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a b s t r a c t

This paper studies the derivation of the quadratic porous medium equation and a
class of cross-diffusion systems from nonlocal interactions. We prove convergence
of solutions of a nonlocal interaction equation, resp. system, to solutions of the
quadratic porous medium equation, resp. cross-diffusion system, in the limit of
a localising interaction kernel. The analysis is carried out at the level of the
(nonlocal) partial differential equations and we use gradient flow techniques to
derive bounds on energy, second order moments, and logarithmic entropy. The
dissipation of the latter yields sufficient regularity to obtain compactness results
and pass to the limit in the localised convolutions. The strategy we propose relies
on a discretisation scheme, which can be slightly modified in order to extend
our result to PDEs without gradient flow structure. In particular, it does not
require convexity of the associated energies. Our analysis allows to treat the case
of limiting weak solutions of the non-viscous porous medium equation at relevant
low regularity, assuming the initial value to have finite energy and entropy.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this manuscript we deal with the connection between nonlocal interaction and the quadratic porous
medium equation (PME), as well as a class of cross-diffusion systems (CDS), for a suitable choice of the
interaction potentials. We show that a weak solution of the quadratic porous medium equation can be
obtained as limit of a sequence of weak measure solutions of a nonlocal interaction equation; this can be
extended to a class of cross-diffusion systems. More precisely, starting with the case of (PME) for ease of
presentation, let W1 := V1 ∗ V1, for a function V1 satisfying some assumptions that will be clarified later,
f. (V). For any ε > 0, consider the scaling

Wε(x) = ε−dW1(x/ε), i.e. Wε = Vε ∗ Vε.
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We prove that, as ε → 0+, a sequence of weak measure solutions to

∂tρ
ε = ∇ · (ρε∇Wε ∗ ρε) (NLIE)

converges to a weak solution of
∂tρ = 1

2∆(ρ2) = ∇ · (ρ∇ρ). (PME)

An analogous result in the case of multi-species leads to a class of cross diffusion systems

∂tρi =
M∑

j=1
div (ρiAij∇ρj) , (CDS)

for i, j = 1, . . . , M , M ∈ N, under suitable assumptions on the matrix of the coefficients, as well as interaction
kernels in the nonlocal version.

The main motivation for this work is to provide further insights into the derivation of diffusion-type
equations from a system of interacting particles, rather than a direct derivation as in continuum mechanics.
We refer the reader to [46] for a complete overview on the analysis of the porous medium equation. Obtaining
a particle approximation for the partial differential equation under study is a fascinating and useful result for
the analysis of PDEs, as it provides a rigorous derivation and way to construct solutions of PDEs, leading to
well-posedness, as well as powerful numerical methods. We mention here the seminal works [22,33,37] and
the review [26]. In case of transport equations (without diffusion), e.g. (NLIE), deterministic approaches
represent a reasonable choice since weak measure solutions may exist, in particular particle solutions in the
form of an empirical measure

ρN
t = 1

N

N∑
i=1

δXi(t),

here, for any i = 1, . . . , N , Xi(t) solves a suitable ODE. For instance, for (NLIE) we would have the ODEs

Ẋi(t) = − 1
N

∑
j

∇Wε(Xi(t) − Xj(t)).

or further details we refer the reader to [6,9], and to [19,20] in case of systems of nonlocal PDEs. The
roblem is substantially different when diffusion is present, initial values in the form of an empirical
easure disperse. More precisely, starting from a Dirac delta as initial datum, we will see an immediate

moothing effect which excludes measure solutions. For this reason, deterministic particle approximations
re challenging, even though numerical methods have been proposed in this direction. We mention [27,40]
or one dimensional linear and nonlinear diffusion, respectively, and [7,17] in any dimension.

A successful attempt to overtake the aforementioned difficulty is given by stochastic particles undergoing a
rownian motion. We start mentioning an inspiring work for our paper, [24], where Figalli and Philipowski
eal with the viscous porous medium equation with exponent m > 1. They obtain (very weak) solutions
s limit of a sequence of distributions of the solutions to nonlinear stochastic differential equations. This
eneralises previous results by Oelschläger, [32,36], and Philipowski, cf. [24], the latter concerning only the
ase m = 2. As byproduct of their analysis, the authors of [24] prove propagation of chaos, thus providing a
onnection between microscopic and macroscopic description. In [38] the quadratic porous medium equation
s derived from a stochastic mean field interacting particle system with the addition of a vanishing Brownian
otion. The concept of solution used is that of strong L1, following [45], which is not the one used in this
ork, cf. Definition 2.1 below. We point out that our strategy is different from the aforementioned papers

ince it does not require the addition of higher regularity induced by (vanishing) viscosity, but is based on

n optimal transport theory approach, using the 2-Wasserstein gradient flow structure of the two equations.

2
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As counterpoint to stochastic methods, in [35], Oelschläger proves for the first time a particle approxima-
tion for classical and positive solutions of (PME) in Rd, and for weak solutions in one dimension. Still in one
pace dimension, [15] presents a deterministic particle approximation for aggregation-diffusion equations,
ncluding the porous medium equation. In the recent article [7], the authors provide a deterministic particle
ethod for linear and nonlinear diffusion equations, interpreted as 2-Wasserstein gradient flows. Their

pproach is inspired by the blob method for aggregation equations in [12]. In particular, in [7], Carrillo, Craig,
nd Patacchini proceed by regularising the associated internal energy and prove Γ -convergence towards the
nregularised energy, both for linear and nonlinear diffusion, that is m ≥ 1. With the addition of a confining
rift or interaction potential, they also show stability of minimisers, ensured by the additional potentials. In
ase m ≥ 2, they provide stability of gradient flows under sufficient regularity conditions, using the approach
f Sandier and Serfaty, [41,43]. For the quadratic porous medium equation, i.e. m = 2, the regularity
onditions needed are satisfied for an initial datum with bounded second order moments and entropy —
s in our case. This generalises a previous result by Lions and Mas-Gallic, [30], on a numerical scheme for
PME) on a bounded domain with periodic boundary conditions. In the case m > 2 or more general initial
ata, it is an open problem to check and apply the stability in [7, Theorem 5.8]. Recently in [13], Craig
t al. use the blob method to obtain a deterministic particle approximation for weighted (quadratic) porous
edium equations, relevant in sampling methods, control theory, and in models of two-layer neural networks.
In the case of cross-diffusion systems, a stochastic approach has been recently considered by Chen et al.

n [10], extending the mean-field limit studied in [11], the latter differing from (CDS) by the addition of linear
iffusion in each species. The key idea in [10] is to consider interacting diffusion coefficients in the systems
f stochastic differential equations and to perform the mean-field limit using an intermediate nonlocal cross-
iffusion system. In [34], Moussa shows the nonlocal-to-local limit for the triangular SKT model on a torous,
ith bounded coefficients. The latter work partially addresses a question raised by Fonbona and Méléard

n [25], where they consider a nonlocal version of the SKT model, [44]. Let us stress that (CDS) is different
rom the SKT model. To the best of our knowledge, a deterministic derivation has not been proven yet.

Our result is strictly related to [7,13] as it provides a rigorous procedure to derive the quadratic porous
edium equation from the nonlocal interaction equation, upon choosing a suitable localising kernel. Indeed,

ne can observe the two associated energies are strictly connected if W = V ∗ V , cf. Remark 3.1. This
ssumption is technical and used in the aforementioned results. We observe that the regularisation of the
nergy in [7,13], for m = 2 and ρ̄ ≡ 1, corresponds to our choice for the interaction potential in (NLIE),
hough we relax the regularity assumption on the kernel in the convolution, so that to include Morse type
otentials, cf. (V). Moreover, we propose an alternative approach that can be used without λ-convexity
nd even if a gradient flow structure is not exhibited (see below and Section 7). More precisely, we construct
olutions of (NLIE) by means of the JKO scheme, [28], in order to obtain uniform estimates on the sequence
f solutions {ρε}ε, which are nevertheless only measures. This issue is solved by considering a smoothed

version of ρε, given by vε := Vε ∗ ρε. Indeed, starting from an initial probability density in L2(Rd) with
nite second order moment and logarithmic entropy, we are able to prove a uniform bound in H1 for vε,
ntailing the right compactness to pass to the limit in the weak formulations of the equations and recover a
eak solution of (PME). Our analysis mirrors that convergence from deterministic particle system might not
ork due to infinite entropy. This problem is also observed in [7, Remark6.3], though numerical simulations

n [7, Section6] give confidence that deterministic approximation could be achieved. Indeed, λ-convexity
f the associated energy allows to exploit stability estimates with the 2-Wasserstein distance so that to
btain a particle approximation when the number of particles involved depends on ε, i.e. N = N(ε), in a
ay the approximation of the initial datum converges zero in Wasserstein fast enough — this is proven in

13, Theorem 1.4] assuming more regularity on the kernel, at least V ∈ C2. A result for the number of
articles independent of the localisation scaling is still open. Interacting stochastic particle systems still
epresent a solid method.
3
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Our approach neither exploits λ-convexity of the energies involved, as in [7,13], nor any equivalent gradient
ow formulation of the equations such as evolution variational inequality or curve of maximal slope. This is
ndeed an advantage, since using the JKO scheme at the level of the nonlocal interaction equation allows to
xtend our strategy to the case of equations which are not gradient flows by means of a suitable splitting
cheme, [5]. The latter issue is also relevant for the extension of our result to cross-diffusion systems, since
eodesic convexity is valid in few cases, if any. Indeed, λ-convex gradient flows may be too restrictive since
he corresponding assumption on the diffusion matrix effectively leads to diagonal diffusion, i.e. Aij = 0 for
̸= i, cf. [2,48]. Furthermore, in order to include a large class of cross-diffusion systems, we note that the

orresponding nonlocal interaction system does not necessarily exhibit a Wasserstein gradient flow structure,
f. [20]. However, this does not exclude to apply a time-discretisation of the system to get uniform bounds
nd existence of a (sequence) of solutions, as proven in Section 6.

We also observe that our strategy can be applied to linear Fokker–Planck equations, for suitable
ssumptions on the external potentials, since we anyway need to assume finite logarithmic entropy initially.
imilarly, one can add linear diffusion for each species in (CDS). As previously mentioned, the extension to
he non-viscous and non-quadratic porous medium equation is still an open problem, cf. [7, Theorem 5.8].
t is then natural to see whether our approach can be used for m ̸= 2, using a different nonlocal equation.
or a better understanding of these problems we provide more details in Section 7.

.1. Structure of the paper

First, in Section 2 we specify the notation and preliminary concepts used throughout the paper. In
ection 3 we focus on the nonlocal interaction equation (NLIE). We provide existence of a sequence of
eak measure solutions, cf. Definition 2.2, by means of the JKO scheme, which is useful to derive uniform
stimates on the associated energy and second order moments. Section 4 is devoted to obtain the suitable
ompactness for the sequence of weak measure solutions to (NLIE). In order to pass to the limit in the weak
ormulation of (NLIE) to obtain the weak solution of (PME) we derive a uniform H1 bound (in space) on a

suitable smoothed sequence associated, by taking advantage of the time-discretisation of (NLIE). In view of
this analysis, we recover the weak solution of (PME) in the ε → 0+ limit in Theorem 5.1 in Section 5. The
results obtained in the previous sections are extended to the multi-species case in Section 6. We conclude
the paper with some remarks on possible extensions of our result in Section 7.

2. Notation and preliminaries

The interaction potential we consider in the one-species case is the (rescaled) convolution W1 := V1 ∗ V1,
being V1 : Rd → R such that the following conditions hold:

(V) V1 ∈ Cb(Rd; [0, +∞)) ∩ C1(Rd \ {0}), ∥V1∥L1 = 1, V1(x) = V1(−x),
∫
Rd |x|V1(x) dx < +∞, ∇V1 ∈

L1(Rd), and |∇V1(x)| ≤ C(1 + |x|).

Among possible examples of kernels V1, we mention Gaussians or pointy potentials such as Morse, the latter
ot covered by previous results. The List (V) implies that the interaction potential satisfies

W) W1 ∈ C(Rd; [0, ∞)), W1(x) = W1(−x) for all x ∈ Rd, W1 ∈ C1(Rd \ {0}) such that ∇W1 = ∇V1 ∗ V1
and ∇W1 ∈ L1(Rd).

More precisely, we consider the rescaled functions Wε(x) = ε−dW1(x/ε) and Vε(x) = ε−dV1(x/ε), hence
ε = Vε ∗ Vε.

emark 2.1. We observe that regularity for W1 is inferred by V1, following a standard proof where the

ack of compact support can be overtaken by using boundedness from above of V1 and Egorov’s theorem.

