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Abstract: Landslides pose a significant risk to human life. The Twisting Theory (TWT) and Crown
Clustering Algorithm (CCA) are innovative adaptive algorithms that can determine the shape of a
landslide and predict its future evolution based on the movement of position sensors located in the
affected area. In the first part of this study, the TWT and CCA will be thoroughly explained from
a mathematical and theoretical perspective. In the second part, these algorithms will be applied to
real-life cases, the Assisi landslide (1995–2008) and the Corvara landslide (2000–2008). A correlation
of 0.9997 was attained between the model estimates and the expert’s posterior measurements at
both examined sites. The results of these applications reveal that the TWT can accurately identify
the overall shape of the landslides and predict their progression, while the CCA identifies complex
cause-and-effect relationships among the sensors and represents them in a clear, weighted graph. To
apply this model to a wider area and secure regions at risk of landslides, it is important to emphasize
its operational feasibility as it only requires the installation of GNSS sensors in a predetermined grid
in the target area.

Keywords: landslide; Deep Neural Networks (DNN); Twisting Theory (TWT); artificial intelligence;
artificial adaptive systems

1. Introduction

The analysis of landslide susceptibility is complicated by the presence of environmen-
tal factors that are either non-correlated or exhibit nonlinear correlations (Huang et al.,
2020 [1]). These factors make it difficult to approach the study through physically or
mechanically based models. Data-driven models based on advanced learning algorithms,
fuzzy logic, and Machine Learning, such as Support Vector Machines (SVM), random
forest (RF), boosting methods, and especially Deep Neural Nets (DNNs), have achieved
superior performance compared to statistics that, thanks to advanced modeling of complex
connections of interlayer interdependencies, obtain satisfactory internal representations
of the data (Conforti et al., 2014 [2]; Gomez & Kavzoglu, 2005 [3]; Bui et al., 2020 [4]; Van
Dao et al., 2020 [5]; Rudin, 2019 [6]; Gunning et al., 2019 [7]; Adadi & Berrada, 2018 [8];
Wang et al., 2020 [9]; Luti et al., 2020 [10]). However, the advanced data driven approaches
utilized to date (especially Deep Neural Network models, given the high number of layers
and hyperparameters used) have a significant drawback—not in terms of performance, but
in terms of interpretability. The extreme difficulty in understanding the precise relationship
between inputs and outputs often hinders experts from comprehending the underlying
dynamics, resulting in a lack of trust in the results (Rudin, 2019 [6]; Gunning et al., 2019 [7];

Geosciences 2023, 13, 115. https://doi.org/10.3390/geosciences13040115 https://www.mdpi.com/journal/geosciences

https://doi.org/10.3390/geosciences13040115
https://doi.org/10.3390/geosciences13040115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0003-4356-0510
https://orcid.org/0000-0002-6990-1320
https://orcid.org/0000-0001-7426-0663
https://orcid.org/0000-0002-1377-4588
https://doi.org/10.3390/geosciences13040115
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences13040115?type=check_update&version=1


Geosciences 2023, 13, 115 2 of 34

Adadi & Berrada, 2018 [8]). Moreover, local territory and geomorphologies are often not ad-
equately taken into account (Xiao et al. 2020 [11]). This implies that in landslide mitigation
application forecasts generated by these systems are frequently minimized or disregarded,
particularly if the decision-making process has significant consequences for human lives
and involves high insurance and reconstruction costs (Cui et al., 2019 [12]; Froude & Petley,
2018 [13]; Huang & Fan, [14]).

One of the most commonly used approaches in the field of Landslide Susceptibility
Assessment (LSA) is to employ Convolutional Neural Networks (CNNs) to create zoning
maps in order to identify areas susceptible to slope failures. CNNs are particularly effective
in analyzing geospatial data and are capable of automatically learning the features of
the data, without the need for explicit knowledge of the physics or geology underlying
landslide formation.

In Azarafza et al., 2021 [15] a deep convolutional neural network (CNN-DNN) was
developed for mapping landslide susceptibility in the Isfahan province, Iran. The model
was trained and validated using historical landslide data, field records, remote sensing
images, and geomorphological and environmental factors. Upon evaluation, the model was
found to be the most accurate among other machine learning techniques, with a prediction
accuracy of 90.9%. The resulting map showed high-susceptibility areas in the western
and southwestern regions of the province, which can aid in managing landslide risk and
shaping land-use planning in the Isfahan province.

Nikoobakht et al., 2022 [16] used a GIS-based approach to assess landslide susceptibil-
ity in the Gorzineh-khil region of northeastern Iran using a convolutional neural network
(CNN). The 15-layer CNN was programmed in Python and was trained using data on the
main triggering factors for landslides including geomorphologic/topographic and water
condition parameters. The results were cross-validated using loss functions and other
classifiers like SVM, k-NN, and DT, and the CNN was found to have the best accuracy with
79.0% accuracy.

Nanehkaran et al., 2021 [17] used a fuzzy, logic-based, multicriteria decision-making
method with five factors affecting landslides (climate, geomorphology, tectonic and seismic
parameters, geological and hydrological conditions, and human activities) to create a
hazard map. Through the identification of landslide influencing factors using satellite
images, DEM data, and field survey, a Convolutional Neural Network (CNN) was trained;
the model was used to classify the hazard potential of the region into five susceptibility
classes, showing better performance compared to other machine learning classifiers (SVM,
k-NN, and DT).

Therefore, it’s crucial to continuously monitor landslide hazards. Typically, GNSS
sensors are deployed at various points in the risk zone to track their movement over time
with millimeter or centimeter accuracy. During observations, data on land movement is
collected. In this study, utilizing data from two recorded observation efforts, we aim to
demonstrate how to achieve two main objectives.

1. Reconstruct the cause-and-effect relationships that evolve over time between the
monitored points. In other words, determine “which displacement” is the most
probable cause of “which other displacement,” thereby identifying the points that are
the center of the landslide and those that are its by-products. To achieve this objective,
we will utilize a patented and published algorithm named the Crowd Clustering
Algorithm (CCA) [18,19];

2. Determine the shape of the entire landslide area based on the monitored points in
a risk zone. To attain this goal, we will utilize an updated version of a previously
patented and published algorithm named Twisting Theory (TWT) [18,19]. After
reconstructing the landslide shape at time T(n), we can predict its new shape at a
subsequent time T(n + 1). To accomplish this forecasting task, we will utilize a novel
Deep Neural Network (DNN) [20–32]. In other words, this innovative DNN has the
capability to learn from the images of the complete landslide grids produced by TWT
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at every observation stage, and predict the location of the sensors and the shape of
the entire landslide at time T(n + 1).

To accomplish these two objectives, we only require the information of the GNSS
coordinates over the duration of the recorded observations. Now, let us mathematically
represent this challenge.

Dataset =
{{

xt
i , yt

i
}P

i=1

}T

t=1
;

where :
x, y = Coordinates of GNSS;
P = Number og GNSS points;
T = Number of observations.

Reconstructing the form/shape of the landslide is based on the information collected
from the monitored points, which is a crucial yet complex task. Merely monitoring the
displacement of these points in millimeters and/or centimeters over time does not provide
much insight, as the Earth’s surface naturally shifts. For example, Italy moves imperceptibly
towards Albania and Croatia each year. Thus, it is essential to go beyond this information
to accurately determine the existence of a landslide.

The challenge in this study is to go beyond just monitoring the movement of a few
GNSS sensor-monitored points, but to understand the movement of the entire terrain. The
scientific challenge is to determine the behavior of all unmonitored points in relation to the
few points under observation. The goal of this research is to reconstruct the overall shape
of the ground movement to determine the presence, size, and evolution of a landslide.

2. Materials and Methods

This paper will describe the theory and benefits of two adaptive algorithms: Twisting
Theory and Crowd Clustering Algorithm. These algorithms belong to the field of machine
learning as they are based purely on data, and they evolve and learn patterns present in
the data.

“Twisting Theory—TWT” is an innovative algorithm patented by Semeion (Twisting
Theory (TWT): a new theory and a new class of algorithms able to model the global
deformations of the space, considering the trajectories of only a little sample of points
along the time flow. Applicant: Semeion Research Center & CSI. Inventor: M Buscema.
USA Patent: 12/969,887. Deposited 16 December 2010) and published in international
scientific journals [18,19]. The publication has shown how, starting from the data produced
over time from a few points monitored by GNSS sensors, the TWT model was able to
reliably reconstruct the behaviour of all “invisible” areas. It has a completely different
architecture from classic neural networks: instead of reasoning on record of features, these
algorithms directly process the movements of all the position sensors over time. Table 1
shows a summary comparison of advantages and disadvantages between the TWT-CCA
method and the Classic LSA ANNs. The TWT-CCA solution expresses the dynamics of
the landslide for the entire convex hull box in which the sensors are positioned, through
a grid deformation. The widening grid shows a greater speed of the landslide; i.e., it
indicates a greater susceptibility, reveals a critical point, and develops greater kinetic energy.
Conversely, a narrowing grid shows the places where the landslide stops spontaneously and
acquires potential energy. Therefore, the TWT–CCA algorithms are able to simultaneously
display multiple susceptibility points for the entire area.

