
Department of Information Engineering, Computer Science
and Mathematics

Ph.D. Program in Information and Communication Technology

Curriculum: Emerging computing models, software architectures, and intelligent

systems

XXXV cycle

This dissertation is submitted for the degree of
Doctor of Philosophy

Low-Code Engineering for the Internet of Things

SSD INF/01

Supervisor

Prof. Davide Di Ruscio

Co-Supervisors

Prof. Alfonso Pierantonio
Dott. Simone Gianfranceschi

Doctoral Program Supervisor

Prof. Vittorio Cortellessa

Doctoral Dissertation of:

Jean Felicien Ihirwe

A.Y. 2021/2022

ACKNOWLEDGMENT

First and foremost, I would like to express my heartfelt gratitude to my supervisor, Prof. Davide Di
Ruscio, for his unwavering support from the beginning to the finish of my doctorate studies. Your
insights and expertise have been invaluable in shaping my ideas and strengthening my technical, re-
search, and writing skills. I want also to express my most sincere appreciation to my co-supervisors
Prof. Alfonso Pierantonio and Simone Gianfranceschi for your effort and the trust you have invested
in helping me reach this milestone.

I’d like to express my gratitude to Prof. Andrea Polini and Prof. Gerson Sunyé for carefully reading
the preliminary version of this thesis and providing helpful comments and recommendations. I also
thank the entire Lowcomote supervisory board for their feedback and constructive criticism, which
has helped me to reshape my thoughts. I recognize and appreciate the whole Intecs Solution com-
munity for providing me with a friendly and supportive atmosphere, especially Silvia Mazzini for his
continuous support even after she retired. I would also want to thank Prof. Eric Umuhoza for his guid-
ance and encouragement even before the beginning of this adventure till the end, all of my colleagues
and friends from the Lowcomote community, the DISIM department colleagues at the University of
L’Aquila, and my friends.

I’d like to extend my sincere tribute to my mother for her continuous encouragement and counsel
toward my greater success. Finally, my special thanks goes to my girlfriend, entire family, especially
my siblings, who have believed in me and always encouraged me to go for it.

This project has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant agreement No 813884

Less expectation, more exploration
and trust.

Abstract

The Internet of Things (IoT) technologies are often seen as the main drivers of the current tech-
nological revolution, which devotes the most priority to improving the well-being of humanity. IoT is
typically regarded as a powerful network of systems that integrates several heterogeneous and inde-
pendently networked devices working together to achieve a shared purpose. Engineering such systems
requires efficient tools to deal with the intrinsic complexities while offering means to increase system
reliability by limiting future repair costs. Low-Code Development Platforms (LCDPs) unravel the
opportunities to advance the simplicity of how new applications are developed in different business
application domains. However, in the IoT domain, systems are complex, multi-layered, and highly
heterogeneous in all aspects, not to mention the large amount of data being collected and processed
concurrently. Even though there is a convenient push toward coping with such complexities, there
still needs to be a massive gap regarding the actual development techniques that support early sys-
tem analysis, deployment, and run-time management. Low-Code Engineering (LCE), on the other
hand, aims to tackle such issues by extending the development knowledge present in LCDPs to a more
sophisticated era of "Low-Code Engineering Platforms (LCEPs)" by injecting into it the theoretical
and technical concepts present in Model-Driven Engineering (MDE), Cloud Computing, and Machine
Learning. These platforms target more sophisticated domains such as IoT, industrial automation, data
science, recommender systems, etc. This dissertation addresses such challenges by first presenting
the current state of the art of Low-Code Engineering Platforms (LCEPs), which gives a better un-
derstanding of what LCEPs are and their differences with respect to existing LCDPs, particularly in
the IoT domain. We also highlight how MDE plays a significant role in the LCE’s evolution. Then,
we examine the current limitations, open challenges, and opportunities of existing IoT Engineering
platforms in realizing such an initiative. While evaluating the quality of such complex platforms could
be challenging, we propose the software product quality model for evaluating the static and dynamic
quality properties of such engineering platforms.

The complexity behind the automated realization of IoT systems can be extremely daunting. One
efficient approach is to adopt Domain-Specific Languages (DSLs). DSLs are tailored to the specific
domain to pave the way for the domain experts to define the system’s behavior based on their exper-
tise. This dissertation presents CHESSIoT, a platform that integrates high-level visual DSLs, software
development, safety analysis, and deployment mechanisms for engineering multi-layered IoT systems.
With CHESSIoT, users may conduct various engineering tasks on system and software models to en-
able earlier decision-making. This is achieved in a unique environment that combines multi-staged
designs, most notably the system-level, functional, and deployment architectures. The physical archi-
tecture specifically contains the high-level system building blocks and their interconnections suitable
to perform both early qualitative and quantitative safety analysis by employing logical Fault-Trees
(FTs). On the other hand, the software model is equipped with the system’s functional behavior
suitable for generating platform-specific code ready to be deployed on low-level IoT device nodes.
Additionally, the framework supports modeling of the system’s deployment, which would ultimately
be used to generate deployment artifacts. To facilitate run-time management of deployed services, the
tool offers means for defining run-time service provisioning modules through which deployment rules
are defined and configured. To demonstrate the effectiveness of our proposed approach, throughout
this dissertation, different comparative assessment was conducted to highlight the potential contribu-
tion of our approach in relation to existing approaches. Finally, we used the implications from the
conducted research studies as well as experiments from running examples to tackle potential research
questions as well as demonstrate the capabilities of our supporting tool.

Keywords: Low-Code Developments Platform, Low-Code Engineering Platform, Model-Driven
Engineering, Internet of Things, System modeling, Safety analysis, Code generation, System Deploy-
ment.

Contents

Abstract iii

List of Figures ix

List of Tables xi

List of Listings xii

1 Introduction 1
1.1 Challenges and motivation . 2
1.2 Main achieved research and technological results 4
1.3 Structure of the dissertation . 6

2 Background 7
2.1 The Internet of Things . 7

2.1.1 IoT system architecture . 7
2.1.2 Safety Critical Systems . 9

2.2 Model-Driven Engineering . 10
2.2.1 Domain Specific Languages in IoT . 11
2.2.2 MDE for IoT reference model . 12
2.2.3 Model-Based Safety Analysis . 13

2.3 Low-Code Engineering . 14
2.3.1 Low-Code Development Platforms . 15
2.3.2 Low-Code Engineering Platforms . 16

2.4 CHESS environment . 18
2.4.1 CHESS in nutshell . 19
2.4.2 Supported Model-based Analysis . 24
2.4.3 Related tools . 30
2.4.4 Conclusions . 31

3 IoT Engineering Platforms: a state of the art 32
3.1 Low-Code Development Platforms for IoT . 32

3.1.1 General-purpose LCDPs for supporting IoT applications development 32
3.1.2 IoT specific LCDPs for system modeling and development 34
3.1.3 IoT specific LCDPs for service-oriented applications development 35

3.2 Model-driven design and development of IoT systems 36
3.3 MDE for deployment of IoT systems . 39
3.4 MDE for safety analysis of IoT systems . 41
3.5 Software product quality model for IoT LCEPs . 43

v

4 Limitations and open challenges of existing IoT Engineering Platforms 45
4.1 Engineering IoT platforms . 46

4.1.1 Engineering IoT platforms features . 46
4.1.2 Findings . 48
4.1.3 Limitations . 48
4.1.4 Conclusion . 49

4.2 Cloud-based modeling in IoT domain . 50
4.2.1 Related cloud-based modeling studies . 50
4.2.2 Study design . 51
4.2.3 Findings . 53
4.2.4 Open challenges . 55
4.2.5 Opportunities . 56
4.2.6 Conclusion . 58

5 Assessing the quality of IoT Engineering Platforms 59
5.1 Introduction . 59
5.2 Overview on Software Quality Models . 60
5.3 The product quality model . 61

5.3.1 Functional suitability . 61
5.3.2 Performance efficiency . 62
5.3.3 Compatibility . 62
5.3.4 Reliability . 63
5.3.5 Usability . 63
5.3.6 Security . 63
5.3.7 Maintainability . 64
5.3.8 Portability . 64

5.4 Quality assessment of IoT engineering platforms 64
5.4.1 Selection of the evaluated IoT engineering platforms 64
5.4.2 Research questions . 65
5.4.3 Assessment process . 65

5.5 Assessment results . 66
5.6 Discussion . 69

5.6.1 Model suitability . 69
5.6.2 Model limitations . 70

5.7 Conclusion and Future work . 71

6 CHESSIoT: An approach for engineering multi-layered IoT systems 72
6.1 Introduction . 73
6.2 The CHESSIoT engineering methodology . 74
6.3 Motivating comparative analysis . 75

6.3.1 Selected platforms . 75
6.3.2 IoT modeling support . 76
6.3.3 IoT engineering capabilities . 78

6.4 The CHESSIoT domain specific language . 81
6.4.1 System-level DSL . 81
6.4.2 Software DSL . 82
6.4.3 Deployment metamodel . 84

6.5 Discussion . 86
6.6 Conclusion . 87

7 CHESSIoT safety analysis support for safety-critical IoT systems 88
7.1 Introduction . 89
7.2 Proposed safety analysis approach . 90

7.2.1 Model-based safety analysis process . 90
7.2.2 FPTC Calculus . 91
7.2.3 CHESS2FLA transformation . 92
7.2.4 Fault-Tree generation . 93
7.2.5 Fault-Tree Analysis . 97

7.3 Evaluation process . 101
7.3.1 Evaluation process . 101
7.3.2 Motivating example: Patient Monitoring System (PMS) 101
7.3.3 Research questions . 102

7.4 Experimental results . 103
7.4.1 Short literature review (RQ1) . 103
7.4.2 PMS system modeling (RQ2) . 106
7.4.3 System failure behavior (RQ3) . 107
7.4.4 PMS Fault tree analysis (RQ4) . 110

7.5 Conclusion and future work . 113

8 Supporting for development and deployment of IoT systems with CHESSIoT 115
8.1 Introduction . 116
8.2 Software modeling and development approach . 117

8.2.1 Specification of CHESSIoT software models 118
8.2.2 The CHESSIoT to ThingML transformation 119

8.3 Model-based deployment plan and run-time services provisioning 122
8.3.1 Deployment plan design . 122
8.3.2 Service provisioning design . 124
8.3.3 Deployment artifacts generation . 126

8.4 Case study: Home Automation System (HAS) . 128
8.4.1 HAS modeling and Fault-Tree analysis . 128
8.4.2 Software design and development . 133
8.4.3 Deployment and service provisioning . 138

8.5 Conclusion . 140

9 Conclusion and future work 141
9.1 General contributions . 141
9.2 Publications . 143

9.2.1 Journal papers . 143
9.2.2 Conference papers . 143
9.2.3 Workshop papers . 143
9.2.4 Technical Reports . 144

9.3 Developed tools . 144
9.4 Future Directions . 145

Appendices 147

A Software product quality evaluation questionnaire for IoT LCDP and MDE 147

B Fault-Tree generation 150
B.1 FLA2FT transformation rules . 150
B.2 FT2FT transformation:Qualitative and quantitative analysis 153

C Installing CHESSIoT extension on top of CHESS 159

Bibliography 159

List of Figures

2.1 IoT system building blocks . 8
2.2 IoT conceptual metamodel [1] . 12
2.3 An FT example . 14
2.4 CHESS editor overview . 19
2.5 CHESS views architecture [2] . 21
2.6 Wheel Braking System requirement example . 21
2.7 Wheel Braking System internal block diagram . 22
2.8 Producer-consumer: components implementation modeling 22
2.9 Producer-consumer: extra-functional properties modeling 23
2.10 Producer-consumer: software-to-hardware allocation 23
2.11 Producer-consumer: Schedulability analysis results 25
2.12 Producer-consumer: End-2-end response time analysis results 25
2.13 Example of a FormalProperty formalizing a requirement 26
2.14 Example of a component contract . 26
2.15 State machine modeling faulty behavior . 27
2.16 Process of Security breach . 28
2.17 Erroneous state transition due to security threat event and vulnerability 28
2.18 Example of parameterized architecture . 29
2.19 Trade-off Analysis results sample . 29
2.20 Generated report sample . 30