4
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Continuity of partial derivatives is then obtained from L1 integrability of ∇V1 and Lebesgue’s dominated
convergence theorem.

Throughout the manuscript we will denote by P(Rd) the set of probability measures on Rd, for d ∈ N,
and by Pp(Rd) := {ρ ∈ P(Rd) : mp(ρ) < +∞}, being mp(ρ) :=

∫
Rd |x|p dρ(x) the pth-order moment of ρ, for

1 ≤ p < ∞. We shall use Pa
p(Rd) for elements in Pp(Rd) which are absolutely continuous with respect to the

Lebesgue measure. For p = 2, the 2-Wasserstein distance between µ1, µ2 ∈ P2(Rd) is

d2
W (µ1, µ2) := min

γ∈Γ(µ1,µ2)

{∫
R2d

|x − y|2 dγ(x, y)
}

, (1)

where Γ (µ1, µ2) is the class of all transport plans between µ1 and µ2, that is the class of measures γ ∈ P(R2d)
uch that, denoting by πi the projection operator on the ith component of the product space, the marginality

condition
(πi)#γ = µi for i = 1, 2

s satisfied. In the expression above marginals are the push-forward of γ through πi. For a measure ρ ∈ P(Rd)
nd a Borel map T : Rd → Rn, n ∈ N, the push-forward of ρ through T is defined by∫

Rn
f(y) dT#ρ(y) =

∫
Rd

f(T (x)) dρ(x) for all f Borel functions on Rn.

etting Γ0(µ1, µ2) as the class of optimal plans, i.e. minimisers of (1), the 2-Wasserstein distance can be
ritten as

d2
W (µ1, µ2) =

∫
R2d

|x − y|2 dγ(x, y), γ ∈ Γ0(µ1, µ2).

e refer the reader to [1,42,47] for further details on optimal transport theory and Wasserstein spaces.

emark 2.2. From the Definition of the 2-Wasserstein distance and the inequality |y|2 ≤ 2|x|2 + 2|x − y|2

t follows that
m2(ρ1) ≤ 2m2(ρ0) + 2d2

W (ρ0, ρ1), ∀ρ0, ρ1 ∈ P2(Rd).

In Proposition 4.2 we use the 1-Wasserstein distance, denoted by d1 and defined by

d1(µ1, µ2) := min
γ∈Γ(µ1,µ2)

{∫
R2d

|x − y| dγ(x, y)
}

. (2)

elow we specify the concept of solution to the quadratic porous medium we consider, as well as that of
eak measure solutions of the nonlocal interaction equation.

efinition 2.1 (Weak Solution To (PME)). A weak solution to the porous medium equation{
∂tρ = ∇ · (ρ∇ρ)
ρ(0, ·) = ρ0

(PME)

n the time interval [0, T ] with initial datum ρ0 ∈ Pa
2(Rd) ∩ L2(Rd) such that

∫
Rd ρ0(x) log ρ0(x)dx < ∞ is

curve ρ ∈ C([0, T ];P2(Rd)) satisfying the following properties:

(1) for almost every t ∈ [0, T ] the measure ρ(t) has a density with respect to the Lebesgue measure, still
denoted by ρ(t), and ρ ∈ L2([0, T ]; H1(Rd));

(2) for any φ ∈ C1
c (Rd) and all t ∈ [0, T ] it holds∫

φ(x)ρ(t, x) dx =
∫

φ(x)ρ0(x) dx −
∫ t ∫

ρ(s, x)∇φ(x) · ∇ρ(s, x) dx ds.

Rd Rd 0 Rd

5
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Definition 2.2 (Weak Measure Solution To (NLIE)). A narrowly continuous curve ρε : [0, T ] → P2(Rd),
mapping t ∈ [0, T ] ↦→ ρε

t ∈ P2(Rd), is a weak measure solution to (NLIE) if, for every φ ∈ C1
c (Rd) and any

t ∈ [0, T ], it holds∫
Rd

φ(x)dρε
t (x) −

∫
Rd

φ(x)dρ0(x) = −1
2

∫ t

0

∫∫
R2d

(∇φ(x) − ∇φ(y)) · ∇Wε(x − y)dρε
r(y)dρε

r(x)dr. (3)

emark 2.3. Our choice for the definition of weak measure solution to (NLIE) strongly depends on the
im of our paper, that is showing convergence of solutions of (NLIE) to weak solutions of (PME), according
o Definition 2.1. Note that (NLIE) is a continuity equation of the form{

∂tρt + ∇ · (ρtw
ε
t ) = 0

wε
t = −∇Wε ∗ ρt,

ith a Borel velocity field such that, for ε > 0,∫ T

0

∫
Rd

|wε
t (x)| dρt(x) dt =

∫ T

0

∫
Rd

|∇Wε ∗ ρt(x)| dρt(x) dt

≤ CT

εd
∥V1∥L1(Rd) + 2C

εd+1 ∥V1∥L1(Rd)

∫ T

0

∫
Rd

|x| dρt(x) dx dt

+ CT

εd

∫
Rd

|x|V1(x) dx < +∞,

where we used the growth condition on |∇Vε| and preservation of second order moments (cf. Proposition 3.1).
In turn, [1, Lemma 8.2.1] provides the existence of a continuous representative for distributional solutions
of continuity equations with velocity fields in L1([0, T ]; L1(ρt)). In particular, for test functions time-
independent, we get formulation (3), where we also used that ∇Wε is odd. Note that this formulation
overtakes the loss of regularity at 0 for ∇Wε, as already noticed in [9].

For the reader’s convenience we postpone notations and preliminaries on the multi-species case to
Section 6.

3. Results on the nonlocal interaction equation

The nonlocal interaction equation has been intensively studied, especially in the context of 2-Wasserstein
gradient flows. In [1], the authors deal with (NLIE) for convex potentials that do not produce a blow-up in
finite time. In case of more singular convex potentials, a well-posedness theory for weak measure solutions
is given by [9]. Furthermore, it is worth to mention [3] and the references therein, where Lp theory for the
ggregation equation is provided.

In this paper we consider an interaction potential satisfying assumptions similar to [9], though not convex,
ith the aim of applying the JKO scheme, [28], in order to obtain a priori estimates on the solutions of

NLIE) and their smoothed version vε = Vε ∗ ρε. In turn, we are able to show convergence towards (PME).
The interaction potential we choose is the (rescaled) convolution Wε = Vε ∗ Vε, for Wε(x) = ε−dW1(x/ε),
satisfying (W) that we recall here for convenience:

W) Wε ∈ C(Rd; [0, ∞)), Wε(x) = Wε(−x) for all x ∈ Rd, Wε ∈ C1(Rd \ {0}) such that ∇Wε = ∇Vε ∗ Vε

and ∇Wε ∈ L1(Rd).

Let us emphasise that in this section ε > 0 is fixed and finite. We assume the initial datum ρ0 ∈
P2(Rd) ∩ L2(Rd), and the interaction energy functional Wε : P2(Rd) → (−∞, +∞] is given by

Wε[ρ] = 1
2

∫
Rd

(Wε ∗ ρ)(x)dρ(x).
6
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Remark 3.1. Using that Vε is even, we observe that the nonlocal interaction energy is nothing but the
2 norm of the smoothed solution vε, since∫

Rd
[Vε ∗ (Vε ∗ ρ)](x)dρ(x) =

∫
Rd

|(Vε ∗ ρ)(x)|2dx.

n view of the equivalence above, for ρ0 ∈ P2(Rd) ∩ L2(Rd) we have a uniform bound from above for the
onlocal interaction energy at the initial datum. More precisely,

Wε[ρ0] = 1
2

∫
Rd

(Wε ∗ ρ0)(x)ρ0(x) dx

= 1
2

∫
Rd

|(Vε ∗ ρ0)(x)|2 dx

= 1
2∥Vε ∗ ρ0∥2

L2(Rd) ≤ 1
2∥Vε∥2

L1∥ρ0∥2
L2 = 1

2∥V1∥2
L1∥ρ0∥2

L2 < ∞.

We now proceed with the JKO scheme. First, we define a sequence recursively as follows:

• fix a time step τ > 0 such that ρ0
τ,ε := ρ0;

• for a given ρn
τ,ε ∈ P2(Rd), choose

ρn+1
τ,ε ∈ argmin

ρ∈P2(Rd)

{
d2

W (ρn
τ,ε, ρ)

2τ
+ Wε[ρ]

}
. (4)

he above sequence is well-defined if, for fixed ρ̄ ∈ P2(Rd), the penalised energy functional ρ ∈ P2(Rd) ↦→
d2

W (ρ̄,ρ)
2τ + Wε[ρ] admits minimisers. This can be easily proven by applying the direct method of calculus of

variations. For further details we refer to [9, Lemma 2.3 and Proposition 2.5], although we notice that in our
case lower semi-continuity is easier. More precisely, the penalised energy functional is bounded from below
and lower semicontinuous w.r.t. the narrow convergence by noticing that Wε is continuous and bounded
from below, and the 2-Wasserstein distance is lower semicontinuous.

Let T > 0 be fixed, and define a piecewise constant interpolation as follows: assume N :=
[

T
τ

]
and set

ρε
τ (t) = ρn

τ,ε t ∈ ((n − 1)τ, nτ ],

eing ρn
τ,ε defined in (4).

In the next Proposition we prove narrow compactness (in τ) for ρε
τ and two crucial estimates for its

imiting curve, which we shall see it is a solution to (NLIE). More precisely we prove uniform bounds in τ

nd ε for the interaction energy and second order moments.

Proposition 3.1 (Narrow Compactness, Energy & Moments Bound). There exists an absolutely continuous
urve ρ̃ε : [0, T ] → P2(Rd) such that the piecewise constant interpolation ρε

τ admits a subsequence ρε
τk

narrowly
converging to ρ̃ε uniformly in t ∈ [0, T ] as k → +∞. Moreover, for any t ∈ [0, T ], the following uniform bounds
in τ and ε hold

Wε[ρ̃ε(t)] ≤ 1
2∥V1∥2

L1∥ρ0∥2
L2 , (5a)

m2(ρ̃ε) ≤ 2m2(ρ0) + 2T∥V1∥2
L1∥ρ0∥2

L2 . (5b)

roof. From the Definition of the sequence {ρn
τ,ε}n∈N it holds

d2
W (ρn

τ,ε, ρn+1
τ,ε )

+ Wε[ρn+1] ≤ Wε[ρn ], (6)
2τ τ,ε τ,ε

7
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which implies Wε[ρn+1
τ,ε ] ≤ Wε[ρn

τ,ε], and, in particular, the following bound for the interaction energy (cf.
emark 3.1)

sup
n

Wε[ρn
τ,ε] ≤ Wε[ρ0] ≤ 1

2∥V1∥2
L1∥ρ0∥2

L2 . (7)

y summing up over k inequality (6), we obtain
n∑

k=m

d2
W (ρk

τ,ε, ρk+1
τ,ε )

2τ
≤ Wε[ρm

τ,ε] − Wε[ρn+1
τ,ε ]. (8)

he non-negativity of Wε and the energy inequality (7) allow us to improve the above inequality to
n∑

k=m

d2
W (ρk

τ,ε, ρk+1
τ,ε )

2τ
≤ Wε[ρ0]. (9)

his implies
d2

W (ρ0, ρε
τ (t)) ≤ 2TWε[ρ0] ≤ T∥V1∥2

L1∥ρ0∥2
L2 ,

hence we obtain that second order moments are uniformly bounded on [0, T ] in view of Remark 2.2, i.e.

m2(ρε
τ (t)) ≤ 2m2(ρ0) + 2d2

W (ρ0, ρε
τ (t)) ≤ 2m2(ρ0) + 2T∥V1∥2

L1∥ρ0∥2
L2 . (10)

ow, let us consider 0 ≤ s < t such that s ∈ ((m − 1)τ, mτ ] and t ∈ ((n − 1)τ, nτ ] (which implies
n − m| < |t−s|

τ + 1); by Cauchy–Schwarz inequality and (9), we obtain

dW (ρε
τ (s), ρε

τ (t)) ≤
n−1∑
k=m

dW (ρk
τ,ε, ρk+1

τ,ε ) ≤

(
n−1∑
k=m

d2
W (ρk

τ,ε, ρk+1
τ,ε )

) 1
2

|n − m|
1
2

≤ c
(√

|t − s| +
√

τ
)

,

(11)

here c is a positive constant. Thus ρε
τ is 1

2 -Hölder equi-continuous, up to a negligible error of order
√

τ . By
using a refined version of Ascoli–Arzelà’s theorem, [1, Proposition 3.3.1], we obtain ρε

τ admits a subsequence
arrowly converging to a limit ρ̃ε as τ → 0+ uniformly on [0, T ]. Since | · |2 and Wε are lower semicontinuous

and bounded from below, we actually have for any t ∈ [0, T ]

lim inf
k→+∞

∫
Rd

|x|2 dρε
τk

(x) ≥
∫
Rd

|x|2 dρ̃ε(x)

lim inf
k→+∞

W[ρε
τk

] ≥ Wε[ρ̃ε],

whence the assertion follows. □

Next, we show that ρ̃ε provided by Proposition 3.1 is indeed a solution to (NLIE). We stress that this
result is not surprising and it is not the main purpose of this paper. Nevertheless, our interaction potential
Wε does not satisfy the convexity assumption required in [1,9], where there is a rigorous theory for weak
measure solutions to (NLIE). Therefore, for the sake of completeness we show that the lack of convexity does
not affect existence of solutions to (NLIE). In fact, we can pass to the limit in the Euler–Lagrange equation
associated to (4).

