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Abstract
We consider a family of models having an arbitrary positive amount of mass on each site and
randomly exchanging an arbitrary amount of mass with nearest neighbor sites. We restrict to
the case of diffusive models. We identify a class of reversible models for which the product
invariant measure is known and the gradient condition is satisfied so that we can explicitly
compute the transport coefficients associated to the diffusive hydrodynamic rescaling. Based
on the Macroscopic Fluctuation Theory (Bertini et al. in Rev Mod Phys 87:593–636, 2015)
we have that the large deviations rate functional for a stationary non equilibrium state can be
computed solving a Hamilton–Jacobi equation depending only on the transport coefficients
and the details of the boundary sources. Thus, we are able to identify a class of models having
transport coefficients for which the Hamilton–Jacobi equation can indeed be solved. We give
a complete characterization in the case of generalized zero range models and discuss several
other cases. For the generalized zero range models we identify a class of discrete models
that, modulo trivial extensions, coincides with the class discussed in Frassek and Giardinà (J
Math Phys 63(10):103301–103335, 2022) and a class of continuous dynamics that coincides
with the class in Franceschini et al. (J Math Phys 64(4): 043304–043321, 2023). Along the
discussionwe obtain a complete characterization of reversiblemisanthrope processes solving
the discrete equations in Cocozza-Thivent (Z Wahrsch Verw Gebiete 70(4):509–523, 1985).
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1 Introduction

Among the various challenges in non-equilibrium thermodynamics is the understanding
of stationary non equilibrium states (SNS). In the last years stochastic interacting particle
systems played a crucial role in this direction. This is due to the fact that they are effective
toy models for which, sometimes, even exact computations are possible. In particular, an
important breakthrough has been the exact computation of the large deviations rate functional
for an one-dimensional SNS of some special stochastic interacting system [5, 16].

The prototype of such solvable models is the simple exclusion process [39]. For such a
model in the one-dimensional case it is possible to give a combinatorial representation of
the invariant measure in terms of a product of matrices. From this, it is possible to deduce
the large deviations rate functional [19], which is written in terms of a nonlinear boundary
value problem and it is non local, a fact that reflects the presence of long range correlations.
Similar combinatorial arguments can be developed for the asymmetric version of the model
[18, 20].

An alternative approach is the dynamical variational one as presented in the macroscopic
fluctuation theory [5]. The large deviations rate functional for the SNS of boundary driven
exclusion process can be computed as the quasipotential of the dynamic large deviations
rate functional from the hydrodynamic limit [2, 3]. This approach can be applied to general
models with bulk dynamics that is gradient and reversible. Within this approach the large
deviations rate functionals are only related to the macroscopic properties of the model, in
particular the transport coefficients, that is the diffusionmatrix and the mobility. In particular,
an explicit computation of a non local large deviations rate functional for the SNS is possible
for any one-dimensional model having a constant diffusion coefficient and a mobility that is
a second order polynomial in the density. Such an example is the Kipnis-Marchioro-Presutti
(KMP) model and its dual [6].

Consequently, a problem of interest is to construct models whose bulk dynamics is at the
same time gradient and reversible and for which the diffusion coefficient is constant and the
mobility is quadratic. This is in general a difficult task [42]. For models of this type, since the
large deviations rate functional for the SNS can be computed macroscopically, we expect that
relatively simple and interesting microscopic descriptions of the invariant measures could be
found.

In this paper we investigate models for which on each site there can be an arbitrary amount
of mass, either discrete or continuous, and in a single jump an arbitrary amount of mass may
jump. There are several examples of models of this type in the literature, see for example
[1, 10, 21–25, 28, 32, 33, 40]. We were especially inspired by the papers [26, 27] where the
authors compute all the moments of the SNS for a class of boundary driven one-dimensional
generalized zero range dynamics. Note that for the classic zero range dynamics and a few
othermodels [13, 15, 22], even in the boundary driven case, no long range correlations appear,
while instead the generalized versions in [26, 27] have long range correlations.

We develop a systematic analysis of the models that are at the same time gradient and
reversible and such that they have constant diffusion and quadratic mobility. We consider
models of zero range type as well as models for which the rate of jump depends on the
occupation variables both of the starting and the arrival site, like in [11]. In particular, our
main result, Theorem 4.2, is a complete classification in the case of zero range dynamics.
According to this we obtain, modulo some trivial generalizations, that there is a whole family
of discrete as well as continuous models that are exactly coinciding with those in [27] and
[26], respectively. In [26, 27] the models were introduced and characterized by motivations
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coming from quantum spin systems; we characterize the same classes in a different way
and moreover establish that there are no other zero range models having this integrability
property. Along the way we also give a complete solution to the discrete equations in [11].

A motivation for our analysis is related to the conjecture in [4]: for solvable SNS with
quadratic and convex mobility the non local large deviation rate functional can be interpreted
as the result of the contraction principle of hidden variables; this means that we may expect
that evenmicroscopically the SNSmay have a simple description by introducing some hidden
variables. This has been shown to be true in the KMP model and for its dual in [14]. For a
zero range dynamics with quadratic mobility we can have only a convex mobility and this
means that the generalized zero range models in Theorem 4.2 are natural candidates to verify
the conjecture in [4]. This has indeed been obtained in [9] for some specific cases where the
representation is simpler and then generalized to a larger class of models in [8].

The structure of the paper is the following.
In Sect. 2 we introduce the basic concepts and notation to handle generalized models where
an arbitrary amount of mass may jump and then we identify general classes of models that
are both reversible and gradient of the following type: zero range (Sect. 2.6), KMP (Sect. 2.7)
and Misanthrope (Sect. 2.8) for both the discrete and the continuous case. In particular we
give the general solution of the discrete equations in [11].
In Sect. 3 after a short introduction about some challenges for proving the hydrodynamic
limit and large deviations, we show how the transport coefficients, namely the diffusion and
the mobility, are computed.
The main results can be found in Sect. 4 where in Theorem 4.2 we identify exactly the class
of zero range processes that will have a computable non local large deviations rate functional
for the SNS and in Sect. 5 where we compute the transport coefficients for some cases of the
KMP-type and Misanthrope-type models we considered earlier.

2 Models

Let �N be a graph and call EN the collection of unoriented edges. We fix as reference a
canonical orientation; i.e., we fix an oriented graph with vertices �N and oriented edges
EN such that for each unoriented edge {x, y} ∈ EN there exists only one corresponding
fixed orientation, either (x, y) or (y, x), that belongs to EN . This fixed orientation does not
influence the dynamics and it is fixed just for notational convenience.

We consider a configuration of masses η ∈ R
�N+ associated to the nodes of the lattice. The

value η(x) ∈ R+ represents the amount of mass present at x ∈ �N . In the following �N

will almost always be a one dimensional lattice but we think it is useful to define the models
on an arbitrary graph.

2.1 Invariant Measures

We consider a family of product measures on R
�N+ having one dimensional marginal given

by

gλ(dη(x)) := eλη(x)

Z(λ)
g(dη(x)), x ∈ �N , Z(λ) :=

∫
R+

g(dη)eλη, (2.1)

where λ is a parameter that represents the chemical potential and Z(λ) is a normalization
factor. The measure g(dη) is a generic positive measure on R+. We will consider both cases
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when the positive measure g is absolutely continuous with respect to the Lebesgue measure,
i.e., when g(dη) = g(η)dη as well as when g is a purely atomic measure, i.e., it is of the
form g(dη) = ∑

i=1 g
(
η(i)

)
δη(i) (dη) for some configurations η(i). With a slight abuse of

notation we call again g both the density and the weights of the delta measures.
The chemical potential λ modulates the typical density associated to the measure. We

have indeed that the function

ρ(λ) =
∫
R+

gλ(dη)η = Z ′(λ)

Z(λ)
= d

dλ
log Z(λ), (2.2)

is monotone increasing. We have that (2.2) represents the typical density corresponding to
the value λ of the chemical potential; we call λ(ρ) the corresponding inverse function. In
general the probability measure gλ may not be defined for all values of λ. We have indeed a
well defined probability measure for λ < λc, where λc may coincide with +∞. The critical
value λc is defined by

λc := inf {λ, Z(λ) = +∞} .

In the models we will consider we assume that limλ↑λc ρ(λ) = +∞, in such a way that
varying the chemical potential we can obtain any possible typical value of the density.

Example 2.1 An important example is the absolutely continuous family of measures having
density g ≡ 1. In this case λc = 0, the measure gλ is an exponential distribution with
parameter |λ| and Z(λ) = ρ(λ) = 1/|λ|.

We will often write statements using the notation of the absolutely continuous case but the
results hold also in the purely atomic case with a simple generalization of the formulation.
In special cases we will explicitly discuss the purely atomic case too.

2.2 Conservative Exchange Dynamics

Weconsider a general conservative exchange dynamics onR�N+ wheremass can be exchanged
between nearest neighbor sites. The general form of the generator is given by

LN f (η) =
∑

{x,y}∈EN

∫
r{x,y}(η, dη′)

[
f (η′) − f (η)

]
, (2.3)

where r{x,y}(η, ·) is a positive measure on R
�N+ concentrated on the configurations η′ such

that η′(z) = η(z)when z �= x, y and η(x)+η(y) = η′(x)+η′(y).We assume that r{x,y}(η, ·)
depends on η just by the values η(x) and η(y).

We will mainly consider regular lattices with a stochastic mechanism that is the same on
each bond {x, y} so that there exists a positive measure r(ζ, dζ ′) on R

2+, with also ζ ∈ R
2+,

such that r{x,y} is obtained by r with ζ = (ζ1, ζ2) = (η(x), η(y)) and η′(z) = η(z) for any
z �= x, y andη′(x) = ζ ′

1 andη′(y) = ζ ′
2.Here (x, y) ∈ EN is the orientedbond corresponding

to {x, y} ∈ EN . We will always consider cases when the measure r is symmetric in the
simultaneous exchange of the indices 1, 2 in ζ and ζ ′, but in principle this constraint could
be removed for models with a directional asymmetry.

Note that the support of the measure r is contained in the one dimensional subspace
identified by S := {

ζ ′ : ζ1 + ζ2 = ζ ′
1 + ζ ′

2

}
.

We do not discuss mathematical details of the generator (2.3) and the definition of the
corresponding stochastic dynamics for which we could possibly add proper boundary condi-
tions. We stress that this class of models is very large and contain very different models that

123



On a Class of Solvable Stationary... Page 5 of 32 25

may exhibit condensation and may have pure jump paths. We will only briefly discuss these
features.

