps.

with strong correlations, that is the dissociation of a square H4 molecule.
Figure 3.9 shows the VQE and WAHTOR correlation energy along the re-
action coordinate that describes the H4 to 4H dissociation process. Even in
such extreme case of strong correlation, it is clear as WAHTOR is able to
significantly improve the variational recovery of the correlation energy.

3.4.2 Noiseless measurement-based simulations

Since on quantum devices the evaluation of energy and gradients is carried
out through measurement-based procedure, both quantities will be affected

VQE WAHTOR

mapping # qubits energy %corr energy energy %corr energy
JW 12 -8.87188 71.3 -8.87643 93.7
BK 12 -8.87185 71.2 -8.87643 93.7
P 12 -8.87202 72.0 -8.87643 93.7
P 10 -8.87202 72.0 -8.87643 93.7

Table 3.2: VQE and WAHTOR results for LiH molecule using different map-
ping.
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Figure 3.9: Performance of VQE and WAHTOR along the dissociation curve
of a square H4 molecule into 4 hydrogen atoms.

by statistical noise. In this section, we investigate the robustness of WAH-
TOR optimization against the noise on the energy gradient arising from
measured-based simulations instead of state-vector simulations. The further
optimization introduced by WAHTOR might in principle introduce addi-
tional instabilities along the optimization process with respect to traditional
VQE. We investigated this issue considering the H2-8qubits system with the
same ansatz used in the previous section (depth 2 and the following entangler
map: [[0, 1], [0, 2], [0, 3], [2, 4], [4, 5], [4, 6], [4, 7]]). For the VQE optimizations
of the WAHTOR algorithm we used state vector simulations while the energy
derivatives are evaluated with the noiseless measurements. As optimization
method for the VQE we have chosen the COBYLA [77] algorithms. Figures
3.10(a) and 3.10(b) show the correlation energy and gradient norm of the
energy with respect to the R parameters as a function of the optimization
steps. The data show that the measured-based simulations in the derivatives
converge very close to the state vector simulations. In the case of H2-8qubits
system this happens already for 2048 shots. Obviously, as the number of
shots increases, the convergence is achieved with a smaller number of opti-
mization steps and the resulting curve looks smoother. The results for the
larger system LiH-12qubits (shown in panels (c) and (d) of Figure 3.10)
clearly require a larger amount of shots. In summary, the WAHTOR opti-
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(c) LiH-12qubits
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Figure 3.10: Effect of noiseless measurement-based evaluation of gradients
in WAHTOR method. Panel (a) and (b): H2-8qubits system. Panel (c) and
(d): LiH-12qubits system. Energies (left panels) and gradient norms with
respect to the R parameters (right panels), are reported for both systems
using a different number of shots.

mization is possible also in presence of statistical noise with a limited amount
of shots.

3.4.3 Noisy measurement-based simulations

The effect of noise has to be investigated to verify the performance of the
proposed algorithm on real NISQ devices. The possibility to adapt the Hamil-
tonian to a given wavefunction ansatz using the energy gradient with respect
to the R parameters will be valid only if this gradient is not covered by
noise. We have therefore simulated our algorithm using a noise model which
is built starting from parameters of the ibmq boeblingen quantum hardware
[81]. Starting from the noise model of this device, we considered a simpli-
fied noise model consisting of the average values of the error probabilities of
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the single qubit gates, the CNOT gates, and the readout errors. We also
considered models with reduced overall noise by multiplying all parameters
by different factors, with the aim to find the minimum tolerated errors for
the WAHTOR algorithm able to estimate energies that can be compared to
those obtained by state vector simulations. The system considered is the
H2-8qubits molecule with the same ansatz chosen as the one used in pre-
vious simulations. Starting from the optimized parameters by the noiseless
measured-based WAHTOR simulations, we performed noisy measurements
of the energy of the H2 molecule using the noise models described before.
Figure 3.11 shows the energy results for each noise model (same model with
different average values of errors): for each system, 20 energy measurements
have been performed with 100 000 shots and the values reported correspond
to their average value with the corresponding standard deviation. Data show
that, without using error-mitigation techniques, the WAHTOR algorithm can
be applied on devices with a CNOT gate error smaller than 0.001% and with
a readout error smaller than 0.004%.

readout
error

single qubit gate 
error (1 pulse)

CNOT gate 
error

Reference Values 4,70% 0,038% 1,30%

A 0,047% 0,038% 0,13%

B 0,047% 0,00038% 0,13%

C 0,047% 0,00038% 0,013%

D 0,047% 0,00038% 0,0013%

E 0,0047% 0,000038% 0,013%

F 0,0047% 0,00038% 0,0013%

G 0,0047% 0,000038% 0,0013%

Figure 3.11: WAHTOR energy obtained from the average of 20 measurements
made with 100 000 shots. Each point represents the average energy related
to the noise model whose values are reported in the table on the left.
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3.5 Conclusions

In this section, we have proposed a VQE strategy to adapt the Molecular
Hamiltonians used in Quantum Chemistry to a given wavefunction ansatz by
using a unitary transformation of the molecular orbitals. This strategy can be
viewed as a reversal of perspective: instead of optimizing the circuit topology,
we optimize the molecular Hamiltonian (or in general a cost function) to
‘adapt’ it to a given circuit ansatz. Through the explicit evaluations of energy
gradients with respect to the parameters of the unitary transformation of the
Hamiltonian we have demonstrated in prototypical cases that the amount
of correlation energy can be significantly improved without modifying the
topology of the ansatz. This flexibility allows adapting the Hamiltonian to
the construction of circuits that reflect the connectivity of the hardware. For
instance, using ansätze that can only provide about 45% correlation energy
in VQE such procedure can gain up to the 98% (as illustrated in Figure
3.5(b)). The proposed optimization of the unitary transformation is robust
against noise and it is especially convenient when applied in NISQ devices, in
which the circuit depth is the main limitation to the application of quantum
computing algorithms to real cases because of noise and decoherence. A
second positive advantage of having a shallow circuit is the smaller propensity
of being trapped into local minima since it has been demonstrated that depth
is correlated to the presence of barren plateaux [66]. Since the downsizing
of the Hilbert space is a crucial ingredient to reduce the number of logical
qubits, an extension of the proposed methodology that might be worthwhile
to investigate is the use of active space selections [83, 84]. Even without
the use of such techniques, it seems anyway that the orbitals rotations in
the WAHTOR algorithm allow a partial compensation of the effect of the
reduction of the active space, similar to what was observed in ref.[68]. The
optimization process applied here to the case of finding the ground state
of the Molecular Hamiltonian can be in principle extended to other cost
functions useful in Chemistry or in other fields that are invariant under some
particular unitary transformations and might be therefore extended to other
VQE optimizations.



Chapter 4

Optimization strategies in
WAHTOR algorithm

By exploiting the invariance of the molecular Hamiltonian by a unitary trans-
formation of the orbitals it is possible to significantly shorter the depth of the
variational circuit in the VQE algorithm by using the WAHTOR algorithm.
This work introduces a non-adiabatic version of the WAHTOR algorithm
and compares its efficiency with three implementations by estimating Quan-
tum Processing Unit (QPU) resources in prototypical benchmarking systems.
Calculating first and second-order derivatives of the Hamiltonian at fixed
VQE parameters does not introduce a significant QPU overload, leading to
results on small molecules that indicate the non-adiabatic Newton-Raphson
method as the more convenient choice. On the contrary, we find out that
in the case of Hubbard model systems the trust region non-adiabatic opti-
mization is more efficient. The preset work therefore clearly indicates the
best optimization strategies for empirical variational ansatzes, facilitating
the optimization of larger variational wavefunctions for quantum computing.

4.1 Introduction

Quantum computers and algorithms have brought about significant advance-
ments in computational capabilities, potentially revolutionising numerous
scientific fields. [85, 86, 87, 88, 89] Leveraging the principles of quantum
mechanics, these technologies enable the manipulation and processing of in-
formation in ways that are fundamentally different from classical computers.
[22, 90] Among the many applications of quantum algorithms, quantum sim-
ulations [91, 92] stand out as a field that stands to benefit significantly from
these advancements, particularly in quantum chemistry. [56, 50, 5, 93] One

48
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of the leading quantum algorithms for addressing quantum chemistry prob-
lems is the Variational Quantum Eigensolver (VQE). [35, 36, 44, 94, 95] VQE
combines classical and quantum resources to find the ground state energy of a
molecular system. By employing a parameterized quantum ansatz represent-
ing a trial wave function, VQE iteratively adjusts the parameters to minimize
the energy through measurements performed on a quantum computer. This
hybrid approach allows for exploring the complex quantum landscape asso-
ciated with molecular systems. Despite its promise, VQE faces challenges
in scaling to larger systems due to the exponential growth of the param-
eter space and, more generally, due to the implementation of the longer
circuits describing wavefunctions on noisy devices. To overcome these ob-
stacles, many algorithms have been developed to improve the performance
of the VQE. [65, 69, 96, 97, 98] Moreover using heuristic ansätze [67, 82],
rather than the chemically inspired ones [99, 38, 62], allows us to consider
more shallow circuits. Another solution being explored is the development
of pulse-based ansätze, which aims to optimize and shorten circuit lengths.
[100, 101, 102] One of the methods that have emerged as a potential solu-
tion is the Wave Function Adapted Hamiltonian Through Orbital Rotations
(WAHTOR). [103] This algorithm optimizes molecular orbitals by adapting
the Hamiltonian to the chosen topology of the wave function ansatz, utilizing
orbital rotations to facilitate more efficient and accurate simulations within
the VQE framework. Essentially, the algorithm works as follows: once de-
fined the initial Hamiltonian H in the Hartree-Fock basis, we perform a first
VQE algorithm. Then we apply to the initial Hamiltonian a parameterized
unitary operator Û1 = Û1(R1), corresponding to a change of the single-
particle basis set. The vector of the rotation parameters R1 is chosen in or-
der to find the operator Û1 that reduces the expectation value of the energy.

The transformed Hamiltonian Û1

†
(R1)HÛ1(R1) is used to perform a VQE

optimization for the re-optimisation of the wave function. Once the ansatz
optimisation is converged we determine, keeping the ansatz parameters fixed,
a new operator Û2 = Û2(R2), corresponding to an additional rotation that
is applied to the Hamiltonian used in the previous VQE, so the resulting
unitary transformation is obtained by applying the operator Û1(R1)Û2(R2)
to the initial Hamiltonian to perform another VQE. We alternate a VQE run
and the definition of a new Hamiltonian until energy convergence is reached.
Thus the final Hamiltonian can be calculated by applying the operator given
by the product of the single unitary operators Û = Û1(R1)Û2(R2)Û3(R3) . . .
to the initial Hamiltonian, i.e. the one expressed in the Hartree-Fock basis.
Orbital optimization in the context of the VQE quantum algorithm is a
method also adopted in the ref. [68]: in this work, the optimization exploits
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derivatives up to the second order and the optimizer moves along the direc-
tion of the Newton method. On the other end, the WAHTOR method is a
useful approach that offers flexibility in choosing optimizers capable of lever-
aging the analytic derivatives of any order, as shown in the present work.
Optimizers play a crucial role in the process, aiming to identify the optimal
set of parameters that minimize the energy of a given system. [104, 105] Dif-
ferent optimizers employ a variety of strategies and algorithms that efficiently
explore the energy landscape, resulting in faster convergence and improved
accuracy. In this study, we compare the original algorithm, called adiabatic,
with a new procedure, called non-adiabatic that we will illustrate in section
4.3. The main focus is to explore the potential of the non-adiabatic versions
of the WAHTOR algorithm. Through the analysis of these optimizers, our
objective is to examine their convergence behaviour, computational efficiency
and accuracy. This evaluation aims to enhance our understanding of their
functioning and contributions to the optimization of molecular orbitals in
quantum chemistry simulations. It is important to note that the WAHTOR
method extends beyond molecular systems, finding relevance in other quan-
tum systems such as the Hubbard model. [106, 107, 108, 109] By exploring
the performance of these optimizers on different systems, we can gain insight
into their versatility and potential applications of the algorithm to different
quantum systems. In section 4.2 we provide the computational specifics of
the algorithm, including the systems studied, the ansatz used, and a de-
scription of the optimization strategies employed. In section 4.3, we present
the mathematical treatment of the non-adiabatic algorithm and we analyze
the performance of the optimization methods for each system considered.
Specifically, we examine the optimization steps in relation to the number of
measured strings, which reflects the utilization of QPU resources during the
optimization. Lastly, in section 4.4, we discuss the results obtained.

4.2 Computational details

Implementation of derivatives
we do not consider mixing all orbitals with the same spin but we simply lin-
early combine orbitals with the same spin that possesses the same geometric
symmetries. One can see the optimization of orbitals as a mixing of the
starting orbitals weighted by the rotation vector R. For the implementation
of the WAHTOR algorithm, the matrices responsible for the basis change
consider spin symmetry. This means that the spin-up and the spin-down
single-particle states are not linearly combined and they are transformed us-
ing the same generic unitary transformation, represented by the matrix U .
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This results in a set of n2+n
2

symmetric and n2−n
2

antisymmetric matrices as
generators for a system with n single-particle states for each spin projection.
In the case of molecules, by linearly combining only spin-orbitals with the
same spatial symmetry, we can reduce the number of variables (or parame-
ters) in the Hamiltonian lowering the computational cost.
Simulated systems
We tested the optimization methods of the WAHTOR algorithm on two
molecular systems and on the Hubbard model, which represent an example
of a strongly correlated system. For the molecule, the Hamiltonian has been
calculated using the PySCF Python package.[72] The systems studied, along
with their descriptions, are as follows:

• Hydrogen fluoride (HF ): atoms were set at the bond distance of 0.917Å
using the ’sto-3g’ basis set. The system, obtained through the Jordan-
Wigner encoding method and the frozen core approximation, comprises
10 qubits. For simulations, a heuristic ansatz with 2 blocks was em-
ployed. Each block includes a layer of rotations around the y-axis on
each qubit, as well as a simple ladder map of entanglers (CNOT gates)
in which each qubit is the target of the previous qubit and the control
of the following qubit.

• Water molecule (H2O): the atoms are arranged to form an isosceles
triangle with oxygen positioned at the vertex, the distance between
the oxygen and the hydrogen is equal to 0.957Å while the angle at the
vertex, between the two equal sides of the triangle, is equal to 104, 5◦.
The ’sto-3g’ basis set was utilized. The resulting system, obtained using
the Jordan-Wigner mapping [110] and the frozen core approximation,
consists of 12 qubits. The blocks of the ansatz are the same used for
the HF molecule but with a depth of 4 instead of 2.