Theorem 3.1. The curve ρ̃ε is a weak measure solution to (NLIE) according to Definition 2.2.

roof. Let us consider two consecutive elements of the sequence {ρn
τ,ε}n∈N defined in (4), i.e. ρn

τ,ε and ρn+1
τ,ε .

e perturb ρn+1
τ,ε by using a map P σ = id + σζ, for some ζ ∈ C∞

c (Rd;Rd) and σ ≥ 0, that is we consider
he perturbation

ρσ := P σρn+1. (12)
# τ,ε

8
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Being ρn+1
τ,ε a minimiser of (4), we have

1
2τ

[
d2

W (ρn
τ,ε, ρσ) − d2

W (ρn
τ,ε, ρn+1

τ,ε )
σ

]
+

Wε[ρσ] − Wε[ρn+1
τ,ε ]

σ
≥ 0. (13)

irst, we consider the interaction terms in (13)

1
2σ

∫
Rd

Wε ∗ ρσ(x)dρσ(x) − 1
2σ

∫
Rd

Wε ∗ ρn+1
τ,ε (x)dρn+1

τ,ε (x)

= 1
2

∫∫
R2d

[
Wε(P σ(x) − P σ(y)) − Wε(x − y)

σ

]
dρn+1

τ,ε (y) dρn+1
τ,ε (x)

= 1
2

∫∫
R2d

[
Wε(x − y + σ(ζ(x) − ζ(y))) − Wε(x − y)

σ

]
dρn+1

τ,ε (y) dρn+1
τ,ε (x).

(14)

ince the interaction potential satisfies Wε ∈ C(Rd) ∩ C1(Rd \ {0}), for all (x, y) ∈ R2d it holds

Wε(x − y + σ(ζ(x) − ζ(y))) − Wε(x − y)
σ

−→
σ→0

∇Wε(x − y) · (ζ(x) − ζ(y)). (15)

y means of Egorov’s theorem, for every η > 0 there exists Bη ⊂ R2d measurable such that∫∫
Bη

dρn+1
τ,ε (y) dρn+1

τ,ε (x) < η

and the convergence (15) is uniform on R2d \ Bη. The integral on Bη can be neglected in the limit-integral
interchange since the sequence in (15) is uniformly bounded in σ. Thus, we obtain

1
2

∫∫
R2d

(
Wε(x − y + σ(ζ(x) − ζ(y))) − Wε(x − y)

σ

)
dρn+1

τ,ε (y) dρn+1
τ,ε (x)

−→
σ→0

1
2

∫∫
R2d

∇Wε(x − y) · (ζ(x) − ζ(y)) dρn+1
τ,ε (y) dρn+1

τ,ε (x).

egarding the terms involving the 2-Wasserstein distance, let us consider an optimal transport plan γn
τ,ε ∈

0(ρn
τ,ε, ρn+1

τ,ε ) between ρn
τ,ε and ρn+1

τ,ε . By Definition of dW , we have

1
2τ

[
d2

W (ρn
τ,ε, ρσ) − d2

W (ρn
τ,ε, ρn+1

τ,ε )
σ

]
≤ 1

2τσ

∫∫
R2d

(
|x − P σ(y)|2 − |x − y|2

)
dγn

τ,ε(x, y)

= 1
2τσ

∫∫
R2d

(
|x − y − σζ(y)|2 − |x − y|2

)
dγn

τ,ε(x, y)

= − 1
τ

∫∫
R2d

(x − y) · ζ(y) dγn
τ,ε(x, y) + o(σ),

where in the last equality we applied a first order Taylor expansion (note that ζ ∈ C∞). By sending σ to 0
it holds

1
τ

∫∫
R2d

(x − y) · ζ(y) dγn
τ,ε(x, y) ≤ 1

2

∫∫
R2d

∇Wε(x − y) · (ζ(x) − ζ(y)) dρn+1
τ,ε (y) dρn+1

τ,ε (x).

epeating the same computation for σ ≤ 0, we actually obtain an equality, that is, for ζ = ∇φ

1
τ

∫∫
R2d

(x − y) · ∇φ(y)dγn
τ,ε(x, y) = 1

2

∫∫
R2d

∇Wε(x − y) · (∇φ(x) − ∇φ(y))dρn+1
τ,ε (y)dρn+1

τ,ε (x). (16)

ote that the Hölder estimate (11) and (x − y) · ∇φ(y) = φ(x) − φ(y) + o(|x − y|2) imply

1 ∫∫ (x − y) · ∇φ(y) dγn
τ,ε(x, y) = 1 ∫

φ(x) d(ρn
τ,ε − ρn+1

τ,ε )(x) + O(τ).

τ R2d τ Rd

9
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Now, let 0 ≤ s < t be fixed, with
h =

[ s

τ

]
+ 1 and k =

[
t

τ

]
.

aking into account the last equality, by summing in (16) over j from h to k, we obtain∫
Rd

φ(x) dρk+1
τ,ε −

∫
Rd

φ(x) dρh
τ,ε + O(τ2) =

−
k∑

j=h

τ

2

∫∫
R2d

∇Wε(x − y) · (∇φ(x) − ∇φ(y)) dρj+1
τ,ε (y) dρj+1

τ,ε (x),

which is equivalent to∫
Rd

φ(x) dρε
τ (t)(x)−

∫
Rd

φ(x) dρε
τ (s)(x) + O(τ2) =

− 1
2

∫ t

s

∫∫
R2d

∇Wε(x − y) · (∇φ(x) − ∇φ(y)) dρε
τ (r)(y) dρε

τ (r)(x) dr.

p to pass to a subsequence, the result follows by considering the limit as τ → 0+ and choosing s = 0. □

. Compactness for ρε and vε

The sequence of solutions {ρ̃ε}ε>0 to (NLIE) constructed in Section 3 is the candidate approximating
eak solution of (PME), if we use higher regularity of its smoothed version, Vε ∗ ρ̃ε, in the limit ε → 0+.

In this section we deal with the compactness for both the sequences. For the ease of presentation, from this
point on we drop the symbol tilde used in the previous section to denote the sequence of solutions to (NLIE)
in Theorem 3.1.

First, we prove that {ρε}ε>0 is relatively compact in C([0, T ],P2(Rd)), again by means of a refined version
of the Ascoli–Arzelà theorem, [1, Proposition 3.3.1].

Proposition 4.1. There exists an absolutely continuous curve ρ̃ : [0, T ] → P2(Rd) such that the sequence
{ρε}ε>0 admits a subsequence {ρεk } such that ρεk (t) narrow converges to ρ̃(t) for any t ∈ [0, T ] as k → +∞.

Proof. Firstly, a subset K ⊂ P2(Rd) is relatively compact if and only if it is tight, due to Prokhorov’s
theorem. The sequence ρε is tight since its second order moments are uniformly bounded according to
Proposition 3.1. Secondly, the equi-continuity of ρε follows from that of ρε

τ , cf. (11), by lower semi-continuity
of the 2-Wasserstein distance. More precisely, for any ε > 0 and s, t ∈ [0, T ], let us consider a sequence of
optimal transport plans γε

τ ∈ Γ0(ρε
τ (s), ρε

τ (t)) such that

d2
W (ρε

τ (s), ρε
τ (t)) =

∫∫
R2d

|x − y|2 dγε
τ (x, y).

By stability of optimal transport plans, cf. [47, Corollary 5.21], we get γε
τ ⇀ γε as τ → 0+, and

lim inf
τ→0

d2
W (ρε

τ (s), ρε
τ (t)) = lim inf

τ→0

∫∫
R2d

|x − y|2 dγε
τ (x, y)

≥
∫∫

R2d
|x − y|2 dγε(x, y)

≥ d2
W (ρε(s), ρε(t)).

In particular, from (11) in Proposition 3.1 we obtain

dW (ρε(s), ρε(t)) ≤ c|t − s|,

for a positive constant c. Finally, the assertion follows by applying the aforementioned version of the
Ascoli–Arzelà theorem. □
10
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Next we consider the corresponding smoothed (sub)sequence {vε}ε, being vε(t) := Vε ∗ ρε(t) for any
∈ [0, T ]. Note that we removed the subscript k for ease of presentation. For the latter sequence we obtain
n H1 estimate by using the flow interchange technique, developed by Matthes, McCann and Savaré in [31],
f. also [8,18,21] for further details. The strategy is to compute the dissipation of the interaction energy
unctional Wε along a solution of an auxiliary gradient flow, in order to use the Evolution Variational
nequality (EVI) to obtain the desired estimate, leading to compactness.

Since the seminal work by Jordan, Kinderlehrer, and Otto, [28], it is known that the heat equation can
e regarded as a 2-Wasserstein steepest descent of the opposite of the Boltzmann entropy, i.e. H[ρ] =
Rd ρ(x) log ρ(x) dx. The entropy functional is 0-convex along geodesics and it possesses a unique 0-flow,
enoted by SH, given by the heat semigroup (cf. [1,16,21]). For the reader’s convenience we recall the
efinition of λ-flow for a general functional F.

efinition 4.1 (λ-flow). A semigroup SF : [0, +∞] × P2(Rd) → P2(Rd) is a λ-flow for a functional
: P2(Rd) → R∪ {+∞} with respect to the distance dW if, for an arbitrary ρ ∈ P2(Rd), the curve t ↦→ St

Fρ

s absolutely continuous on [0, +∞[ and it satisfies the evolution variational inequality (EVI)

1
2

d+

dt
d2

W (St
Fρ, ρ̄) + λ

2 d2
W (St

Fρ, ρ̄) ≤ F(ρ̄) − F(St
Fρ) (17)

or all t > 0, with respect to every reference measure ρ̄ ∈ P2(Rd) such that F(ρ̄) < ∞.

Below we use the flow interchange by considering the heat equation as auxiliary flow, and the entropy as
uxiliary functional, i.e.

H[ρ] =
{∫

Rd ρ(x) log ρ(x) dx, ρ log ρ ∈ L1(Rd);
+∞ otherwise.

(18)

emark 4.1. We remind the reader that the entropy is controlled from below by the second order moment
f ρ, denoted by m2(ρ). More precisely, in [28, Proposition 4.1] it is shown that

H(ρ) ≥ −C(m2(ρ) + 1)β ,

for every ρ ∈ Pa
2(Rd), β ∈ ( d

d+2 , 1) and C < +∞, depending only on the space dimension d. We use this
ound in order to have a uniform control from below for the entropy.

In the following, for any ν ∈ P2(Rd) such that H(ν) < +∞, we denote by St
Hν the solution at time t of

he heat equation coupled with an initial value ν at t = 0. Moreover, for every ρ ∈ P2(Rd), we define the
issipation of Wε along SH by

DHWε(ρ) := lim sup
s↓0

{
Wε[ρ] − Wε[Ss

Hρ]
s

}
.

e can now prove a uniform bound for {vε}ε in L2([0, T ]; H1(Rd)).

emma 4.1. Let ρ0 ∈ Pa
2(Rd) ∩ L2(Rd) such that H[ρ0] < ∞. There exists a constant C = C(ρ0, V1, T )

uch that, for any ε > 0,
∥vε∥L2([0,T ];H1(Rd)) ≤ C(ρ0, V1, T ). (19)

herefore, there exists a subsequence {vεk }k and a curve v ∈ L2([0, T ]; H1(Rd)) such that vεk ⇀ v in
2 1 d
([0, T ]; H (R )).