2.3 Current

Since the measure r is concentrated on a one dimensional subset of R2+, a convenient alter-
native way of describing the evolution is in terms of the measure R(ζ, ·) on R denoting the
rate at which a given current is observed across the bond (x, y) (a similar approach has been
considered in [12]). When the configuration is changing from η to η′, with the constraints
discussed in the previous section, the current observed on (x, y) is given by η(x) − η′(x).
The measure R(ζ, d j)with ζ = (ζ1, ζ2) has then support in [−ζ2, ζ1]; this fact will be under-
lined (in the absolutely continuous case and similarly in the discrete one) considering always
integrations restricted to the interval [−ζ2, ζ1]. When the measures r and R can be described
by densities we simply have R(ζ, j) = r(ζ, ζ1 − j, ζ2 + j); a similar relation holds in the
case of jumps of discrete values of the mass.

We will mainly consider the situation when there is not a preferred direction on the system
that is summarized by the symmetry relation

R((ζ1, ζ2), j) = R((ζ2, ζ1),− j); (2.4)

the meaning of this relation is that if you exchange the masses at the extremes of an edge the
observed current is reversed.

Denoting by δx the element of R�N+ such that δxx = 1 and δxy = 0 for any y �= x , the
generator (2.3) can be therefore written as

LN f (η) =
∑

(x,y)∈EN

∫ η(x)

−η(y)
R(η(x), η(y), d j)

[
f (η − jδx + jδy) − f (η)

]
. (2.5)

Remark 2.2 Another natural viewpoint of the dynamics is in terms of flows. We will use
several times this perspective. A flow is always positive and describes the amount of mass
transferred from one vertex to another one. When an amount of mass q is transferred from
x to y we say that there is a flow q ≥ 0 from x to y. Assuming the validity of the symmetry
(2.4) we can describe the rates of flows by one single positive measure Q(ζ, ·) on R+ with
support on [0, ζ1]. The relations with the measure R written in the absolutely continuous
case is given by

R(ζ1, ζ2, j) = Q(ζ1, ζ2, j)1I( j ≥ 0) + Q(ζ2, ζ1,− j)1I( j < 0).

In the general case we should use two measures Q± respectively for positive and negative
currents j in the above formula.

2.4 Reversibility

We search for measures R such that the dynamics with generator (2.5) is reversible with
respect to the productmeasure

∏
x∈�N

gλ(dη(x)). By the conservative nature of the dynamics
this is independent from the parameter λ and the detailed balance condition is given by

g(ζ1)g(ζ2)R(ζ, j) = g(ζ ′
1)g(ζ

′
2)R(ζ ′,− j), j ∈ [ζ1,−ζ2], (2.6)
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where ζ ′
1 = ζ1 − j and ζ ′

2 = ζ2 + j . For notational convenience it is useful to introduce
R̃(ζ, j) := g(ζ1)g(ζ2)R(ζ, j). The following elementary lemma classifies completely the
models that satisfy (2.6).

Lemma 2.3 A model satisfies (2.6) if and only if there exists an arbitrary function ψ(ζ, j) ≥
0, j ≥ 0 such that the function R̃(ζ, j) introduced above has the form:

R̃(ζ, j) =
{

ψ(ζ, j), j ≥ 0
ψ(ζ1 − j, ζ2 + j,− j), j ≤ 0.

(2.7)

Proof The fact that ψ(ζ, j) can be arbitrary for positive j follows by the fact that in (2.6) the
currents on the two sides have always opposite sign and there are no constraints on currents
having the same sign. The form of R̃ for negative j in (2.7) is determined by the fact that
(2.6) should be satisfied for any value of the current. 
�
Using the above lemma one can easily construct all the dynamics that have an invariant
measure determined by the function g; indeed there is a whole family depending on an
arbitrary function ψ(ζ, j) ≥ 0, j ≥ 0. Once this function is fixed, the rates of the dynamics
are given by

R(ζ, j) =
{

ψ(ζ, j)
g(ζ1)g(ζ2)

, j ≥ 0
ψ(ζ1− j,ζ2+ j,− j)

g(ζ1)g(ζ2)
, j < 0.

(2.8)

In order to have the symmetry (2.4), the arbitrary function ψ has to satisfy the relation

ψ(ζ1, ζ2, j) = ψ(ζ2 + j, ζ1 − j, j), j ≥ 0.

2.5 Instantaneous Current and Gradient Condition

Given a bond (x, y) ∈ EN and a configuration η ∈ R
�N+ then the instantaneous current

jη(x, y) is the average of the current flowing with respect to the positive measure given by
the rate. By construction we will have jη(x, y) = − jη(y, x). The formula for the definition
of the instantaneous current is therefore the following

jη(x, y) :=
∫ η(x)

−η(y)
R(η(x), η(y), j) jd j, (x, y) ∈ EN .

Recall that for simplicity of notation we consider the case where R is absolutely continuous.
The mathematical motivation of such a definition is that, by the general theory of Markov
processes [42], we have that if we call Q(x, y, t) the amount of mass flown from x to y up
to time t and define by

J (x, y, t) := Q(x, y, t) − Q(y, x, t) (2.9)

the net current, we have that

J (x, y, t) −
∫ t

0
jηs (x, y)ds (2.10)

is a martingale that plays a crucial role in the study of the limiting behavior of the system in
the scaling limit as it will be briefly discussed in Sect. 3.1. Note that (ηt )t≥0 is the process
generated by (2.5).
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We restrict now to the case of �N = Z
d/(NZ)d , the d dimensional discrete torus and we

denote by (τx )x∈�N the group of translations. The model is called of gradient type if there
exists a local function h(η) such that

jη(x, y) = τx h(η) − τyh(η). (2.11)

Since we are assuming that the rate of jump across the bond {x, y} depends on η just by the
values η(x) and η(y) then we can deduce that h depends only on the value of η on one single
site. To prove this we need a few definitions.

Given D ⊆ �N we denote by ηD := (η(x))x∈D the configuration η restricted to the subset
D. Given η, ζ two configurations we denote by ηDζDc the configuration that coincides with
η on D and with ζ on Dc (where Dc denotes the complementary of D).

Given a function h : (
R

+)�N → R, its domain of dependence D ⊆ �N is defined by
requiring the following two properties:

(1) h (ζDcηD) = h (η) for any ζ and η,
(2) for any x ∈ D there exist a configuration η and a real parameter α such that h(η+αδx ) �=

h(η).

We call a function local if its domain of dependence is finite and does not depend on N .

Lemma 2.4 Given a process with generator as in (2.5), if there is a local function h satisfying
(2.11) then its domain of dependence is D = {0} and therefore h(η) = H(η(0)), for a suitable
real function H.

Proof First of all note that, given jη, there is not a unique h satisfying (2.11). Indeed, con-
sidering h, h′ be two solutions of (2.11) we obtain that τx (h − h′) = τy(h − h′) which in
turn implies that h − h′ is translationally invariant. Indeed the whole set of solutions is given
by h + t where h is a fixed solution and t is a generic translation invariant function.

We concentrate now on local functions. For simplicity let us consider the one dimensional
case (but the argument works in any dimension) with y = x+e1 and suppose that the domain
of dependence of the local function h is given by an interval D = [a, b]. We have then that
the domain of dependence of the local function on the left hand side of (2.11) is [x, x + e1]
while the domain of dependence of the right hand side of (2.11) contains {a + x, b+ x + e1}
and this is a contradiction unless a = b = 0. 
�

The previous analysis yields that the gradient condition corresponds to having a real
function H such that the first moment of the measure R can be written as∫ ζ1

−ζ2

R(ζ, j) jd j = H(ζ1) − H(ζ2). (2.12)

For the models that we consider it is rather simple to select models satisfying the gradient
condition.

Example 2.5 (Zero range models) This class of models will play an important role. We call
Zero Range models the models for which the rate Q(ζ, ·) associated to the flow (as discussed
in Remark 2.2) depends only on the mass present at the starting point, i.e., Q does not depend
on ζ2. The corresponding rate for the current is therefore

R(ζ, j) = Q(ζ1, j)1I( j ≥ 0) + Q(ζ2,− j)1I( j < 0).

Hence, we have∫ ζ2

−ζ1

R(ζ, j) jd j =
∫ ζ1

0
Q(ζ1, j) jd j −

∫ ζ2

0
Q(ζ2, j) jd j
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and the gradient condition is satisfied with the function H given by H(a) = ∫ a
0 Q(a, j) jd j .

Note that in the literature the zero range processes are usually considered for integer values for
the number of particles. In this note we treat a more general class of models with continuous
values.

Example 2.6 (Additive mean zero terms) Condition (2.12) continues to be satisfied with the
same function H if we add a mean zero term to the rate R. Indeed, in this way we obtain all
possible gradient models associated to a given function H . Consider a gradient rate R with
respect to a function H and add R′ such that

∫ ζ1
−ζ2

R′(ζ, j) jd j = 0; then R + R′ is gradient
with respect to the same function H .

As an example we can add to a zero range rate (or to any gradient model) a term of the
form

R′(ζ, j) = S(ζ, j)1I (−(ζ1 ∧ ζ2) ≤ j ≤ (ζ1 ∧ ζ2)) ,

where S(ζ, j) = S(ζ,− j) and a ∧ b := min{a, b}, getting again a gradient model with the
same function H . The only constraint that has to be satisfied is that R + R′ ≥ 0, which is
always satisfied if S ≥ 0.

Another possible choice is to add to R a term R′ of the form

R′(ζ, j) =
A

(
ζ, j − ζ1−ζ2

2

)

j
, (2.13)

where A(ζ, ·) is an antisymmetric function. Here again we have to impose a positivity con-
dition to the total rate, and we have to carefully avoid the possible singularity for j = 0 in
(2.13). In particular if we do not want an explosion on the rate and if we have a continuous

A we need to impose A
(
ζ,

ζ2−ζ1
2

)
= 0.