The model has already been applied to several landslides and has undergone inde-
pendent validation. TWT recently was updated with a special kind of ANNs able to make
predictions about the next steps of the landslide analysed.

This paper introduces the fundamental ideas behind two algorithms for landslide
analysis: the Crowd Clustering Algorithm (CCA) and Twisting Theory (TWT). The main
focus of the paper is to present the concepts of CCA for determining cause-and-effect
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relationships and TWT for reconstructing the shape of the landslide. The Deep Neural
Network (DNN) is not covered in this exposition, as the emphasis is on CCA and TWT.

Table 1. Comparison of advantages and disadvantages between the TWT–CCA method and Classic
LSA ANNs.

Feature TWT–CCA Classic LSA ANNs

Monitoring Can monitor slowly moving landslides. Cannot provide specific information about monitoring.

Modeling Can model the dynamics of a landslide and
identify its most energetic location.

Can define a global landslide risk map through
macro-division into regions.

Prediction Can provide specific information on the
evolution of landslides over time.

Can estimate the levels of territory risk aimed at land
use planning.

Achieving Goals Finding cause-and-effect relationships and
determining the shape of the landslide.

Definition of a “global landslide risk map through
macro-division into regions”.

Application Can be applied to large areas with the
requirement of GNSS sensors only.

Needs specific measures regarding topographic, geologic,
climatologic, seismic, human activity-related factors.

2.1. Crowd Clustering Algorithm (CCA)

We introduce a novel algorithm called Crowd Clustering (CC) (Patent: An algorithm
to model the causation process of a discrete process. Applicant: Semeion Research Centre
& CSI. Inventor: P.M. Buscema. USA Patent: 8,521,668/B2. Filed 24 March 2011), which
aims to understand the mechanics of the cause-and-effect relationships between entities,
in our case sensors, over time in a two-dimensional discrete process. This algorithm
provides a new perspective to analyze the interactions between these entities in a dynamic
environment. CC is a generalization for data georeferenced in the two-dimensional space
of a previous algorithm, capable of managing multiple one-dimensional temporal signals
simultaneously [18,19]. The main goal of the Crowd Clustering algorithm is to construct a
plausible model that clearly shows the most probable cause-and-effect process, in which
each entity at each time step affects other entities in the following time step.

It is assumed that the dataset to be processed by CC has the following:

1. Space Position of each entity (Space—“S”).
2. Amount, quantity, of displacement of each entity (Quantity—“Q”)
3. These data (space position, S, and the amount of displacement, Q) are present for each

entity at any time step (Time “T”).

The Causation Model (M) that CC tries to approximate has the general form:

(0.1) M = ψ(S, T, Q).

Specified in greater detail, a local model (M[t, t + 1]), describing the likelihood of
transition of all the entities (i, j) from time (t) to time (t + 1) has the following representation:

(0.2) M[t,t+1]
i,j = ψ

(
dx[t,t+1]

i , dy[t,t+1]
i , dx[t,t+1]

j , dy[t,t+1]
j , σm[t,t+1]

i , σm[t,t+1]
j , ∆φ

[t,t+1]
i , ∆φ

[t,t+1]
j

)
where :

dx[t,t+1]
i , dx[t,t+1]

j are the x displacement of the i− th and the j− th points from time t to t + 1;

dy[t,t+1]
i , dy[t,t+1]

j are the y displacement of the i− th and the j− th points from time t to t + 1;

σm[t,t+1]
i , σm[t,t+1]

j are the summation metric displacement of the i− th and the j− th
points in time t and t + 1;

∆φ
[t,t+1]
i , ∆φ

[t,t+1]
j are the difference of phase displacements of the i− th and the j− th

points from time t to t + 1.
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CC needs data coming from a set of points placed in a two-dimensional space (like
GNSS sensors), whose position is dynamically sampled in different temporal steps, see
Table 2.

Table 2. Example of dataset to be processed by CC.

Process Sensor 1 Sensor 2 Sensor . . . Sensor M

Lat. Long. Lat. Long. Lat. Long. Lat. Long.

t(1) x1(1) y1(1) x2(1) y2(1) . . . . . . xM(1) yM(1)
t(2) x1(2) y1(2) x2(2) y2(2) . . . . . . xM(2) yM(2)
. . . . . . . . . . . . . . . . . . . . . . . . . . .

t(N) x1(N) y1(N) x2(N) y2(N) . . . . . . xM(N) yM(N)

The outputs of the CC algorithm applied to any dataset of this type are the following:

a. A table of the most likely and prevalent cause-and-effect relationship among the
given sensors (points) during and at the end of the temporal flow.

b. A sparse and a directed graph of the most effective excitatory relationship among
the sensors during the whole process.

c. A sparse and a directed graph of the most effective inhibitory relationship among
the sensors during the whole process.

The cause-and-effect relationship table plays a crucial role in comprehending the
dynamics of a landslide. It highlights the areas that are key to the expansion of the landslide
from a local to a larger region. Understanding the distinction between excitatory and
inhibitory relationships is vital in determining the direction of the landslide’s development.
Excitatory relationships occur when the movement of a sensor, and the area it represents,
influences the movement of other areas. In contrast, inhibitory relationships occur when an
area impedes the movement of the landslide. Furthermore, the indication of the strength of
the excitatory or inhibitory relationship provides insights into the stability of the ongoing
landslide phenomenon.

CC algorithm works according to the following steps:

a. The displacement of each sensor at each temporal observation is calculated
(Equations (1) and (2):

dx[n] = x[n] − x[n−1]; (1)

dy[n] = y[n] − y[n−1]; (2)

where n = [t, t− 1].
b. The calculation of the phase and of the momentum between any couple of sequential

displacement of all the sensors is represented by Equations (3) and (4):

φ
[n]
i =



0
(

dx[n]i > 0
)
∧
(

dy[n]i > 0
)

π
(

dx[n]i < 0
)
∧
(

dy[n]i < 0
)

2π
(

dx[n]i > 0
)
∧
(

dy[n]i < 0
)

π
(

dx[n]i < 0
)
∧
(

dy[n]i > 0
)


; (3)

q[n]i = arctan

(
dy[n]i

dx[n]i

)
+ φ

[n]
i ; q[n]i ∈ [0, 2π]; (4)

c. Then the calculation of the strength of each displacement of any sensor is calculated
(Equation (5)):

m[n]
i =

1
m∗

2

√(
dx[n]i

)2
+
(

dy[n]i

)2
; m∗ = Max

i,n

{
m[n]

i

}
; m[n]

i ∈ [0, 1]. (5)
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d. The calculation of the resonance of the phase, the momentum, and the strength of
any pair of sensors are inferred by Equations (6)–(8):

q ∈ [0, 2π]; Phase; m ∈ [0, 1]; Module

α
[n,n+1]
i,j =

2π −
∣∣∣q[n]i − q[n+1]

j

∣∣∣ ∣∣∣q[n]i − q[n+1]
j

∣∣∣ > π∣∣∣q[n]j − q[n+1]
j

∣∣∣ ∣∣∣q[n]j − q[n+1]
j

∣∣∣ ≤ π

;
(6)

Q[n,n+1]
i,j = 1−

2 · α[n,n+1]
i,j

π
; (7)

M[n,n+1]
i,j = m[n]

i ·m
[n+1]
j ; (8)

e. Finally, the global strength with which the displacement of each sensor acts on the
displacement of any other, also considering their reciprocal geographical distance
is calculated:

Si,j =
N−1

∑
n=1

Q[n,n+1]
i,j ·M[n,n+1]

i,j · e−
d[n]i,j

σ ; (9)

At this point two other steps are computed:

f. The calculation specified by Equations (10) and (11) is performed for each sensor in
order to determine its maximum excitatory strength over time. This step enables the
algorithm to identify the sensor that is most likely to induce the displacement of any
other sensor during the temporal flow.

EWin+ ,j = ArgMax
i

{
Si,j
}

; (10)

{
C+

i,j = 1 i = Win+

C+
i,j = 0 i 6= Win+

}
; (11)

g. The calculation, for each sensor, of the maximum inhibitory strength it exerts on
other sensors in time is provided by Equations (12) and (13). This step enables the
algorithm to identify which sensor is most likely to exhibit the greatest inhibitory
strength among all the sensors during the temporal progression.