4.1 Feature diagram representing the top-level variation areas 47
4.2 Search and selection process . 51
4.3 Selected approach distribution . 53
4.4 Accessibility vs Open . 54

5.1 Software Product Quality Model . 62
5.2 Primary studies selection process . 65
5.3 Overview of the selected basic studies . 66
5.4 Quality characteristics support . 68
5.5 Quality sub-characteristics performances . 69
5.6 Average quality sub-characteristics performances 70

6.1 High-level approach . 74
6.2 CHESSIoT System-level metamodel . 81
6.3 CHESSIoT Software Metamodel . 83
6.4 CHESSIoT Deployment Metamodel . 85
6.5 Overall comparative supporting results . 86

7.1 Safety analysis process . 91
7.2 CHESS-FLA meta-model [3] . 93
7.3 FT meta-model [4] . 94
7.4 Event types . 95

ix

7.5 Expression 7.5 corresponding tree . 97
7.6 Qualitative transformation example (a) before, (b) after 100
7.7 Probability calculation formula . 100
7.8 Basic architecture of Patient Monitoring System [5] 102
7.9 Feature support performances . 106
7.10 Patient monitoring system . 107
7.11 PMS components failures rates set . 110
7.12 PMS monitor screen shown no data . 111
7.13 The monitor fails to display data completely on the screen 112
7.14 Alarm sub-system alert false signal . 113

8.1 Software development process . 117
8.2 Behavior event & action relationship . 118
8.3 State and state transition . 119
8.4 High-level transformation steps . 120
8.5 Payload generation process . 121
8.6 State machine generation process snippet . 121
8.7 Deployment design process . 123
8.8 CHESSIoT context model . 124
8.9 Service provisioning metamodel . 125
8.10 Deployment artifact generation (Acceleo) . 127
8.11 Home Automation System . 129
8.12 Home Automation System internal diagram . 130
8.13 Analysis results . 131
8.14 Room-level FT diagram: Window not working (omission at the window output port) . 132
8.15 Room-level FT diagram: ACUnit turn on and off when not expected 133
8.16 System-level FT diagram: Mobile phone displays inaccurate data scenario 134
8.17 Room internal composite structure . 135
8.18 Portion of the Board event, action, guard specification 135
8.19 Board state machine . 136
8.20 Generated ThingML models . 137
8.21 Generated Board’s ThingML model mapped to the state machine diagram 137
8.22 HAS system deployment plan . 138
8.23 Generated deployment configuration Fog . 139
8.24 FogDepAgent rules . 140

List of Tables

4.1 Taxonomy table . 48
4.2 Results table . 52
4.3 Analyzed approaches . 54
4.4 Recommended technologies . 57

5.1 Assessment overview . 67

6.1 Selected approaches for the comparative analysis 76
6.2 Comparative table on supporting different IoT modeling features 77
6.3 Comparative table on supporting different IoT engineering capabilities 79

7.1 Failure types . 92
7.2 Selected approaches . 104
7.3 Results from the studied approaches . 105
7.4 PMS failure behavior table . 109

8.1 CHESSIoT2ThingML transformation mapping . 120
8.2 CHESSIoT2Ansible transformation mapping . 125

xi

List of Listings

7.1 Extended FLA syntax expression . 92
8.1 Run-tine Service provisioning definition example 126
B.1 FLA2FT ETL transformation rules . 150
B.2 FT2FT ETL transformation rules . 153

xii

Chapter 1

Introduction

The current advancement in software engineering is transforming how we live our daily lives by
providing a smoother living experience by automating essential lifestyle tasks. IoT technologies are
one of the critical drivers of such a technological revolution which devotes the most priority to en-
hancing the well-being of humanity. However, because of the competitive challenges imposed by
digitalization, [6], businesses are always looking for innovative approaches that can tackle complex
problems and reduce time to market, as well as the costs associated with development while maintain-
ing the optimum software quality.

A typical IoT system is regarded as a powerful multi-layered network of systems that integrates
many heterogeneous, independently networked systems working together to achieve a shared purpose.
In general, a typical IoT system consists of multiple layers. For instance, at a low level, we have the
edge layer, which is made up of devices and sensors that collect data from the physical world and
communicate it to the next layer. The fog layer serves as an intermediate layer between the edge de-
vices and the cloud, enabling local data processing and decision-making. It can perform various tasks,
including data filtering, aggregation, analytics, and even running certain applications locally. Finally,
the cloud layer is a centralized repository where data from all devices is stored and analyzed. This
layer can also include services such as data storage, analysis, and management. Such systems de-
mand various development skills, from handling tiny microcontrollers to more extensive and complex
cloud-based systems. Each layer is crucial to enable the system to operate efficiently and offer users
valuable insights and automation capabilities [7].

Engineering such systems is challenging and complex primarily due to the ever-increasing hetero-
geneity in every aspect that needs to be combined to fully produce a well-sensed and functional system
[8]. Model-Driven Engineering (MDE) seeks to support the automation of the software development
process by employing models as the primary artifact in the development of complex systems. Through
high-level abstractions, MDE can provide a unique means for representing many aspects of heteroge-
neous systems all in one place thanks to modeling languages, specifically Domain-Specific Modeling
Languages (DSMLs). Tackling such heterogeneity is essential to look at every system sub-component
as a black box, where both the physical characteristics and the software that manages them are highly
linked [9]. These sub-systems can be designed, developed, tested, and analyzed independently, and
later they can be integrated to form a fully functioning system.

Cloud-based modeling is one of the relevant topics in the MDE community due to the induced
possibilities of designing, developing, analyzing, and deploying applications seemingly with reduced
efforts. This has also been recently favored by the increasing adoption of Low-Code Development
Platforms (LCDPs). LCDPs aim to tackle the shortage of highly skilled professional software de-
velopers by enabling end-users with no or limited programming background (referred to as citizen
developers in LCDP terminology) to contribute to software development processes without sacrificing
the productivity of professional developers [10]. LCDPs have been especially successful in develop-
ing domain-specific applications in four market segments: database applications, mobile applications,

1

1.1. Challenges and motivation

process applications, and request-handling applications [11]. IoT is expected to be the fifth one . Low-
comote project [11] aims to push advancement in LCDP to a more technical and sophisticated era of
"Low-Code Engineering (LCE)" by employing the concrete basic engineering principles in the mod-
eling world. The merge of MDE, Cloud computing, and Machine Learning techniques will do this.
Ideally, domain-specific LCDPs have to run on cloud infrastructures, even though in some industrial
settings such as IoT, domain-specific modeling environment tends to be local-based [12].

This dissertation presents the current state of research on MDE approaches for IoT by taking a
particular account of LCDPs. We present the results from a taxonomy and the findings that have been
done by analyzing sixteen IoT development platforms. In addition, we looked at what has been done so
far in the IoT domain to support IoT systems’ development through cloud-based settings. In particular,
we conducted a thorough investigation to see where the IoT community stands concerning the current
trend of moving traditional modeling infrastructures to the cloud. After examining 611 articles, we
identified 22 different cloud-based IoT system development tools and platforms. Furthermore, we
perform an analysis of the various issues that the IoT community is encountering while implementing
cloud-based modeling tools. As a result, we take a deeper look at a few options and discuss the
research and development opportunities enabled by adopting LCE approaches in the IoT domain [13].

Deciding whether such engineering platforms meet the minimum required software quality stan-
dards is complex. Software quality can be defined as the degree to which a software system achieves its
intended goal. Various software quality standards have been established to aid in the software quality
assessment process; however, due to the nature of engineering IoT platforms, such models may only
partially suit the IoT domain. This dissertation presents a model for assessing the software quality of
Low-Code and MDE platforms for engineering IoT platforms. The proposed software quality model
is based on and extends the ISO/IEC 25010:2011 [14] software product quality model standard. It is
intended to assist IoT practitioners in assessing and establishing quality requirements for engineering
IoT platforms. We have also presented the methodology used to choose such platforms and perform
the quality assessment while subsequently presenting and discussing the results.

MDE tools have proven potential to provide significant benefits in the development of complex
systems [15, 16]. However, as the complexity of the systems grows, MDE tools will need to handle
large-scale models, which can be computationally expensive and may lead to scalability issues. Con-
sidering the heterogeneity in all aspects of IoT systems, MDE tools need to provide a way to integrate
these diverse components and ensure interoperability [8]. Additionally, the dynamic nature of IoT
systems, where devices can join or leave the network at any time, poses another challenge for MDE
tools. The models need to be adaptive to changes and allow for the efficient reconfiguration of the
system [9]. Furthermore, deploying IoT systems can be challenging, as they often operate in highly
distributed and complex environments. Therefore, MDE tools must provide mechanisms for deploy-
ing and managing the system components in a scalable and efficient way [17]. This includes automatic
deployment of software updates, efficient management of resources, and monitoring of the system’s
performance.

1.1 Challenges and motivation

While engineering IoT systems has been subject of intense research, several challenges are still
present in the IoT domain. In this section, we highlight different research problems (RP) that is being
tackled in this thesis.

1. RP1: Low-Code Engineering Platforms and their usage in engineering IoT systems

While the complexity of implementing IoT systems is enormous in all aspects, the current tech-
nical demand provides significant obstacles to better software development techniques that re-
duce developer issues. The recent Low-code practices for developing software remain a highly
debated topic regarding the degree to which such approaches can be used and the level at which
they can satisfy user expectations in developing complex software in fields such as IoT. With the

Jean Felicien Ihirwe 2

1.1. Challenges and motivation

rapid increase of intelligence on how traditional code-centric software development is done in
domains such as IoT, enabling Low-code approaches applied in such domains could contribute
toward better software production yield. Understanding what Low-Code Engineering Platforms
are and their difference with respect to existing Low-Code Development Platforms remains a
work in progress within the software engineering industry. Taking LCDPs from a systems en-
gineering standpoint and industrial automation provides a good picture of what LCEP could be
and achieve if made a reality.

2. RP2: Evaluating the software quality of Low-Code Engineering Platforms

Over the last few years, industry and academia have proposed different LCDPs to ease the
development process of IoT systems. However, deciding whether those platforms meet the
crucial software quality standards is a complex process as it involves considering and exploring
various aspects. In general, in domains such as System engineering, Space, and Automation,
practitioners typically rely on well-established standards and practices to improve confidence
in whether a system or a product fulfils the required quality requirements. For example, in the
past, the ISO/IEC 25010:2011 standard has been adopted to assess not only the product quality
of IoT systems [18–20] but also in domains such as Big data [21], Machine Learning [22],
Software Product Lines (SPL) [23], Customer Relationship Management (CRM) systems [24]
and mobile apps [25], to mention a few. However, when it comes to IoT in general, taking
Low-code and MDE tools in particular, there still needs to be a massive gap in what to consider
when evaluating their software product quality attributes.

3. RP3: Supporting modeling of multi-layered IoT systems

There are several challenges in modeling multi-layered IoT systems. One of the main challenges
is the system’s complexity, which can involve many interconnected components, each with its
own set of characteristics and behaviors [26]. This can make it challenging to develop a com-
prehensive model that captures all of the relevant factors that influence the functional and be-
havioral aspects of the system. In addition, the dynamic nature of the IoT system, with devices
and applications constantly changing and evolving, further complicates the process. Another
ongoing challenge is the need to integrate diverse technologies and standards across different
system layers [27]. For example, the device layer may use different communication protocols
than the fog layer; on the cloud, the application layer may require more data formats than the
computing layer. Modeling these different technologies and standards seamlessly and efficiently
can be difficult and may require specialized knowledge and expertise in various areas, includ-
ing networking, software development, and data analytics. Few of the existing model-driven
approaches have tackled such issues however, being able to achieve such a modeling task and at
the same time offering means to perform other crucial engineering tasks on the model is still an
open issue.