11
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Proof. From Proposition 3.1 we infer the uniform bound in τ and ε

∥Vε ∗ ρε
τ ∥2

L2([0,T ];L2(Rd)) =
∫ T

0

∫
Rd

|[Vε ∗ ρε
τ (t)](x)|2 dx dt = 2

∫ T

0
Wε[ρε

τ (t)] dt

≤ 2TWε[ρ0] ≤ T∥V1∥2
L1(Rd)∥ρ0∥2

L2(Rd).

hus, there exists a subsequence τk such that Vε ∗ ρε
τk

⇀ wε in L2([0, T ]; L2(Rd)) as τk → 0. The limit
ε ≡ vε due to uniqueness of limit and Proposition 4.1. Up to pass to a subsequence, we have

∥vε∥2
L2([0,T ];L2(Rd)) ≤ T∥V1∥2

L1(Rd)∥ρ0∥2
L2(Rd), (20)

ince the norm is weakly lower semicontinuous. Now, we obtain a uniform bound for ∇vε. For all s > 0, if
e consider Ss

Hρn+1
τ,ε as competitor of ρn+1

τ,ε in the minimisation problem (4), as direct consequence of the
efinition of the sequence {ρn

τ,ε}n∈N we have
1
2τ

d2
W (ρn+1

τ,ε , ρn
τ,ε) + Wε[ρn+1

τ,ε ] ≤ 1
2τ

d2
W (Ss

Hρn+1
τ,ε , ρn

τ,ε) + Wε[Ss
Hρn+1

τ,ε ],

hence, dividing by s > 0 and passing to the lim sup as s ↓ 0,

τDHWε(ρn+1
τ,ε ) ≤ 1

2
d+

dt

(
d2

W (St
Hρn+1

τ,ε , ρn
τ,ε)
)⏐⏐

t=0

(E.V.I.)
≤ H[ρn

τ,ε] − H[ρn+1
τ,ε ]. (21)

n the last inequality we used that SH is a 0-flow. Now, let us focus on the left hand side of (21). First of
ll, note that

DHWε(ρn+1
τ,ε ) = lim sup

s↓0

{
Wε[ρn+1

τ,ε ] − Wε[Ss
Hρn+1

τ,ε ]
s

}

= lim sup
s↓0

∫ 1

0

(
− d

dz

⏐⏐⏐
z=st

Wε[Sz
Hρn+1

τ,ε ]
)

dt.

(22)

hus, we now compute the time derivative inside the above integral, by using integration by parts and
eeping in mind the regularity of the solution to the heat equation:

d

dt
Wε[St

Hρn+1
τ,ε ] = −

∫
Rd

∇(Wε ∗ St
Hρn+1

τ,ε )(x)∇St
Hρn+1

τ,ε (x) dx

= −
∫
Rd

|∇(Vε ∗ St
Hρn+1

τ,ε )(x)|2 dx.

(23)

y substituting (23) into (22), from (21) we obtain

τ lim inf
s↓0

∫ 1

0

∫
Rd

|∇(Vε ∗ Sst
Hρn+1

τ,ε )(x)|2 dx dt ≤ H[ρn
τ,ε] − H[ρn+1

τ,ε ],

hence, by L2 lower semi-continuity of the H1 seminorm,

τ

∫
Rd

|∇(Vε ∗ ρn+1
τ,ε )(x)|2 dx dt ≤ H[ρn

τ,ε] − H[ρn+1
τ,ε ].

y summing up over n from 0 to N − 1, taking into account that x log x ≤ x2 for any x ≥ 0, Remark 4.1
nd that second order moments are uniformly bounded (see Proposition 3.1), we get∫ T

0

∫
Rd

|∇(Vε ∗ ρε
τ (t))(x)|2 dx dt ≤ H[ρ0] − H[ρn

τ,ε] ≤ ∥ρ0∥2
L2(Rd) + C(ρ0, V1, T ).

n particular, using weak lower semi-continuity of the norm,

∥∇vε∥2
L2([0,T ];L2(Rd)) =

∫ T

0

∫
Rd

|∇vε(t)(x)|2 dx dt ≤ ∥ρ0∥2
L2(Rd) + C(ρ0, V1, T ). (24)

he bounds in (20) and (24) give the first result of the statement, and an application of the Banach–Alaoglu

heorem concludes the proof. □

12
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Remark 4.2. We observe that ρ0 ∈ Pa
2(Rd)∩L2(Rd) does imply H[ρ0] < ∞, since x log x ≤ x2 for any x ≥ 0.

e prefer to keep this assumption as this is the main issue when dealing with the particle approximation
sing this strategy.

emark 4.3. Let us notice that, for any t ∈ [0, T ], the first order moment of vε
t is finite. In fact, using

that Vε is even, the assumption
∫
Rd |x|V1(x) dx < +∞, and Proposition 3.1:∫

Rd
|x|vε

t (x) dx =
∫∫

R2d
|x|Vε(x − y) dρε

t (y) dx

≤
∫∫

R2d
Vε(y − x)|x − y| dρε

t (y) dx +
∫∫

R2d
Vε(y − x)|y| dρε

t (y) dx

= ε

∫
Rd

V1(z)|z| dz +
∫
Rd

V1(z) dz

∫
Rd

|y| dρε
t (y)

≤ ε

∫
Rd

V1(z)|z| dz +
√

m2(ρε)
∫
Rd

V1(z) dz < +∞.

The strong L2 compactness in time and space follows by applying a refined version of the Aubin–Lions
Lemma due to Rossi and Savaré [39, Theorem 2]. For the reader’s convenience we recall the latter result
below, before presenting the compactness result for {vεk }k.

Proposition 4.2 ([39, Theorem 2]). Let X be a separable Banach space. Consider

• a lower semicontinuous functional F : X → [0, +∞] with relatively compact sublevels in X;
• a pseudo-distance g : X × X → [0, +∞], i.e., g is lower semicontinuous and such that g(ρ, η) = 0 for any

ρ, η ∈ X with F(ρ) < ∞, F(η) < ∞ implies ρ = η.

Let U be a set of measurable functions u : (0, T ) → X, with a fixed T > 0. Assume further that

sup
u∈U

∫ T

0
F(u(t)) dt < ∞ and lim

h↓0
sup
u∈U

∫ T −h

0
g(u(t + h), u(t)) dt = 0 . (25)

hen U contains an infinite sequence (un)n∈N that converges in measure, with respect to t ∈ (0, T ), to a
easurable ũ : (0, T ) → X, i.e.

lim
n→∞

|{t ∈ (0, T ) : ∥un(t) − u(t)∥X ≥ σ}| = 0, ∀σ > 0.

The two conditions in (25) are called tightness and weak integral equicontinuity, respectively.

roposition 4.3. Let ε ≤ 1. The sequence {vεk }k obtained in Lemma 4.1 converges strongly to the curve
in L2([0, T ]; L2(Rd)), for any T > 0.

roof. The proof of the result is obtained by applying Proposition 4.2 to a subset of U := {vε}0≤ε≤1 for
:= L2(Rd) and g := d1 being the 1-Wasserstein distance — extended to +∞ outside of P1(Rd) × P1(Rd).

s for the functional, we consider F : L2(Rd) → [0, +∞] defined by

F[v] =
{

∥v∥2
H1(Rd) +

∫
Rd |x|v(x) dx, if v ∈ P1(Rd) ∩ H1(Rd);

+∞ otherwise.

ote that elements in the domain of the functional F belong to P1(Rd), thus 0 = g(ρ, η) = d1(ρ, η) implies
= η. Next we show that F is an admissible functional and later on we check the conditions in (25). In
rder to improve the readability we split the remainder of the proof in four steps.
13
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Step 1: F is lower semicontinuous Let {vn}n ⊂ L2(Rd) such that vn → v in L2(Rd) and F [vn] <

∞, otherwise it is trivial. We prove that F1[v] := ∥∇v∥2
L2(Rd) and F2[v] :=

∫
Rd |x|v(x) dx are lower

semicontinuous, since ∥v∥2
L2(Rd) obviously is. Note that ∥vn∥2

H1(Rd) ≤ supn ∥vn∥2
H1(Rd) =: F̄ < +∞. Thus,

there exists a subsequence such that ∇vnk
⇀ ∇v in L2(Rd), since the limit is unique. A straightfoward

computation shows that

F1[vn] ≥
∫
Rd

|∇v(x)|2 dx + 2
∫
Rd

(∇vn(x) − ∇v) · ∇v(x) dx,

which gives lim infn F1[vn] ≥ F1[v]. Regarding F2, let us consider BR a ball of radius R. Since vn ⇀ v in
L2(Rd) and | · | ∈ L2(BR), we have

lim
n

∫
BR

|x|vn(x) dx =
∫

BR

|x|v(x) dx,

whence
lim inf

n

∫
Rd

|x|vn(x) dx ≥ lim inf
n

∫
BR

|x|vn(x) dx =
∫

BR

|x|v(x) dx

The monotone convergence theorem gives the desired result.
Step 2: sublevels of F are relatively compact in L2(Rd) Let Ac := {v ∈ L2(Rd) : F[v] ≤ c} be a sublevel of

F, where c is a positive constant. The Riesz–Fréchet–Kolmogorov theorem provides relatively compactness
in L2(Rd) of Ac. In fact, elements of Ac are bounded in L2(Rd) and it holds the uniform continuity estimate∫

Rd
|v(x + h) − v(x)|2 dx =

∫
Rd

⏐⏐⏐⏐∫ 1

0

d

dτ
v(x + τh) dτ

⏐⏐⏐⏐2 dx =
∫
Rd

⏐⏐⏐⏐∫ 1

0
h · ∇v(x + τh) dτ

⏐⏐⏐⏐2 dx

≤ |h|2
∫
Rd

∫ 1

0
|∇v(x + τh)|2 dτ dx = |h|2∥∇v∥2

L2(Rd),

(26)

which implies ∥v(· + h) − v(·)∥L2(Rd) → 0 as h → 0+. Moreover, we have uniform integrability at infinity by
means of Hölder and Gagliardo–Nirenberg inequalities. In particular,

∥v∥2
L2(Rd\BR) =

∫
|x|≥R

|v(x)|2 dx ≤ 1
Rδ

∫
Rd

|x|δ|v(x)|2 dx

≤ 1
Rδ

(∫
Rd

|x|v(x) dx

)δ (∫
Rd

|v(x)|
2−δ
1−δ dx

)1−δ

,

where δ can be chosen in (0, 1) such a way the exponent p := (2−δ)/(1−δ) satisfies p ∈ (2, +∞) for d = 1, 2,
and 2 < p < 2d

d−2 for d > 2. The latter requirements are implied by the Gagliardo–Nirenberg inequality

∥v∥Lp(Rd) ≤ C∥∇v∥θ
L2(Rd)∥v∥1−θ

L2(Rd), θ = (p − 2)d
2p

,

hich guarantees that ∥v∥Lp(Rd) is finite, thus the uniform integrability at infinity.
Step 3: tightness and weak integral equicontinuity Let us set U := {vε}0≤ε≤1, being vε : [0, T ] → L2(Rd)

he sequence defined above by vε = Vε ∗ ρε, which satisfies Lemma 4.1. For any 0 ≤ ε ≤ 1, it holds∫ T

0
F[vε(t)] dt =

∫ T

0
∥vε(t)∥2

H1(Rd) dt +
∫ T

0

∫
Rd

|x|vε
t (x) dx dt

≤ C(ρ0, V1, T ) + T

∫
Rd

V1(z)|z| dz < +∞,

here we also used Remark 4.3 and that ε ≤ 1 — note that the bound for ε is arbitrary as we could
hoose any constant. Taking the supremum in U we have tightness. The weak integral equi-continuity is a
14
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consequence of the equi-continuity of ρε proven in Proposition 4.1. More precisely, for any ε ≥ 0 and h > 0
t holds∫ T −h

0
d1(vε(t + h), vε(t)) dt ≤

∫ T −h

0
dW (vε(t + h), vε(t)) dt ≤

∫ T −h

0
dW (ρε(t + h), ρε(t)) dt ≤ c|h|T,

here in the intermediate inequalities we used well known properties of Wasserstein distances, cf. for
xample [42, Section 5.1].