IWin− ,j = ArgMin
i

{
Si,j
}

; (12)

{
C−i,j = 1 i = Win−

C−i,j = 0 i 6= Win−

}
; (13)

At the end of the process there are two square matrices representing the cause-and-
effect relationship among sensors during the temporal flow. These two matrices are:

1. A matrix of the excitatory relations, C + (i, j), among the sensors indicating which
sensor imposes the direction of its displacement on any other sensor;

2. A matrix of inhibitory relations, C − (i, j), among the sensors indicating which sensor
constrains the direction of the displacement on any other sensor.

These matrices can be visualized as direct and weighted graphs, which cluster the
sensors and their asymmetrical relationships. These graph representations of the CC
algorithm hypotheses, regarding the dynamics of the process, are easily verifiable
through experimentation.
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2.2. Twisting Theory (TWT)

The second algorithm is TWIST. To understand TWT, we must assume that the dis-
placement of each GNSS in the territory over time will be the entities (x, y) that the algorithm
analyzes. The movement of these entities over time represents given data points [18,19],
which serve as input to the algorithm. Imagine a set of entities located in a two-dimensional
space that are moving due to the influence of some underlying force. This force can be
interpreted as the quantity associated with each entity, which imparts momentum to the
entity proportional to its magnitude. The motion of each entity results in a trajectory in the
environmental space, which is assumed to be linear for simplicity. Additionally, the space
is divided into a grid and the forces acting on the entities also affect the grid, causing a
deformation of the original grid. As a result, the field of forces generated by the quantities
assigned to the entities can be visualized as modifications to the grid. The set of all points
on the grid is referred to as geometrical points. What is the best way to describe the actual
effect of the forces acting on the entities on the grid?

The Twisting Theory (TWT) algorithm is a model that predicts how each point on the
grid will change its coordinates at each step in time, as entities move to their new positions.
TWT divides trajectories into N equal substeps, allowing each entity to be identified by
its starting coordinates, the local target during each sub-step, and its final destination
coordinates (Figure 1):

Figure 1. Splitting of the entity trajectory into substeps.

TWT focuses on the distances between a particular geometrical point on the grid and
the positions of the entities as they move along their trajectory. At each substep, TWT
measures how the distance between the geometrical point and the entity changes according
to the following.

dS
pj(n) =

√(
xG

p (n)− xS
j

)2
+
(

yG
p (n)− yS

j

)2

dT
pj(n) =

√(
xG

p (n)− xT
j (n)

)2
+
(

yG
p (n)− yT

j (n)
)2

.
where
xG

p (n), yG
p (n) are the coordinates of a generic grid point (p) of the grid at substep (n);
when n = 0, grid points all sit upon the regular grid.

xS
j , yS

j is the origin Coordinates of each entity (j), i.e., assigned point.
xT

j (n), yT
j (n) are the local target of the coordinates of each entity (j) at any substep (n);
when n = 0, the entity lies at its Origin, whereas when n = N the entity
has completed its trajectory.

dS
pj(n) is the distance of a generic grid point (p) from the Origin of any entity

at substep (n);
dT

pj(n) is the istance of a generic grid point (p) from the Local Target (n)
of any entity at substep (n);
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The change in the distance between a given geometrical point and the entity’s position
as it moves along its trajectory can be interpreted as the buildup of potential energy that is
then able to act on the grid, altering the position of the geometrical points. The more the
entity’s position changes relative to the given geometrical point from one step to the next,
the more the grid is stretched or compressed in response (Figure 2).

Figure 2. The subtrajectory of the entity and the accumulation of potential energy.

In mathematical terms, the variation of potential energy ∆E across the whole trajectory
can be expressed as:

dS
p,j(n)

=

√(
xG

p(n) − xS
j

)2
+
(

yG
p(n) − yS

j

)2
(14)

dT
p,j(n)

=

√(
xG

p(n) − xT
j(n)

)2
+
(

yG
p(n) − yT

j(n)

)2
(15)

∆Ep(n) = ∑N
j=1 exp

−
(

dS
p,j(n)

+ dT
,j(n)

)
α

 · ∣∣∣dS
p,j(n)
− dT

p,j(n)

∣∣∣. (16)

However, we also need to consider the side effects, in Equations (14)–(16), of the grid
points among themselves. The following Equations (17)–(20) take into account all the side
effects of the energy that accumulates at each grid point, absorbed from its neighbour.

R = neighbour of ± ∆Ep(n) dimension of p grid point; (17)

p(n) + z(n) = a grid point belongs to the neighbour R. (18)

∆Kp(n) =
R

∑
z=1

exp

−
(

dG
p(n),p+z(n)

+ dG
p,p+z(n−1)

)
α

 · ∣∣∣dG
p(n),p+z(n) − dG

p(n),p+z(n−1)

∣∣∣; (19)

∆Fp(n) = ∆Ep(n) + ∆Kp(n) . (20)
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Thus, Equations (21)–(30) show how the potential energy is transformed into kinetic
energy, that is, how it produces a deformation of the grid as determined by the movement
of the source entities:

δE
(

xG
p(n)

)
=

N

∑
j

exp

−dS
p,j(n)

+ dT
p,j(n)

α

 · (xS
j − xT

j(n)

)
; (21)

δK
(

xG
p(n)

)
=

R

∑
z=1

exp

(
−

dG
p,z(n) + dG

p,z(n−1)

α

)
·
(

xG
p(n−1)

− xG
p(n)

)
; (22)

δE
(

yG
p(n)

)
=

N

∑
j

exp

−dS
p,j(n)

+ dT
p,j(n)

α

 · (yS
j − yT

j(n)

)
; (23)

δK
(

yG
p(n)

)
=

R

∑
z=1

exp

(
−

dG
p,z(n) + dG

p,z(n−1)

α

)
·
(

yG
p(n−1)

− yG
p(n)

)
; (24)

δF
(

xG
p(n)

)
= δE

(
xp(n)

)
+ δK

(
xp(n)

)
; (25)

δF
(

yG
p(n)

)
= δE

(
yp(n)

)
+ δK

(
yp(n)

)
; (26)

xG
p(n+1)

= xG
p(n) + ∆Fp(n) δF

(
xp(n)

)
< 0; (27)

xG
p(n+1)

= xG
p(n) − ∆Fp(n) δF

(
xp(n)

)
≥ 0; (28)

yG
p(n+1)

= yG
p(n) + ∆Fp(n) δF

(
yp(n)

)
< 0; (29)

yG
p(n+1)

= yG
p(n) − ∆Fp(n) δF

(
yp(n)

)
≥ 0. (30)

TWT may be considered as a special kind of ANN whose weights are manifested
by the grid deformation during its learning phase, where the dynamics implemented by
the equations reaches a point of convergence. A contraction of a grid point indicates an
inhibitory force, while an expansion of a grid point indicates an excitatory force. The
number of iterations in this type of artificial neural network is determined beforehand by
the number of observations of the movement of the entities and the number of substeps in
each observation.

It is possible to analogize TWT with another type of neural network: the well-known
Self Organizing Map, SOM, designed by Kohonen around the 1970s [22]. The SOM is an
Unsupervised Neural Network whose termination criterion is defined a priori before to
begin the training phase. This ANN generates a special kind of projection of the input
space into a two-dimensional space, based on the multiple similarities of the patterns of
the training set. At the end of the training phase, the resulting weights (codebook) define
the optimal parameters through which the SOM classifies, in a blind way, the patterns of
the testing set, taking into account the global similarity that each one of them has with the
already trained codebooks. Under this point of view, TWT works in a very similar way to
the SOM:

a. Both the algorithms are unsupervised.
b. The number of the epochs for TWT is also defined a priori, according to the number

of observation campaigns sampled to monitor the landslide.
c. During the training phase the TWT codebooks are represented by the progressive

twisting of the regular grid defined at the beginning. These codebook at the end



Geosciences 2023, 13, 115 10 of 34

of the training represent the weights of TWT, able to provide a picture of how the
GNSSs movement has deformed the entire space of the land slide.

d. These codebook are the weights that TWT show at the end of the training phase.
They are locale and explainable because the deformation of the entire plane is defined
only by the local weights that deform the landslide plane in each specific part of
the space. So, TWT does not work as a black box, but is more like the ANNs whose
learning law is vectorial quantization (Learning Vector Quantization [23], Adaptive
Vector Quantization [24]).

e. TWT is different form a SOM because during its training phase it works only on
temporal series (series of observational campaigns); under this profile TWT is a
special kind of recurrent ANN, because any updating of its weights considers all the
previous states of the algorithm.

f. While most classic ANNs start their training with a random initialization of their
weight matrices, TWT initializes its weights with the same values (regular grid—see
point “c”), in the same way in which a special type of ANN, the Auto Contractive
Map [6], used to do.

g. The only big difference that the TWT algorithm has with the classic ANNs is that
TWT has only the training phase, because TWT modifies its weights (codebook) every
time that a new observation campaign is added to the old data set. The prediction
TWT was add the TWT in order to allow to the TWT to make predictions about
the next step of any landslide, after the training phase. The prediction TWT will be
explained in the next paragraphers, where TWT will need the support of the classic
supervised ANNs to complete its predictive job.