4. RP4: Providing means for performing safety analysis of IoT systems

A significant challenge to be recognized in IoT ecosystems is how to provide a reliable infras-
tructure for the billions of expected devices and how to deliver their intended services without
failing in unexpected and catastrophic ways [28]. Aside from the inherent difficulties in realiz-
ing multi-layered IoT applications systems, software developers often make the false assump-
tions that devices will always succeed [29]. Indeed, IoT systems might fail for a wide range
of reasons: device age, data sources, communication protocols, deployment environments, and
human errors. In the past, safety engineers relied on different informal design artifacts and
documents to measure the safety compliance of the system with less or no involvement of sys-
tem engineers. Later, several approaches, such as [4, 30–33] (to mention a few), have emerged
in the field by providing a tool that adds a degree of automation during the analysis process,
bridging the gap between the system and safety engineers. However, these approaches were
designed and developed to fit mostly the legacy domains such as aerospace, automotive, and

Jean Felicien Ihirwe 3

1.2. Main achieved research and technological results

industrial manufacturing systems. Therefore, such methods might partially reflect IoT. Thus,
providing foundational concepts and approaches to support the IoT safety process to cope with
the complex nature present in IoT ecosystems can potentially contribute to tackling such gap
[34].

5. RP5: Supporting the development and deployment of IoT systems across multiple layers
The development and deployment of IoT systems require a multi-disciplinary approach that
considers the system’s hardware, software, and communication aspects. By carefully consider-
ing each layer and selecting the appropriate technologies and tools, developers can build robust,
scalable, and secure IoT systems that meet the needs of today’s businesses and consumers.
MDE has shown capabilities to tame some of the complex problems found in software engi-
neering through abstraction. To increase productivity and reduce time to market, models are
defined with concepts that are much less bound to their underlying implementation technology
and much closer to the problem domain of interest [35]. However, due to the inherent complex-
ity and heterogeneity present in the IoT domain, engineering platforms such as MDE4IoT [36],
ThingML [37], IoTML/BRAIN-IoT [38, 39], SimulateIoT [40] and Montithings [17] (to name
a few), have demonstrated the potential to be realistic alternatives for developing scalable IoT
systems leveraging MDE approaches. While that is the case, finding a platform capable of fully
engineering such systems by integrating modeling, software development, system analysis, and
deployment becomes challenging.

To tackle the challenges mentioned above, we present the CHESSIoT framework, an environment
for engineering IoT systems. CHESSIoT brings a unique possibility to the user to perform the mod-
eling, development, safety analysis, and deployment of multi-layered IoT systems, all from a unique
environment. This is achieved through multi-view models, most notably the physical, functional, and
deployment architectures. The physical system-level model is annotated with Failure Logic behaviors
in which the analysis results are used to perform both qualitative and quantitative safety analysis by
employing logical Fault-Trees models (FTs) [41] On the other hand, the software model is equipped
with the system’s functional and behavioral aspects, and it is employed to generate platform-specific
code that can be deployed on low-level IoT device nodes. Furthermore, the framework supports mod-
eling of the system’s deployment plan, which is ultimately transformed into deployment configuration
artifacts ready to be deployed on remote servers. To facilitate deployment, the tool offers means to
design run-time service provisioning modules through deployment agents, which are then used to
configure and remotely manage the run-time life-cycle of deployed services.

Throughout this doctoral thesis, we exploit various assessment techniques, such as, but not limited
to, addressing potential research questions relative to the specific topic of interest. In addition, we rely
on implications from comparative analyses to evaluate the effectiveness of our proposed approach and
our contribution relative to the existing approaches. To demonstrate the supporting tool’s capabilities
in satisfying specific developer requirements, different running demonstrations were implemented.

1.2 Main achieved research and technological results

Employing Low-Code Engineering for engineering IoT systems
Low-Code Engineering (LCE), as a relatively new concept in the MDE industry, has sparked much
controversy and misunderstanding about what it is and how it differs from the previous Low-code
development methodologies. Furthermore, there is still discussion about what both novel approaches
add or change compared to existing MDE techniques. Although in this dissertation we concentrate on
the IoT domain, we would therefore discuss their similarities, interdependence, and differences in the
procedure for software engineering. As an answer to the first research problem (RP1), this dissertation
we highlights the current state of the art regarding how IoT developers are incorporating low-code
methodologies into their development process. For instance, as presented in Chapter 4, in [8], we
examined 16 different platforms to gain a better understanding of the current state of supporting the

Jean Felicien Ihirwe 4

1.2. Main achieved research and technological results

development of IoT systems, with a focus on languages and tools available in the MDE field and
emerging LCDPs. In [13], we examined 22 low-code environments by assessing their strengths and
weaknesses regarding cloud-based modeling capacity, accessibility, openness, and artifact generation.
This work was published both in [13] and [8].

Software product model for evaluating the software product quality of LCEPs in IoT domain
As the IoT LCE tools go to market, their quality to satisfy the user requirements is always question-
able since there are not yet established mechanisms for assessing their software product qualities. To
answer the second research problem (RP2), this dissertation goes a step further by proposing a soft-
ware product quality model intended to help people interested in developing or purchasing low-code
software products and systems specify and evaluate their quality requirements. In doing so, it presents
a quality model based on the ISO/IEC 25010:2011 standard [14] with the enhanced definition of a
product quality assessment model that is more suitable for the IoT domain. In the end, the evaluation
mechanism of the proposed quality was done by employing it to assess the software product quality of
17 IoT low-code and MDE platforms selected from our previous studies [8, 13]. Finally, we present
the methodology we used to choose such platforms, perform the quality assessment, and subsequently
present and discuss the obtained results. This work was published in [27].

Multi-view modeling environment for IoT systems
In this dissertation, we introduce the CHESSIoT modeling environment and languages for multi-
layered IoT systems as an answer to the third research problem (RP3). To tackle the scalability and
complexity of modeling IoT systems, in CHESSIoT different aspects of the system are modeled inde-
pendently from their respective views and later interlinked to satisfy specific engineering tasks being
performed on the model. To achieve that, the designer relies on a series of CHESSIoT DSLs in which
the meta-modeling syntax has been specified as an extension to both UML/SysML modeling lan-
guages. CHESSIoT DSLs are made up of three primary DSLs (abstract syntaxes), namely SystemDSL
for IoT system-level modeling, SoftwareDSL for functional and behavioral modeling, and the Deploy-
mentDSL for deployment-related aspect modeling and runtime service provisioning. To guarantee a
fully decoupled extension, CHESSIoT introduced the "IoT sub-view" constraint and once applied in
all design stages, the user will benefit from a dedicated IoT-specific modeling infrastructure consisting
of specific diagrams and palettes. This also enforces correctness and error avoidance during the design
phase, as palette elements can be hidden or shown based on the current state of the modeling process
(e.g., diagram type or view type).

Model-based safety analysis of safety critical IoT systems
As an answer to the fourth research problem (RP4), this dissertation introduce the CHESSIoT model-
driven safety analysis approach targeting IoT systems based on the Fault-Tree Analysis (FTA) ap-
proach. The approach runs on top of CHESSIoT, a model-driven development environment for the
modeling and the analysis of industrial IoT systems [42, 43]. The presented approach relies on CHESS
Failure Logic Analysis (CHESS-FLA) [44], a methodology that enables the user to: i) model system’s
failure behavior of the system through the decoration of the system model components with safety-
related information, ii) run the Failure Logic Analysis (FLA), iii) and propagate the analysis results
back onto the original model [45]. The new approach allows the specification of systems failure modes
and generates the system’s complete Fault-tree based on the failure logic analysis results. In addition,
the new approach automatically performs qualitative analyses, which analyze the generated fault trees
and eliminates unnecessary paths and redundancies in the FTs’ events. Finally, in addition to the quali-
tative analysis, the proposed approach also calculates the failure probabilities of an entire system from
its constituent parts’ failure event probabilities. This calculation is automatically performed following
the well-known logic Fault-tree probabilities calculations mechanism [46–48].

Model-based development and deployment support for IoT systems

Jean Felicien Ihirwe 5

1.3. Structure of the dissertation

As an answer to the fith research problem (RP5), this dissertation also present the CHESSIoT soft-
ware design approach that combines both the functional and behavioral modeling aspects targeting
the IoT device layer. The functional design involves the systematic definition of the main software
components, their sub-components, and their interconnection. Each system’s main sub-function is
entitled to its state machine, in which aspects such as message payloads, events, actions, and guards
are associated with states and their transitions to realize the desired behavioral goal. When the model
is complete, the CHESSIoT model is transformed into ThingML models [37], which eventually is
used to generate platform-specific code. ThingML is a well-proven software modeling tool aligned
with UML (state charts and components) and an imperative platform-independent action language to
construct the intended IoT applications [8]. Although the ThingML model can compile and generate
code in different languages such as Arduino, C/C++, Java, JavaScript, and Go, the implemented code
generator that is supported by our tool only satisfies the CHESSIoT models targeting Arduino-based
computing devices. In addition, CHESSIoT provides a deployment environment that aims to support
the users in decomposing IoT system deployment plans and managing deployed node services at all
layers. The deployment model connects the software to the actual system nodes in which the soft-
ware program will be executed. Finally, CHESSIoT deployment offers a model-driven approach for
runtime service provisioning that allows the definition of runtime software services provisioning and
life-cycle management. The provisioning model is defined in the form of deployment rules referred to
as agents.

1.3 Structure of the dissertation

The rest of the dissertation is organized as follows: Chapter 2 provides the general background of
the fundamental concepts and principles such as IoT as a multi-layered ecosystem, MDE and low-code
around which this dissertation is based on. Chapter 3 summarizes state of the art on IoT engineering
platforms related to several topics discussed in this dissertation. Chapter 4 presents the limitations
and open challenges of existing IoT Engineering platforms by relying on experimental studies on
focusing their general features and what such platforms should be supporting. Chapter 5 presents
a model for assessing the software product quality of Low-Code and MDE engineering platforms
for IoT development platforms. Chapter 6 introduces the CHESSIoT engineering approach and a
motivating comparative analysis as an evaluation mechanism. The chapter also presents CHESSIoT
DSL in great detail and compares its contribution with respect to the existing DSLs. Chapter 7
presents CHESSIoT’s two-fold safety analysis approach for IoT systems based on Fault Trees models.
Chapter 8 presents the supported development and deployment approach by showcasing the supported
feature using a running example. Finally, Chapter 9 concludes the dissertation and highlights the
future outlooks.

Jean Felicien Ihirwe 6

Chapter 2

Background

This chapter provides a general overview of the essential concepts and principles around which this
dissertation is founded. By partially targeting to answer the first research problem (RP1), this chap-
ter discusses the notions of IoT systems in the context of multi-layered architecture, Model-Driven
Engineering (MDE) concepts, and how they relate in handling IoT domain complexity. The chapter
also covers Low-Code Engineering (LCE) concepts in general, as well as where Low-code and MDE
approaches fit in such a context. Finally, it provides an overview of the CHESS environment, on which
the proposed engineering platform is based.

The chapter is organized as follows: Section 2.1 provides a high-level overview of the IoT as a multi-
layered ecosystem. Section 2.2 provides a broad introduction to MDE, Domain Specific Languages,
and IoT reference architectures. Section 2.3 introduces Low-Code Engineering Platforms(LCEPs) in
general and how they differ from Low-Code Development Platforms (LCDPs). Finally, Section 2.4
introduces CHESS platforms by emphasizing the supported model-based engineering aspects as well
as different supported analysis techniques.

2.1 The Internet of Things

IoT is a term used to refer to the interconnection of devices over the internet. This interconnec-
tion enables the collection and exchange of information, as well as the management and automation
of devices via a network. IoT offers a wide range of applications, including home automation and
security, as well as healthcare, transportation, and agriculture [8]. IoT can enable smart devices such
as refrigerators, lights, and appliances to be controlled remotely from a smartphone or other device in
the household. IoT in healthcare can enable remote monitoring of patients and provide crucial data to
physicians and caregivers [5]. IoT in transportation can improve safety by giving real-time traffic data
and enabling autonomous driving systems [36].

2.1.1 IoT system architecture

In the past, IoT was referred to as the emergence of barcodes and Radio Frequency Identification
(RFID), which served to automate inventory, tracking, and basic identifying needs. However, nowa-
days IoT is a keen interest in interconnecting sensors, objects, devices, data, and applications [49].
A fully IoT system is often complex, with numerous players with varying levels of skill and multi-
ple stakeholders with varying roles. According to Costa et al [50], IoT is defined as a collection of
automated procedures and data that are integrated with heterogeneous entities (hardware, software,
and humans) that interact with one other and with their environment to accomplish a common goal.
Advances in technology, such as cloud computing, machine learning, and artificial intelligence, have
accelerated the emergence of IoT. The potential for IoT to revolutionize businesses and enhance our

7

2.1. The Internet of Things

lifestyles grows as even more items become interconnected. Yet, there are worries regarding IoT’s
security and privacy risks. There is a danger of information being hijacked or exploited because of all
the devices monitoring and transmitting information [49].

