

UNIVERSITÀ DEGLI STUDI DELL'AQUILA
DIPARTIMENTO DI INGEGNERIA E SCIENZE DELL’INFORMAZIONE E

MATHEMATICA

Titolo della tesi

Cloud-Based Low-Code Model Transformations

Composition and Execution

SSD INF/01

Dottorando

Apurvanand Sahay

Coordinatore del corso Tutor

Prof. Vittorio Cortellessa Prof. Davide Di Ruscio

 Co-Tutor

 Prof. Alfonso Pierantonio

a.a. 2021/2022

Dottorato di Ricerca in Information and Communication Technology

Emerging computing models: algorithms, software architectures and intelligent systems

XXXV ciclo

iii

Abstract

Low-code development platforms offer a streamlined approach to software development, utiliz-
ing visual interfaces and drag-and-drop utilities instead of traditional programming languages.
This allows for faster application development and deployment, granting non-technical users ac-
cess to tailored software solutions based on their unique needs. One key aspect of low-code de-
velopment is the composition of model transformations, which enables developers to combine
and reuse pre-existing models and components to create new applications. Model transformation
composition refers to the process of combining multiple, simpler transformations to achieve a de-
sired outcome. These compositions can range from converting one model format to another, ex-
tracting information, or manipulating data within a model. In various industries, such as software
engineering, business process management, and product design, the use of model transformation
composition can automate the creation of new software systems, improve business processes, and
aid in product design.

The process of composing transformations presents a significant challenge to developers. Typi-
cally, smaller transformations are sourced from different and diverse sources and then manually
combined, leading to a time-consuming and error-prone composition process. The application in
low-code development platforms and the use of model transformation composition enable orga-
nizations to quickly and efficiently create and deploy business-critical applications based on the
concept of model transformation and its composition.

This thesis aims to streamline the process by solving the issue of chaining various model trans-
formations to create complex models. The solution involves externally combining simpler trans-
formation steps to achieve this goal. The first step is identifying the different transformations
that need to be chained. After identifying these transformations, selecting only those specific to
the user is crucial, considering quality criteria such as the metamodels and transformations used.
A search-based optimization approach utilizing model-driven techniques has been employed to
tackle this selection problem. This process leads to optimizing the execution of the selected trans-
formation chains, reducing the number of generated target elements and improving the overall
execution time. Thus, this thesis is focused on finding a solution to the complex problem of com-
posing transformations by utilizing search-based optimization and model-driven techniques to
identify, select, and optimize the execution of the most efficient transformation chains according
to user requirements.

v

Acknowledgements
I would like to express my sincere gratitude to my supervisor, Prof. Dr. Davide Di Ruscio, for their
unwavering support, guidance, and encouragement throughout my PhD journey. His valuable
insights and expertise have been instrumental in shaping my research and helping me to achieve
my goals.

I would also like to thank my co-supervisors, Prof. Dr. Alfonso Pierantonio, for his valuable
contributions to my research and for providing me with a diverse perspective on my work.

I am also grateful to the other professors and faculty members especially Prof. Dr. Ludovico
Iovino, who have provided me with valuable feedback and support in writing research articles
and performing experiments. I would also like to thank my research colleagues for their encour-
agement and for providing a sounding board for my ideas. My Ph.D. work has received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement n° 813884.

Lastly, I would like to acknowledge the support of my family and friends, who have provided me
with the love and encouragement needed to see this endeavor through to the end.

Thank you all for being a part of my PhD journey.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Challenges and motivations . 2
1.2 Research Activities . 2

1.2.1 Research Questions . 3
1.2.2 Achieved Outcome . 3

1.3 Structure of the thesis . 3

2 State-of-the-art 7
2.1 Model Transformation composition . 7
2.2 Quality criteria in model transformations . 8
2.3 Search-based approaches in model transformations 9
2.4 Optimization of model transformation chains . 9

3 Understanding Low-Code Development Platforms 11
3.1 A bird-eye view of low-code development platforms 11
3.2 Main components of low-code development platforms 12
3.3 Development process in LCDPs . 13
3.4 An overview of representative low-code development platforms 14
3.5 Taxonomy . 16
3.6 Comparing relevant LCDPs . 20

3.6.1 Features and capabilities . 22
3.6.2 Additional aspects for comparing LCDPs . 22

3.7 Experience Report . 23
3.8 Summary . 24

4 Analyzing business process management capabilities of LCDPs 25
4.1 Process modeling with BPMN . 26
4.2 Analysis of process modelling languages . 27

4.2.1 Study Design . 28
4.2.2 Results . 29
4.2.3 Key aspects for comparing business process modeling languages 30

4.3 Discussing LCDPs process modelling and data handling constructs 32
4.3.1 OutSystems . 33
4.3.2 Mendix . 33
4.3.3 Zoho Creator . 35
4.3.4 Microsoft PowerApps . 36
4.3.5 Salesforce Lightning . 38
4.3.6 Thinkwise . 39
4.3.7 Google Appsheet . 40

viii

4.3.8 Amazon Honeycode . 41
4.4 Discussing LCDPs with respect to BPMN modeling constructs 42
4.5 Discussing LCDPs with respect to BPMN quality criteria 44
4.6 Summary . 48

5 Identifying optimal model transformation chains 49
5.1 Automated identification of model transformation chains 49
5.2 Selecting optimal model transformation chains . 52

5.2.1 Background and Motivating Example of chain selection 52
5.2.2 Proposed approach of selecting transformation chain: MOMoT 54
5.2.3 Experimental Evaluation . 62
5.2.4 Threats to Validity . 67
5.2.5 Discussion . 68

5.3 Summary . 68

6 Optimizing the execution of model transformation chains 71
6.1 Background and Motivating Example . 71
6.2 Proposed Approach . 73
6.3 Experimental Evaluation . 75

6.3.1 Experiment setup . 76
6.3.2 Results . 77

6.4 Threats to validity . 81
6.5 Summary . 81

7 Conclusion 83
7.1 Summary of the contributions . 83

7.1.1 Elaborating the features of various low-code development platforms 83
7.1.2 Analyzing the business process and data handling capabilities of different

low-code development platforms . 83
7.1.3 Applying search-based optimization to search and chain model transforma-

tions . 83
7.1.4 Optimization of model transformation chain executions 84

7.2 Publications . 84
7.3 Developed tools . 85
7.4 Future work . 85

A Used technologies 87

ix

List of Figures

1.1 Structure of the thesis . 4

3.1 Layered architecture of low-code development platforms 12
3.2 Main components of low-code development platforms . 13
3.3 The application modeler of Mendix at work . 14
3.4 A simple data model defined in Mendix . 15
3.5 A simple logic defined in Mendix . 15
3.6 Feature diagram representing the top-level areas of variation for LCDPs 17

4.1 Fragment of the BPMN2.0 specification of the Recruitment Drive example 27
4.2 OutSystems business flow . 34
4.3 Recruitment Drive Domain Model in Mendix . 34
4.4 Recruitment Drive Microflow in Mendix . 35
4.5 Recruitment Drive in Zoho Creator . 36
4.6 Recruitment Drive in Microsoft PowerApps . 37
4.7 Recruitment Drive Workflow in Salesforce Lightning 38
4.8 Recruitment Drive Data Model in Thinkwise . 39
4.9 Recruitment Drive Process Flow in Thinkwise . 40
4.10 Recruitment Drive Process Flow in Google Appsheet 41
4.11 Recruitment Drive Process in Amazon Honeycode . 42

5.1 Model transformation chaining scenario 1 . 50
5.2 Model transformation chaining scenario 2 . 51
5.3 Model transformation chaining scenario . 53
5.4 The proposed MOMoT extension for optimal chain selection 55
5.5 Metamodel for modeling the transformation chain selection problem 56
5.6 Example: Henshin rule for selecting transformation KM32EMF and resulting model

instance (excerpt). 57
5.7 Model transformation defining the chaining problem in Henshin 58
5.8 Problem model to define search problem for MomoT 60
5.9 Generated visualization from identified chaining solutions 62
5.10 Execution time of different algorithms w.r.t parameter configuration_1 in problem

model 1 . 65
5.11 Execution time of different algorithms w.r.t different parameter configuration_2 in

problem model 1 . 65
5.12 Execution time of different algorithms w.r.t different parameter configuration_1 in

problem model 2 . 66
5.13 Execution time of different algorithms w.r.t different parameter configuration_2 in

problem model 2 . 67

6.1 An example model transformation chain . 72
6.2 An example optimizing model transformation chain 73
6.3 Proposed approach optimizing the execution of transformation chain 74

x

6.4 Graph based representation of the KM32XML experiment 77
6.5 Unoptimized and optimized KM32JavaSource transformation example 78
6.6 Correlation between execution time and generated target elements for chain Ch1 . . 80
6.7 Correlation between execution time and generated target elements for chain Ch2 . . 80

xi

List of Tables

3.1 Taxonomy for Low-Code Development Platforms . 19
3.2 Comparison of analysed low-code development platforms 21

4.1 BPMN core elements . 26
4.2 Quality criteria to compare process modeling approaches in the literature 31
4.3 BPMN workflow constructs covered by the analysed Low-Code Platforms 42
4.4 Main mechanisms to specify workflows in low-code development platforms 43
4.5 Supported data management . 43

5.1 Momot result of 8 algorithms to compute optimal chain(s) out of 3 identified chains 62
5.2 Results for RQ1 . 63
5.3 Different parameters configuration_1 . 64
5.4 Different parameters configuration_2 . 64
5.5 Average execution time (ms) for various algorithms for configuration_1 64
5.6 Average execution time (ms) for various algorithms in configuration_2 64
5.7 Average execution time (ms) for various algorithms in configuration_1 66
5.8 Average execution time (ms) for various algorithms in configuration_2 66

6.1 Results for the execution time KM32XML chain experiment 79
6.2 Results for total target elements generated in the KM32XML chain experiment . . . 79

xiii

List of Abbreviations

MDE Model Driven Engineering
LCDP Low Code Development Platform
BPMN Business Process Modeling (and) Notations
MTC Model Transformation Composition
API Application Programming Interface
OCL Object Constraint Language
ETL Epsilon Transformation Language
EOL Epsilon Object Language
EMG Epsilon Model Generation
BPEL Business Process Execution Language
SPML Software Process Modeling Language
SPEM Software Process Engineering Metamodel
UML Unified Modeling Language
ATL Atlas Transformation Language
MOMoT Marrying Search-Based Optimization and Model Transformations
CMMI-DEV Capability Maturity Model Integration for Development

1

Chapter 1

Introduction

Low-Code Development Platforms (LCDPs)1 are visual environments that are being increasingly
promoted by major IT players for supporting citizen developers to create software systems even if
they lack programming background and knowledge [120]. One of the most prominent application
domains for LCDPs is process automation [96]: citizen developers are provided with visual envi-
ronments to specify workflows orchestrating sequential or even parallel consumption of services,
each typically provided by external providers, which the used LCDP is able to connect. Thus,
developers can specify processes e.g., to retrieve data from external data sources (e.g., calendar,
sensors, and files stored in cloud services), to manipulate retrieved data. It can be achieved by
means of the provided facilities or even by using external services and performing some aggrega-
tion and analysis according to rules defined by the languages provided by the platform. However,
when complex workflows have to be specified, developers have to be aware of the possible ser-
vice providers that the used LCDP is able to interact with and the manipulation ways that might
be exploited to develop the desired process finally. LCDPs are software platforms that sit on the
cloud and enable developers of different domain knowledge and technical expertise to develop
fully-fledged applications ready for production [89]. Such applications are developed through
model-driven engineering principles and take advantage of cloud infrastructures, automatic code
generation, declarative and high level and graphical abstractions to develop entirely functioning
applications [116]. These platforms capitalize on recent developments in cloud computing tech-
nologies and models such as Platform-as-a-service (PaaS), and proven software design patterns
and architectures to ensure effective and efficient development, deployment and maintenance of
the wanted application.

At the heart of low-code platforms, there are model-driven engineering (MDE) principles [21] that
have been adopted in several engineering disciplines by relying on the automation, analysis, and
abstraction possibilities enabled by the adoption of modelling and metamodelling [29]. Model
driven engineering (MDE) elevates models as the first-class artefacts in the software development
process. An MDE workflow typically involves several model management tasks such as model
validation and model-to-model transformations. Model transformation is referred to as the heart
and soul of MDE [103] and it can include model to model or model to text transformations (code
generation). When software systems become complex, the workflow to build such applications
can be specified using model transformation composition.

Model Transformation as a key concept in Model Driven Engineering (MDE) [26, 57] is applicable
in low-code development platforms. It is a process of converting a model from one representation
to another, often used in software development and engineering to bridge the gap between differ-
ent modeling languages and tools. A model transformation manipulates and transform models
by interpreting specified transformation rules [110], defined at the metamodel level, but executed
at the model level. Some of the key features of low-code development that require model trans-
formations are pre-built forms, reports and pages, interoperability with external sources such as

1Hereafter, the terms low-code platforms and low-code development platforms are used interchangeably and are abbrevi-
ated as LCDPs.

2 Chapter 1. Introduction

APIs2, IFTTT3, Zapier4, etc. along with built-in workflows and converting report view from grid
to Kanban to CSV, etc [96].

Many smaller and simpler model transformations can be chained together to realize a complex
transformation ecosystem, when multiple transformations are available in a repository [22]. In
such scenario, pre- and post-conditions of the transformations need to be ensured while the meta-
models must be chained properly as per the compatibility of model transformations leading to the
expected result according to the multiple transformations. The reusability and scalability of an ap-
plications can be achieved by composing model transformations that will preserve the syntactic
and semantic properties of the composed smaller transformations. This helps in managing several
workflows originated from different applications that may support heterogeneous platforms. The
workflow engine in developing a scalable applications helps to manage goals in composing and
reusing different models [92].

1.1 Challenges and motivations

Model transformation composition refers to the process of combining multiple model transfor-
mations together in order to achieve a desired outcome. One of the main challenges of model
transformation composition is to ensure that the composed transformations are semantically con-
sistent, meaning that the combined effect of the transformations preserves the intended meaning
of the original model. Managing the complexity of the composed transformations, which can
grow rapidly as the number of transformations increases is also an important requirement that
needs to be considered. The developer must ensure that the composed transformations can be ex-
ecuted efficiently. Lastly, the model developer must preserve the properties of the original model
by composed transformations, like consistency, integrity, completeness, etc.

Despite these challenges, there are enough motivation for model transformation composition that
makes it practical to implement. The motivations are as follows. Reusing existing transforma-
tions to avoid having to reinvent the wheel is the most important uses to implement composition
of model transformations. This would possibly create new functionality by combining existing
transformations in new ways. Using composition to divide a large, complex problem into smaller,
more manageable sub-problems is one of the primary reason to compose different transforma-
tions [109]. Also, automating the process of software development and maintenance by using
model transformations to generate and update code is another application for model transfor-
mation compositions. Lastly, applying model transformations to different domains, where the
properties of each domain are well-preserved, can also be achieved by combining them.

The scope of the thesis is invested mostly on reusing existing transformations and using several
transformation criteria along with the involved metamodels that would determine the nature of
the generated target model. Also, the thesis showcases that how a complex direct transformation
can be replaced by the series of simpler transformations, given the requirement for the target
model. Lastly, the thesis optimizes those transformations involved in the chaining that would
minimize the execution time of a particular chain.

1.2 Research Activities

The general research objective is to compose and execute model transformations that enables the
development of complex transformations by reusing and composing simpler and smaller ones

2Application Programming Interfaces
3https://ifttt.com/
4https://zapier.com/

https://ifttt.com/
https://zapier.com/

1.3. Structure of the thesis 3

[92]. There are three major activities performed in composing model transformation. They are
the following. First is to identify the possible transformation chain by using cloud-based search
engine [20] or through static analysis of the transformation language such as Epsilon [56]. Second
major activity is to select transformation chain by estimating the optimal criteria such as transfor-
mation coverage, transformation complexity, number of transformation hops and model coverage
[95]. Lastly, another activity involves optimizing a transformation chain by identifying the usage
of the element that are propagated till the target model [94]. The optimization of the transfor-
mation chain also consider the use of equivalent operator in the epsilon transformation language
(ETL).

1.2.1 Research Questions

The research questions that are addressed during the Ph.D. research work are as follows:

1. How to execute the set of transformations that are available in the transformation chain?

2. How can we automatically compose a set of model transformations to achieve the target
model?

3. What are the quality criteria for characterizing the transformation chain (example, complex-
ity, coverage, etc.) in term of the model and the metamodel used?

4. How can we achieve the quality criteria for characterizing transformation chain?

5. How can we optimize the execution of model transformation chain?

1.2.2 Achieved Outcome

The topic of the thesis is narrowed down to the aforementioned research questions. My Ph.D.
work is divided into two major parts of research work. The first part is as follows. Initially, a
feature survey has taken place that explains the usage of different characteristics for different low-
code development platform [96]. Further, a business process and data-handling capacities for
various low-code platforms are analyzed and compared with BPMN2.0 [93].

In the second part of the research work, there is a lot of coding involved. Here’s a brief explana-
tion of the process. The transformation chain is executed while preserving its semantic properties.
It also involves identifying the available transformation chain for user-defined source and tar-
get metamodels, based on the availability of transformations and metamodels. After identifying
the number of transformation chains, the best possible transformation chain is selected using op-
timization techniques based on various objectives such as complexities and coverage. Finally,
optimization of the execution of the chosen transformation chain is achieved.

1.3 Structure of the thesis

Fig. 1.1 shows the structure of this document. This figure highlights the important parts of the
thesis with different chapters. These chapters are discussed below.

Chapter 2 - State of the art: It provides literature on the following topics. Section 2.1 presents
the literature on model transformation composition whereas section 2.2 presents quality criteria
in model transformation. Section 2.3 introduces the search-based techniques in model transfor-
mation while section 2.4 presents the optimization involved in the model transformation chain.

Chapter 3 - Understanding low-code development platforms: It provides the overall usages of
low-code development platforms and elaborates on the features involved in the low-code plat-
forms. Section 3.1 presents the overall structure involved in explaining the low-code platform

4 Chapter 1. Introduction

Chapter 2:
State-of-the-art

Chapter 3:
Understanding

LCDPs

Chapter 4:
Analyzing business

process management
capabilities in LCDPs

Section 5.1:
Automated

identification of model
transformation chain

Section 5.2:
Selecting optimal

model transformation
chain

Chapter 6:
Optimizing the

execution of model
transformation chain

Chapter 5:
Identifying optimal

model transformation
chain

Chapter 7:
Conclusion

FIGURE 1.1: Structure of the thesis

while section 3.2 elaborates on the major components of the low-code platform. Consequently,
section 3.3 presents the development process of a low-code development platform. Section 3.4
presents a brief description for various low-code development platforms. The feature is explained
and categorized the eight considered low-code platforms by creating feature taxonomy is ex-
plained in section 3.5. Section 3.6 presents the comparison of the features and capabilities of
low-code platform while explaining the additional aspects when comparing low-code platforms.
Lastly, section 3.7 presents the experience report of using a low-code platform while developing a
software application.

Chapter 4 - Analyzing business process management capabilities of LCDPs: It provides an elab-
orate analysis of low-code development platforms with a standard business process tool such as
BPMN. This chapter also explains the data-handling capabilities used in various low-code devel-
opment platforms. Section 4.1 presents the description of process modeling with BPMN with a
motivating example. Section 4.2 presents a short survey for various process modelling languages
while focusing on various quality criteria of process modelling languages. Section 4.3 discusses
the process modelling and data-handling constructs in the eight considered low-code develop-
ment platforms. Section 4.4 presents the discussion of various LCDPs with BPMN modelling
constructs. Lastly, section 4.5 presents the discussion of various LCDPs with respect to BPMN
quality criteria.

Chapter 5 - Identifying optimal model transformation chains: It provides the approaches for
identifying model transformation chains and selecting the optimal model transformation chain.
Section 5.1 presents the approach used for identifying model transformation chain and the output
identified from a repository of metamodels and transformations. Section 5.2 presents the back-
ground and motivating dummy example of selecting the optimal chain. This chapter focuses on
the search-based approaches to select the optimal transformation chain. This chapter presents the
experiments done on chain selection given on a specific problem configuration, threats to validity
along with the discussion on the achieved output done in the experiments.

Chapter 6 - Optimizing the execution of model transformation chains: This chapter focuses on
optimizing the execution of model transformation chains. Section 6.1 presents the background
and the motivating example of optimizing the transformation chain. The proposed approach for

1.3. Structure of the thesis 5

optimizing the transformation chain execution is presented in Section 6.2. Section 6.3 presents
the experimental evaluation of the approach along with the results obtained in terms of execution
time and target-generated elements of the transformation chain. Lastly, section 6.4 presents the
threats to the validity of the proposed approach.

Chapter 7 - Conclusion: This chapter focuses on outlining the contribution of the thesis while
presenting the different publications that are either published or are under submission. Also,
developed tools and future work are mentioned in this chapter.

7

Chapter 2

State-of-the-art

This chapter is dedicated to the literature on the topics of the research. In particular, an overview
of existing work related to the following subjects is given: model transformation composition,
quality criteria used in model transformations, search-based techniques involved in model trans-
formations and optimization of various model transformation chains.

2.1 Model Transformation composition

In Lucio et al.(2013) [68], explicit modeling activities are used and analysed by combining Formal-
ism Transformation Graph and Process Model (FTG+PM) to find out the target model or intent of
the model transformation chain. This intent are attached as annotations for each available trans-
formations that will compose each properties of a transformations to achieve the desired outcome.

Kuster et al.(2009) [65] describe an incremental development of model transformation chain based
on the automated testing. These testing framework would improve the quality of transformation
chain incrementally that also allows a developer to change an individual transformation without
affecting the chain.

Alvarez et al.(2013) [7] present a tool called MTC Flow that allows developers to design, develop,
test and deploy model transformation chains. MTC Flow uses graphical domain specific lan-
guages (DSLs) for defining workflow models for transformation chain that are independent to
the technologies that support the transformations. Also, this tool is interoperable to any transfor-
mation or validation technologies that describes the multiple transformation chains by designing
their workflow model.

In Aranega et al.(2012) [13], feature models (based on separation of concern) are proposed to
classify bigger model transformations. These feature models helps to automate the valid set of
model transformations and generate the executable chain of model transformations that gives the
desired output model.

The above mentioned research papers explain the concept of model transformation composition
that enables developers to combine and reuse the pre-existing models and components to build
new applications. The process of combining multiple, simpler transformations to achieve a de-
sired outcome is done by composing different model transformations. These compositions can
range from transforming one model format to another, extracting information, or manipulating
data within a model. The importance of model transformation composition is also highlighted in
the above mentioned papers. The transformation composition is used in various industries such
as automation in software systems, improving business processes, and product design. However,
the automation of the execution of transformation chains are not done previously and we achieved
the automatic execution of the transformation chain and the optimizing their execution in terms
of memory space and execution time.

8 Chapter 2. State-of-the-art

2.2 Quality criteria in model transformations

Syriani et al.(2012) [107] elaborate on the design pattern in the context of model transformation
that satisfy quality criteria identified before the execution of the transformation. The quality cri-
teria identified to assess and validate the model transformation design pattern are correctness,
reusability, efficiency, reliability, maintainability and interoperability. The verification and the val-
idation is done on the design patterns allows to assess whether the cataloged design patterns are
complete with respect to the quality criteria. This helps to detect the bad design and improve the
design pattern of a model transformation.

In Selim et al.(2012) [102], transformation testing is used to estimate the quality criteria of the
model transformation. Some of the estimated quality criteria for transformation testing are meta-
model coverage, input contract coverage of the model transformation, etc. These quality criteria
are calculated using mutation analysis which computes the value of a quality criteria of the origi-
nal model and compare it with the value of quality criteria when the model is mutated or changed.

Baurer et al.(2011) [23] present a coverage analysis approach to measure the test suite quality for
model transformation chains. Their approach combines different coverage criteria such as class
coverage, attribute coverage, association coverage, feature coverage and transformation contract
coverage. The combination of these coverage gives a detailed coverage information that are used
to identify missing and redundant test cases of model transformation or model transformation
chains.

In Ergin et al.(2013) [42], a new model transformation design pattern is introduced that improves
quality in model transformation. The design pattern focuses on three quality metrics of the trans-
formation. They are the number of rule applications, the size of the rule and the number of aux-
iliary elements. These three metrics are related to the efficiency quality criteria and is therefore,
improvements in these metrics would lead to the reduction of time complexity. This paper finds
out that the normal usage of these metrics would lead to the quadratic time complexity while the
improved solution would lead to linear time complexity.

Mkaouer et al.(2014) [76] elaborate on the objectives of the model transformation which provide
rules that generates the target model without any error and to minimize the complexity of the
transformation rules (by reducing number of rules and bindings in the same rule), while maxi-
mizing the quality of the target models. This paper focuses on the transformation mechanism as
a multi-objective problem to find the best rules that maximize the target model quality and min-
imize the rule complexity. The quality of the transformations rules and bindings are iteratively
improved by using the multi-objective optimization process. The objectives are the number of
rules and matching metamodels in each rule and assessing the quality of generated target models
using a set of quality metrics. Optimization algorithm such as NSGA-II is used to automatically
generate the best transformation rules satisfying the two conflicting objectives. By achieving the
best possible solution with two conflicting objectives, the paper claims to provide a well-organized
target models with a minimal set of rules.

In Basciani et al.(2018) [19], two quality criteria such as transformation coverage and information
loss considered in a model transformation chain scenario where multiple chains are possible be-
tween the source and the target model. A customized Dijkstra algorithm is used to individually
consider the two criteria that consider the best chain. Since, the information loss is considered
on the model generated, the paper claims that information loss is a better quality criteria as com-
pared to the transformation coverage which is considered by calculating the static element in the
metamodel and the transformation without considering the generated models.

The above mentioned papers in the subsection explain the quality criteria in model transforma-
tions that are used to evaluate the correctness and effectiveness of model transformations. The
quality criteria can be broadly classified into categories: intrinsic and extrinsic. Intrinsic criteria

2.3. Search-based approaches in model transformations 9

are related to the transformation itself such as coverage criteria, rule size, etc. Whereas, extrinsic
criteria are related to the context in which the transformation is used such as reusability, reliabil-
ity, etc. The thesis is focussed on intrinsic quality criteria of the model transformation such as the
optimal model transformation composition can be identified.

2.3 Search-based approaches in model transformations

In Kessentini et al.(2008) [60], the transformation technique is framed as a combinatorial optimiza-
tion problem where the end goal is to find a better transformation that starts from a small set of
available examples. The search-based model transformation by example is also further elaborated
in the paper [61]. This approach is called MOdel Transformation as Optimization by Example
(MOTOE) combines transformation blocks extracted from examples in order to generate a target
model. A modified version of particle swarm optimization (PSO) is used where different trans-
formation solutions are modelled as particle which exchange transformation blocks to converge
to achieve an optimal transformation solution.

Fleck et al.(2017) [46] identify the problem of modularizing model transformation program and
use it as a model in an automated search-based approach. The application and the execution of the
problem is managed by the search framework that combines an in-place transformation language
(in Henshin) and uses a search-based algorithm framework. This calculates the pareto-optimal
solution based on four objectives or quality attributes. The four objectives are the number of mod-
ules in the transformation, the difference between the lowest and highest number of responsibility
in a module, the cohesion ratio and the coupling ratio. This approach uses MOMoT framework
[44] that can model a problem and by using in-place transformation and search-based algorithm
(such as NSGA-II, NSGA-III, etc), a pareto-optimal solution is found out based on minimization
or maximization of the quality objectives.

Sahin et al.(2015) [98] propose to handle model transformation testing as a bi-level optimization
problem which combines the generation of test cases with mutation testing. This paper divides
the problem into two parts: the upper level and the lower level. The upper level problem gen-
erates a set of test cases that use to maximize the coverage of metamodels used and the errors
introduced by the lower level problem to the transformation rules. This bi-level formulation of
the problem provides a statistical analysis of the obtained result that shows the competitiveness
and the outperforming of the proposed approach as compared to the precision over co-evolution
and non-search-based methods.

The discussed papers explain how search-based optimization techniques are used to select and
optimize transformation chains according to user requirements. The aforementioned papers high-
light the search-based approach as a means to tackle the issue of chaining various model transfor-
mations to create the desired output models. This sub-chapter also focuses on the use of search-
based optimization and model-driven techniques that helps to find out an efficient solution to the
complex problem of composing various transformations. We have used search-based and model-
driven approaches mentioned in paper [44]. The discussed paper helps to coherently joined the
model driven approach of framing the transformation chain selection problem and running the
search-based algorithm designed in the MOMoT framework.