Step 4: relatively compactness in L2([0, T ]; L2(Rd)) By abuse of notation we denote by U := {vεk }k a
ubsequence of {vε}0≤ε≤1 such that vεk ⇀ v in L2([0, T ]; H1(Rd)), in view of Lemma 4.1. According to

Proposition 4.2, there exists a subsubsequence vε′
k such that vε′

k converges in measure (with respect to
time with values in X = L2(Rd)) to a curve ṽ ≡ v, due to the weakly convergence of vεk . By standard
arguments we can conclude that {vεk } converges to v in measure, thus pointwise almost everywhere (up to
pass to a subsequence). Since supt ∥vε(t)∥2

L2(Rd) ≤ ∥V1∥2
L1∥ρ0∥2

L2 , we infer strong convergence of vεk to v in
L2([0, T ]; L2(Rd)) by applying Lebesgue’s dominated convergence theorem. □

5. Towards the quadratic porous medium equation

In view of the analysis carried out in the previous sections, we are now able to prove convergence of
solutions of (NLIE) to the solution of (PME), as ε → 0+. The key issue is to pass to the limit in the weak
formulation, which is not straightforward since ρε is only a measure in general. As already explained earlier
in the paper, we use the higher regularity of vε and that ρε−vε converges to zero in the sense of distributions,
starting from ρ0 ∈ Pa

2(Rd) ∩ L2(Rd) with H[ρ0] < ∞.
According to Definition 2.2, for any ε > 0 and any φ ∈ C1

c (Rd), ρε satisfies∫
Rd

φ(x)dρε
T (x) −

∫
Rd

φ(x)dρ0(x) = −1
2

∫ T

0

∫∫
R2d

(∇φ(x) − ∇φ(y)) · ∇Wε(x − y)dρε
t (y)dρε

t (x)dt,

= −
∫ T

0

∫
Rd

∇φ(x) · ∇Vε ∗ vε
t (x)dρε

t (x)dt,

(27)

which can be rewritten as∫
Rd

φ(x) dρε
T (x) −

∫
Rd

φ(x) dρ0(x) = −
∫ T

0

∫
Rd

Vε ∗ (ρε
t ∇φ)(x) · ∇vε

t (x) dx dt

= −
∫ T

0

∫
Rd

vε
t (x)∇φ(x) · ∇vε

t (x) dx dt

−
∫ T

0

∫
Rd

zε
t (x) · ∇vε

t (x) dx dt,

(28)

where for any t ∈ [0, T ] and x ∈ Rd the excess term is given by

zε
t (x) := Vε ∗ (ρε

t ∇φ)(x) − (Vε ∗ ρε
t )(x)∇φ(x) = Vε ∗ (ρε

t ∇φ)(x) − vε
t (x)∇φ(x).

Remark 5.1. Note that the integral after the second equality in (27) makes sense since ∇Vε ∗ vε
t ∈ C(Rd).

This can be easily verified by applying Lebesgue dominated convergence theorem using that ∇Vε ∈ L1(Rd),
for ε > 0.

Lemma 4.1 and Proposition 4.3 entail to pass to the limit in the first term on the right-hand side of (28),
upon considering a subsequence, since vε converges strongly in L2([0, T ]; L2(Rd)) and ∇vε converges weakly
in L2([0, T ]; L2(Rd)). We will show that vε converges to the same limit of ρε in the sense of distributions,
whence we infer that the limit ρ̃ from Proposition 4.1 attains the same regularity, namely L2([0, T ]; H1(Rd)).

ε 2 d
Furthermore, we prove that the excess term z converges to 0 in L ([0, T ] × R ).
15
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5.1. Convergence of the excess term

Lemma 5.1. The excess term zε satisfies

∥zε∥L∞([0,T ];L1(Rd)) ≤ εC(V1, φ),

or any φ ∈ C2
c (Rd).

roof. For any t ∈ [0, T ] and φ ∈ C2
c (Rd) we obtain∫

Rd
|zε

t (x)| dx ≤
∫
Rd

∫
Rd

Vε(x − y)|∇φ(y) − ∇φ(x)|dρε
t (y) dx

≤ ∥D2φ∥∞

∫
Rd

∫
Rd

Vε(x − y)|y − x| dρε
t (y) dx

= ε∥D2φ∥∞

∫
Rd

|z|V1(z) dz,

by means of the change of variable z = x−y
ε . The assertion follows by taking the supremum over t ∈ [0, T ]. □

emma 5.2. There exists a constant C only depending on φ and V1 such that for all ε > 0 and a δ > 0
mall enough

∥zε∥L2([0,T ];L2+δ(Rd)) ≤ C.

roof. For almost every x ∈ Rd and t ∈ [0, T ], for i = 1, . . . , d, the non-negativity of V1 and ρε
t gives⏐⏐⏐⏐∫

Rd
Vε(x − y)∂xi

φ(y)dρε
t (y)

⏐⏐⏐⏐ ≤
∫
Rd

Vε(x − y)|∂xi
φ(y)|dρε

t (y) ≤ ∥∂xi
φ∥∞ vε

t (x).

In particular, this implies
|zε

t (x)| ≤ 2∥∇φ∥∞|vε
t (x)|,

hus ∥zε
t ∥Lp(Rd) ≤ 2∥∇φ∥∞∥vε

t ∥Lp for almost every t ∈ [0, T ], and p ≥ 1.
Proposition 3.1 and Lemma 4.1 entail existence of a constant c, independent of ε, such that

sup
t∈[0,T ]

∥vε
t ∥L2(Rd) ≤ c and

∫ T

0
∥∇vε

t ∥2
L2 dt ≤ c.

obolev embedding theorems provide the estimate since∫ T

0
∥vε

t ∥2
L2+δ(Rd)dt ≤ c,

or some constant still denoted by c. □

orollary 5.1. The excess term converges to zero in L2([0, T ] × Rd) as ε → 0+.

roof. The proof is a simple consequence of the interpolation inequality for Lp functions and the previous
emmas. More precisely, for α = δ/(2(1 + δ)) it holds∫ T

0
∥zε

t ∥2
L2(Rd)dt ≤

∫ T

0
∥zε

t ∥2α
L1(Rd)∥zε

t ∥2(1−α)
L2+δ(Rd)dt

≤

(∫ T

0
∥zε

t ∥2
L1(Rd)dt

)α(∫ T

0
∥zε

t ∥2
L2+δ(Rd)dt

)1−α

≤ ε2αT αC(V1, φ),
(29)
which gives the result by letting ε tend to 0. □

16
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5.2. Convergence to the quadratic porous medium equation

Let us consider the subsequence from Proposition 4.1, still denoted by {ρε}ε, which narrowly converges
o the curve ρ̃. In the next Lemma we show that the corresponding smoothed subsequence, still denoted by
vε}ε, converges to ρ̃ in the sense of distributions.

emma 5.3. For any t ∈ [0, T ] and any φ ∈ C1
c (Rd) we have

lim
ε→0+

∫
Rd

φ(x)vε
t (x) dx =

∫
Rd

φ(x) dρ̃(t).

roof. For any t ∈ [0, T ] and any φ ∈ C1
c (Rd), by using the Definition of vε

t we obtain:⏐⏐⏐⏐∫
Rd

φ(x)vε
t (x) dx −

∫
Rd

φ(x) dρε
t (x)

⏐⏐⏐⏐ =
⏐⏐⏐⏐∫

Rd
φ(x)(Vε ∗ ρε

t )(x) dx −
∫
Rd

φ(x) dρε
t (x)

⏐⏐⏐⏐
=
⏐⏐⏐⏐∫

Rd
(φ ∗ Vε)(x) dρε

t (x) −
∫
Rd

φ(x) dρε
t (x)

⏐⏐⏐⏐
=
⏐⏐⏐⏐∫

Rd
[(φ ∗ Vε)(x) − φ(x)] dρε

t (x)
⏐⏐⏐⏐

≤
∫
Rd

∫
Rd

|φ(x − y) − φ(x)|Vε(y) dy dρε
t (x)

≤ ∥φ∥∞

∫
Rd

|y|Vε(y) dy

= ε∥φ∥∞

∫
Rd

|x|V1(x) dx,

which converges to 0 as ε → 0+ since
∫
Rd |x|V1(x) dx < +∞. □

We have now all the information to prove our first main result.

heorem 5.1. Let ρ0 ∈ Pa
2(Rd) ∩ L2(Rd) such that H[ρ0] < ∞. The sequence {ρε}0<ε≤1 of solutions to

NLIE) narrowly converges to the unique weak solution ρ̃ of (PME). as ε → 0

roof. Since ρε is a weak solution to (NLIE), for any φ ∈ C1
c (Rd) and t ∈ [0, T ] it satisfies∫

Rd
φ(x) dρε

t (x) −
∫
Rd

φ(x) dρ0(x) = −
∫ t

0

∫
Rd

vε
t (x)∇φ(x) · ∇vε

t (x) dx dt

−
∫ t

0

∫
Rd

zε
t (x) · ∇vε

t (x) dx dt,

s explained in (27) and (28). In view of Proposition 4.1, Lemmas 4.1, 5.3, and Proposition 4.3, we know
here exists a subsequence of ρε(t) narrowly converging to ρ̃ ∈ L2([0, T ]; H1(Rd)), and, in particular, {vε}ε

dmits a subsequence such that

vεk → ρ̃ in L2([0, T ]; L2(Rd));
∇vεk ⇀ ∇ρ̃ in L2([0, T ]; L2(Rd)).

efore letting ε → 0+ and obtaining the result we need to further regularise the test function, φ, since
orollary 5.1 holds for test functions in C2

c (Rd). In this regard, we consider a standard mollifier η ∈ C∞
c (Rd)

nd the corresponding sequence φσ := ησ ∗ φ ∈ C∞(Rd), being ησ(x) = σ−dη(x/σd) for any x ∈ Rd and
c

17
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σ > 0. As consequence of the observations above and Corollary 5.1, by letting ε → 0+ we obtain, for any
> 0 and t ∈ [0, T ],∫

Rd
φσ(x)ρ̃(t, x) dx =

∫
Rd

φσ(x)ρ0(x) dx −
∫ t

0

∫
Rd

ρ̃(s, x)∇φσ(x) · ∇ρ̃(s, x) dx ds.

ince φσ converges uniformly to φ on compact sets, we can let σ → 0 and obtain that ρ̃ is a weak solution to
PME) in the sense of Definition 2.1. Uniqueness of weak solutions of (PME) is a known result, cf. e.g. [14,46].
y a standard contradiction argument we can prove the whole sequence ρε narrowly converges to ρ̃, by

urther using uniqueness of weak solutions. □

. Extension to cross-diffusion systems

A key motivation for our approach is that it does not rely on geodesic convexity of the associated energy,
ence it can be extended to scenarios when convexity fails. This is indeed the case of cross-diffusion systems,
s shown in [2]. In what follows we extend the previous analysis to cross-diffusion systems, taking into
ccount related works in literature, such as [18,48]. More precisely, we derive the class of systems{

∂tρ1 = div (ρ1A1,1∇ρ1 + ρ1A1,2∇ρ2) ,

∂tρ2 = div (ρ2A2,2∇ρ2 + ρ2A2,1∇ρ1) ,
(CDS)

hich can be rewritten in matrix form as(
∂tρ1
∂tρ2

)
= div

[(
ρ1A1,1 ρ1A1,2
ρ2A2,1 ρ2A2,2

)(
∇ρ1
∇ρ2

)]
. (CDS-M)

ereafter, ρ1 and ρ2 are two probability density accounting for two population species; we consider two species
or simplicity, though the results hold true for M species, M ∈ N. The coefficients Ai,j , for i, j = 1, 2, are
o that

min{A1,1, A2,2} >
A1,2 + A2,1

2 ≥ 0. (A)
These coefficients can be, e.g., constant second order derivatives of a function A depending on both species,
i.e. A = A(ρ1, ρ2). A prototype function A(ρ1, ρ2) we can consider is A(ρ1, ρ2) = (c1ρ1 + c2ρ2)2 + c3ρ2

1,
for some constants ci > 0, i = 1, 2, 3. Note that cross-diffusion is present in the case A1,2 ̸= 0 and
A2,1 ̸= 0. In [18] the authors consider a general class of cross-diffusion systems, with the addition of nonlocal
interaction terms, where A(ρ1, ρ2) is a nonlinear function modelling degenerate diffusion, for example of the
form A(ρ1, ρ2) = ρm1

1 + ρm2
2 + p(ρ1 + ρ2), being m1, m2 > 1 and p regular enough. [18] provides existence

f weak solutions by exploiting a semi-implicit version of the JKO scheme [29] in Wasserstein spaces.
Let us consider the functions Vi : Rd → R and Uij : Rd → R (or even a measure) for i, j = 1, 2 and i ̸= j

such that Vi satisfy (V) and Vi ∈ W 1,2(Rd), while

(U) Uij ∈ P1(Rd) and it is even.

Let us define Hi := Vi ∗ Vi and Ki := Vi ∗ Uij ∗ Vj for i, j = 1, 2 and i ̸= j. For any ε > 0, consider the
scaling Hε

i (x) = ε−dHi( x
ε ) and Kε

i (x) = ε−dKi( x
ε ), whence Hε

i = V ε
i ∗ V ε

i and Kε
i = V ε

i ∗ Uε
ij ∗ V ε

j . Our goal
is to show that, as ε → 0+, weak-measure solutions (ρε

1, ρε
2) to{

∂tρ1 = div (ρ1A1,1∇Hε
1 ∗ ρ1 + ρ1A1,2∇Kε

1 ∗ ρ2)
∂tρ2 = div (ρ2A2,2∇Hε

2 ∗ ρ2 + ρ2A2,1∇Kε
2 ∗ ρ1) .