Figure 2.1: IoT system building blocks

Figure 2.1 shows a high-level architecture of a typical IoT system. A thing is a combination
of on-board devices including sensors, tags, actuators, and physical entities like cars, watches, etc.
Data is generated from a sensor or a tag attached to the physical entity the user is interested in. A
programmable device (such as an Arduino, a Pycom, a Raspberry Pi, etc.) collects data and sends them
to the nearby gateway using some well-known protocols such as Z-Wave, MQTT, HTTP, Bluetooth,
Wi-Fi, Zigbee, etc. The Gateway component acts as a bridge between the physical and digital worlds.
Note that in some cases devices and gateways can make some simple computation logic and respond
to some events without the need for further processing. The platform server is a combination of
processing and storage resources on the cloud. At this stage, data can be streamed, analyzed, or
manipulated for meaningful information to be communicated back to actuators, users, or third parties
services.

Aside from the inherent difficulties in developing multi-device IoT applications for diverse plat-
forms, software developers often make false assumptions. One of these assumptions is that devices
will never fail [29]. Indeed, IoT systems might fail because of a wide range of reasons: device age,
data sources, communication protocols, deployment environment, as well as external environment
constraints, such as human error. In IoT ecosystems different types of error can occur: local errors,
which can be also detected from the device itself, like a failing sensor; or more complex errors that
affect multiple devices at the same time, for example, a network failure or a missing communication
pattern as a result of a device failure that causes the entire system to fail [17].

An important challenge to be recognized in the IoT ecosystem is how to provide a reliable in-
frastructure for the billions of expected devices and how to deliver their intended services without
failing in unexpected and catastrophic ways [28]. In nature, a system is considered to be fail-safe if
it has none or harmless failures, whereas a safety-critical system can have catastrophic failures that
can sometimes result in human life loss. In the healthcare domain, for instance, the monitoring of
hospitalized patients must be done with extreme caution as a simple failure, such as a false sensor data

Jean Felicien Ihirwe 8

2.1. The Internet of Things

reading, can have catastrophic consequences, including the patient’s death. Because these systems
are at the intersection of information technology and biomedical sciences, it is necessary to have a
thorough understanding of how the connected components work as well as the ability to take perfect
decisions either manually or through automated software. These systems are among the riskiest in
terms of engineering because they interact directly with sick patients.

IoT things, being reactive systems, constantly interact with their surroundings, changing their
states. Such entity behavior causes the IoT application extremely dynamic and thus susceptible to
unanticipated behavior. Identifying unexpected behavior while also ensuring that essential functional-
ity is in place can be difficult, especially in a dynamic system [51]. This can potentially be achieved
by promoting advanced automated software engineering approaches and tools by which can software
development could be done in a faster and more secure manner. Tools able to develop, deploy, and
analyze the system’s reliability to avoid future repair costs could be of huge impact. There are several
successful platforms offered by some of the bigger industrial partners to tackle such challenges but
looking at the complexity in terms of usability makes it even more challenging.

2.1.2 Safety Critical Systems

The term “safety-critical system” was created in response to growing concern and awareness about
the use of computers in situations where human lives could be jeopardized if an error occurs [52].
Safety-critical systems are those systems whose failure could result in loss of life, significant property
damage, or damage to the environment [53]. A safety-critical system should be ideally designed to
lose no more than one life per billion hours of operation [54]. We can see many examples of such
systems in the following domains: aviation, railway, medicine, nuclear engineering, and military.
Developing such systems is difficult and must be done with extreme caution, as even the smallest
error in the process can have disastrous consequences. More and more modern safety-critical systems
are incorporating new technologies, such as machine learning techniques, to reduce the possibility of
failure through intelligent responses provided by artificially trained robots [55].

A significant challenge recognized in the IoT ecosystem is how to provide a reliable infrastruc-
ture for the billions of expected devices and how to deliver their intended services without failing in
unexpected and catastrophic ways [28]. In the IoT context, safety is often considered as the ability to
detect and prevent any unintended failure behavior in IoT systems [34]. In the past, IoT systems were
considered fail-safe because of their size, as their failures mostly had no or harmless consequences.
However, due to the system’s rise in size and complexity and the increased demand for IoT systems
in the industry, errors and failures for such systems are unavoidable. For instance, IoT systems, such
as Intelligent traffic lights, smart homes, smart manufacturing systems as well as patient monitoring
systems, can suffer from potential failures generated internally in the system due to several issues such
as age or poorly connected or failures caused by external influences such as weather or human error.

As research in this area continues, their developers deem existing proposed concepts and architec-
tures safe. Still, they are frequently found to be impractical for real-life applications because safety-
critical systems involve unpredictable behavior of lives, properties, or the environment [56]. In addi-
tion, as the technologies evolve in some domains, such as IoT, new failure modes, such as denial-of-
service attacks against networked information systems, are emerging. Failures occur through physical
effects and service disruption or data loss. The lack of a systematic, disciplined, and quantifiable
software engineering methodology, as well as a comprehensive abstraction mechanism for dealing
with the increasing complexity of safety-critical systems, results in a wide variety of similar, but not
congruent, isolated solutions that cannot be easily reused and combined [34].

The number of computer systems that we consider safety-critical is expected to grow significantly
in the future. In addition, the declining cost of hardware, improvements in hardware quality, and other
technological advancements ensure that new applications will be sought in a wide range of domains
[53]. However, for the analysis of the safety-critical systems, there is no universally accepted rigorous
dependability analysis process, which helps in choosing the metrics, techniques, and methodologies
for the dependability evaluation of such critical systems [57]. In any case, analysis of software devel-

Jean Felicien Ihirwe 9

2.2. Model-Driven Engineering

opment approaches, as well as safety-critical software, is required to determine the most appropriate
techniques for use in the production of future software for high-integrity systems [52].

2.2 Model-Driven Engineering

Model-driven engineering (MDE) is a software development methodology that aims at supporting
software development and analysis by promoting the adoption of models as first-class citizens [10].
To advance the software development paradigm to a new level, MDE promotes software development
through abstraction which significantly reduces the system complexity as well as the development
time. To increase productivity and reduce time to market, models are defined with concepts that
are much less bound to their underlying implementation technology and which are much closer to the
problem domain of interest [35]. In MDE, models are used to specify, test, simulate, verify, modernize,
maintain, understand, and generate code for the system, among many other activities [58].

Models in the context of MDE are not sketches or drawings that serve purpose only in design,
but they prevail until the end of the development cycle of these systems as machine-readable and
processable abstractions [59]. MDE favors the collaboration of engineers and stakeholders, as both
work together toward the completion of the conceived products and foster integration of different
engineering processes [60]. MDE can also aid to improve the quality of software systems, which is
another advantage. Software engineers can reason about the system and make sure it complies with
requirements more simply by using models to represent the system. Models are frequently easier to
grasp and maintain since they are typically written in a higher-level language than general-purpose
programming languages.

In the IoT domain, MDE can well be looked at as the methodology in which the development
process focuses only on defining the system’s IoT device’s behaviors and the data they process, rather
than on the platform that runs them. Generally, MDE enforces (i) the system model specification, in
which the heterogeneous elements are precisely identified; (ii) promotes the reuse of system elements
across teams and other applications (iii) tackles the application’s complexity; and (iv) facilitates the
communication between the system stakeholders [61]. Different complex engineering activities such
as verification and validation as well as different analysis activities can be done on the model to
quantify the robustness of the system under development as well as identify and correct any potential
future failures that might arise.

The MDE process involves multiple stages, such as model development, model transformation,
and code generation. A model of the system being developed is established by the software engineer
during the model development step. The software engineer develops a set of rules for transforming
the model into another model or into code during the model transformation process. The model
transformation engine applies the transformation rules on the model to create a new model or code
snippet, automating this step in most circumstances. During the code generation stage, the software
engineer generates executable code using the model. This code can be in a traditional programming
language, such as Java or C++, or it can be in a specialized language [37].

MDE has had tremendous success stories in many ways in academia as well as in industrial set-
tings. This can be observed in areas such as model-based systems engineering (MBSE), low-code
software development, and informal software modeling [62]. Furthermore, the quantitative results
from the conceptual analysis of such systems can provide theoretical support for optimizing system
architectures and parameters earlier enough [63]. However, this success has led to an even higher
demand for better tools, theories, and general awareness about modeling, its scope, and application
[64]. This can be looked at from the domain in which such tools are going to be used, technical
implementation requirements, and social as well as evolving technologies.

Recently, MDE itself has faced challenges that have shifted the focus of the development of
such complex and heterogeneous systems from local environments to the cloud [65]. Modeling-as-
a-Service is gaining momentum as the MDE research community is migrating modeling tools and
services to the cloud. This migration is encouraged by several out-of-box benefits in cloud computing,

Jean Felicien Ihirwe 10

2.2. Model-Driven Engineering

such as easy discovery and reuse of services and artifacts [10]. It has enabled efficient self-healing
mechanisms to detect, diagnose, and countermeasure threats and foster collaboration among stake-
holders and engineers [66]. Furthermore, migrating modeling artifacts and services on the cloud can
facilitate end-users’ easy accessibility, hence supporting sustainable management and disaster recov-
ery of model artifacts and tools [67].

Finally, the model can be used to perform even more advanced engineering tasks such as per-
forming different analyses depending on the problem at hand [16]. For instance, it could be better to
evaluate the model performance in a real-time state in order to get a sense of how the actual system
generated from the model could behave in the long run [42]. Furthermore, models are often injected
with external constraints to be able to verify and validate their behavior robustness for instance when
code generation is involved [68]. In the IoT domain, there still presents a significant gap in the vali-
dation, verification, and analysis of such systems under development [42]. The main challenge is the
scope of the analysis; because the number of IoT devices and applications is already large and is only
likely to grow in the future, physical replication and testing of IoT systems are complex (due to scale)
[69]. This potentially contributes to the long-standing lack of standardized realistic reference models
that can perfectly capture the interactions between sensors, apps, and actuators.

2.2.1 Domain Specific Languages in IoT

Domain-specific languages (DSLs) are languages tailored to a specific application domain to de-
fine the domain models. These DSLs are used in MDE to pave the way for domain experts to be able
to define the system’s behavior based on their expertise [70]. A DSL is suited to the specific domain
of the software system being developed; it is often used to express models. The DSL provides a way
to represent the system at a higher level of abstraction than traditional programming languages and
defines the syntax and semantics of the model. Although DSL-based development is hard and requires
both domain knowledge and language development expertise, they offer tremendous benefits such as
improved productivity for the developers as well as effective communication with the domain experts
[71]. Finally, the models defined by these languages are intended to be far more human-oriented than
common code artifacts, which are inherently machine-oriented [36].

In the IoT context, DSLs can be particularly useful for simplifying the process of developing
software applications for IoT devices. As the core of IoT processes relies on IoT devices that are
typically used for specific purposes, such as monitoring environmental conditions or controlling home
automation systems. Each of these applications requires a unique set of functions and data structures,
and developing software for each of these applications can be time-consuming and complex. DSLs
can help to simplify this process by providing a specialized language that is tailored to the specific
needs of the IoT application. This can make it easier for developers to write code that is optimized for
the particular requirements of the device or application.

Engineering platforms such as MonitorIoT [26], MDE4IoT [36], IoTML [39] and MontiThings
[17] (to name a few), have presented potential DSLs able to realistically tackle the high degree of
heterogeneity in their hardware devices, data sources, protocols, deployment levels for developing
scalable IoT systems. However, developing IoT code generators that are perfectly capable of handling
large models and generates full-functional code is still an open issue. Approaches such as ThingML
[37] is one of the top code generators in IoT that targets many popular programming languages such
as C/C++, Java, and Javascript, and about ten different target platforms (ranging from tiny 8bit micro-
controllers to servers) and ten different communication protocols.