Taking account all these considerations, we are able to assert that TWT belongs to the
Artificial Adaptive System family and that, in particular, TWT is a new and unusual kind
of ANN.

2.3. Predictive Twisting Theory (P-TWT)

TWT generates a new grid at each time step of its processing task. If the assigned
dataset is composed of T observations along the time, TWT generates a series of grids,
where each one of them will show the estimated deformation of the entire plane at that
time step, according to the displacements (shifts) recorded in the assigned data set. These
grids can be used as a new dataset to enable TWT to make predictions about the future
shifts of the GNSS at the next steps.

To achieve this new prediction task TWT needs two new methodological operations:

• A specifying coding of the data generated by each grid;
• An ANN (deep or shallow) able to learn from the data already generated from the

grids, in order to make estimations about the new positions of the GNSSs at the next
observation. In this study, classic neural networks (both deep and shallow) as well as
non-classical networks such as SVCM (deep) are utilized. Additionally, the MLP with
multiple hidden layers was preinitialized with autoencoders and RBMs to prepare the
weights of each layer (see [25,26]).

Further, to control the accuracy of these estimations we need to use the first grids
generated by TWT as Training set, and the last grids as Testing set, in order to make a blind
verification of the accuracy of the predictions of the ANN already trained.

The coding strategy: The organization of the data of each grid generated by TWT in a
new data set is quite simple: a pattern will consist in the latitude and longitude of each
GNSS in each grid concatenated with the coordinates of its first eight neighbors.

Let us imagine a dataset of 51 GNSS (N = 51) and 13 observations (T = 13). TWT
will generate 13 grids (t1, t2, . . . , t13). In each grid there is the actual position (latitude
and longitude) for each GNSS, and the longitude and the latitude of each of the eight first
neighbors to each GNSS. Thus, each input pattern will consist of a vector of 18 components:
x and y of the considered GNSS, and x and y of each of its first eight neighbors. The target
to be learnt of each input pattern will be the coordinates (x and y) of that GNSS in the next
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TWT grid. Consequently, the topology of the ANN to be trained will present 18 inputs and
2 outputs. Figure 3 shows how the topology of each GNSS of a grid must be coded in a
pattern representing that GNSS, and the target that the ANN has to learn to associate at
such patterns.

Figure 3. How to code each GNSS of each TWT grid into a pattern to be learnt by an ANN.

If the number of GNSS of the assigned dataset is N = 51, each grid generated by TWT
will be composed of 51 couples of input = 18 and output = 2 patterns.

Consequently, if the assigned dataset is composed of T = 13 observations, TWT will
generate 13 grids; twelve of these will be used as training set for ANN learning process,
while the last one (grid) will be used as testing set in order to estimate the ANNs predic-
tion accuracy. This means that the training set in this exemplificative case will present
612 patterns (12 × 51), while the testing set will be composed of the 51 patterns of the
thirteenth grid.

The ANN learning strategy: Once the training set and the testing set have been
prepared, a specific ANN has to be selected for the learning phase. Many different ANNs
topologies and Learning Laws were compared to optimize this regression task; classic
Multilayer Perceptron, with different learning gradient strategies and topologies (number
of hidden layers), has shown many problems of convergence (time and loss function). The
best results were represented by a new supervised ANN, not based on gradient descend
methodology: the Supervised Contractive Map, SVCm for short [27]. This ANN has
already been successfully used in several application areas (earthquake prediction [28],
atrial fibrillation detection [29]) where it has demonstrated not only superior performance
compared to classical models, but also a great ability to converge in a few epochs with large
and highly nonlinear data sets. We have reported the main equations of SVCm, able to
suggest the differences and the similarities that this specific ANN has with the more classic
and known supervised ANNs.

Legend:

[l] = number or name of the ANN layer;

u[l]
i = values of the all i− th nodes of the l − th layer;

w[l]
i,j = weight matrix connecting the layer [l − 1] to the layer [l];

C[l] = number of nodes of l − th layer; ti = value of i− th of the dependent variable;
LCoe f = ANN learning rate.

Signal Transfer from Input layer to Output layer (passing through each hidden layer):

CNet[l]i =
C[l−1]

∑
j

u[l−1]
j ·

1−
w[l]

ij

C[l−1]

; (31)
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INet[l]i =
C[l−1]

∑
j

u[l−1]
j · w[l]

ij ; (32)

u[l]
i = sin

(
INet[l]i ·

(
1−

sin(CNet[l]i )

C[l−1]

))
. (33)

Weights update:

δ
[out]
i =

(
ti − u[out]

i

)
· cos

(
INet[out]

i ·
(

1−
sin(CNet[out]

i )

C[out−1]

))
; (34)

δ
[hid]
i =

Num[hid+1]

∑
k

(
δ
[hid+1]
k · w[hid+1]

ki

)
· cos

(
INet[hid]

i ·
(

1−
sin(CNet[hid]

i )

C[hid−1]

))
; (35)

∆w[l]
ij = LCoe f · δ[l]i · u

[l−1]
j ·

1−
w[l]

ij

C[l−1]

. (36)

The supervised Contractive Map calculates two net inputs for each destination node:
a classic weighted input, see Equation (32); and a contractive input, see Equation (31). The
first net input tends to decay or to increase when the positive or negative value of the
weight (w) becomes close to a specific constant (C).

Equation (33) activates each node according to a sine function of the two net inputs (the
contractive input works as a harmonic modulation of the weighted input). The advantages
and the disadvantages of sine transfer function to work properly into the topology of
Multilayer Perceptron was already analyzed in the scientific literature (Le Cun et al.,
1991 [30]; Le Cun et al.,1998 [31]).

Equation (34) shows a typical error calculation using the distance between the desider-
ate output and the estimated output, times the first derivative of sine transfer function.

Equation (35) works in the same way as Equation (4), but using the chain rule to
calculate the local error of each hidden unit.

Equation (36) updates the weight matrices, using the chain rules, with a contractive
factor useful to limit an extreme growth of each weight value.

In the next paragraphs (Section 3.3 and 4.2) we show two different applications of
Predictive TWT (P-TWT): the Assisi and the Corvara landslide. In both cases, a Supervised
Contractive Map was applied to the grid data after the coding processing, already described.
In this section we show the topology implemented of SVCm for these two applications.
Below are the topology and the starting parameters for the Assisi application (Table 3a),
and the same information for the Corvara application (Table 3b) are shown.

Table 3. Supervised Contractive Map: (a) Assisi Training Architecture; (b) Corvara Training Architecture.

(a) SVCm Architecture (Assisi) (b) SVCm Architecture (Corvara)

Input: 18 Input: 18

Hidden 1: 48 LCoef: 0.0100
Function: 24 Contractives Hidden 1: 24 LCoef: 0.0100

Function: 24 Contractives

Hidden 2: 48 LCoef: 0.0100
Function: 24 Contractives Hidden 2: 24 LCoef: 0.0100

Function: 24 Contractives

Output: 2 LCoef: 0.0100
Function: 2 Contractives Output: 2 LCoef: 0.0100

Function: 2 Contractives

Training Patterns: 612
Testing Patterns: 51
Epochs (Train): 2771

RMSE (Train): 0.0051103

Training Patterns: 65
Testing Patterns: 13

Epochs (Train): 49,572
RMSE (Train): 0.00117701
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3. Application 1: The Assisi Landslide

The Assisi landslide (see map in Figure 4) is described in Bovenga et al., 2013 [32]. It
states: “This case refers to a landslide affecting an urban expansion area of Assisi, built starting from
the years 1950–1960. The area is located completely outside the historical town centre, at a distance
of some hundreds of metres from the ancient city wall. . . . Since 1995, the Perugia University . . .
has established a GNSS control network over the area, integrated from 1999 on a levelling network.
GNSS and levelling monitoring have been performed since then, with an approximately annual data
collections up to 2008.” See Figure 5.

Figure 4. Map showing the location of the two study areas within Italy: Assisi and Corvara.