(NLIS)

converge to weak solutions to system (CDS). In order to achieve such a goal we will use the smoother
version of (ρε

1, ρε
2) given by (vε

1, vε
2) = (V ε

1 ∗ ρε
1, V ε

2 ∗ ρε
2). In (NLIS), the kernels Hi are the so-called self-

interaction potentials since they model intra-specific interaction (among same species), whereas Ki are
known as cross-interaction potentials as they take into account inter-specific interaction (among different

species).

18
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Remark 6.1. The kernels Uij have been introduced to show a possible generalisation of this method, as this
does not add other technical difficulties. Indeed, our assumptions allow to use Uij as a Dirac delta — this
is equivalent to excluding Uij . However, we prefer to include a further regularisation as in other application
it may be worth to introduce it in order to gain more regularity if Uij is absolutely continuous with respect
to the Lebesgue measure.

Below we state the Definitions of solutions used in this section.

Definition 6.1 (Weak Solution To (CDS)). A weak solution to the cross-diffusion system (CDS) on the time
interval [0, T ] with initial datum ρ0 ∈ (Pa

2(R)∩L2(Rd))2 is a curve ρ ∈ C([0, T ];P2(Rd)×P2(Rd)) satisfying
the following properties:

1. for almost every t ∈ [0, T ] the measure ρ(t) has a density with respect to the Lebesgue measure, still
denoted by ρ(t), and ρ ∈ L2([0, T ]; H1(Rd)) × L2([0, T ]; H1(Rd));

2. for any φ, ϕ ∈ C1
c (Rd) and all t ∈ [0, T ] it holds∫

Rd
φ(x)ρ1(t, x) dx =

∫
Rd

φ(x)ρ0
1(x) dx − A1,1

∫ t

0

∫
Rd

ρ1(s, x)∇φ(x) · ∇ρ1(s, x) dx ds

− A1,2

∫ t

0

∫
Rd

ρ1(s, x)∇φ(x) · ∇ρ2(s, x) dx ds,

∫
Rd

ϕ(x)ρ2(t, x) dx =
∫
Rd

ϕ(x)ρ0
2(x) dx − A2,2

∫ t

0

∫
Rd

ρ2(s, x)∇ϕ(x) · ∇ρ2(s, x) dx ds

− A2,1

∫ t

0

∫
Rd

ρ2(s, x)∇ϕ(x) · ∇ρ1(s, x) dx ds.

efinition 6.2 (Weak Measure Solution To (NLIS)). A narrowly continuous curve ρε : [0, T ] → P2(Rd) ×
2(Rd), mapping t ∈ [0, T ] ↦→ ρε

t ∈ P2(Rd) × P2(Rd), is a weak measure solution to (NLIS) if, for every
, ϕ ∈ C1

c (Rd) and any t ∈ [0, T ], it holds∫
Rd

φ(x)d(ρε
1,t − ρ0

1)(x) = −A1,1

2

∫ t

0

∫∫
R2d

(∇φ(x) − ∇φ(y)) · ∇Hε
1(x − y)dρε

1,r(y)dρε
1,r(x)dr

− A1,2

∫ t

0

∫∫
R2d

∇φ(x) · ∇Kε
1(x − y)dρε

2,r(y)dρε
1,r(x)dr

(30)

∫
Rd

ϕ(x)d(ρε
2,t − ρ0

2)(x) = −A2,2

2

∫ t

0

∫∫
R2d

(∇ϕ(x) − ∇ϕ(y)) · ∇Hε
2(x − y)dρε

2,r(y)dρε
2,r(x)dr

− A2,1

∫ t

0

∫∫
R2d

∇ϕ(x) · ∇Kε
2(x − y)dρε

1,r(y)dρε
2,r(x)dr

(31)

Remark 6.2. We denote elements of a product space by using bold symbols, e.g.

ρ = (ρ1, ρ2) ∈ P2(Rd) × P2(Rd), or x = (x1, x2) ∈ Rd × Rd.

he Wasserstein distance of order two in the product space is defined as follows

W2
2(µ, ν) = d2

W (µ1, ν1) + d2
W (µ2, ν2)

or all µ, ν ∈ P (Rd) × P (Rd).
2 2
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6.1. Nonlocal interaction system

Following the reference paper for nonlocal interaction systems [20], we apply a semi-implicit version of the
KO scheme, [29], in order to obtain a priori estimates on solutions to (NLIS) and their smoothed version
ε
i = V ε

i ∗ ρε
i , for i = 1, 2. The semi-implicit JKO scheme allows to prove existence of solutions to a class

f systems of nonlocal interaction PDEs that do not exhibit a gradient flow structure, which is indeed the
ase when the cross-interaction potentials are not proportional, i.e. K1 ̸= αK2 for a positive α, cf. [20] for
urther details.

Let ε > 0 be fixed and finite. We consider an initial datum ρ0 ∈ (P2(Rd) ∩ L2(Rd))2 and we introduce
he relative energy functional Fε : P2(Rd) × P2(Rd) → (−∞, +∞] defined as follows: let ν ∈ P2(Rd)2 be a
xed (time independent) measure, for all µ ∈ P2(Rd)2 we set

Fε[µ|ν] := A1,1

2

∫
Rd

Hε
1 ∗ µ1 dµ1 + A1,2

∫
Rd

Kε
1 ∗ ν2 dµ1

+ A2,2

2

∫
Rd

Hε
2 ∗ µ2 dµ2 + A2,1

∫
Rd

Kε
2 ∗ ν1 dµ2.

(32)

he above functional is referred to as relative energy since it accounts for the energy at the state µ given
he state ν, which only affects the cross-interaction part of the functional. The latter observation suggests
o rewrite the functional Fε as sum of two contributions, i.e. “self” and “cross” interactions. This will not
nly simplify notations, but also single out the two parts in the semi-implicit JKO scheme. Let us set

Hε[µ] := A1,1

2

∫
Rd

Hε
1 ∗ µ1 dµ1 + A2,2

2

∫
Rd

Hε
2 ∗ µ2 dµ2,

and
Kε[µ|ν] := A1,2

∫
Rd

Kε
1 ∗ ν2 dµ1 + A2,1

∫
Rd

Kε
2 ∗ ν1 dµ2.

Then, we can rewrite Fε as the sum of the previous functionals, i.e.

Fε[µ|ν] = Hε[µ] + Kε[µ|ν].

Note that the part Hε[µ] is treated implicitly in the JKO scheme as usual, whereas K[µ|ν] contains terms
hat are treated explicitly.

emark 6.3. Note that for ρ0 ∈ (P2(Rd)∩L2(Rd))2 the relative energy at the initial datum is finite. More
recisely, for any i, j = 1, 2 we have∫

Rd
(Hε

i ∗ ρ0
i )(x)ρ0

i (x) dx =
∫
Rd

|(V ε
i ∗ ρ0

i )(x)|2 dx = ∥V ε
i ∗ ρ0

i ∥2
L2(Rd)

≤ ∥V ε
i ∥2

L1(Rd)∥ρ0
i ∥2

L2(Rd) = ∥Vi∥2
L1(Rd)∥ρ0

i ∥2
L2(Rd) < ∞,

(33)

hich implies

Hε[ρ0] ≤ A1,1

2 ∥V1∥2
L1(Rd)∥ρ0

1∥2
L2(Rd) + A2,2

2 ∥V2∥2
L1(Rd)∥ρ0

2∥2
L2(Rd)

≤ max
{

A1,1

2 ∥V1∥2
L1(Rd),

A2,2

2 ∥V2∥2
L1(Rd)

}
∥ρ0∥2

L2 ,
(34)

nd ∫
Rd

(Kε
i ∗ νj)(x)ρ0

i (x) dx =
∫
Rd

(V ε
i ∗ ρ0

i )(x)(Uε
ij ∗ (V ε

j ∗ νj))(x) dx

≤ ∥V ε
i ∗ ρ0

i ∥L2(Rd)∥Uε
ij ∗ (V ε

j ∗ νj)∥L2(Rd)

≤ ∥V ε
i ∥L1(Rd)∥ρ0

i ∥L2(Rd)∥V ε
j ∥L2(Rd)νj(Rd)

= 1 ∥Vi∥ 1 d ∥ρ0∥ 2 d ∥Vj∥ 2 d < +∞.

(35)
εd/2 L (R ) i L (R ) L (R )
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The sequence is defined via the semi-implicit JKO scheme:

• fix a time step τ > 0 such that ρ0
τ := ρ0;

• for a given ρε,n
τ ∈ (P2(Rd))2, choose

ρε,n+1
τ ∈ argmin

ρ∈(P2(Rd))2

{
W2

2(ρε,n
τ , ρ)

2τ
+ Fε[ρ|ρε,n

τ ]
}

. (36)

et T > 0, N :=
[

T
τ

]
, and consider the piecewise constant interpolation

ρε
τ (t) = ρε,n

τ t ∈ ((n − 1)τ, nτ ],

eing ρε,n
τ = (ρε,n

1,τ , ρε,n
2,τ ) defined in (36).

Proposition 6.1 (Narrow Compactness – Energy & Moments Bound). There exists an absolutely continuous
urve ρ̃ε : [0, T ] → P2(Rd) × P2(Rd) such that the piecewise constant interpolation ρε

τ admits a subsequence
ε
τk

narrowly converging to ρ̃ε uniformly in t ∈ [0, T ] as k → +∞. Moreover, for any t ∈ [0, T ], the following
niform bounds in τ and ε hold

Hε[ρ̃ε(t)] ≤ c∥ρ0∥2
L2 , (37a)

m2(ρ̃ε(t)) ≤ 2m2(ρ0) + c̃, (37b)

here c = max
{

A1,1
2 ∥V1∥2

L1(Rd),
A2,2

2 ∥V2∥2
L1(Rd)

}
and c̃ = 4cT∥ρ0∥2

L2 .

Proof. From the Definition of the sequence {ρε,n
τ }n∈N it holds

1
2τ

W2
2(ρε,n

τ , ρε,n+1
τ ) ≤ Fε[ρε,n

τ |ρε,n
τ ] − Fε[ρε,n+1

τ |ρε,n
τ ]

=
2∑

i=1

Ai,i

2

(∫
Rd

Hε
i ∗ ρε,n

i,τ dρε,n
i,τ −

∫
Rd

Hε
i ∗ ρε,n+1

i,τ dρε,n+1
i,τ

)

+
∑
i̸=j

Ai,j

(∫
Rd

Kε
i ∗ ρε,n

j,τ dρε,n
i,τ −

∫
Rd

Kε
i ∗ ρε,n

j,τ dρε,n+1
i,τ

)

= Hε[ρε,n
τ ] − Hε[ρε,n+1

τ ] +
∑
i ̸=j

Ai,j

(∫
Rd

Kε
i ∗ ρε,n

j,τ dρε,n
i,τ −

∫
Rd

Kε
i ∗ ρε,n

j,τ dρε,n+1
i,τ

)
.