Several research and industrial approaches have shown interest in applying ThingML as their mod-
eling or code generation framework. To mention a few, in [72], ThingML has been used to generate
code for CAPS, an architecture-driven modeling framework for the development of IoT Systems. In
[73] ThingML has been used to specify the behavior of distributed software components, and later it
has been extended with mechanisms to monitor and debug the execution flow of a ThingML program.
Finally, CyprIoT tool [74] has relied on and extended the ThingML modeling language to model and
control network-based IoT applications. Their tool relies on Rule-Based Policy Language, to control

Jean Felicien Ihirwe 11

2.2. Model-Driven Engineering

and supervise the behavior of the modeled network and a code Generator that interpret the model and
generates deployable network artifacts.

2.2.2 MDE for IoT reference model

IoT reference architectures provide a useful starting point for designing and implementing IoT
systems. They offer a standardized approach to IoT system design and help to ensure interoperability
and compatibility between different IoT systems. To support the development of complex IoT systems,
several standards and tools have been proposed over the last years [61]. Standards like ISO/IEC/IEEE
15288 1 have been in use to evaluate the quality, efficiency, and life-cycle of different approaches. In
[75] an IoT reference model (ITU-TY.2060) [76] is proposed by an International Telecommunication
Union (ITU) and presented with respect to other four reference architectures developed in the context
of the IoT-A [49], WSO2 [77], Korean RA [76] and Chinese [66] projects.

Figure 2.2: IoT conceptual metamodel [1]

Figure 2.2 shows a conceptual representation of the elements shown in Figure 2.1. The physical
properties of the associated Physical entities are captured through Sensors, whereas the modification of
physical properties of associated Physical Entity is performed through the use of Actuators. Physical
Entity can be represented in the digital world by a Digital Entity which is in turn a Digital Proxy.
Digital Proxy has one and only one ID that identifies the represented object. The association between
the Digital Proxy and the Physical Entity must be established automatically. A Smart Object has
the extension of a Physical Entity with its associated Digital Proxy which then talks to the user by
providing or requesting resources. The external services are invoked by the user which can be human
or third-party software.

Overall, IoT reference architectures provide a useful starting point for designing and implementing
IoT systems. They offer a standardized approach to IoT system design and help to ensure interoper-
ability and compatibility between different IoT systems. However, it has been shown that no single
reference model was able to tackle all the aspects that involves in engineering IoT systems [75]. For
instance, one of the most used reference architectures in [49] doesn’t cover the run-time dynamicity

1https://www.iso.org/standard/63711.html

Jean Felicien Ihirwe 12

https://www.iso.org/standard/63711.html

2.2. Model-Driven Engineering

of IoT systems as well as context-awareness concepts. They also lack other aspects such as quantified
system reliability, security, and privacy protection. According to different challenges in IoT environ-
ments and the existence of some weaknesses in IoT architectures, we believe that more research on
IoT reference architectures need to be done.

2.2.3 Model-Based Safety Analysis

Failures that could risk human life, and injuries to the environment, or properties are considered
safety hazards. Safety analysis should run concurrently with system design, including interactions
between the two, and it should be kept up to date throughout the system life cycle. Risks of this
sort are usually managed with the methods and tools of safety engineering. Conducted initially by
safety engineers, the safety analysis is one of the dependability analysis techniques that aim to study
system response in case of an unwanted failure behavior that can hinder system safety compliance.
In safety-critical systems, it is often required to maintain a high level of safety to prevent potentially
catastrophic consequences [44]. FTA, as well as FMEA, are already mandatory analysis approaches
for performing safety analysis in domains like automotive and aerospace [78, 79], and more domains
are going to be subjected to follow that suit [32].

Failure logic approaches map the reliability concepts (produced by reliability engineers) to reflect
the underlying fault-to-failure and failure-to-fault propagation within the systems [80]. CHESS Failure
Logic Analysis (CHESS-FLA) [44] introduces the possibility of unifying and automatizing existing
traditional dependability analysis approaches through the use of the Failure Propagation Transfor-
mation Calculus (FPTC) rules [81]. CHESS-FLA enables users (system architects and safety engi-
neers) to decorate component-based architectural models (specified in the CHESS modeling language
- CHESSML) with dependability information, perform Failure Logic Analysis (FLA), and have the
results back-propagated onto the original model [82]. In practice, a component can act as a source
of failure (for example, by causing a failure in output due to the activation of internal faults) or as
a sink (a component can avoid failure propagation by detecting and correcting the failure in input).
Furthermore, failures in a component can be propagated (i.e., a failure can be passed from input to
output) or transformed (by changing the nature of the failure from one type to another from input to
output) [3].

The Fault-Tree Analysis (FTA) [41] technique is currently one of the most widely used method-
ologies when performing safety analysis. The purpose of an FTA is to graphically represent and trace
down influence from a system-level hazard to individual failures of distinct system components and
sub-components. The graphical representation of the scenarios can aid in explaining these causal
chains that can lead to a hazard, followed by an analysis to determine the combination of events that
trigger such hazards or compute the chance that such a hazard could occur. During the analysis, the
safety engineer starts from the actual hazard, referred to as a "top event," and traces down different
event combinations that might contribute to such hazard until the actual cause is reached. This is
referred to as a "basic event" in this case. Figure 2.3, shows a typical FT example.

The FT event combination logic relies on logic gates to determine the output of a situation. For
example, if two or more events are needed to represent a certain component failure, an "AND" gate
is used; while, if one event is enough to trigger the failure, an "OR" gate is used. Other known logic
gates can also be used based on the desired system failure behavior.

Failure Mode and Effects Analysis (FMEA) [83] is among the earliest known failure analysis tech-
niques, and it is frequently used as the first stage in a system reliability analysis. Reliability engineers
originally developed it to investigate problems that could come from military system failures. It is used
to examine as many components, assemblies, and subsystems as feasible to determine failure modes
and their causes and effects. The failure modes of each component, as well as their consequences
on the rest of the system, are recorded in a separate FMEA worksheet [84]. Unlike the FTA, which
follows a top-down deductive approach from the top event to specify its possible causes, the FMEA
follows an inductive reasoning approach. Using a forward logic approach, FMEA separates a system
into small components, analyses failures that each component may cause, and assesses the effects of

Jean Felicien Ihirwe 13

2.3. Low-Code Engineering

Figure 2.3: An FT example

those failures on the system. As a result, the FMEA performer must properly understand the system
safety context and software requirements or design specifics to assure the comprehensiveness of the
system decomposition and the validity of each component’s usability.

2.3 Low-Code Engineering

The significant advancements in computing power, data storage, and processing are revolutioniz-
ing the development and research of complex systems in several domains, including that of the IoT
[85]. IoT systems enable the integration of intelligent features into daily human activities through the
automation of services. In particular, such systems allow the automation of low-level services that
used to be error-prone if done by humans. Moreover, they increase efficacy in current engineering so-
lutions and connect a range of many devices that render our environment smart. Recent reports predict
that more than 100 billion devices will be connected by 2025 and 11 trillion dollars of global market
capital will be reached [86]. However, to unleash the full potential of these systems, it is necessary
that also citizen developers can take part in the development of custom IoT applications [12].

The development and consumption of IoT systems are becoming way more complex, and involv-
ing end-users is more challenging due to the heterogeneity of the hardware and required expertise
[12]. This complexity originates from various sources. IoT applications are complex systems that use
heterogeneous devices and data sources. Besides, IoT systems require enormous efforts and invest-
ments both in their implementation and maintenance. Moreover, the systems are implemented using
code-centric approaches that make it challenging to foster the inclusion of IoT domain experts and
other stakeholders with less IoT programming skills [12].

As a result of the competitive pressures imposed by digitalization [6], more and more industries

Jean Felicien Ihirwe 14

2.3. Low-Code Engineering

across all domains are being pushed to establish software development teams to continue developing
and maintaining new products based on customer needs. This allows the organization to keep up to
date with customer digital demands while also remaining relevant to market needs. Managing and
paying such teams comes at a high budget, which can appear to be a burden to businesses, especially
when such teams fail to deliver on time. Reduced time to market as well as the top quality of the
developed software are always the main concerns when developing software. Most of the time, soft-
ware teams reuse existing code to increase the speed at which new features are developed. Although
this can always be a better walk around, they are most likely to suffer from code inconsistency, high
maintenance as well as incompatibility in case of a very complex software problem. On another hand,
businesses are looking for new ways of developing software that can decrease the time to market as
well as cut the development cost while maintaining the quality of developed software.

2.3.1 Low-Code Development Platforms

With the increasing interest in advancing the software development process, more and more en-
gineering industries are looking for a way to take advantage of what advanced technologies such as
cloud computing and machine learning have to offer. Low-Code Development Platforms (LCDPs) aim
at easing the development of fully functional applications by facilitating people with less or no expe-
rience in software engineering (eg, business managers) to develop business applications using simple
graphical or textual user interface [8]. These platforms drastically reduce the time it takes to build
an application, reducing it all from months to days or even hours. Technically, most of such applica-
tions are developed through declarative and high-level abstractions languages and take advantage of
cloud infrastructures, and automatic code generation to develop entirely functioning applications [87].
LCDPs have shown their strengths in the development of software systems in four main market seg-
ments such as database applications, mobile applications, process applications, and request-handling
applications. According to Tisi et al. [11], IoT is expected to be the next market segment.

The main goal of MDE is to increase productivity and reduce time to market by enabling the
development of systems using models defined with concepts that are much less tied to the underly-
ing implementation technology, and much closer to the problem domain [35]. Same as MDE, low-
code software development processes also aim to improve software development processes by raising
abstraction and hiding implementation-level details. Both approaches employ model-driven devel-
opment (MDD) in their development stack; the important distinction seems to be how they enforce
factors such as cloud-based deployment, target users, setup, and so on [58]. In addition to that, not all
MDE approaches seek to reduce the amount of code required to develop software solutions, and not
all low-code approaches are model-driven [58]. Although this is true, their difference in practice is
still widely debated on how much work done in MDE is directly transferable to LCDPs [88].

Nowadays, we witness a growing number of successful generic LCDPs on the market (e.g., Google
App Maker and Microsoft Power Platform). Despite their success, LCDPs’ development capabilities
are still limited regarding how complex, intelligent, and sophisticated they may be [11]. Such ap-
plication often suffers from several issues as follows. On one hand, most of the LCDPs suffer from
vendor lock-in problems in which the developed application only being able to be deployed on their
own dedicated infrastructure [58]. In addition to that, their scalability in terms of how big and sophisti-
cated such developed applications can be is still questionable. On another hand, domains supported by
such platforms are still limited too. For instance, so far LCDPs have been especially successful in the
development of domain-specific applications in four market segments such as database applications,
mobile applications, process applications, and request-handling applications [11]

Despite their success, LCDPs’ development capabilities are still limited regarding how complex,
intelligent, and sophisticated they may be [11]. In the IoT domain, only a few LCDPs are available,
and they provide limited functionalities given the inherent complexity and heterogeneity of typical
IoT systems. Among others, IoT-specific platforms such as Node-RED [89] and Atmosphere IoT
[90] have demonstrated a significant push toward the development of fully-fledged multi-layer IoT
platforms. However, their capacity to generate code and interact with low-level IoT devices is still

Jean Felicien Ihirwe 15

2.3. Low-Code Engineering

limited. Unlike LCDPs, MDE presents a more significant number of platforms that can still generate
low-level platform-specific code. Still, they often suffer from integration and interoperability issues
because most of them are deployed and operated locally [8]. Full list of existing LCDPs is presented
in Section 3.1

2.3.2 Low-Code Engineering Platforms

With the rapidly rising machine intelligence and how traditional code-centric software develop-
ment stack has achieved in domains such as IoT, data science, and cloud computing, Low-Code Engi-
neering Platforms (LCEPs) focus on extending the development knowledge present LCDP by injecting
it with the theoretical and technical framework defined by recent research in MDE, Cloud Computing,
and Machine Learning techniques [11]. These platforms’ target span more advanced and complex
domains such as IoT, industrial automation, data science, recommender systems, and so on. They aim
at overcoming the current limitations present in LCDPs such as those related to scalability (i.e., sup-
porting the development of large-scale applications, and using artifacts coming from a large number
of users), open (i.e., based on inter-operable and exchangeable programming models and standards),
and heterogeneous (i.e., able to integrate with models coming from different engineering disciplines)
[8].