2.4 Optimization of model transformation chains

Cabot et al. (2006) [31] propose a metric to measure the complexity of the OCL expression. The
metric is based on the syntactic structure of the expressions (number of referred attributes, num-
ber of navigation, etc.) and on the constructs used in their definition (such as the number of
forAll and select iterators). This traversal of each expression to determine number of objects

10 Chapter 2. State-of-the-art

involved in calculating the expressions aims to give a precise complexity of the execution of an
OCL expression.

In Cuadrado et al.(2020) [101], authors have proposed an approach for parallel execution of model
transformations along with some optimizations both at the transformation level and at OCL1 ex-
pression level using static analysis. Firstly, Ordering of the matched rules is done to identify the
matched rule. Second, the foot-printing of the model transformations to filter the model elements
is done by only keeping the ones that are matched with any rule. Third, handling bindings to be
resolved at compile-time to speedup the execution at run-time. Fourth, implementing trace links
reduction by only keep trace of those links that are used during the transformation. This approach
doesn’t take chain optimization into account.

An approach in Le Calvar et al.(2019) [67] compiles a subset of ATL code to generate efficient Java
code. A similar approach to enable incremental execution of model transformations in [86] uses
partial evaluation to pre-compute a part of model transformation.

Viatra [115] provides an incremental engine based on RETE algorithm [125]. The incremental en-
gine of Viatra computes the pattern matches and caches them, thus, executing the transformations
efficiently. But due to higher caching of the memory consumption, the user gets a faster execution
at the cost of more memory consumption.

The papers above highlight the difficulties that modellers and developers face when composing
model transformations. The challenges stem from the varying sizes and diverse sources of the
model transformations, which must be manually composed in a time-consuming and error-prone
manner. In this thesis, we have improved the execution of the model transformation chain by
reducing the unnecessary target modeling elements and transformation rules. This optimization
leads to faster execution time and more efficient memory usage while generating the final output
of the transformation chain.

1Object Constraint Language

11

Chapter 3

Understanding Low-Code Development
Platforms

By using low-code development platforms (LCDPs), citizen developers can build their software
application without the help of traditional developers that were earlier involved along with the
full-stack development of fully operational applications. Thus, low-code developers can focus on
the business logic of the application being specified rather than dealing with unnecessary details
related to setting up of the needed infrastructures, managing data integrity across different envi-
ronments, and enhancing the robustness of the system. Bug fixing and application scalability and
extensibility are also made easy, fast and maintainable in these platforms by the use of high-level
abstractions and models [10].

In this chapter, a technical survey is provided to distil the relevant functionalities provided by dif-
ferent LCDPs and accurately organize them. In particular, eight major LCDPs have been analyzed
to provide potential decision-makers and adopters with objective elements that can be considered
when educated selections and considerations have to be performed. The contributions of this
chapter are summarized as follows:

• Identification and organization of relevant features characterizing different low-code devel-
opment platforms;

• Comparison of relevant low-code development platforms based on the identified features;

• Presentation of a short experience report related to the adoption of LCDPs for developing a
simple benchmark application.

3.1 A bird-eye view of low-code development platforms

From an architectural point of view, LCDPs consist of four main layers, as shown in Fig. 3.1. The
top layer (see Application Layer) consists of the graphical environment that users directly inter-
act to specify their applications. The tool boxes and widgets used to build the user interface of the
specified application are part of this layer. It also defines authentication and authorization mech-
anisms to be applied to the specified artefacts. Through the modelling constructs made available
at this layer, users can specify the behaviour of the application being developed. For instance,
users can specify how to retrieve data from external data sources (e.g., spreadsheets, calendars,
sensors, and files stored in cloud services), how to manipulate them by using platform facilities
or utilising external services, how to aggregate such data according to defined rules, and how to
analyze them. To this end, the Service Integration Layer is exploited to connect with different
services by using corresponding APIs and authentication mechanisms.

A dedicated data integration layer permits to operate and homogeneously manipulate data even if
heterogeneous sources are involved. To this end, the Data Integration Layer is concerned with

12 Chapter 3. Understanding Low-Code Development Platforms

Deployment Layer
(e.g., cloud, local infrastructures)

Data Integration Layer
(e.g., spreadsheets, databases)

Service Integration Layer
(e.g., Dropbox, Git, IFTTT)

 Application Layer
(e.g., toolbox, widgets)

FIGURE 3.1: Layered architecture of low-code development platforms

data integration with different data sources. Depending on the used LCDP, the developed applica-
tion can be deployed on dedicated cloud infrastructures or on-premise environments (Deployment
Layer). Note that the containerization and orchestration of applications are handled at this layer
together with other continuous integration and deployment facilities that collaborate with the
Service Integration Layer.

3.2 Main components of low-code development platforms

By expanding the layered architecture shown in Fig. 3.1, the distinct components building any
low-code development platform are depicted in Fig. 3.2 and they can be grouped into three tiers.
The first tier is made of the application modeler, the second tier is concerned with the server
side and its various functionalities, and the third tier is concerned with external services that are
integrated with the platform. The arrows in Fig. 3.2 represent possible interactions that might
occur among entities belonging to different tiers. The lines shown in the middle tier represents
the main components building up the platform infrastructure.

As previously mentioned, modelers are provided with an application modeler enabling the speci-
fication of applications through provided modeling constructs and abstractions. Once the appli-
cation model has been finalized, it can be sent to the platform back-end for further analysis and
manipulations including the generation of the full-fledged application, which is tested and ready
to be deployed on the cloud.

Figure 3.3 shows the application modeler of Mendix [73] at work. The right-hand side of the envi-
ronment contains the widgets that modelers can use to define applications, as shown in the central
part of the environment. The left-hand side of the figure shows an overview of the modeled sys-
tem in terms of, e.g., the elements in the domain model, and the navigation model linking all the
different specified pages. The application modeler also permits to run the system locally before
deploying it. To this end, as shown in Fig. 3.2, the middle tier takes the application model received
from the application modeler and performs model management operations including code gen-
erations and optimizations by also considering the involved services including database systems,
micro-services, APIs connectors, model repositories of reusable artifacts, and collaboration means
[80].

Concerning database servers, they can be both SQL and NoSQL. In any case, the application users
and developers are not concerned about the type of employed database or mechanisms ensuring
data integrity or query optimizations. More in general, the developer is not concerned about low-
level architecture details of the developed application. All the needed micro-services are created,

3.3. Development process in LCDPs 13

FIGURE 3.2: Main components of low-code development platforms

orchestrated and managed in the back-end without user intervention. Although the developer
is provided with the environment where she can interact with external APIs, there are specific
connectors in charge of consuming these APIs in the back-end. Thus, developers are relieved
from the responsibility of manually managing technical aspects like authentication, load balance,
business logic consistency, data integrity and security.

Low-code development platforms can also provide developers with repositories that can store
reusable modeling artifacts by taking care of version control tasks. To support collaborative de-
velopment activities, LCDPs include facilities supporting development methodologies like agile,
kanban, and scrum. Thus, modelers can easily visualize the application development process, de-
fine tasks, sprints and deal with changes as soon as customers require them and collaborate with
other stakeholders.

3.3 Development process in LCDPs

The typical phases that are performed when developing applications by means of LCDPs can be
summarized as follows.

1. Data modeling - usually, this is the first step taken; users make us of a visual interfaces to
configure the data schema of the application being developed by creating entities, establish-
ing relationships, defining constraints and dependencies generally through drag-and-drop
facilities. A simple data model defined in Mendix is shown in Fig. 3.4.

14 Chapter 3. Understanding Low-Code Development Platforms

FIGURE 3.3: The application modeler of Mendix at work

2. User interface definition - secondly, the user configures forms and pages (e.g., see Fig. 3.3)
used to define the application views, and later define and manage user roles and security
mechanisms across at least entities, components, forms, and pages. It is here that drag-and-
drop capabilities play a significant role to speed up development and render the different
views quickly.

3. Specification of business logic rules and workflows - Third, the user might need to manage work-
flows amongst various forms or pages requiring different operations on the interface com-
ponents. Such operations can be implemented in terms of visual-based workflows and to
this end, BPMN-like notations can be employed as, e.g., shown in Fig. 3.5.

4. Integration of external services via third-party APIs - Fourth, LCDPs can provide means to con-
sume external services via integration of different APIs. Investigating the documentation
is necessary to understand the form and structure of the data that can be consumed by the
adopted platform.

5. Application Deployment - In most platforms, it is possible to quickly preview the developed
application and deploy it with few clicks.

3.4 An overview of representative low-code development platforms

This section presents an overview of eight low-code development platforms that have been con-
sidered as leaders in the related markets from recent Gartner [116] and Forrester [91] reports.
These eight low-code platforms are assumed to be representative platforms for the benefit of our
analysis that encompasses diverse feature capabilities mentioned in Table 3.1.

OutSystem [80] is a low-code development platform that allows developing desktop and mobile
applications, which can run in the cloud or in local infrastructures. It provides inbuilt features
which enable to publish an application via a URL with a single button click. OutSystems has
two significant components. First, it has an intermediate Studio for database connection through
.NET or Java and secondly, it has a service studio to specify the behaviour of the application being

3.4. An overview of representative low-code development platforms 15

FIGURE 3.4: A simple data model defined in Mendix

FIGURE 3.5: A simple logic defined in Mendix

developed. Some of the supported applications in this platform are billing systems, CRMs1, ERPs
2, extensions of existing ERP solutions, operational dashboards and business intelligence.

Mendix [73] is a low-code development platform that does not require any code writing and all
features can be accessed through drag-and-drop capabilities while collaborating in real-time with
peers. There is a visual development tool that helps to reuse various components to fasten the
development process from the data model setup to the definition of user interfaces. Users can
create some context-aware apps with pre-built connectors, including those for the IoT, machine
learning, and cognitive services. Mendix is compatible with Docker3 and Kubernetes4, and it has
several application templates that one can use as starting points. Mendix’s Solution Gallery5 is an
additional resource that permits users to start from already developed solutions, and that might
be already enough to satisfy the requirements of interest.

Zoho Creator [127] offers drag-and-drop facilities to make the development of forms, pages and
dashboards easy. The provided user interface supports web design where the layout of the page

1Customer Relationship Managements
2Enterprise Resource Plannings
3https://www.docker.com/
4https://kubernetes.io/
5https://www.mendix.com/solutions/

https://www.docker.com/
https://kubernetes.io/
https://www.mendix.com/solutions/

16 Chapter 3. Understanding Low-Code Development Platforms

reflects the resolution of the screen of the user (e.g., in the case of mobile or desktop applications).
It also offers integration with other Zoho apps and other Salesforce6 connectors. Customized
workflows are essential features of Zoho Creator.

Microsoft PowerApps [75] supports drag-and-drop facilities and provides users with a collection
of templates which allows reuse of already developed artifacts. A user can follow model-driven
or canvas approaches while building applications. PowerApps integrates with many services in
the Microsoft ecosystem such as Excel, Azure database7 or similar connectors to legacy systems.

Google App Maker [52] allows organizations to create and publish custom enterprise applica-
tions on the platform powered by G Suite8. It utilizes a cloud-based development environment
with advanced features such as in-built templates, drag-and-drop user interfaces, database edi-
tors, and file management facilities used while building an application. To build an extensive user
experience, it uses standard languages such as HTML, JavaScript, and CSS.

Kissflow [62] is a workflow automation software platform based on the cloud to help users to cre-
ate and modify automated enterprise applications. Its main targets are small business applications
with complete functional features which are essential for internal use, and human-centred work-
flows such as sales enquiry, purchase request, purchase catalogue, software directory, and sales
pipeline. It supports integration with third-party APIs, including Zapier9, Dropbox10, IFTTT11,
and Office 36512.

Salesforce App Cloud [99] helps developers to build and publish cloud-based applications which
are safe and scalable without considering the underlying technological stacks. It exhibits out-of-
the-box tools and operations for automation by integrating them with external services. Some of
the peculiar features are the extensive AppExchange marketplace13 consisting of pre-built applica-
tions and components, reusable objects and elements, drag-and-drop process builder, and inbuilt
kanban boards.

Appian [12] is one of the oldest low-code platform, which permits to create mobile and Web
applications through a customized tool, built-in team collaboration means, task management, and
social intranet. Appian comes with a decision engine which is useful for modeling complex logic.

3.5 Taxonomy

In this section we introduce preparatory terms, which can facilitate the selection and comparison
of different LCDPs. The features are derived by examining the requirements in building an ap-
plication along with the capabilities that a low-code platform could offer in achieving the making
of an application. In particular, by analyzing the low-code development platforms described in
the previous section, we identified and modeled their variability and commonalities. Our results
are documented using feature diagrams [34], which are a common notation in domain analysis
[33]. Fig. 3.6 shows the top-level feature diagram, where each sub-node represents a major point
of variation. Table 3.1 gives details about the taxonomy described in the following.

• Graphical user interface: This group of features represents the provided functionalities avail-
able in the front-end of the considered platform to support customer interactions. Examples

6https://www.salesforce.com/it/
7https://azure.microsoft.com
8https://gsuite.google.com/
9https://zapier.com

10https://www.dropbox.com/
11https://ifttt.com/
12https://products.office.com/it-it/home
13https://appexchange.salesforce.com/

https://www.salesforce.com/it/
https://azure.microsoft.com
https://gsuite.google.com/
https://zapier.com
https://www.dropbox.com/
https://ifttt.com/
https://products.office.com/it-it/home
https://appexchange.salesforce.com/

3.5. Taxonomy 17

FIGURE 3.6: Feature diagram representing the top-level areas of variation for LCDPs

of features included in such a group are drag-and-drop tools, forms, and advanced reporting
means.

• Interoperability support with external services and data sources: This group of features is related
to the possibility of interacting with external services such as Dropbox, Zapier, Sharepoint,
and Office 365. Also, connection possibilities with different data sources to build forms and
reports are included in such a group.

• Security support: The features in this group are related to the security aspects of the applica-
tions that are developed by means of the employed platform. The features included in such
a group include authentication mechanisms, adopted security protocols, and user access
control infrastructures.

• Collaborative development support: Such a group is related to the collaboration models (e.g.,
online and off-line) that are put in place to support the collaborative specification of appli-
cations among developers that are located in different locations.

• Reusability support: It is related to the mechanisms employed by each platform to enable the
reuse of already developed artifacts. Examples of reusability mechanisms are pre-defined
templates, pre-built dashboards, and built-in forms or reports.

• Scalability support: Such a group of feature permits developers to scale up applications ac-
cording to different dimensions like the number of manageable active users, data traffic, and
storage capability that a given application can handle.

• Business logic specification mechanisms: It refers to the provided means to specify the business
logic of the application being modeled. The possibilities included in such a group are busi-
ness rules engine, graphical workflow editor, and API support that allows one application
to communicate with other application(s). Business logic can be implemented by using one
or more API call(s).

• Application build mechanisms: It refers to the ways the specified application is built, i.e., by
employing code generation techniques or through models at run-time approaches. In the
former, the source code of the modeled application is generated from the specified models
and subsequently deployed. In the latter, the specified models are interpreted and used to
manage the run-time execution of the application.

18 Chapter 3. Understanding Low-Code Development Platforms

• Deployment support: The features included in such a group are related to the available mech-
anisms for deploying the modeled application. For instance, once the system has been spec-
ified and built, it can be published in different app stores and deployed in local or cloud
infrastructures.

In addition to the top-level features shown in Fig. 3.6, LCDPs can be classified also with respect
to the Kinds of supported applications. In particular, each LCDP can specifically support the devel-
opment of one or more kinds of applications including Web portals, business process automation
systems, and quality management applications.

3.5. Taxonomy 19

TABLE 3.1: Taxonomy for Low-Code Development Platforms

Feature Description
Graphical user interface
Drag-and-drop designer This feature enhances the user experience by permitting to drag all the items involved in making an app including actions,
responses, connections, etc.
Point and click approach This is similar to the drag-and-drop feature except it involves pointing on the item and clicking on the interface rather

than dragging and dropping the item.
Pre-built forms/reports This is off-the-shelf and most common reusable editable forms or reports that a user can use when developing an application.
Pre-built dashboards This is off-the-shelf and most common dashboards that a user can use when developing an application.
Forms This feature helps in creating a better user interface and user experience when developing applications. A form includes

dashboards, custom forms, surveys, checklists, etc. which could be useful to enhance the usability of the application
being developed.

Progress tracking This features helps collaborators to combine their work and track the development progress of the application.
Advanced Reporting This features enables the user to obtain a graphical reporting of the application usage. The graphical reporting includes

graphs, tables, charts, etc.
Built-in workflows This feature helps to concentrate the most common reusable workflows when creating applications.
Configurable workflows Besides built-in workflows, the user should be able to customize workflows according to their needs.
Interoperability support
Interoperability services This feature is one of the most important features to incorporate different services and platforms including that

of Microsoft, Google, etc. It also includes the interoperability possibilities among different low-code platforms.
Connecting data sources This features connects the application with data sources such as Microsoft Excel, Access and other relational databases

such as Microsoft SQL, Azure and other non-relational databases such as MongoDB.
Security Support
Application security This feature enables the security mechanism of an application which involves confidentiality, integrity and availability of an
application, if and when required.
Platform security The security and roles management is a key part in developing an application so that the confidentiality, integrity and

authentication (CIA) can be ensured at the platform level.
Collaborative dev support
Off-line collaboration Different developers can collaborate on the specification of the same application. They work off-line locally and then they commit
to a remote server their changes, which need to be properly merged.
On-line collaboration Different developers collaborate concurrently on the specification of the same application. Conflicts are managed at run-time.
Reusability support
Built-in workflows This feature helps to concentrate the most common reusable workflows in creating an application.
Pre-built forms/reports This is off-the-shelf and most common reusable editable forms or reports that a user might want to employ when developing

an application.
Pre-built dashboards This is off-the-shelf and most common dashboards that a user might want to employ when developing an application.
Scalability
Scalability on no. of users This features enables the application to scale-up with respect to the number of active users that are using that application

at the same time.
Scalability on data traffic This features enables the application to scale-up with respect to the volume of data traffic that are allowed by that application

in a particular time.
Scalability on data storage This features enables the application to scale-up with respect to the data storage capacity of that application.
Business logic spec mechanisms
Business rules engine This feature helps in executing one or more business rules that help in managing data according to user’s requirements.
Graphical workflow editor This feature helps to specify one or more business rules in a graphical manner.
AI enabled business logic This is an important feature which uses Artificial Intelligence in learning the behaviour of an attributes and replicate those

behaviours according to learning mechanisms.
Application build mechanisms
Code generation According to this feature, the source code of the modeled application is generated and subsequently deployed before its execution.
Models at run-time The model of the specified application is interpreted and used at run-time during the execution of the modeled application

without performing any code generation phase.
Deployment support
Deployment on cloud This features enables an application to be deployed online in a cloud infrastructure when the application is ready to deployed and

used.
Deployment on local infra This features enables an application to be deployed locally on the user organization’s infrastructure when the application is ready

to be deployed and used.
Kinds of supported applications
Event monitoring This kind of applications involves the process of collecting data, analyzing the event that can be caused by the data, and signalling

any events occurring on the data to the user.
Process automation This kind of applications focuses on automating complex processes, such as workflows, which can takes place with minimal

human intervention.
Approval process control This kind of applications consists of processes of creating and managing work approvals depending on the authorization of the
user. For example, payment tasks should be managed by the approval of authorized personnel only.
Escalation management This kind of applications are in the domain of customer service and focuses on the management of user viewpoints that filter
out aspects that are not under the user competences.
Inventory management This kind of applications is for monitoring the inflow and outflow of goods and manages the right amount of goods to be stored.
Quality management This kind of applications is for managing the quality of software projects, e.g., by focusing on planning, assurance, control and

improvements of quality factors.
Workflow management This kind of applications is defined as sequences of tasks to be performed and monitored during their execution, e.g., to check

the performance and correctness of the overall workflow.

20 Chapter 3. Understanding Low-Code Development Platforms

3.6 Comparing relevant LCDPs

In this section, we make use of the taxonomy previously presented to compare the eight low-code
development platforms overviewed in Sec. 3.4. Table 3.2 shows the outcome of the performed
comparison by showing the corresponding supported features for each platform. The data shown
in Table 3.2 are mainly obtained by considering the official resources of each platform as referenced
by [80],[73], [127],[75],[52],[62],[99], [12], and by considering the experience we gained during the
development of a benchmark application as discussed in the next section.

3.6. Comparing relevant LCDPs 21

TABLE 3.2: Comparison of analysed low-code development platforms

Feature OutSystems Mendix Zoho Creator MS PowerApp App Maker Kissflow Salesforce App Appian
Graphical user interface
Drag-and-drop designer ✓ ✓ ✓ ✓ ✓ ✓ ✓

Point and click approach ✓

Pre-built forms/reports ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pre-built dashboards ✓ ✓ ✓ ✓ ✓

Forms ✓ ✓

Progress tracking ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Advanced reporting ✓

Built-in workflows ✓ ✓ ✓

Configurable workflows ✓ ✓ ✓

Interoperability support
Interoperability with external service ✓ ✓ ✓ ✓ ✓ ✓ ✓

Connection with data sources ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Security Support
Application security ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Platform security ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Collaborative development support
Off-line collaboration ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

On-line collaboration ✓ ✓ ✓ ✓ ✓ ✓

Reusability support
Built-in workflows ✓ ✓ ✓

Pre-built forms/reports ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pre-built dashboards ✓ ✓ ✓ ✓ ✓

Scalability
Scalability on number of users ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scalability on data traffic ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scalability on data storage ✓ ✓ ✓ ✓ ✓ ✓ ✓

Business logic specification mechanisms
Business rules engine ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Graphical workflow editor ✓ ✓ ✓ ✓

AI enabled business logic ✓ ✓ ✓ ✓

Application build mechanisms
Code generation ✓

Models at run-time ✓ ✓ ✓ ✓ ✓ ✓ ✓

Deployment support
Deployment on cloud ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Deployment on local infrastructures ✓ ✓ ✓ ✓

Kinds of supported applications
Event monitoring ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Process automation ✓ ✓ ✓ ✓ ✓ ✓

Approval process control ✓

Escalation management ✓

Inventory management ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Quality management ✓ ✓ ✓ ✓ ✓ ✓ ✓

Workflow management ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

22 Chapter 3. Understanding Low-Code Development Platforms

3.6.1 Features and capabilities

The essential and distinguishing features and capabilities of the analyzed low-code platforms can
be summarized as follows. OutSystems provides developers with a quick mechanism to publish
developed applications, the capability to connect different services, to develop responsive mo-
bile and web-apps, security mechanisms and real-time dashboards. Mendix supports collabora-
tive project management and end-to-end development, pre-built templates with app stores and
interactive application analytic. Zoho Creator has an easy-to-use form builder, user-friendly and
mobile-friendly user interfaces, and the capability of app-integration among different Zoho CRM
apps, Salesforce, etc. It also supports pre-built templates and customized workflows. Microsoft
PowerApp supports integration with Microsoft Office 365, pre-built templates, easy mobile and
tablet application conversion, and the capability to connect with third-party applications for basic
application development. Google App Maker has a drag-and-drop function similar to most of the
analyzed low-code platforms, app preview, reusable templates, deployment settings, means to
specify access roles, built-in tutorials and google analytic integration. Kissflow supports progress
tracking, custom and pre-built reports, collaborative features, and the possibility to use third-party
services such as Google document, and Dropbox documents. It also supports Zapier to integrate
different systems. Salesforce App Cloud has an extensive app market place for pre-built apps and
components, reusable objects and elements, in-built kanban boards and a drag-and-drop process
builder. Appian supports native mobile apps, drag-and-drop tools, collaborative task manage-
ment, and a decision engine with AI-enabled complex logic.

3.6.2 Additional aspects for comparing LCDPs

The taxonomy discussed in the previous section plays an important role when users have to com-
pare candidate LCDPs and select one among possible alternatives. Further than the features pre-
viously presented, we identified additional aspects that are orthogonal to the presented taxonomy,
and that can be taken into account when decision-makers have to decide if a low-code develop-
ment platform has to be adopted and which one.

Type of solutions to be developed: there are two main types of applications that can be developed
employing LCDPs, namely B2B (Business to Business) and B2C (Business to Customer solution).
B2B solutions provide users with business process management (BPM) functionalities such as
creation, optimization, and automation of business process activities. Examples of B2B solutions
include hotel management, inventory management, and human resource management. Multiple
applications can be combined in a B2B solution. B2C solutions provide more straightforward
answers for end customers. B2C solutions are for developing single applications such as websites
and customer relations management applications. The interactivity aspects of B2C is much more
crucial than B2B ones.

Size of the user’s company/organization: another dimension to be considered when selecting LCDPs,
is the size of the company/organization that is going to adopt the selected LCDP. Organizations
fall under three possible categories: small (with less than 50 employees), medium (if the number
of employees is in between 50 to 1000), large (if the number of employees is higher than 1000).
Thus, the decision-maker must keep in mind the organization size to identify the optimal solution
according to her needs. Any organization who wishes to scale their enterprise at an optimum
cost need to select an LCDP based on the strength of the company. LCDPs such as Salesforce app
cloud, Mendix, and OutSystems support large enterprises, and they are used to develop large and
scalable applications. Google App Cloud, Appian, Zoho Creator are instead mainly for supporting
small to medium scale enterprises and they are relatively cheaper.

Cost and time spent to learn the platform: the time spent on the development, testing and deploy-
ment of an application may vary from one low-code platform to another. To be proficient in such

3.7. Experience Report 23

processes, users must spend time to learn all the related aspects of that platform. Also, decision-
makers have to consider potential training costs that have to be faced for learning the concepts
and processes of that particular low-code platform.

The price of the low-code platform: it is one of the most critical criteria, especially for small or
medium-scale companies. The price of the platform can be estimated as the price of using the
platform for one developer per month. Moreover, the dimensions that contribute to the definition
of the price include i) the number of applications that need to be deployed, and ii) where data are
going to be stored, i.e., in on-premise databases, in cloud environments, or in hybrid configura-
tions.

Increase in productivity: The adoption possibilities of low-code development platforms have to
be assessed by considering the potential number of developed applications with respect to the
time spent to learn the platform, the price incurred in training and to buy the licenses to use the
considered platform.

3.7 Experience Report

The making of such platforms capable of giving citizen developers the ability to build fully-
fledged applications faster and efficiently comes on a cost. Critical architectural decisions are
made to ensure minimal coding, speed, flexibility, less upfront investment and out-of-box func-
tionalities that deliver the full application faster. However, decisions that are usually taken during
the usage of LCDPs can give place to some issues that might emerge later on. In particular, to get
insights into LCDPs, we developed the same benchmark application by employing different plat-
forms. The benchmark application is a course management system intended to facilitate trainers
and trainees to manage their courses, schedules, registrations and attendance. Despite the sim-
plicity of the application, it exhibits general user requirements that are common during the de-
velopment of typical functionalities such as management of data, their retrieval and visualization.
Moreover, we had the possibility of integrating external services via third-party APIs,e.g., to show
maps. We managed to investigate how reusable code and artefacts developed in one platform can
be integrated into other low code platforms hence smoothing the path toward discovery and reuse
of already proven artefacts across different platforms.

The first performed activity to develop the benchmark application was the elicitation of the re-
lated requirements. We came up with the corresponding use cases, and thus with the functional
requirements of the system.

Low-code development platforms are suitable for organizations that have limited IT resources
and budget because delivers the fully featured product in a short span. However it was noticed
than the focus is on functionality of the modules, thus limiting the user to operate according to
her own requirements. Third party integration is limited and the management and maintenance
of the application is limited due to limited extensible capabilities to add new functionalities with
custom code. Plus, it is tough to edit pre-built components to your own liking.

Below are what we notice as major challenges that transcend most of the low-code development
platforms we surveyed. Users and developers are likely to face these challenges along the course
of development in LCDPs such as interoperability issues among different low-code platforms,
extensible limitations, steep learning curves, and scalability issues [78] [104][116] as discussed
below.

Low-code platforms’ interoperability: this characteristic ensures interaction and exchange of in-
formation and artefacts among different low-code platforms, e.g., to share architectural design,
implementation or developed services. Unfortunately, most of low-code platforms are proprietary
and closed sources. There is a lack of standards in this domain by hampering the development

24 Chapter 3. Understanding Low-Code Development Platforms

and collaboration among different engineers and developers. Thus, they are unable to learn from
one another and the reuse of already defined architectural designs, artefacts and implementations
is still hampered.

Extensibility: the ability to add new functionalities not offered by the considered platform is
hard in such proprietary platforms or even impossible. Due to lack of standards, some of them
require extensive coding to add new capabilities, which have to adhere to architectural and design
constraints of the platform being extended.