Figure 5. Taken from Bovenga et al., 2013 [32]: ”(a) The Assisi landslide and its location with respect
to the town center; triangles and dots represent GNSS fiducial and control points, respectively; (b) The
Assisi GNSS network and the 1995–2008 displacement vectors”.

The final data set of the Assisi landslide is so far composed of 13 GNSS points collected
during 8 observational times. In Figure 6 we have renamed the GNSS points to make
clearer the following application.
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Figure 6. The GNSS points renamed from P1 to P13.

The vertical displacements (1995–2008) of the points from the reference are shown in
blue, while the horizontal displacements by the sensors in the landslide are shown in red.

3.1. CCA Algorithm

The CCA algorithm generates 6 direct and weighted graphs (N-2), considering 8 time
steps of observation. The algorithm analyzes the delta of delta displacements of the GNSS
points. The strength, displacement, and angle degree that each GNSS exercises on each of
the others is made explicit in each graph. Table 4 shows this information after the first two
observations, and Figure 7 displays the corresponding cause-and-effect relationship graph
at this step.

Table 4. From step 1 to step 2. The points with“++” symbol are the more active GNSS and the points
with “–“ symbol are the most resilient to the displacement.

Excitations [0,1]

Cause Effect Strenght Cause Module T_1 Effect Module T_2 Cause Degree T_1 Effect Degree T_2

P2

→ P3– 0.015217 0.230837 0.455262 247.948959◦ 312.468597◦

→ P4 0.043036 0.230837 1 247.948959◦ 254.608795◦

→ P7++ 0.004337 0.230837 0.322421 247.948959◦ 268.315308◦

P3–
→ P1 0.001568 0.27031 0.134086 52.326408◦ 51.972771◦

→ P5 0.002237 0.27031 0.385002 52.326408◦ 32.795769◦

P4 → P2 0.008367 0.216745 0.215642 268.388977◦ 258.407837◦

P7++
→ P6 0.095422 0.492819 0.869689 239.630249◦ 268.394012◦

→ P10 0.000144 0.492819 0.42529 239.630249◦ 316.548187◦

P8 → P13 0.06098 0.407436 0.507571 192.280960◦ 207.658875◦

P9 → P12 0.000244 0.209448 0.411627 220.279877◦ 304.003754◦

P12 → P11 0.019294 0.201505 0.66613 216.253845◦ 239.995087◦

P13
→ P8 0.095164 0.681295 0.701071 209.010361◦ 248.589050◦

→ P9 0.3411 0.681295 0.193786 209.010361◦ 243.434967◦
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Figure 7. Graph of cause-and-effect relationships after steps 1 and 2. The points with“++” symbol
are the more active GNSS and the points with “–“ symbol are the most resilient to the displacement.
Cause-and-effect relationship graph after the first two steps of the landslide shows two partially
independent clusters. The cluster on the left appears to be the dominant one, with two prominent
points, GNSS P7 and GNSS P3. GNSS P7 shows the highest level of activity in this phase, while GNSS
P3 displays the highest level of resilience.

We have only displayed the Excitatory Cause-and-Effect table, not the Inhibitory
Cause-and-Effect table. Let us take the first row as an example. The influence of P2 on
P3 is shown in the first row, with a strength of approximately 0.015, as indicated in the
“Strength” column. The “Cause Module T_1” column shows the displacement of P2 from
its previous delta position, which in this case is the beginning of the landslide. This value is
constant for each row of P2, i.e., row 1, 2, and 3. The “Effect Module T_2” column displays
the displacement of P3 due to P2’s influence in the previous delta. “Cause Degree T_1”
indicates the direction of P2’s displacement in degrees, while “Effect Degree T_2” indicates
the direction of P3’s displacement in degrees.

We created a topological graph from Table 4 (Figure 7) by analyzing only the causes
and effects of the points. In the table, P2 acts as a force on P3, represented in the graph
as a connection from P2 to P3 with an outgoing arrow. P2 also imparts a force on P4,
but P4 reciprocates with a force on P2, depicted as a connection between P2 and P4 with
a double-headed arrow. This results in the formation of two graphs and clusters. The
first graph on the left shows that the interaction between P2 and P4 gave rise to all other
cause-and-effect relationships, as indicated by the direction of the arrows. The second
graph on the right demonstrates that it was the interaction between P13 and P8 that formed
all other cause-and-effect relationships.

CCA cumulates the effects of the previous steps. Consequently, Table 5 and Figure 8
show respectably the effects of step 3 and step 4, taking account the steps 1 and 2.
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Table 5. GNSS (P13) becomes in this phase the most active point and GNSS (P2) works as the new
resilient point of the entire landslide.

Excitations [0,1]

Cause Effect Strenght Cause Module T_3 Effect Module T_4 Cause Degree T_3 Effect Degree T_4

P1

→ P3– 0.001854 0.04297 0.069856 178.106628◦ 232.431427◦

→ P10 0.00001 0.04297 0.087575 178.106628◦ 109.903755◦

→ P12 0.000005 0.04297 0.071665 178.106628◦ 123.690071◦

P2 → P4 0.012232 0.050972 0.329537 257.125000◦ 238.073135◦

P6

→ P2 0.003544 0.17583 0.470611 196.898651◦ 257.011871◦

→ P5 0.001302 0.17583 0.245087 196.898651◦ 324.192261◦

→ P7 0.018873 0.17583 0.550277 196.898651◦ 227.771057◦

P7 → P6 0.030652 0.101252 0.499697 167.035507◦ 243.871765◦

P9++
→ P11 0.006346 0.157026 0.511014 194.664459◦ 193.495728◦

→ P13 0.069017 0.157026 1 194.664459◦ 206.565063◦

P11 → P1 -
0.000001 0.168732 0.05679 104.620872◦ 269.641907◦

P13
→ P8 0.046129 0.046223 0.939036 222.510452◦ 223.345932◦

→ P9++ 0.032914 0.046223 0.510582 222.510452◦ 210.772507◦

Figure 8. Graph of cause-and-effect relationships after the steps 3 and 4. The points with“++” symbol
are the more active GNSS and the points with “–“ symbol are the most resilient to the displacement.
The landslide still displays two partially independent clusters, which differ slightly from the previous
graph. The cluster on the left continues to be the dominant one, with two key points belonging to it.
This time, GNSS (P9) is the most active, while GNSS (P3) remains the most resilient.

Accordingly, Table 5 depicts the delta following the one analyzed above. Here, it can
be noted that P9 exerts more force than all other points and also experiences a significant
amount of force from P13, while P3 experiences minimal force compared to the others.
As a result, P9 is marked with the symbol “++”, while P3 is marked with the symbol “–”
representing the point of resilience.

In Figure 8, P9 is positioned in the center of the left graph and the arrows indicate that
the interaction between P9 and P13 resulted in all other cause-and-effect interactions.

From step 4 to step 5 the landslide exhibits a distinct structure. Figure 9 illustrates the
change in the cause-and-effect relationships graph and Table 6 provides additional details
about this transformation. It is important to remember that this new configuration of the
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landslide is a result of the cumulative effects of steps 1, 2, 3, and 4, and the CCA outputs
consider the overall dynamics of the landslide.

Figure 9. Graph of cause-and-effect relationships after the steps 4 and 5. The points with“++”
symbol are the more active GNSS and the points with “–“ symbol are the most resilient to the
displacement. The landslide exhibits a singular change of structure, with the newly formed clusters
still being unstable.

Table 6. GNSS (P9) becomes in this phase the most active point and GNSS (P3) remains the resilient
point of the entire landslide.

Excitations [0,1]

Cause Effect Strenght Cause Module T_4 Effect Module T_5 Cause Degree T_4 Effect Degree T_5

P1 → P3 0.000882 0.043026 0.15963 269.641907◦ 124.707367◦

P2– → P4 0.0428 0.35655 0.510164 257.011871◦ 254.938263◦

P4 → P2– 0.22346 0.249668 0.485026 238.073135◦ 241.161392◦

P5
→ P1 0.007402 0.185686 0.128173 324.192261◦ 315.850037◦

→ P12 0.000004 0.185686 0.099819 324.192261◦ 307.116852◦

P6 → P7 0.091283 0.378586 0.764968 243.871765◦ 230.276962◦

P7 → P6 0.105379 0.416908 0.710315 227.771057◦ 236.237747◦

P8 → P13++ 0.233903 0.711443 0.856142 223.345932◦ 221.077576◦

P11 → P10 0.00448 0.387161 0.126509 193.495728◦ 174.143997◦

P12 → P5 −0.000001 0.054295 0.217289 123.690071◦ 80.094704◦

P13++

→ P8 0.190976 0.757632 0.723519 206.565063◦ 220.629013◦

→ P9 0.311705 0.757632 1 206.565063◦ 213.416580◦

→ P11 0.014745 0.757632 0.410018 206.565063◦ 181.804001◦

Step 5 and step 6 represent the final structure of this landslide. Table 7 and Figure 10
display the cumulative information gathered throughout the process and the resulting
directed and weighted graph.
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Table 7. GNSS (13) continues to be the most active point, and GNSS (P3) reverts to its role as the
resilient point for the entire landslide.