A simple example of differentiating LCEP and LCDPs can be the difference between Software
engineering and Software development. Software engineering is a systematic approach to design-
ing, developing, and maintaining software. It emphasizes on offering software systems of high qual-
ity, dependability, and maintainability that satisfy stakeholders. The priority of software engineering
is on the use of well-established engineering methods and principles, such as requirement analysis,
design, testing, and maintenance [91]. It also takes into account the software’s lifecycle, including the
phases of development, deployment, and maintenance. Software development, on the other hand, is
the process of developing software products through programming, testing, and documentation. It is
a component of software engineering that is concerned with developing software solutions that com-
ply with particular business needs. Software development often takes a more realistic and practical
approach than software engineering, when implementing software solutions into reality to address
particular business or user demands [91]. Even though the ideal LCE target appears to be in its early
stages, the current and continuous development under this umbrella shows promising signs of success
in the near future.

Although we clearly agree with Di Ruscio et al [58] on the fact that "not all MDE approaches seek
to reduce the amount of code required to develop software solutions, and not all low-code approaches
are model-driven"; we believe that "LCEPs should one way or another enforce model-driven princi-
ples". This is due to the fact that LCEPs combine the MDE, cloud computing and machine learning
technologies to tackle most challenging tasks in complex domains. For instance, looking at the sys-
tem engineering domain, having legacy model-driven services exposed through APIs could potentially
boost their usability. The fact that most of the LCDPs are cloud-based and do not require installation
significantly lowers the entry barrier for new users [58]. Having such LCDPs consume live services
could potentially contribute to their extensibility as well as targeting more complex domains. In the
following section, we will go through some of the popular and ongoing potential LCEPs that target
complex domains such as Data mining and recommender systems.

LCEP in Data science

• RapidMiner [92] is a data science platform that provides an integrated environment for data
preparation, machine learning, deep learning, predictive modeling, and other data analytics
tasks. It offers a drag-and-drop interface that allows users to easily build, test, and deploy
predictive models without the need for programming. RapidMiner supports a wide range of
data sources and formats, including databases, spreadsheets, text files, and cloud-based data
storage services. It also offers advanced data preparation and cleansing tools to ensure that

Jean Felicien Ihirwe 16

2.3. Low-Code Engineering

data is accurate and ready for analysis. One of the key features of RapidMiner is its machine
learning capabilities, which allow users to build predictive models using a variety of algorithms,
such as decision trees, random forests, and neural networks [93]. The platform also provides
tools for model validation and optimization, allowing users to fine-tune their models for max-
imum accuracy. RapidMiner offers both a free, open-source version (RapidMiner Studio) as
well as a commercial version with additional features (RapidMiner Server). It is used by busi-
nesses and organizations in a wide range of industries, including finance, healthcare, retail, and
manufacturing.

• The Konstanz Information Miner (KNIME) [94] is a modular environment, which enables easy
visual assembly and interactive execution of a data pipeline. This platform is designed as a
teaching, research and collaboration platform, which enables data manipulation or visualization
methods in the form of new modules or nodes. KNIME also provides a large selection of
pre-built components and tools that can be easily integrated into workflows, as well as the
ability to extend its functionality. For instance, KINME integrates with popular data science
platforms as R and Python, making it easier for data scientists to incorporate their code into
custom applications built on the platform. Finally, the platform is used in a wide range of
industries, such as life sciences, finance, and marketing, for tasks such as predictive modeling,
text mining, and customer segmentation.

• Kourouklidis et al. [95] developed a low-code technique for identifying and responding to events
that can affect the performance of a machine learning model based on MDE concepts. The
proposed solution is a cloud-based engine that enables machine learning specialists to design
the execution of drift detecting algorithms on a computing cluster and receive email notifications
of the results without the need for considerable software engineering knowledge. Their solution
is based on DSL, which offers a standardized communication layer between domain experts who
declaratively describe the behavior of the ML monitoring system and software engineers who
are in charge of developing a concrete implementation that complies to the defined behavior.

LCEP in recommender systems

• Droid [96] is a open source framework for automating the configuration, evaluation, and syn-
thesis of recommender systems for modeling languages. Droid tooling automates all steps of
recommender system development, including data preprocessing, system configuration for the
modeling language, evaluation and selection of the optimum recommendation algorithm, and
deployment of the recommender system into a modeling tool. The Droit tool has been vali-
dated on multiple usecases, including recommending UML model attributes in domains such
as Literature and Education [97]. Many recommender systems were trained in this approach
using a number of collaborative, content-based, and hybrid recommendation methods such as
item popularity, item-based collaborative filtering, user-based collaborative filtering, and so on.
The recommendation systems are mostly based on the static features of elements and their oc-
currence in the dataset. When the requested recommendations become more complicated, the
tool’s performance can worsen. So far, the data’s morphological natural language processing
feature is regarded as a potential solution for improving recommendation systems. Droid can
be accessed at https://droid-dsl.github.io/

• LEV4REC [98] is a low-code environment to foster a recommender systems’s design, configu-
ration, and deployment from scratch using such a cutting-edge paradigm. LEV4REC is flexible
and extensible as it relies on three core techniques, i.e., feature model, metamodel, and Acceleo
templates. Starting from a feature model, RS designers can specify the system’s features and
then progressively enrich a configuration model automatically generated out of the selected fea-
tures. With LEV4REC, developers have the flexibility to explore a wide range of algorithms and
methodologies for recommendation. They can experiment with different approaches, such as

Jean Felicien Ihirwe 17

https://droid-dsl.github.io/

2.4. CHESS environment

collaborative filtering, content-based filtering, or hybrid methods, to identify the most effective
solution for their specific use case. By fine-tuning the experimental settings, such as adjusting
hyperparameters or incorporating additional features, developers can optimize the recommender
system’s performance and accuracy. Moreover, LEV4REC allows for the selection and evalu-
ation of appropriate metrics to assess the recommender system’s performance. Developers can
analyze metrics like precision, recall, F1-score, or customized domain-specific metrics to gain
insights into the system’s effectiveness. This iterative process of experimentation and evaluation
enables developers to continuously refine the recommender system until desired performance
levels are achieved.

2.4 CHESS environment

The ever-increasing complexity and dependability issues of systems in various domains, such as
transportation, space, energy, health, and industrial production, require effective design and develop-
ment methods. The complexity and heterogeneity of components can be addressed with modeling
approaches that span different technical disciplines and prove effective in the end-to-end engineering
of the products. This implies taking into account various requirements such as quality, performance,
cost, safety, security, and reliability. Model-based design technologies enable the user to perform
beforehand different assurance-related activities such as physical architecture exploration, system be-
havioral analysis, early verification, and validation.

The CHESS toolset [99] offers cross-domain modeling and analysis of high-integrity systems
providing an integrated framework that helps the modeler (user) to automate different development
phases: from the requirements definition to the architectural modeling of the system’s software and
hardware, up to its deployment to a hardware platform [99]. CHESS follows a component-based
approach where the user decouples different functional parts of the system as components that can be
modeled, analyzed, verified, stored, reused individually, and integrated to meet the system’s common
goals. CHESS supports, among others, schedulability and dependability analysis across the entire
project life cycle. The results of the analysis are back-propagated to the model itself so that the
modeler can review and fine-tune the model to satisfy real-time and dependability requirements.

CHESS tool is a full-fledged open-source project, hosted by The Eclipse Foundation (https:
//www.eclipse.org/chess/). The code has been developed by various contributors following an
open-source approach with public projects for issue tracking, code repository branches, and continu-
ous integration. CHESS was developed, used, and extended in many research projects, by both indus-
trial and academic partners. To list a few, CHESS was involved in international projects such as the
homonymous CHESS project2, CONCERTO3, and SESAMO4, under the ARTEMIS Joint Undertak-
ing initiative, AMASS5, AQUAS6, and MegaM@Rt7, under the ECSEL Joint Undertaking initiative.
CHESS has been applied in different domains such as Avionics [100], Automotive [101], Space [102],
Telecommunication [103], and Petroleum [104] [105].

Because CHESS is the foundation for our CHESSIoT extension, we go over the basics of CHESS
in this section. We discuses its supporting engineering methodologies, such as multi-view modeling,
component-based, and correct-by-construction approaches. Through the contract-based design anal-
ysis and model checking, we provide a quick introduction to the support verification and validation
processes. In addition, we summarizes the existing analysis support, such as dependability, timing,
safety, and quantitative reliability analyses. Lastly, we look at a number of successful stories and the
impact CHESS has had on system engineering both in industry and academic settings.

2http://www.chess-project.org/
3http://www.concerto-project.org/
4http://sesamo-project.eu/
5https://www.amass-ecsel.eu/
6https://aquas-project.eu/
7https://megamart2-ecsel.eu/

Jean Felicien Ihirwe 18

https://www.eclipse.org/chess/
https://www.eclipse.org/chess/
http://www.chess-project.org/
http://www.concerto-project.org/
http://sesamo-project.eu/
https://www.amass-ecsel.eu/
https://aquas-project.eu/
https://megamart2-ecsel.eu/

2.4. CHESS environment

2.4.1 CHESS in nutshell

The CHESS modeling tool was released under the Eclipse PolarSys project8 and recently it was
moved from the incubation status to the first major release. The CHESSML is an integrated model-
ing language profiled from OMG standard languages: UML, SysML, and MARTE under the Papyrus
modeling environment 9. Not all the features from all three languages were profiled to CHESS but only
specific subsets that suit CHESS’s perspective. In particular, sub-profiles supporting contract-based
and dependability concerns have been defined, while MARTE has been adopted (with minor devia-
tions) for what concern the timing perspective. There are different tools, plugins, and languages that
were integrated into CHESS to support model validation, model checking, real-time, and dependabil-
ity analysis. In this section, we are going to briefly describe the core aspects of CHESS methodology.

CHESS editor tooling

With reference to Figure 2.4, CHESS editor is an extension of the Papyrus UML editor and is acti-
vated when a CHESS model is created or opened. It provides additional functionality and constraints
specific to the CHESS modeling approach. A CHESS model is essentially a UML model with the
CHESS profile applied to it. To create a CHESS model, you can use a dedicated wizard that guides
you through the process of applying the CHESS profile to your UML model.

When working with the CHESS editor, you can use the CHESS design views. Each design view
imposes specific constraints on the UML diagrams and entities that can be created, viewed, or edited
within that view. These constraints help enforce the rules and guidelines of the CHESS modeling
methodology.

Figure 2.4: CHESS editor overview

The CHESS editor allows you to switch between different views based on your modeling needs.
As you switch between views, the editor keeps track of the current view’s status. It ensures that you
do not violate the constraints defined for the specific diagram-view pair you are working with. This

8https://projects.eclipse.org/projects/polarsys.chess
9https://www.eclipse.org/papyrus/

Jean Felicien Ihirwe 19

https://projects.eclipse.org/projects/polarsys.chess
https://www.eclipse.org/papyrus/

2.4. CHESS environment

prevents you from unintentionally creating or modifying UML elements that are not allowed in the
current view.

In order to support the constraints of the current diagram view, the native Papyrus palettes have
been customized. The customized palettes only display the entities that are allowed to be created
within the current diagram view. This customization helps streamline the modeling process by pre-
senting you with the appropriate set of options for the specific view you are working in.

Overall, the CHESS editor enhances the Papyrus UML editor by providing specialized features,
design views, and constraints that align with the CHESS modeling approach. It facilitates adherence
to the methodology and helps maintain consistency and correctness throughout the modeling activity.

Component-based methodology

Component-based design is an approach where software systems are decomposed into modular,
reusable, and independent components. These components encapsulate specific functionality and can
be composed and connected to build larger systems. The goal is to promote modularity, reusability,
and maintainability of the software. The CHESSML language supports a component-based develop-
ment methodology enabling property-preserving component assembly for real-time and dependable
embedded systems. Emphasis is given to separation of concerns between the functional and the non-
functional dimensions, such as safety, security, reliability, performance, and robustness [106].