2.6 Reversible+Gradient

We look for gradient models that are at the same time reversible with respect to the product
measure with marginals gλ. This is because for models of this type it is possible to have an
explicit form of the transport coefficients. Using Lemma 2.3, after simple change of variables,
we get that we need to find a function ψ(ζ, j) ≥ 0, j ≥ 0 such that

∫ ζ1

0
ψ(ζ, j) jd j −

∫ ζ2

0
ψ(ζ1 + j, ζ2 − j, j) jd j = g(ζ1)g(ζ2)

(
H(ζ1) − H(ζ2)

)
,

(2.14)

for a suitable real function H . Other equivalent formulations are possible but in any case it is
difficult to get a clear complete classification of all the models satisfying the two conditions.
We discuss here instead some remarkable examples, finding a large and interesting class of
models. We start with the Zero range already presented in Example 2.5:

Example 2.7 (Zero range)The family of zero rangemodels has beendiscussed inExample 2.5.
They are always of gradient type and in order to satisfy the reversible condition for an arbitrary
product measure with marginals gλ, imposing (2.6), we obtain after a simple computation
the following special form for the rates

R(ζ, j) = g(ζ1 − j)

g(ζ1)
S(| j |)1I( j ≥ 0) + g(ζ2 + j)

g(ζ2)
S(| j |)1I( j < 0), (2.15)
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where S is an arbitrary function (details of the computation are simple and similar to com-
putations in the examples to follow). Relation (2.15) can be naturally written in terms of
the rate Q for the flow (introduced in Remark 2.2) as we have an amount of mass q ≥ 0
flowing from a site containing the amount of mass ζ to a nearest one with a rate given by
Q(ζ, q) = g(ζ1−q)

g(ζ1)
S(q). In this way the reversibility condition is always satisfied for any

choice of the function g in (2.1). Special cases of the zero range models (2.15) have been
considered in [27].

A special case is when the rate R does not depend on the configuration ζ , i.e., R(ζ, j) =
R( j) (recall however that the measure R is always restricted to the interval [−ζ2, ζ1]). This
means that the random flow across the bonds happens always with the same distribution and
the interaction is given just by the positivity constraint of the mass on each vertex. In this
case, in order to have the gradient condition (2.12) we need to impose that R( j) = R(− j)
so that H(ζ ) = ∫ ζ

0 R( j) jd j is symmetric as well and we obtain indeed a special case of the
zero range family. We singled out this example because it is an extremely natural example
when discussing the rates in terms of the current. The reversibility condition (2.8) is obtained
selecting g ≡ 1 and considering ψ(ζ, j) = ψ( j), j ≥ 0.

We stress that a zero range dynamics with arbitrary mass flowing is reversible only under
condition (2.15). This is in contrastwith the classic zero rangemodelswith particles and jumps
of only one single particle, which is instead always reversible. In a forthcoming example we
will discuss in detail the different behavior arising when one particle versus arbitrary amount
of mass can jump.

2.7 KMP-TypeModels

Example 2.8 (KMP model) This example is a special case of a bigger class, but we discuss it
separately since it is a classic model. The classic KMP (after Kipnis, Marchioro and Presutti)
model [36] corresponds to R(ζ, j) = 1

ζ1+ζ2
, i.e., the rate for observing a given current is

uniform over all possible currents and such that the total rate is one, see also [12]. In this
case we obtain H(a) = a

2 and the reversibility condition is satisfied with the measures
gλ of exponential form that correspond to the choice g ≡ 1 and λ < 0. This uniform
characterization of the model is a different viewpoint with respect to the classic definition in
terms of redistribution of energy.

Example 2.9 (Exponential invariant measures) We consider here the exponential case that
corresponds to g = 1 and describe a class of models that are reversible and gradient. The
KMP model of Example 2.8 is a special case. We consider the case H ′(a) ≥ 0, a ≥ 0 that
corresponds to a stability condition; when this condition is satisfied the mass is flowing on
average from the site containing more mass toward the one containing less mass. Consider
the function h(a) = H ′(a) > 0 and let A(ζ1 + ζ2, a) be, for any ζ1, ζ2, an antisymmetric
function on the variable a. Then, we have that

R(ζ, j) =
{

h( j)
j + 1

j A
(
ζ1 + ζ2, j − ζ1+ζ2

2

)
, j ≥ 0,

R(ζ,− j), j < 0,
(2.16)

solves (2.14) with H(t) = ∫ t
0 h(s)ds and g ≡ 1. The result follows by a direct computation

observing that
∫ b
0 A(ζ1, ζ2, a)da is symmetric in b for any ζ1, ζ2. Here again in (2.16) we

need to restrict the choice of the functions respecting the positivity of the rates (here h ≥ 0 is
useful) and to take care of possible singularities. Note that the classic KMPmodel is obtained
with h( j) = 1

2 and A(s, y) = y
s getting
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R(ζ, j) = R(ζ,− j) = 1

2 j
+ 1

j(ζ1 + ζ2)

(
j − ζ1 + ζ2

2

)
= 1

ζ1 + ζ2
, j ≥ 0.

Example 2.10 (Geometric invariant measures) We consider the discrete case in which the
measure gλ(dη), defined in (2.1), is purely atomic with mass on the integer set N ∪ {0} and
g ≡ 1 so that the measures gλ are geometric. This is a discrete version of the previous class
of examples. We describe a class of discrete models that are reversible with respect to this
measure and gradient. In the discrete case the condition (2.14) which guarantees the gradient
property and reversibility with respect to the measure gλ(dη) becomes

ζ1∑
j=0

jψ (ζ, j) −
ζ2∑
j=0

jψ (ζ1 + j, ζ2 − j, j) = g(ζ1)g(ζ2) (H(ζ1) − H(ζ2)) , (2.17)

with ψ(ζ, j) = g(ζ1)g(ζ2)R(ζ, j) for j > 0.
In analogy with Example 2.9 we consider the function h(a) = H ′(a) ≥ 0, a ≥ 0 and let

A(ζ1 + ζ2, a) be, for any ζ1, ζ2 ∈ N∪ {0}, an antisymmetric function on the variable a. The
rate

R(ζ, j) = h( j)

j
+ 1

j
A

(
ζ1 + ζ2, j − ζ1 + ζ2 + 1

2

)
, j > 0, (2.18)

satisfies (2.17) with H(k) = ∑k
j=0 h( j) and g ≡ 1. Note that with respect to the continuous

case we had to shift the center of symmetry of the function A. Indeed, using that A(ζ, a) is
antisymmetric in the second variable, we get that (2.17) is equivalent to:

ζ1∑
j=0

h( j) −
ζ2∑
j=0

h( j) +
ζ1∨ζ2∑

j=ζ1∧ζ2+1

A

(
ζ1 + ζ2, j − ζ1 + ζ2 + 1

2

)
= H(ζ1) − H(ζ2),

where the third term in the left hand side vanishes.

2.8 Misanthrope Process

We consider a natural variation of the zero range models, that has as special cases (in the
discrete setting discussed later on) the exclusion process, the inclusion models and the mis-
anthrope process [11, 31, 37]. Models of this type have been considered by several authors as
for example [25, 28, 41]; in particular we point out [25] where it is given a characterization of
non reversible models having a product invariant measure. We investigate both reversibility
and the gradient property. We distinguish the continuous case from the discrete one and start
discussing the continuous.

Example 2.11 (Generalized misanthrope processes) We consider a class of models for which
the rate Q(ζ1, ζ2, q) of observing a flow q ≥ 0 is factorized in the form

Q(ζ1, ζ2, q) = b(ζ1, ζ2)S(q), (2.19)

for arbitrary functions b, S which we assume strictly bigger than zero in order to avoid
degeneracies. This means that the rate is factorized and depends on the mass present not only
at the starting site but also in the final one. Apart from the fact that the mass is continuous
and an arbitrary amount q may flow, this is the general form of the rates investigates in [11].

We start by considering the reversibility.
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Lemma 2.12 Amodelwith rates given in (2.19) is reversiblewith respect to a productmeasure
with marginals (2.1) if and only if b(ζ1, ζ2) = C(ζ1+ζ2)

g(ζ1)g(ζ2)
for an arbitrary positive function

C : R+ → R+.

Proof Since all rates are strictly positive, the detailed balance condition implies that

g(ζ1)g(ζ2)b(ζ1, ζ2) = g(ζ2 + q)g(ζ1 − q)b(ζ2 + q, ζ1 − q), ∀ζ1, ζ2, q ∈ [0, ζ1].
(2.20)

From (2.20) we will deduce that

g(ζ1)g(ζ2)b(ζ1, ζ2) = g(ζ ′
1)g(ζ

′
2)b(ζ

′
1, ζ

′
2), (2.21)

for any (ζ1, ζ2), (ζ
′
1, ζ

′
2) such that ζ1 + ζ2 = ζ ′

1 + ζ ′
2, and this implies directly

g(ζ1)g(ζ2)b(ζ1, ζ2) = C(ζ1 + ζ2) for a suitable positive function C . It remains to prove
(2.21). In the case that (ζ ′

1, ζ
′
2) = (ζ2+q, ζ1−q) for a q ∈ [0, ζ1], (2.21) follows directly from

(2.20). If this is not the casewe have to apply (2.20) twice. Let 0 < ε < min{ζ1, ζ ′
1}.We apply

(2.20) with q = ζ1 − ε obtaining g(ζ1)g(ζ2)b(ζ1, ζ2) = g(ζ2 + ζ1 − ε)g(ε)b(ζ2 + ζ1 − ε, ε).
We apply now (2.20) once again with ζ2 + ζ1 − ε > q = ζ ′

1 − ε > 0 obtaining
g(ζ2 + ζ1 − ε)g(ε)b(ζ2 + ζ1 − ε, ε) = g(ζ ′

1)g(ζ
′
2)b(ζ

′
1, ζ

′
2), which finishes the proof. 
�

Given a positive function S we define

Ŝ(ζ ) :=
∫ ζ

0
j S( j)d j . (2.22)

The gradient condition in this case corresponds to having a function H such that

b(ζ1, ζ2)Ŝ(ζ1) − b(ζ2, ζ1)Ŝ(ζ2) = H(ζ1) − H(ζ2), (2.23)

which is a condition on the form of the antisymmetric part of the function bŜ. The model is
therefore gradient if and only if there exists a symmetric function S and a function H such
that

b(ζ1, ζ2)Ŝ(ζ1) = S(ζ1, ζ2) + 1

2
(H(ζ1) − H(ζ2)) .

A less abstract characterization of the gradient condition is difficult in the general case; we
consider a special case and discuss a few more cases in Example 2.20.