• 4-site ring Hubbard model in the half-filling regime: the Hamiltonian
of the system is:

H =
∑
<i,j>

∑
σ=↑,↓

−
(
a†iσajσ +a†jσaiσ

)
+V

4∑
i=1

ni↑ni↓ +µ
4∑
i

(ni− 2)2 (4.1)

where niσ = a†iσaiσ with σ = {↑, ↓}, V is the on-site potential, ni =
ni↑ + ni↓, µ is the chemical potential preserving the requested number
of particle for each spin and < i, j > denote the nearest-neighbour.
We use the value V = 8 and µ = 8, which is a strongly correlated
regime. We applied the Jordan-Wigner mapping obtaining an 8-qubit
system and the heuristic ansatz considered is composed of 7 blocks:
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each odd block consists of a pattern of entanglers given by the map
[0, 1], [1, 2], [2, 3], [4, 5], [5, 6], [6, 7] and each even block by the topology
[0, 4], [1, 5], [2, 6], [3, 7]. The first two blocks of the ansatz are shown in
figure 4.1.

|0⟩ Ry(θ0) • Ry(θ8) • Ry(θ16)

|1⟩ Ry(θ1) • Ry(θ9) • Ry(θ17)

|2⟩ Ry(θ2) • Ry(θ10) • Ry(θ18)

|3⟩ Ry(θ3) Ry(θ11) • Ry(θ19)

|4⟩ Ry(θ4) • Ry(θ12) Ry(θ20)

|5⟩ Ry(θ5) • Ry(θ13) Ry(θ21)

|6⟩ Ry(θ6) • Ry(θ14) Ry(θ22)

|7⟩ Ry(θ7) Ry(θ15) Ry(θ23)

Figure 4.1: Entangler map for the Hubbard system.

Ansatz optimization
The ansatz parameters are represented with the vector θ, initialized ran-
domly in the range [0, 2π). For all the simulated systems, the VQE algo-
rithm optimizes these parameters using the BFGS optimizer in the state
vector mode and the convergence threshold is set to 10−6Eh. The Qiskit
library [73] has been used to prepare the quantum circuit, map the fermionic
system into qubits and evaluate the cost function.

Hamiltonian optimization strategies
Two optimization strategies have been considered for the WAHTOR algo-
rithm: the first is the adiabatic optimization, as described in ref. [103] and
the second is the non-adiabatic optimization, illustrated in the next section.
The distinction between adiabatic and non-adiabatic methods lies in the vari-
ational quantum state that is taken into account during any calculation of the
energy derivatives with respect to the Hamiltonian parameters. In the first
case, according to the Hellmann-Feynman theorem, the parametrized quan-
tum state is the one that minimizes the energy functional with respect to that
value of the Hamiltonian parameters. [103] For the non-adiabatic method,
the energy is simply a function of the Hamiltonian parameters so that the
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resulting quantum state, in general, is not at its variational minimum or, if
it is, the energy derivatives of order greater than one can be calculated as
the expectation value of the Hamiltonian derivatives operator. Derivatives
calculation requires classical and quantum resources, for this reason we im-
plemented three different optimization strategies of the Hamiltonian for the
non-adiabatic algorithm:

• non-adiabatic trust region: the cost function is approximated with a
quadratic model into a region around the current point. The radius of
this trust region is determined at each step and the optimum value of
the cost function is determined inside this region. [104] In each step of
the Hamiltonian optimization routine, the first and second derivatives
of the cost function are determined using the equations described in
the next section. The new Hamiltonian is found and another step of
this routine start. The cycle continues until convergence is reached.

• non-adiabatic Newton-Raphson: in the Hamiltonian optimization rou-
tine, the Û(R) operator is determined by taking

R = −(∇2E(R,θ)|R=0)−1∇E(R,θ)|R=0 (4.2)

following the idea of the Newton-Raphson optimizer [111]. The opera-
tor Û(R) give us the new Hamiltonian.

• non-adiabatic BFGS: this method exploits the BFGS (Broyden-Fletcher-
Goldfarb-Shanno) optimization algorithm to update the cost function.
[112, 113, 114, 115] A quadratic model of the objective function is built
but, in this case, the Hessian matrix is approximated using the in-
cremental ratio of the gradient. In our implementation, this method
does not use derivatives of the cost function so even the gradient is
approximated. In this case, the derivatives are not calculated but their
estimation is repeated until convergence is reached.

The three strategies illustrated above and the adiabatic strategy have been
compared to evaluate the convergence behaviour and assess their advantages
and limitations in terms of Quantum Processing Unit (QPU) resources. We
remark that the QPU resources are not directly linked to the number of
optimization steps for the Hamiltonian since also the number of optimiza-
tion steps for the θ parameters of the wavefunction depends on whether the
optimization has been carried out adiabatically or non-adiabatically. We,
therefore, assume as a good estimation of the QPU resource directly the
number of Pauli strings evaluations performed on quantum computing units.
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4.3 Results

4.3.1 Non-adiabatic WAHTOR algorithm

In this subsection, we illustrate in detail the non-adiabatic WAHTOR algo-
rithm. Note that the notation is different from the one used in the previous
chapter. The idea behind this method is to transform the Hamiltonian with
the aim to adapt it to a given empirical ansatz. To this aim, we can exploit
the property that the eigenvalues of the Hamiltonian H

H =
∑
i,j

hija
†
iaj +

1

2

∑
c,d,e,f

gcdefa
†
ca

†
daeaf (4.3)

and the eigenvalues of Û †HÛ are the same if Û is a unitary operator. Here we
introduced a set of N single-particle states with the corresponding creation
and the annihilation operators, respectively a†i and ai for i = 1, . . . , N . For
the unitary operator, we choose the following parametrized form:

Û = Û(R) = e
∑

jk(iR·T )jka
†
jak (4.4)

where T and R are two vectors, the components of the former are the gen-
erators of the unitary matrix’s Lie group with dimension NxN , whereas the
latter is a vector of real components that are the variational parameters corre-
sponding to the specific transformation applied to the Hamiltonian. The new
operators b†i = Ûa†i Û

† and bi = (b†i )
† satisfy the fermionic anticommutation

relations
{b†i , b

†
j} = 0 {bi, b†j} = δij i, j = 1, . . . , N (4.5)

It follows that we can interpret these operators as the ones associated with
a different set of N single-particle states that can be used to describe our
quantum system. So, by exploiting the relation

b†k =
n∑

j=1

U(R)jka
†
j U(R) = eiR·T (4.6)

the transformed Hamiltonian Û †HÛ can be expressed in the initial single-
particle basis set as

H(R) ≡ Û †(R)HÛ(R) =
∑
i,j

h(R)ija
†
iaj +

1

2

∑
c,d,e,f

g(R)cdefa
†
ca

†
daeaf (4.7)

where h(R) and g(R) are the transformed tensors of respectively h and g

h(R) = e−iR·TheiR·T (4.8)

g(R) = e−iR·T ⊗ e−iR·T geiR·T ⊗ eiR·T (4.9)
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Now, we represent with |Ai⟩ and |Bi⟩, for i = 1, . . . , 2N , the Slater determi-
nants obtained by applying on the vacuum state |∅⟩ the operators belonging
respectively to the sets {a†} and {b†}. It follows that for every parametrized

state |Ψ(θ)⟩ =
∑2N

i=1 ci(θ) |Ai⟩, the application of the operator Û give the
new ket

|Φ(θ)⟩ = Û |Ψ(θ)⟩ =
2N∑
i=1

ci(θ) |Bi⟩ ci(θ) ∈ C i = 1, . . . , 2N (4.10)

Since the coefficients of the linear combination do not change, |Ψ(θ)⟩ or
|Φ(θ)⟩ can be represented by a quantum circuit with the same value of the θ
parameters by mapping on the qubits the single-particle states corresponding
respectively to the set {a†} or {b†}. The energy cost function

E(R,θ) = ⟨Ψ(θ)|H(R) |Ψ(θ)⟩ (4.11)

depends on both set of parameters θ and R. Energy can be optimized with
respect to R parameters by calculating its n-order analytical derivatives:

dnE(R,θ)

dRn
=
∑
i,j

dnh(R)ij
dRn

⟨Ψ(θ)| a†iaj |Ψ(θ)⟩

+
1

2

∑
c,d,e,f

dng(R)cdef
dRn

⟨Ψ(θ)| a†ca
†
daeaf |Ψ(θ)⟩

(4.12)

from which one can see the dependence on the n-order derivatives of h(R) and
g(R). In particular, we can write down the first and second-order derivatives
in R = 0, that will be used along the optimization:

dh(R)

dRl1

|R=0 = i[Tl1 , h]

dg(R)

dRl1

|R=0 = i[Tl1 ⊗ I + I ⊗ Tl1 , g]

(4.13)

and

d2h(R)

dRl1dRl2

|R=0 = −1

2
([Tl1 , [Tl2 , h]] + [Tl2 , [Tl1 , h]])

d2g(R)

dRl1dRl2

|R=0 = −1

2
([Tl1 ⊗ I + I ⊗ Tl1 , [Tl2 ⊗ I + I ⊗ Tl2 , g]]+

+ [Tl2 ⊗ I + I ⊗ Tl2 , [Tl1 ⊗ I + I ⊗ Tl1 , g]])

(4.14)

where I is the identity operator while l1 and l2 specify the components of the
vector R along which we derive. The proofs of these equations can be found in
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the chapter 10. The non-adiabatic WAHTOR is based on the optimization
of wave function, i.e. the execution of a VQE, and of the Hamiltonian.
More specifically once it has been defined the initial Hamiltonian H, a VQE
optimization of the ansatz parameters θ is performed. Then the minimum
of E(R,θ) with respect to R is found by exploiting one of the methods
illustrated in section 4.2, resulting in a Û1 operator that is used to define
the new Hamiltonian Û †

1HÛ1 that is taken into account to perform a new
VQE. The procedure is repeated until the energy difference between two
consecutive VQEs is below the chosen threshold. At each step i in which an
operator Ûi is generated, the Hamiltonian is updated and the converged one
is Û †HÛ , where Û = Û1Û2Û3 . . . . The converged quantum state |ψ(θopt)⟩
minimizes the expectation value of Û †HÛ . At the same time, Û |ψ(θopt)⟩ can
be seen as the state that minimizes H and, as shown above, this one can be
represented by the same quantum circuit of |ψ(θopt)⟩ if the qubits map the
fermionic modes {b†} instead of {a†}. In figure 4.2 the non-adiabatic and
adiabatic strategies for the WAHTOR algorithm are reported. We stress the
fact that, for the adiabatic version in each Hamiltonian optimization step,
we define an energy functional and exploit the Hellmann-Feynman theorem
to calculate analytically the first derivatives. For the non-adiabatic method,
since we are considering an energy function, we can calculate the derivatives
of each order in each Hamiltonian optimization step. Obviously, the first
derivatives are determined in the same manner for both strategies. From
a computational point of view, the VQE algorithm involves evaluating the
Pauli strings that make up the Hamiltonian at each step. On the other
hand, when computing derivatives for Hamiltonian optimization, the wave
function has fixed parameters, resulting in consistent Pauli strings for the
derivative operators. As a result, the Pauli strings of the derivatives are
computed only during the first time that they appear during the optimization
and are not recalculated thereafter. It is worth noting that a significant
portion of the Pauli strings composing the derivatives are identical to those
of the Hamiltonian. Instead of recomputing them, we utilize the Pauli strings
evaluated during the last optimization step of the VQE algorithm.

4.3.2 Quantum chemistry and Hubbard model results

In this subsection, we report the results obtained by applying the optimiza-
tion strategies illustrated above to the considered benchmarking systems,
ranging from 8 to 12 qubits. Figure 4.3 shows the energy as a function of the
evaluated Pauli strings for the HF molecule. All the optimizers start from
the same VQE state corresponding approximately to the energy of -27.978
Hartree. Then a new Hamiltonian is generated through the calculation or
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Figure 4.3: Performance of the different optimization strategies for the HF
molecule. The obtained energies are reported as a function of the number of
evaluated Pauli strings.

the estimation of the required derivatives, giving rise to a new point on each
curve. Then a new step of optimization for the ansatz parameters is per-
formed followed by a new generation of the Hamiltonian, as described in the
scheme in figure 4.2. The procedure is repeated until convergence is reached.
The curves are built by reporting the energy values obtained in each step and
all the optimization strategies converge approximately to the same energy
value. As can be observed in figure 4.3, during the derivatives calculation
steps, the number of evaluated Pauli strings is negligible with respect to the
ones evaluated during the ansatz parameters optimization steps. Moreover,
the Pauli strings that must be evaluated to determine the derivatives are
partially included in the set corresponding to the Hamiltonian. Thus their
values have been calculated only in the last step of the last ansatz optimiza-
tion procedure. In addition, for the non-adiabatic methods, the expectation
values of the strings can be used in the same Hamiltonian optimization,
until the ansatz parameters are changed. Figure 4.3 shows that the non-
adiabatic Newton-Raphson method requires one more VQE than the other
non-adiabatic methods to converge, but the corresponding Hamiltonians are
composed of a smaller number of Pauli strings with respect to the BFGS and
the trust region optimization strategies. As a consequence, the non-adiabatic
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Figure 4.4: Performance of the different optimization strategies for the H2O
molecule. The obtained energies are reported as a function of the evaluated
Pauli strings.

Newton-Raphson optimization method results to be the most efficient one.
On the contrary, the adiabatic steepest descent is the most expensive opti-
mization procedure, as expected. The same considerations can be inferred
for the H2O molecular system by considering figure 4.4. In this case, the
adiabatic steepest descent method not only requires much more QPU re-
sources to be performed but also converges to higher energy with respect
to the other optimization strategies. Even in this case, the non-adiabatic
Newton-Raphson method is the most efficient strategy and it requires one
less VQE than the other non-adiabatic strategies. Finally, in figure 4.5, we
report the results obtained for the 4-sites Hubbard model in the half-filling
regime. The black curve in the figure refers to the exact lowest energy eigen-
state. In this case, the optimization curves are substantially different from
the ones obtained for the molecules due to the presence of a region with flat
energy gradients. Nevertheless, the non-adiabatic schemes quickly get out of
the plateau, with the non-adiabatic trust region method resulting to be the
most efficient, in contrast to what is observed in molecules.
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Figure 4.5: Performance of the different optimization strategies for the Hub-
bard system. The obtained energies are reported as a function of the evalu-
ated Pauli strings.