The tool provides mechanisms to compose components and establish connections between them.
You can define relationships such as aggregation, composition, and association to represent how com-
ponents interact and collaborate. At the design level, components encompass functional concerns
only (i.e., they are devoid of any constructs pertaining to tasking and specific computational models).
Components interact with each other through well-defined interfaces. The CHESS tool enables you
to define interfaces and specify the operations and properties that components expose to other compo-
nents. The specification of non-functional attributes is then used for the automated generation of the
container, enforcing the realization of the non-functional attributes declared for the component to be
wrapped.

The CHESS methodology follows the “Correctness by Construction” practice which enforces (1)
the use of formal and precise tools and notations for the development and the verification of all prod-
uct items; (2) say things only once to avoid contradictions and repetitions; (3) the design of software
components that are easy to verify, by e.g., using safer language subsets, and to implement, by using
appropriate coding styles and design patterns [107]. The CHESS tool supports the deployment of com-
ponents onto target platforms or execution environments. You can model the deployment architecture
and specify the mapping of components to hardware or software resources. Finally, CHESS tool pro-
vides analysis capabilities to validate and verify component-based designs. You can perform checks
and simulations to ensure that the components and their interactions adhere to design constraints and
requirements.

Multi-view modeling approach

The CHESS tool provides a set of design views to uphold the "separation of concern", the "cor-
rectness by construction" and the other methodological principles introduced before. Six main views
(requirement, component, system, deployment, analysis, and instance views) are defined to support
The CHESS modeling approach. Throughout the development process, each view has its own un-
derlined constraints that enforce its specific privileges on model entities and properties that can be
manipulated. Depending on the current stage of the design process, CHESS sub-views are adopted to
enhance certain design properties or stages of the process. Figure 2.5 shows the high-level architecture
of CHESS views and their inter-relations.

• Requirement view: Originally adopted from the SysML requirement diagram, the requirement
view is used to define system requirements and track their verification. In CHESS, requirements

Jean Felicien Ihirwe 20

2.4. CHESS environment

Figure 2.5: CHESS views architecture [2]

are part of the model and play a central role in the system development life cycle. The system
elements are associated with the technical requirements they satisfy, which are, in turn, traced
to higher-level requirements, up to system-level requirements [106]. This association technique
enhances traceability while evaluating the correctness and consistency of the modeled system.
In this way, the change’s impact can be better evaluated and faithful model verification evidence
can be provided according to the requirements. An example of a requirement created on a
WheelBrakingSystem (WBS) example is shown in Figure 2.6

Figure 2.6: Wheel Braking System requirement example

• System view: It provides a suitable frame for system-level design activities. In the System view,
the system entities are initially designed into blocks and then hierarchically decomposed (see
CHESS editor section from Figure 2.4). CHESSML inherits from SysML the specification of the
block hierarchies and their internal decomposition, i.e. a block definition diagram can describe

Jean Felicien Ihirwe 21

2.4. CHESS environment

a system structure by means of a set of blocks and each block may have its own dedicated
internal block diagram describing its sub-blocks decomposition and interfaces. An example of
the internal block decomposition architecture of the WBS system example is shown in Figure
2.7. Furthermore, in addition to system-level design, in system view it possible to perform
contract-based design as well as several functional and dependability analyses from system
models.

Figure 2.7: Wheel Braking System internal block diagram

• Component view: This view is used for software design work and logic of the intended model.
The component view is composed of two sub-views, Functional View which is enabled by de-
fault, and the Extra-Functional View which is enabled manually in the tool. The Functional
View is used to model system functional specifications using diagrams such as class, compos-
ite structure, state machine, activity, and sequence diagrams. Under the component view, the
system’s software construct can be designed through the modeling of component interfaces,
component types as well as their components implementation. Figure 2.8 shows an example
modeling of component implementations for a producer-consumer components implementation
example.

Figure 2.8: Producer-consumer: components implementation modeling

In addition to that, it is possible to model the system functional behavior using state machines
which can be used for code generation purposes. On the other hand, when switched to it (see
Figure 2.9), the Extra-Functional View can be used to compose the system’s extra-functional
specifications such as the real-time and dependability attributes. Recall that all views have a

Jean Felicien Ihirwe 22

2.4. CHESS environment

dedicated palette depending on their requirements, for instance, the extra-functional view has
no access to the activity diagram and has a palette with entries exclusively related to extra-
functional concerns (See Figure 2.9).

Figure 2.9: Producer-consumer: extra-functional properties modeling

• Deployment view: This view is used to model the hardware structure of the system and permits
the allocation of their corresponding software component instances modeled from the before
(from component-view). Through the use of class and composite structure diagrams, the user
can model the type of deployment on either a single or multiple-core processor. In this view,
each hardware resource is allocated to a specific memory partition and can only access and
change its own memory space. Regarding the software-to-hardware resource allocation, all
software components are allocated to cores. Figure 2.10 shows producer-consumer: software-
to-hardware allocation modeling example in which the producer and consumer software com-
ponent instances are allocated to cores on CPU_inst hardware instances.

Figure 2.10: Producer-consumer: software-to-hardware allocation

• Analysis view: This is used to capture all the activities and diagrams related to analysis in
CHESS. It consists of the two sub-views as Dependability Analysis view and Real-Time Anal-

Jean Felicien Ihirwe 23

2.4. CHESS environment

ysis view. The analyses performed in CHESS are real-time analysis, quantitative dependability
analysis, failure propagation analysis, and so on. We will discuss further analysis in Section
2.4.2.

• Instance view: CHESS offers a dedicated view to visualize and model the PSM. This model
comprises a combination of hardware and software instances derived from the deployment and
component views, respectively. Composite structure diagrams serve as the foundation for this
representation, allowing for a detailed depiction of the system’s structure and its dynamic behav-
ior during runtime. One of the key strengths of CHESS is its ability to facilitate runtime analysis
between model instances. By representing the PSM as a combination of hardware and software
instances, it becomes easier to understand how the system components interact and how their
behavior is affected by the underlying hardware. This comprehensive view enables analysts
and developers to identify potential performance issues, resource constraints, and architectural
issues that may impact the system’s runtime behavior.

The generation of model instances is automatic by invoking the "BuildInstance" command,
the tool automatically creates the necessary hardware and software instances based on the de-
ployment and component views. This automation saves time and effort for system designers and
allows them to focus on the analysis and validation of the runtime behavior rather than manual
instance creation. In the generated instance model, each component’s properties and connectors
are mapped onto dedicated InstanceSpecifications. This mapping provides a detailed represen-
tation of the characteristics and connections of the system’s components within the PSM. By
associating properties and connectors with specific instances, CHESS enables a deeper under-
standing of the runtime behavior and facilitates analysis of component interactions. More on
this is presented our published work in [42].

2.4.2 Supported Model-based Analysis

In this section, we present different major model-based system analyses supported by CHESS.

Model-based system analysis and verification

CHESS provides the capability to perform several kinds of analysis depending on the specific
requirements (functional, timing, dependability).

Timing Analysis is built on top of the MAST10 analysis tool. It is invoked to perform analyses
such as schedulability and end-to-end response time analysis. Schedulability analysis is performed
by taking input from the annotated PSM model and the computed partition schedule on each avail-
able processing unit. Then, the response-time analysis calculates the worst-case response time of
each task [100] assessing the schedulable tasks complying with the given timing constraints. Sample
schedulability analysis results for the producer-consumer example is shown in Figure 2.11. The end-
to-end response time analysis, on another hand, is done by utilizing the component sequence diagram.
Applying MARTE timing stereotypes, the tool evaluates the hardware component’s responsiveness.
This analysis facilitates “early end-to-end response time verification", giving a sense of any possible
refinement of the model before deployment [106] (See Figure 2.12).

Dependability analysis include Failure Logic Analysis and State-Based Quantitative Dependabil-
ity Analysis. CHESSML dependability profile which normally supports different techniques for safety
and dependability analysis has been extended to model fault injection and threats. Other new features
include contract validations, parameter-based architectures, and document generation. Failure Logic
Analysis [44] builds on top of Failure Propagation and Transformation Calculus [81] and enables
deductive as well as inductive hazards analysis towards a semi-automatic generation of artifacts, nec-
essary for arguing about HARA (Hazards Analysis and Risk Assessment). Supported by the DEEM
tool [108], State-Based Quantitative Dependability Analysis [109] supports safety engineers in the

10https://mast.unican.es/

Jean Felicien Ihirwe 24

https://mast.unican.es/

2.4. CHESS environment

Figure 2.11: Producer-consumer: Schedulability analysis results

Figure 2.12: Producer-consumer: End-2-end response time analysis results

management of Reliability, Availability, Maintainability, and Safety (RAMS) properties, and in the
assessment of hazard rate threshold associated with safety integrity levels. Properties modeled using
the CHESSML dependability profile are analyzed to obtain the probability of occurrence of specific
failure modes and other quantitative metrics involving reliability, availability, and safety. More on this
is presented in Chapter 7.

Functional Verification by means of model checking is supported by the integrated nuXmv model
checker [110]. System and component properties, derived from requirements, can be formalized
into linear temporal logic properties, then they can be verified on top of the system’s or component’s
behavioral models developed using state machines.

Model validation enforces several types of model constraints, depending on the specific analysis
to be exploited, and the related application domain and criticality. For example, we can mention:
(1) Model core constraints validation is performed to enforce the CHESS model constraints includ-
ing specific preconditions as required by the schedulability analysis (2) Validate model for criticality
specification and (3) Validate model for Automotive 26262 compliance (only specific for automotive
domain) checks the system correctness of Automotive Safety Integrity Level(ASIL) inheritance and
decomposition according to the ISO 26262 standard.

Jean Felicien Ihirwe 25

2.4. CHESS environment

Contract-based design analysis and model checking

CHESS supports the specification of component contracts specified in the OCRA contract lan-
guage. Requirements are formalized into Formal Properties, which contain OCRA assertions, i.e.,
textual specifications of temporal logic formulas (see Figure 2.14 for a contract while Figure 2.13
shows formal property specifications example).

Figure 2.13: Example of a FormalProperty formalizing a requirement

Figure 2.14: Example of a component contract

In the contract-based paradigm, these properties are restricted to the related component interface.
A contract is a pair of properties representing an assumption and a guarantee of the component. In
addition, the CHESS tool supports the contract refinement analysis for composite components. The
contract of a composite component is defined by the assumption of the composite component itself
and the guarantee ensured by the contracts of its sub-components, considering their interconnection
as described by the architecture and that the assumption of each sub-component is ensured by the
contracts of the other sibling sub-components.

CHESS supports the improved contract-based analysis aspects by integrating CHESS with verifi-
cation and validation (V&V) tools such as OCRA [111], nuXmv [68], and xSAP [112]. In this regard,
the contract-based analysis includes:

(1) Model checking, i.e. the behavioral models, that describe how the internal state of a component
and the output ports are updated, can be verified against some formal properties in different tempo-
ral logics. The formal properties can represent some requirements (e.g., functional or safety-related
requirements) or some validation queries such as the reachability of states.

(2) Contract-based compositional verification of state machines is performed on composite com-
ponents. The local state machine of each sub-component is verified separately against its local con-
tract. The correctness of the composite component is implicitly derived from the correctness of the
contract refinement and the successful verification of local state machines.

(3) Contract-based safety analysis, i.e. identify the component failures as the failure of its im-
plementation in satisfying the contract. When the component is composite, its failures can be caused
by a failure of one or more sub-components and/or a failure of the environment in satisfying the as-
sumption. As result, the analysis produces a fault tree in which each intermediate event represents
the failure of a component or its environment, linked to a Boolean combination of other nodes. The
top-level event is the failure of the system component. The basic events are the failures of the leaf
sub-components, in addition to the failure of the environment (see [113] for more details).

Jean Felicien Ihirwe 26

2.4. CHESS environment

Figure 2.15: State machine modeling faulty behavior

Fault Injection and Safety Analysis

CHESS supports safety analysis based on fault injection thanks to the integration of xSAP [114].
The behavioral models of components are extended with faults and the tool automatically generates
Fault Trees, showing the combinations of events leading to a failure or an undesired state, and Fault
Mode Effect Analysis (FMEA) tables, listing all potential failure modes and their effects on the sys-
tem [115].