Lemma 2.13 A model with rates given in (2.19) with b(ζ1, ζ2) = �(ζ1)L(ζ2), for smooth
and positive functions �, L, is gradient if and only if one of the following two conditions are
satisfied {

L(ζ ) = c�(ζ )Ŝ(ζ ) + k,
�(ζ ) = c/Ŝ(ζ ),

(2.24)

for arbitrary constants c, k and Ŝ given in (2.22).

Proof The gradient condition (2.12) is satisfied if there exists a real function H such that
(2.23) is satisfied with b(ζ1, ζ2) = �(ζ1)L(ζ2). Calling �̂ := �Ŝ and taking the derivatives

∂2

∂ζ1∂ζ2
on both sides of (2.23) we obtain that we need to have �̂′(ζ1)L ′(ζ2) = �̂′(ζ2)L ′(ζ1).

This relation can be satisfied either if �̂′ = 0, which gives the second condition in (2.24) or
if L ′/�̂′ is constant, which is the first condition in (2.24). Hence we proved that (2.24) are
necessary conditions; in order to see that they are also sufficient it is enough to insert the
special forms in (2.23). 
�
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If we combine the results of lemmas 2.12 and 2.13 we obtain models that are at the same
time gradient and reversible. This is possible when C(ζ1 + ζ2) is constant and � and L are
proportional. We have two possibilities; when the first condition in (2.24) is satisfied then we
have that the rates are given by

Q(ζ1, ζ2, q) = kS(q)[
1 − cŜ(ζ1)

] [
1 − cŜ(ζ2)

] , (2.25)

for suitable constants c, k and a function S; the corresponding g is g(ζ ) = 1 − cC Ŝ(ζ ). If
instead the second condition in (2.24) is satisfied we have that the rates are given by

Q(ζ1, ζ2, q) = kS(q)

Ŝ(ζ1)Ŝ(ζ2)
, (2.26)

for a suitable constant k and a function S; the corresponding g is given by g(ζ ) = Ŝ(ζ ).

Example 2.14 (Discrete generalized misanthrope processes) We consider here the discrete
version of the previous example which will give as special cases the exclusion and the
inclusion processes. Mass is assuming only integer values and we do not discuss the cases
when the number of particles on each site is bounded. Some computations are similar to
the previous case but in the discrete setting it is simpler and natural to consider constraints
on the amount of mass flowing. More precisely the rates that we consider are again of the
form (2.19) with ζ1, ζ2, q that assume only integer values. We will however distinguish the
following cases:

(1) S(q) > 0 for all q (case (A)),
(2) S(1) = 1 and S(q) = 0 for any q ≥ 2 (case (B)).

Note that the case (B) corresponds to the situation when only one particle can jump in a
single step (as in the classic models). The rates of the case (B) correspond to the special
models introduced in [11] under the name of Misanthropic processes. In particular in [11]
a collection of discrete equations characterizing reversibility have been introduced. We will
give a complete solution to such conditions extending the result in [11] which, to the best of
our knowledge, is new.

Here, again, for the gradient condition we are not aiming to a complete characterization
but we restrict to the same special form of Lemma 2.13. As in the continuous case we set
Ŝ(ζ ) := ∑ζ

j=1 j S( j).

Lemma 2.15 Consider discrete models with rates as in (2.19) with b(ζ1, ζ2) = �(ζ1)L(ζ2)

and ζ1, ζ2 assuming integer values only. In the case (A) a model is gradient if and only if the
following condition holds

L(ζ ) = c�(ζ )Ŝ(ζ ) + k, (2.27)

for arbitrary constants c, k. In the case (B) a model is gradient if and only if the following
condition holds

L(ζ ) = c�(ζ ) + k, (2.28)

for arbitrary constants c, k.

Proof Consider first the case (A). Condition (2.27) is clearly sufficient. We show that it is
necessary too. Similarly to the continuous case the gradient condition is satisfied if there exists
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a real function H that satisfies (2.23). Let us call �̂(ζ ) := �(ζ )Ŝ(ζ ) and assume ζ2 = 0. Recall
that in the discrete case we need to have �(0) = 0 and moreover we fix the arbitrary additive
constant of the function H in such a way that H(0) = 0. We obtain that H(ζ1) = �̂(ζ1)L(0).
Replacing back to (2.23) and computing the equality for a fixed ζ ∗

2 for which �̂(ζ ∗
2 ) > 0 (that

must exist otherwise the model is trivial) we obtain

�̂(ζ ∗
2 )L(ζ1) = (L(ζ ∗

2 ) − L(0))�̂(ζ1) + L(0)�̂(ζ ∗
2 ),

that is equivalent to (2.27).
For the case (B) the gradient condition becomes

�(ζ1)L(ζ2) − �(ζ2)L(ζ1) = H(ζ1) − H(ζ2),

and condition (2.28) is obtained by the same argument as before with �̂ replaced by �. 
�
Note that (2.28) coincides with (2.27) since in the case (B) we have Ŝ(ζ ) = 1I(ζ > 0). Note
also that the second condition in (2.24) in the continuous case, cannot be satisfied in the
discrete setting, since we have Ŝ(0) = 0 and �(0) = 0 and the constant c would be zero
giving a trivial model.

We consider now reversibility.

Lemma 2.16 In the case (A) we have reversibility with respect to a product measure (2.1)
if and only if b(ζ1, ζ2) = C(ζ1+ζ2)

g(ζ1)g(ζ2)
for an arbitrary positive function C. In the case (B) we

have reversibility if an only if

b(ζ1, ζ2) = B(ζ1)φ(ζ1, ζ2), (2.29)

where B is an arbitrary positive function and φ is a function that satisfies the symmetry

φ(l,m) = φ(m + 1, l − 1), l,m ∈ N ∪ {0}; l ≥ 1. (2.30)

In this case we have that the product invariant measure is characterized by the weights

g(k) =
{
1 k = 0,∏k

j=1 B( j)−1 k ≥ 1.
(2.31)

Proof The proof of the case (A) is obtained with a discrete version of the argument in the
continuous case.

We consider now the case (B). We first check that if (2.29), (2.30) and (2.31) are satisfied
then the detailed balance holds. We have to check that for any ζ1 ≥ 1 and ζ2 ≥ 0 we have

g(ζ1)g(ζ2)B(ζ1)φ(ζ1, ζ2) = g(ζ2 + 1)g(ζ1 − 1)B(ζ2 + 1)φ(ζ2 + 1, ζ1 − 1).

Due to (2.30) the factors φ simplify and the equality follows since g(ζ+1)
g(ζ )

= 1
B(ζ+1) .

We verify now that (2.29), (2.30) and (2.31) are also necessary conditions to have detailed
balance, i.e., for the validity of

g(ζ1)g(ζ2)b(ζ1, ζ2) = g(ζ2 + 1)g(ζ1 − 1)b(ζ2 + 1, ζ1 − 1),

for a suitable positive function g. We introduce the function B(l) := g(l−1)
g(l) for l ≥ 1 and

B(0) = 0. Using this function the detailed balance becomes

b(ζ1, ζ2)

B(ζ1)
= b(ζ2 + 1, ζ1 − 1)

B(ζ2 + 1)
,

which is exactly (2.30) with φ = b
B . 
�
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Fig. 1 Integer points are marked either with a circle or with a square. On the points with a circle the value
of the function ψ can be defined arbitrarily; on the points with a square the values should be set equal to the
corresponding point with a circle. We draw some lines among points that are in correspondence. Points that
are exactly on the line just below the main diagonal are mapped to themself and the function ψ can be defined
arbitrarily there. In the axis we have the values (l,m) of the relation (2.30)

Remark 2.17 From the above analysis it follows that the whole family of reversible models
of case (B) is parametrized by the arbitrary positive function B and the function ψ satisfying
(2.30). It is rather simple to construct a function satisfying (2.30); referring to Fig. 2.30 we
can fix arbitrarily the values of the function on the points with integer coordinates that are
marked with a round black dots, the values on the points marked with black squares are then
fixed by the value on the paired point with a black dot. This is because the symmetry in (2.30)
is an involution.

Remark 2.18 A particularly interesting example of reversible rates of case (B) is given by
b(ζ1, ζ2) = �(ζ1)L(ζ2)where �, L are two arbitrary positivemeasures (with �(0) = 0). In that
case we have B(l) = �(l)

L(l−1) and φ(l,m) = L(l−1)L(m). Remarkable examples of this form
are the exclusion process that corresponds to �(0) = 1−�(1) = 0 and L(1) = 1− L(0) = 0;
the inclusion process that corresponds to �(ζ ) = ζ and L(ζ ) = m + ζ , and finally when
L = 1 we have the classic zero range dynamics.

Another special case discussed in [11] is given by b(ζ1, ζ2) = L(ζ1)L(ζ2)C(ζ1 + ζ2) for
arbitrary positive functions L,C (with L(0) = 0). In this case we have indeed B(l) = L(l)

L(l−1)
and φ(l,m) = L(l − 1)L(m)C(l + m) and the validity of (2.30) is easily verified.

Finally we consider some general rates of the form �(l)L(m)φ̃(l,m) with �, L being
arbitrary positive functions (again �(0) = 0) and φ̃ is a function satisfying (2.30). Every rate
of this form is reversible but this fact it is not enlarging the class individuated by Lemma 2.16
since every rate of this form can be written as (2.29) with ψ satisfying (2.30) by considering
B(l) = �(l)

�(l−1) and φ(l,m) = �(l − 1)L(m)φ̃(l,m).

Remark 2.19 In [11] the author considers models of case (B) with in addition a spatial struc-
ture. In the case of nearest-neighbor jumpswith symmetric spatial rates, the author’s condition
for the reversibility with respect to a product measure (which is necessary and sufficient in
dimension one) is given by
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b(i, j)

b( j + 1, i − 1)
= b(i, 0)b(1, j)

b( j + 1, 0)b(1, i − 1)
, i ≥ 1, j ≥ 0. (2.32)

It is easy to check that our general solution (2.29), (2.30), (2.31) is the general solution to
(2.32). This was not obtained in [11] and we could not find this fact in more recent references
either.

It is interesting to observe that in the case of non-symmetry in space of the rate of jump,
the condition that has to be added in [11] to (2.32) is

b(i, j) − b( j, i) = b(i, 0) − b( j, 0),

that is indeed equivalent to the gradient condition for the models of case (B). This is a special
case of a general fact that gradient and reversible models preserve their invariant measure
also in presence of an external field that creates an asymmetry on the rates (see [4, Sect. 2.5]).