Learning curve: most of the platforms have less intuitive graphical interfaces. For some of them,
drag-and-drop capabilities are limited, and they do not provide enough teaching material, includ-
ing sample applications and online tutorials to learn the platform. Consequently, the platform
adoption can be affected. The adoption of some platforms still requires knowledge in software
development, thus limiting their adoption from citizen developers who are supposed to be the
main target of these platforms and products.

Scalability: Low code platforms should be preferably based on the cloud and should be able
to handle intensive computations and to manage big data, which get produced at high velocity,
variety, and volume [90]. However, due to lack of open standards for such platforms, it is very
challenging to assess, research and contribute to the scalability of these platforms.

3.8 Summary

In recent years, there has been a significant increase in interest in LCDPs from both academia and
industry. However, with the availability of hundreds of low-code platforms [25], understanding
and comparing them can be a daunting task without an appropriate evaluation framework. This
technical evaluation of low-code platforms has never been discussed before, making this chapter
the first to aim at analyzing different features associated with different low-code platforms. We
analyzed eight relevant low-code platforms in this chapter to identify their similarities and differ-
ences and defined an organized set of distinguishing features to compare them. Additionally, we
presented a short experience report highlighting the limitations and challenges we encountered
while developing a simple benchmark application using the considered platforms.

As a result, we conducted an analysis of various low-code development platforms using a
standard business process tool such as BPMN to understand their complete business process and
data handling mechanisms. The next chapter will explain the data-handling capabilities used in
different LCDPs and discuss the process modeling capabilities supported by each of them.

25

Chapter 4

Analyzing business process management
capabilities of LCDPs

LCDPs offer workflow modeling notations to define business processes and automate the corre-
sponding tasks, including data change, scheduling, or connecting information flows to external
services. For example, when an employee is added to a company, an automated welcome email is
sent to give some essential information. Such automation helps avoid manual and repetitive work
and can produce a better and more efficient result in the overall business process of that company.

The use of LCDPs to automate business processes aims at reducing the cost and time of imple-
menting and maintaining software systems by satisfying different groups of technical and non-
technical users, e.g., software developers and business analysts, respectively [120]. Furthermore,
such business process automation helps develop various applications such as event monitoring,
process automation, approval process control, escalation management, inventory management,
quality management, and workflow management. [97]. As discussed in [51], business process
management aims to support three main activities: i) modeling business processes to capture dif-
ferent workflow specifications, ii) optimizing business processes, and iii) automate the workflow
to generate its implementation. LCDPs provide modeling constructs to specify workflows and
handle corresponding data in this respect. One of the critical use cases of LCDPs is to automate
business processes, workflows, and case management that involves complex business logic that
can operate with external services and multiple end-user roles [117]. However, selecting the right
LCDP that can be employed to specify, automate, and manage the business processes at hand is a
difficult task, which is further complicated by the increasing number of LCDPs being continuously
released.

In this chapter, we analyze and compare eight low-code development platforms by focusing on
their capabilities for specifying and managing business processes. The considered definition of
business processes is based on the standard Business Process Modeling and Notations (BPMN)
[6]. BPMN plays the role of the reference modeling language to support the comparison and the
analysis of the considered LCDPs.

This chapter elaborates on the following research activities.

• We analyze the workflow and data handling mechanisms of different LCDPs associated with
their respective process modeling constructs.

• We identify the existing and missing mapping between components in BPMN-like modeling
language and the analyzed low-code platforms.

• We discuss a set of quality criteria inspired by BPMN that can be used to evaluate modeling
constructs of different LCDPs.

26 Chapter 4. Analyzing business process management capabilities of LCDPs

4.1 Process modeling with BPMN

Process modeling is widely used within organizations as an approach to describe through graphi-
cal notations how business entities conduct their operations [87] in terms of activities, events, and
control flows. In addition, process models may also represent information about involved data,
resources, and other related artifacts. Petri nets [88] and BPMN1 are two prominent examples
of process modeling techniques. BPMN was developed by Object Management Group2 (OMG)
and was released for the first time in May 2004. The BPMN specification was created to provide
a notation intended to be "understandable by all business users, from the business analysts who create
the initial drafts of the processes, to the technical developers responsible for implementing the technology
that will perform those processes, and, finally, to the business people who will manage and monitor those
processes" [121].

In BPMN, business processes are generally called workflows, and they are specified in terms of a
dedicated notation consisting of various modeling constructs for activities, events, gateways, etc.
In addition, BPMN also includes composition mechanisms, e.g., orchestrations, endowed with
corresponding execution semantics. The available constructs help technical and non-technical in-
dividuals to understand their views of the business model by hiding or revealing the necessary
detail according to the role, designation, or expertise of the person involved. The execution of
BPMN specifications is typically performed by transforming models to an XML-based business
process execution language (BPEL) that helps to optimize and automate the defined business pro-
cesses [81]. BPMN 2.0 [6], released in 2011, expands earlier BPMN 1.x capabilities adding choreog-

TABLE 4.1: BPMN core elements

Core Elements Short Description
Swimlanes
Pool Defines a process participants or an external process. Can have multiple lanes.
Lane Define a specific participant or role within a process inside a pool.
Flow Object
Event Shows something that has happened or may about the happen during a process.
Activity Work performed within a process by a participant.
Gateway Controls the sequence & flow within a process, providing routing within a process.
Data
Data Object Information required or produced by an Activity that persists only during a process.
Data Store Information required or produced by an Activity that persists beyond the process.
Message Contains the information between two participants (usually across pools).
Artifacts
Group Allow flow objects to be grouped for documentation and analysis.
Annotation Provides additional information on an element within a process.
Connecting Ob-
jects
Sequence Flow The connection between flow object in a process shows execution within a process.
Message Flow Shows message between process participants (usually across pools).
Association Links Data/Artifacts to flow object shows the direction.

raphy diagrams for modeling several business interactions. Overall, BPMN consists of notations
and semantics of three different diagrams, i.e., collaboration, process, and choreography diagrams.
In this paper, we focus on the core BPMN elements for modeling business processes as shown in
Table 4.1.3

In the following, we describe an illustrative and running example of a Recruitment Drive process.
The applicant reads the job notification on the company’s website and checks her eligibility crite-
ria. If ineligible, she will close the website; otherwise, she clicks on the application link given on

1https://www.omg.org/spec/BPMN/2.0/
2https://www.omg.org/
3Some of the considered BPMN core elements are taken from https://www.omg.org/bpmn/Samples/Elements/

Core_BPMN_Elements.htm

https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/
https://www.omg.org/bpmn/Samples/Elements/Core_BPMN_Elements.htm
https://www.omg.org/bpmn/Samples/Elements/Core_BPMN_Elements.htm

4.2. Analysis of process modelling languages 27

the notification. She further fills out the application and submits it. This will notify the Human
Resource (HR) manager, who checks and validates the application. If the application is incorrect,
the application will be rejected, and thus the application form gets closed. Alternatively, if the
application is correct, an interview is set up. Finally, the manager sends an email to the applicant
notifying the time and place for the interview. Consequently, the manager also conducts inter-
views in which the applicant participates. After the interview, the manager sends the pass or
fail message to the applicant. If the applicant passes the interview, the manager sends the appli-
cant’s pass message to the administrative department. Upon receiving the notice from HR, the
administrative department issues a registration sub-process to complete the applicant’s hiring.

C
om

pa
ny

 A

H
R

A
dm

in
is

tr
at

io
n

End

Sub-Process: Start
the registration
process of the

applicant
Receive applicant's

 pass message

Validate the
application

IncorrectValidate?

Set Interview
Correct

Reject the application
Check application

Close application

Sent email to
 the applicant

Conduct Interview

Interview result?

Send pass message
 and joining date

Send fail message

fail

pass

Send applicant's
pass message

A
pp

lic
an

t

Check recruitment
notification in

company's website

Check eligibility
criteria

Close Website

Click on the
Application link, fill it

and submit

Notify HR manager

Receive Email

Participate in the
interview

Receive pass/fail
 message End

Not eligible

Eligible

Eligibility criteria?

FIGURE 4.1: Fragment of the BPMN2.0 specification of the Recruitment Drive exam-
ple

Figure 4.1 depicts a fragment of the BPMN2.0 specification of the Recruitment Drive example,
which has been modeled employing core elements shown in Table 4.1. There are two lanes namely
Company A and Applicant. The former contains two pools namely HR and Administration. The
applicant sends the application message to notify HR. The HR sends back the interview intimation to
the applicant followed by pass or fail message of the interview based on the fail decision making
gateway. Also, HR sends a pass message to the admin based on the pass decision making gateway and
the admin starts the registration sub-process activity. The flow object from one event to an activity
is also shown multiple times in Fig. 4.1. For instance, the start event "Check recruitment notifica-
tion from company’s website" to the activity "Check eligibility criteria" is attached via a flow object.
Also, there are multiple message flow elements connecting different send and receive messages that
run across pools or lanes.

4.2 Analysis of process modelling languages

This section discusses works that analyze process modeling languages and compare them based
on relevant criteria. The purpose of this section is to give a mini systematic literature review by
following consolidated guidelines for this kind of works in the area of software engineering [69].
To identify and discuss current results, we observed a process consisting of the following steps:
(i) definition and execution of a query string to automatically collect papers of interest based on

28 Chapter 4. Analyzing business process management capabilities of LCDPs

a set of keywords; (ii) manual filtering the retrieved papers with respect to defined inclusion and
exclusion criteria; (iii) discussion of the remaining papers by answering the following research
question:

RQ: What are the key aspects that are considered when comparing business process model-
ing languages?

Details of the applied methodology are given in Sect. 4.2.1. The obtained results are presented
in Sect. 4.2.2, whereas the answer to the defined research question is given in Sect. 4.2.3.

4.2.1 Study Design

As previously mentioned, we defined a query string to be executed on different digital resources
to collect papers that analyze existing work comparing business process modeling languages. To
this end, the query string that we conceived is the following:

("BPMN" OR Business "Process Modeling Language") AND (("Qualitative Compari-
son" OR "Analysis") AND ("Business Process Modeling Languages" OR "BPMN"))

It has been applied on the following electronic resources:

1. IEEE Xplore4;

2. Science Direct5;

3. Association for Computing Machinery (ACM) Digital Library6;

4. Springer Link7;

5. Academia8;

6. Scientific Research9.

We decided the selection criteria of this study before the query definition phase to reduce the
likelihood of bias. In the following, we describe the inclusion (I) and exclusion (E) criteria of our
study:

I1 Papers that have been published in the period 2000–2022;

I2 Studies subject to peer review (e.g., papers published as part of conference proceedings or
journal publications are considered, whereas white papers are discarded);

I3 Studies that qualitatively compare different modeling languages and are available for con-
sultation;

E1 Papers that are not written in English;

E2 Short papers of tutorial slides;

E3 Book chapters.

Applying such inclusion and exclusion criteria to the papers initially collected by the query
execution, we obtained 10 documents that are discussed in the next section.

4https://ieeexplore.ieee.org/Xplore/home.jsp
5https://www.sciencedirect.com/
6https://dl.acm.org/
7https://link.springer.com/chapter/10.1007/978-3-319-31232-3_58
8https://www.academia.edu/
9https://www.scirp.org/journal/index.aspx

https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.sciencedirect.com/
https://dl.acm.org/
https://link.springer.com/chapter/10.1007/978-3-319-31232-3_58
https://www.academia.edu/
https://www.scirp.org/journal/index.aspx

4.2. Analysis of process modelling languages 29

4.2.2 Results

In Bendraou et al.(2010) [24], the authors discuss the Software Process Modeling Language (SPML)
and compare it with the UML-based SPML. The paper focuses on the framework that involves
setting up the requirements for process modeling: semantic richness (expressiveness), modularity,
executability, conformity to UML-standard, and formality. This paper also evaluates the suitability
of the known UML-based SPMLs for process modeling.

The paper co-authored by Bendraou et.al. [24] focuses on the criteria that distinguish different
SPMLs like semantic richness and expressiveness. These aspects include core process elements
such as activity, artifact, role, and agent. One of the other aspects of expressiveness is activities,
and action coordination that involves proactive control and reactive control [122]. Proactive con-
trols specify the order in which the activities are executed. They are precedence relationships (i.e.,
start-start, start-finish, finish-start, and finish-finish) and call actions such as explicitly calling an
activity, operation, etc. Following proactive control, reactive control specifies conditions or events
in response to the executed activities. Reactive control includes Exceptions, Event handling, etc.
Also, exception handling is one of the criteria for expressiveness that explains the recoverability
of a stable state of the process that handles failure.

Garcia et al. [49] describe a Quality Model (QM) used in a framework called Quality Evaluation
Framework (QuEF) that manages the quality requirements of a modeling environment. The qual-
ity model formulates different approaches that characterize the quality of model-based SPML.
These approaches include expressiveness, understandability, conformity to standards, granular-
ity, executability and orchestability, measurability, business rules, supporting tools, and validation
in real environments. With the help of these approaches, ten representative SPMLs are evaluated
and compared. These SPMLs are of three types: metamodel-level approaches, SPML based on
UML, and methods based on standards. Lastly, this paper has many model-based proposals for
SPML. Furthermore, this paper has taken newer aspects to characterize SPMLs. Such character-
istics are validation within enterprise environments, friendly support tools, mechanisms to carry
out continuous improvements, mechanisms to establish business rules, and elements for software
process orchestration. All the quality criteria mentioned in this paper have been described in
Section 4.5 concerning various LCDPs and compared with the BPMN modeling standard.

In Portela et al.(2012) [85] the authors analyze how SPEM (Software Process Engineering Meta-
model Specification) and BPMN (Business Process Modeling Notation) standards are represented
in a software process modeling context. This analysis is done by defining a standard structure
based on a process ontology to define a software process. Then the SPEM and BPMN standards
are semantically matched with the default modeling process. These notations are also mapped
with components of quality models named CMMI-DEV (Capability Maturity Model Integration
for Development) and MR-MPS (Reference Model for Software Process Improvement). This anal-
ysis of the above-used standards provides best practices through specific characteristics necessary
to model and represent the software process. As we have not used the quality models such as
CMMI-DEV or MR-MPS in the paper, the modeling constructs of various LCDPs are not seman-
tically compared in a standard way. However, an LCDP can easily interpret any core elements of
BPMN.

In paper [85], various standard process structures with modeling elements are considered. These
modeling elements are Process, LifecycleModel, Combination, Activity, Artifact, Resource, Pro-
cedure, PatternofActivity, and Restriction. With these software structural (modeling) elements,
SPEM and BPMN notations correspond to the two quality models (CMMI-DEV and MR-MPS).
Further representativeness of SPEM and BPMN notations are analyzed by considering character-
istics such as Expressiveness, Reuse, Management, Evolution, Multilevel, Understanding, and Or-
ganizational Integration. Finally, various modeling elements of BPMN are discussed and matched

30 Chapter 4. Analyzing business process management capabilities of LCDPs

with the low-code platform. These matching are based on quality criteria such as expressiveness,
understandability, conformity to standards, granularity, executability and orchestability [49].

In Guizani et al.(2021)[54], the authors select a business process modeling language by analyzing
the multi-criteria depending on the modeler’s requirements. These criteria are expressiveness,
flexibility, formality, readability, support tools, usability, and ease of learning. The mentioned cri-
teria help to evaluate different business process modeling languages such as BPMN, Event-driven
Process Chain (EPC), Petri Net, UML-Activity Diagram (UML-AD) and Yet Another Workflow
Language (YAWL). The modeler can provide different weights to the criteria based on the mod-
eler’s requirements which will be calculated to select the most appropriate modeling language.
Similarly, paper [55] also uses an extensive multi-criteria evaluation method to choose a sensitive
business process modeling to improve the localization, identification, and characterization of the
most critical knowledge. Our current work does not provide any weights to the quality criteria of
the modeling construct of BPMN and that of the various LCDPs. However, the modeler can give
the weights according to her requirements in developing a particular application using a specific
LCDP. For example, a developer may give more importance to the expressiveness of the modeling
construct and less to the readability or the ease of learning criteria. On the other hand, a naive
non-developer can give more importance to the readability and ease of learning and less to the
expressiveness of a modeling construct.

Wang et al. [119] discusses some major business process modeling standards by considering qual-
ity criteria such as metamodel, graphical notation, serial representation, extensibility, and tool
support. The considered business process modeling approaches in this paper are BPEL4WS (Busi-
ness Process Execution Language for Web Services) [11], BPMN (Business Process Modeling No-
tation), UML (Unified Modeling Language) [47], XPDL (XML Process Definition Language) [123],
Petri Net [83] and IDEFO (Integration Definition Method) and IDEF3 [39].

In paper Pereira et al.(2016) [82], the strength and weaknesses of the several business process mod-
eling languages are discussed so that a comparative perspective can be drawn among them. The
comparative framework is based on relevant criteria such as expressiveness, readability, usabil-
ity, user friendly, formality, versatility, universality, tools support, and flexibility. These criteria are
compared among the five process modeling languages such as BPMN, Event-driven Process Chain
(EPC), UML-Activity Diagram (UML-AD), Role Activity Diagram(RAD) and Integration Defini-
tion (IDEF). The discussed framework quantifies the level of support that each process modeling
language is chosen based on the values of each criterion.

In Kelemen et al.(2013) [59], the selection of a process modeling is characterized by several quality
criteria, such as intelligibility, the ability to express process elements and workflow patterns along
with the software support, and portability. Furthermore, the mentioned quality criteria charac-
terize the modeling languages such as BPMN, EPC, and UML. A comparative analysis is done to
unify models and standards by creating a unified process that could be useful in other projects in
the industry.

In Birkmeier et al.(2010) [28], authors evaluate the usability of BPMN and UML-Activity Diagram
(UML-AD) for many business users based on an empirical comparison to justify their ability to
express and communicate business process semantics. Furthermore, the paper claims that process
modeling through UML-AD is similar to that of BPMN in terms of user effectiveness, efficiency,
and user satisfaction in a specific context of architecture development scenarios.

4.2.3 Key aspects for comparing business process modeling languages

By referring to Table 4.2, this section addresses the research question underpinning the performed
study. In particular, we analyze the related works that have been summarized in the previous

4.2. Analysis of process modelling languages 31

TABLE 4.2: Quality criteria to compare process modeling approaches in the literature

Quality criteria Existing studies
Conciseness [24],[49],[54],[55],[119],[82],[59],[28]
Executability [81], [24], [49], [119]
Standardization [24], [49], [85], [119]
Granularity [24], [49], [85], [54], [119]
Collaborativeness [49], [85]

section with respect to different qualitative characteristics. According to the performed analy-
sis, the broader criteria to differentiate process modeling languages are conciseness, executability,
standardization of process models such as UML or BPMN, granularity and collaborativeness.

Conciseness Two kinds of properties focus on conciseness. They are semantic and syntactic prop-
erties. Semantic properties enable the richness in explaining the different states of process models
that can be replicated in advanced complex real scenarios and reducing the redundant features to
showcase process models. In contrast, the syntactic properties focus on the user-friendliness of
the process modeling tool. Papers such as Bendraou et.al. [24], Garcia et al. [49], Portela et al. [85],
Guizani et al. [54], Hassen et al. [55], Pereira et al. [82], Kelemen et al. [59] and Birkmeier et al. [28]
show key importance in the expressiveness and the understandability of the process modeling
language. They also studied the modularization, reusability and universality of the modeling
language.

Executability The execution of the business process models is integral to developing a process-
oriented application. For example, an LCDP focuses on executing the process models using data
models and logic applied in creating an application. Also, the execution of BPMN specifications
is done by transforming models to an XML-based business process execution language (BPEL)
that helps to optimize and automate the defined business processes [81]. But the use of BPEL is
only sometimes used nowadays. Executability criteria are considered in papers such as Bendraou
et.al. [24] and Garcia et al. [49].

Standardization of process models The standardization and formalization of process models
showcase the clarity in defining particular process model elements, which can be used for large
groups of people. There are papers such as Bendraou et.al. [24], Garcia et al. [49] and Portela et al.
[85] that consider standardization as one of the criteria to evaluate different process models.

Granularity A process model can be subdivided into logical and syntactical forms based on user
demands. This granularity can be either coarse-grained or fine-grained based on the complexity
and the user’s requirement to build a particular process model. For example, papers such as
Bendraou et.al. [24], Garcia et al. [49], Portela et. al. [85] and Guizani et al. [54] use granularity to
characterize various process modeling language.

Collaborativeness Multiple people can work to build on the same process model while main-
taining the cohesiveness of the work done, especially from multiple remote locations. For exam-
ple, papers such as Garcia et al. [49], and Portela et al. [85] allow collaboration to validate and
build process models in real environments.

To summarize on comparing modeling constructs of different process modeling tools, we have
used different quality standards defined in the paper [49]. Gartner forecasts that market for LCDP
would grow by 23% in 2022-2023 [50]. To assist this growth, it is important to understand the

32 Chapter 4. Analyzing business process management capabilities of LCDPs

data-handling and process modeling constructs used in different LCDPs. Therefore, the study to
compare LCDP and BPMN focuses on using data-handling capabilities in their process modeling
framework that are executable to perform various application tasks.

The performed analysis of the related work shows various methods in which several defined
quality standards are formulated to define a framework that can compare multiple modeling con-
structs. No quantitative analysis has been done to compare different process modeling tools. It
is worth noting that previous works have yet to consider modeling constructs of any LCDP and
compared them with other modeling technologies.

4.3 Discussing LCDPs process modelling and data handling constructs

According to a Gartner report [117], leading low-code platforms are Outsystems, Mendix, Mi-
crosoft Powerapps, and Salesforce Lightning. In this section, we consider all of them in addition
to the recent and niche [117] platforms such as Amazon Honeycode, Google Appsheet, Zoho Cre-
ator, and Thinkwise. Most of these platforms use similar concepts in graphical user interfaces,
allowing developers to define and manipulate data specified through tables, forms, reports, and
other kinds of representation. LCDPs permit importing data tables from external databases or
creating new ones using the platform’s data models. Data models or imported data tables can be
edited, which then makes a form screen where the application user gives input to it. The input data
is then shown in a report screen, which can still be edited/updated by the user. Lastly, the input
can be manipulated to give output in charts, graphs, etc. The form and the report can be edited or
managed using UI controls such as link icons, buttons, etc. These generalized basic steps in using
LCDPs to develop applications can be further extended by using different platform-dependent
facilities to manage interoperability and collaboration [97].

This section discusses different LCDPs by referring to the previously presented "Recruitment
Drive" example. For the sake of presentation and explainability, we focus on modeling explana-
tory parts of the running example. In particular, we focus on the following steps: on clicking the
user’s application link, the detail and the user’s eligibility information are stored in the database.
If the eligibility information given by the user equates with the considered eligibility criteria of a
post set by the company, then the recruitment system application would send a pass message to
the user; otherwise, the user will get a fail message.

The considered scenario is assumed to rely on two data tables, namely Applicant and Recruitment
Notification. Therefore, the implementation of the case study with the LCDP at hand starts
with the creation of two tables. An Applicant table consisting of the fields Name of the appli-
cant, Email Id, Eligibility Criteria and Post Applied. A Recruitment Notification table has to be
also created with the fields Name of the Post and Eligibility Criteria. The table Applicant is linked
to the Recruitment Notification through the foreign key Post Applied. This also means that
the Post Applied of the Applicant table is a lookup variable for the Name of the post field inside
the Recruitment Notification table. Each applicant can apply for one or more posts in the
Recruitment Notification table. A user on a post fills an application form which is then stored
in the Applicant table. Suppose the Eligibility information of the applicant matches with the Eli-
gibility criteria mentioned in a specific Post name row in the Recruitment Notification table. In
that case, a notification email/message is sent to HR/applicant mentioning the applicant success
report. If the Eligibility information of the applicant does not match the Eligibility criteria then the
whole row of that particular applicant is deleted from the Applicant table. Other minor details
of the case study workflow are not considered as it would be repetitive to model similar business
process elements with similar logic.

As anticipated, in the following sections, we discuss the specification of the described case study
given with different LCDPs. It is worth noting that we are comparing BPMN modeling elements

4.3. Discussing LCDPs process modelling and data handling constructs 33

to build the case study application (shown in Fig. 4.1) with its equivalent modeling constructs
using different LCDPs associated with the data handling mechanism and their implementation.
The analysis is presented from three different points of views, i.e., the core modeling elements of
BPMN which is then compared to the implementable workflow of the eight considered LCDPs, in
addition to their specific data handling mechanisms.

4.3.1 OutSystems

OutSystems [79] is a low-code development platform offering a visual, model-driven develop-
ment environment with industry-leading AI-based assistance. The development environment
provided by Outsystems is a suite consisting of Service studio and Integration Studio.
Core Modeling Elements: OutSystems supports BPMN Event by means of different modeling
elements including Start, Conditional Start, End and Wait. Activity is referred to as Human Activity,
Automatic Activity, and Execute Process. Also, Gateway, Message and Annotation are supported by
means of the modeling constructs Decision, Send Email, and Comment, respectively.
Workflow Modeling: Workflows defined in OutSystems typically handle different business pro-
cesses such as invoices, processing orders, or handling complaints, also known as BPT (Business
Process Technology) [79]. The key feature in developing business processes in OutSystems is the
separation of the process development built by steps, interfaces, logical structure, and databases. Steps
define the flow of the process under development. Interfaces enable different ways to access the
application. For instance, interfaces enable the parts of the app to be shown in the UI, e.g., charts,
forms, etc. Logical structures build reusable logic blocks and reusable integration components like
SOAP or REST services. Databases are used to manage and store data, even from external sources.
Data handling capabilities: In the Data section of Outsystems’ user interface Service Studio, a
table can be created by adding an entity to the in-built cloud database or importing a table from
Excel. When the table is imported from Excel, it can be transformed into the user-defined editable
table in the platform if needed. Moreover, querying and fetching individual data from an Excel
sheet is not possible directly from/to the external data without using an external API. A devel-
oper manipulates data or attributes of the table only after importing the table to the OutSystems
environment. Integration of other external databases is done in Integration Studio10 by config-
uring the extension to use a database connection and then refer and use it. Such integration is
an interoperability feature of the platform and would require API integration with some coding;
therefore, these integration can be challenging for inexperienced developers.

Figure 4.2 shows the OutSystems user interface Service Studio at work, which is the development
environment that users can use to model business applications [70]. Fig. 4.2 shows the specifica-
tion of the applicant eligibility explained above with a dedicated scripting language. The reported
script assures that if the stated eligibility condition is matched, the applicant and the HR manager
receive a message that the applicant successfully applied for the post. On the other hand, if the
eligibility condition does not match, the current row in the "Applicant" table is deleted, meaning
the applicant cannot apply for the chosen post.

4.3.2 Mendix

Mendix11 offers both visual-modelling and low code integration functionalities. It uses a dedi-
cated modeling tool called Microflows to express the application’s logic.
Core Modeling Elements: Mendix has their Event element termed as Events only and Activity is
termed as Activities and Error handlers. Also, Gateway, Data Objects, Sequence Flow and Associa-
tion are termed as Splits, Input parameters, Flows, and Connectors, respectively.

10https://success.outsystems.com/Documentation/11/Reference/Integration_Studio
11https://www.mendix.com/

https://success.outsystems.com/Documentation/11/Reference/Integration_Studio
https://www.mendix.com/

34 Chapter 4. Analyzing business process management capabilities of LCDPs

FIGURE 4.2: OutSystems business flow

Workflow Modeling: The process of creating a new application in Mendix starts with the creation
of the data model. Then, the user needs to edit the fields of the entity/table of the app. This is
followed by creating an object linked to an entity that needs to be managed to add/update records.
Once these steps are completed, the user can build processes employing the available Microflow
modeling language. Microflow is based on the BPMN standard, and it helps to extend or change
the default behavior of the developed application [72]. Microflow also defines several business
processes and integrates with external systems, databases, or web services. Microflows decide the
flow of the defined pages involved in creating the logic for the application. This would extend
or create new business processes and show the application’s extensibility by integrating external
services and databases.
Data handling capabilities: The table is created by designing a domain model inside the Mendix
platform. In this domain model, the user can define all the attributes and relationships among the
specified table. Although it is possible to connect it to an external database, it requires separate
import modules to connect to different data sources. However, it is not easy to use such import
modules for non-expert developers.

FIGURE 4.3: Recruitment Drive Domain Model in Mendix

Figure 4.3 and Fig. 4.4 show fragments of the data model and of the workflow specification given
in Mendix, respectively, of the explanatory example. According to the data entities defined in
Fig. 4.3, an applicant can apply for exactly one post at a time, as can be noticed from the target
cardinal of the association from the entity Applicant to Recruitment_Notification. The defined
data entities and their relationships underpin the specification of corresponding form pages en-
abling the execution of CRUD (Create, Read, Update, Delete) operations. For instance, the form
related to the Applicant entity refers to the values of the attribute Post_Name that can be retrieved
by a drop-down variable attained from the Recruitment_Notification table.