4.4 Conclusions

We illustrated the non-adiabatic version of the WAHTOR algorithm [103]
described in chapter 3. We compared the efficiency of three different imple-
mentations of the non-adiabatic version of the algorithm with the adiabatic
one on three benchmark systems corresponding to different cost functions
and qubits numbers. We showed that the QPU resources spent during the
energy optimization are significantly reduced in all cases with respect to the
adiabatic algorithm. This happens because the number of VQEs steps is
significantly reduced during the Hamiltonian optimization, and these steps
are quite demanding in terms of QPU resources.

Moreover, the resources are further reduced considering that some of the
Pauli strings composing the derivatives of the cost function with respect to
the Hamiltonian parameters have been evaluated in the last step on the last
VQE. Each Pauli string is just measured one time until the ansatz parameters
change, increasing the efficiency of the algorithm with this post-processing
procedure. In particular, the non-adiabatic Newton-Raphson method was
the cheapest algorithm for molecules whereas the non-adiabatic trust region
was the most efficient for the Hubbard system. Both methods require the
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calculation of the first and second-order derivatives, for which the analytic
expression can be obtained using equations 4.12, 4.13 and 4.14. The non-
adiabatic BFGS method does not require the calculation of the derivatives
and never results to be the most efficient, but the estimation of the second-
order derivatives is enough to reduce significantly the quantum resources
requested with respect to the adiabatic method. We infer that the hessian
of the cost function, or its approximation, is necessary to reach our scope.
Moreover, as shown in chapter 10, we have an analytic expression of the
derivative of every order for R = 0. They can be used to implement a
non-adiabatic strategy that uses higher-order derivatives, such as the Halley
method, that could give an advantage for systems that remain trapped in
local minima with the strategies tested up to now.[116, 117]



Chapter 5

Natural orbitals and
compactness of quantum
mutual information

Natural orbitals, as defined in the electronic structure and quantum chem-
istry theories as the molecular orbitals diagonalizing the one-particle reduced
density matrix of the groundstate, have represented for decades the perfect
basis set to describe electron correlation. In this chapter we show, in the
case of a few representative molecules, how natural orbitals are the orbitals
providing the lowest variational energies in empirical ansätze for quantum
computing calculations. Interestingly, the resulting quantum mutual infor-
mation matrix built on such orbitals is also maximally compact, providing a
clear picture of how such orbital choice is able to provide the optimal basis to
describe electron correlation. In such a way, the correlation is encoded in a
smaller number of qubit pairs contributing to the quantum mutual informa-
tion matrix. The optimization procedure, achieved thanks to the WAHTOR
algorithm, reduces the circuit depth for correlated empirical ansatz.

5.1 Introduction

Electronic structure theory and its implementation into algorithms and com-
puter programs allow the study of many physical and chemical processes with
both theoretical and application interests. In cases where electron correlation
plays an important role, high-level classical electronic structure and quantum
chemistry tools are necessary, albeit they become limited by the bad scaling
of the required computational time with the size of the system. Quantum
devices may offer a new opportunity to tackle these problems, in principle
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leading to exponential advantage. [51, 118, 37, 1] Many algorithms have been
developed, including hybrid quantum-classical algorithms that use classical
and quantum resources in combination, exploiting at best features of both
devices. One of the most widely used algorithms is the variational quantum
eigensolver (VQE) [56, 35], which has the advantage to be suited to be used
with also with noisy intermediate-scale quantum (NISQ) devices [81]. The
electronic structure problem is tackled by writing the molecular Hamiltonian
in the second quantisation scheme and mapping fermions into qubits using
one of the many encoding methods available. [23, 26, 5] The Hamiltonian
is therefore written as a weighted sum of strings of Pauli operators. A vari-
ational wave function is therefore optimised by a classical computer using
the quantum computer to evaluate expectation values of the Hamiltonian,
efficiently calculated on the quantum processor. Variational wave functions,
i.e. variational quantum circuits, used in the VQE algorithm are often in-
spired by existing quantum chemistry methods that have been reformulated
for the creation of chemically-inspired ansätze used in quantum algorithms
such as unitary Coupled Cluster (UCC). Although these ansätze represent
the quantum circuit translation of well-known and widely used high-level
methods in quantum chemistry, their circuit realization can be composed by
a large number of quantum gates. On NISQ devices, which are limited by
the coherence time and by the noise of quantum gates, heuristic ansätze are
rather considered, since they can better exploit the capabilities of the hard-
ware, at the cost of losing the chemical/physical meaning of their construc-
tion. In this paper, we analyse the mutual information matrix of shallow
depth ansätze in which we optimised both the variational parameters and
the orbitals used to construct the ansätze. To achieve this goal we used the
non-adiabatic WAHTOR algorithm illustrated in chapter 4. The algorithm
was introduced in order to have a good description of the system considered
using a short circuit, improving the energy results without increasing the
number of the quantum gates in the circuit. The WAHTOR algorithm finds
the optimal unitary transformation of the Hartree-Fock orbital for a given
ansatz of a fixed topology. In this perspective, the Hamiltonian is optimised
(or, in another perspective, orbitals are optimised) in order to adapt it to
the connectivity of the ansatz. From the computational point of view, this
optimization is achieved by using the gradient of the energy with respect to
the parameters of the unitary transformation, without significant overload.
By analysing the resulting optimised orbitals we have observed that they
are converging very closely to the natural orbitals basis [17, 119, 4], namely
the orbitals determined by the unitary transformation that diagonalizes the
one-particle reduced density matrix of that ground state. WAHTOR proce-
dure seems therefore to lead to the finding of ”maximally correlated orbitals”
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which were indeed identified as natural orbitals over the years. In addition,
anticipating our results, we have discovered that in this WAHTOR-optimised
/ natural orbital basis set, the sparsity of the mutual information matrix is
indeed increased. This result is expected based on the conjecture [17] that,
in the natural orbital basis set, the quantum state is expressed with fewer
determinants, thus reducing the number of significantly correlated qubits
pairs when the molecule is mapped on a spin system. Section 5.2 shows the
computational details of the systems under consideration and in section 5.3
we show how, for the systems of study, the optimized basis sets converge to
these of natural orbitals. Finally, in the last section 5.4, we focus on the key
results obtained and related discussions.

5.2 Computational details

Simulated systems
We considered seven different molecular systems: H2, LiH, HF , BeH2, H2O,
H2S, and NH3. Depending on the systems we used different basis sets and
frozen core approximations, as detailed in table 5.1. We use the Jordan-
Wigner encoding method [23] with a number of qubits ranging from 8 to 14.
The Hartree-Fock orbitals and the terms of the molecular Hamiltonian have
been obtained using the PySCF Python package. [72] WAHTOR algorithm
has been implemented by a in-house produced Python program exploiting
the Qiskit Python libraries. [73] The variational energy results are reported
in Hartree and the percentage of correlation energy is defined by

Ecorr =
Ecalculated − EHF

Efull−CI − EHF

(5.1)

where Efull−CI is the exact energy, Ecalculated is the energy calculated using
VQE or WAHTOR algorithm and EHF is the Hartree-Fock energy. Table
5.1, in addition to showing the energy results obtained, provides the value of
the dimensionless parameter δ ∈ [0, 1]

δ =

∑
i(| ⟨Wi|NOi⟩ | − | ⟨HFi|NOi⟩ |
N −

∑
i | ⟨HFi|NOi⟩ |

(5.2)

that measures how much the converged WAHTOR orbitals (|W ⟩) are close
to the natural ones (|NO⟩), calculated from the exact Full-CI state. Here
N is the number of orbitals considered and |HF ⟩ are the Hartree-Fock ones.
So the closer the δ value is to 1, the more the optimized orbitals are similar
to the reference natural orbitals (corresponding to δ = 1); the closer it is to
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zero, the more the optimized orbitals are closer to the Hartree Fock orbitals
(corresponding to δ = 0).
Implementation of quantum algorithm

|0⟩ Ry(θ0) • Ry(θ8)

|1⟩ Ry(θ1) • Ry(θ9)

|2⟩ Ry(θ2) • Ry(θ10)

|3⟩ Ry(θ3) • Ry(θ11)

|4⟩ Ry(θ4) • Ry(θ12)

|5⟩ Ry(θ5) • Ry(θ13)

|6⟩ Ry(θ6) • Ry(θ14)

|7⟩ Ry(θ7) Ry(θ15)

Figure 5.1: Ladder entangler map for an 8-qubits system. The quantum
gates between the two barriers compose the block (identified by bold lines
in the figure). Each block is repeated a certain number of times d, which is
defined as the depth of the circuit.

The parametrized quantum circuit chosen in the present work belongs to the
so-called heuristic ansätze build as follows. Firstly, a repetition of single qubit
rotations around the y-axis is applied to the n-qubits Hartree-Fock reference
state. After such rotations, an entangling block composed of CNOT gates
followed by another set of independent rotations on each qubit has been
applied. The block composed by CNOT gates and rotations can be therefore
repeated a certain number of times, each time using different variational
parameters, as shown in figure 5.1. The total number of blocks determines the
circuit depth. In this chapter, we considered depth 2 for diatomic molecules
and depth 4 for molecules composed of 3 or 4 atoms. CNOT gates are
arranged to form a ladder, as shown in figure 5.1 for each molecule considered
here except for NH3, for which we considered an ansatz topology with less
than 13 CNOT gates. For each molecular system, we execute 100 VQE runs
starting from different variational parameters and the lowest energy result
was considered as starting point for the WAHTOR algorithm. We optimized
the ansatz parameters using the L-BFGS-B optimizer.[76] The convergence is
reached when in two successive WAHTOR iterations the VQE energies differ
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Table 5.1: Basis set, number of qubits, VQE and WAHTOR percentage
correlation energy results and geometric distance from the reference natural
orbitals for each molecule under investigation.
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less than 10−6 Hartree. All simulations are executed using the statevector
simulator.

Implementation of derivatives
For the implementation of the WAHTOR algorithm, the matrices that de-
termine the basis change take spin symmetry into account, i.e. the spin-up
and the spin-down spin-orbitals are never linearly combined. In this way,
as generators for a system with n orbitals, we have a set of n2+n

2
symmetric

and n2−n
2

antisymmetric matrices. To further reduce computational efforts,
we do not consider mixing all orbitals with the same spin but we simply lin-
early combine orbitals with the same spin that possesses the same geometric
symmetries. Since the number of energy derivatives depends on the number
of non-zero rotation parameters, it is considerably reduced by taking into
account the above-mentioned symmetries.

Quantum mutual information matrix
To study the correlation present in our wave functions, VQE, WAHTOR-
optimised or diagonalised ground states, we consider the quantum mutual
information between the qubits that map the spin-orbitals of the system
under consideration. The quantum mutual information between qubits i and
j is defined as

Iij = (Si + Sj − Sij)δij (5.3)

where Sij and Sj are, respectively, the one and two qubits Von Neumann
entropy defined as follows

Sk = −Tr(ρklogρk) (5.4)

Here k is a set of one or two indices belonging to the set of all qubits Ω and
ρk is the reduced density matrix obtained from the density matrix ρ tracing
out over all the indices not belonging to k

ρk = Tr{Ω−k}(ρ) (5.5)

We represent the quantum mutual information as a symmetric matrix with
elements along the diagonal equal to zero by definition, as done in [82]. The
value of the correlation between the qubits can be observed in the upper or
the lower triangular part of this matrix.

5.3 Results

In this section, we describe the results obtained by applying VQE and WAH-
TOR algorithms to the molecules considered.
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The obtained energy values are summarised in table 5.1 where in the
fifth and sixth columns, we show the percentage of correlation energy for
the VQE and WAHTOR algorithms respectively. We note that, for each
molecule, our method always improves the VQE results. Interestingly, in the
case of BeH2 the orbital optimization does not change significantly the en-
ergy value, the reasons for this pitfall will be clearer after the orbital analysis
and we will come back to this point later in the text. In the last column of
the table we reported the δ parameter, as defined in section 5.2. This pa-
rameter is a measure of the distance between optimised orbitals and natural
orbitals, ranging from δ = 0 (Hartree-Fock orbitals) to δ = 1 (pure natural
orbitals). Our WAHTOR procedure is therefore leading to orbitals which are
extremely close to natural orbitals. We can therefore make the conjecture
that the WAHTOR algorithm is guiding the Hamiltonian (i.e. rotating the
orbitals) in such a way they are getting closer to natural orbitals, which can
be in principle obtained only by diagonalizing the one-body density matrix.
In the case of BeH2 molecule, table 5.1 reports a value of δ = 1. This means
that, in this case, the Hartree-Fock and the natural orbitals coincide. As a
consequence, our algorithm does not optimize the VQE results, as shown in
the same table. This exception is therefore further supporting our conjec-
ture. In order to better understand and interpret the obtained result, let us
proceed with a deeper analysis of the correlation between the spin-orbitals
of the molecules. As an example, in the following, we will investigate the
H2O molecule, albeit the same conclusions can be found when analysing the
other systems. We would like first to point out that, by using the Jordan-
Wigner mapping, the occupancy of each spin-orbital is associated with the
state of a single qubit. Therefore, on a given quantum state, the correla-
tions between the occupations of the spin-orbitals can be analyzed through
the study of the correlations between the qubits. For this purpose, we use
the quantum mutual information matrix defined in the previous section to
better understand the map of electron correlation in our states. In partic-
ular, figure 5.2 shows the maps for the states of the H2O molecule that we
consider significant. Considering that the first half of the qubits represent
the orbitals with spin up while the second half represents the same orbitals
with reversed spin, each mutual information map is clearly symmetrical with
respect to the diagonal and we can focus only on the lower or upper trian-
gular part. We define the VQE and WAHTOR states as the ones obtained
after the application of the corresponding algorithm. Then the VQE state
is expressed in the Hartree-Fock molecular basis set and shown in panel (a)
of the figure 5.2 while the WAHTOR state, expressed in the converged basis
set, is reported in panel (b). Panels (c) and (d) show the groundstate mu-
tual information matrices both for the Hartree-Fock molecular orbitals and
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(a) VQE state in HF molecular or-
bitals

(b) WAHTOR state in converged
molecular orbitals

(c) Groundstate in HF molecular or-
bitals

(d) Groundstate in converged molec-
ular orbitals

(e) Groundstate in natural molecular
orbitals

Figure 5.2: Quantum mutual information maps for H2O molecule. States
and basis sets considered are described in the main text.
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for the WAHTOR converged molecular orbitals, respectively. Finally, panel
(e) is related to the groundstate of the H2O system in the natural orbital
basis set. Since the molecular Hamiltonian is symmetric for spin inversion,
the groundstate preserves this symmetry: this feature can be seen from any
groundstate mutual information matrix, see panels (c), (d) and (e) of figure
5.2, as the matrix values related to the correlation between orbitals with the
same spin are equal to each other, i.e., considering the upper triangular part
of the matrix, the two triangular blocks above the diagonal have the same
coloured spots. Note that this symmetry is broken in the VQE state (figure
5.2(a)) and recovered in the WAHTOR state (figure 5.2(b)). Moreover, the
number of green and yellow coloured spots in panel (b) is increased with
respect to the ones in panel (a) while the number of blue spots decreases.
This means that the quantum mutual information, during the optimization,
has been compacted on a lower number of qubits pairs. This feature can
be observed also comparing the groundstate expressed in Hartree-Fock and
converged molecular basis set in panels (c) and (d) respectively.