If we want to construct discrete models that are at the same time gradient and reversible
then, restricting to the case when b = �L , in the case (A) we have exactly the same formulas
of the continuous models (2.25), while in the case (B) we obtain the whole class of models
with the only constraints that � and L should be given by (2.28) and the function g by (2.31).

Example 2.20 (Special identities) Another simple and natural class of models is obtained by
selecting the functionψ (introduced in Lemma 2.3) in the formψ(ζ, j) = g(ζ1)g(ζ2)M(ζ1+
ζ2)S( j) (note that is has the same formwith themisanthropemodel). In the special case g = 1,
condition (2.14) is satisfied finding a triple of functions such that

M(ζ1 + ζ2)
(
Ŝ(ζ1) − Ŝ(ζ2)

)
= H(ζ1) − H(ζ2), (2.33)

where Ŝ(y) = ∫ y
0 S(x)xdx . The KMP model is of this type choosing M(s) = 1/s and

S( j) = 2 j , in which case the identity (2.33) becomes

ζ 2
1 − ζ 2

2

ζ1 + ζ2
= ζ1 − ζ2.

We can generate other gradient and reversible models finding functions satisfying relation
(2.33). Observing that (

e−ζ2 − e−ζ1
)
eζ1+ζ2 = eζ1 − eζ2 ,

we deduce that we obtain such a model choosing S( j) = e− j

j , M(s) = es and H(x) = ex .
The corresponding rates are therefore

R(ζ, j) = R(ζ,− j) = eζ1+ζ2
e− j

j
, j ≥ 0, (2.34)

which indeed is also a special case of the models discussed in Example 2.11. Hence, we just
showed how to reach a similar characterization by alternative paths.

Remark 2.21 Observe that the example with rates (2.34) gives
∫ ζ1
−ζ2

R(ζ, j)d j = +∞. This
happens also in models like in formula (2.16) for example with h = 1 and A = 0. Models
of this form have an infinite rate of jump across each edge and have therefore a dense set
of jump times. The process is well defined since with very high rate we observe very small
currents. We are in presence of a class of models that can be imagined as interacting Levy
processes of pure jump type. A fully mathematical discussion of such models is beyond the
aim of this paper. See also [26] where models of this type were considered simultaneously
to us.
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3 Transport Coefficients

Here we give a short derivation of the connection of the transport coefficients to the details
of the microscopic dynamics. The fluctuations at the level of large deviations for diffusive
models are determined by the transport coefficients alone, i.e., the diffusion coefficient and
the mobility [5]. We assume that the dynamics is gradient (2.11) and reversible with respect
to a product measure with marginals gλ. We consider in this section the lattice �N =
1
N

(
Z
d/(NZ)d

)
, i.e. the d-dimensional discrete torus with edges among the nearest neighbor

lattices sites and mesh equal to 1/N . We consider the discrete torus �N embedded in the
continuous torus � := [0, 1]d with periodic boundary conditions. The analytic form of the
transport coefficients can be deduced from the diffusive hydrodynamic scaling limit. A fully
mathematical proof of the scaling limit and the corresponding large deviations for our models
is a difficult and technical task and we give here a heuristic argument that gives the analytic
formulas for the diffusion matrix and for the mobility. Since we consider isotropic models
mobility and diffusionmatrix will be multiples of the identity matrix and we can just consider
the proportionality factor that we call diffusion coefficient and mobility.

3.1 Hydrodynamic Limit

We consider the class of models above discussed in presence of a weak external field. When
we switch on a weak external field we have that the rates of jump are perturbed. Let F be a
smooth vector field on � and let FN be its discretized version defined as

FN (x, y) :=
∫

(x,y)
F · dl, (x, y) ∈ EN , (3.1)

that is the line integral along the oriented segment (x, y). Note that FN (x, y) = O(1/N ),
since our lattice has mesh 1/N , and this fact is the motivation on the name weak external
field. The perturbed rates are given by

RF (η(x), η(y), j) = R(η(x), η(y), j)eFN (x,y) j (3.2)

and consequently the instantaneous current is given by

j Fη (x, y) =
∫ η(x)

−η(y)
R(η(x), η(y), j)eFN (x,y) j jd j

= jη(x, y) + FN (x, y)
∫ η(x)

−η(y)
R(η(x), η(y), j) j2d j + O(1/N 2).

The motivation behind the choice (3.2) of the rates is that the perturbed part is related to the
work of the vector field FN with a flow of mass j .

We consider the diffusive scaling limit of the process under a weakly asymmetric external
field F . The diffusive rescaling consists in multiplying the rates by N 2 and in multiplying the
mass on each site by a factor of N−d ; consequently the instantaneous current is multiplied
by a factor of N 2−d .

The empirical measure is an element of M+(�), the positive measures on �, associated
to a configuration ζ and defined by

πN (ζ ) := 1

Nd

∑
x∈�N

ζ(x)δx , (3.3)
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where δx denotes the delta measure at x ∈ �. Consider an initial state η associated to a given
measurable profileρ0(x), i.e., such that limN→+∞ πN (η) = ρ0(x)dx , where the convergence
is in the weak sense of measures, i.e., for any continuous function f we have

lim
N→+∞

∫
�

f dπN (η) = lim
N→+∞

1

Nd

∑
x∈�N

η(x) f (x) =
∫

�

ρ0(x) f (x)dx . (3.4)

In order to determine the hydrodynamic behavior of the current under this rescaling, we can
consider the scalar product of the current observed on the lattice with a discretized vector
field. Consider G a smooth vector field and let GN be its discretized version as defined by
the definition in (3.1).

Recall the definition (2.9) of the net current across the edges that define a discrete vector
field on the lattice for each time t and call J F the current for the accelerated process associated
to the external field F . The scalar product of the net current J F with the discretized vector
field GN is given by

1

2Nd

∑
(x,y)∈EN

J F (x, y, t)GN (x, y). (3.5)

We argue now that (3.5) is converging for large N to
∫ t
0 ds

∫
�
dx J (ρ(x, s)) ·G(x, s), where

J (ρ) is the typical current in the scaling limit associated to the density profile ρ. By (2.10)
(with j F given in (3.3)), up to a negligible martingale, formula (3.5) coincides with

N 2−d

2

∑
(x,y)∈EN

∫ t

0
j Fηs (x, y)GN (x, y)ds, (3.6)

where we recall that the power of the N factor in front is due to the acceleration by N 2 of
the rates. The 1/2 factor in (3.5) and (3.6) is due to the fact that we are summing twice every
unoriented edge. Under general assumptions that we do not discuss, the martingale term
is negligible by Doob’s inequality. Using the gradient condition (2.11) and some discrete
integrations by parts, formula (3.6) can be written as

1

Nd

∑
x∈�N

∫ t

0
τxh(ηs)N

2∇ · GN (x)ds

+ 1

2Nd

∑
(x,y)∈EN

∫ t

0
NFN (x, y)NGN (x, y)M2(ηs(x), ηs(y))ds + O(1/N ) . (3.7)

In the above formula we used the discrete divergence of the vector field GN defined by

∇ · GN (x) :=
∑

(x,y)∈EN

GN (x, y),

for which it is possible to check that N 2∇ · GN (x) = ∇ · G(x) + O(1/N ) where the
infinitesimal term is uniform in x (∇· is the discrete divergence on the left hand side and the
continuous one on the right hand side). We also used the notation

M2(η(x), η(y)) :=
∫ η(x)

−η(y)
R(η(x), η(y), j) j2d j,

for the second moment of the measure R. We remark that the terms NFN (x, x + ei ) and
NGN (x, x + ei ), where ei is the vector with all coordinates equal to zero apart coordinate
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i that is equal to 1/N , are equal to Fi (x) and Gi (x) (which are the i-th coordinates of the
smooth vector fields F and G) up to a uniform infinitesimal term. We define

{
D̂(ρ) := Egλ(ρ)

(h(η)),

σ (ρ) := 1
2Egλ(ρ)⊗gλ(ρ)

(M2(η(x), η(y))),
(3.8)

where λ(ρ) is the inverse function of (2.2) and gλ ⊗ gλ is the product measure of two copies
of gλ. The factor 1/2 in the second formula is present just to be consistent with the classic
formulas.

The scaling limit for diffusive models is based on a replacement lemma (see [35, 42]
for technical details) whose proof for our class of models may not be trivial. We just derive
heuristically the scaling limit. The informal statement of the replacement lemma is as follows.
Let a : �N → R be a local function, and let A(ρ) := E⊗gλ(ρ)

(a(η)) be the average with
respect to a product measure with marginals gλ(ρ). Consider an initial condition such that
(3.4) is satisfied. We have that for any ε > 0 and any smooth test function φ : � → R there
exists a density ρt (x) such that

P

⎛
⎝

∣∣∣∣∣∣
1

Nd

∑
x∈�N

τxa(ηt )φ(x) −
∫

�

A(ρt (x))φ(x)dx

∣∣∣∣∣∣ > ε

⎞
⎠ (3.9)

is converging to zero when N → +∞ and t ∈ [0, T ] for some finite time horizon T .
Applying (3.9) to formula (3.7) we obtain that the random expression is converging with
high probability to the deterministic limit

∫ t

0
ds

∫
�

[
D̂(ρs(x))∇ · G(x) + 2σ(ρs(x))F(x) · G(x)

]
dx, (3.10)

for any smooth test vector field G. After an integration by parts, formula (3.10) coincides
with
∫ t

0
ds

∫
�

[−D(ρs(x))∇ρs(x)+2σ(ρs(x))F(x)] · G(x)dx=
∫ t

0
ds

∫
�

J (ρs(x))·G(x)dx,

(3.11)

where

J (ρt (x)) := −D(ρt (x))∇ρt (x) + 2σ(ρt (x))F(x)

is the typical current associated to the density ρ and

D(ρ) := d

dρ
D̂(ρ).

It remains to characterize the density profile ρt . Since our stochastic system conserves the
mass its limiting equation is therefore a continuity equation. By (3.11) we identified the
typical current in terms of ρt . We deduce that the limiting hydrodynamic equation for the
density ρt is given by the following nonlinear diffusion equation

∂tρ = −∇ · J (ρ) = ∇ · [D(ρ)∇ρ − 2σ(ρ)F] .