Excitations [0,1]

Cause Effect Strenght Cause Module T_5 Effect Module T_6 Cause Degree T_5 Effect Degree T_6

P1 → P3– 0.001652 0.128173 0.152114 315.850037◦ 324.061981◦

P2 → P4 0.050661 0.485026 0.092368 241.161392 252.725571◦

P4 → P2 0.021211 0.510164 0.255459 254.938263 348.832031◦

P5 → P1 0.010875 0.217289 0.133274 80.094704 17.364714◦

P6 → P7 0.110596 0.710315 0.12913 236.237747 268.329376◦

P7 → P6 0.136612 0.764968 0.144331 230.276962◦ 242.480103◦

P8 → P13++ 0.2668 0.723519 0.221791 220.629013◦ 182.501633◦

P9
→ P10 0.016019 1 0.089762 213.416580◦ 224.028992◦

→ P12 0.004555 1 0.140562 213.416580◦ 204.407669◦

P12 → P5 -
0.000001 0.099819 0.031462 307.116852◦ 0.000000◦

P13++

→ P8 0.225587 0.856142 0.163312 221.077576◦ 193.715912◦

→ P9 0.340571 0.856142 0.128086 221.077576◦ 187.721832◦

→ P11 0.016386 0.856142 0.136656 221.077576◦ 154.846893◦

Figure 10. Graph of cause-and-effect relationships after the steps 5 and 6. The points with“++”
symbol are the more active GNSS and the points with “–“ symbol are the most resilient to the
displacement. The landslide displays its final configuration regarding the cause-and-effect relations
among the GNSS points.

At this final stage, P3 is identified as the resilient point marked “–”. P1 exerts very
little force on P3, while P5 experiences little force from P12 but exerts force on P1. P3 does
not exert any force on any other point. P13 exerts significantly more force than the other
points and is also subjected to a large amount of force from P8, therefore, marked with the
symbol “++”.
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The left graph of Figure 10 shows that the interaction between P8 and P13 generated
all other interactions, with P3 being the furthest point from P13. The arrow connecting
P12 and P5 is depicted as dashed, as the force exerted by P12 on P5 is close to zero, as
previously mentioned.

3.2. The Twisting Theory Algorithm (TWT)

The measurement data is processed to quantitatively determine the kinematics of the
landslide using classical computation. Then, qualitative hypotheses regarding average
yearly velocities are formulated, typically using a statistical approach [33]. Applying the
Twisting Algorithm to slow landslides means analyzing the measurements whilst taking
into account not only the values of displacements, but also the density of monitored vertices,
the mutual relationships between each measured point, and the interaction between each
measured point and the geometrical space where they are located. This approach provides
additional information compared to analyzing displacement values alone and improves the
description of landslide phenomena, as it enables the creation of a continuous model using
only a few discrete points. Additionally, TWT can be used to predict the future positions of
GNSS points and the global shape of the landslide at the next time step by incorporating
classic Artificial Neural Networks. However, to implement TWT, several parameters must
be defined:

a. The number of observational times (T) and the number of GNSS points (P), that are
inherent in the data set.

b. The number of substeps (S) in which each time step must be divided (see Figures 1
and 2). The more the substeps in a simulation, the more detailed the time flow of
TWT will be.

c. The number of grid cells (L) that represent the entire region where the landslide can
occur. The higher the density, the more spatial details will be defined by TWT.

d. A matrix of parameters (F) representing the rigidity/elasticity of each cell of the
analyzed area. In this application, it will be assumed that each grid cell has the
same elasticity.

The label “Assisi (T8-P13-S10-F25-L2)” indicates that the TWT analysis of the Assisi
landslide involved 8 observational time steps (T), monitored by 13 GNSS points (P). Each
time step was divided into 10 substeps (S), and each grid cell is square, has a fixed elasticity
of 25 (F), and the side length is equal to 2 pixels (L). The parameters T and P are determined
by the data set, while variations in the parameters S, L, and F alter the temporal or spatial
resolution of the simulation or the strength of deformation in the landslide. However, the
overall shape of the landslide remains relatively unchanged. Figure 11 displays the shape
of the Assisi landslide as defined by geologists at the end of the observational period and
the positions and displacements of the 13 GNSS points, which are the only information
available for the TWT analysis.

Consequently, the data set processed by TWT has the following format:

AssisiData =
{{

xt
i , yt

i
}P=13

i=1

}T=8

t=1
. (37)

Figure 12a,b display the results of the TWT, where different grid densities are used.
The larger cells indicate areas where the landslide kinematics is faster, while deformed cells
indicate areas with a higher concentration of potential energy. Figure 13 uses a color code
to present the same study area, with a higher intensity of red indicating a greater degree of
deformation caused by the landslide.

Figure 12 detects the local deformations of the area caused by the landslide, indicating
the nonuniform directions of the landslide and variations in its kinematics. Figure 13
depicts the overall shape of the landslide, which is similar to the shape of the manually
drawn landslide by geologists after a thorough investigation on the site (see Figure 11a).
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Figure 11. (a) The shape of the Assisi landslide at the end of the observational period (2008); (b) The
positions of the 13 GNSS points at the start of the observational period (1995), serving as the unique
input for the TWT.

Figure 12. (a) The output of TWT on the Assisi landslide (T8-P13-S10-F10-L2); (b) The output of TWT
on the Assisi landslide (T8-P13-S10-F30-L8).

Figure 13. The output of TWT on the Assisi landslide (T8-P13-S20-F20-L2) using a color code.
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3.3. The Predictive TWT

The preprocessing of the TWT grids is necessary in order to prepare the data for ANNs
learning and subsequent prediction (as outlined in Section 2.3). As the Assisi landslide
consists of 13 GNSSs monitored over 8 observation campaigns, TWT will generate 6 grids
in this case. Five of these grids will be coded to form the training set for learning with the
SVCm ANN (to associate each input time (t) with the position of the GNSSs at time (t + 1)).
The last grid (the sixth) will be used as the blind testing set, to predict the position of the
GNSSs at step 7 and assess the accuracy of the prediction phase. Table 8 illustrates how the
data of a typical grid is coded

Once the SVCm has estimated the new positions of the GNSSs at time step #7, these
estimations will be added to the dataset. TWT will then be run again to generate the entire
grid at step #7. Two comparisons can be made at this point: (a) a correlation between
the real positions and the predicted positions of GNSSs at step #7, and (b) a comparison
between the estimated grid and the grid generated by TWT using the real positions of
the GNSSs at step #7. A simple linear correlation between the real grid at step #7 and the
estimated grid at the same step will be used to measure the accuracy of the prediction.

Figure 14a shows the resulting state generated at the time step #7 by TWT using all
available data, while Figure 14b displays the TWT state generated using the predicted
positions of the 13 GNSS points at the same time step. The linear correlation between the
longitude and latitude of the two maps is 0.999712 for longitude and 0.999747 for latitude,
respectively, resulting in an average correlation of 0.9997295.

Figure 15 shows instead the correlation between the real positions of the GNSSs at
step #7, and the estimation of the SVCm at the same step.

This application showcases the effectiveness of crowd clustering and twisting theory
algorithms in modeling the dynamics of slow-moving landslides. The predicted move-
ment of the landslide in the next time period is found to correspond closely with its
actual movement.

Figure 14. (a) TWT with real data; (b) TWT using predicted data of the last step.
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Table 8. How all the GNSS points (yellow) must be coded with the grid points around them (columns).