Figure 5.3 quantifies the variations in quantum mutual information be-
tween qubits pairs sorted in a decreasing way for the states mentioned above,
related to the matrices in figures 5.2(a), 5.2(b), 5.2(c) and 5.2(d). The num-
ber of correlated qubits pairs for the WAHTOR state and the ground state
in converged basis are less than pairs in the VQE and in the ground state in
Hartree-Fock basis, respectively. Meanwhile, the values of correlations be-
tween the qubit pairs of the state in the converged basis set are higher than
the ones in the corresponding state in the canonical basis. This confirms
what we observed in figure 5.2 for the H2O molecule. In chapter 10, we
show that these conclusions can be extracted from the other molecules con-
sidered in this work when we compare the groundstate in Hartree-Fock and
in the converged basis set. Focusing on the converged molecular basis set, it
has been conjectured [17] that, for a given accuracy, the natural orbitals are
the basis set in which the wavefunction is expressed with the lowest number
of Slater determinants. In terms of correlations between spin-orbitals, we
expect that as the number of determinants in the wavefunction increases,
as more the number of coloured spots in the quantum mutual information
matrices increases. This is exactly what we observe in our systems and we
suggest that the Hamiltonian optimization procedure converges to the natu-
ral orbitals if we order them in such a way that the i-th orbital is the most
similar to the i-th converged orbital. In order to study the similarity of the
WAHTOR-optimized orbitals to the natural orbitals of the system, the δ
parameter, defined above, was calculated. In table 5.1 are reported the val-
ues of δ for the different benchmark molecules and we note that these are
close to one, regardless of the considered system. Then we can state that
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Figure 5.3: Quantum mutual information for H2O molecule, qubits pairs are
ordered in descending way. The quantum mutual information is spread out
on a smaller number of qubit pairs in the converged basis set with respect to
the Hartree-Fock one.

the orbitals converge to the natural ones because this conjecture is verified
for different molecular geometries, qubit sizes and energy results. The most
striking result is the NH3 molecule, for which we considered a specific heuris-
tic depth 4 ansatz topology. Although this is not sufficient to obtain good
energy results neither with VQE nor with WAHTOR, δ parameter shows
that the optimized molecular basis set converges to the natural orbitals. For
the H2O molecule, this can also be seen in figure 5.2 comparing the panels
(d) and (e) and noting that the images are identical because they represent
the groundstate in the same basis set. Similar considerations can be deduced
for the other molecules by comparing the images in chapter 10.

5.4 Conclusions

In this chapter, we showed that the natural orbitals are the ones that provide
the lowest variational energy for the systems under consideration when the
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orbitals are optimized by using the WAHTOR algorithm. A parameter δ has
been defined to quantify the distance between the converged orbitals and
the natural ones. Results show that the algorithm converges to the natural
orbitals regardless of the symmetries, the number of qubits and the accuracy
of the VQE results (at least for the reasonable values shown in this chapter)
for the molecules under consideration, as shown in 5.1. In terms of the
quantum mutual information, this is translated into an increased sparsity of
the corresponding matrix.



Chapter 6

SU(N) fermions

6.1 Introduction

Hubbard’s model is fundamental to investigating strongly correlated many-
body quantum systems. We refer to the Hubbard system with N spin compo-
nents as SU(N) fermions, these models can be found in high energy physics
[120] and in condensed matter physics. [121] SU(N) fermions can be even ex-
perimentally realized with ytterbium atoms, as shown in. [122] Finding the
groundstate of these systems is a challenging task and quantum algorithms
could give us the opportunity to reach this goal. [109] In this chapter, we
generalize the unitary transformation introduced in chapter 3 by considering
the proper Bogoliubov transformations and by applying the method to the
SU(N) fermionic systems.

6.2 The method

Consider a system made of M lattice sites and L spin components. The
corresponding single-particle states are associated with a set of creation and
annihilation operators {a†oσ, aoσ}, where o = 1, . . . ,M and σ = 1, . . . , L.
The Hubbard model Hamiltonian describing the strongly interacting SU(N)
fermionic system is

H =
M∑
o ̸=p

−
(
topa

†
oσapσ + t∗opa

†
pσaoσ

) M∑
o=1

L∑
σ ̸=τ

Uonoσnoτ +
M∑
o ̸=p

Vopnonp (6.1)

where noσ = a†oσaoσ and no =
∑L

σ=1 noσ is the number operator for site o.
Here, top ∈ C is the hopping term between sites o and p, Uo ∈ R+

0 is the repul-
sive on-site potential on site o and Vop ∈ R+

0 is the density-density repulsive
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interaction between sites o and p. By varying the values of these parameters,
different phases can be investigated. To apply the method defined in chapters
3 and 5, we define a set of cumulative indices i, j, c, d, e, f = o + (σ − 1)M ,
going from 1 to ML , and write the model Hamiltonian as

H =
ML∑
ij=1

h1ija
†
iaj +

ML∑
cdef

h2cdefa
†
ca

†
daead (6.2)

where h1ij is the one-body integral and h2cdef is the two-body one, both of
them can be derived from the values of the parameters in equation 6.1. As
shown in chapters 3 and 5, the Hamiltonian is invariant under a change of
single-particle basis. This means that, given a unitary matrix Υ, one can
define a set of operators {b†i} satisfying the anticommutation relations 2.15
such that

b†i =
∑
α

Υαia
†
α ΥΥ† = I (6.3)

Where I is the identity matrix. We called the new operators b†i , as done in

section 2.2, to avoid confusion in the following discussion. By defining the k̂
operator as follow

k̂ =
∑
ij

kija
†
iaj k† = −k (6.4)

the unitary operator ek̂ is obtained, so that the H̃ = e−k̂Hek̂ has the same
spectrum of H. So, for a fixed state |ψ⟩, the optimal H̃ that minimize
⟨ψ| H̃ |ψ⟩ respect to the parameters kij can be determined. The WAHTOR
algorithm alternates the optimizations of the parametrized ansatz with the
optimization of the Hamiltonian described above to reach the lowest energy
expectation value. By exploiting the Nambu formalism we define the vector
Ψ and Ψ† as

Ψ =



a1
.
.
.

aML

a†1
.
.
.

a†ML


=

(
a
a†

)
Ψ† =

(
a† a

)
(6.5)

and the corresponding transformed ones, Φ =
(
b b†

)T
and Φ† =

(
b† b

)
.

In this formalism, the transformation considered in chapter 3 assume the
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following form

Φ = W †Ψ =

(
Υ† 0
0 ΥT

)
Ψ (6.6)

where with W we represent the unitary transformation and 0 is the zero
square matrix of dimension 2M (since L = 2). Now, we want to generalize
this approach by considering a transformation that is linear in the creation
and annihilation operators and such that (b†)† = b, thus

Φ = W †Ψ =

(
Υ† Λ†

ΛT ΥT

)
Ψ (6.7)

We require that the transformed operators verify the anticommutation rela-
tions, i.e. {Φi,Φ

†
j} = δij, giving rise to a set of quasiparticles. In terms of the

W matrix, this means that WW † = I, so any unitary matrix defined as in
equation 6.11 can be taken into account. Such a transformation is known as
Bogoliubov transformation [123, 124] and is extensively used in high energy
physics and in condensed matter physics [125, 126]. It can be easily seen
that any matrix satisfying the following properties

FWF = W ∗ F =

(
0 I
I 0

)
WW † = I (6.8)

is associated with a Bogoliubov transformation. These matrices form a sub-
group of the unitary ones, indeed

FW1W2F = FW1FFW2 = W ∗
1W

∗
2 (6.9)

To better describe this group we rotate all the matrices by defining S =
GWG†, where

G =

√
i

2

(
I −iI
iI −I

)
GG† = I GTG = F (6.10)

From the properties of G we obtain that S = S∗ and STS = I, so the S
matrices belong to the orthogonal group O(2ML). Their determinant is 1
or -1 but we are interested in the matrices that can be obtained from the
identity by varying some parameters because they will be used to parametrize
the Hamiltonian. Thus we consider the subgroup SO(2ML) of orthogonal
matrices with the determinant 1, the set of the so-called proper Bogoliubov
matrices. Finally, in analogy with the notation used in chapter 3, we can
write

W (R) = eiR·T Tj = −iG†tjG tTj = −tj (6.11)
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where R is a real vector and t is the vector such that the components are a
set of generators of SO(2ML). By defining the hermitian matrix k = R ·T ,
we have that k† = k and FkF = −k∗. From these properties, we obtain that

eik̂Ψje
−ik̂ = Φj where k̂ =

1

2

∑
ij

kijΨ
†
iΨj (6.12)

that is a generalization of the relation shown in chapter 2.2. The transformed
of the creation or annihilation operators Ψj are the generalized ones Φj that
verify the anticommutation relations, so we can interpret them as generalized
creation or annihilation operators corresponding to the quasiparticle intro-
duced above. Note that, in this case, the vacuum state |∅̃⟩ is different from
the starting one |∅⟩ because it is defined as the state that is annihilated by
the application of any bi operator. By using the equation 6.12, it follows that

bi |∅̃⟩ = eik̂aie
−ik̂ |∅̃⟩ = 0 → |∅̃⟩ = eik̂ |∅⟩ (6.13)

Resuming, we can generate a set of quasiparticles parametrized by R through
the equation 6.11 such that the generalized vacuum state verify the equation
6.13. The Hamiltonian can be expressed in terms of quasiparticles by defining
the one-body and two-body integrals in the Nambu formalism as

H1
ij = h1ijθ(ML− i)θ(ML− j) (6.14)

H2
cdef = h2cdefθ(ML− c)θ(ML− d)θ(ML− e)θ(ML− f) (6.15)

where θ(x) = 1 if x ≥ 0 and θ(x) = 0 if x < 0. Thus Hamiltonian assumes
the following form

H =
2ML∑
i,j=1

Ψ†
iH

1
ijΨj +

2ML∑
c,d,e,f=1

Ψ†
cΨ

†
dH

2
cdefΨeΨf (6.16)

that, in the single quasiparticles basis set, becomes Finally, by exploiting the
relation in equation 6.7, we obtain the requested parametrized Hamiltonian
in terms of quasiparticles

H =
2ML∑
i,j=1

Φ†
iH

1(R)ijΦj +
2ML∑

c,d,e,f=1

Φ†
cΦ

†
dH

2(R)cdefΦeΦf (6.17)

where

H1(R)ij =
2ML∑
α,β=1

W (R)†iαH
1
αβW (R)βj (6.18)

H2(R)cdef =
2ML∑

γ,δ,ϵ,ζ=1

W (R)†cγW (R)†dδH
2
γδϵζW (R)ϵeW (R)ζf (6.19)
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The transformed Hamiltonian H(R) = H̃, by exploiting the relation 6.12, is
simply

H(R) =
2ML∑
i,j=1

Ψ†
iH

1(R)ijΨj +
2ML∑

c,d,e,f=1

Ψ†
cΨ

†
dH

2(R)cdefΨeΨf (6.20)

Given a parametrized quantum circuit representing the quantum state |Λ(θ)⟩,
the cost function introduced in chapter 4 can be taken into account

⟨Λ(θ)|H(R) |Λ(θ)⟩ (6.21)

and be minimized with respect both sets of parameters by using one of the
strategies illustrated in figure 4.2.

6.3 Computational details

In this section, we specify the details of the investigated systems. We choose
the Jordan-Wigner encoding method so each qubit encodes the occupation
of the fermionic single-particle state. All the simulations have been exe-
cuted using the statevector simulator. For each system, we considered two
parametrized unitary transformations: the first one is the Bogoliubov trans-
formation in equation 6.11, referred as WB, while the second one, called Wr,
corresponds to the basis change and is represented by the matrix in equation
6.6. Obviously, Wr is a subgroup of WB but we consider both of them to
compare the possible improvement given by the description in terms of quasi-
particles. Moreover, for both transformations, we applied the same unitary
matrix on the different spin components. Thus we have M2 and 2M2 −M
parameters respectively for the Wr and the WB matrices, as can be easily
deduced from the dimension of the groups associated.

6.3.1 Simulated systems

We considered systems with three sites and three components of spin, be-
longing to the SU(3) group, this means that all systems are composed of 9
qubits. We consider a closed linear chain with translation invariance symme-
try, so the parameters in equation 6.1 assume the same values on each site
and the interaction is between nearest-neighbours. The following values for
the parameters in equation 6.1 are considered:

• t=1 U=5 V=0

• t=1 U=10 V=0
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• t=1 U=5 V=10

We are looking for the eigenstate of the Hamiltonian with one particle in each
site with the lowest energy, |GS111⟩. Since the groundstates of the benchmark
systems do not verify this condition we introduce the penalty C in the cost
function

C = µ
∑
i

(ni − 1)2 (6.22)

where µ is the chemical potential and ni is the number of particles at site
i. The value of the µ parameter must be at least equal to the value such
that C = EGS − E111, where EGS is the energy of the groundstate while
E111 is the energy corresponding to |GS111⟩. We choose µ = U + V for each
system to guide the ansatz optimization on states with the right number of
particles. When we consider the WB, C change is value even during the
Hamiltonian optimization because the number of particles is not preserved
by this transformation, so the penalty must be considered in the cost function
during this step. All the energy results are expressed in Hartree (Eh).