We have therefore that the diffusion matrix is D(ρ)1I and the mobility is σ(ρ)1I.
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3.2 Free Energy

The density of the free energy for a model with invariant measure given by a product measure
with marginals gλ is related to the large deviations rate functional for the empirical measure.
The pressure Pλ associated to the empirical measure when distributed according to the
product distribution ⊗x∈�N gλ(dη(x)) is defined as follows. Let f : � → R be a continuous
function, we have

Pλ( f ) := lim
N→+∞

1

Nd
logE⊗gλ

(
eN

d
∫
dπN (η) f

)

=
∫

�

log

(
Z(λ + f (x))

Z(λ)

)
dx ,

where the empirical measure πN is given in (3.3). The above exact computation can be easily
done since the measure is product. The corresponding large deviations rate functional is the
Legendre transform Iλ(ρ) = sup f

{∫
f dρ − Pλ( f )

}
, which is+∞ unless ρ is an absolutely

continuous element of M+(�) and for absolutely continuous measures assumes the value

Iλ(ρ) =
∫

�

dx

{
ρ(x)

[
λ(ρ(x)) − λ

] − log
Z(λ(ρ(x)))

Z(λ)

}
. (3.12)

In formula (3.12) we still denote by ρ the density of the measure ρ and λ(ρ) is the inverse
function of (2.2). The density of free energy is therefore

f (ρ) = ρλ(ρ) − log Z(λ(ρ)),

and (3.12) can be therefore written in the classic equilibrium form

Iλ(ρ) =
∫

�

dx
[
f (ρ(x)) − f (ρ(λ)) − f ′(ρ(λ))

(
ρ(x) − ρ(λ)

)]
,

were we used that f ′(ρ) = λ(ρ), that can be deduce using (2.2). The second derivative, often
called “compressibility", it is given by f ′′(ρ) = λ′(ρ) and, for stochastic particle systems, it
is involved in the Einstein relation which is given by

D(ρ) = σ(ρ) f ′′(ρ), (3.13)

where D and σ are the transport coefficients introduced in the previous section. The factor
1/2 in (3.8) was introduced to avoid a factor here. A general proof of (3.13) from formulas
(3.8) seems to be not trivial but we will show its validity for classes of models.

3.3 Integrability

A problem of interest, which is the central theme of this paper, is to study the fluctuations
of diffusive systems in contact with boundary reservoirs. In this physical situation we have
a stationary non equilibrium state characterized by the invariant measure of the system that
in general has statistical properties very different from the states of equilibrium. A direct
computation of the unique invariant measure in the non-equilibrium situation is very difficult
even if in some cases very interesting and rich combinatorial constructions have been devised.
In the special case when the direct approach is possible, typically one observes that in the
stationary non-equilibrium case there are long range correlations that are in correspondence
with a non local large deviations rate functional. As a special case we have the classic zero
range model. Differently from the other models we have that the invariant measure is always
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of product type and no long range correlations appear [5, 13, 22]. This fact is true also for
the Ginzburg Landau model [34, 42].

An indirect approach to the study of fluctuations for stationary non-equilibrium states is a
dynamical one. This is the approach developed by the Macroscopic Fluctuation Theory [5].
According to this general theory the structure of the fluctuations of stationary non equilibrium
states is determined just by the transport coefficients and some macroscopic details of the
sources in contact with the boundary of the system. The fluctuations for the SNS are related
to the so called Quasipotential that is computed by a minimization over the dynamic large
deviations rate functional under suitable constraints. As a consequence the quasipotential is
a solution of a stationary infinite dimensional Hamilton–Jacobi equation.

There is a whole class of one dimensional models for which it is possible to obtain a
closed explicit form of the large deviations rate functional for the invariant measure [5,
6]. The large deviations rate functional is in this case a non local functional depending on
the solution of a nonlinear differential problem with boundary conditions. The form of the
boundary conditions depends on the interaction with the boundary sources (see [5] for strong
interaction but also more recently [7, 17, 38] for weak interactions). To this class of models
belong the exclusion process aswell as the classicKMPprocess and its dual [6], but in general
the solvability of the boundary driven rate functional is shared by any class of models having
a constant diffusion coefficient and a second order polynomial as mobility [6], i.e., when we
have

{
D(ρ) = c,
σ (ρ) = P2(ρ).

(3.14)

The non local form of the rate functional in this case is given by formulas (7.9) and (7.10) in
[6]. It is important to observe that the form of the rate functional is explicit enough to deduce
for example the correlation functions. See also [29, 30] for a detailed discussion of this with
also some generalizations.

A second remarkable class of transport coefficients are those satisfying the relation

D(ρ)σ ′′(ρ) = D′(ρ)σ ′(ρ). (3.15)

Recalling (3.13), it can be proved (see [5]) that this condition is satisfied either when σ(ρ) is
constant and then D(ρ) > 0 is arbitrary (a model that has transport coefficients of this type
is the Ginzburg-Landau model [34, 42]) or otherwise when D(ρ) = cσ ′(ρ) for an arbitrary
constant c > 0. A model that has the transport coefficients of this form with c = 1 is the
classic zero range model.

It is not easy to explicitly construct models satisfying such conditions since the transport
coefficients can be computed only for diffusive models that are at the same time reversible
and of gradient type. Otherwise only variational representations of the transport coefficients
are available.We discussed however in the previous sections a large class of models that are at
the same time gradient and reversible and it is therefore natural and interesting to investigate
which are the models having such remarkable form of the transport coefficients. We stress
again that we did not develop a rigorous derivation of the form of the transport coefficients.

4 Zero Range Dynamics

In this section we discuss in detail the zero range dynamics obtaining a complete character-
ization of integrability, in the sense of Sect. 3.3. Note that the class of zero range dynamics
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discussed here is much wider than the classic zero range model. Indeed, we will see that
having a product invariant measure outside equilibrium is a feature that is in general lost.

First of all we observe that we can compute the transport coefficients using formulas (3.8)
and (2.15). We start with the mobility,

σ(ρ) = 1

2
Egλ(ρ)⊗gλ(ρ)

(∫ ζ1

−ζ2

R(ζ1, ζ2, j) j
2d j

)

=
∫ ∞

0
dζ1

∫ ∞

0
dζ2

∫ ζ1

0
d j

g(ζ1 − j)

g(ζ1)
S( j) j2

eλ(ζ1+ζ2)

(Z(λ))2
g(ζ1)g(ζ2)

=
∫ ∞

0
dζ1

∫ ζ1

0
d j

g(ζ1 − j)

g(ζ1)
S( j) j2

eλζ1

Z(λ)
g(ζ1)

=
∫ ∞

0
dζ1

∫ ζ1

0
d jg(ζ1 − j)S( j) j2eλ j e

λ(ζ1− j)

Z(λ)

=
∫ ∞

0
S( j) j2eλ j d j . (4.1)

Note that in the above computation we need to assume λ ≡ λ(ρ) < λc, since otherwise the
invariant measure is not defined. We discover however that the formula for the mobility may
give an infinite value for some subcritical values of λ. Indeed we have that, depending on the
function S, only for λ < λ̃c ≤ λc the mobility is finite. Since the function S is determining
the distribution of the amount of mass that is flowing in a single jump, we have that there may
be a second critical value such that it is not expected a hydrodynamic behavior above this
threshold. The value of λ̃c may coincide with λc or even be equal to −∞, in such a case for
these models we do not expect a hydrodynamic behavior. This phenomenon is related to the
fact that, due to the possibility of a large amount of mass flowing in a single step, there is no
reason to expect an absolutely continuous measure in the scaling limit. This is a mechanism
similar to the one is behind the possibility of condensation. A rigorous discussion of the
scaling limit of such models is challenging and we do not consider this issue here.

The coefficient D̂(ρ) defined in (3.8), using the local function h as defined in Example 2.5
and Example 2.7, is given by

D̂(ρ) = Egλ(ρ)

(∫ ζ

0

g(ζ − j)

g(ζ )
S( j) jd j

)

=
∫ ∞

0
dζ

∫ ζ

0
d j g(ζ − j)S( j) j

eλζ

Z(λ)

=
∫ ∞

0
dζ

∫ ζ

0
d j g(ζ − j)S( j) jeλ j e

λ(ζ− j)

Z(λ)

=
∫ ∞

0
S( j) jeλ j d j ,

where on the right hand side we have that λ = λ(ρ), which is the inverse function of (2.2)
and as before we have a finite value only for λ < λ̃c for a suitable critical value λ̃c. Therefore,
the diffusion coefficient is given by

D(ρ) = d

dρ
D̂(ρ) =

∫ ∞

0
S( j) j2eλ(ρ) jλ′(ρ)d j = λ′(ρ)σ (ρ) (4.2)

and the Einstein relation (3.13) is satisfied.
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In the following theorem, we will completely characterize the integrable zero range mod-
els, i.e., models having rates of the form (2.15) (or the equivalent form in the discrete case)
and having transport coefficients satisfying either condition (3.14) or condition (3.15).

Since the state space of the model allows for only positive values of the η, we should also
obtain only positive densities ρ ≥ 0 in the scaling limit. This implies that the mobility has
to be such that σ(0) = 0. Otherwise, it is easy to construct a suitable external field and a
suitable initial condition that give a solution of the hydrodynamic equation which is negative
at some point. For this reason, in the next theorem we only consider polynomials that have
a zero at zero. The case when the mobility is nonnegative in an interval [l, r ] with l > 0 and
σ(l) = σ(r) = 0 can be reduced to a case with the mobility zero at zero with a shift of −l in
the mass on each vertex. However, in the case of a zero range dynamics this situation cannot
happen, because for a nonnegative mobility in a bounded interval [l, r ] we need to have that
the mass on the sites of the lattice stays bounded between the values l < r , but this is not
possible since the rate at which the mass is transferred depends only on the amount of mass
present at the starting site and arbitrarily large values of the mass can be attained. Likewise,
by shifting the mass we can reduce the case when the mobility is positive on [l,+∞) to the
case when the mobility is positive on [0,+∞).

In the sequel we consider therefore P2(ρ) = bρ(ρ + a) as the generic second order
polynomial in (3.14). For the zero range dynamics, from the previous argument, we can
only have b > 0 and a ≥ 0. We will denote the generalized binomial coefficient by(
r

k

)
= r(r − 1) · · · (r − k + 1)

k! , with r ∈ R and k ∈ N and the Euler gamma function

by �(z) = ∫ +∞
0 t z−1e−t dt .

Remark 4.1 In the following Theoremwe characterize g and S as measures; in the absolutely
continuous case the rates (2.15) are absolutely continuous and obtained by the ratio of the
densities, in the atomic case the mass is quantized and only integer multiple of the mass Ma
(to be defined in the next Theorem) may jump. In this case the rates (2.15) are atomic and the
weight associated to the rate of jMa, j ∈ N is given by the products of the corresponding
weights for the measures g and S, as will be specified in (4.11).