Time Step Coord. Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 Point 10 Point 11 Point 12 Point 13

Time N

x 0.004253 176.194458 239.602814 34.952839 20.625507 175.710831 278.025146 394.52475 511.235687 684.584656 733.727356 814.494507 464.439484

y 785.632751 612.993774 610.464661 557.697205 870.910645 862.164673 835.528748 962.20166 1098.542847 1138.179443 962.467896 1094.271606 1030.632324

x −34.371132 141.171097 199.122299 −5.431697 −5.462948 141.161331 258.783783 376.433807 492.280426 669.680725 698.658875 787.339905 434.339417

y 792.45105 615.077881 615.067688 557.165955 879.317871 850.369507 821.381409 967.991699 1085.648315 1143.585815 968.04895 1085.674194 1025.897339

x −34.384129 141.164474 199.124237 −5.438146 −5.461166 141.169312 258.800354 376.446411 492.265625 669.694092 698.664124 787.345581 434.34549

y 761.693726 586.110962 586.105591 528.199158 850.359436 821.416809 792.437683 939.044006 1056.673218 1114.640137 939.082825 1056.719604 996.943298

x −5.461305 170.12471 229.892838 23.511894 23.525455 170.128159 287.734192 405.402313 523.063049 698.660522 727.617371 816.303833 463.325378

y 821.398987 645.840332 645.877686 586.109497 908.306274 879.337219 850.331848 996.960266 1114.620972 1172.566772 997.010193 1114.637451 1056.693359

x 0.004253 176.194458 239.602814 34.952839 20.625507 175.710831 278.025146 394.52475 511.235687 684.584656 733.727356 814.494507 464.439484

y 785.632751 612.993774 610.464661 557.697205 870.910645 862.164673 835.528748 962.20166 1098.542847 1138.179443 962.467896 1094.271606 1030.632324

x −5.401855 170.115128 229.896591 23.512184 23.514975 170.134537 287.76767 405.423584 523.061218 698.653931 727.620056 816.310181 463.323578

y 761.671997 586.100281 586.151428 528.18927 850.375305 821.420898 792.444702 939.060913 1056.698608 1114.63855 939.086243 1056.723267 996.960876

x 23.515982 199.119385 258.854736 52.472984 52.476437 199.083801 316.723663 434.34549 552.03418 727.618286 756.582214 845.264038 492.265625

y 821.415955 645.840942 645.880127 586.110352 908.296997 879.332581 850.361023 996.943298 1114.631836 1172.564453 997.005554 1114.63855 1056.673218

x 23.537193 199.122299 258.857361 52.487679 52.46249 199.076218 316.743805 434.35611 552.0354 727.611877 756.579895 845.268799 492.268951

y 792.463623 615.067688 615.112 557.164734 879.322754 850.364746 821.420837 967.993408 1085.672729 1143.597168 968.047791 1085.682251 1025.90625

x 0.004253 176.194458 239.602814 34.952839 20.625507 175.710831 278.025146 394.52475 511.235687 684.584656 733.727356 814.494507 464.439484

y 785.632751 612.993774 610.464661 557.697205 870.910645 862.164673 835.528748 962.20166 1098.542847 1138.179443 962.467896 1094.271606 1030.632324

Time N + 1
x 0.006601 176.193222 239.611572 34.945271 20.634718 175.710144 278.024872 394.517456 511.233154 684.593506 733.717896 814.501038 464.426666

y 785.635742 612.987732 610.455139 557.669678 870.916565 862.139954 835.519531 962.183044 1098.537842 1138.171143 962.451477 1094.261841 1030.62561
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Figure 15. Comparison between real latitude and longitude and predicted latitude and longitude of
the 13 GNSSs at the step #7.

4. Application 2: The Corvara Landslide

Corvara in Badia is a town located in the Autonomous Province of Bolzano, and it
is the largest town in Val Badia, at the heart of the Dolomites (see map in Figure 4). The
town is impacted by a slow-moving landslide, which is causing repeated damage to the
SS 244 highway in the Campolongo Pass area, as well as posing a threat to the town of
Corvara. To study this landslide, a historical series of 51 GNSS stations monitored over
26 measurement campaigns conducted from 2001 to 2008 by the Province of Bolzano was
collected, with an accuracy of less than one centimeter. Figure 16 shows the processing of
the 51 GNSS stations using TWT.

Figure 16. The 51 GNSS stations monitored over 26 time units from 2001 to 2008: (a) map that
displays the locations of the GNSS stations; (b) digital format that is ready for the application of
the TWT.
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4.1. Corvara Landslide: TWT Application

The two objectives of TWT in this case are:

1. To reconstruct the movement of the entire landslide, including its edges, the varying
sliding speeds in each region, and the potential subsidence areas;

2. To predict its evolution in the future based on the data collected from 2001 to 2005, in
order to anticipate the shape of the landslide in 2008.

Figures 17–19 illustrate the reconstruction of the landslide shape after 2008 by a group
of geologists [34,35].

Figure 17. Reconstruction of the Corvara landslide after 2008. The size of the arrows indicates speed,
while light brown represents inactive landslides and deep brown represents active landslides.

Figure 18. Monitoring system for the Corvara landslide in 2016.
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Figure 19. The active Corvara landslide up to 2016.

The TWT algorithm was applied to 51 points and was trained using the 26 observa-
tional monitoring collections (see Figure 16b) with the parameters T26-P51- S10-F10-L2.
At the end of training phase TWT reconstructed the entire landslide pattern (Figure 20).
Finally, in Figure 21, the reconstruction of the landslide perimeter is compared to the actual
perimeter assessed post facto by local experts.

Figure 20. TWT final pattern and (on right) the projection on the geographical map of the two main
location where the landslide occurred.
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Figure 21. Comparison of the final perimeter of the landslide: (a) TWT’s final pattern, (b) the real map.

4.2. Corvara Landslide: TWT Prediction

The second objective of this application was to predict the Corvara landslide. A deep
ANN (SVCm 24x24) was applied to the first 12 grids generated by TWT (digital grid maps).
Then, the trained ANN was tested using 51 GNSS locations from the 13th to the 22nd
observational data sets, to assess the accuracy of the ANN predictions.

Table 9 illustrates the construction of the training set. Table 10 displays the test results
from step 13 to step 22, while Table 11 compares the results of predicting the GNSS positions
in the 22nd observational data set with the actual GNSS positions at that step. The accuracy
of the ANN is quite good; so, an attempt was made to reconstruct the entire pattern of
the landslide at step 22 using only the predictive estimations of the ANN, as was done
previously with the Assisi application. A comparison with the pattern of the TWT map
trained with all available data reveals that the two patterns are highly similar.

Table 9. Data for the ANN SVCm Training Set.

Imput Vector = 18
(x-y of each GNSS + the x-y

of first 8 neighbours)

Imput Vector = 2
(x-y of the GNSS at the

next step)
Number of Patterns

Step 1 Step 2 51

Step 2 Step 3 51

Step 3 Step 4 51

Step 4 Step 5 51

Step 5 Step 6 51

Step 6 Step 7 51

Step 7 Step 8 51

Step 8 Step 9 51

Step 9 Step 10 51

Step 10 Step 11 51

Step 11 Step 12 51

Step 12 Step 13 51

Number of Training Steps 12

Number of Training Patterns 612
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Table 10. Main Cost Functions: Average Prediction Accuracy of the Trained ANN Tested on GNSS
Positions from Step 13th to Step 22nd. Error is the difference between the actual position of the
sensors in the next step and the predicted position of each sensor in the next step.

ANN RMSE Real Error Absolute Error Linear Corr.

D_FF_SVCm (48 × 48)(Step22) 0.00630936 0.00159118 11.36599193 0.99970293

Table 11. The prediction of the ANN regarding the 51 GNSS locations during the 22nd observation
data collection effort.

Prediction at
the Step 22nd

X Y

Real ANN Real ANN

GNSS_1 399.974 465.6641 8735.555 8738.035

GNSS_2 515.66 530.3192 8536.587 8536.059

GNSS_3 620.589 609.1868 8588.925 8586.828

GNSS_4 620.508 618.0858 8510.746 8510.3

GNSS_5 865.304 855.3544 8470.225 8471.014

GNSS_6 763.245 743.9014 8383.587 8385.679

GNSS_7 919.8909 922.0909 8261.178 8261.914

GNSS_8 1093.098 1091.929 8173.648 8174.809

GNSS_9 1238.316 1252.554 8202.036 8201.741

GNSS_10 1422.422 1424.259 8099.366 8098.508

GNSS_11 1171.875 1175.442 8023.99 8024.207

GNSS_12 1288.773 1288.494 7917.83 7922.718

GNSS_13 1505.48 1505.159 7948.988 7949.073

GNSS_14 1648.827 1642.184 7965.847 7967.287

GNSS_15 1842.655 1845.073 8007.324 8009.797

GNSS_16 1978.895 1971.305 8082.523 8082.572

GNSS_17 2045.661 2026.637 7955.034 7953.752

GNSS_18 1973.314 1964.695 8182.971 8184.664

GNSS_19 1821.737 1814.413 8281.33 8283.653

GNSS_20 1983.416 1971.528 8459.516 8461.534

GNSS_21 2366.539 2362.008 8087.827 8087.436

GNSS_22 2542.893 2549.193 8057.985 8057.367

GNSS_23 2576.425 2577.606 8210.325 8210.667

GNSS_24 2675.274 2677.164 8296.943 8297.728

GNSS_25 2932.199 2950.701 8269.991 8270.685

GNSS_26 2782.021 2803.382 8219.553 8220.042

GNSS_27 2911.671 2922.029 8370.89 8371.251

GNSS_28 2861.902 2852.833 8487.488 8484.992

GNSS_29 3255.407 3224.392 8594.464 8592.706

GNSS_30 3297.295 3282.94 8443.846 8443.185

GNSS_31 3451.029 3413.756 8004.191 8012.435

GNSS_32 3461.288 3421.679 7886.743 7885.536

GNSS_33 3268.818 3258.694 7581.099 7591.052

GNSS_34 2698.638 2697.54 8864.894 8886.041

GNSS_35 2422.933 2426.773 8989.194 8958.019

GNSS_36 1806.663 1793.816 8959.01 8940.632
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Table 11. Cont.