6.3.2 Ansatz construction

For the parametrized quantum circuit we have chosen the heuristic ansatz
built by applying an RY quantum gate on each qubit followed by an entan-
glement block repeated d times, where d is the depth of the circuit. The
fermionic single-particle state referred to by the lattice site m and colour l
is mapped on the qubit corresponding to the index i = m + M(l − 1). This
means that the qubits from index 0 to index 2 are related to the first colour,
the ones ranging from index 3 to index 6 are related to the second colour and
the last three are associated with the third colour. In figure 6.1 we repro-
duced an example of the ansätze used in our simulations, the entanglement
block is delimitated by the vertical barrier and, in this case, it is repeated just
one time. Each block is composed of 8 CNOTS gates, the first 6 entangle the
qubits corresponding to the same colours while the remaining ones entangle
the different colours. In our simulations, we have considered circuits with
depths 6,7 and 8.

6.4 Results

In this section, we describe the results obtained for the model Hamiltonian il-
lustrated above. For each considered system, we executed 30 VQE runs and,
for each of them, two Hamiltonian optimizations were performed, one with
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|0⟩ Ry(θ0) • Ry(θ9) • Ry(θ18)

|1⟩ Ry(θ1) • Ry(θ10)

|2⟩ Ry(θ2) Ry(θ11)

|3⟩ Ry(θ3) • Ry(θ12) • Ry(θ19)

|4⟩ Ry(θ4) • Ry(θ13)

|5⟩ Ry(θ5) Ry(θ14)

|6⟩ Ry(θ6) • Ry(θ15) Ry(θ20)

|7⟩ Ry(θ7) • Ry(θ16)

|8⟩ Ry(θ8) Ry(θ17)

Figure 6.1: Ladder entangler map for SU(3) systems. The quantum gates
between the two barriers compose the block that is repeated the number of
times defined by the circuit depth.
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Figure 6.2: Energy results for the system with parameters t=1, U=5, V=0,
µ = 5.
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Figure 6.3: Energy results for the system with parameters t=1, U=10, V=0,
µ = 10.

Wr and the other one with WB. In all the following figures, red marks are
associated with the VQE results for different depths while the blue ones are
related to the WAHTOR results, corresponding to the Hamiltonian trans-
formation Wr. For each depth, ranging from 6 to 8, we have an associated
marker. The energy obtained by optimizing the Hamiltonian through the Bo-
goliubov transformation WB is represented with green crosses. Finally, black
lines show the energy of the groundstate with the requested number of par-
ticles for each colour |GS111⟩. In all the figures the energies are reported for
each VQE index, this means that each run is completely independent of the
other ones. Moreover, for each index, we show the energy results obtained
by optimizing the Hamiltonian using the Wr and the WB transformations
defined above, starting from the VQE state associated with that index. This
procedure is executed for each depth when Wr is taken into account, giving
rise to three different markers for each colour, as shown for example in fig-
ure 6.2. The Hamiltonian has been optimized with WB only for the ansatz
corresponding to depth 7. In figure 6.2 we show the energy results obtained
for the first considered system, corresponding to the parameters t=1, U=5,
V=0 and µ = 5. We note that the Hamiltonian optimization procedure de-
creases significantly the energy obtained from the VQE for each considered
ansatz. By increasing the depth, we statistically improve the probability to
reach the lowest possible energy for both VQE and the Hamiltonian opti-
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Figure 6.4: Energy results for the system with parameters t=1, U=5, V=10,
µ = 15.

mization algorithms. Note that the results corresponding to lower depth can
achieve lower results with respect to a higher depth for certain VQE indices,
as shown for index 5 (compare depth 6 with depth 7). This is not weird
because, obviously, runs corresponding to different ansatz are completely in-
dependent of each other. By focusing on the ansatz corresponding to depth
7, we note that the Bogoliubov transformation does not statistically improve
the results obtained with the Wr transformation, showing that the latter is
enough to reach the groundstate. Similar results have been obtained for the
system corresponding with parameters t=1, U=10, V=0, µ=10, as shown in
figure 6.3. Also in this case the VQE energies are improved when the opti-
mization of the Hamiltonian is performed but, in contrast, at least a depth
of 7 is requested to reach the groundstate and a depth of 8 for statistically
relevant results. For the WB transformation, the same conclusions inferred
above are still valid. Finally, in figure 6.4 we report the results related to
the system with parameters t=1, U=5, V=10, µ=15. The distribution of the
results is different with respect to the cases shown above because many data
are localized around two energy values (14.24 and 14.32 Hartree), giving rise
to two local minima. To reach the groundstate at least depth 7 is required
but we note that, to statistically reach the goal, depth 8 is necessary. For
this system, WB and Wr transformations give the same results.



Chapter 7

Quantum Information Driven
Ansatz (QIDA)

Hardware-efficient empirical variational ansätze for Variational Quantum
Eigensolver simulations of Quantum Chemistry suffer by the lack of a di-
rect connection to classical Quantum Chemistry methods. In the present
work, we propose a method to fill this gap by introducing a new approach
for constructing variational quantum circuits, leveraging quantum mutual
information associated with classical Quantum Chemistry states to design
simple yet effective heuristic ansätze with a topology that reflects the cor-
relation of the molecular system. Quantum Chemistry calculations, such
as Møller-Plesset (MP2) perturbation theory, firstly provide an approximate
natural orbitals basis, which, in chapter 5, shown to be the best candidate
basis set for developing compact empirical wavefunctions. Secondly, they
provide information about the correlation between qubits of the quantum
circuit, enabling the development of a direct design of entangling blocks for
the circuit. The resulting ansatz is then utilized with a VQE to obtain a vari-
ational groundstate of the electronic Hamiltonian. To validate our approach,
we perform a comprehensive statistical analysis over various molecular sys-
tems (H2, LiH,H2O) and apply it to the more complex NH3 molecule. Our
results demonstrate that the proposed methodology gives rise to highly ef-
fective ansätze, surpassing the standard empirical ladder-entangler ansatz in
performance. Overall, our approach provides a promising solution for design-
ing efficient variational quantum circuits for large molecular systems.
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7.1 Introduction

The advent of quantum computers promises to drastically reduce the com-
putational cost of specific tasks with respect to their classical counterparts.
With applications ranging from cryptography [85] to finance [89], the public
interest in the field has in recent years grown immensely [127], particularly
for its academic applications in the field of natural sciences.[128] In line with
one of the precursors proposals of quantum computing [47], one of the most
promising fields is thought to be Quantum Chemistry, which aims to tackle
the electronic structure of large molecules where electron correlation play a
crucial role. A widely known method for near-term applications in quantum
chemistry is the Variational Quantum Eigensolver (VQE) [35, 129, 66], used
to variationally approximate the groundstate of a molecular Hamiltonian by
routinely measuring on the Quantum Processing Unit (QPU) the energy of
a parameterized quantum circuit, i.e. the wavefunction ansatz. Different
approaches to building an ansatz have been developed. Between all of them,
two major classes can be found. The first consists in translating classical
quantum chemistry approaches into the language of quantum computation.
One of the most striking examples is the Unitary Coupled Cluster (UCC)
method [130, 99, 131, 132, 133, 69, 38] which is a unitary implementation
of the widely used Coupled Cluster classical method. The second approach,
on the contrary, starts from wavefunctions that are directly built exploiting
the characteristic of the quantum hardware, regardless of connection with
the chemistry of the problem. This empirical approach defines the so-called
heuristic ansatz [44, 103], which is composed of repetitions of blocks of ro-
tations and entanglements, set up without any information about the chem-
ical problem. Compared to the former approach, this one better exploits
the capabilities of the quantum hardware, at the price of losing the chem-
ical meaning of the variational ansatz. Our work falls within the realm of
the latter method, integrating knowledge derived by a classically computed
Møller-Plesset (MP2) [134] groundstate (GS) to infer the expected properties
of the VQE ansatz circuit. The central physical quantity for our analysis is
the Quantum Mutual Information (QMI), which even in classical quantum
chemistry has proven to be a useful guide to improve existing algorithms.[135]
To further enhance the results offered by our scheme, we also make use of
the tool of the Natural Orbitals (NO). In the following sections, we intro-
duce the Quantum Information Driven Ansatz (QIDA) method, giving a full
explanation and applying it to its full extent to the benchmark systems H2,
LiH, H2O, we then test its effectiveness on the NH3 molecule.
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7.2 QIDA

7.2.1 Quantum mutual information metrics

The aim of measuring correlations in quantum systems can be achieved in
many ways, and to this day it constitutes a field of research by itself. [136,
137] One of the most prominent and oldest measures is the Von-Neumann
quantum mutual information.[138] Let HA and HB be two Hilbert spaces
and ρAB be a density matrix, the quantum mutual information I of ρAB is
defined as:

I(A,B) = S(A) + S(B) − S(A,B) (7.1)

where S are the Von Neumann entropies defined as

S(A,B) = −tr(ρABlog(ρAB))

S(A) = −tr(ρAlog(ρA))

ρA = trB(ρAB)

(7.2)

As shown by equation (7.2), given an N-partite Hilbert space HN =
⊗N

i Hi

and a quantum state ρ ∈ HN , we can find the matrix I(i, j) by tracing out
all but the subsystems i, j. In our case, subsystems are N qubits forming
the quantum register. By construction, the matrix is symmetric and the
elements along the diagonal must be zero. The use of the QMI for our
purpose was motivated by its simplicity and widespread knowledge in both
the quantum and the classical information theory fields. Furthermore, the
QMI has already been exploited to measure the correlation between orbitals
in the past.[135, 139] We will later show the properties of I matrix through
representation such as figure 7.1.

7.2.2 Natural orbitals

In the next sections, we make use of the NO as a tool to decrease the com-
plexity of the circuit, using them for both QMI calculations and as orbitals
for the VQEs. The NO of a given state |Ψ⟩ are defined as the molecular
orbitals for which the one-body Reduced Density Matrix (RDM)

ρij = ⟨Ψ| a†iaj |Ψ⟩ (7.3)

is diagonal. Due to this diagonal condition the NO allow a more classical
interpretation of the electrons’ placement over the orbitals themselves. Fur-
thermore, it has been claimed by Löwdin [17] that, in the NO basis, the
configuration interaction expansion of the state under study is expressed
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with the minimal number of Slater determinants. Consequently, we expect
to see a sparser I matrix by replacing the Hartree-Fock [140] (HF) canonical
Orbitals (HFO) with the NO. This can be seen by image 7.1, representing
the I matrix for the set of benchmarking molecules taken into account in
this work. For each row, by moving from columns 1(a,d,g,j HFO) to columns
2(b,e,h,k NO), the number of coloured spots decreases in favour of some
dominating ones, showing that the correlation concentrates more on fewer
qubits. The usefulness of this feature will become clear in the following.
As we introduced, the NO are defined by diagonalization of a groundstate’s
RDM, implying prior knowledge of the exact solution to the problem, a.k.a.
the Full Configuration Interaction [141, 4] (FCI) solution. To overcome this
problem, we consider the approximated solution obtained from an MP2 cal-
culation [134] and retrieve the natural orbitals associated with the unitary
transformation diagonalizing the RDM of this state.

7.2.3 The scheme

Resource-efficient classical quantum chemistry methods can already contain
useful information for a quantum computing algorithm to solve electronic
problems. This is not a new concept as indeed the starting point for VQE
calculations is always the HFO basis. Starting from some other random basis
wouldn’t in theory compromise the principles under which the VQE works.
In this chapter, we show a method that makes use of the QMI coming from
a classical calculation to infer an entangling block for a hardware-efficient
ansatz. As a first step, we perform a Post-HF (PHF) calculation to obtain
an approximation of the GS |ψPHF,GS⟩. The choice of the method is usually
dictated by the size of the problem. We perform a second order Møller-Plesset
(MP2)[134] calculation which scales with O(n5)[4] in the number of orbitals.
As a following step, we map the state |ψPHF,GS⟩ on a qubit register to obtain
|ψq,PHF,GS⟩. At this point, we find the corresponding I matrix by using
equation 7.1. Some explicit examples of these matrices are given in figure
7.1, and their values range from 0 to 1 because of an imposed normalization.
Overall, we can consider these values of I as a measure of correlation [142],
without discerning between the classical correlation and the quantum one.
Effectively, by fixing a threshold µ ∈ [0, 1), we can now identify two separate
sets of the pairs that fall either above or below µ. We then impose the
entangling block of the VQE to be composed of CNOTs only between qubits
i, j for which I(i, j) > µ, leaving aside the direct imposition of the correlation
of the remaining pairs or assigning it to further development of the algorithm.
In this framework, coherently to usual heuristic approaches [103], the CNOT
is chosen as an entangler (i.e. correlator) between qubits. Of course, other
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Figure 7.1: Representation of the quantum mutual information matrices
I(i, j) for qubits mapping the spin-orbitals of the molecular systems con-
sidered. The rows span over the molecules, while the columns span over the
orbitals and the states: starting from the left we meet FCI state in HFO,
FCI state in NO and MP2 state in NO.
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𝜌 in Natural Orbitals

Empirical reduction of CNots
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Random selection of permutation

Optional

Figure 7.2: Description of the proposed scheme to obtain an ansatz from
information inferred by a post-Hartree-Fock method, MP2 in this case.

two-qubit quantum gates could also make up for the same role. The general
idea is that a bigger µ only selects the more relevant correlations between
qubits and, by tuning the parameter, one can now choose how many CNOTs
to include, sacrificing at choice the descriptiveness of the ansatz. At this
point, one could further reduce the number of CNOTs of the ansatz with what
is explained in the next section or proceed with the remaining technicalities
of the scheme. Eventually, after having chosen a µ and having applied a
reduction method, one will have selected a list of CNOTs to be applied as
an ansatz, we called this list parent sequence. The reason for this name is
that the algorithm proposed here doesn’t specify the order of the involved
CNOTs, and since one has to entangle at least O(n) qubits in a n qubit
register to achieve meaningful results, the number of possible orderings will
grow as n!. We show below that choosing a random permutation between the
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n!, will still give better statistical results than the common ladder-entangler
block with less or equal CNOTs.