(38)

In order to have an estimate on the energy, we make use of the L∞ bound ∥∇V ε
i ∗ V ε

j ∥L∞(Rd) ≤
ε−(d+1)∥∇Vi∥L2(Rd)∥Vj∥L2(Rd) as follows for i, j = 1, 2, i ̸= j. First note that⏐⏐⏐⏐∫

Rd
Kε

i ∗ ρε,n
j,τ dρε,n

i,τ −
∫
Rd

Kε
i ∗ ρε,n

j,τ dρε,n+1
i,τ

⏐⏐⏐⏐
=
⏐⏐⏐⏐∫∫

Rd×Rd
Kε

i (x − y) dρε,n
j,τ (y) dρε,n

i,τ (x) −
∫∫

Rd×Rd
Kε

i (t − y) dρε,n
j,τ (y) dρε,n+1

i,τ (t)
⏐⏐⏐⏐

=
⏐⏐⏐⏐∫∫∫

Rd×Rd×Rd
(Kε

i (x − y) − Kε
i (t − y)) dγε,n

i,τ (x, t) dρε,n
j,τ (y)

⏐⏐⏐⏐
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where γε,n
i,τ ∈ Γo(ρε,n

i,τ , ρε,n+1
i,τ ) is an optimal transport plan connecting ρε,n

i,τ to ρε,n+1
i,τ . Now, due to the L∞

ound on ∇V ε
i ∗ V ε

j we get

⏐⏐⏐⏐∫∫∫
Rd×Rd×Rd

(Kε
i (x − y) − Kε

i (t − y)) dγε,n
i,τ (x, t) dρε,n

j,τ (y)
⏐⏐⏐⏐

=
⏐⏐⏐⏐∫∫∫

Rd×Rd×Rd

{∫
Rd

[(V ε
i ∗ V ε

j )(x − y − z) − (V ε
i ∗ V ε

j )(t − y − z)]Uε
ij(z)

}
dγε,n

i,τ (x, t) dρε,n
j,τ (y)

⏐⏐⏐⏐
≤ ∥∇V ε

i ∗ V ε
j ∥L∞(Rd)

∫∫
Rd×Rd

|x − t| dγε,n
i,τ (x, t)

≤ 1
εd+1 ∥∇Vi∥L2(Rd)∥Vj∥L2(Rd)dW (ρε,n

i,τ , ρε,n+1
i,τ ) ≤ 1

4τ
d2

W (ρε,n
i,τ , ρε,n+1

i,τ ) + C
τ

ε2(d+1) ,

here C is a positive constant independent of τ . By using the latter estimate in (38) we obtain

1
4τ

W2
2(ρε,n

τ , ρε,n+1
τ ) ≤ Hε[ρε,n

τ ] − Hε[ρε,n+1
τ ] + C

τ

ε2(d+1) , (39)

which implies Hε[ρε,n+1
τ ] ≤ Hε[ρε,n

τ ] + C τ

ε2(d+1) , and, in particular, the following bound for the self-
nteraction part, Hε, of the relative energy Fε:

Hε[ρε,n
τ ] ≤ Hε[ρ0] + C

nτ

ε2(d+1) ≤ Hε[ρ0] + C
T

ε2(d+1) , ∀n ∈ N. (40)

y summing up over k inequality (39), we obtain

n∑
k=m

W2
2(ρε,k

τ , ρε,k+1
τ )

4τ
≤ Hε[ρε,m

τ ] − Hε[ρε,n+1
τ ] + C

τ

ε2(d+1) (n − m + 1). (41)

The non-negativity of Hε and the energy inequality (40) allow us to improve the above inequality as
follows

n∑
k=m

W2
2(ρε,k

τ , ρε,k+1
τ )

4τ
≤ Hε[ρ0] + C

T

ε2(d+1) + C
τ

ε2(d+1) (n − m + 1). (42)

In particular, by using the bound (34) in Remark 6.3, the above inequality implies

W2
2(ρ0, ρε

τ (t)) ≤ 4THε[ρ0] + C
T 2

ε2(d+1)

≤ 2T max
{

A1,1∥V1∥2
L1(Rd), A2,2∥V2∥2

L1(Rd)

}
∥ρ0∥2

L2 + C
T 2

ε2(d+1) ,

whence we obtain the second order moments are uniformly bounded in τ on [0, T ] in view of Remark 2.2,
i.e.

m2(ρε
τ (t)) ≤ 2m2(ρ0) + 2W2

2(ρ0, ρε
τ (t))

≤ 2m2(ρ0) + 2T max
{

A1,1∥V1∥2
L1(Rd), A2,2∥V2∥2

L1(Rd)

}
∥ρ0∥2

L2 + C
T 2

ε2(d+1) .
(43)

Now, let us consider 0 ≤ s < t such that s ∈ ((m − 1)τ, mτ ] and t ∈ ((n − 1)τ, nτ ] (which implies
|n − m| < |t−s| + 1); by the Cauchy–Schwarz inequality, (42) and again the bound (34) in Remark 6.3,
τ
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we obtain

W2(ρε
τ (s), ρε

τ (t)) ≤
n−1∑
k=m

W2(ρε,k
τ , ρε,k+1

τ ) ≤

(
n−1∑
k=m

W2
2(ρε,k

τ , ρε,k+1
τ )

) 1
2

|n − m|
1
2

≤ c

(√
1 + T

ε2(d+1)

)(√
|t − s| +

√
τ
)

,

(44)

here c = c(A1,1, A2,2, ρ0, T ) is a positive constant. Thus ρε
τ is 1

2 -Hölder equi-continuous, up to a negligible
rror of order

√
τ . By using a refined version of Ascoli–Arzelà’s theorem (see [1], Section 3), we obtain ρε

τ

admits a subsequence narrowly converging to a limit ρ̃ε as τ → 0+ uniformly on [0, T ]. Since | · |2 and Hε
i

are lower semi-continuous and bounded from below, a refined analysis gives for any t ∈ [0, T ]

Hε[ρ̃ε] ≤ lim inf
k→+∞

Hε[ρε
τk

] ≤ Hε[ρ0] ≤ max
{

A1,1

2 ∥V1∥2
L1(Rd),

A2,2

2 ∥V2∥2
L1(Rd)

}
∥ρ0∥2

L2 ,

nd ∫
Rd

|x|2 dρ̃i
ε(t)(x) ≤ lim inf

k→+∞

∫
Rd

|x|2 dρε
τk,i(t)(x)

≤ 2m2(ρ0) + 2T max
{

A1,1∥V1∥2
L1(Rd), A2,2∥V2∥2

L1(Rd)

}
∥ρ0∥2

L2

hence the assertion follows by applying the above inequalities to (40) and (43). □

As direct consequence of the previous Lemma, we actually have narrow compactness in ε by following the
ame argument used in Proposition 4.1; hence we omit the proof.

orollary 6.1. There exists an absolutely continuous curve ρ̃ : [0, T ] → P2(Rd) × P2(Rd) such that ρ̃ε

dmits a subsequence ρ̃εk narrowly converging to ρ̃ uniformly in t ∈ [0, T ] as k → +∞.

As in Section 3, the limiting curve ρ̃ε obtained in Proposition 6.1 is a weak measure solution of the
onlocal interaction system (NLIS) in the sense of Definition 6.2. The proof of this result is similar to 3.1,
nd more details can be found in [18, Theorem 3.3]. For this reason we omit the proof. Let us stress that the
ross-interaction potentials, Kε

i are C1(Rd) since continuity at zero is obtained using Lebesgue dominated
onvergence theorem, exploiting that Uij ∈ P1(Rd) and ∇V ε

i ∈ L1(Rd). This is needed as we cannot cope
ith a possible discontinuity of ∇Kε

i at zero, as for the self-interaction kernels, cf. [18,20].

heorem 6.1. The curve ρ̃ε is a weak measure solution to the system (NLIS) according to Definition 6.2.

.2. Compactness in ε

As in the one-species case, stronger convergence can be obtained for the sequence {vε}ε, being vε
i (t) :=

ε
i ∗ ρε

i (t) for any t ∈ [0, T ]. We use the flow interchange technique by considering a decoupled system of
eat equations as auxiliary flow, i.e. {

∂tη1 = ∆η1

∂tη2 = ∆η2,
(45)

nd the entropy as auxiliary functional, that is

E[η1, η2] =
{∫

Rd [η1(x) log η1(x) + η2(x) log η2(x)] dx, η1 log η1, η2 log η2 ∈ L1(Rd); (46)

+∞ otherwise.
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For any ν ∈ P2(Rd) such that E(ν) < +∞, we denote by St
Eν := (St

E,1ν1, St
E,2ν2) the solution at time t

o system (45) coupled with an initial value ν at t = 0. Moreover, for every ρ ∈ (P2(Rd))2 and a given
∈ (P2(Rd))2, the dissipation of Fε along SE by

DEFε(ρ|µ) := lim sup
s↓0

{
Fε[ρ|µ] − Fε[Ss

Eρ|µ]
s

}
.

Below we prove an L2
t H1

x bound crucial for the application of the Rossi–Savaré version of the Aubin–Lions
emma.

emma 6.1. Let ρ0 ∈ (Pa
2(Rd) ∩ L2(Rd))2 such that E[ρ0] < ∞. There exists a constant C =

(ρ0, A1,1, A2,2, V1, V2, T ) such that, for any ε > 0,

2∑
i=1

∥vε
i ∥2

L2([0,T ];H1(Rd)) ≤ C. (47)

roof. First of all we obtain a uniform L2 bound in time and space from Proposition 6.1 by noticing that

2∑
i=1

Ai,i∥V ε
i ∗ ρε

i,τ ∥2
L2([0,T ];L2(Rd)) =

2∑
i=1

Ai,i

∫ T

0

∫
Rd

|[V ε
i ∗ ρε

i,τ (t)](x)|2dx

=
2∑

i=1
Ai,i

∫ T

0

∫
Rd

[Hε
i ∗ ρε

i,τ (t)](x)dρε
i,τ (t)(x)

= 2
∫ T

0
Hε[ρε

τ (t)]dt ≤ C(ρ0, A1,1, A2,2, T ).

(48)

ince Ai,i ̸= 0 for any i, we can divide and get the L2 bound, arguing as in Lemma 4.1. Let us now focus
n the bound for the gradient. For all s > 0, using the minimising property of ρε,n+1

τ in (36) we have

1
2τ

W2
2(ρε,n+1

τ , ρε,n
τ ) + Fε[ρε,n+1

τ |ρε,n
τ ] ≤ 1

2τ
W2

2(Ss
Eρε,n+1

τ , ρε,n
τ ) + Fε[Ss

Eρε,n+1
τ |ρε,n

τ ],

hence, dividing by s > 0 and passing to the lim sup as s ↓ 0,

τDEFε[ρε,n+1
τ |ρε,n

τ ] ≤ 1
2

d+

dt

(
W2

2(St
Eρε,n+1

τ , ρε,n
τ )
)⏐⏐⏐

t=0

(E.V.I.)
≤ E[ρε,n

τ ] − E[ρε,n+1
τ ]. (49)

n the last inequality we used that SE is a 0-flow. Focusing on the left hand side of (49), we note

DEFε[ρε,n+1
τ |ρε,n

τ ] = lim sup
s↓0

{
Fε[ρε,n+1

τ |ρε,n
τ ] − Fε[Ss

Eρε,n+1
τ |ρε,n

τ ]
s

}
= lim sup

s↓0

∫ 1

0

(
− d

dz

⏐⏐⏐
z=st

Fε[Sz
Eρε,n+1

τ |ρε,n
τ ]
)

dt.

(50)

hus, we now compute the time derivative inside the above integral, by using integration by parts and
eeping in mind the C∞ regularity of the solution to the heat equation:
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∫

t

d

dt
Fε[St

Eρε,n+1
τ |ρε,n

τ ] = −A1,1
Rd

∇(Hε
1 ∗ St

E,1ρε,n+1
1,τ )(x)∇St

E,1ρε,n+1
1,τ (x) dx

− A2,2

∫
Rd

∇(Hε
2 ∗ St

E,2ρε,n+1
2,τ )(x)∇St

E,2ρε,n+1
2,τ (x) dx

− A1,2

∫
Rd

∇(Kε
1 ∗ ρε,n

2,τ )(x)∇St
E,1ρε,n+1

1,τ (x) dx

− A2,1

∫
Rd

∇(Kε
2 ∗ ρε,n

1,τ )(x)∇St
E,2ρε,n+1

2,τ (x) dx

= −A1,1

∫
Rd

|∇V ε
1 ∗ St

E,1ρε,n+1
1,τ (x)|2 dx

− A2,2

∫
Rd

|∇V ε
2 ∗ St

E,2ρε,n+1
2,τ (x)|2 dx

− A1,2

∫
Rd

∇(V ε
1 ∗ St

E,1ρε,n+1
1,τ )(x)[∇(Uε

12 ∗ V ε
2 ∗ ρε,n

2,τ )](x) dx

− A2,1

∫
Rd

∇(V ε
2 ∗ St

E,2ρε,n+1
2,τ )(x)[∇(Uε

21 ∗ V ε
1 ∗ ρε,n

1,τ )](x) dx

≤ −A1,1

∫
Rd

|∇V ε
1 ∗ St

E,1ρε,n+1
1,τ (x)|2 dx

− A2,2

∫
Rd

|∇V ε
2 ∗ St

E,2ρε,n+1
2,τ (x)|2 dx

+ A1,2∥∇(V ε
1 ∗ St

E,1ρε,n+1
1,τ )∥L2(Rd)∥∇(Uε

12 ∗ V ε
2 ∗ ρε,n

2,τ )∥L2(Rd)

+ A2,1∥∇(V ε
2 ∗ St

E,2ρε,n+1
2,τ )∥L2(Rd)∥∇(Uε

21 ∗ V ε
1 ∗ ρε,n

1,τ )∥L2(Rd)

≤ −
(

A1,1 − A1,2

2

)∫
Rd

|∇V ε
1 ∗ St

E,1ρε,n+1
1,τ (x)|2 dx

−
(

A2,2 − A2,1

2

)∫
Rd

|∇V ε
2 ∗ St

E,2ρε,n+1
2,τ (x)|2 dx

+ A1,2

2

∫
Rd

|∇(Uε
12 ∗ V ε

2 ∗ ρε,n
2,τ )(x)|2 dx

+ A2,1

2

∫
Rd

|∇(Uε
21 ∗ V ε

1 ∗ ρε,n
1,τ )(x)|2 dx.