4.3. Discussing LCDPs process modelling and data handling constructs 35

FIGURE 4.4: Recruitment Drive Microflow in Mendix

Microflow allows specifying workflows as shown in Fig. 4.4. In the example, the entity Applicant
of a particular row is parameterized, and the associated data linked to a specific row in the
Recruitment_Notification entity is retrieved. Then, the decision flow is used to compare the
entered eligibility information in the Applicant form with the eligibility criteria of the Recruit-
ment_Notification form. If they match, a message is shown to inform the applicant that the ap-
plication has been successfully applied. Otherwise, the current row in the Applicant list is deleted.

4.3.3 Zoho Creator

Zoho creator12 is a cloud based software to create applications without coding experience or IT
expertise. In Zoho Creator terminology, a data table is called form, whereas the view of a table is
called report. The workflow in Zoho is created using a dedicated scripting language called Deluge
[126].
Core Modeling Elements: In Zoho Creator, there are multiple elements matching with BPMN
Event. In particular, the first Event setting, e.g., “On a form event”, “In a schedule data”, “On an ap-
proval activity”, “On a payment activity”, and “On a function call”, can be set by associating the action
with the selected event. The second Event setting is called “Record Event”, that are sub-divided
as “Create”, “Edited”, “Created or Edited”, and “Deleted”. The third Event setting is “Form Event”
which is further divided as “Before form submission”, “On form submission”, and “After form submis-
sion”, referring to the form submission events. Likewise, Activity are broadly sub-divided into
seven parts. They are “Data Access”, “Notification”, “Field Actions”, “Integrations”, “Client Function
code”, “Custom Action”, and other “Deluge scripts”13. Gateway is implemented in terms of condi-
tional statements provided by Deluge scripting language. Finally, “Data Store” is cloud-based
and can be edited using Data Access code available in Deluge script that perform actions such as
add record, fetch records, aggregate records, update records, for-each record and delete records.
Workflow Modeling: In Zoho Creator, rules and workflows can be defined by writing custom
Deluge code to determine the behavior of an element of an application’s page. The behavior con-
struct can be conditional (if, else if, else, etc.), data access (add, fetch, aggregate, etc.), or client
functions (hide/show, enable/disable, etc.) types. Workflow actions can be triggered by adding,
updating, validating, or deleting page elements. Loading of forms can also be a possible workflow
trigger. Also, button clicks and user inputs can trigger the execution of scripts building up the ap-
plication. In Zoho Creator, there are three types of workflows: i) stand-alone scripts are used as a
function to perform a task; ii) time-based scripts are used to schedule a task; iii) component-based
scripts combine the first two workflow types that perform necessary actions on the forms/tables
of interest.
Data handling capabilities: A table can be created by developing the form in the Zoho Creator
environment, which is used to get the user input and automatically generate a list/report page.

12https://www.zoho.com/
13https://www.zoho.com/deluge/

https://www.zoho.com/
https://www.zoho.com/deluge/

36 Chapter 4. Analyzing business process management capabilities of LCDPs

FIGURE 4.5: Recruitment Drive in Zoho Creator

Alternatively, a developer can import an Excel or CSV file transformed into the platform’s envi-
ronment according to the developer’s need to manipulate the required fields or data if needed.
No direct manipulation of the external file is possible in such importing of data.

Based on the implementation description of the case study recruitment drive, two forms (i.e.,
tables) are created, namely Applicant (shown for convenience on the right-hand side of Fig. 4.5)
and Recruitment Notification.

As specified in the script reported at the bottom of Fig. 4.5 the value of Post_Applied is re-
trieved from the Recruitment Notification form. The eligibility information in the Applicant table
is equated with the eligibility criteria field in the Recruitment Notification form. If they match, then
an email is sent to HR mentioning the detail for the Applicant form. If they do not match, then the
whole current input row of the Applicant table is deleted.

4.3.4 Microsoft PowerApps

Also Microsoft has its own low code platform, and it is called PowerApps14. In Microsoft Power-
Apps, the workflow can be managed by using an OCL-like (Object Constraint Language) language
[30] that can be applied to different objects of the modeled screens/pages as described below.
Core Modeling Elements: In Microsoft PowerApps, the BPMN Event element has the equivalent
Phase construct, whereas Activity instances are developed with OCL (to manipulate or perform
an action inside a given page), or in terms of Workflow, Action Step and Flow step elements to per-
form sequential activities. Also, the BPMN Gateway element is equivalently executed by the condi-
tional element if and switch statement written in OCL code. Also, multiple connected data objects
are used to connect different Data Stores such as MS SQL, Sharepoint, OneNote, OneDrive, etc.
that correspond to the Data Store element in BPMN.

14https://powerapps.microsoft.com/

https://powerapps.microsoft.com/

4.3. Discussing LCDPs process modelling and data handling constructs 37

Workflow Modeling: In Microsoft PowerApps, there are three ways to model a workflow when
building an application: i) the user can use multiple screens to develop complex forms consisting
of different parts and pages having different formulae and controls; ii) the user can use a single
page with complex OCL (Object Constraint Language) code; iii) a hybrid approach employs a
single page, which integrates the business logic from external services such as MS Power Auto-
mate, Zapier, etc. In particular, MS Power Automate is the tool integrated into MS PowerApps for
profiling business process steps and link them in the formulae of the defined fields or buttons ac-
cording to the modeled logic [74]. MS Power Automate performs five types of workflows that can
be incorporated into the PowerApps platform. They are automated flow, instant flow, scheduled flow,
user-interface flow, and business process flow. Automated flows get executed once the correspond-
ing trigger occurs, whereas instant flows will be executed based on the defined user’s actions.
Scheduled and user-interface flows work at a time interval or by clicking dedicated buttons on
the application user interface. Finally, business process flows work on the parallel or sequential
event-based actions defined by the developer.
Data handling capabilities: The connection to external databases (such as Microsoft Sharepoint,
Dynamic 365, OneDrive, Salesforce, etc.) is one of the possible options offered by the PowerApps
platform. Such a connection creates a common data model. Therefore, the developer can change
the table’s metadata (attributes, relationships, and data types). The user can fetch and manipulate
data directly to and from the common data source. Those external data sources are linked with
the PowerApps platform that requires authentication in all the associated services or databases.
Custom-built tables can be exported to external databases if needed.

FIGURE 4.6: Recruitment Drive in Microsoft PowerApps

In the example shown at the bottom of Fig. 4.6, the OCL-style language is used to specify the
logical workflow of comparing the required eligibility with the application data, which are pro-
vided through a designed form. In case of the eligibility condition between the Applicant and the

38 Chapter 4. Analyzing business process management capabilities of LCDPs

Recruitment Notification table matches, the HR will be notified; otherwise, the current user
input gets deleted. Then, the tables can be linked using the data connector used in the platform
that connects different data stores such as Microsft SQL, Sharepoint, OneDrive, etc.

4.3.5 Salesforce Lightning

The Lightning platform15 is the low-code answer to app development by Salesforce, a leader com-
pany in CRM technology. In Salesforce Lightning, workflows can be defined in four different
ways, i.e., by using Flows, Workflow field update, Process builder, and with the help of Apex code
[58]. In this paper, we focus on using Flows. Workflow field update and Process builder are limited
in their ability to write workflow rules to create or delete records. In contrast, workflows through
Apex code are supported only in the professional version of Salesforce Lightning, and it requires
complex coding; thus, not favorable for inexpert users.
Core Modeling Elements: Salesforce Lightning platform has their BPMN Event element termed
as Start, and Stop. The BPMN Activity element is instead supported by platform specific mod-
eling elements such as Add Object, Immediate Actions, and Scheduled Actions. Finally, Gateway is
referred as Add Criteria in the Lightning platform.
Workflow Modeling: New processes can be created when the user accesses the “Process Automa-
tion” function in the Salesforce Lightning platform. In addition, the business workflow template
offers a way to link the action to an event. For example, an event can be “a record changes” for
building a particular type of step when a record (row) changes in the Object (table). Or it can be
processed by calling another process (also called the nested process). Also, the Flows mechanism
is available in Salesforce Lightning to develop business logic through a drag-and-drop interface
that provides the user with business modeling elements that include events, activities, and ac-
tions [100]. Finally, Apex coding can be employed to update fields during workflow executions.
However, such languages are not used extensively by non-developers, and their adoption has
pros and cons, as discussed in [58].
Data handling capabilities: In this platform, a table or an object can be created by using the
Object Manager16 that could be used to define the schema of various tables, which underpin the
data of the application under development. Alternatively, a table can be imported from an external
spreadsheet that allows manipulation only inside the Salesforce environment. Authentication is
required to connect external spreadsheets/databases.

FIGURE 4.7: Recruitment Drive Workflow in Salesforce Lightning

The workflow shown in Fig. 4.7 depicts the Flows that get executed when a record is created in the
Applicant table. The condition is set to equate the table Applicant’s eligibility information with
the post applied to the row with the same post name in the table Recruitment Notification’s
field of eligibility criteria. The eligibility condition is specified in the decision activity as follows.

15https://www.salesforce.com
16https://help.salesforce.com/s/articleView?id=sf.extend_click_find_objectmgmt_lex.htm&type=5

https://help.salesforce.com/s/articleView?id=sf.extend_click_find_objectmgmt_lex.htm&type=5

4.3. Discussing LCDPs process modelling and data handling constructs 39

!$Record.Eligibility_Information__c Equals !$Record.Post
_Applied__r.Eligibility_Criteria __c. If the condition is true, then the HR and Applicant
will be notified about the applicant’s success; otherwise, the current Applicant’s row is deleted.

4.3.6 Thinkwise

Thinkwise17 is a LCDP offering modeling tools available on desktop, Web, and mobile devices
typically useful for large scale business software18.
Core Modeling Elements: Thinkwise provides modelers with a BPMN-like notation to specify
workflows as compared to the other LCDPs. The BPMN element Lane is defined by creating
user roles, whereas Events, Activities and Gateways are defined by the activity elements that
modelers can specify in a dedicated environment for specifying process flows. Also Sequence
Flow, Message Flow and Association are supported to connect specified activities. All the above-
mentioned modeling elements get executed by the Thinkwise execution environment. Several
programming languages are supported to define business logic including SQL, R, Python, and
Java.
Workflow Modeling: In the Thinkwise platform, process flows and business logic specifications
are distinguished. A process action handles the process flow to create events, triggers, and deci-
sions and their interactions via process steps [108]. In contrast, business logic is developed using
the supported programming languages to handle data and execute controlled procedures. Fur-
thermore, user roles can be defined to protect the application and enable its usage according to
the user’s role, such as developers, business analysts, users, etc. Along with intuitive graphi-
cal workflows, code-based business logic is also possible in Thinkwise, which supports different
languages, including SQL, R, and Java.
Data handling capabilities: In Thinkwise, tables can be created by using the data model provided
in the Software Factory19 where the fields and data can be created or modified. Once the table
of interest is created, data manipulations can be implemented through external databases such as
DB2, SQL Server Management Studio, and Oracle. This means that the data handling occurs by
interacting with the instance of the used external databases.

The Thinkwise data model related to the running example is shown in Fig. 4.8, whereas the related
process flow is depicted in Fig. 4.9.

FIGURE 4.8: Recruitment Drive Data Model in Thinkwise

The SQL code implementing the business logic of the considered case study is shown in Listing 4.1.

LISTING 4.1: Logic for the case study Recruitment Drive
SELECT a . Name, a . Email , a . E l i g i b i l i t y _ I n f o r m a t i o n , a . Post_Applied
FROM Applicant a , Recru i tment_Not i f i ca t ion r
WHERE a . Post_Applied=r . Name_of_the_post AND
a . E l i g i b i l i t y _ I n f o r m a t i o n =r . E l i g i b i l i t y _ C r i t e r i a

17https://www.thinkwisesoftware.com/
18https://www.thinkwisesoftware.com/en/overview/
19https://docs.thinkwisesoftware.com/docs/sf/sf_general.html

https://www.thinkwisesoftware.com/
https://www.thinkwisesoftware.com/en/overview/
https://docs.thinkwisesoftware.com/docs/sf/sf_general.html

40 Chapter 4. Analyzing business process management capabilities of LCDPs

FIGURE 4.9: Recruitment Drive Process Flow in Thinkwise

Such a mixture of code-based and graphical-based business logic allows the business people and
IT teams to collaborate and work in an agile environment to build an application. For example,
the figure 4.9 depicts the business workflow that compares the eligibility information from the
Applicant table to the eligibility criteria from the Recruitment_Notification table. If this condi-
tion is true, a success message is sent to the applicant/HR; otherwise, the applied person’s record
is deleted from the table Applicant.

4.3.7 Google Appsheet

Appsheet20 is the LCDP from Google to build apps and support work automation.
Core Modeling Elements: In Google Appsheet, the BPMN Event element is mapped to events
that are categorized as "New Workflow Rule", "When this happens" and "If this is true and Do this".
Activity is broadly termed as Action Reaction that acts on different types of objects, including
Email, Notification, SMS, TakeAction, Webhook, and MakeDoc. Lastly, Gateway can be mapped to
the events and conditions declared under the events "When this happens", and "If this is true and Do
this".
Workflow Modeling: Workflow automation in Google Appsheet comprises three types of ac-
tions [53]. The first type is based on a data change that triggers an event when data is captured
through the built application. The second type is scheduled on a specific date/time, and the third
type is based on webhooks that can be scheduled or activated on data’s additions/updates/dele-
tions. Google Appsheet supports the connection to external services, including Zapier and IFTTT.
Pre-built workflows are also available in Appsheet that can be reused to specify a newer workflow
for a different app.
Data handling capabilities: Tables can be imported from external data sources from different
vendors such as Google, Microsoft, Dropbox, Smartsheet, and Airtable. The data source is directly
linked to the platform. This means that the data is defined (attributes, relationships, references,
keys) and manipulated (search, filter, add, delete, etc.) by the spreadsheet formulae or by defined
process workflows on Appsheet that sync with the used database.

In Appsheet, both tables Applicant and Recruitment Notification were defined and imported
from Google Sheet, i.e., the spreadsheet tool provided by Google. The workflow is implemented
by selecting the Behavior menu in the Appsheet Web development tool (see left of Fig. 4.10). Then,
the current applicant’s data in the Applicant table is chosen by selecting the "Target data" field
in the form. On Such a table, the developer can add and update events such as mentioning the
business logic [Eligibility Information]=[Post Applied].[Eligibility criteria] as spec-
ified in the field condition of Fig. 4.10. If this condition is true, then the necessary task(s) is per-
formed. In our case, the task is to send the email to HR/applicant. Alternatively, if the condition

20https://www.appsheet.com/

https://www.appsheet.com/

4.3. Discussing LCDPs process modelling and data handling constructs 41

(A) Applicant
Table

(B) Business logic

FIGURE 4.10: Recruitment Drive Process Flow in Google Appsheet

[Eligibility Information]<>[Post Applied].[Eligibility criteria] is applied (Here, ’<>’
means is not equal to), then the delete action is performed on the whole row managed by AppSheet
that leads to the deletion of the row back to the Google Sheet.

4.3.8 Amazon Honeycode

Honeycode21 is the LCDP released by Amazon in June 2020 to support the development of Web
and mobile applications.
Core Modeling Elements: The Amazon Honeycode platform has their Event termed as Start when
clicked. An Activity can be mapped to spreadsheet formulae to perform an action, e.g., Add row
to and Take data from and write to. Finally, the Gateway can be implemented using platform specific
SQL-like statements that include filter and if conditions.
Workflow Modeling: Amazon Honeycode uses spreadsheet data to create an application. An
application is created by defining a spreadsheet which can then be transformed into list or report
elements. Such elements show all the items in the built application along with a detailed view of
an individual data element of the application and allow the user to use the form screen to give
input to the application [8]. Further, the application’s business logic is managed by spreadsheet
formulae, which can add necessary actions such as notify, add a row, delete a row, overwrite an
element in the screen, update or insert a row, and navigate another screen.
Data handling capabilities: Honeycode manages tables by importing CSV files or creating a blank
table directly following the platform’s wizard. Any data manipulation (add row, filter, search, etc.)
can be done using Excel-like formulae within the platform.

In Amazon Honeycode, the tables Applicant and Recruitment Notification are created, fol-
lowed by their respective screens (forms and list). At the submit button of the form, the condition
specified (right-hand side of Fig. 4.11) is used to validate the applicant’s job application by match-
ing the input Eligibility_Information with the Eligibility_Criteria for that post mentioned in the
Recruitment Notification table. If this matching is true, then the HR/applicant is notified. Al-
ternatively, if we use inequality (<>) in Applicant’s eligibility information with Recruitment Noti-
fication’s eligibility criteria, we can delete the entire row. This will allow only those applicants to
be considered for the chosen post with the required eligibility criteria as mentioned in the script
at the bottom right side of Fig. 4.11.

21https://www.honeycode.aws

https://www.honeycode.aws

42 Chapter 4. Analyzing business process management capabilities of LCDPs

FIGURE 4.11: Recruitment Drive Process in Amazon Honeycode

4.4 Discussing LCDPs with respect to BPMN modeling constructs

Table 4.3 shows the coverage of the BPMN constructs overviewed in Table 4.1 from the previously
analyzed LCDPs.22 According to the performed analysis, depending on the adopted LCDP, the
specification of workflow processes can or cannot follow a BPMN-style. For example, low-code
platforms such as OutSystems, and Mendix provide users with a platform-specific BPMN-style
modeling framework. In contrast, Microsoft PowerApps, Zoho Creator, Google Appsheet, and
Amazon Honeycode support a non-BPMN-style modeling framework that uses proprietary cod-
ing or a hierarchical workflow mechanism to define business flows. Other platforms such as
Salesforce Lightning and Thinkwise support both BPMN and non-BPMN styles.

TABLE 4.3: BPMN workflow constructs covered by the analysed Low-Code Plat-
forms

BPMN Elements OutSystems Mendix Zoho Creator PowerApps Lightning Thinkwise Appsheet Honeycode
Swimlanes

Pool
Lane ✓

Flow Object
Event ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Activity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gateway ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Data
Data Object ✓ ✓ ✓ ✓
Data Store ✓ ✓ ✓ ✓ ✓ ✓
Message ✓ ✓
Artifacts
Group

Annotation ✓ ✓
Connecting Objects

Sequence Flow ✓ ✓ ✓
Message Flow ✓ ✓

Association ✓ ✓ ✓

22The complete analysis is available at https://docs.google.com/spreadsheets/d/1lllnNTwXNgQCXPVbaRBAk_
dIs6gPVd0CNxub_MBoq-w/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1lllnNTwXNgQCXPVbaRBAk_dIs6gPVd0CNxub_MBoq-w/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1lllnNTwXNgQCXPVbaRBAk_dIs6gPVd0CNxub_MBoq-w/edit?usp=sharing

4.4. Discussing LCDPs with respect to BPMN modeling constructs 43

TABLE 4.4: Main mechanisms to specify workflows in low-code development plat-
forms

Code Hierarchical Structure Automated BPMN User-Defined BPMN Hybrid
OutSystems ✓

Mendix ✓
Zoho Creator ✓

Microsoft PowerApp ✓ ✓ ✓
Salesforce Lightning ✓ ✓ ✓ ✓

Thinkwise ✓ ✓ ✓
Google Appsheet ✓

Amazon Honeycode ✓

The combination of process and data defined and managed with an intuitive visual interface with
minimal coding describes the peculiar characteristics of any LCDP, which is supposed to support
the fast development and management of business applications. In Section 4.3, the considered
LCDPs are further discussed by considering for each of them the BPMN core elements covered
and the mechanisms provided to model workflows and handle corresponding data. Based on
the discussed core modeling elements across several LCDPs and the content of Table 4.3, it is
noticeable that although there may not be one-to-one similarities between the BPMN and the
LCDPs modeling elements, an LCDP is capable of expressing workflows (similar to BPMN) and
the associated business logics in different ways while developing business applications.

TABLE 4.5: Supported data management

Data Import Data Sync
OutSystems ✓

Mendix ✓
Zoho Creator ✓ ✓

Microsoft PowerApp ✓
Salesforce Lightning ✓

Thinkwise ✓
Google Appsheet ✓

Amazon Honeycode ✓

To make an overview of the different types of business workflows that might be specified with
the analyzed platforms, we can distinguish three ways of defining business processes: i) use of
drag-and-drop BPMN-like tools to create business flows and logic, ii) non-BPMN-like tools that
use either some programming language or some hierarchical decision-making structure, iii) com-
bination of the first two means known as a hybrid category. Thus, as shown in Table 4.4, we can
distinguish five main mechanisms to specify workflows in LCDPs as described in the following:

1. Code-defined modeling: A business process is created using a proprietary or a known program-
ming language such as Java, Javascript, SQL, etc. LCDPs such as Zoho Creator and Sales-
force Lightning Platform support proprietary Deluge code and Apex, respectively. Also,
Thinkwise supports multiple languages such as SQL, R, Java, etc., to define business logic.

2. Hierarchical structure of business process: A business process is created with a tree-shaped busi-
ness flow, causing one event to follow another based on some conditions or trigger points.
LCDPs such as Google Appsheet or Microsoft Power Automate in PowerApps support a
hierarchical-based structure for business flows.

44 Chapter 4. Analyzing business process management capabilities of LCDPs

3. Automated BPMN-like structure: A business process is created by an automatically defined
BPMN structure where the user can fill the events, objects, or conditions based on the pre-
defined BPMN flow. Salesforce Lightning Platform supports automated and user-friendly
specifications of complex business modeling.

4. User-defined BPMN modeling: A business flow is created by a BPMN-like experience defined
by the user based on her requirements. LCDPs such as OutSystems, Mendix, Thinkwise, etc.
support BPMN-like modeling that expresses an extensive range of business flows.

5. Hybrid modeling: Business flows are partially implemented using two or more listed business
process types. LCDPs such as Salesforce Lightning platform, Microsoft PowerApps, and
Thinkwise support multiple workflow mechanisms for the same working business flows.
Salesforce Lightning platform uses automated BPMN and code-based modeling in Apex
language. Microsoft PowerApps uses a hierarchical structure in Microsoft Automate and
OCL-based coding. Thinkwise uses a user-defined BPMN for the business flow and SQL
coding for the business logic.

Concerning the way data are managed by LCDPs, it is possible to categorize them in two ways as
shown in Table 4.5 and explained below.

1. Data Import: LCDPs can import data structures from external sources such as Microsoft Ex-
cel, Azure, SQL, etc. In this category, all the structural definitions of the data table, such
as attributes and relationships, are imported into the considered LCDP, and they are trans-
formed into the host LCDPs structures to create pages such as forms, lists, etc. Thus only
the table’s design is imported, not the corresponding instances. No direct manipulation can
be done in the initial data source without using the APIs to integrate them. LCDPs such as
Zoho Creator, Salesforce Lightning, Outsystems, etc., are in this category.

2. Data Sync: LCDPs can retrieve and store data from and to the considered data sources like
Microsoft Excel, Azure, SQL, etc. LCDPs such as Microsoft PowerApps, Google Appsheet,
Amazon Honeycode, etc., import the whole instance of the considered database, and data
manipulations are synced back with the initial data source.

4.5 Discussing LCDPs with respect to BPMN quality criteria

This section discusses the quality assessment of LCDPs by relying on existing approaches for
BPMN. In particular, nine quality criteria characterize, according to [49], the quality of a modeling
language: expressiveness, understandability, conformity to standards, granularity, executability
and orchestability, measurability, business rules, supporting tools, and validation in real environ-
ments. In the following, we discuss such criteria to analyze the quality of the eight considered
LCDPs:

Semantic richness and expressiveness: BPMN2.0 defines process models based on core elements
such as flow objects, data objects, artifacts, and connecting objects. It is noticeable from Ta-
ble 4.3 that all the core modeling elements of BPMN can be interpreted in the LCDP-specific
modeling constructs. Such modeling constructs allow a developer to build a workflow for
an application that could be executed by applying the business logic of that application. For
example, the case study Recruitment Drive is modeled using BPMN in section 4.1 and its
automatized part built by various LCDPs were described is section 4.3.

4.5. Discussing LCDPs with respect to BPMN quality criteria 45

Understandability: The understandability aspect of BPMN is described in [32] in which many
modeling guidelines are considered, such as validating models, minimizing model size, ap-
plying hierarchical structure with sub-processes, and other optimum use of different mod-
eling elements. These guidelines suggest design decisions that allow the modelers to choose
the most relevant modeling tool according to their modeling purpose, such as process learn-
ing, information system development, etc. Compared to the understanding of BPMN, all
the eight considered LCDPs’ workflow mechanisms are categorized and highlighted in Ta-
ble 4.4. Low-code platforms such as Zoho Creator, OutSystems, and Salesforce Lightning
support a proprietary code-based and user-defined BPMN-like modeling workflow mecha-
nism. The workflow is designed in an easy-to-use built-in modeling mechanism that could
either use BPMN-like modeling constructs such as in Salesforce Lightning or use a com-
bination of different hierarchical or BPMN-like or code-based hybrid modeling constructs.
The combination of varying modeling constructs in LCDPs helps the developer build an ex-
tensive enterprise-grade application. It can use hierarchical-based modeling constructs and
encode the modeling workflow using some traditional programming languages like SQL,
Java, R, etc. This combination of workflow constructs would enable the developer to use
hierarchical-based workflow for more straightforward tasks and fill up the remaining mod-
eling workflow requirements using code technologies.

Conformity to standard: BPMN2.0 is standardized by ISO/IEC 1951023. The International Stan-
dard defines four conformance types: Process Modeling Conformance, Process Execution
Conformance, BPEL Process Execution Conformance, and Choreography Modeling Con-
formance. In contrast to BPMN, all the considered LCDPs are vendor-locked development
platforms. Therefore, these LCDPs have their proprietary workflow mechanisms, although
some of the LCDPs, such as OutSystems, and Mendix, have motivated their workflow mech-
anisms from the BPMN modeling construct standard.

Granularity: BPMN models can be modularized by using swimlanes that are divided into pools
and lanes. Moreover, a BPMN model can be granularized according to three different mod-
eling details that are useful for various stakeholders: i) defining a process flowchart, includ-
ing the overall activities and high-level decision conditions, is helpful for the end-user to
understand; ii) describing the whole process extensively on different roles of process, data,
information, etc., may be beneficial for developers.; iii) explaining the modeling flowchart
that comprises sufficient information such that the process may be defined for analysis and
simulation. This detailed flowchart can then be executed to develop some code. The analyst
uses this level of detail and is further handed over to the developer for proper execution in
compliance with the detailed process model.

Compared to BPMN, LCDPs have separated workspace to specify domain (data) models
and for modeling user interfaces and processes. Also, some LCDPs such as Microsoft Power-
apps, Amazon Honeycode, and Google Appsheet may support an integrated tool to process
models within the user interface that can manipulate the data model designed for an ap-
plication. Microsoft PowerApps does support OCL-based scripting inside the pages of the
application along with the external usage of the Power Automate platform to granularize
the process model from different pages of the application. The granularization in an LCDP
can be divided into three parts:

– Separation of process participants: The entire process is built across different organiza-
tions; then, it is difficult to maintain consistency as there will be interoperability and

23https://www.omg.org/spec/BPMN/ISO/19510/PDF

https://www.omg.org/spec/BPMN/ISO/19510/PDF

46 Chapter 4. Analyzing business process management capabilities of LCDPs

authentication issues. For example, a company’s recruitment process may require pay-
ment from an external payment gateway service done by the applicant. This means that
the modeling construct built in a particular LCDP has to handle both of these processes
within their platforms. For instance, the import module or the API-enabled feature in
Mendix is used to interoperate with external services, which expert developers use to
handle the processes of two distinct participants.

– Separation of the roles of process participants: The process built in an organization to sup-
port multiple stakeholders needs to be authenticated. Different user roles such as ana-
lysts, developers, users, etc., need to be filtered according to their roles and hierarchy
within that organization. Such roles must be defined within the modeling construct
of an LCDP. For example, the user roles in Thinkwise allow different organizational
stakeholders to access a specific part of the application according to their defined roles.

– Separation of processes, data, and user-interfaces: Although the process modeling, data
handling, and user-interface building can be overlapped to develop an application, it
gives a more precise overview of the application if these three parts are separated. This
allows the application to be agile with minimum coupling across these three parts al-
lowing the developer to test and deploy the application. For example, OutSystems
supports the separation of process, data, and user interface, which increases the ap-
plication’s maintainability as it could easily manage the consistency available in these
three parts of the application development.