Theorem 4.2 Consider a zero range model whose rates and invariant measures are deter-
mined by the functions g and S as in Examples 2.5 and 2.7. We have the following:

(1) Given a ≥ 0 and b, c > 0, we have that D(ρ) = c and σ(ρ) = bρ(ρ + a) if and only
if one of the possible two cases happen. 1A) The first case is when a > 0; in this case g
and S are atomic measures and

g = Re−aK
∞∑
j=0

∣∣∣∣∣
(− 1

M

j

)∣∣∣∣∣ e−KMajδ(x − Maj)

with

S = c2

b

∞∑
j=1

e−KMaj

j
δ(x − Maj),

for some arbitrary R, K ∈ R
+ and M = b

c .
1B) The second case is when a = 0 and then

g(x) = Rx
1−M
M e−Kx

�(1/M)
,
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with

S(x) = be−Kx

M�(2)x
,

for some arbitrary R, K ∈ R
+ and M = b

c .
(2) Given c ∈ R we have that D(ρ) = cσ ′(ρ) if and only if

S(dx) = 2Kc2δ

(
x − 1

2c

)
,

for some K ∈ R
+; while instead g is arbitrary.

Proof We first prove item 1). By (4.1) and (4.2), in order to have D(ρ) = c and σ(ρ) =
bρ(ρ + a), the following conditions have to be satisfied⎧⎨

⎩
∫ ∞

0
S(y)y2eλ(ρ)ydy = bρ(ρ + a),

bρ(ρ + a)λ′(ρ) = c.
(4.3)

By the second equation in (4.3) we get

λ′(ρ) = c

bρ(ρ + a)
. (4.4)

By solving (4.4) we get the following expression for λ(ρ)

λ(ρ) =
{

c
ab log

(
ρ

ρ+a

)
+ K a > 0,

− c
bρ + K a = 0,

for some K ∈ R. Therefore if we call M = b
c its inverse function is

ρ(λ) =
{

aeMaλ

eMaK−eMaλ , a > 0
1

M(K−λ)
a = 0.

(4.5)

Since ρ(λ) = d

dλ
(log Z(λ)), integrating we have

Z(λ) =
⎧⎨
⎩

R exp
(∫ aeMaλ

eMaK−eMaλ dλ
)

, a > 0,
R

(K−λ)
1
M

, a = 0,

for some constant R ∈ R
+.

Let us first discuss the case 1A) when a > 0. By defining y := eMaλ we get

Z(λ) = R exp

(
1

M

∫
1

eMaK − y
dy

)

= R exp

(
− 1

M
log(eMaK − y)

)

= R

(eMaK − eMaλ)
1
M

. (4.6)

By the definition of Z(λ), relation (4.6) is equivalent to∫ ∞

0
g(x)eλxdx = R

(eMaK − eMaλ)
1
M

. (4.7)
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Therefore we obtain that g(x) has to be the inverse Laplace’s transform of the right hand side
of (4.7). Since

R

(eMaK − eMaλ)
1
M

= Re−Ka
∞∑
j=0

∣∣∣∣∣
(− 1

M

j

)∣∣∣∣∣ eMa(λ−K ) j , (4.8)

we get that g satisfies (4.7) if and only if it is an atomic measure and

g(dx) = Re−aK
∞∑
j=0

∣∣∣∣∣
(− 1

M

j

)∣∣∣∣∣ e−KMajδ
(
x − Maj

)
.

Moreover, replacing the first relation in (4.5) into the first equality of the system (4.3), we
get

∫ ∞

0
S(y)y2eλydy = a2b

eMaK eMaλ

(eMaK − eMaλ)2

= a2beMaK eMaλ
∞∑
j=0

∣∣∣∣
(−2

j

)∣∣∣∣ eMaλ j e−MaK (2+ j), (4.9)

which implies that the unique measure that satisfies (4.9) is the inverse Laplace’s transform
of the right hand side of (4.9), which means

S(dx) = b

M2

∞∑
j=1

1

j
e−MaK jδ

(
x − Maj

)
,

where we used the identity
∣∣∣( −2

j−1

)∣∣∣ = j , j ≥ 1.

We consider now the case 1B), that is a = 0. We obtain that
∫ +∞

0
g(x)eλxdx = R

(K − λ)
1
M

,

and the inverse Laplace transform of the right hand side of the above formula can be computed
and it is given by

g(x) = Rx
1−M
M e−Kx

�(1/M)
.

Considering the first equation in (4.3) with a = 0 and the second equation in (4.5) we obtain
∫ +∞

0
S(y)y2eλydy = b

M(K − λ)2
,

and again the inverse laplace transform can be computed and gives

S(x) = be−Kx

M�(2)x
.

In both cases the inverse Laplace transforms are corresponding to classic cases and can be
found on textbooks.

We now prove item 2). By (4.2), it holds that D(ρ) = cσ ′(ρ) if and only if

d

dρ
(log σ(ρ)) = 1

c
λ′(ρ).
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Therefore

σ(ρ) = Ke
λ(ρ)
c , (4.10)

for some constant K ∈ R
+. By (4.1) and (4.10) we get

∫ ∞

0
S(d j) j2eλ(ρ) j d j = Ke

λ(ρ)
c

which implies

S(dx) = Kc2δ

(
x − 1

c

)
.

Since λ(ρ) is arbitrary the function g is arbitrary too. 
�

Remark 4.3 We observe that it is not possible to construct a zero range dynamics in which the
mobility is equal to a constant K ∈ R. Indeed, by (4.1), the condition σ(ρ) = K is satisfied
either if λ(ρ) is constant or if S(dx) = δ(x) is a delta measure at zero. In both cases we have
trivial dynamics.

Recall the identities
(x
y

) = �(x+1)
�(y+1)�(x−y+1) and

�(s−a+1)
�(s−b+1) = (−1)b−a �(b−s)

�(a−s) .
Item 1A) in Theorem 4.2 identifies a class of discrete zero range models that are integrable
in the sense described in Sect. 3.3. The mass is quantized and only a multiple of the mass Ma
can jump in a single step. Starting initially with masses that are multiple of Ma this property
is preserved therefore in time. By formula (2.15) we have that the rate at which a mass equal
to Maj , j ∈ N is jumping from one site containing a mass equal to η(x)Ma, to a nearest
neighbor site is given by

Q(η(x)Ma, jMa) = �
(
η(x) − j + 1

M

)
� (η(x) + 1)

�
(
η(x) + 1

M

)
� (η(x) − j + 1)

c2

bj
, 1 ≤ j ≤ η(x). (4.11)

As a special case, we consider c = 1/(2s), b = 1/(4s2), a = 2s for a suitable parameter
s > 0 so that M = 1/(2s). We obtain that the mass that can jump must be an integer number
(so that we have particles with unitary mass jumping) with the rate (4.11) becoming

Q(η(x), j) = � (η(x) − j + 2s) � (η(x) + 1)

� (η(x) + 2s) � (η(x) − j + 1)

1

j
, 1 ≤ j ≤ η(x), (4.12)

where η(x) and j are integers. Formula (4.12) gives the same rates considered in [27] where
the authors obtain a boundary driven interacting particle system that consists of a finite chain
of N sites connected at its endpoints to two reservoirs and whose non-equilibrium steady
state has a closed form [8, 9, 27]. Hence, our result shows that the models in [27] are, modulo
generalization to non integer mass jumping, the only discrete zero range dynamics that have
the macroscopic integrability in Sect. 3.3 of the stationary non equilibrium state.

Remark 4.4 Note that, even if we constructed a large class of models, depending on several
parameters, we can without loss of generality restrict to the case of particles having unitary
mass. Indeed given a particle system with particles of unitary mass, we can construct in a
trivial way another system with particles of mass μ just by considering the same jumping
rate related to the number of particles, and changing the mass. Using the formulas for the
transport coefficients we can directly check that the new transport coefficients Dμ, σμ are
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related to the unitary one by the relation
⎧⎨
⎩

Dμ(ρ) = D
(

ρ
μ

)
,

σμ(ρ) = μ2σ
(

ρ
μ

)
.

(4.13)

The integrability conditions are preserved inside the class of all thosemodels obtained varying
μ. Since the rates (4.11), once fixed the constants, depend only on the occupation numbers
η(x) and j we have that all models in 1A) are naturally obtained in this way. For this reason,
in the sequel we will mainly consider the discrete unitary case.

Item 1B) identifies instead a class of solvable zero range dynamics with a continuous
distribution of themass flowing. Indeed recalling (2.15)we obtainmacroscopically integrable
zero range models with rates of jump given by

Q(η(x), j) = b

M�(2)

1

j

(
1 − j

η(x)

) 1−M
M ;

the construction and definition of models with these rates is delicate and we do not discuss
here.

Finally item 2) gives models that even if considered in contact with reservoirs have a large
deviations rate functional for the invariant measure that is local, i.e., there are no long range
correlations. The result of our Theorem is that this situation may happen only if we have
a classic zero range model in which the mass can take values that are multiple of a fixed
amount and at each jump of the process just one particle can jump.

5 Other Examples

In this section we briefly discuss some integrable models beyond the zero range case. A
more general treatment is possible but it would require a much longer discussion that it is
not possible to insert here.

5.1 Generalized KMPModels

We start with a class of models that are gradient and reversible with respect to the measure
(2.1) when the function g(ζ ) is constant, say 1, and for which the integrability conditions of
Sect. 3.3 hold. In the continuous case we have therefore exponential invariant measures while
in the discrete case we obtain geometric distributions. Furthermore, in view of Remark 4.4,
for the discrete case we consider models for which the elementary unit of mass that may
jump is one. This is because of the validity of the transformation (4.13). Note also that both
properties (3.15) and (3.14) are preserved by this transformation.

Example 5.1 (Generalized discrete KMP model) We discuss now a particular case of Exam-
ple 2.10. Let us fix k > 0 and c ∈ R such that k − |c|

2 ≥ 0 and consider the case in which

the rate R(ζ, j) is defined as in (2.18) when h( j) = k and A (ζ, a) = ca

ζ + 1
which is a

generalized version of the discrete KMP model that is obtained when k = 1
2 and c = 1. By

a direct computation, distinguishing several cases, we have that the condition k − |c|
2 ≥ 0
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guarantees that

inf
ζ1,ζ2∈N

inf
j∈[−ζ2,ζ1]

R(ζ1, ζ2, j) ≥ 0.