Prediction at
the Step 22nd

X Y

Real ANN Real ANN

GNSS_37 1779.911 1778.615 8711.944 8715.452

GNSS_38 2336.938 2331.204 8166.558 8164.779

GNSS_39 1297.579 1304.43 8686.978 8686.729

GNSS_40 1407.376 1409.538 8584.639 8583.33

GNSS_41 1140.48 1150.454 8464.103 8464.272

GNSS_42 1133.942 1139.68 8804.358 8813.357

GNSS_43 838.0848 829.4269 8834.597 8842.23

GNSS_44 829.9848 821.1478 8711.107 8712.023

GNSS_45 702.3591 693.5692 8735.002 8736.819

GNSS_46 982.203 988.3502 8563.483 8560.64

GNSS_47 1997.305 1984.407 8345.618 8348.143

GNSS_48 2599.636 2591.549 8410.392 8410.652

GNSS_49 2532.747 2521.965 8450.682 8452.008

GNSS_50 2414.119 2401.271 8389.094 8390.367

GNSS_51 2324.149 2302.229 8215.997 8218.747

In order to evaluate the quality of the reconstruction visually, Figure 22 presents a
comparison of maps. The maps include the real map with annotations made by geologists,
a reconstruction using all available data, a prediction map with the intensity of the landslide
represented by colors, and a reconstruction using only the estimations of the ANN, which
was trained and tested up to specific steps.

Figure 22. (a) Real map annotated by geologists; (b) TWT reconstruction using all available data;
(c) Prediction map showing the intensity of the landslide through colors; (d) TWT reconstruction
using only the estimations of the ANN trained up to the 12th step and tested up to the 22nd step.
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4.3. Corvara Landslide: CCA Application

Figure 23 shows the 51 GNSS monitoring the Corvara landslide on the digital map
with their labels. Figures 24 and 25 depict the graphs of cause-and-effect relationships
among the GNSS, as identified by CCA at the end of 26 temporal intervals. Figure 24
illustrates the excitatory cause-and-effect relationships among the GNSS, while Figure 25
shows the inhibitory cause effect relations among the same GNSS.

Both in the excitatory graph (Figure 24) and in the inhibitory graph (Figure 25),
the main cluster identifies GNSS#51 as the driving force of the entire landslide, as it
activates most of the GNSSs around it and expands its effects through GNSS#16 to faraway
GNSSs and to the border of GNSSs belonging to minor clusters. GNSS#51 also acts as the
main cause of the inhibitory effects of the landslide, through GNSS#50 and GNSS#21 (See
Figure 26).

Figure 23. Digital map of the Corvara landslide with the positions of the 51 GNSS labeled.

Figure 24. Excitatory cause-and-effect relationships among the 51 GNSSs.



Geosciences 2023, 13, 115 30 of 34

Figure 25. Inhibitory casual relationships among the 51 GNSSs.

Figure 26. Main excitatory and inhibitory cause-and-effect relationships among the 51 GNSSs.

In contrast to the Assisi landslide, we also reported the inhibitory cause-and-effect
relationships here. Let us first analyze the graph of excitatory cause-and-effect relationships.
We can see that Figure 24 is divided into three subgraphs: the largest one on the left and
two smaller ones on the right. A similar division is present in Figure 25, which depicts the
inhibitory cause-and-effect relationships. In both larger left subgraphs in Figures 24 and 25,
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if we examine the direction of the arrows, we can observe that point 51 is the source of all
the inhibitory and excitatory relationships in the two graphs. So, on the one hand, it has
an important excitatory function in the landslide while, on the other hand, it also acts as a
brake. For instance, in the inhibitory cause-and-effect relationship, point 51 is connected
with point 3; however, in Figure 24, point 3 does not belong to the left subgraph, but to the
right subgraph.

5. Discussion

Classical studies in various countries (see studies conducted in localized areas in
Iran [15–17], South Korea [36], Saudi Arabia [37], Japan [38], India [39], and China [40–42])
often followed a typical approach: collecting expert-identified variables, gathering data
from landslides and geomorphological risk situations in order to directly estimate the
susceptibility levels of the examined area.

However, this procedure has some limitations and weaknesses: significant time and
expertise is needed to select the significant features, preprocessing requires a lot of work,
and the historical sample may not be representative enough of the phenomenon, leading
to potentially incorrect classification of new geomorphological patterns. Additionally,
the entire process lacks transparency in defining the cause and causal chain between the
various parts of the territory and the introduced patterns, leading to a lack of clarity in
defining the output.

From this perspective, the approach presented here aims to obtain specific answers
about the geodynamics of locations by focusing on the singularities of the territory and
their interconnections. TWT and CCA are adaptive systems that take into account the
individual landslide and the positioned localization sensors, and provide a map of the local
deformations that are occurring in real time throughout the territory. Neural networks are
trained to predict the position of the sensors in the subsequent steps. These predictions are
reintroduced into the two algorithms, which redraw the global shape of the landslide and
estimate the cause-and-effect relationships between the sensors.

As a result, the identification of the landslide shape and its progression is explained
locally and the various parts of the territory are localized through explicit and local cause-
and-effect relationships. This supports analysts to understand, in advance, the path of
the entire landslide and which parts of the territory need to be secured to halt the process.
Compared to traditional systems or even deep-learning systems, TWT is proposed as
a complementary method, as it aims to leverage the peculiarities of different types of
predictive models capable of providing non-redundant information and perspectives.
Using an ecosystem approach, multiple machine learning and evolutionary algorithms
collaborate on the same database to extract a higher quantity of information, which can
be advantageous for enhancing landslide susceptibility maps by offering an advanced
understanding of on-site applications.

The main point we would like to highlight is that the current potential of applications
of artificial intelligence tools and machine learning algorithms is not limited solely to
applying a large and complex artificial neural network (ANN) to a problem with a large
volume of data. To solve a practical problem, it can be more profitable to consider our
machine learning algorithms as a complex ecosystem of algorithms whose cooperative
architecture must be found in a new way every time. The more different algorithms we
have, the more we can find an efficient solution to a new problem; in artificial intelligence,
as in nature, diversity is the greatest asset of any evolution.

6. Conclusions

The presented theory is useful not only for monitoring slowly moving landslides, but
it can also model the dynamics and identify the location of where the landslide is most
“energetic” and its potential source. The theory, when combined with ANNs (deep and
shallow [42]), it can also predict the movement of a landslide with high accuracy. The main
objectives of the theory, to find cause-and-effect relationships within a landslide field over
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time and determine the shape of the landslide, have been accomplished. The model can be
applied to large areas of national territory, with the only requirement being the placement
of GNSS sensors in the areas of interest. From the comparison between the model estimates
and the expert’s posterior measurements, a linear correlation of 0.9997 was obtained at both
examined sites (Assisi and Corvara). Further study and additional monitoring instruments
may improve the accuracy of the predicted movement of landslides.

However, a more general conclusion can be drawn about TWT. TWT is a new algorithm
that expands the typology of algorithms within the Artificial Adaptive Systems family. In
more detail, we propose considering TWT as a unique type of Artificial Neural Network
(as discussed at the end of Section 2.2).

In this article, we aim to show an architecture in which three different adaptive
algorithms (CCA, TWT, and classical ANNs) work together to detect the hidden information
within a simple dataset: cause-and-effect relationships, the hidden forms of a landslide,
and the prediction of the next forms of such a landslide. This is just a small example of
how to approach a new problem more effectively, moving from a basic thought (what is the
best algorithm to apply) to a complex architecture of thoughts (which is the most efficient
artificial ecosystem capable of simulating the problem in a reasonable way). This research
represents only a small step in this direction, but we believe that the methodological
approach we propose is clearly outlined here: not a single machine learning algorithm to be
applied everywhere, but many different learning algorithms capable of designing a specific
artificial ecosystem in which the data can reveal most of its hidden information.
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