Empirical reduction

The method as shown so far has the drawback of retaining the scaling of the
number of CNOTs to O(n2). In this regard, we found that is possible to re-
duce this scaling by removing the CNOTs that encourage cross-entanglement
between different qubits. We can clarify what is meant by cross-entanglement
by pointing out at figure 7.1-g, in this specific case all the pairs obtained from
qubits 1,5,7 have an I greater than the chosen µ between each other. Thus

a)
1 5

7

b)

Figure 7.3: Cross-entanglement reduction, all numbers refer to the qubit
indices. a) We have three CNOTs but we do not consider the one connecting
the qubits 1 and 7. b) Representation on I map of the reduction, the red
frame identifies the pairs that we will connect with a CNOT on the circuit
while the crossed one is left out.

the original algorithm would prescribe all three pairs to have a CNOT, but
with a variational algorithm and multiple depths in place, it is sufficient to
connect the said qubits once each. This mainly means that it is possible to
remove one of the three CNOTs, as represented in figure 7.3[a]. We represent
graphically this operation by putting a red frame to the considered spots and
erasing the one that will not appear on the circuit, as done in figure 7.3[b].
The approach followed by our implementation to bring this concept to the
circuit was to select only the first spot from each line of the upper triangular
part of the I matrix such that I(i, j) > µ. As an example, figure 7.4 shows
the pairs taken into account for the H2O and NH3 molecules.
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Figure 7.4: Empirical reduction criterion applied to H2O and NH3 molecules.
As described in the main text, spots with red frames identify the qubits pairs
that will be entangled with the two-qubit gate (CNOT in our case).

7.3 Computational details

7.3.1 Tested Systems

The classical part involved in our algorithm is retrieved from the PySCF
python package [72], while the MP2 wavefunctions are obtained by an adap-
tation of the MolCAst package.[143] The percentage of correlation energy Ec

is defined as

Ec =
EHF − EX

Eex,c

with Eex,c = EHF − EFCI (7.4)

Where Ex is the energy obtained from the variational calculation and EHF

and EFCI are the Hartree-Fock and full configuration interaction energy. The
core software used for quantum computing simulation is the Python package
Qiskit.[73] The Jordan-Wigner [23] encoding method has been considered in
each simulation to map the fermionic system on a qubit register. In table
7.1 we list the data corresponding to the molecules under investigation.

7.3.2 Ansätze construction

We explained in subsection 7.2.3 how we find a parent sequence of CNOTs to
be applied as an ansatz on the quantum circuit. Anyway, given the factorial
scaling of possible orderings, for parent sequences longer than 6 CNOTs the
analysis has been taken on a restricted random selection of orderings. For
the randomly chosen ansätze, given the convention in the field of preferring
top-down entanglement, we preferred a uniform distribution for the qubits
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Mol. Coordinates (Å) Qubits Eex,c(
Kcal
mol

) µ #

H2
H 0.0 0.0 0.0
H 0.0 0.0 0.74

8 15.636 0.5 6

LiH
Li 0.0 0.0 0.0

H 0.0 0.0 1.595
10 12.6446 0.5 6

H2O
O 0.0 0.0 0.0

H 0.757 0.586 0.0
H -0.757 0.586 0.0

12 31.006
0.5
0.7

0.5 red.

12
9
6

NH3

N 0.0 0.0 0.1211
H 0.0 0.9306 -0.2826

H 0.8059 -0.4653 -0.2826
H -0.8059 -0.4653 -0.2826

14 41.287 0.5 red. 9

Table 7.1: Summary of data of the systems under analysis and computational
details. H2 has been analyzed with 631-G basis while every other molecule
used STO-3G basis set and frozen core approximation. Last column show
the number of elements in each parent sequence.

to be the target of a CNOT. We could have preferred a uniform distribution
of the possible top-down CNOTs but this choice shows a bias toward the
latter qubits (qubit i could receive i possible CNOTs with counting starting
from 0). After every application of the chosen entangling block, we apply
a RY (θ) quantum gate on every qubit. These two sections of the circuit
together are referred to as block and with the term depth we refer to the
number of blocks in use in the ansatz. To show the advantage of our QMI-
aided ansatz over the ladder-entangler one, we analyze the results at different
depths maintaining the same entangling blocks, with the secondary scope
of looking if, for a specific depth, the advantage decreases. Such a result is
foreseeable as the restricted entangling block suggested by our algorithm it is
not even guaranteed to connect all the qubits, and indeed it does not happen
in the analyzed cases. Net of pathological examples, it is then reasonable
that a more expensive ladder-entangler block that links all the qubits will
generally outperform our approach with the growth of the depth.

Table 7.1 show the values of the µ parameters investigated and the corre-
sponding parent sequences. As regards the choice of the µ parameter, since
the systems under analysis are not yet big enough to show a clearly dimin-
ishing number of CNOTs as a function of µ, we only consider one value for
each system. An exception is made for H2O molecule, for which we consider
the two values 0.5 and 0.7. An example of ansatz construction for the H2O
molecule is given by figure 7.5. It has been obtained by choosing one of the
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permutations of the parent sequence generated by setting µ = 0.5 and taking
into account the empirical reduction. For all the following plots we performed
analysis on 100 different possible permutations of the original parent se-
quence.

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

	𝑅!
	𝑅!
	𝑅!
	𝑅!

	𝑅!
	𝑅!

	𝑅!
	𝑅!
	𝑅!
	𝑅!

	𝑅!
	𝑅!

Figure 7.5: Pictorial representation
of the method for H2O molecule.
Here empirical reduction has been
applied to the parent sequence ob-
tained by µ = 0.5. The chosen per-
mutation is clearly for illustrative
purposes.

Even for the random maps, we per-
formed analysis on 100 of them. In
both cases, we performed 50 VQE runs
for each entangling block with random
starting parameters to guarantee suffi-
cient statistical value for a single kind
of ansatz. An exception is made for the
ladder-entangler block, which has been
given 300 VQE since it represents the
reference entangling block for compar-
ison 1.

7.4 Results

In this section, we will show the re-
sults obtained by applying the method
described above to the systems in ta-
ble 7.1. First of all, we notice that the
choice of the NO explained in section
7.2.2 is a favourable one to increase the
sparsity of the I matrix, i.e. reduce the
number of qubits pair with significant
values of the QMI as more as possible.
This concept is illustrated in figure 7.1:
for each molecule under investigation,
we have two maps corresponding to the
FCI state expressed in the HFO and
NO, respectively the one on the left
and the one in the centre. It is clear
that the choice of the NO increase the
sparsity of the QMI matrix and this
makes the ansatz construction easier.
By comparing the images on the cen-
tre with the one right, the same figure

1Further exception for depth 4 of the ladder-entangler ansatz of the water molecule, in
this case, we did 2000 repetitions to give more statistical value to figure 7.9
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shows the close proximity of the QMI matrices obtained from the FCI and the
MP2 states expressed in NO (also claimed in [139]), giving consistency to the
choice of MP2 state as starting point for our ansätze. As regards the impact
of different orderings of the parent sequence, we analyze their difference in
performance with figure 7.6 that shows the results for the H2O molecule. We
set µ = 0.5 and, from the parent sequence, 100 different entangler maps have
been generated. Each of them gives rise to an ansatz once the depth is set at 2
and they are reported on the horizontal axis of figure 7.6. For each ansatz, we
performed 50 VQEs run and reported, on the left vertical axis, the maximal
value of the percentage of the correlation energy that has been obtained. The
right vertical axis gives the probability that the energy of one of the 50 VQEs
lies within 30% of the maximum, the value shown on the left vertical axis.
Note that the clustering on the basis of vertical left axes value and orders
are not meaningful of any intrinsic property and were dictated to facilitate
the pairing of respective black and red spots. Here we see that, as expected,
some entangling maps perform statistically better than others. We notice
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Figure 7.6: Multiple VQEs experiments for H2O molecule with different
ordering of the same parent sequence corresponding to µ = 0.5. Depth is
equal to 2 for each ansatz generated by an entangler map. 50 VQEs run
are performed for each ansatz and the left vertical axis shows the maximum
value of the % of the correlation energy while the right axes (red) represent
the percentage of those 50 VQEs that are within 30% of their respective
maximum (black spot).

that figure 7.7 is obtained by taking multiple statistical sets that in figure
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7.6 are represented in one figure and transposing them over a single column,
with this procedure being repeated for all the depths and ansätze shown. In
this manner, we effectively represent the probability distribution one would
sample from using the QIDA method with the steps described by figure 7.2.
Figure 7.7 gives us the opportunity to statistically characterize the quality
of the results obtained from different parent sequences. For H2, LiH,H2O
molecules, we considered one or more different values for the µ parameter
that gives rise to parent sequences, as reported in table 7.1 that also illustrate
if the reduction explained in 7.2.3 has been taken into account. For each par-
ent sequence, we extract 100 random entangling blocks, as described in the
subsection 7.3.2. These blocks are repeated to define ansätze with depths
ranging from 1 to 4 and the corresponding VQE results are reported by the
violins referred to as QIDA in figure 7.7. The different kinds of QIDA ansätze
are compared with the violins obtained from the random ansätze (details in
subsection 7.3.2) and the ladder-entangler one over depths ranging from 1 to
4. Analyzing the depth, we see that there is a plateau for the maximal Ec

retrieved. Furthermore, we see that right from depth 1 we spread within the
whole interval of the reachable values, with an expected Ec greater than the
one of the ladder-entangler ansatz at depth 4. Furthermore, we note that the
maximal value of the percentage of the correlation energy is obtained by the
ladder-entangler ansatz for depths equal to or bigger than 3, for H2 molecule,
and 4, for LiH and H2O molecules. By comparing the mean values and the
dispersion of the results around it, we see that QIDA ansätze assure that the
probability to obtain better approximations of the FCI state is increased.
The rationale behind these results, and thus the explanation for the success
of our method, lies in the multiconfigurational nature of the wavefunction
that the VQE is aimed at finding. As the ladder-entangler ansatz does not
include anything about the specific problem for which is being used, nor is
based on any chemically motivated background, the resulting ansatz, for the
molecular system under investigation, will not necessarily be aimed at find-
ing the determinants with higher modulus square of the amplitudes. On the
contrary, the imposition of correlation where suggested by the approximated
groundstate through the QMI will partially direct the optimization over the
space with the expected correlation between qubits, rendering the optimiza-
tion process easier for the optimizer. The diversity in the outcome can be
justified by a wrong ordering of the entangling ansatz with respect to an
ideal one. In this regard, for H2O molecule, the only system for which we
analyzed different values of µ, we saw no evidence of any substantial advan-
tage in decreasing the value of µ from 0.7 to 0.5 besides a light decrease in
expected Ec value. We explain this by considering that since passing from
the former to the latter only adds the three CNOTs between qubits pair 2-8,
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Figure 7.7: Average performance of our ansätze compared to the ladder-
entangler ansatz and random ones. Each violin column corresponding to a
QIDA ansatz represents the total distribution of the energy results obtained
by executing 50 VQEs run for each block considered belonging to a parent
sequence. For the ladder-entangler ansatz, the VQE algorithm has been
repeated 300 times. The violins are all normalized only between themselves
to satisfy the maximal allowed width.
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2-10, 4-8 and, by what is explained in 7.2.3, those CNOTs can be considered
redundant by the cross-entanglement analysis of the H2O molecule (figure
7.1i).
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Figure 7.8: Statistical comparison of
ladder-entangler ansatz (purple) with
100 repetitions and QIDA with 200 to-
tal VQEs run(Blue).

Every result shown up to now
serves as proof of the expected per-
formance of the QIDA method. The
rationale behind this was simply to
give a statistical analysis as exten-
sive as possible to describe the ef-
fectiveness of the method described
in this work. In figure 7.8 we re-
ported the energy results obtained
by applying the method illustrated
in figure 7.2 to the NH3 molecule to
compare the outcomes of the VQEs
of our scheme with the ones cor-
responding to the ladder-entangler
map. Thus, for this specific case,
we tested our method by repeating
10 VQE for 18 different permuta-
tions of the parent sequence, while
for the ladder entangling maps we
performed 100 VQEs. Figure 7.8
shows then an indisputable advan-
tage for both the maximal value and
statistical distribution of the con-
verged VQEs energies. Furthermore,
given the CNOTs connectivity of the
ansatz, we achieve this with a reduc-
tion in the number of CNOTs from
52 of the ladder-entangler ansatz to 36 of our method. Finally, the trend
showed by the molecules in figure 7.7 suggests that the distribution of the
reduced QIDA ansatz in figure 7.8 has already reached a plateau correspond-
ing to the maximal value. Furthermore, net of statistical bias, it shows that
the ladder-entangler ansatz is still far away from finding even a fraction of
the percentage of the correlation energy. The previously discussed reduction
of the number of needed CNOTs is also relevant for figure 7.7. For example,
looking at figure 7.7[f], the reduced QIDA ansatz at depth 2 and the ladder-
entangler ansatz at depth 4 have comparable statistical distributions of the
energy results, with the former method having only 12 CNOTs against the
44 CNOTs of the latter method. Moreover, these distributions have been
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Figure 7.9: Resources analysis of best performing ansatz given resources
(x,y). The shown numerical values are the expectation values of the maxi-
mum of y VQE repetitions with an ansatz possessing no more than x CNOTs.
The colour of each spot is the one corresponding to the parent sequence
that gives the highest results. The system under consideration is the H2O
molecule.
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obtained by repeating the VQE experiments many times. In terms of com-
putational cost, the CNOTs and the number of VQE experiments can be
seen as quantum resources, respectively x and y, and we want to investigate
the relation between the energy results and these variables. Given a certain
parent sequence σ, we introduce the quantity ϵσ,δ,i that is the energy obtained
at the i− th VQE experiment by the ansatz composed of δ repetitions of σ,
the sequence under investigation. Moreover, we introduce the function

fσ(x) = max(δ) s.t. CNOT (σ) ∗ δ ≤ x (7.5)

which, fixed a sequence, finds the maximal number of repetitions that give
rise to an ansatz such that the number of CNOTs is less or equal to x. Here,
CNOT (σ) give the number of CNOTs corresponding to the sequence under
consideration. Finally, for each sequence σ, we define the function

Eσ(x, y) = ⟨maxyk=1max
fσ(x)
δ=1 (ϵσ,δ,k)⟩ (7.6)

that gives the expectation value of the maximal percentage of the correla-
tion energy for each value of the computational resources (x, y) introduced
above. As expected, for each pair (x, y) the function 7.6 assumes different
values by varying σ and the maximal one is reported in figure 7.9. The as-
sociated spot has the colour of the corresponding σ, defined in figure 7.7.
The advantage of QIDA is noticeable in the overall results with respect to
the ladder-entangler ansatz, particularly when the reduction is taken into
account. Nevertheless, when the number of CNOTs and VQE repetitions
is increased, the ladder-entangler ansatz statistically gives better results but
without increasing significantly the ones obtained with our method. This
is not surprising because, as mentioned above, the former connects all the
qubits and possesses more parameters giving the possibility to catch elec-
tronic correlations that the latter cannot reproduce even if the depth of the
circuit is increased. However, if noise is to be taken into account, we in-
fer that the ladder-entangler ansatz will likely degrade any such advantage
owned in the noiseless case because of the greater number of CNOTs gates
with respect to QIDA ansatz. Overall, these results bring forward the idea
of the QIDA ansatz as a modular starting circuit for a more refined fully
entangled one that can catch the missing correlations, as was proposed at
the beginning of this chapter.