Executability and orchestability: BPMN Process Execution Conformance type is mandated in the
BPMN execution tool that interprets models to the operational semantics. This tool supports
the BPMN mapping to WS-BPEL (Web Service-Business Process Execution Language) [81].
BPMN Choreography Conformance is also implemented in BPMN packages. The package
includes BPMN core elements, choreography diagrams, and collaboration diagrams that in-
clude pools and message flow. Since LCDPs are cloud-based application development plat-
forms that mainly use models to develop an application, the process modeling constructs
within an LCDP are executed either by code generation or by directly compiling models at
run time [105]. Therefore, all the process modeling workflows within an LCDP are executed
according to their execution engine. For example, some code-generated LCDPs are OutSys-
tems, Thinkwise, Nintex Workflow, etc., while some LCDPs having compiled models to be
executed at run-time are Mendix, Zoho Creator, Microsoft PowerApps, Salesforce Lightning,
Amazon Honeycode, and Google Appsheet.

Measurability: Some aspects of BPMN2.0, such as graphical notations or metamodel quality, can-
not be compared thoroughly with measurable quantities. However, automation and execu-
tion of BPMN models can be measured with a mostly one-to-one mapping of elements to
their corresponding code. Therefore, BPMN supports partial measurability. For LCDPs,
as all the process models must be either code generated or directly executed at run-time,
each modeling element can be measured in terms of memory space and execution time.
Therefore, process modeling can be measurable regarding execution time and the amount of
required memory.

Business rules: BPMN supports a business rules engine that takes input from a process and pro-
duces the intermediate and final output. For example, a specified task gets executed by a
business process engine. In LCDPs, inputs from multiple pages (such as forms or reports)
are given to the process modeling used in developing an application. Also, multiple out-
comes or tasks (such as scheduling tasks, approval tasks, etc.) can be executed using the
designed process model within an LCDP. Therefore, all LCDPs support business rules.

4.5. Discussing LCDPs with respect to BPMN quality criteria 47

Supporting tools: Some of the most used tools that support BPMN are Drawio, Microsoft Visio,
Lucidchart, Visual Paradigm, SmartDraw, etc. All the vendor-locked LCDPs support their
built-in modeling tool.

Validation in real environments: Many vendors support the validation tools for the BPMN mod-
els, e.g., viadee Process Application Validator in Camunda24, BPMN validation tool in We-
bRatio25, etc. Also, another application named bpmnlink26 validates the BPMN diagrams
based on configurable rules. These tools validate the syntactically BPMN modeling ele-
ments using configurable rules developed by programming languages such as Java. LCDPs
support complete testing environments where developers can test applications and validate
them. As the LCDP is either code generated or directly compiled on models, the validator is
built using the concepts of model-driven engineering [97].

With the listed quality standard/criteria of modeling languages mentioned above, different sup-
ported modeling constructs within a LCDP are considered. These considered modeling workflow
guides the low-code application developer to choose a particular process modeling mechanism
that is best suited for the application to be built.

Another quality criterion to consider when selecting LCDPs is the availability of automation of
process modeling through Artificial Intelligence (by using Robotic Process Automation [2]) and
machine learning techniques that can predict and suggest the following probable best action(s)
based on the previous workflow used in a similar application. If a process construct in an LCDP
builds a process workflow, the construct may suggest the next probable step(s) based on the learn-
ing from similar workflows. For instance, the OutSystems AI assistant works through the busi-
ness workflow, predicts the next step, and recommends the best option available to configure and
adapt a business logic according to the appropriate context27. Similarly, in Microsoft PowerApps
and Power Automate, AI Builder is used to help businesses to use AI through a point-and-click
experience by building a custom model or choosing a pre-built model to train it and then using
insights from that AI model28. These features go in the direction of Intelligent Modeling Assis-
tants [77].

Threats to validity

In this section we discuss the threats to validity by dividing them in intrinsic and extrinsic.

Intrinsic threats Some aspects might represent threats while evaluating data and business flows
of different LCDPs. The free version of the considered LCDPs is used throughout the study. This
means that some features, such as using APIs, collaboration features, etc., are not experimented
with in handling external data sources. The study elaborates on the accessible version of the
LCDPs, which focuses primarily on the direct use of external data without much coding or using
different APIs. Also, there is no direct correspondence between the functionality of BPMN core
elements and the LCDPs elements. To tackle this threat, BPMN elements’ functionality is partially
matched with the LCDPs elements. For example, the data model in Mendix handles the creation
of data and their associated connecting objects with one another in a graphical manner. This data
handling can only be represented as a separate entity apart from their connecting objects within
the same or different swimlanes used in the BPMN2.0 specification.

24https://camunda.com/blog/2017/10/viadeeprocessapplicationvalidator/
25https://methodandstyle.com/bpmn-validation-tool-improved-by-webratio/
26https://github.com/bpmn-io/bpmnlint
27https://www.outsystems.com/ai/
28https://docs.microsoft.com/en-us/ai-builder/overview

https://camunda.com/blog/2017/10/viadeeprocessapplicationvalidator/
https://methodandstyle.com/bpmn-validation-tool-improved-by-webratio/
https://github.com/bpmn-io/bpmnlint
https://www.outsystems.com/ai/
https://docs.microsoft.com/en-us/ai-builder/overview

48 Chapter 4. Analyzing business process management capabilities of LCDPs

Extrinsic threats Some extrinsic factors that can threaten understanding the different kinds of
data and business flow apart from the discussed LCDPs are as follows. The study focuses on 8
LCDPs only, and many other LCDPs, such as Kissflow, ZappDev, Nintex, etc., are not considered.
However, we decided to focus the analysis by considering leading platforms that are niche players
according to the Gartner report [117].

4.6 Summary

Business process management in application development plays a crucial role in improving busi-
ness performance. The developer must create workflows involving several services to make the
task agile and lean. In this chapter, we described the usage of modelling frameworks that includes
various process modeling along with the data-handling capabilities of LCDPs. The modelling
constructs of various LCDPs are discussed with respect to those of BPMN. These modelling con-
structs are categorized, and the execution of these constructs of different LCDPs is explained with
the help of an illustrative case study.

Therefore, an LCDP is considered a visual platform that allows developers, including those
without programming background and knowledge, to create various software systems. In a low-
code platform, developers can leverage pre-existing models and components to combine and
reuse them, enabling the creation of new applications. This approach offers flexibility and ease
of use to citizen developers, empowering them to participate in software development processes.

One way to compose models in an LCDP is through chains of model transformations. How-
ever, with multiple available chains, it becomes crucial to select the most suitable ones based on
different quality criteria. In the next chapter 5, we delve into the identification of various transfor-
mation chains and discuss the process of selecting the optimal chain. This enables developers to
efficiently find the best possible ways to achieve the desired output model, enhancing the overall
effectiveness and productivity of the low-code development process.

49

Chapter 5

Identifying optimal model
transformation chains

The process of chaining model transformations can involve multiple steps, each of which trans-
forms the model in a specific way. Identifying the correct model transformation chain is crucial
for ensuring that the final model is accurate and meets the desired specifications. In order to chain
the transformations between the source and the target model, we need to identify all possible
transformations in between that takes the source metamodel of the transformation and then chain
them with different metamodels which is further continued till the target metamodel is achieved
at the end of the transformation chain.

A motivating example of the need for identification of model transformation chain is in the de-
velopment of a complex software system. The system may be designed using multiple modelling
languages and tools, each with their own strengths and weaknesses. For example, an initial design
may be created using UML (Unified Modeling Language), but later stages of development may
require the use of a different language, such as SysML (Systems Modeling Language), to better
model the system’s behavior. In order to successfully transition from one language to another, a
series of model transformations must be applied.

The identification of the correct model transformation chain is not always straightforward, as
there may be multiple options available, each with their own trade-offs. For example, a trans-
formation that preserves more of the original design may be more complex and time-consuming
to implement than one that simplifies the design but loses some information. Identifying the
correct model transformation chain requires a thorough understanding of the requirements and
constraints of the system, as well as an understanding of the capabilities and limitations of the
available modeling languages and tools. Overall, identifying candidate model transformation
chains is an important step in ensuring that the final model is accurate and meets the desired
specifications. It requires a thorough understanding of the system, the modeling languages and
tools, and the trade-offs involved in each possible transformation.

This chapter dedicates the approach towards identifying possible model transformation chains
from a model repository/folder. After the identification process, the chapter also focuses on the
next logical step, selecting the optimum transformation chain(s) using search-based optimization
techniques.

5.1 Automated identification of model transformation chains

Identification of possible model transformation chains can be made using the following steps. The
first step is to check if the direct model transformation exists that transforms the source model to
the target one. This is the base condition. Then we identify all the available model transformations
that transform the source model into any of the available intermediate models. Further, we reuse
the intermediate model as the source model with the help of base conditions (using depth-first

50 Chapter 5. Identifying optimal model transformation chains

FIGURE 5.1: Model transformation chaining scenario 1

search recursively), and we repeat this step till we reach the target model. Then, we check all the
available model transformations that transform the identified intermediate model into the target
model. Lastly, the source, intermediate and target models are composed and returned as a model
transformation chain. The code for identifying transformation chains and executing them is given
in the GitHub repository available at https://github.com/lowcomote/chain-optimisation.git.
The pseudocode for identifying the possible model transformation chains is given in the Algo-
rithm 1.

The input for identifying possible transformation chains is the source and target models along
with the source and target metamodels. Figure 5.1 shows an explanatory scenario consisting of dif-
ferent metamodels and model transformations. Each node in the figure represent an ecore meta-
model while the directed edge between them repesent a model transformation. The metamodel
nodes are KM3.ecore, EMF.ecore, JavaSource.ecore, Table.ecore, HTML,ecore and XML.ecore. If
KM3.ecore, and XML.ecore are given as input to the previously mentioned procedure, which is en-
coded in Algorithm 1, the output would consist of lists of chained ecore models (metamodels), i.e.,
[[KM3.ecore, Ecore.ecore, JavaSource.ecore, Table.ecore, HTML.ecore, XML.ecore], [KM3.ecore,
JavaSource.ecore, Table.ecore, HTML.ecore, XML.ecore], and [KM3.ecore, XML.ecore]. We can
represent the following model transformation chains as follows.

CH1: KM3 → XML

CH1: KM3 → EMF → JavaSource → Table → HTML → XML

CH3: KM3 → JavaSource → Table → HTML → XML

Another example of available metamodels and transformations in a folder/repository is shown
in Fig 5.2. All possible paths between a source metamodel and a target metamodel by applying
Algorithm 1 are as follows:

CH1: KM3 → XML

CH2: KM3 → EMF → JavaSource → Table → HTML → XML

CH3: KM3 → JavaSource → Table → HTML → XML

https://github.com/lowcomote/chain-optimisation.git

5.1. Automated identification of model transformation chains 51

Algorithm 1 Pseudocode for identifying model transformation chains

1: procedure IDENTIFYCHAIN(sourceMM, targetMM)
Require: ETL = etl transformations

▷ returns true if a tranformation transforms sourceMM to targetMM
2: findEtl(sourceMM, targetMM)
3: if findEtl(sourceMM, targetMM) is true then
4: Store sourceMM, targetMM in an ArrayList A1
5: end if
6: if findEtl(sourceMM, targetMM) is false then
7: Traverse the folder/repository that contains metamodel files
8: Store each metamodel as an intermediate metamodel MM_inter and give a name to its

model M_inter same as the name of the metamodel
9: Initialize visited[] array

10: if findEtl(sourceMM, MM_inter) is true then
11: IdentifyChain(sourceMM, MM_inter)
12: Store MM_inter in the ArrayList A2
13: visited[MM_inter, index] = true
14: sourceModel = M_inter
15: sourceMM = MM_inter
16: end if
17: visited[MM_inter, index] = false
18: if findEtl(MM_inter, targetMM) is true and visited[MM_inter, index] = true then
19: Store targetMM in ArrayList A2
20: end if
21: Add A1 and A2 in the list of ArrayList A3 and remove duplicates, if any.
22: end if
23: Return list of Arraylists of chained transformations that can transform from sourceMM to

targetMM
24: end procedure

FIGURE 5.2: Model transformation chaining scenario 2

CH4: KM3 → JavaSource → HTML → XML

CH5: KM3 → EMF → Table → HTML → XML

52 Chapter 5. Identifying optimal model transformation chains

CH6: KM3 → Table → HTML → XML

CH7: KM3 → Table → XML

CH8: KM3 → JavaSource → Table → XML

CH9: KM3 → EMF → JavaSource → HTML → XML

CH10: KM3 → EMF → JavaSource → XML

CH11: KM3 → JavaSource → XML

CH12: KM3 → EMF → JavaSource → Table → XML

CH13: KM3 → EMF → Table → HTML → XML

The goal of identifying model transformation chains is to understand the sequence of model trans-
formations that can be applied to the model of interest to potentially generate artifacts conforming
to the desired metamodel. The selection of the optimal transformation chain(s) among those iden-
tified chains is detailed in section 5.2, whereas the optimization of their execution is elaborated in
Chapter 6.

5.2 Selecting optimal model transformation chains

In model repositories [17, 48], modelers can contribute to improving the reuse of modeling arti-
facts by sharing models and modeling artifacts with the community or with a company owning
a repository infrastructure. This gives the opportunity to modelers to use modeling repositories
and adopt model management tools as software-as-a-service [22]. Indeed, model transformations
can be invoked as a solution to a given problem: given an input model and a required output
metamodel, produce the output model transparently. This application is possible thanks to trans-
formation composition. In large model repositories, multiple transformations can be composed
in order to satisfy the user’s request. This opens a possible problem, that can be summarized
as selecting the best transformation chains, when multiple chains are available, according to the
user-defined preferences or criteria. Transformation coverage [71] can be one of the possible qual-
ity criteria to consider in selecting transformation chains, as well as aspects affecting performance,
e.g., the number of transformations involved in the chain. Existing works [19, 18] propose auto-
mated selection mechanisms based on pre-defined quality criteria, i.e. coverage or information
loss. These criteria are hardcoded in the selection algorithm, although, to the best of our knowl-
edge, there is no work with a flexible and customizable mechanism for defining selection criteria.

In this section, we propose to use MOMoT [44], a search-based model-driven framework, to ob-
tain Pareto-optimal solutions in the chain selection problem, based on user-defined criteria. We
evaluate the proposed approach by comparing the obtained results with the ones obtained in [19],
and we show how the approach can scale in terms of execution time and other parameter config-
urations.

5.2.1 Background and Motivating Example of chain selection

When multiple transformation compositions, i.e., chains, are available in our setting computed in
section 5.1, different criteria can be defined to characterize what transformation chains are evalu-
ated as the optimal chain(s). Potentially relevant criteria are denoted as transformation coverage
and information loss in [19], but others may be of interest as well, or trade-off solutions when
criteria are considered simultaneously. An example of the transformation chaining problem is

5.2. Selecting optimal model transformation chains 53

adopted from [19] and depicted in Fig. 5.3. Given a user request composed of the input model, i.e.
Sample-km3, which conforms to the source metamodel KM3, and the required metamodel for the
output, i.e. XML, the process of finding optimized chains can be summarized as follows.

First, a discovery phase starts, by inspecting the available transformations in the repository, which
can also be a local folder, selecting the needed transformations and deriving the needed transfor-
mation chains to get the final result. In Fig. 5.3, steps involving identifying possible transformation
chains are represented as filtering from the repository in which the transformations and the asso-
ciated metamodels can be chained. The algorithm for identifying possible transformation chains
is given in the Algorithm 1 and explained in section 5.1. In our scenario, the selected metamodel
nodes and transformations are reported in grey, excluding the remaining repository in light grey.

User request

Model Repository

KM3
EMF

JavaSource

Table
HTML

XML

KM32Javasource

KM32EMF EMF2Javasource

Table2HTML
HTML2XML

KM32XML Javasource2Table

xmi

Sample-km3

xmi

OUT-xml

XML

Required
metamodel in

OUT

… …

…
…

Discovery of required transformation Derivation of transformation chains

ClassificationExecution of the selected chain

IN

conform to

access to access to

FIGURE 5.3: Model transformation chaining scenario

In this scenario, the list of available chains is composed of three available chains:

Ch1 : KM3 → EMF → JavaSource → Table → HTML → XML

Ch2 : KM3 → JavaSource → Table → HTML → XML

Ch3 : KM3 → XML

This list of available chains is given to the classification process that ranks the list according to the
selected quality criteria or parameters and the selected chain is then executed. The execution of
the chain returns the required model, i.e. the model conforming to the XML metamodel.

As said, the quality criteria that can be considered in these scenarios may be various. For instance,
if we consider i) transformation coverage, ii) transformation complexity or iii) the number of trans-
formation hops, we may have different results in the selection process. Transformation coverage
is defined as the degree of completeness of a transformation which means how many metamodel
elements (i.e., metaclass and attributes) of the source model to be transformed are consumed by
the transformation [9]. This may affect the transformation process since, the more transformation

54 Chapter 5. Identifying optimal model transformation chains

covers constructs from the metamodel, the less result should lose output elements. The transfor-
mation complexity can be estimated by how much the rules, operators and expressions are used
in the transformation chain. This is a new criterion to define a chain that is the best one by using
a heuristic which describes the complexity of the transformation by counting the static elements
of the transformation. This may affect the result in terms of performance, for example, since the
more transformation engine has to interpret complex operations, the more slower the execution
will be. When the repository contains large graphs of available transformations, the user may be
interested in getting the result faster. The third criterion considered is the number of transforma-
tion hops that are used to achieve the target model. This is calculated as the width of the graph
visits for each transformation chain. Again, the performance may be affected, since reducing the
number of hops may reduce the chance of encountering a bottleneck transformation. In this case it
would make sense to combine the coverage and complexity with this criteria, so that the selection
becomes a multi-criteria optimization problem.

The problem of selecting the optimal chains according to different criteria is an open issue that has
been partially covered in [19, 18], where these criteria are hard-coded in algorithms implement-
ing the classification mechanism. This results to be limiting, first for the effort required to add
new criteria in the evaluation, second for the lack of support in defining an optimization strategy
considering multiple criteria.

To overcome these limitations, in the next subsection, we present how we have used MOMoT
(Marrying Search-Based Optimization and Model Transformations), a model-driven optimization
framework [27] using search-based techniques to optimize different criteria and, therefore sup-
ports selecting optimal transformation chains.

MOMoT1 is a framework that uses MDE principles to solve complex multi-objective problems
by using search-based optimizations. The problems are represented as Ecore metamodels, and
in particular, instances of the metamodel are used to solve specific problems. Such instances are
manipulated by an in-place graph model transformation expressed in Henshin [15]. To that end,
the framework targets at optimal transformation sequences leading to optimal models rather than
direct model manipulations. The output model is characterized by different constraints and ob-
jectives which are written in OCL or a Java-like expression language (Xbase) [27]. Finally, a se-
quence of transformations and parameters are executed, and the pareto-optimal solution is found
by using search-based optimization [45] that includes different algorithms such as Random Search,
NSGA-II, NSGA-III, etc., which are defined in the MOEA2 framework.

5.2.2 Proposed approach of selecting transformation chain: MOMoT

In Fig. 5.4 we outline how we use MOMoT to support the selection of optimal chains. It shows the
workflow used to run the selection process, starting from the definition of the needed artifacts,
the configuration of the existing MOMoT modules, and the obtained results. In the following,
we walk through the process and describe the artifacts used following the labels in Fig. 5.4. As
elaborated in section 5.2.1, we anticipate the user input to include an input model and the required
output metamodel. In addition, the repository that will be analyzed by looking for chains is also
given as a parameter. In our case, we use a local folder containing Ecore models (metamodels)
and ETL transformations. ETL is the transformation language part of the Epsilon [63] framework
that we have used to test the implementation, but the approach can be easily re-applied for other
transformation languages, e.g., ATL [57].

1http://martin-fleck.github.io/momot/
2http://moeaframework.org/

http://martin-fleck.github.io/momot/
http://moeaframework.org/

5.2. Selecting optimal model transformation chains 55

Problem Specification

Constraints
(Start + Final

Metamodel, ..)

11

Search Configuration

Search
Algorithms +
Parameters

Termination
Criterion,

Runs, Tests

Objectives
(Coverage,

Complexity,..) 4

Transformation
Rules

3

MOMoT Search Engine

Search Analyzer

Problem Encoding

Search OrchestrationRepository model

User request

xmi

Input model

xmi

OUT

Ecore

Required
metamodel in

OUT

Executor of the selected chain
Best selected chain

IN

conform to

Repository

Repository
discoverer

1

2

7

9
Result

Manager

Result log

8

10

6

5

FIGURE 5.4: The proposed MOMoT extension for optimal chain selection

In the following paragraphs, we address the different parts of the problem specification shown
in Fig. 5.4 and describe how optimal chain selection is supported with the individual compo-
nents of MOMoT. First, the process for retrieving available transformations from the repository is
described. We then present the metamodel, which describes the problem domain, hence carries
elementary information of the chain selection task and maintains the current solution state, i.e.,
the transformation path with respect to the input model to be transformed. Afterwards, the trans-
formation model used for assembling feasible chains through evolving the model-based problem
representation is described. After that, the quality criteria we consider and evaluate in the chains
are presented along with the validity conditions. Then, the search-based evaluation process con-
figuration is given, including the algorithms used. Finally, the MOMoTs arrangements are dis-
cussed, including 1) the approaches to rewriting the problem model by rule applications to d

Repository Discoverer A repository/folder is first analyzed by the Repository discoverer 1 which
may be implemented based on the tools developed in [37] or programmatically finding out the
possible chains as shown in the Algorithm 1 in section 5.1. This module analyzes the repository
given as input in order to create the Repository model in 2 , which is needed by MOMoT as part
of the problem specification. We summarize the discovery strategy as follows: for each Ecore
model, we programmatically create a node of the graph and for each transformation we add an
edge. We highlight that ETL transformation modules do not include links to the source and target
metamodels which are bonded at the configuration phase. For this reason, in order to run the
discovery, we consider as pre-requisite that each ETL module must include in the header section
the declaration of the source and target metamodels (this is optional in ETL but it simplifies the
discovery phase). In this way the discoverer is able to retrieve the metamodels and set the edges of
the graph. This is a requirement needed to use the static analysis [106] of the ETL transformation
files which helps to find out the source and target metamodel of the transformation.

Modeling the problem in MOMoT MOMoT leverages a graph-based representation of the
problem which it mutates by applying search strategies as a matter of exploring possible model

56 Chapter 5. Identifying optimal model transformation chains

variations that constitute the search space. Such a model for our purpose encompasses vital task
details like discovered transformations in our repository model, the currently selected path to
transform the input model, or transformation-related metrics. Therefore, we propose the meta-
model reported in Fig. 5.5.

FIGURE 5.5: Metamodel for modeling the transformation chain selection problem

This metamodel allows to derive representations of the transformation chain selection prob-
lem, ones which serve as input to the MOMoT tool. This in turn leads to use of search strate-
gies to achieve an optimal model evolution, and therefore, the involved transformation chain
(TransformationChain). Models conforming to this metamodel are automatically created and per-
sisted by the discoverer in 1 after analyzing the given repository input. Indeed, this metamodel
allows the creation of instances of TransformationModel in which ModelTransformationRepository
and TransformationChain is contained. Consequently, ModelTransformationRepository is composed
of Metamodels and Transformations. Each transformation has two references to src and target meta-
model. Also, a TransformationChain can be referred to as an ordered set of transformations, that
will be composed to satisfy the required input, i.e. the required start metamodel (derived by the
given input model) and the required final metamodel indicating the targeted transformation out-
put, with an additional (optional) outputMM that reflects the chain’s current output metamodel.
Consequently, for a non-empty chain, outputMM denotes the current output metamodel. It is re-
quired to realize the constraint that ensures feasible chaining solutions in that the chain leads to
the output model as per user definition. Hence it is used by MOMoT in the search process to
match it against the chains final instance. As long as the discoverer has persisted the Repository
model, MOMoT can process it with the rest of the required artifacts.

Transformation Model for Chain Composition As part of the problem specification, transfor-
mation rules 3 facilitate the composition of a chain as an ordered sequence of (chain selection)
transformations identified between source and the target metamodels. Note that the term "trans-
formation" here is used ambiguously as it refers to 1) the mutation of the instance model that

5.2. Selecting optimal model transformation chains 57

conforms to the domain model in Fig. 5.5, e.g., using Henshin units [15], which we use as part of
the problem specification, and 2) the domain model element (which is an EClass) Transformation
(cf. Fig. 5.5) where each instance implies a mapping between two metamodels, respectively. The
former takes place with MOMoTs search engine applying rules to the model instance in order to
explore its design space in terms of different chaining paths. The latter refers to possible hops
within a solution to the chaining problem, which is reflected in the model by the Transformation
instances referenced through uses relations from TransformationChain (TC). Altogether, MOMoTs
solution to a task results from the changes, it imposes on the input problem model by means of
rule transformations. Here, those reflect a selected Transformation instance to be executed on the
model which we intend to derive a chain.

MOMoT uses Henshin [15], a graph-based transformation approach, to set the scope of possible
changes for a domain model defined in EMF3. The tool-set includes a rule-based model transfor-
mation language to induce changes by exploiting a models graph representation, and a transfor-
mation engine to execute them. Using the concepts in our problem-describing model (Fig. 5.5),
we can define patterns to match and imply changes in the model graph with so-called units and
rules. Matches and the validity after change are hereby determined through formal reasoning.

Fig. 5.7 shows the Henshin transformation rules we defined to imitate the selection of a transfor-
mation T for a transformation chain TC. For the generation of a feasible chain, two cases can be
distinguished in terms of matching semantics. Naturally, a T that is available in the repository,
can be added to TC with rule addTransformation. Per rule definition, T is limited to candidates
that guarantee executability of the resulting chain i.e., T needs to take as input that chains current
outputMM. For the first application, however, the input of T needs to conform to the metamodel
to be transformed, i.e., source of T corresponds to start of TC, as per user declaration. Taking the
chaining example from Fig. 5.3, an excerpt of the instance model after selecting KM32EMF as first
selected T is provided in Fig. 5.6.

KM3: Metamodel

EMF: Metamodel

start

final

TC:
TransformationChain

KM32EMF:
Transformation

XML: Metamodel
target KM32XML:

Transformation

src

src

target

KM3: Metamodel

EMF: Metamodel

start

final

TC:
TransformationChain

KM32EMF:
Transformation

XML: Metamodel
target

KM32XML:
Transformation

src

src

target

uses
outputMM

startTransformation('KM32EMF')

FIGURE 5.6: Example: Henshin rule for selecting transformation KM32EMF and
resulting model instance (excerpt).

Following the rule application, the uses reference signifies KM32EMF to be part of the chain and
EMF as thereafter emerging metamodel for the chain output, while metamodels defined essen-
tially for the chains first and last T, start and final, are maintained. Consequently, rule startTrans-
formation ensures that the first candidates’ input corresponds to the language of the model to be
transformed. In any case, the scope for applicable subsequent candidates is established with target
of the appended T becoming outputMM of TC. The described conditional behavior is expressed
with a ConditionalUnit, which applies one of the rules depending on whether a T is already part of
the chain (rule checkHasTransformation). Alternatively, the same behaviour could be achieved with
different control structures incorporated in other available Henshin units [14].

3https://www.eclipse.org/modeling/emf

58 Chapter 5. Identifying optimal model transformation chains

FIGURE 5.7: Model transformation defining the chaining problem in Henshin

Defining Objectives and Constraints The Quality Criteria that can be used are various, but to
demonstrate the approach we have chosen the ones anticipated in Section 5.2.1, i.e. transforma-
tion coverage, complexity and transformation hops, which are provided in the specification in 4 .
Two additional quality criteria are added as objectives that use to select the optimum transforma-
tion chain. They are metamodel similarity and model coverage. These objectives support chain
selection from five different points of views/criteria, each of which adds a dimension to the fitness
function that is used to evaluate derived chains.

We have used static analysis [106] of EOL and ETL (Epsilon Languages) to traverse through the
elements of the used metamodels and model transformations respectively [5] and then calculate
the three structural quality criteria/objectives for the transformation chains. The transformation
coverage is determined through static analyses based on transformation and its involved target
metamodel, i.e., transformationCoverage, and recorded in the intended attributes in the transforma-
tion afterwards. It is defined in coherence with the criteria discussed by Basciani et al. in [19].
According to them, the weight considered for a transformation rule covering a metaclass in in-
put/output is unitary, whereas the individual binding of the transformation, predicating of a
structural feature (in/out) weighs 0.5. Also, the transformation complexity is calculated by
counting the number of constructs or elements used in a transformation module. These elements
can be a predicate or reference to a metamodel element, or an EOL construct such as keywords or
variables. Another simpler objective that define a transformation chain is the transformation no.
of hops present in a transformation chain that transforms from one metamodel to another.