The above inequality, together with (49) and (50), implies

τ lim inf
s↓0

∫ 1

0

∫
Rd

(
A1,1 − A1,2

2

)
|∇V ε

1 ∗ Sst
E,1ρε,n+1

1,τ (x)|2 +
(

A2,2 − A2,1

2

)
|∇V ε

2 ∗ Sst
E,2ρε,n+1

2,τ (x)|2dxdt

≤ τ
A1,2

2

∫
Rd

|∇(Uε
12 ∗ V ε

2 ∗ ρε,n
2,τ )(x)|2dx

+ τ
A2,1

2

∫
Rd

|∇(Uε
21 ∗ V ε

1 ∗ ρε,n
1,τ )(x)|2dx + E[ρε,n

τ ] − E[ρε,n+1
τ ],

hus, by L2 lower semi-continuity of the H1 seminorm,

τ

∫
Rd

(
A1,1 − A1,2

2

)
|∇V ε

1 ∗ ρε,n+1
1,τ (x)|2 +

(
A2,2 − A2,1

2

)
|∇V ε

2 ∗ ρε,n+1
2,τ (x)|2dx

≤ τ
A1,2

2

∫
Rd

|∇(Uε
12 ∗ V ε

2 ) ∗ ρε,n
2,τ (x)|2dx

+ τ
A2,1

∫
|∇(Uε

21 ∗ V ε
1 ) ∗ ρε,n

1,τ (x)|2dxdt + E[ρε,n
τ ] − E[ρε,n+1

τ ],
2 Rd
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By summing up over n from 0 to N − 1, taking into account that x log x ≤ x2 for any x ≥ 0, Remark 4.1
and that second order moments are uniformly bounded (see Proposition 6.1), we get∫ T

0

∫
Rd

(
A1,1 − A1,2

2

)
|(∇V ε

1 ∗ ρε
1,τ (t))(x)|2 +

(
A2,2 − A2,1

2

)
|(∇V ε

2 ∗ ρε
2,τ (t))(x)|2 dx

≤ E[ρ0] − E[ρε,N
τ ] + A1,2

2

∫ T

0

∫
Rd

|∇(V ε
2 ∗ ρε

2,τ (t)(x))|2 dx dt

+ A2,1

2

∫ T

0

∫
Rd

|∇(V ε
1 ∗ ρε

1,τ (t))(x)|2 dx dt

≤ ∥ρ0∥2
L2 + C(ρ0, V1, V2, A1,1, A2,2, T ) + A1,2

2

∫ T

0

∫
Rd

|∇(V ε
2 ∗ ρε

2,τ (t)(x))|2 dx dt

+ A2,1

2

∫ T

0

∫
Rd

|∇(V ε
1 ∗ ρε

1,τ (t))(x)|2 dx dt.

eak lower semi-continuity of the norm and (A) give the H1 bound(
A1,1 − A1,2

2 − A2,1

2

)∫ T

0

∫
Rd

|∇vε
1(t)(x)|2 dx dt +

(
A2,2 − A1,2

2 − A2,1

2

)∫ T

0

∫
Rd

|∇vε
2(t)(x)|2 dx dt

≤ ∥ρ0∥2
L2 + C(ρ0, V1, V2, A1,1, A2,2, T ).

□

An application of Proposition 4.2 provides strong convergence in L2, needed to prove convergence to the
ross-diffusion system (CDS), see Section 6.3.

roposition 6.2. Let ε ≤ 1. There exists a subsequence {vεk }k strongly converging to v in L2([0, T ]; L2(Rd))
L2([0, T ]; L2(Rd)), for any T > 0.

roof. The proof is similar to the one of Proposition 4.3, see also [18], applied to X := L2(Rd) × L2(Rd),
= d1 being the 1-Wasserstein distance in the product space, and the functional B : L2(Rd) × L2(Rd) →

0, +∞] defined as

B[v] =
{∑2

i=1 ∥vi∥2
H1(Rd) +

∫
Rd |x|vi(x)dx, if vi ∈ P1(Rd) ∩ H1(Rd);

+∞ otherwise.
□

.3. Towards cross-diffusion systems

Overall the strategy is similar to Section 5, though we have to clarify how to cope with the cross-
nteraction terms, leading to cross-diffusion. The right hand side in the Definition of weak measure solution
f (NLIS), for the first component, can be written as

− A1,1

∫ T

0

∫
Rd

∇φ(x) · ∇V ε
1 ∗ vε

1,t(x)dρε
1,t(x)dt − A1,2

∫ T

0

∫
Rd

∇φ(x) · (V ε
1 ∗ Uε

12) ∗ ∇vε
2,t(x)dρε

1,t(x)dt. (51)

hile for the first integral above we can follow the argument in Section 5, applied of course to both
omponents ρε

1 and ρε
2, the cross-interaction part needs a slightly different approach, since K1 is a convolution

f three functions. In particular,∫ T

0

∫
Rd

∇φ(x) · (V ε
1 ∗ Uε

12) ∗ ∇vε
2,tdρε

1,t(x)dt =
∫ T

0

∫
Rd

(Uε
12 ∗ vε

1,t)(x)∇φ(x) · ∇vε
2,t(x)dxdt

+
∫ T ∫

zε
12,t(x) · ∇vε

2,t(x)dxdt,

(52)
0 Rd
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T
t
t

A

L

P

being, for any t ∈ [0, T ] and x ∈ Rd,

zε
12,t(x) := (Uε

12 ∗ V ε
1 ) ∗ (ρε

1,t∇φ)(x) − (Uε
12 ∗ vε

1,t)(x)∇φ(x). (53)

he excess term converges to 0 strongly in L2([0, T ] ×Rd) by following Section 5.1, applying the arguments
o P ε

12 := V ε
1 ∗ Uε

12 instead of Vε — bearing in mind (V) and (U). For the readers convenience we remind
hat the L2([0, T ]; H1(Rd)) bound for vε

i holds true for Uε
ij ∗ vε

i since, for i ̸= j = 1, 2,

∥Uε
ij ∗ vε

i,t∥L2(Rd) ≤ ∥vε
i,t∥L2(Rd) = ∥vε

i,t∥L2(Rd);
∥Uε

ij ∗ ∇vε
i,t∥L2(Rd) ≤ ∥∇vε

i,t∥L2(Rd) = ∥∇vε
i,t∥L2(Rd).

(54)

s in Lemma 5.3, one can prove that the sequence Uε
ij ∗ vε

i has the same distributional limit of the sequence
vε

i , i.e. ρi, for i ̸= j = 1, 2.

emma 6.2. For any t ∈ [0, T ] and any φ ∈ C1
c (Rd) it holds, for i ̸= j = 1, 2,

lim
ε→0+

∫
Rd

φ(x)(Uε
ij ∗ vε

i,t)(x) dx =
∫
Rd

φ(x) dρ̃i(t).

roof. For t ∈ [0, T ] and φ ∈ C1
c (Rd), by using that Uij is even and the Definition of vε

i,t we obtain:⏐⏐⏐⏐∫
Rd

φ(x)(Uε
ij ∗ vε

i,t)(x) dx −
∫
Rd

φ(x)vε
i,t(x)dx

⏐⏐⏐⏐ =
⏐⏐⏐⏐∫

Rd
(φ ∗ Uε

ij)(x)vε
i,t(x)dx −

∫
Rd

φ(x)vε
i,t(x)dx

⏐⏐⏐⏐
=
⏐⏐⏐⏐∫

Rd
[(φ ∗ Uε

ij)(x) − φ(x)]vε
i,t(x)dx

⏐⏐⏐⏐
≤
∫
Rd

∫
Rd

|φ(x − y) − φ(x)|vε
i,t(x)dUε

ij(y)dx

≤ ∥φ∥∞

∫
Rd

|y| dUε
ij(y)

= ε∥φ∥∞

∫
Rd

|x| dUij(x),

which converges to 0 as ε → 0+ since
∫
Rd |x| dUij(x) < +∞. □

Below we state the main result for this section, stressing that in this case uniqueness is missing.

Theorem 6.2. Let ε ≤ 1 and ρ0 ∈ (Pa
2(Rd) ∩ L2(Rd))2 such that E[ρ0] < ∞. The sequence {ρε}ε of

solutions to (NLIE) admits a subsequence narrowly converging to a weak solution ρ̃ of (CDS).

Proof. The main difference with respect to the proof of Theorem 5.1 is with the cross-interaction term
as pointed out in (51) and (52). More precisely, in (52) we need to make sure that a subsequence of
Uε

12 ∗vε
1,t strongly converges to ρ̃1 in L2([0, T ]×Rd). In view of (54), we can use Proposition 4.2 applied to a

subsequence of (Uε
12 ∗ vε

1,t, Uε
21 ∗ vε

2,t), exactly as in Proposition 6.2. For each component, the strong L2 limit
coincides with ρi due to Lemma 6.2. □

7. Further perspectives

The main contribution of this work is to provide a rigorous analytical derivation of the quadratic
porous medium equation and a class of cross-diffusion systems. Our strategy relies on an appropriate time-
discretisation of a nonlocal interaction equation (system) in the 2-Wasserstein space. This is relevant for
27
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m
f

N

m
r

both the well-posedness of (CDS) and (PME), and their numerical study. We relaxed previous assumptions
on the interaction kernel, allowing for pointy potentials, e.g. Morse. As mentioned above, a key motivation
for our approach is to provide an analysis that works without geodesic λ-convexity techniques, having in

ind cases where only a JKO-approach may be feasible. Therefore, we could prove a nonlocal-to-local limit
or cross-diffusion systems.

onconservative forces

In this paper, both equations considered have a 2-Wasserstein gradient flow structure, but our approach
ay be used even if the PDEs under study are not gradient flows — this is a considerable advantage of our

esult. A prototypical example is given by the PDE

∂tρ = 1
2∆ρ2 + ∇ · (ρv),

being v ̸= ∇φ, for some function φ. The addition of the non-gradient flow part can be overtaken by
considering a suitable splitting (JKO) scheme, as in [5].

The equation above is also significant in the context of networks, where Wasserstein-type metrics have
been derived recently (cf. [4,23]).

Other exponents

A natural question may arise is whether our approach can be extended to linear diffusion and m ̸= 2. The
first observation to be made is that the approximating equation should be different, for instance the non-
viscous version of the one proposed in [24] or [7, Eq.(8)]. While the time-discretisation could be relatively
“easy” to develop, it may be not trivial to obtain Sobolev bounds in order to obtain compactness. The
analysis could be easier if one restricts to a torus, and using a different version of Aubin–Lions Lemma.

Deterministic particle methods

Last but not least, it is still open to obtain an analytical proof of a deterministic particle approximation
for the porous medium equation, as well as linear diffusion. Both this paper and [7], for m = 2, require
initial data to have finite logarithmic entropy, thus excluding particle solutions of the nonlocal interaction
equation. Anyway, numerical simulations show that this is not to be excluded, see [7, Section6]. The main
challenge is then to relax the initial assumption on the logarithmic entropy. In this direction, λ-convexity of
the energy plays a key role in [13] to rigorously prove a qualitative result when the number of particles, N ,
depends exponentially on ε and the approximation in Wasserstein of the initial datum. A similar result can
be proven also in our case, even for systems, only using λ-convexity of the nonlocal energy. However, this
would narrow the class of cross-diffusion systems obtained as one would need cross-interaction potentials to
be proportional. Obtaining a proof for N independent on ε and quantitative estimates is still open. This is
also relevant in the case of cross-diffusion systems as λ-convexity fails.
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of Cambridge), José Antonio Carrillo (University of Oxford), and Francesco S. Patacchini (IFP Energies
Nouvelles) for fruitful discussions. Furthermore, they would like to thank the anonymous reviewers for their
valuable comments and suggestions. This work was carried out while AE was a postdoctoral researcher at
28



M. Burger and A. Esposito Nonlinear Analysis 235 (2023) 113347
FAU Erlangen-Nürnberg. The authors thankfully acknowledge support by the German Science Foundation
(DFG) through CRC TR 154 “Mathematical Modelling, Simulation and Optimisation Using the Example of
Gas Networks”. AE also acknowledges support by the Advanced Grant Nonlocal-CPD (Nonlocal PDEs for
Complex Particle Dynamics: Phase Transitions, Patterns and Synchronisation) of the European Research
Council Executive Agency (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 883363).

References
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