7.5 Conclusions

We have presented a novel approach to constructing correlations inspired
hardware efficient ansätze for quantum chemistry simulations. Our method
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leverages the wavefunction of a well-scaling classical method, such as MP2, to
generate ansätze that achieves correlation energies comparable or superior to
currently used heuristic ansätze, while requiring substantially fewer CNOTs.

To demonstrate the effectiveness of our approach, we simulated various
molecular systems using statevector simulations. We stressed the fact that
the results in figure 7.9 have been obtained with statevector simulations.
Then, for noisy simulations, we expect that QIDA ansätze will become even
more efficient with respect to the ladder-entangler one because the number of
two-qubit quantum gates is significantly reduced. Additionally, we observed
a growing performance disparity with the number of qubits 7.8, with our
QIDA method consistently demonstrating superior performance compared
to the ladder-entangler ansatz.

Furthermore, we propose a modular approach to using QIDA in conjunc-
tion with other blocks to obtain a refinement of the method and recover the
missing correlations. The idea is to first employ QIDA to identify the leading
correlations between qubits in order to deliver to the optimized ansätze with
appropriate starting ingredients, excluding from the Hilbert space the sub-
space involving entanglement between uncorrelated qubits. This constraint
can be relaxed by applying subsequent fully entangled blocks. This approach
has the potential to reduce the overall computational cost of quantum chem-
istry simulations while maintaining or improving the accuracy of the results.

In summary, this method is promising for generating hardware-efficient
ansätze for quantum chemistry simulations. We have demonstrated the effec-
tiveness of our QIDA method on the small molecules, increasing the percent-
age of the correlation energy values with fewer CNOTs compared to existing
ansatz methods. These findings suggest that our QIDA can be a valuable
tool in the ongoing efforts to improve the efficiency and accuracy of quantum
chemistry simulations.



Chapter 8

Spin-symmetric ansätze

8.1 Introduction

Developing strategies to determine the groundstate of physical systems play
a fundamental role in electronic structure calculation. Quantum algorithms
could give an exponential speed-up in this field and the variational quantum
algorithm (VQE) is one of the most promising algorithms for NISQ devices.
The parameters of the hardware-efficient ansatz implemented for this al-
gorithm span a subset of the Fock space to find the values that minimize
the expectation value of the Hamiltonian of the system under consideration.
There are no certainties that the groundstate is included in the spanned sub-
set nor that classical optimisation can reach such state. Thus the definition
of the variational form of the ansatz is a crucial point, even if the Hamil-
tonian is optimized, as shown in chapter 3. In the previous chapter 7, we
illustrated a strategy that exploits the quantum mutual information between
spin-orbitals of an approximated groundstate to determine the ansatz. Here,
we show another method that takes advantage of a particular symmetry of
the Hamiltonian.

8.2 Spin-inversion symmetry

We consider a set of n single-particle states and two spin projections. The
22n basis vectors of the Fock space are

|α1↓α1↑ . . . αn↓αn↑⟩ =
n∏

i=1

(a†i↓)
αi↓(a†i↑)

αi↑ |∅⟩ (8.1)

99
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where αiσ = 0, 1 ∀i = 1, . . . , n σ =↑, ↓ and |∅⟩ is the vacuum state. Now
define the spin-inversion operator

R =
n∏

i=1

Ri =
n∏

i=1

[a†i↑ai↓ + a†i↓ai↑ + (1 −Ni)
2] (8.2)

where Ni = a†i↑ai↑ + a†i↓ai↓ is the number operator for the mode i. It easy to
show that

Ri = R†
i [Ri, Rj] = 0 RiRi = I (8.3)

where I is the identity operator. As a consequence, the R operator is Her-
mitian and unitary

R = R† RR† = I (8.4)

From these properties, it follows that

R†a†lσR = Ra†lσR = a†lσ̄(1 − 2Nlσ) (8.5)

where σ̄ is the spin-projection opposite with respect to σ and Nlσ = a†lσalσ.
By applying theR operator to the basis states 8.1 and considering the relation
above we see that

R |αn↓αn↑ . . . α1↓α1↑⟩ = |αn↑αn↓ . . . α1↑α1↓⟩ (8.6)

When acting on a state, the first two terms in each Rl exchange the spin of the
particles if there is only one in the mode l while annihilating the state if the
mode is empty or doubly occupied, the last term act as an identity operator
if the mode l is empty or doubly occupied and annihilate the state if it is
individually occupied. The phase factor into the parenthesis of the equation
8.5 takes into account the −1 sign appearing when the particles in the doubly
occupied state are exchanged. Thus R exchanges the occupation numbers
of the spin-up and spin-down projections of each single-particle mode, this
explains the name given to the operator. Consider a system such that

⟨ψa|H |ψb⟩ = ⟨Rψa|H |Rψb⟩ ∀a, b ∈ 22n (8.7)

where a, b are the indices corresponding to the vectors of the Fock space. In
this case, we obtain that H = R†HR = RHR because R is Hermitian, so
the two operators commute

[R,H] = 0 (8.8)

Suppose that the groundstate |ψGS⟩ of our system is non-degenerate. Since
R is unitary, as a consequence of the previous equation, we have that

R |ψGS⟩ = |ψGS⟩ (8.9)
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We can take advantage of this equivalence by modifying the cost function
of the variational quantum algorithms like VQE and WAHTOR. Consider
the parametrized ansatz |ψ(θ)⟩, the state R |ψ(θ)⟩ is pure as well as |ψ(θ)⟩
because R is unitary. The root fidelity [144] F (θ) between these two states
is

F (θ) = | ⟨ψ(θ)|R |ψ(θ)⟩ | (8.10)

and can efficiently be calculated on a quantum computer because R is Her-
mitian and the number of Pauli strings appearing in the mapped operator
scale as O(n). Since F (θ) = 1 if and only if R |ψ(θ)⟩ = |ψ(θ)⟩, we can define
the following cost function

C(θ) = ⟨ψ(θ)|H |ψ(θ)⟩ + λ(1 − F (θ)) (8.11)

where λ is a real positive parameter. Since the additional term in the cost
function C(θ), during the classical optimization of the θ parameters the opti-
mizer tends to explore the subset of the Hilbert space corresponding to states
that are invariant under the application of the R operator, the symmetry pos-
sesses by the |ψGS⟩. Another way to take advantage of this symmetry is to
build an ansätze that preserves it for each value of the parameters. Consider
a state |ψ⟩ that can be obtained by applying a set of N unitary operators
U1, . . . , UM to the state |ϕ⟩

|ψ⟩ = UM . . . U1 |ϕ⟩ = RRUMRR . . . RRU1RR |ϕ⟩ (8.12)

where the last equality follows from the properties 8.4. If one defines the
operators

Ũi = RUiR i = 1 . . .M (8.13)

the state above can be expressed as

|ψ⟩ = RŨM . . . Ũ1 |ϕ̃⟩ (8.14)

where |ϕ̃⟩ = R |ϕ⟩. Thus |ψ⟩ can be obtained by applying the operators
Ui to the initial wavefunction |ϕ⟩ or, equivalently, by considering the spin
inversion of the initial wave function |ϕ̃⟩ followed by the application of the
set of operators Ũi and another spin-inversion operator. If the single-particle
states are represented with lines and the operators with black boxes acting
on them, we can graphically illustrate with figure 8.1 the two ways to build
|ψ⟩. We aim to construct a state such that |ψ⟩ = R |ψ⟩. Without loss of
generality, we can consider an initialized state such that |ϕ⟩ = R |ϕ⟩. Given
a set of M unitary operators Vi, we obtain that Ṽi = RViR for i = 1, . . . ,M .
Suppose that these operators commute, thus

[Ṽi, Vi] = 0 (8.15)
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↑

↓
#$! #$"… 

| ⟩' | ()'* | ()+ | ⟩+*

$! $"… 
| ⟩' | ⟩+

Figure 8.1: Illustration of the two different ways to build the state |ψ⟩.
Each line represents a single-particle state where the spin-up and spin-down
are identified respectively with ↑ and ↓. The operators acting on them are
depicted as black boxes.

We will see later that this condition can be verified for the cases of our
interest. Now, we can define Ui = ViṼi. It follows that

Ũi = RViṼiR = RViRViRR = ṼiVi = ViṼi = Ui (8.16)

Finally, from the equation 8.14 we get

R |ψ⟩ = RRŨM . . . Ũ1 |ϕ⟩ = UM . . . U1 |ϕ⟩ = |ψ⟩ (8.17)

that satisfy the required condition. In order to investigate how to implement
a hardware-efficient ansatz that preserves this symmetry on a quantum com-
puter, we need to define a set of quantum gates that can be implemented on
our device. Our method can be applied to quantum gates that act on any
number of qubits but, to perform an easy implementation, we just consider
the CNOT and the RY quantum gates acting, respectively, on two and one
qubits. By taking into account the Jordan-Wigner encoding method, we can
define the fermionic representation of the CNOT quantum gate as

V C = aiσa
†
iσ + (ajτ + a†jτ )a†iσaiσ

∏
Γ(k,ρ)<Γ(j,τ)

(1 − 2Nkρ) (8.18)

where i, j, k = 1, . . . , N and σ, τ, ρ =↑, ↓. Here, iσ and jτ specify the
fermionic modes on which the CNOT acts. We introduced the function
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Γ(k, ρ) = 2k − δρ↓ to take into account the phase factor due to the occu-
pied fermionic modes kρ that in formula 8.1 appear to the left of the mode
jτ . Suppose that i ̸= j. By using the relation 8.5, the corresponding spin-
inverted operator can be easily calculated

Ṽ C = aiσ̄a
†
iσ̄ + (ajτ̄ + a†jτ̄ )a†iσ̄aiσ̄(1 − 2Njτ )

∏
Γ(k,ρ)<Γ(j,τ)

(1 − 2Nkρ̄) (8.19)

and it follows that [V C , Ṽ C ] = 0. In an equivalent way, we can define the
fermionic operator associated with the quantum gate RY (θ), acting on single-
particle quantum state iσ, as

V RY (θ) = cos
θ

2
+ sin

θ

2
(a†iσ − aiσ)

∏
Γ(k,ρ)<Γ(j,τ)

(1 − 2Nkρ) (8.20)

where, for the phase factor, the same consideration explained above are still
valid. We see that

Ṽ RY (θ) = cos
θ

2
+ sin

θ

2
(a†iσ̄ − aiσ̄)

∏
Γ(k,ρ)<Γ(j,τ)

(1 − 2Nkρ̄) (8.21)

that give [V RY (θ), Ṽ RY (θ)] = 0. By defining

UC = V C Ṽ C URY (θ) = V RY (θ)Ṽ RY (θ) (8.22)

and considering the initializing state |0⟩⊗N , we can construct the ansatz

|ψ⟩ = UC
MU

RY (θM) . . . UC
1 U

RY (θ1) |0⟩⊗N (8.23)

that preserve the spin-symmetry for each value of the parameters θi. Here
the subscripts going from 1 to M in each operator remind us that they can
act on different qubits.

8.3 Results

To show the validity of the method described above, we build an example
of an ansatz that preserves the spin-inversion symmetry and we discuss the
results obtained for the benchmarking H2O molecule. We define the two-
qubit quantum gate V in the following manner: apply a CNOT gate followed
by two Ry gates, one on the target qubit and the other one on the control
qubit, as shown in figure 8.2. If V acts on qubits iσ and jτ for i ̸= j, Ṽ acts
on qubits iσ̄ and jτ̄ , it follows that the quantum gate U = V Ṽ is applied
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|iσ⟩ • Ry(θk)

|jτ⟩ Ry(θk+1)

Figure 8.2: The quantum gate V , applied between the qubits iσ and jτ , that
we defined to perform our simulations is shown.

on the four qubits that we specified with the representation (iσ, jτ, iσ̄, jτ̄).
Here the first two indices are related to the gate V while the third and
fourth are related to Ṽ . Consider the H2O molecular system in sto-3g basis
set. By applying the frozen core approximation we obtain a set of 6 orbitals,
indexed from 0 to 5. With the Jordan-Wigner encoding method, we can
map our system on a 12 qubits register, where the first half and the second
half of qubits map the occupation number of respectively the spin-up and
spin-down orbitals. We built the ansatz in the following manner: on each
qubit iσ we apply an Ry(θiσ) quantum gate and constrain the parameters
so that Ry(θiσ̄) = Ry(θiσ), then an entanglement block composed only of U
quantum gates is applied and repeated a number of times equal to the depth.
To define an entanglement block we need to specify where the U gates are
applied. We choose the following set of indices

U1 → (1 ↑, 5 ↑, 1 ↓, 5 ↓)

U2 → (2 ↑, 4 ↓, 2 ↓, 4 ↓)

U3 → (5 ↑, 1 ↓, 5 ↓, 1 ↑)

U4 → (4 ↑, 2 ↓, 4 ↓, 2 ↑)

U5 → (0 ↑, 4 ↑, 0 ↓, 4 ↓)

U6 → (4 ↑, 1 ↓, 4 ↓, 1 ↑)

By setting the depth to 3 we obtain an ansatz composed of 36 CNOTs and
41 parameters. The ansatz parameters were optimized up to a convergence
threshold of 10−6 Hartree. The VQE algorithm converges to 50.63% of the
correlation energy, defined in chapter 3, and the corresponding root fidelity
between this state and the groundstate is 0.99318. These results are compa-
rable with the ones shown in chapter 5: the depth 4 ladder entangler, map
composed of 44 CNOTs and 60 parameters, converged to 51.65% of the cor-
relation energy with a root fidelity between this state and the groundstate
equal to 0.99233. The spin-inversion symmetry of the converged state can
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be pictorially shown by taking into account the quantum mutual informa-
tion matrix (MI) defined in 7.2. Indeed, consider as an example the QMI

(a) MI matrix

(b) Blocks

Figure 8.3: The MI is related to the H2 system in HF basis. (a) The MI
matrix is symmetric with respect to the diagonal by construction. (b) The
spin-inversion symmetry divides the upper triangular part of the QMI into
two couple of triangular blocks: the red blocks A and the green blocks B
respectively corresponding to spin-orbital pairs with the same and the oppo-
site spin projection.

matrix corresponding to the Jordan-Wigner mapped groundstate of the H2
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Figure 8.4: QMI matrix of the VQE state for the H2O molecular system
detailed in the main text.

molecule, expressed in Hatree-Fock spin-orbitals, shown in figure 8.3. Since
this quantum system verifies the conditions set out in the previous section,
we know that R |ψGS⟩ = |ψGS⟩ and this equality is reflected on the QMI
matrix. To explain this concept, we focus on the image 8.3[b] representing
the upper triangular part of the QMI matrix. Here we identified two couple
of triangular blocks that we called A and B. The upper A block defines the
QMI between the spin-up orbitals and the lower one is related to the QMI
between the spin-down orbitals. The B blocks take into account the QMI
between spin-orbitals with opposite spin projections. In general, the four
blocks defined above are different from each other. If the state under con-
sideration possesses the spin-inversion symmetry, as done by |ψGS⟩, the two
A blocks are identical between them such as the B ones, as can be noted in
figure 8.3[b]. Now we go back to the H2O molecular system described above.
In figure 8.4 we reported the QMI matrix corresponding to the converged
VQE state. Since we constructed the ansatz in a spin-symmetric way, we
note that the A and B blocks are equal as expected. For the VQE state
obtained from the ladder ansatz with depth 4, the QMI matrix is shown in
figure 5.2[a]. In this case, we note that nor the A blocks nor the B ones are
identical because this ansatz does not preserve the spin-inversion symmetry.