A user may define several other quality attribute that may be considered as a better heuristic to
define a better transformation. The other two quality criteria or objectives that are considered
in the experiment are Model coverage and Metamodel similarity. The Model coverage is the
number of metaclass and structural features produced in the target model when compared to the
target metamodel. It is considered to be inverse of the information loss concept that determine
which modeling elements are considered in the targeted model [19]. This objective defines the
exact modeling elements such as metaclass or structural features that are generated at the target
model. Lastly, Metamodel similarity is done by transforming the metamodel into a graph using
social network visualizer software4and then apply the graph similarity algorithm5 to compare the

4https://socnetv.org/
5https://github.com/wadsashika/Graph_Similarity_NM

https://socnetv.org/
https://github.com/wadsashika/Graph_Similarity_NM

5.2. Selecting optimal model transformation chains 59

two metamodel used in the transformation. More the metamodel similarity, better the possibility
of having easier transformation. It is a reasonable heuristic to define the transformation from one
metamodel to another.

Any fitness functions can be defined using a configuration language provided by MOMoT, which
is based on XBase [40], a Java-like, statically typed expression language. By using this language,
the user can define quality criteria / objectives as part of the fitness function, which will be evalu-
ated on the problem model to calculate transformation chain(s) optimally. The evaluation process
was executed multiple times to estimate the mentioned indicators (such as Hypervolume and
Generational distance) taken from MOEA framework based on multiple algorithms such as Ran-
dom Search, NSGA-II, NSGA-III, etc.

Constraints in 5 enrich the specification to ensure the validity in TC i) in general and ii) with
respect to the input model to transform. Accordingly, the output of the T having been most re-
cently added to a chain (outputMM) poses a domain-specific constraint that limits the selection for
a next T to those from the repository with a corresponding metamodel source (src). Moreover, the
first Ts src needs to comply with the users input model to transform, which is delineated by start
of a chain TC. Likewise, a valid chain ends with a T having the final output metamodel (target)
corresponding to TCs final metamodel. Remarkably, our rule definition in Fig. 5.7 ensures that
these constraints are satisfied for the chains that are eventually delivered in the result set.

Configuring the Search and Evaluation Next to the problem specification derived in previous
paragraphs, the input to model-driven optimization tools like MOMoT usually entails configur-
ing the search-based optimization process. Objective and constraint definitions elicit the extent to
which a derived model reflects a desirable solution whereas for employed optimization techniques
parameters and evaluation metrics have to be decided to support model mutation and facilitate
collective, comparative quality assessment. Therefore, problem-related specifications were previ-
ously established upon the metamodel in Fig. 5.5, to define the search space, and declare the fitness
and legality of derived transformation chains. The search space is designed in the problem model
as shown in the Fig. 5.8. This problem model conforms to the problem metamodel. The experi-
mental setup is now complemented with SBO-related (search-based optimization) settings (6) to
facilitate reasonable exploration of chaining selection options. User-defined parameters thereby
consist of the following: 1) Algorithms and associated parameter settings, 2) Termination criterion
and runs, 3) Set evaluation measures and statistical test settings.

MOMoT allows to choose from a palette of generic multi-criteria approaches for targeted rule
orchestration, ranging from evolutionary algorithms to local search to reinforcement learning
techniques [27, 41]. In our evaluation, we let different algorithms compete against each other to
demonstrate the algorithm-agnostic nature of this approach, and do so multiple times to compare
their performance under statistical support on our selected example. The different algorithms we
tried to select the optimal chain(s) as follows.

Random Search Random search algorithm uses some kind of randomness or probability in
the definition of the method to solve an optimum problem. Typically, the basic random search al-
gorithm is referred as simulated annealing. Some of the other random search are tabu search,
genetic algorithms, evolutionary programming, particle swarm optimization, ant colony opti-
mization, cross-entropy, stochastic approximation, multi-start and clustering algorithms, etc [124].
However, the random search used in momot framework randomly selects the best transformation
as one of all possible solutions with equal probabilities of different objectives.

60 Chapter 5. Identifying optimal model transformation chains

FIGURE 5.8: Problem model to define search problem for MomoT

NSGA-II NSGA-II is a non-dominated genetic algorithm used for multi-objective optimiza-
tion. It incorporates elitism and no sharing parameter needs to be extracted so that a diverse
pareto-optimal set is sustained [36].

NSGA-III It is another non-dominated genetic algorithm which is a reference-point based
multi-objectives that emphasized different population individuals which are not dominated yet
close to a set of reference points [35].

EpsilonMOEA The epsilon MOEA algorithm is a steady-state algorithm which means only
one member in the population is evolved per step. It uses epsilon-dominance in order to maintain
a well-spread set of Pareto-optimal solutions [36].

Chebychev Chebychev algorithm uses a non-linear scalarized function which is used for
action on different selected strategies in multi-objective reinforcement learning [113].

Pareto Q-learning A pareto Q-learning algorithm is a temporal difference learning algorithm
which incorporates the relationship of pareto dominance into a reinforcement learning approach
[114].

Hypervolume based learning A multi-objective reinforcement learning algorithm uses a hy-
pervolume indicator as a strategy to action selection based on multiple assessment metrics from
multi-objective optimization [112].

Tournament A tournament genetic algorithm is a modified NSGA-II that allows higher val-
ues of tournament size. It removes non-dominated sorting and replaced all children in the new
population which further replaces the current population [66].

5.2. Selecting optimal model transformation chains 61

In general, the generated output contains feasible chaining solutions in terms of a pareto-optimal
solution set, so the user has to reason about trade-offs in terms of quality criteria. Our goal is
to find the best chain in terms of a singular quality or a set, to learn more about the trade-offs
that apply to each of the several feasible transformation chains. Therefore, we run through a
fixed number of evaluations in each run and with each algorithm. Nevertheless, the framework
supports quality-based termination criteria when a particular fitness level is of interest for the
desired solution. The search configuration we use is described in more detail in subsection 5.2.3.

Problem Encoding and Search Orchestration As mentioned earlier, MOMoTs optimization in-
centive is to determine rule sequences for the problem instance model to arrive at an objectively
optimal model state with respect to the fitness function. The used Problem Encoding 7 is based on
rules specifically designed to operate on model constituents of the particular domain. In our use
case, each rule application represents a mapping between metamodels and acts as decision vari-
able as part of a solution candidate for a chain TC. The effective arrangement of these applications
is now the subject to the Search Orchestration 8 . Naturally, how new sequences are generated de-
pends on the used methods exploration and exploitation capabilities. A local search, for instance,
is concerned with determining nearest neighbors by adding a transformation or replacing one in
the current chain, to spawn new solutions. For the broadly adopted GAs (genetic algorithms), the
framework initializes the population with legitimate chaining sequences at random. Moreover,
the solution length in terms of the sequence of transformations (T) is limited to facilitate operators
for alteration. In this respect, several operators for mutation and crossover are available. Note that
transformation chaining poses a highly interdependent endeavour, thus chains emerging from re-
combination carry high potential of invalidity. For this reason repair mechanisms are foreseen to
restore feasibility, e.g., by replacing non-executable transformations in the sequence.

As established earlier, a validity constraint ensures the chain ends at final output metamodel to
conform to the problem specification. In fact, any TC concluding with a T having a target meta-
model other than finalOutputMM represents an infeasible chaining path. These intermediary solu-
tions however are maintained to be considered for further advancements, and meanwhile marked
as invalid to later be omitted when deriving the final solution set.

Search Analyzer and Result Manager Through monitoring capabilities experimental setups in
MOMoT are susceptible for clear-cut solution requirements and performance analysis. Informa-
tion on the search process is collected and processed in the Search Analyzer 9 to enable premature
termination settings, posing the option, e.g., to prioritize finding a chain that yields no attribute
loss. When considering multiple optimization techniques, the MOEA framework is furthermore
utilized to support performance evaluation. Chaining solutions evolved by different algorithms
can be ranked using dedicated indicators like Hypervolume or Generational Distance. By default,
they are computed post search with respect to the Pareto set holding the objective trade-offs. As a
result, the best optimiser can be established for the chain selection task with support of statistical
tests.

Upon search termination, the Result Manager 10 provides listings of the best found selection oper-
ations and therewith resulting output models, along with the optimal chains’ (TC) quality criteria
values. While the ordered Henshin unit instantiation leading to found chains and objectives are
provided as textual output, the transformed model conform with the metamodel in Fig. 5.5 is per-
sisted as (.xmi) model. Hence the chains transformation steps can be traversed programmatically
and become subject to post-processing steps. This raises further options such as the immediate
transformation of a model according to one of the found chains, visualization of found chaining
paths with further details as shown in Fig. 5.9, and additional analysis effort. Indeed, we can
extract the chains and depict them and add objective annotations for each mapping/translation

62 Chapter 5. Identifying optimal model transformation chains

step. This allows to identify bottlenecks in transformation quality, e.g., the mapping definitions
responsible for most lost features/attributes.

FIGURE 5.9: Generated visualization from identified chaining solutions

Result obtained in selecting optimal transformation chain Utilizing the described concepts in
terms of the problem specification and with a search configuration available, MOMoT search en-
gine can finally be employed to determine feasible chaining solutions as a matter of evolving the
model instance. The output for the scenario described in Chapter 5.2.1 (c.f. Fig. 5.3) is shown in
Table. 5.1. It includes the Pareto set of transformation chains produced by each algorithm and
with respect to evaluated objectives, that is transformation coverage, complexity, model cover-
age, metamodel similarity and the transformation steps, i.e., hops. Note that for the transforma-
tion coverage, model coverage and the graph similarity are expressing a maximization objectives.
Therefore, their additive inverse in objective functions is shown as negative (i.e. inverse of min-
imization). Moreover, the second available chain, Ch1 with five number of hops is omitted from
the output due to expressing a worse fitness in all conflicting quality respects. Apart from this,
Ch2 and Ch3 have been determined by all eight algorithms and depict optimal solutions depend-
ing on the intended use. Accordingly, Ch2 (KM3 → JavaSource → Table → HTML → XML)
is lower in complexity than Ch3 whereas Ch3 (KM3 → XML) has higher coverage and takes one
transformation step only.

TABLE 5.1: Momot result of 8 algorithms to compute optimal chain(s) out of 3 iden-
tified chains

Chain Tr. Coverage Tr. Complexity Model Coverage MM similarity nr. hops
Ch2 -0.006610729 234 -0.4375 -0.0116795 4
Ch3 -0.49122807 247 -0.4375 -0.1917 1

5.2.3 Experimental Evaluation

In this section we propose an evaluation of the approach based on two research questions:

RQ1: Is the approach able to retrieve the optimal chain based on the user-defined objectives:
coverage criteria, complexity, model coverage, metamodel similarity and number of hops?

RQ2: How the performance of proposed approach is affected w.r.t. the size of the repository
and input parameters based on different algorithms?

5.2. Selecting optimal model transformation chains 63

In the following we describe the experiment setup, discuss the results and threats to validity. All
the experiments are run on a Windows 10 machine with 12 GB RAM that has i7-7500U CPU @
2.70GHz-2.90 GHz. Some of the fixed search configuration are taken as follows. The population
size of the experiment is taken as 6 and the maximum evaluation is taken as 12. In order to calcu-
late execution time, we run the experiment 20 times for each of the eight considered algorithms.
The entire corpus of etl transformations, models and metamodels is available on Github repository
https://github.com/lowcomote/chainselection_momot/tree/master.

Experiment 1 In order to answer RQ1 we setup an experimental evaluation based on the ground
truth established in [19]. In [19] the dataset used for the experimental evaluation is the same
that we use in this paper. The graphical representation of the dataset is depicted in Fig. 5.3. We
compare the results for best chains in [19] with the proposed approach. We have used the same
coverage formalization, and since the transformations used in [19] are implemented with ATL, we
have re-implemented the same transformations as ETL modules.

Results The results of the first experiment, used to answer RQ1, are reported in Table 5.2. For

TABLE 5.2: Results for RQ1

Chain Tr. Coverage Tr. Complexity Model Coverage MM similarity nr. hops
Ch1 0.0016 441 0.3125 0.0026 5
Ch2 0.00661 234 0.4375 0.0116 4
Ch3 0.49123 247 0.4375 0.1917 1

each chain identified by the approach, the best chain, selected based on the maximum transfor-
mation coverage value, is chain Ch3 with 0.491. Meanwhile chain Ch2 is a better chain in terms
of transformation complexity. But chain Ch1 is the worst chain in terms of all the objectives when
compared to the other chains.

Considering transformation coverage and model coverage (inverse of information loss) only, the
result confirms that the selected optimal chain would be Ch2 and Ch3 as in the ground truth in [19].

By also considering complexity and number of hops, the approach would consider minimum
complexity with the minimum number of hops. According to Table 5.2, chain Ch2 has minimum
complexity (234) and chain Ch3 has the minimum number of transformation hops, i.e. 1. Since
chain Ch3 has the highest coverage, metamodel similarity and minimum number of hops, we can
assume it to be the optimum transformation chain available, considering the weights of the two
quality (objective) criteria in our approach as the same. The weights are given by the user based on
chain quality requirements. For simplicity, we consider them equal. Although there is no ground
truth upon which metamodel similarity can be tested, based on the transformation coverage, we
can claim that Ch2 and Ch3 are the optimal transformation chain.

Experiment 2 In order to answer RQ2, we have executed another experiment with different pa-
rameters having different algorithms to run the MOMoT experiment in the defined transformation
chain repository. The different parameter configurations are shown in the Table 5.3 and Table 5.4.
The defining objectives are transformation coverage, transformation complexity, model coverage,
metamodel similarity and number of hops. We have taken two problem models so as to exper-
iment with different sizes of model repositories upon which different search algorithms would
perform under the prescribed parameters configurations. The first problem model’s specification
is as follows.

https://github.com/lowcomote/chainselection_momot/tree/master

64 Chapter 5. Identifying optimal model transformation chains

TABLE 5.3: Different parameters configuration_1

Paramters Population size Max evaluation nr. runs
Parameter1 10 300 5
Parameter2 20 600 10
Parameter3 40 1000 30
Parameter4 70 1400 50
Parameter5 100 2000 70
Parameter6 120 3000 80

TABLE 5.4: Different parameters configuration_2

Paramters Population size Max evaluation
Parameter1 10 300
Parameter2 20 600
Parameter3 40 1000
Parameter4 70 1400
Parameter5 100 2000
Parameter6 120 3000

Problem model 1 The first defined problem model is having 11 metamodels, 40 ETL trans-
formations and 97 possible transformation chains between the user-defined source and the target
metamodel. The source and target metamodels are KM3 and XML respectively. The average exe-
cution time taken to get the optimum result according to the various algorithms based on different
parameter configurations are shown in Table 5.5 and Table 5.6. In these two tables, the parameters
(abbreviated as P) are shown in the first column as discussed in Fig. 5.10 and Fig. 5.11 respectively.

TABLE 5.5: Average execution time (ms) for various algorithms for configuration_1

P Random NSGA-II NSGA-III ε − MOEA Chebycheff PQ-HV PQ-PO Tournament
P1 2215.8 910.4 2040.6 1177 1883 2076.6 1734.2 1693.2
P2 4933.7 1905.9 1508.9 2598.3 2728.4 2346.5 2252.9 2290.6
P3 8158.03 3295.13 3374.4 3731.1 3464.23 4467.43 3993.76 3801.7
P4 14256.04 7147.82 4920.54 7015.62 6824.72 6933.56 6623 6484.3
P5 20992.48 9629.98 9240.27 13613.73 8559.1 10844.38 10918.74 10910.87
P6 31523.17 12544.3 11948.7 14693.24 14566.25 15464.88 16419.04 13249.52

TABLE 5.6: Average execution time (ms) for various algorithms in configuration_2

P Random NSGA-II NSGA-III ε − MOEA Chebycheff PQ-HV PQ-PO Tournament
P1 2424.8 1374.2 864.65 1009.95 976.55 1700.2 1122.85 1319.6
P2 4224.65 2266.9 1580.95 2424.8 2367.35 2469.35 2581 2507.5
P3 7991.5 3186.9 3284.8 3286.85 3383.2 3773.05 3577.75 3387.25
P4 10371.05 4701 4084.9 5347.4 4187.6 5254.2 5377.65 4611.1
P5 15920.9 6805.8 6351.85 6777 6604.55 7161.65 6904.2 6583.45
P6 22264.85 9348.3 7731.95 10449.6 10082.55 12540.55 11639.45 10557.6

The MOMoT framework is executed on the problem model of the chain selection use case and
the execution time of different algorithms based on different parameters is highlighted in Fig. 5.10.
This figure shows that the Random search algorithm is the slowest whereas the NSGA-III is the
fastest search optimization algorithm.

Problem model 2 The first defined problem model is having 6 metamodel, 12 ETL trans-
formations and 13 possible transformation chains between the user-defined source and the target

5.2. Selecting optimal model transformation chains 65

FIGURE 5.10: Execution time of different algorithms w.r.t parameter configuration_1
in problem model 1

FIGURE 5.11: Execution time of different algorithms w.r.t different parameter con-
figuration_2 in problem model 1

metamodels. The source and target metamodels are KM3 and XML, respectively. The average exe-
cution time taken to get the optimum result according to the various algorithms based on different
parameter configurations are shown in Table 5.7 and Table 5.8.

The MOMoT framework is executed on the problem model of the chain selection use case and their
execution time of different algorithm based on different parameter configurations are highlighted

66 Chapter 5. Identifying optimal model transformation chains

TABLE 5.7: Average execution time (ms) for various algorithms in configuration_1

P Random NSGA-II NSGA-III ε − MOEA Chebycheff PQ-HV PQ-PO Tournament
P1 4225.4 921.4 2065.6 885.8 1532.9 1723.7 1659.2 2075.9
P2 4933.7 1905.9 1508.9 2598.3 2728.4 2346.5 2252.9 2290.6
P3 7534.67 2522.67 1830.6 2358.93 2583.07 2693.87 2863.77 2641.7
P4 10264.84 3723.6 2941.02 2851.86 3582.68 3936.96 3971.5 4222.92
P5 15283.87 4623.06 4987.01 4593.36 4951.41 5762.83 5754.14 5470.73
P6 25681.46 7205.56 6683.97 5872.17 7143.61 8346.07 8234.62 7421.37

FIGURE 5.12: Execution time of different algorithms w.r.t different parameter con-
figuration_1 in problem model 2

TABLE 5.8: Average execution time (ms) for various algorithms in configuration_2

P Random NSGA-II NSGA-III ε − MOEA Chebycheff PQ-HV PQ-PO Tournament
P1 4541.1 1783.7 1200.6 989.8 714.3 1523.2 1504.1 837.3
P2 4496.35 1566.1 1932.6 1718.75 1335.95 1753.95 1632.4 1476
P3 6786.05 2941.3 2509.05 2504.3 2391.3 2711.65 2423.7 2217.4
P4 10633.65 4086.95 3953.45 2925.95 3377.9 3537.5 3342.5 3336.8
P5 15045.8 5842.15 6857.6 4165.8 4300.6 5494.2 5060.55 4058.55
P6 23126.1 7933.4 9205.4 8095.2 7045.3 7662.5 7631.4 7674.25

in the Fig. 5.12 and Fig. 5.13 respectively. This figure shows that the Random search algorithm is
the slowest whereas the Epsilon MOEA, Chebycheff and Tournament algorithms is the some of the
fastest search optimization algorithm when it comes to consider lesser number of transformation
chains.

Discussing problem model 1 and problem model 2 Both the execution time versus algorithm
shown in Fig. 5.10 and Fig. 5.12 for problem model 1 and 2 respectively show that the random
search is the slowest algorithm to compute the optimal chain used in MOMoT framework. But
the difference between the two figures is that in the larger problem model 1, the genetic algo-
rithms NSGA-II and NSGA-III are the fastest algorithm and EpsilonMOEA is the second slowest

5.2. Selecting optimal model transformation chains 67

FIGURE 5.13: Execution time of different algorithms w.r.t different parameter con-
figuration_2 in problem model 2

after random search whereas in the smaller problem model 2, EpsilonMOEA, Chebycheff and
Tournament algorithms work better in calculating the optimal transformation chain(s).

5.2.4 Threats to Validity

In this section, we discuss the threats to validity of our experiments, by distinguishing them in
internal and external.

Internal Validity Such threats are the factors that could have influenced the final results of the
performed experiments. We attempted to avoid any bias in the definition of the quality criteria
we have used, since they can influence the chain selection. To mitigate such threats, we have
considered the same coverage formalization as in the ground truth paper [18, 19]. Moreover,
we have built our dataset, by translating the existing transformations in the dataset in [19] from
ATL to ETL. This can include different transformation constructs used by the two transformation
languages, e.g., operations in ETL vs. helpers in ATL. We think that using only declarative aspects
of both the transformation languages would limit this threat of varying quality criteria between
ATL and ETL files. However, we have written almost syntactical equivalent ATL constructs into
the ETL file.
We are aware that we have used a relatively small dataset of transformations, but it is based on
real transformations with very different complexity, definitions, constructs and domain of appli-
cations. We have also tried to mitigate this aspect by applying a mutation of the dataset, which is
the result of changing the required input and artifacts included in the repository.

External Validity The external validity discusses whether we can generalize our results. The
first aspect we need to highlight is that the experiment has been based on an existing dataset
of transformations, which has been rebuilt starting from a snapshot of the ATL transformation

68 Chapter 5. Identifying optimal model transformation chains

zoo [16]. The second aspect we need to discuss is that our approach is based on ETL transfor-
mations static analysis, but the approach is completely generalizable to other transformation lan-
guages on which quality criteria can be defined. To confirm that in the first experiment, we have
compared the coverage-based selection with the paper in [19], where the transformations were
defined with ATL. We mitigated this aspect also having modularized the static analyzer of the
transformation that can be replaced with another one, in order to create the repository model.
Moreover, in our approach, the static analysis [106] operates with a pre-requisite that the ETL
module must contain the source and the target metamodels’ linked in the header of the transfor-
mation. This avoids extra operations to retrieve the graph of the possible chains. We think that this
threat is not influencing the results of the experiments since by using the approaches presented
in [37, 38] the recovery of the existing chains is possible with multiple technologies.

5.2.5 Discussion

Search-based optimization techniques for selecting the optimum transformation chain involve
using search algorithms, such as genetic algorithms or simulated annealing, to explore the space
of possible transformation chains. The objective is to find a chain that optimizes certain metrics,
such as transformation coverage, complexity, graph similarity, and number of hops.

The transformation coverage objective aims to find a chain that covers as much of the input space
as possible. Complexity objective aims to find a chain that has the lowest complexity. Graph sim-
ilarity objective aims to find a chain that preserves the structure of the input as much as possible.
The number of hops objective aims to find a chain that has the least number of transformations.

It is important to note that these objectives may be conflicting, and trade-offs may need to be
made. For example, a chain that has high transformation coverage may also have high complexity.
Therefore, a multi-objective optimization approach may be required to balance these conflicting
objectives. This is the advantages of using a multi-objective optimization algorithms.

In the search-based optimization technique, the algorithm starts with a randomly generated set
of transformation chains, which are then evaluated based on the objectives. The best perform-
ing chains are then used to create new chains through genetic operations such as crossover and
mutation. This process is repeated until a satisfactory solution is found or a stopping criterion is
met.

Overall, search-based optimization techniques for selecting the optimum transformation chain
are a powerful and flexible approach that can be used to find good solutions in complex and large
search spaces. However, it is important to ensure that the objectives are well-defined and the
search space is properly defined and understood.

5.3 Summary

Search-based optimization techniques are crucial in selecting the best transformation chain(s)
based on multiple objectives in model transformation. These objectives include transformation
coverage, transformation complexities, graph similarities, and the number of transformation hops.
Search algorithms like genetic algorithms, simulated annealing, and other optimization algo-
rithms are employed to achieve this. These techniques explore the solution space, enabling the
identification of the transformation chain that best satisfies the desired objectives. The transfor-
mation coverage objective ensures that all elements in the source model are properly transformed
to the target model, while the transformation complexities objective aims to minimize the com-
plexity of each transformation step. Additionally, the metamodel similarities objective measures
the similarity between the source and target metamodels, and the number of transformation hops
objective seeks to minimize the number of steps needed to reach the final solution. By leveraging

5.3. Summary 69

search-based optimization techniques, developers can effectively identify the optimal transforma-
tion chain that aligns with their specific user objectives.

Moving forward from the identification and selection of the optimal transformation chain(s),
the next step involves optimizing the execution of these chains to improve the overall execution
time. This optimization process is addressed in the next chapter, which focuses on reducing un-
necessary modeling elements and transformation rules that do not contribute to creating the de-
sired output model. By streamlining the transformation process, this optimization effort aims to
decrease the execution time of the model transformation chains, ultimately enhancing efficiency.
Furthermore, reducing generated target elements produced during the transformations within a
specific transformation chain contributes to a more concise and targeted output model. Through
these optimization techniques, developers can significantly improve the performance and effec-
tiveness of the transformation process, enabling faster and more streamlined model transforma-
tions.

71

Chapter 6

Optimizing the execution of model
transformation chains

Although in model transformation chains, the individual model transformations might be sim-
ple or complex, the entire chain is a combination of all the transformation constructs referring
to metamodel elements that are used to propagate the information contained in the models. The
transformation coverage [19] is defined as a quality characteristic defining how much the transfor-
mation "covers" the source and target metamodels’ concepts. The result of this considered quality
attribute is that every transformation involved in the chain can consider all the metamodel con-
cepts of all the involved metamodels in a transformation chain. This results in a waste of resources
and time in the execution phase, while in a transformation chaining process, all the transformation
rules will be tried to match, even if the meta-elements are not propagated during the chain.

In this chapter, we propose an approach for optimising model transformation chains that leverage
static analysis of the transformation and performs rule analysis to execute automated program
rewriting behind the scenes. The main idea is to remove those transformation rules and bind-
ings which generate those intermediate model elements that are not propagated through the final
target model.

6.1 Background and Motivating Example

In this section, we introduce the tools and the languages used for our proposed approach. Model
transformations are seen as the heart and soul of MDE [103]. Model-to-model (M2M) transfor-
mations transform a source model into a target model in the same or different abstraction level
(metamodel), whereas a model-to-text transform models into source code or other text. In this
section, we concentrate on M2M transformations only through which we can consider optimizing
the metaclasses and structural features elements of the involved metamodels and transformations
through the chain.

The Epsilon Transformation Language (ETL) 1, is the M2M transformation language provided by
the Epsilon family [64]. ETL takes a particular source modelling elements from the source meta-
model and transforms them to a number of target modelling elements from the target metamodel.
This means that an ETL module can contain a number of transformation rules which transform
a source model element to one or more target model elements. An ETL module can also have
pre and post block to be executed before and after the execution of transformation rules respec-
tively. Every rule is composed of an internal body in which the user can specify the bindings. A
binding is used to set the features of an instance transformed by the current rule, by using the
values of the features of the source instance. This aspect is mostly supported by the declarative
nature of the transformation language, even though the user can also use imperative constructs
as ETL is a hybrid M2M transformation language. In order to support reuse and maintainability,

1https://www.eclipse.org/epsilon/doc/etl/

72 Chapter 6. Optimizing the execution of model transformation chains

complex model transformations can be composed through small transformation modules. The
composition can be external or internal. External composition deals with composing model trans-
formations together by passing models from one transformation to another. Internal composition
composes two model transformations definitions into one new model transformation, expressed
in the same transformation language[43, 118]. The external composition can be enabled if some
pre-requirements are respected, e.g., the target metamodel of the first transformation T1 is used
as the source metamodel of the next transformation T2. For our case, we are considering only
external composition.

In the transformation chaining scenario represented in Fig. 6.1, we need to chain the two existing
transformations, i.e. A2B and B2C satisfied, giving place to a chain C1 = A2B → B2C.

A B C

A1

A2

B1

B2

C1

C2

A2B B2C

TR1

TR2

TR3

A Metamodel B Metamodel C Metamodel

TransformationRule

Transformation

Metamodel

Model Element

Legend

FIGURE 6.1: An example model transformation chain

Transformation A2B is composed of two transformation rules TR1 and TR2. TR1 transforms meta-
class A1 instances into B1 instances, while TR2 transforms A2 instances to B2 instances. Trans-
formation B2C has one transformation rule TR3 that transforms B1 model elements to C1 model
elements. Now if analyze chain C1 from start to end, we can notice that rule TR2 is generating
B2 model elements which are not propagated in the final transformation B2C since there are no
specific rules matching B2 elements.

In this case, the available chain is only one, i.e. C1; hence given a model conforming to metamodel
A, the chain can be executed to get as output a model conforming to metamodel C. If we execute
the chain by composing two transformations, all the rules and bindings in the transformations will
be executed, by trying to match all the elements declared in the transformations chain, even if they
are not propagated by the intermediate or following transformation. For instance, in this case, the
first transformation will execute rule TR2, producing elements, even if in the following transfor-
mation TR3, elements of type B2, are not considered nor propagated. This might cost unnecessary
overheads in terms of execution time, especially for larger chains. This case is quite trivial for the
sake of simplicity, but complex transformations, in which multiple rules are declared, and mul-
tiple transformations are used, can require optimized composition. This lead to the need for an
optimization phase that can be performed before executing the chain, which we propose in the
following section 6.2.