By Example 2.10 we know that the gradient and the reversibility conditions are satisfied.
The instantaneous current is given by

jη(x, y) =
η(x)∑
j=1

j R (η(x), η(y), j) −
η(y)∑
j=1

j R (η(y), η(x), j)

= k(η(x) − η(y)).

When the function g is constant and the measure defined in (2.1) is atomic, the normalization
factor is Z(λ) = ∑∞

ζ=0 e
λζ = 1

1−eλ and the density: ρ(λ) = eλ

1−eλ . Therefore, its inverse

function is λ(ρ) = log ρ
1+ρ

. The marginal of the measure gλ, written in terms of ρ, has the
following expression:

gλ(ρ)(ζ ) =
(

ρ

ρ + 1

)ζ 1

ρ + 1
. (5.1)

By definition of λ(ρ) we have that

D̂(ρ) = Egλ(ρ)
(kζ ) = kρ.

Therefore, D(ρ) = d
dρ

D̂(ρ) = k, while the mobility coefficient is given by

σ(ρ) =1

2
Egλ(ρ)⊗gλ(ρ)

⎛
⎝ ζ1∑

j=−ζ2

j2R (ζ1, ζ2, j)

⎞
⎠ . (5.2)

Observe that

ζ1∑
j=−ζ2

j2R (ζ1, ζ2, j) =
ζ1∑
j=0

j2R (ζ1, ζ2, j) +
ζ2∑
j=0

j2R (ζ1, ζ2, j)

=
ζ1∑
j=0

(
k − c

2

)
j +

ζ1∑
j=0

c

ζ1 + ζ2 + 1
j2

+
ζ2∑
j=0

(
k − c

2

)
j +

ζ2∑
j=0

c

ζ1 + ζ2 + 1
j2

=
(
k − c

2

) (
ζ1(ζ1 + 1)

2
+ ζ2(ζ2 + 1)

2

)

+ c

ζ1 + ζ2 + 1

(
ζ1(ζ1 + 1)(2ζ1 + 1)

6
+ ζ2(ζ2 + 1)(2ζ2 + 1)

6

)
.

Since

ζ1(ζ1 + 1)(2ζ1 + 1)

6
+ ζ2(ζ2 + 1)(2ζ2 + 1)

6
=1

3
(ζ1 + ζ2 + 1)

(
ζ 2
1 + ζ 2

2 − ζ1ζ2
)

+ 1

6
(ζ1 + ζ2 + 1)2 − 1

6
(ζ1 + ζ2 + 1) ,
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we get that

ζ1∑
j=−ζ2

j2R (ζ1, ζ2, j) =
(
k − c

2

) (
ζ1(ζ1 + 1)

2
+ ζ2(ζ2 + 1)

2

)

+ c

3

(
ζ 2
1 + ζ 2

2 − ζ1ζ2
) + c

6
(ζ1 + ζ2 + 1) − c

6

=
(
k

2
+ c

12

) (
ζ 2
1 + ζ 2

2

) +
(
k

2
− c

12

)
(ζ1 + ζ2) − c

3
ζ1ζ2.

By (5.2) and (5.1), we get

σ(ρ) = 1

2(ρ + 1)2

∞∑
ζ1=0

∞∑
ζ2=0

(
k

2
+ c

12

) (
ζ 2
1 + ζ 2

2

) (
ρ

ρ + 1

)ζ1+ζ2

+ 1

2(ρ + 1)2

∞∑
ζ1=0

∞∑
ζ2=0

(
k

2
− c

12

)
(ζ1 + ζ2)

(
ρ

ρ + 1

)ζ1+ζ2

− 1

2(ρ + 1)2

∞∑
ζ1=0

∞∑
ζ2=0

c

3
ζ1ζ2

(
ρ

ρ + 1

)ζ1+ζ2

.

Since, for all λ ∈ (0, 1), it holds that

∞∑
ζ1=0

∞∑
ζ2=0

ζ 2
1 λζ1+ζ2 = 2λ2

(1 − λ)4
+ λ

(1 − λ)3
,

∞∑
ζ1=0

∞∑
ζ2=0

ζ1λ
ζ1+ζ2 = λ

(1 − λ)3
,

∞∑
ζ1=0

ζ1λ
ζ1 = λ

(1 − λ)2
,

we get

σ(ρ) = 1

(ρ + 1)2

(
k

2
+ c

12

) (
2(ρ + 1)2ρ2 + (ρ + 1)2ρ

)

+ 1

(ρ + 1)2

(
k

2
− c

12

)
(ρ + 1)2ρ − 1

(ρ + 1)2
c

3
(ρ + 1)2ρ2

= k(ρ2 + ρ).

Example 5.2 (Generalized continuous KMP model) We discuss now a continuous version of
the previous example. In the exponential case in which the measure gλ(dζ ) defined in (2.1)
is absolutely continuous with respect to the Lesbegue measure and g(ζ ) = 1, we compute
the normalization factor Z(λ) = ∫ ∞

0 eλζ dζ = −1
λ
, λ < 0, and the density ρ(λ) = − 1

λ
. Its

inverse function is λ(ρ) = −1
ρ

and the marginal of the measure gλ, written in terms of ρ, has
the following expression

gλ(ρ)(dζ ) = 1

ρ
e− ζ

ρ dζ.
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We fix k ∈ R
+ and c ∈ R such that k − |c|

2 ≥ 0 and consider the case in which h( j) = k
and A (s, y) = cy

s . Therefore, ∀ j > 0,

R (ζ, j) = k

j
+ c

j (ζ1 + ζ2)

(
j − ζ1 + ζ2

2

)
=

(
k − c

2

) 1

j
+ c

ζ1 + ζ2
.

Observe that the KMP is obtained for k = 1
2 and c = 1. Condition k− |c|

2 ≥ 0 guarantees that
inf

ζ1≥0,ζ2≥0
inf

j∈[−ζ2,ζ1]
R(ζ1, ζ2, j) ≥ 0. By Example 2.9 we know that the dynamics is gradient

and reversible with respect to the measure gλ(dζ ). The instantaneous current is given by

jη(x, y) =
∫ η(x)

−η(y)
j R (η(x), η(y), j) d j = kη(x) − kη(y) .

By (3.8) the coefficient D̂(ρ) = Egλ(ρ)
(kζ ) = kρ and therefore D(ρ) = d

dρ
D̂(ρ) = k,

while the mobility coefficient is given by

σ(ρ) = 1

2
Egλ(ρ)⊗gλ(ρ)

(∫ ζ1

−ζ2

R(ζ, j) j2d j

)
.

Observe that∫ ζ1

−ζ2

R(ζ, j) j2d j =
∫ ζ1

0

(
k − c

2

)
j d j −

∫ 0

−ζ2

(
k − c

2

)
jd j +

∫ ζ1

−ζ2

cj2

ζ1 + ζ2
d j

=
(
k − c

2

) (
ζ 2
1

2
+ ζ 2

2

2

)
+ c

3(ζ1 + ζ2)

(
ζ 3
1 + ζ 3

2

)

=
(
k − c

2

) (
ζ 2
1

2
+ ζ 2

2

2

)
+ c

3

(
ζ 2
1 + ζ 2

2 − ζ1ζ2
)

Therefore

σ(ρ) = 1

2

(
k

2
+ c

12

) ∫ ∞

0

∫ ∞

0

(
ζ 2
1 + ζ 2

2

) e− ζ1+ζ2
ρ

ρ2 dζ1dζ2

− c

6

∫ ∞

0

∫ ∞

0
ζ1ζ2

e− ζ1+ζ2
ρ

ρ2 dζ1dζ2

= 1

2

(
k − c

6

)
ρ2.

We remark once again that the structure of the fluctuations for the abovemodel is not straight-
forward since we are in a case on which the total rate of jump across a bond is infinite so that
the general theory for classic particle systems cannot be applied directly.

5.2 Misanthrope Type Process

We briefly consider some cases of the models in Sect. 2.8. We consider rates of the form
(2.26); substituting in (2.23) we obtain that H(ζ ) = − k

Ŝ(ζ )
and we recall also that g = Ŝ.

Let us call m1(λ) = ∫ ∞
0 S( j) jeλ j d j and m2(λ) = ∫ ∞

0 S( j) j2eλ j d j . Considering λ < 0 we
have

Z(λ) =
∫ ∞

0
Ŝ(ζ )eλζ dζ = −1

λ

∫ ∞

0
S( j) jeλ j d j = −m1(λ)

λ
.
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Applying formulas of Sect. 3, the mobility coefficient is given by:

σ(ρ) = 1

2
Egλ(ρ)⊗gλ(ρ)

(∫ ζ1

−ζ2

R(ζ1, ζ2, j) j
2d j

)

= k
∫ ∞

0

∫ ζ1

0
S( j) j2

eλζ1

Z(λ)

(∫ ∞

0

eλζ2

Z(λ)
dζ2

)
d jdζ1

= k
−1

λZ(λ)

∫ ∞

0
S( j) j2

(∫ ∞

j

eλζ1

Z(λ)
dζ1

)
d j

= k
1

(λZ(λ))2

∫ ∞

0
S( j) j2eλ j d j,

= m2(λ)

m1(λ)2
,

where λ = λ(ρ). Similarly, for the diffusion coefficient we have:

D̂(ρ) = Egλ(ρ)
(h(η)) = −k

∫ ∞

0

eλζ

Z(λ)
dζ = k

λZ(λ)
= − k

m1(λ)
.

The validity of the Einstein relation (3.13) follows directly since we have D̂ = G(m1) and
σ = G ′(m1)m2 where G is the function G(x) = −k/x . For the zero range dynamics we
have the same mechanism but G(x) = x .

In this casewemay have a confinement of themass in a bounded interval and consequently
we may have integrable models with a quadratic but concave mobility. Therefore, we have to
consider, in addition to the polynomials considered in Theorem 4.2, also the case on which
the parameters a, b are negative. The analysis of the second formula in (4.3) in Theorem 4.2
does not depend on the specific model and can be done also in this case. We have however
now that the expansion (4.8) is a finite one in the case that −1/M ∈ N; this corresponds
to models that have a threshold in the number of particles, like for example the exclusion
process. We do not discuss a complete characterization that it is difficult in this case.
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