Chapter 9

Conclusions and outlook

In this work, different approaches have been considered to improve the capa-
bilities of the variational quantum algorithms. Exception made for the QIDA
method, we tried to exploit the symmetries of the system under considera-
tion to this scope. In chapters 3 and 4 we explained how to implement the
orbital optimization procedure on a quantum computer by calculating the
energy derivatives with respect to the Hamiltonian parameters that specify
the single-particle basis set. Results showed that the algorithm improved
the VQE energies and gave a certain flexibility in the ansatz connectivity,
adapting the Hamiltonian to the wavefunction. In chapter 5 we showed that
the WAHTOR algorithm converges to the natural orbital basis set for the
benchmark molecular systems investigated. In chapter 6 the basis change is
interpreted as a particular case of the Bogoliubov proper unitary transfor-
mation, thanks to the Hamiltonian can be written in terms of quasiparticles.
This symmetry has been employed to study SU(N) Hubbard-type models.
Despite the Hamiltonian optimization improving the VQE results for each
system investigated the Bogoliubov transformation did not show any advan-
tage with respect to the basis change. Further investigations are necessary
to test the method before publishing the work: on the one hand, we want to
simulate SU(4) models by optimizing the basis set, on the other hand, we will
investigate the behaviour of the algorithm when the Bogoliubov transforma-
tion is taken into account for Hamiltonians containing superconductive terms,
like for the Kitaev models. In chapter 7 we focused on the building of heuris-
tic ansätze containing the potential to create the correlations characterising
the chemical systems investigated. In particular, we developed a strategy
that determines the quantum mutual information between the spin-orbitals
of an approximated groundstate obtained from classical methods and, based
on this information, built the entangler block. The results show that the
VQE energies obtained with QIDA possess better statistical properties than
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the ones obtained from the ladder ansatz. This is particularly evident for the
NH3 molecule, the bigger tested system. Given the promising results, the
method could be further developed by considering quantum gates different
from the CNOTs to entangle the qubits. Moreover, since the method con-
centrates the strongest correlations on a small number of CNOTs gates, it
can be used as a starting point to build a more accurate ansatz. In chapter
8, we defined a strategy to build ansätze that preserves the spin-inversion
symmetry. As proof of concept, we limited the test to a specific ansatz, thus
further investigations are required to implement other quantum circuits.

The manuscripts related to the results shown in chapters 5 and 7 are in
preparation while the ones related to the results exposed in chapters 4 and
3 are respectively under review [145] and published [103].

All these methods have been tested using state vector simulations. De-
spite we expect that the statistical noise in measurement-based simulations
will not invalidate the methods developed in this work, we showed in figure
3.11 that noisy hardware is not yet able to reproduce physically significant
results when the VQE algorithm is run. Thus further progress is necessary to
reduce the noise of real quantum hardware and allow the use of the methods,
based on the VQE algorithm, that we developed. The ideas developed in
chapters 7 and 8 give rise to ansatz that naturally incorporates some prop-
erty of the investigated system, like correlations or symmetry and, in this
sense, they differ from the random hardware efficient ansatz that suffers the
problem of the barren plateau [42]. Thus it will be interesting to investigate
if this limitation is present in the proposed quantum circuits.

Finally, up to now, all the methods illustrated in this work have been
developed independently from each other. In principle, they could be mixed
to open the way to a new future prospective. For example, given an ap-
proximate state of the problem under investigation, we could build an ansatz
using the QIDA method by considering a spin-inversion symmetric entangler
in place of the CNOTs. Moreover, the Hamiltonian can be optimised using
one of the transformations discussed in this work.



Chapter 10

Appendix

In this appendix, we give additional information about the results illustrated
above. In particular, in the first section, we give proof of the equations used to
calculate the derivatives of the one-body and two-body integrals with respect
to the Hamiltonian parameters shown in chapter 4. in the second one, we
show the quantum mutual information matrices obtained for the molecules
investigated in chapter 5.

10.1 Derivatives

We start defining the vector R ∈ Rd2 and the vector T of the generators of
the Hermitian matrices of dimension d2. The equation of the n-th derivative
of the energy with respect to the variables with indices l1, l2, ..., ln is

dnE(R,θ)

dRl1 , .., dRln

=
∑
i,j

dnh(R)ij
dRl1 , .., dRln

⟨Ψ(θ)| a†iaj |Ψ(θ)⟩+

+
1

2

∑
c,d,e,f

dng(R)cdef
dRl1 , .., dRln

⟨Ψ(θ)| a†ca
†
daeaf |Ψ(θ)⟩

(10.1)

We note that to calculate the derivatives of each order of the energy with
respect to the Hamiltonian parameters, we just need to calculate the deriva-
tives of the one-body and two-body integrals

h(R) = e−iR·ThHF e
iR·T (10.2)

and
g(R) = e−iR·T ⊗ e−iR·T gHF e

iR·T ⊗ eiR·T (10.3)

where hHF and gHF are the one and the two body integrals expressed in
Hartree-Fock basis, respectively. For this purpose, we can use the following
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lemma of the Baker–Campbell–Hausdorff formula

eAoe−A =
∞∑
k=0

[(A)k, o]

k!
(10.4)

where [(A)k, o] = [A, .., [A[A,︸ ︷︷ ︸
k times

o]]...] is the iterated commutator for the two

operators A and o, that can be written as

[(A)k, o] =
∑

Bk=Perm{Ak}

[Bk
1 , [B

k
2 , [B

k
3 , ..., [B

k
k , o]...]]] (10.5)

where Bk is a set composed of k objects that, in this case, are the same
operator A repeated k times. Now suppose that A is linear in R, so, defining
eA(R)oe−A(R) = o(R) it easy to show that

dno(R)

dRl1 , .., dRln

=
∞∑

k=0,n≤k

∑
Bk

1

k!
[Bk

1 , [B
k
2 , [B

k
3 , ..., [B

k
k , o]...]]] (10.6)

where

Bk = Perm{Ak−n,
dA

dRl1

, ..,
dA

dRln

} (10.7)

The derivatives are easy to evaluate in R = 0 because, in this case, just the
term with k = n survive in the summation

dno(R)

dRl1 , .., dRln

|R=0 =
∑
Bn

1

n!
[Bn

1 , [B
n
2 , [B

n
3 , ..., [B

n
n , o]...]]] (10.8)

with

Bn = Perm{ dA
dRl1

, ..,
dA

dRln

} (10.9)

This equation can be written recursively as

dno(R)

dRl1 , .., dRln

|R=0 =
∑

j=Perm{l}

1

n

[
dA

dRj1

,
dn−1o(R)

dRj2 , .., dRjn

|R=0

]
(10.10)

For the one body term, we have that A = −iR · T and o = hHF , so

dnh(R)

dRl1 , .., dRln

|R=0 =
∑

j=Perm{l}

1

n

[
−iTj1 ,

dn−1h(R)

dRj2 , .., dRjn

|R=0

]
(10.11)



10.2. QUANTUM MUTUAL INFORMATION MATRICES 111

For the two body term, we observe that

eiR·T ⊗ eiR·T = (eiR·T ⊗ I)(I ⊗ eiR·T ) = eiR·T⊗IeI⊗iR·T = e(iR·T⊗I+I⊗iR·T )

(10.12)
where I is the identity operator and the last equality is true because of the
Baker–Campbell–Hausdorff formula for commutating operators. So we can
write the two body integrals in the following manner

g(R) = e(−iR·T⊗I−I⊗iR·T )gHF e
(iR·T⊗I+I⊗iR·T ) (10.13)

Now, using the equation 10.10 and imposing A = −iR · T ⊗ I − I ⊗ iR · T
and o = hHF , we obtain a formula similar to that shown for the one body
term

dng(R)

dRl1 , .., dRln

|R=0 =
∑

j=Perm{l}

1

n

[
−i(Tj1 ⊗ I + I ⊗ Tj1),

dn−1g(R)

dRj2 , .., dRjn

|R=0

]
(10.14)

Finally, we obtain the first derivatives

dh(R)

dRl

|R=0 = −i[Tl, hHF ]

dg(R)

dRl

|R=0 = −i[Tl ⊗ I + I ⊗ Tl, gHF ]

(10.15)

and the second ones

d2h(R)

dRl1dRl2

|R=0 = −1

2
([Tl1 , [Tl2 , hHF ]] + [Tl2 , [Tl1 , hHF ]])

d2g(R)

dRl1dRl2

|R=0 = −1

2
([Tl1 ⊗ I + I ⊗ Tl1 , [Tl2 ⊗ I + I ⊗ Tl2 , gHF ]]+

+ [Tl2 ⊗ I + I ⊗ Tl2 , [Tl1 ⊗ I + I ⊗ Tl1 , gHF ]])

(10.16)

10.2 Quantum mutual information matrices

In the present section, we provide the quantum mutual information maps
for the other molecules considered in chapter 5. For each figure, we have
the VQE state (a), the WAHTOR state (b) and the ground state (c,d,e).
The first one is expressed in the HF basis, the second one in the converged
molecular basis and the third one in three different basis sets: Hartree-Fock,
converged and natural orbitals set. For each molecule, we note that the
quantum mutual information in the WAHTOR state is distributed on the
qubit pairs as well as in the ground state expressed in the natural orbital
basis. As more the converged state is similar to the ground state as more the
quantum mutual information maps are similar.
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(a) VQE state in HF molecular or-
bitals

(b) WAHTOR state in converged
molecular orbitals

(c) Groundstate in HF molecular or-
bitals

(d) Groundstate in converged molec-
ular orbitals

(e) Groundstate in natural molecular
orbitals

Figure 10.1: Quantum mutual information for H2 molecule.
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(a) VQE state in HF molecular or-
bitals

(b) WAHTOR state in converged
molecular orbitals

(c) Groundstate in HF molecular or-
bitals

(d) Groundstate in converged molec-
ular orbitals

(e) Groundstate in natural molecular
orbitals

Figure 10.2: Quantum mutual information for LiH molecule.
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(a) VQE state in HF molecular or-
bitals

(b) WAHTOR state in converged
molecular orbitals

(c) Groundstate in HF molecular or-
bitals

(d) Groundstate in converged molec-
ular orbitals

(e) Groundstate in natural molecular
orbitals

Figure 10.3: Quantum mutual information for HF molecule.
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(a) VQE state in HF molecular or-
bitals

(b) WAHTOR state in converged
molecular orbitals

(c) Groundstate in HF molecular or-
bitals

(d) Groundstate in converged molec-
ular orbitals

(e) Groundstate in natural molecular
orbitals

Figure 10.4: Quantum mutual information for BeH2 molecule.
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(a) VQE state in HF molecular or-
bitals

(b) WAHTOR state in converged
molecular orbitals

(c) Groundstate in HF molecular or-
bitals

(d) Groundstate in converged molec-
ular orbitals

(e) Groundstate in natural molecular
orbitals

Figure 10.5: Quantum mutual information for H2S molecule.
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(a) VQE state in HF molecular or-
bitals

(b) WAHTOR state in converged
molecular orbitals

(c) Groundstate in HF molecular or-
bitals

(d) Groundstate in converged molec-
ular orbitals

(e) Groundstate in natural molecular
orbitals

Figure 10.6: Quantum mutual information for NH3 molecule.
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[135] Legeza and J. Sólyom, “Optimizing the density-matrix renormalization
group method using quantum information entropy,” Physical Review B
- Condensed Matter and Materials Physics, vol. 68, p. 195116, 11 2003.

[136] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, “Entanglement in
many-body systems,” Reviews of Modern Physics, vol. 80, pp. 517–
576, 5 2008.

[137] Z. Huang and S. Kais, “Entanglement as measure of electron–electron
correlation in quantum chemistry calculations,” Chemical Physics Let-
ters, vol. 413, pp. 1–5, 9 2005.

[138] J. von Neumann, “Mathematische grundlagen der quantenmechanik,”
Mathematische Grundlagen der Quantenmechanik, 1996.

[139] J. Rissler, R. M. Noack, and S. R. White, “Measuring orbital interac-
tion using quantum information theory,” Chemical Physics, vol. 323,
pp. 519–531, 4 2006.

[140] D. R. Hartree, “The wave mechanics of an atom with a non-coulomb
central field. part ii. some results and discussion,” Mathematical Pro-
ceedings of the Cambridge Philosophical Society, vol. 24, pp. 111–132,
1928.

[141] P. J. Knowles and N. C. Handy, “A new determinant-based full con-
figuration interaction method,” Chemical Physics Letters, vol. 111,
pp. 315–321, 11 1984.

[142] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, Quantum Information
Meets Quantum Matter. Springer New York, 2019.

[143] F. Aquilante, J. Autschbach, A. Baiardi, S. Battaglia, V. A. Borin,
L. F. Chibotaru, I. Conti, L. D. Vico, M. Delcey, I. F. Galván, N. Ferré,
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