The motivating example in showing the optimization of a chain is shown in Fig. 6.2. In this figure,
two transformations were chained in which only those statements in the first transformation is
executed which is considered as a source element in the second transformation. For example,
statement s22 = s12 is not executed in A2B transformation, because s22 is not considered as a
source element in the transformation B2C. If no statement in a transformation rule is executed,
then the whole rule is removed from the optimized version of the transformation.

In order to tackle statements with equivalent operators, a dependency graph is built that defines
dependencies between two transformation rules based on a given equivalent(s) operator. For

6.2. Proposed Approach 73

FIGURE 6.2: An example optimizing model transformation chain

example, statement s21 = s11.eq(TR3) in rule TR1 will cause dependency to rule TR3. So, if this
statement in TR1 is executed, then automatically the statement with the same class type in TR3 is
also executed.

6.2 Proposed Approach

In this section we propose an extension of the transformation architecture proposed in [19], that is
able to optimize the selected chain of model transformation(s), before executing it. The expected
benefits for this application are expected to be in terms of a reduction in memory allocation and
execution time.

The architecture proposed in [19] is composed of the components in gray whereas the yellow one
has been added to support the optimization (shown in Figure 6.3). The user input is composed
of three elements: 1) a model repository (that might be also a local folder) containing modeling
artifacts, 2) an input model and metamodel, and a 3) required output metamodel.

The Chain Discoverer 1⃝ is the component that given the user input, explores the graph-based repre-
sentation of the repository looking for available transformation chains satisfying the user request.
Alternatively, we can implement an algorithm on a repository/folder in Java. Identification of
possible model transformation chains can be done using following steps. The first step is to check
if the direct model transformation exists that transforms source model to target model. This is the
base condition. Then we identify all the available model transformations that transform source
model to any of the available intermediate models. Further, we reuse the intermediate model as
the source model with the help of base condition (using depth-first search recursively) and we
repeat this step till we reach to the target model. Then, we check all the available model transfor-
mations that transform the identified intermediate model to the target model. Lastly, the source,
intermediate and target models are composed and returned as a model transformation chain. The
explained algorithm for identifying the possible transformation chain between a source and target
metamodel is shown in the Algorithm 1 and it is explained in Chapter 5.1.

74 Chapter 6. Optimizing the execution of model transformation chains

Transformation Chaining Processor

Produced output

Chain Optimizer Chain selector

Available chains

User request

Input model

Required
metamodel in

OUT

Selected chain

conform to

Model Repository

Chain discoverer

Transformation
Optimizer

Static Analyzer

Chain ExecutorOutput model

1

2

3

4

5

FIGURE 6.3: Proposed approach optimizing the execution of transformation chain

If multiple chains are available, the Chain Selector selects one or more optimal chains, by using
user preferences, criteria or directly the user selection. We have selected the optimal transforma-
tion chain(s) by using MOMoT framework [44] and uses multiple criteria such as transformation
coverage, complexity, model coverage, metamodel similarity and no. of transformation hops as
discussed in Chapter 5.2 [95]. MOMoT uses different search-based optimization algorithm such
as NSGA-II, NSGA-III, epsilon-MOEA, etc. to find the optimized transformation chain. If only
one chain is available for that request, the Chain selector 2⃝ is skipped. When the approach has
the selected chain, it can be executed to return the model in output, but a new component is then
invoked, i.e. the Chain Optimizer 4⃝, that is in charge of optimizing the selected chain using the
Static Analyser 3⃝ and pass it to the Chain Executor 5⃝ that will run the chain and save the output
model.

In the following we detail the optimization phase and we explore the components used for this
purpose. The optimization that we propose executes only those transformation constructs that
are needed, only propagating intermediate model elements which are required to generate target
model elements. This concept is illustrated in Figure 6.1, where we demonstrate that the rule
TR2 is not needed since the chain at the second step does not consider the target metaclass of
that rule. This concept can be easily extended to internal bindings of the rules which is explained
in Figure 6.2. The required rules are derived based on the extracted typed information from the
Static analyzer component 3⃝. The main idea is to analyze the transformation and then the entire
chain from the initial source to the final target. The static analyzer is a helper module based on
Java and Epsilon, which allows interacting with a model transformation as a model, so it can be
queried and managed for instance by using EOL scripts [4]. For every transformation rule, we
check whether the target parameter(s) of the source model is the source parameter of any rule in
the next intermediate or target model. Only the matched transformation rule is chosen to be the
required rule. Otherwise, that transformation rule is removed from the transformation, to speed
up its execution. We can extend this logic to every statement of the transformation rule in which
the transformed references and attributes of a particular metaclass are checked for being present
in the next transformation, i.e. within a binding of a rule in that transformation. Alternatively, if

6.3. Experimental Evaluation 75

the transformed element is not present in the next transformation then that particular statement
of the rule is deleted. It is important to preserve the semantics of the transformations during
this optimization process. We ensure that using the equivalence testing. We execute both the
optimized and original transformations and then compare the output models.

The static analyzer first invokes the algorithm presented in [4], in charge of building the depen-
dency graph between the rules based on the equivalent(s) operator used in statements of those
rules [111]. The equivalent operator is a built-in operator of ETL which automatically resolves
features of source elements to their transformed counterparts in the target models. The output of
this algorithm gives a hashmap in which the key contains all the rules in a given transformation
while the values contain the dependent rule(s) of the corresponding keys(rules).

The hashmap output of this dependency graph algorithm is the input for the Algorithm 2 that
traverses each statement of the given rule in the transformation file. This algorithm 2 checks the
target bindings of a statement in a transformation and compares them with the source bindings
of the next transformation. If the target binding (in a transformation) matches with the source
binding (in the next transformation), we store it in the RulesToKeep array, otherwise, we store it in
the RulesToDelete array. Algorithm 2 then checks the values given in the HashMap and compares
them with the values stored in RulesToDelete array. If they are equal, then the reference of the
current rules from RulesToDelete array will be removed from it. Otherwise, the current rules are
not being dependent on any other rule; therefore, such rule can be a part of RulesToDelete array
so that it can later be deleted to optimize the overall transformation chain.

One challenge here is that rules can potentially alter model elements. The use of the "equivalent"
expression in ETL can only be used to find transformation rules that depend on other rules of
a model transformation. To handle this issue, we propose constructing a dependency graph for
finding such rules and to perform the program rewriting after analyzing this dependency graph.
This dependency graph is described in the paper [111].

The logic of the optimization stage is shown in Algorithm 2. This algorithm checks hither a model
element feature (attribute or reference) in a particular input pattern or binding of a transformation
rule of the current transformation is used in any transformation rule of the next transformation.
Once the chain is optimized, we calculate the number of bindings in the rules of the optimized
transformation. If there are no bindings in the rules of an optimized transformation, then that rule
is deleted from the optimized transformation. If the binding in the current transformation is not
used in the next transformation, then this binding will be deleted as it is unused for that specific
next transformation. Once all the unused bindings from transformations are removed, we have
the optimized transformation chain which will be executed to retrieve the same result with lesser
generated elements and execution time.

Finally, the rewritten transformations containing only the required transformation rules are exe-
cuted within a chain of model transformation. The Algorithm 2 is written in Java language and
its code is defined in the github2 repository [3].

6.3 Experimental Evaluation

In this section we evaluate the approach by answering to the following research questions:

RQ1: Is the approach able to produce correct results w.r.t. non-optimized chains?

RQ2: Is the approach effective in optimizing the execution time of the available chains vary-
ing model size or transformation chain hops?

2https://github.com/lowcomote/chain-optimisation.git

https://github.com/lowcomote/chain-optimisation.git

76 Chapter 6. Optimizing the execution of model transformation chains

Algorithm 2 Pseudocode for the optimization of transformation chains

1: procedure OPTIMIZE(HashMap hm)
Require: DG = Dependency Graph given in FindDependencyGraph(a)

2: Let a = chain containing transformations a0, a1, ..., an
3: Traverse each transformation in the given chain a
4: Take consecutive pair of the transformations from end to start of the chain (an, an − 1)
5: Source = an − 1
6: Target = an
7: BindingsToDelete, BindingsToKeep ▷ Arrays for keeping the bindings that need to be

removed and the bindings to keep, respectively
8: for all rule=rules in Source do
9: for all binding=bindings in rule do

10: re f _type = EReferenceType of binding
11: TP = types of target parameters of the binding in the rule in transformation a(i − 1)
12: SPs = types of source parameters of the binding in the rule in the transformation ai
13: dependent_rule = values given in key rule stored in hashmap hm
14: if SPs equals TP then
15: add binding in BindingsToKeep
16: else
17: if re f _type = dependent_rule then
18: add binding in BindingsToKeep
19: else
20: add binding in BindingsToDelete
21: remove binding from Source
22: end if
23: end if
24: end for
25: if (#binding in the rule = 0) then
26: delete rule
27: end if
28: end for
29: end procedure

RQ3: What is the relationship between generated target elements and execution time of the
optimized and unoptimized chain?

6.3.1 Experiment setup

The experiment is based on a case study borrowed from [19] and reported in the dataset on-
line https://github.com/lowcomote/chain-optimisation.git written in the ETL transforma-
tion language. The case study is composed of 6 metamodels and 6 transformations. The user
request is made by giving an input KM3 model and requires an XML model as output; the repos-
itory is represented in Fig. 6.4. The experiments are run on a Windows 10 machine with 12 GB
RAM that has i7-7500U CPU @ 2.70GHz-2.90 GHz.

Experiments done We have executed the approach on this case study by providing the user re-
quest, i.e. the initial model and required metamodel, as well as the repository of the case study. We
executed the available chains 10 times and get measured the average of those runs. We reported all
the execution times and calculated the entire chain execution time with/without the optimization
component. If more than one chain is available for the case study, we calculated all the possible

https://github.com/lowcomote/chain-optimisation.git

6.3. Experimental Evaluation 77

FIGURE 6.4: Graph based representation of the KM32XML experiment

chains for both versions, optimized and unoptimized. If the results showed an improvement in
terms of execution time, we compare the resulting models produced by two executions in order to
check if the models are exactly the same. This would confirm that the approach is able to optimize
the execution based only on the removal of unneeded modelling constructs of the transformation.
This demonstrates the correctness of the implemented optimization algorithm. In order to com-
pare the output models we have used EMFCompare [1] to automate the tasks and we inspected
the results to confirm that the two models are exactly the same or not. If the models are the same,
we can check the execution time, otherwise, we mark as unexpected result of the optimized trans-
formation chain. Also, the cache memory to load the EMF models has not been considered in
order to exclude possible wrong evaluations based on caching features. The models used for the
experiments are an original model provided by the case study and a set of randomly generated
models. The generated models are obtained by using EMG 3, which is the Epsilon Model Gen-
eration language supporting the semi-automated generation of models [84]. With this tool, it is
possible to create user-defined instances of metaclasses in the metamodel(s), assign values to the
instance’s attributes, and create links between instances to assign values to references. We gener-
ate 16 models for each case study to have in total 32 models to test the approach, having different
sized models for the two transformation chains as shown below.

CH1: KM3 → EMF → JavaSource → Table → HTML → XML

CH2: KM3 → JavaSource → Table → HTML → XML

6.3.2 Results

In this subsection, we discuss the obtained results of our experiment, by graphically reporting
the results for the first model (original) used as input, and the complete results are reported in
Table 6.1. The experiment 1, 2 and 3 reports the results obtained in order to answer research
question RQ1, RQ2 and RQ3 respectively.

Experiment 1 An example that shows the difference between the unoptimized and the opti-
mized transformation is shown Fig. 6.5. The target element(s) in the shown transformation is
deleted as it would not be required in the next transformation of the chain.

From Fig. 6.5, the resulting models with the optimized and unoptimized transformation resulted
in exactly the same model except those modeling elements that are not used in the next transfor-
mation. Therefore, the final target model in the optimized transformation chain would generate

3https://www.eclipse.org/epsilon/doc/emg/

https://www.eclipse.org/epsilon/doc/emg/

78 Chapter 6. Optimizing the execution of model transformation chains

FIGURE 6.5: Unoptimized and optimized KM32JavaSource transformation example

an exact target model as in the case of unoptimized chain. Also, the optimization algorithm 2
would move back through the chain starting from the last transformation of the chain till the first
transformation of the chain. That’s why the target model would be preserved in the optimized
chain as well. However, the intermediate transformation(s) of the optimized chain may lead to
different model(s) when compared to the unoptimized chain. After using EMFCompare on the
target models used from optimized and unoptimized chain, there are no difference between these
two target models.

Experiment 2 The experiment for the original model are reported in the Difference column
of Table 6.1. Based on the user input, two available transformation chains are returned by the
algorithm with their respective optimized version of the transformation chain.

CH1: KM3 → EMF → JavaSource → Table → HTML → XML

CH2: KM3 → JavaSource → Table → HTML → XML

We have reported the execution time for the entire chains CH1 and CH2 on the last column, and
the result confirms the reduction of 17.44% of CH1 and 1.27% of CH2. It has been observed that
the optimization algorithm would perform better if the no. of deleted modelling elements is more
for a relatively longer transformation chain. The results confirm that the approach has been able
to optimize the execution time, still producing correct models in output, and this confirms the
results for RQ1 and RQ2.

Experiment 3 Table 6.1 and 6.2 reports the complete results of the execution time and the gener-
ated target elements of the experiment.

6.3. Experimental Evaluation 79

Execution time
Unoptimized Optimized Difference

IN model size CH1 CH2 CH1 CH2 CH1 CH2

original_4 788 2.94 2.33 2.89 2.27 0.05 0.0508
generated #1 1150 4.92 2.53 4.24 2.46 0.68 0.0746
generated #2 2300 6.43 2.58 5.84 2.57 0.59 0.002
generated #3 3450 8.51 2.60 8.29 2.59 0.22 0.003
generated #4 4600 14.61 2.73 13.12 2.67 1.49 0.0574
generated #5 5750 30.89 2.90 22.95 2.85 7.94 0.0562
generated #6 6300 37.46 2.86 33.15 2.84 4.31 0.0224
generated #7 7450 49.12 3.12 44.40 3.03 4.72 0.088
generated #8 9200 65.55 3.26 63.40 3.20 2.15 0.058
generated #9 10350 82.45 3.27 79.07 3.25 3.38 0.0226
generated #10 11500 99.86 3.38 83.45 3.28 16.41 0.1002
generated #11 13800 129.14 4.37 120.59 3.83 8.55 0.538
generated #12 16100 183.74 4.14 180.57 3.87 3.17 0.2608
generated #13 18400 1239.73 4.62 182.67 4.34 57.06 0.2804
generated #14 20700 262.39 5.35 246.90 4.66 15.494 0.6846
generated #15 23000 360.87 5.04 332.87 4.89 28.34 0.1466

TABLE 6.1: Results for the execution time KM32XML chain experiment

Total targets generated
Unoptimized Optimized Difference

IN model size CH1 CH2 CH1 CH2 CH1 CH2

original_4 788 3690 778 3512 697 178 81
generated #1 1150 35186 11894 25540 11745 9646 149
generated #2 2300 59036 23694 48240 23395 10796 299
generated #3 3450 92992 35494 76796 35045 16196 449
generated #4 4600 123858 47294 102262 46695 21596 599
generated #5 5750 154754 59094 127758 58345 26996 749
generated #6 6300 185818 70894 153422 69995 32396 899
generated #7 7450 211952 82694 178906 81645 33046 1049
generated #8 9200 247490 94494 204294 93295 43196 1199
generated #9 10350 278632 106294 230036 104945 48596 1349
generated #10 11500 309582 118094 255586 116595 53996 1499
generated #11 13800 371224 141694 306428 139895 64796 1799
generated #12 16100 433148 165294 357552 163195 75596 2099
generated #13 18400 494964 188894 408568 186495 86396 2399
generated #14 20700 557158 212494 459962 209795 97196 2699
generated #15 23000 698944 236094 510948 233095 107996 2999

TABLE 6.2: Results for total target elements generated in the KM32XML chain ex-
periment

80 Chapter 6. Optimizing the execution of model transformation chains

FIGURE 6.6: Correlation between execution time and generated target elements for
chain Ch1

FIGURE 6.7: Correlation between execution time and generated target elements for
chain Ch2

6.4. Threats to validity 81

Fig. 6.6 and 6.7 represent the scatter plot for the unoptimized and the optimized chains CH1 and
chain CH2 experimentation, respectively. The scatter plot shows the correlation between the dif-
ference in the generated target elements and the the difference in the execution time for chain
CH1 and chain CH2 respectively. The chain CH1 and CH2 has been executed for 16 different mod-
els. The optimized chain CH1 gives better result (lesser execution time) than the normal chain
and larger difference in the generated target elements. While there are much lesser difference in
calculating the execution time of the optimized chain CH2, there are much lower difference in
generated target elements. The correlation between the target elements and the execution time
difference for CH1 is 0.678 and that of CH2 is 0.67. This positive correlation points out the de-
pendence of the generated target elements and it’s execution time which confirms the research
question RQ3. This signifies that the generated targeted elements in executing a transformation
chain is directly proportional to its execution time.

6.4 Threats to validity

In this section we discuss the threats to validity by dividing them as internal and external.

Internal threats Internal threats are aspects influencing the results of the evaluation. One of the
aspects that needs to be mentioned is that not all the transformation constructs are considered in
the analysis. Overall, the optimization algorithm takes note on each statements within the trans-
formation rule of the transformation. The EMF API such as .eContainer(), .eResource() etc. and
greedy/lazy rules and rule inheritance are not considered in the algorithm. The operation in
ETL files are not considered for optimizing the transformation chain. Also, the elements such as
annotations and extends need to be written manually in the optimized transformation if they ex-
ist in the normal transformation. Moreover, executing transformation chains on a single machine
can be influenced by other tasks in execution. For this reason, we have executed the chains for
both the unoptimized and optimized version 10 times and then used the average of the results.
As the optimization is defined as the use of structural elements in the binding of the transfor-
mation to a binding of the next transformation, it is henceforth evident that there won’t be any
optimization case for the last transformation in a chain or even in case of the direct transforma-
tion. The dataset of models used for the experiment is composed of 16 models, that could be seen
as a limited size for a dataset, but it is quite hard to find online resources in which we have model
transformations and available chains for them. For this reason, we tried to mitigate this threat by
randomly generating models from a given seed model.

External threats The external factors influencing the conducted experiment’s validity outside
the used setting are multiple. We tested the approach on the Epsilon framework, and specifi-
cally with ETL transformations, but the generalizability of the approach is based on the fact that
ETL is a declarative rule-based transformation language and thus all transformation languages
falling in this category are candidates for applying this approach. The static analyzer must be
re-implemented in order to be able to analyze other types of transformations, e.g., ATL.

6.5 Summary

In our proposal, we present an approach to optimize transformation chains with the aim of accel-
erating their execution. We argue that by conducting a static analysis of the transformation chain,
we can identify the transformation rules that solely generate the necessary intermediate model
elements. Through automated program rewriting, we create an optimized program that retains
only these identified rules. As a result, the execution time of the original transformation chain is

82 Chapter 6. Optimizing the execution of model transformation chains

significantly reduced. Furthermore, we also examine the structural features of the entire chain to
assess its complexity. This investigation allows us to achieve the desired outcome of optimizing
execution while preserving the constraints and properties of the original transformations. By em-
ploying this approach, we can enhance the overall efficiency and performance of transformation
chains, leading to faster and more streamlined execution.

83

Chapter 7

Conclusion

7.1 Summary of the contributions

All the work done during my Ph.D. addressing the challenges and objectives in Chapter 1 are
highlighted below.

7.1.1 Elaborating the features of various low-code development platforms

Low-code platforms are equipped with a range of features, including intuitive drag-and-drop in-
terfaces, ready-made templates, and powerful visual modeling tools. These user-friendly tools
enable individuals to seamlessly create applications, even in the absence of extensive program-
ming expertise [97]. The investigation and findings related to this topic are extensively discussed
in Chapter 3.

7.1.2 Analyzing the business process and data handling capabilities of different low-
code development platforms

When analyzing the business process and data handling capabilities of different low-code plat-
forms, it is important to consider the organisation’s specific needs. For example, some platforms
may be better suited for automating complex business processes, while others may focus more on
data handling and integration. Additionally, it is important to consider the scalability and secu-
rity of the platform, as well as the level of support and training offered by the vendor. Therefore,
understanding the features of low-code platforms can help organizations to effectively leverage
these tools to improve the efficiency and effectiveness of their business processes and data han-
dling capabilities [93]. This work is discussed in Chapter 4.

7.1.3 Applying search-based optimization to search and chain model transformations

The algorithm for identifying model transformation chains is a process that uses a set of rules and
steps to identify the sequence of transformations applied to an input model to generate a target
one according to user goals. The algorithm starts by analyzing the input and output models and
then uses various techniques to determine the transformations that must be applied. Once the
algorithm has identified the transformation chain, it can select the best transformation chain and
then optimize it to improve its execution time and generated target elements [94].

Search-based optimization techniques are used to select the optimum transformation chain when
applying model transformations. These techniques involve using algorithms, such as genetic al-
gorithms or random search, to search for the best possible sequence of transformations that will
produce the desired output [95]. The process used in the MOMoT framework [44] begins by defin-
ing the objectives of the transformation, such as reducing complexity or improving transformation
coverage, etc. Then, a set of potential transformation sequences is generated and evaluated using

84 Chapter 7. Conclusion

a fitness function. The fitness function determines how well each sequence of transformations
meets the defined objectives.

As the search algorithm runs, it explores different possible sequences and updates the best se-
quence found, called the best candidate solution. The algorithm continues running until it reaches
the stopping criterion, such as reaching a certain number of iterations or finding a candidate so-
lution that meets the desired objectives. For example, the stopping criteria could be reaching the
user-defined target model. Search-based optimization techniques are particularly useful when
dealing with complex and large transformations, as they can explore many possibilities in a rela-
tively short time. Additionally, these techniques can be easily adapted to consider different con-
straints and requirements.

Thus, applying search-based optimization techniques to select the optimum transformation chain
can help users to improve the efficiency and effectiveness of their model transformation processes.
It allows for finding the best possible sequence of transformations that will produce the desired
output while considering the user’s specific requirements and constraints. This complete work is
described in Chapter 5.

7.1.4 Optimization of model transformation chain executions

To improve the efficiency and effectiveness of model transformation composition, the optimiza-
tion of the execution of the best available transformation chain is proposed. The optimization is
done by using only those model elements transformed throughout the chain that are useful to
generate the target model. This process would require constant monitoring as some dependent
transformation rules may exist. However, the process of optimizing the execution of transforma-
tion chains helps to improve the applicability of model transformation composition in application
development tools such as low-code development platforms [94]. This optimization work is ex-
plained in Chapter 6.

7.2 Publications

The publications which are published during this PhD are as follows.

1. Sahay, Apurvanand, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. "Ana-
lyzing business process management capabilities of low-code development platforms." Soft-
ware: Practice and Experience (2022) [93]

2. Sahay, Apurvanand, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pierantonio. "Sup-
porting the understanding and comparison of low-code development platforms." In 2020
46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
pp. 171-178. IEEE, 2020 [97]

3. Sahay, Apurvanand, Davide Di Ruscio, and Alfonso Pierantonio. "Understanding the role
of model transformation compositions in low-code development platforms." In Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, pp. 1-5. 2020 [92]

Apart from the above publications, the following two research articles are under submission.

1. Sahay, Apurvanand, Martin Eisenberg, Davide Di Ruscio, Ludovico Iovino, Manuel Wim-
mer and Alfonso Pierantonio. “Selecting the optimum model transformation chains with
MOMoT”. In: to be submitted in a Journal (2023), pp. 1–24 [95]

7.3. Developed tools 85

2. Sahay, Apurvanand, Qurat ul ain Ali, Davide Di Ruscio, Ludovico Iovino, Dimitris Kolovos,
Konstantinos Barmpis and Alfonso Pierantonio. “Optimizing the execution of the model
transformation chain”. In: to be submitted in a Journal (2023), pp. 1–20 [94]

7.3 Developed tools

The developed tools are shown in the GitHub repositories below.

1. The code for selecting model transformation chains with MOMoT is shown in the GitHub
link https://github.com/lowcomote/chainselection_momot.git and explained in Chap-
ter 5.

2. The code for optimizing the execution of the transformation chain is shown in the GitHub
link https://github.com/lowcomote/chain-optimisation.git and explained in Chapter 6.

7.4 Future work

In the future, we plan to employ the proposed conceptual framework to analyze additional low-
code platforms. We expect a consequent refinement of the conceptual framework shown in Chap-
ter 3. Moreover, we plan to focus more on the reusability and interoperability facilities that low-
code development platforms need. The main goals are i) the design and development of a reposi-
tory supporting the reuse of already developed low-code artifacts, ii) and development of generic
mechanisms enabling the interoperability of different platforms.

The work of optimizing the execution of model transformation chains shown in Chapter 6 can be
extended in a future iteration to enhance the proposed approach to exploit other common opti-
mization patterns. Also, the proposed approach can be tested with more complex transformation
chains. By benchmarking this approach on transformation chains for large-scale models, some
performance results can be produced to demonstrate performance improvements.

https://github.com/lowcomote/chainselection_momot.git
https://github.com/lowcomote/chain-optimisation.git

87

Appendix A

Used technologies

The major technologies used throughout the PhD thesis are listed below.

• EMF Modeling Technologies - In Chapter 5, the metamodels and models are built using EMF
technologies.

– Using tree-like Ecore editor - It helps to build a tree-like structure of a metamodel defin-
ing a domain-specific area.

– Using GenModel to generate code from ecore file - Genmodel used to execute the meta-
model file into its corresponding Java code.

• Epsilon Languages - This domain-specific language family is used in Chapter 5 and Chapter 6.

– Epsilon Object Language (EOL) - We used EOL and its static analyser to identify different
modelling elements used in a model. This helps to find out information about the
model such as model coverage.

– Epsilon Transformation Langauge (ETL) - We use ETL and its static analyser to build and
identify various modelling elements and transformation rules defined in a model trans-
formation. ETL language and its static analyser is used to build an ETL model transfor-
mation while defining the transformation coverage and analysing the rules and bind-
ings used to optimize the transformation.

– Epsilon Model Generation (EMG) - EMG is used to create multiple models of different
modeling instances with different sizes. It is useful for testing the optimization ap-
proach for smaller and larger models.

• MOMoT Technologies - As described in Chapter 5, MOMoT is a framework that we used
to transform an optimization problem into a model-driven problem and then run various
optimization algorithms for search-based (model-driven) problems.

– XText programming language - XText is used to write various objectives, constraints, algo-
rithms and other search-based configurations to program a search-based optimization
over the chain selection problem.

– Henshin model transformation language - Henshin is used to graphically design a chain
selection problem where an in-place transformation is used to model various transfor-
mation chains between a source and target metamodel.

• Java programming language - We use Java to code all the chain identification algorithms, fit-
ness functions in chain selection and chain optimization process defined in Chapter 5 and
Chapter 6.

89

Bibliography

[1] Lorenzo Addazi et al. “Semantic-based Model Matching with EMFCompare.” In: Me@ mod-
els. 2016, pp. 40–49.

[2] Santiago Aguirre and Alejandro Rodriguez. “Automation of a business process using robotic
process automation (RPA): A case study”. In: Workshop on engineering applications. Springer.
2017, pp. 65–71.

[3] Qurat ul ain Ali and Apurvanand Sahay. Chain optimisation code. Version 1.0.1. Dec. 2022.
URL: https://github.com/lowcomote/chain-optimisation.git.

[4] Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis. “Efficiently Querying Large-
Scale Heterogeneous Models”. In: Proc. of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings. MODELS ’20. Vir-
tual Event, Canada: Association for Computing Machinery, 2020. ISBN: 9781450381352.
DOI: 10.1145/3417990.3420207.

[5] Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis. “Efficiently querying large-
scale heterogeneous models”. In: Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Companion Proceedings. 2020, pp. 1–5.

[6] Thomas Allweyer. BPMN 2.0: introduction to the standard for business process modeling. BoD-
Books on Demand, 2016.

[7] Camilo Alvarez and Rubby Casallas. “MTC Flow: A tool to design, develop and deploy
model transformation chains”. In: Proceedings of the workshop on ACadeMics Tooling with
Eclipse. 2013, pp. 1–9.

[8] Amazon Honeycode Capabilities. https://www.honeycode.aws/features. Accessed: 2021-03-
01.

[9] Marcel F van Amstel and Mark GJ Van Den Brand. “Model transformation analysis: Stay-
ing ahead of the maintenance nightmare”. In: International Conference on Theory and Practice
of Model Transformations. Springer. 2011, pp. 108–122.

[10] An Introduction to Low-Code Platform. https://www.mendix.com/low-code-guide/. Ac-
cessed: 2020-03-23.

[11] Tony Andrews et al. Business process execution language for web services. 2003.

[12] Appian Platform Overview. https://www.appian.com/. Accessed: 2020-03-23.

[13] Vincent Aranega, Anne Etien, and Sebastien Mosser. “Using feature model to build model
transformation chains”. In: International Conference on Model Driven Engineering Languages
and Systems. Springer. 2012, pp. 562–578.

[14] Thorsten Arendt et al. “Henshin: Advanced Concepts and Tools for In-Place EMF Model
Transformations”. In: Model Driven Engineering Languages and Systems - 13th International
Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part I. Ed. by Dorina
C. Petriu, Nicolas Rouquette, and Øystein Haugen. Vol. 6394. Lecture Notes in Computer
Science. Springer, 2010, pp. 121–135. DOI: 10.1007/978-3-642-16145-2_9. URL: https:
//doi.org/10.1007/978-3-642-16145-2%5C_9.

https://github.com/lowcomote/chain-optimisation.git
https://doi.org/10.1145/3417990.3420207
https://www.honeycode.aws/features
https://www.mendix.com/low-code-guide/
https://www.appian.com/
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-16145-2%5C_9
https://doi.org/10.1007/978-3-642-16145-2%5C_9

90 Bibliography

[15] Thorsten Arendt et al. “Henshin: advanced concepts and tools for in-place EMF model
transformations”. In: International Conference on Model Driven Engineering Languages and
Systems. Springer. 2010, pp. 121–135.

[16] ATL Transformations. https://www.eclipse.org/atl/atlTransformations/. Accessed:
2022-05-28.

[17] Francesco Basciani, Ludovico Iovino, Alfonso Pierantonio, et al. “MDEForge: an extensible
web-based modeling platform”. In: 2nd International Workshop on Model-Driven Engineer-
ing on and for the Cloud, CloudMDE 2014, Co-located with the 17th International Conference on
Model Driven Engineering Languages and Systems, MoDELS 2014. Vol. 1242. CEUR-WS. 2014,
pp. 66–75.

[18] Francesco Basciani et al. “A tool for automatically selecting optimal model transformation
chains”. In: Proceedings of the 21st ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems: Companion Proceedings. 2018, pp. 2–6.

[19] Francesco Basciani et al. “Automated selection of optimal model transformation chains via
shortest-path algorithms”. In: IEEE Transactions on Software Engineering 46.3 (2018), pp. 251–
279.

[20] Francesco Basciani et al. “Exploring model repositories by means of megamodel-aware
search operators.” In: MoDELS (Workshops). 2018, pp. 793–798.

[21] Francesco Basciani et al. “MDEForge: An extensible Web-based modeling platform”. In:
vol. 1242. Sept. 2014.

[22] Francesco Basciani et al. “Model repositories: Will they become reality?” In: CloudMDE@
MoDELS. 2015, pp. 37–42.

[23] Eduard Bauer, Jochen M Küster, and Gregor Engels. “Test suite quality for model trans-
formation chains”. In: International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation. Springer. 2011, pp. 3–19.

[24] Reda Bendraou et al. “A comparison of six uml-based languages for software process mod-
eling”. In: IEEE Transactions on Software Engineering 36.5 (2010), pp. 662–675.

[25] Best Low-Code Development Platforms Software. https://www.g2.com/categories/low-
code-development-platforms. Accessed: 2020-05-26.

[26] Jean Bézivin. “Model driven engineering: An emerging technical space”. In: Generative
and Transformational Techniques in Software Engineering: International Summer School, GTTSE
2005, Braga, Portugal, July 4-8, 2005. Revised Papers (2006), pp. 36–64.

[27] Robert Bill et al. “A local and global tour on MOMoT”. In: Softw. Syst. Model. 18.2 (2019),
pp. 1017–1046. DOI: 10.1007/s10270-017-0644-3. URL: https://doi.org/10.1007/
s10270-017-0644-3.

[28] Dominik Birkmeier and Sven Overhage. “Is BPMN really first choice in joint architecture
development? an empirical study on the usability of BPMN and UML activity diagrams for
business users”. In: International conference on the quality of software architectures. Springer.
2010, pp. 119–134.

[29] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineering in
Practice. Vol. 1. Sept. 2012. DOI: 10.2200/S00441ED1V01Y201208SWE001.

https://www.eclipse.org/atl/atlTransformations/
https://www.g2.com/categories/low-code-development-platforms
https://www.g2.com/categories/low-code-development-platforms
https://doi.org/10.1007/s10270-017-0644-3
https://doi.org/10.1007/s10270-017-0644-3
https://doi.org/10.1007/s10270-017-0644-3
https://doi.org/10.2200/S00441ED1V01Y201208SWE001

Bibliography 91

[30] Jordi Cabot and Martin Gogolla. “Object Constraint Language (OCL): A Definitive Guide”.
In: Formal Methods for Model-Driven Engineering: 12th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems, SFM 2012, Bertinoro, Italy,
June 18-23, 2012. Advanced Lectures. Ed. by Marco Bernardo, Vittorio Cortellessa, and Al-
fonso Pierantonio. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 58–90. ISBN:
978-3-642-30982-3. DOI: 10.1007/978-3-642-30982-3_3. URL: https://doi.org/10.
1007/978-3-642-30982-3_3.

[31] Jordi Cabot and Ernest Teniente. “A metric for measuring the complexity of OCL expres-
sions”. In: Model Size Metrics Workshop co-located with MODELS. Vol. 6. Citeseer. 2006, p. 10.

[32] Flavio Corradini et al. “A guidelines framework for understandable BPMN models”. In:
Data & Knowledge Engineering 113 (2018), pp. 129–154.

[33] Krzysztof Czarnecki. “Domain Engineering”. In: Encyclopedia of Software Engineering. Amer-
ican Cancer Society, 2002, pp. 433–444. ISBN: 9780471028956. DOI: 10.1002/0471028959.
sof095. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471028959.
sof095. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof095.

[34] Krzysztof Czarnecki. “Generative programming - principles and techniques of software
engineering based on automated configuration and fragment-based component models”.
PhD thesis. Technische Universität Illmenau, Germany, 1999. URL: http://d-nb.info/
958706700.

[35] Kalyanmoy Deb and Himanshu Jain. “An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part I: solving prob-
lems with box constraints”. In: IEEE transactions on evolutionary computation 18.4 (2013),
pp. 577–601.

[36] Kalyanmoy Deb et al. “A fast and elitist multiobjective genetic algorithm: NSGA-II”. In:
IEEE transactions on evolutionary computation 6.2 (2002), pp. 182–197.

[37] Juri Di Rocco et al. “Systematic recovery of MDE technology usage”. In: International Con-
ference on Theory and Practice of Model Transformations. Springer. 2018, pp. 110–126.

[38] Juri Di Rocco et al. “Understanding MDE projects: megamodels to the rescue for architec-
ture recovery”. In: Software and Systems Modeling 19.2 (2020), pp. 401–423.

[39] JM Dorador and Robert IM Young. “Application of IDEF0, IDEF3 and UML methodolo-
gies in the creation of information models”. In: International Journal of Computer Integrated
Manufacturing 13.5 (2000), pp. 430–445.

[40] Sven Efftinge et al. “Xbase: implementing domain-specific languages for Java”. In: Genera-
tive Programming and Component Engineering, GPCE’12, Dresden, Germany, September 26-28,
2012. Ed. by Klaus Ostermann and Walter Binder. ACM, 2012, pp. 112–121. DOI: 10.1145/
2371401.2371419. URL: https://doi.org/10.1145/2371401.2371419.

[41] Martin Eisenberg et al. “Towards Reinforcement Learning for In-Place Model Transforma-
tions”. In: 24th International Conference on Model Driven Engineering Languages and Systems,
MODELS 2021, Fukuoka, Japan, October 10-15, 2021. IEEE, 2021, pp. 82–88. DOI: 10.1109/
MODELS50736.2021.00017. URL: https://doi.org/10.1109/MODELS50736.2021.00017.

[42] Hüseyin Ergin and Eugene Syriani. “Identification and application of a model transforma-
tion design pattern”. In: ACM southeast conference, ACMSE. Vol. 13. 2013.

[43] Anne Etien et al. “Chaining model transformations”. In: Proceedings of the First Workshop on
the Analysis of Model Transformations. 2012, pp. 9–14.

[44] Martin Fleck, Javier Troya, and Manuel Wimmer. “Marrying search-based optimization
and model transformation technology”. In: Proc. of NasBASE (2015), pp. 1–16.

https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1002/0471028959.sof095
https://doi.org/10.1002/0471028959.sof095
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471028959.sof095
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471028959.sof095
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof095
http://d-nb.info/958706700
http://d-nb.info/958706700
https://doi.org/10.1145/2371401.2371419
https://doi.org/10.1145/2371401.2371419
https://doi.org/10.1145/2371401.2371419
https://doi.org/10.1109/MODELS50736.2021.00017
https://doi.org/10.1109/MODELS50736.2021.00017
https://doi.org/10.1109/MODELS50736.2021.00017

92 Bibliography

[45] Martin Fleck, Javier Troya, and Manuel Wimmer. “Search-based model transformations
with MOMoT”. In: International Conference on Theory and Practice of Model Transformations.
Springer. 2016, pp. 79–87.

[46] Martin Fleck et al. “Model transformation modularization as a many-objective optimiza-
tion problem”. In: IEEE Transactions on Software Engineering 43.11 (2017), pp. 1009–1032.

[47] UML Revision Task Force. “OMG unified modeling language: Superstructure”. In: Object
Management Group (OMG) (2010).

[48] Robert France, Jim Bieman, and Betty HC Cheng. “Repository for model driven develop-
ment (ReMoDD)”. In: International Conference on Model Driven Engineering Languages and
Systems. Springer. 2006, pp. 311–317.

[49] Domıénguez-Mayo Garcıéa-Garcıéa Julián Alberto; Enrıéquez; José Gonzalez. “Character-
izing and evaluating the quality of software process modeling language: Comparison of
ten representative model-based languages”. In: Computer Standards & Interfaces 63 (2019),
pp. 52–66.

[50] Gartner Forecasts. https://www.gartner.com/en/newsroom/press-releases/2021-02-
15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-
grow-23-percent-in-2021. Accessed: 2022-10-28.

[51] Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. “An overview of workflow
management: From process modeling to workflow automation infrastructure”. In: Dis-
tributed and parallel Databases 3.2 (1995), pp. 119–153.

[52] Google App Maker Platform guide. https://developers.google.com/appmaker/overview.
Accessed: 2020-03-23.

[53] Google Appsheet Actions. https://help.appsheet.com/en/articles/953637-actions-
the-essentials. Accessed: 2022-11-09.

[54] Khouloud Guizani and Sonia Ayachi Ghannouchi. “An approach for selecting a business
process modeling language that best meets the requirements of a modeler”. In: Procedia
Computer Science 181 (2021), pp. 843–851.

[55] Mariam Ben Hassen, Mohamed Turki, and FaıHERE!HERE!ez Gargouri. “Choosing a sen-
sitive business process modeling formalism for knowledge identification”. In: Procedia Com-
puter Science 100 (2016), pp. 1002–1015.

[56] Sorour Jahanbin. “Efficient Model Loading through Static Analysis”. In: 2021 ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-
C). IEEE. 2021, pp. 660–665.

[57] Frédéric Jouault et al. “ATL: A model transformation tool”. In: Science of computer program-
ming 72.1-2 (2008), pp. 31–39.

[58] Jonathan Keel. Salesforce.com Lightning Process Builder and Visual Workflow. Springer, 2016.

[59] Zador Daniel Kelemen et al. Selecting a process modeling language for process based unification
of multiple standards and models. Tech. rep. Budapest, Technical Report TR201304, 2013.

[60] Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. “Model transformation
as an optimization problem”. In: International Conference on Model Driven Engineering Lan-
guages and Systems. Springer. 2008, pp. 159–173.

[61] Marouane Kessentini et al. “Search-based model transformation by example”. In: Software
& Systems Modeling 11.2 (2012), pp. 209–226.

[62] Kissflow Platform Overview. https : / / kissflow . com / process - management/. Accessed:
2020-03-23.

https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021
https://developers.google.com/appmaker/overview
https://help.appsheet.com/en/articles/953637-actions-the-essentials
https://help.appsheet.com/en/articles/953637-actions-the-essentials
https://kissflow.com/process-management/

Bibliography 93

[63] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. “The epsilon transforma-
tion language”. In: International Conference on Theory and Practice of Model Transformations.
Springer. 2008, pp. 46–60.

[64] Dimitris Kolovos et al. The Epsilon Book. Eclipse. 2010.

[65] Jochen M Küster, Thomas Gschwind, and Olaf Zimmermann. “Incremental development
of model transformation chains using automated testing”. In: International conference on
model driven engineering languages and systems. Springer. 2009, pp. 733–747.

[66] Maciej Laszczyk and Paweł B Myszkowski. “Improved selection in evolutionary multi-
objective optimization of multi-skill resource-constrained project scheduling problem”. In:
Information Sciences 481 (2019), pp. 412–431.

[67] Théo Le Calvar et al. “Efficient ATL Incremental Transformations”. In: The Journal of Object
Technology 18 (July 2019), 2:1. DOI: 10.5381/jot.2019.18.3.a2.

[68] Levi Lúcio et al. “FTG+ PM: An integrated framework for investigating model transforma-
tion chains”. In: International SDL Forum. Springer. 2013, pp. 182–202.

[69] Stephen MacDonell et al. “How reliable are systematic reviews in empirical software engi-
neering?” In: IEEE Transactions on Software Engineering 36.5 (2010), pp. 676–687.

[70] Ricardo Martins et al. “An overview on how to develop a low-code application using Out-
Systems”. In: 2020 International Conference on Smart Technologies in Computing, Electrical and
Electronics (ICSTCEE). IEEE. 2020, pp. 395–401.

[71] Jacqueline A McQuillan and James F Power. “White-box coverage criteria for model trans-
formations”. In: Proceedings of the 1st International Workshop on Model Transformation with
ATL. Springer-Verlag LNCS series. 2009, pp. 63–77.

[72] Mendix Microflow. https://docs.mendix.com/refguide/microflows. Accessed: 2022-11-
09.

[73] Mendix Platform Features. https://www.mendix.com/platform/. Accessed: 2020-03-23.

[74] Microsoft PowerApps flow. https://docs.microsoft.com/en-us/powerapps/user/use-
flows. Accessed: 2022-11-09.

[75] Microsoft PowerApps Platform Overview. https://docs.microsoft.com/en-us/powerapps/
maker/. Accessed: 2020-03-23.

[76] Mohamed Wiem Mkaouer and Marouane Kessentini. “Model transformation using multi-
objective optimization”. In: Advances in Computers. Vol. 92. Elsevier, 2014, pp. 161–202.

[77] Gunter Mussbacher et al. “Opportunities in intelligent modeling assistance”. In: Software
and Systems Modeling 19.5 (2020), pp. 1045–1053.

[78] Justice Opara-Martins, R. Sahandi, and Feng Tian. “Implications of Integration and In-
teroperability for Enterprise Cloud-Based Applications”. In: Oct. 2015, pp. 213–223. DOI:
10.1007/978-3-319-38904-2_22.

[79] OutSystem Platform Business Process. https://success.outsystems.com/Documentation/
11/Developing_an_Application/Use_Processes_(BPT). Accessed: 2022-11-09.

[80] OutSystem Platform Features. https://www.outsystems.com/platform/. Accessed: 2020-
03-23.

[81] Chun Ouyang et al. “From business process models to process-oriented software systems”.
In: ACM transactions on software engineering and methodology (TOSEM) 19.1 (2009), pp. 1–37.

[82] José Luıés Pereira and Diogo Silva. “Business process modeling languages: A compara-
tive framework”. In: New Advances in Information Systems and Technologies. Springer, 2016,
pp. 619–628.

https://doi.org/10.5381/jot.2019.18.3.a2
https://docs.mendix.com/refguide/microflows
https://www.mendix.com/platform/
https://docs.microsoft.com/en-us/powerapps/user/use-flows
https://docs.microsoft.com/en-us/powerapps/user/use-flows
https://docs.microsoft.com/en-us/powerapps/maker/
https://docs.microsoft.com/en-us/powerapps/maker/
https://doi.org/10.1007/978-3-319-38904-2_22
https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Processes_(BPT)
https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Processes_(BPT)
https://www.outsystems.com/platform/

94 Bibliography

[83] Carl Adam Petri and Wolfgang Reisig. “Petri net”. In: Scholarpedia 3.4 (2008), p. 6477.

[84] Saheed Popoola, Dimitrios S Kolovos, and Horacio Hoyos Rodriguez. “EMG: A domain-
specific transformation language for synthetic model generation”. In: International Confer-
ence on Theory and Practice of Model Transformations. Springer. 2016, pp. 36–51.

[85] Carlos Portela et al. “A comparative analysis between BPMN and SPEM modeling stan-
dards in the software processes context”. In: Journal of Software Engineering and Applications
05(05):330-339 (2012).

[86] Ali Razavi and Kostas Kontogiannis. “Partial evaluation of model transformations”. In:
2012 34th International Conference on Software Engineering (ICSE). 2012, pp. 562–572. DOI:
10.1109/ICSE.2012.6227160.

[87] Jan Recker et al. “Business Process Modeling- A Comparative Analysis”. In: Journal of the
Association of Information Systems 10 (Apr. 2009). DOI: 10.17705/1jais.00193.

[88] Wolfgang Reisig. Petri nets: an introduction. Vol. 4. Springer Science & Business Media, 2012.

[89] C. Richardson and J. R. Rymer. “The Forrester Wave: Low-Code Development Platforms,
Q2 2016. Tech. rep”. In: Forrester Research (2016).

[90] Juri Rocco et al. “Collaborative Repositories in Model-Driven Engineering [Software Tech-
nology]”. In: IEEE Software 32 (May 2015), pp. 28–34. DOI: 10.1109/MS.2015.61.

[91] John R. Rymer. “The Forrester Wave: Low-Code Platforms For Business Developers, Q2
2019”. In: Forrester Research (2019).

[92] Apurvanand Sahay, Davide Di Ruscio, and Alfonso Pierantonio. “Understanding the role
of model transformation compositions in low-code development platforms”. In: Proceed-
ings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings. 2020, pp. 1–5.

[93] Apurvanand Sahay et al. “Analyzing business process management capabilities of low-
code development platforms”. In: Software: Practice and Experience (2022).

[94] Apurvanand Sahay et al. “Optimizing the execution of the model transformation chain”.
In: to be submitted in journal (2023), pp. 1–20.

[95] Apurvanand Sahay et al. “Selecting the optimum model transformation chains with MO-
MoT”. In: to be submitted in a Journal (2023), pp. 1–24.

[96] Apurvanand Sahay et al. “Supporting the understanding and comparison of low-code de-
velopment platforms”. In: 2020 46th Euromicro Conference on Software Engineering and Ad-
vanced Applications. 2020.

[97] Apurvanand Sahay et al. “Supporting the understanding and comparison of low-code de-
velopment platforms”. In: 2020 46th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA). IEEE. 2020, pp. 171–178.

[98] Dilan Sahin et al. “Model transformation testing: a bi-level search-based software engineer-
ing approach”. In: Journal of Software: Evolution and Process 27.11 (2015), pp. 821–837.

[99] Salesforce App Cloud Platform Overview. https://developer.salesforce.com/platform.
Accessed: 2020-03-23.

[100] Salesforce Lightning flow. https://www.salesforce.com/in/products/platform/solutions/
automate-business-processes/. Accessed: 2022-11-09.

[101] Jesús Sánchez Cuadrado et al. “Efficient execution of ATL model transformations using
static analysis and parallelism”. In: IEEE Transactions on Software Engineering PP (July 2020),
pp. 1–1. DOI: 10.1109/TSE.2020.3011388.

https://doi.org/10.1109/ICSE.2012.6227160
https://doi.org/10.17705/1jais.00193
https://doi.org/10.1109/MS.2015.61
https://developer.salesforce.com/platform
https://www.salesforce.com/in/products/platform/solutions/automate-business-processes/
https://www.salesforce.com/in/products/platform/solutions/automate-business-processes/
https://doi.org/10.1109/TSE.2020.3011388

Bibliography 95

[102] Gehan MK Selim, James R Cordy, and Juergen Dingel. “Model transformation testing: The
state of the art”. In: Proceedings of the first workshop on the analysis of model transformations.
2012, pp. 21–26.

[103] Shane Sendall and Wojtek Kozaczynski. “Model Transformation: The Heart and Soul of
Model-Driven Software Development”. In: Software, IEEE 20 (Oct. 2003), pp. 42–45. DOI:
10.1109/MS.2003.1231150.

[104] Amandeep Singh, Pardeep Mittal, and Neetu Jha. “FOSS: A Challenge to Proprietary Soft-
ware”. In: IJCST 4 (10 2013).

[105] Hui Song et al. “Applying MDE tools at runtime: Experiments upon runtime models”. In:
Proceedings of the 5th International Workshop on Models at Run Time. 2010.

[106] Static Analysis built-on-the-top of Epsilon. https : / / github . com / epsilonlabs / static -
analysis.git.

[107] Eugene Syriani and Jeff Gray. “Challenges for addressing quality factors in model trans-
formation”. In: 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation. IEEE. 2012, pp. 929–937.

[108] Thinkwise Process Flow. https : / / docs . thinkwisesoftware . com / docs / 2020 . 1 / sf /
process_flows.html. Accessed: 2022-11-09.

[109] Massimo Tisi et al. “Lowcomote: Training the next generation of experts in scalable low-
code engineering platforms”. In: STAF 2019 Co-Located Events Joint Proceedings: 1st Junior Re-
searcher Community Event, 2nd International Workshop on Model-Driven Engineering for Design-
Runtime Interaction in Complex Systems, and 1st Research Project Showcase Workshop co-located
with Software Technologies: Applications and Foundations (STAF 2019). 2019.

[110] Javier Troya, Sergio Segura, and Antonio Ruiz-Cortés. “Automated inference of likely meta-
morphic relations for model transformations”. In: Journal of Systems and Software 136 (2018),
pp. 188–208.

[111] Qurat Ul Ain Ali, Dimitris Kolovos, and Konstantinos Barmpis. “Selective Traceability for
Rule-Based M2M Transformations”. In: Proceedings of the 15th ACM SIGPLAN International
Conference on Software Language Engineering (SLE ’22), December 06-07, 2022, Auckland, New
Zealand. 2022, pp. 751–760. DOI: 10.1145/3567512.3567521.

[112] Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. “Hypervolume-based multi-
objective reinforcement learning”. In: International Conference on Evolutionary Multi-Criterion
Optimization. Springer. 2013, pp. 352–366.

[113] Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. “Scalarized multi-objective
reinforcement learning: Novel design techniques”. In: 2013 IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning (ADPRL). IEEE. 2013, pp. 191–199.

[114] Kristof Van Moffaert and Ann Nowé. “Multi-objective reinforcement learning using sets
of pareto dominating policies”. In: The Journal of Machine Learning Research 15.1 (2014),
pp. 3483–3512.

[115] Daniel Varro et al. “Road to a reactive and incremental model transformation platform:
three generations of the VIATRA framework”. In: Software & Systems Modeling 15 (July
2016). DOI: 10.1007/s10270-016-0530-4.

[116] Paul Vincent et al. “Magic Quadrant for Enterprise Low-Code Application Platforms”. In:
Gartner report (2019).

[117] Paul Vincent et al. “Magic quadrant for enterprise low-code application platforms”. In:
Gartner report (2020).

https://doi.org/10.1109/MS.2003.1231150
https://github.com/epsilonlabs/static-analysis.git
https://github.com/epsilonlabs/static-analysis.git
https://docs.thinkwisesoftware.com/docs/2020.1/sf/process_flows.html
https://docs.thinkwisesoftware.com/docs/2020.1/sf/process_flows.html
https://doi.org/10.1145/3567512.3567521
https://doi.org/10.1007/s10270-016-0530-4

96 Bibliography

[118] Dennis Wagelaar. “Composition Techniques for Rule-Based Model Transformation Lan-
guages”. In: Proceedings of the 1st International Conference on Theory and Practice of Model
Transformations. ICMT ’08. Zurich, Switzerland: Springer-Verlag, 2008, pp. 152–167. ISBN:
9783540699262. DOI: 10.1007/978-3-540-69927-9_11. URL: https://doi.org/10.1007/
978-3-540-69927-9_11.

[119] Wei Wang et al. “A comparison of business process modeling methods”. In: 2006 IEEE Inter-
national Conference on Service Operations and Logistics, and Informatics. IEEE. 2006, pp. 1136–
1141.

[120] Robert Waszkowski. “Low-code platform for automating business processes in manufac-
turing”. In: IFAC-PapersOnLine 52.10 (2019), pp. 376–381.

[121] Stephen A White. “Introduction to BPMN”. In: Ibm Cooperation 2.0 (2004), p. 0.

[122] Alexander Wise et al. “Using Little-JIL to coordinate agents in software engineering”. In:
Proceedings ASE 2000. Fifteenth IEEE International Conference on Automated Software Engineer-
ing. IEEE. 2000, pp. 155–163.

[123] Removed DataTypes from WorkflowProcess, Removed PlainType Element from Schema,
and Added Script Element. “Workflow Process Definition Interface—XML Process Defini-
tion Language”. In: Lighthouse Point (Fl): Workflow Management Coalition, (WFMCTC-1025)
(2005).

[124] Zelda B Zabinsky et al. “Random search algorithms”. In: Department of Industrial and Sys-
tems Engineering, University of Washington, USA (2009).

[125] Dongdai Zhou et al. “The Rete algorithm improvement and implementation”. In: 2008 In-
ternational Conference on Information Management, Innovation Management and Industrial En-
gineering. Vol. 1. IEEE. 2008, pp. 426–429.

[126] Zoho Creator Deluge Script. https://www.zoho.com/creator/help/images/intro-to-
deluge-workflows.pdf. Accessed: 2022-11-09.

[127] Zoho Creator Platform Features. https://www.zoho.com/creator/features.html. Accessed:
2020-03-23.

https://doi.org/10.1007/978-3-540-69927-9_11
https://doi.org/10.1007/978-3-540-69927-9_11
https://doi.org/10.1007/978-3-540-69927-9_11
https://www.zoho.com/creator/help/images/intro-to-deluge-workflows.pdf
https://www.zoho.com/creator/help/images/intro-to-deluge-workflows.pdf
https://www.zoho.com/creator/features.html

	Abstract
	Acknowledgements
	Introduction
	Challenges and motivations
	Research Activities
	Research Questions
	Achieved Outcome

	Structure of the thesis

	State-of-the-art
	Model Transformation composition
	Quality criteria in model transformations
	Search-based approaches in model transformations
	Optimization of model transformation chains

	Understanding Low-Code Development Platforms
	A bird-eye view of low-code development platforms
	Main components of low-code development platforms
	Development process in LCDPs
	An overview of representative low-code development platforms
	Taxonomy
	Comparing relevant LCDPs
	Features and capabilities
	Additional aspects for comparing LCDPs

	Experience Report
	Summary

	Analyzing business process management capabilities of LCDPs
	Process modeling with BPMN
	Analysis of process modelling languages
	Study Design
	Results
	Key aspects for comparing business process modeling languages

	Discussing LCDPs process modelling and data handling constructs
	OutSystems
	Mendix
	Zoho Creator
	Microsoft PowerApps
	Salesforce Lightning
	Thinkwise
	Google Appsheet
	Amazon Honeycode

	Discussing LCDPs with respect to BPMN modeling constructs
	Discussing LCDPs with respect to BPMN quality criteria
	Summary

	Identifying optimal model transformation chains
	Automated identification of model transformation chains
	Selecting optimal model transformation chains
	Background and Motivating Example of chain selection
	Proposed approach of selecting transformation chain: MOMoT
	Experimental Evaluation
	Threats to Validity
	Discussion

	Summary

	Optimizing the execution of model transformation chains
	Background and Motivating Example
	Proposed Approach
	Experimental Evaluation
	Experiment setup
	Results

	Threats to validity
	Summary

	Conclusion
	Summary of the contributions
	Elaborating the features of various low-code development platforms
	Analyzing the business process and data handling capabilities of different low-code development platforms
	Applying search-based optimization to search and chain model transformations
	Optimization of model transformation chain executions

	Publications
	Developed tools
	Future work

	Used technologies