More specifically, once the system model is defined in CHESS, through components definition
and their nominal behavioral model, the faulty behavior is expressed through a specific state machine
called "Error Model". The Error Model extends the nominal state machine with information about
the effect upon a property of the component, and consequently on its nominal behavior. Figure 2.15
represents an example of an error model that, in case of an internal fault, moves the related component
in an error state where the property "energy" is stuck at 0 value. The optional probability assigned to
that transition is 5 ·10−2.

Once the error model is defined, the Fault Tree Analysis (FTA) or FMEA can be done by invok-
ing xSAP through the CHESS environment. The xSAP approach is based on the library-based fault
injection (i.e., an extension of a behavioral model with the definition of faults taken from a library of
faults) and the use of model-based routines to generate safety artifacts. The result of the FTA is the
fault tree that is automatically shown in a dedicated panel in the front end. If fault probabilities have
been specified during the configuration of the error model, the fault tree will report their combina-
tion. The fault tree shows all minimal cut sets, identifying the basic fault conditions which can lead
to top-level failure. This is complementary to other existing analysis techniques supported in CHESS
such as Failure Logic Analysis and State-Based Quantitative Dependability Analysis, which do not
consider the nominal behaviors and fault injection, but explicitly model the faulty behavior and fault
propagation.

Quantitative Reliability Analysis

The CHESS profile for dependability is used to enrich functional models of the system with in-
formation regarding the behavior with respect to faults and failures, thus allowing properties like
reliability, availability, and safety to be documented and analyzed.

CHESS supports the modeling of security concerns which helps in threat identification at the early
stages of the development and facilitates the exploiting of the Mobius capabilities for analysis of re-
liability. Möbius11 is a software tool for modeling the behavior of complex systems, by allowing the
study of the reliability, availability, security, and performance for large-scale discrete-event systems
[116]. Many reliability analysis results can be obtained with probabilistic models built with Mobius

11https://www.mobius.illinois.edu/

Jean Felicien Ihirwe 27

https://www.mobius.illinois.edu/

2.4. CHESS environment

using the stochastic activity networks (SAN) formalism, solved via Monte-Carlo simulation12. Spe-
cific extensions of the dependability profile are related to the modeling of Cyber-Attacks aspects and
model transformations from CHESS to the Mobius tool to run the analysis of SANs.

As result, the implemented methodology allows the modeling of a system security threat and data
corruption which may result in service misfortune. An example of a system security threat can be a
cyber-security attack, i.e. unauthorized access to the system, halting services. Figure 2.16 depicts the

Figure 2.16: Process of Security breach

process of a security breach that leads to the violation of security-related properties. A threat event,
initiated by a threat source agent, able to exploit a vulnerability of an asset (e.g. a component/system)
may result in a loss to the confidentiality, integrity, and/or availability of the asset. Vulnerabilities
could be represented as a pre-defined enumeration collected through different sources (e.g. personal
competence, standards, results of previous threat analysis, etc.). Finally, the consequences could be
modeled using pre-defined effects, which refers to the loss of Confidentiality, Integrity, and Availabil-
ity (CIA).

Figure 2.17: Erroneous state transition due to security threat event and vulnerability

An «ErrorModel»-tagged state machine is used when modeling the security breach. The failure,
internal fault, and effect are extended to include security threats, vulnerability, and consequences
respectively. Figure 2.17 illustrates an example of an error model, where a cyber-security attack
initiates a data corruption threat. The vulnerability was modeled by exploiting the value check function
which is set to false. In this case, the system transits to an erroneous state leading to component
failure. Note that a component could have multiple instances of «ErrorModel»-tagged state machines,
attached to it. Each instance would provide the elaboration of input/output failure behavior addressing
a specific concern.

The generation of the Mobius SAN model process is done by performing an automatic model-to-
model transformation from a model instance to the SAN model recognized by Mobius for reliability
analysis. The reliability analysis is additional to the existing State Based Quantitative Dependabil-
ity Analysis. It exploits Mobius’s powerful and well-supported analysis capabilities as an engine for

12https://www.investopedia.com/terms/m/montecarlosimulation.asp

Jean Felicien Ihirwe 28

https://www.investopedia.com/terms/m/montecarlosimulation.asp

2.4. CHESS environment

safety and security co-engineering, according to the scenario addressed in [117]. Editing Mobius mod-
els can be nontrivial, CHESS modeling language fully supports the modeling of system architectures
taking into consideration safety and security co-engineering for reliability analysis with MOBIUS.

The generation of the Mobius SAN model process is done by performing an automatic model-to-
model transformation from a CHESS model instance. The transformation engine was implemented
using eclipse-based tools such as QVTo [118] and Acceleo [119]. The traceability information about
the CHESS entities and the generated Ecore SAN model are saved in the SAN folder as .qvtoTrace
file. The file comes with a dedicated editor to be used when checking the mappings. This extension
has been developed in the context of the AQUAS project, as a result of a collaborative effort among
Intecs and the City University of London. This approach was applied and evaluated across different
use cases namely the Automated Teller Machine (ATM) and Industrial Drive. This approach provides
a smooth integration, guarantees consistency among SysML and SAN models, and largely reduces the
effort required to construct an appropriate SAN analysis model.

Support for parameterized architecture and trade-off analysis

In a parameterized architecture the number of components, the number of ports, the connections,
and the static attributes of components depend on a set of parameters. Parameters are defined along
the architectural hierarchy and, thus, the number of parameters themselves can depend on other pa-
rameters. CHESS supports the modeling of the parameterized architecture as well as its instantiation.
In particular, the user can set the values of the parameters, defining the configuration of the architec-
ture, and the tool automatically generates a concrete architecture corresponding to that configuration.
Figure 2.18 shows an example of parameterized architecture.

Figure 2.18: Example of parameterized architecture

The parameterized architecture is also exploited for trade-off analysis, by performing various anal-
yses on the different instantiations and comparing the results. This makes it easy to visually get an
idea of how the intended model instances perform with respect to the selected configurations. Figure
2.19 shows the sample result of a trade-off analysis made on two instances by looking at different
concerns specified by the assumption/guarantee formal properties of each contract.

Figure 2.19: Trade-off Analysis results sample

Jean Felicien Ihirwe 29

2.4. CHESS environment

Automatic generation of diagrams and documentation

The traditional way of editing a model is by adding an element to a diagram but changes made
in the model are not reflected in the diagrams. CHESS offers the possibility of generating a diagram
from the model which reflects the data in the model on the fly. The supported diagrams are Block
Definition Diagram (BDD) and Internal Block Diagram (IBD). The generated diagram elements will
be automatically aligned but the user can rearrange by moving elements manually or by invoking
“layout selection command”.

CHESS also supports the generation of the model architecture and the report on various analyses
executed on the model in an HTML document or a LaTeX source code. The report is divided into two
sections. The first describes the structure of the model which includes diagrams and the associated
components while the second includes the report lists of the results of the validation and verification
(V&V) analyses results. An example of generated model architecture report is shown in Figure 2.20.

Figure 2.20: Generated report sample

2.4.3 Related tools

Several commercial tools provide similar functionalities to CHESS. One of the most popular is
Matlab/Simulink13. Although Simulink facilitates the modeling and analysis of complex systems, its
simulation efficiency might be an important disadvantage. Being based on a single Model of Com-
putation and Communication (MoCC) is another limitation. CoFluent14 is another commercial tool

13https://www.mathworks.com/products/simulink.html
14https://www.intel.com/content/www/us/en/cofluent/overview.html

Jean Felicien Ihirwe 30

https://www.mathworks.com/products/simulink.html
https://www.intel.com/content/www/us/en/cofluent/overview.html

2.4. CHESS environment

extended to model IoT systems. Although supporting more interaction models than Matlab/Simulink,
it is also limited in the way components may interact among them.

Another tendency is to overcome the UML lack of semantic content, required in some application
domains, towards a proliferation of DSLs [60]. Among the available DSLs, UML/MARTE is the stan-
dard language for real-time and embedded systems design, while SysML is the standard language for
system modeling. Several modeling environments like Papyrus15 support UML/MARTE. Neverthe-
less, its flexibility and semantic richness require the definition of efficient modeling methodologies.

Capella16 is an open-source comprehensive and extensible Eclipse system modeling tool. It is
inspired by the SysML principles and it supports the ARCADIA methodology that is successfully
deployed in a wide variety of industrial contexts [120]. ARCADIA provides architectural descrip-
tions for functional analysis, structural analysis, interfaces, and behavior modeling, structured in five
perspectives according to major system engineering activities and concerns.

COMPASS [121] supports model checking, model-based safety, reliability, and performance
analysis and shares with CHESS some of the tools used as a backend for such analyses. Different
from CHESS, it targets a variant of AADL and does not support traceability and code generation.

MapleSim17 is a modeling tool for multi-domain engineering systems built on top of Modelica
modeling language [122]. MapleSim features an integrated environment in which the system equations
can be automatically generated and analyzed [123].

Although we see some approaches able to tackle modeling challenges, no tool or approach has
been able to fit into our methodology with such analysis and verification functionalities. This makes
CHESS a novel approach for implementing component-based modeling methodology for real-time
and dependable systems by taking care of non-functional properties and enforcing correctness at all
the stages of the development process.

2.4.4 Conclusions

Dependable complex system design and development present several challenges; the well-known
canonical approach is to divide complex systems into smaller chunks (or subsystems), build them sep-
arately, and later integrate them. In this section, we presented the current state of the CHESS tool to
tackle the design and verification of real-time dependable complex systems. First, we briefly presented
the CHESS tool engineering methodologies, such as component-based and multi-view modeling en-
vironments. Next, we have summarized the existing analysis support, such as dependability, timing,
safety, and quantitative reliability analyses.

15https://www.eclipse.org/papyrus/
16https://www.eclipse.org/capella/
17https://www.maplesoft.com/products/maplesim/

Jean Felicien Ihirwe 31

https://www.eclipse.org/papyrus/
https://www.eclipse.org/capella/
https://www.maplesoft.com/products/maplesim/

Chapter 3

IoT Engineering Platforms: a state of the
art

This chapter presents the state of the art by summarizing all of the existing approaches related to sev-
eral topics presented in this dissertation. This chapter covers related approaches and tools available in
different area of interest in which this thesis covers. For instance, we covers related works in domains
such as Low-code development tools, model-driven development, deployment, safety analysis and the
software quality models of LCEPs in the IoT domain.

This chapter is organized as follows: Section 3.1 reviews the current low-code-based method-
ologies for engineering IoT systems, highlighting general-purpose approaches as well as IoT-specific
approaches that focus on general design and development as well as service-oriented development
approaches. Section 3.2 presents the MDE approach for modeling and developing IoT systems. Then,
in section 3.3, we present the MDE approaches that focus on deploying IoT systems. In Section
3.4, the related system analysis approach is described with an emphasis on safety-related approaches.
Lastly, in Section 3.5, we present the existing conceptual methods for evaluating the quality of IoT
engineering systems.

3.1 Low-Code Development Platforms for IoT

In this section, we make an overview of existing LCDPs for IoT that take into account MDE
concepts in their core implementations.

3.1.1 General-purpose LCDPs for supporting IoT applications development

Mendix [124] is one of the popular LCDPs that offer significant enterprise characteristics espe-
cially attractive to large businesses [125]. Its platform is equipped for multi-cloud and hybrid com-
puting, due to its support for on-premises, virtual private multi-cloud, and multi-tenant public cloud
deployment options. With Mendix, you can easily connect to different devices and sensors, and use
data from these devices to create applications that can automate processes, provide insights, and en-
able real-time monitoring and control. In addition, Mendix provides a range of pre-built connectors
and integrations for popular IoT platforms and protocols such as MQTT, AWS IoT, and Azure IoT.
These integrations make it easy to connect your Mendix application to your existing IoT infrastructure
and start collecting and analyzing data right away.

Salesforce [126] is a popular CRM LCDP that has been adopted through many different new tech-
nologies like AI, Machine Learning, and Cloud computing. Salesforce supports the rapid prototyping
of IoT applications through the connection with the underlying Salesforce IoT cloud engines [126].
This platform provides data visualization and event management through a visual set of rules and trig-
gers on different data source components. Furthermore, Salesforce IoT Cloud allows businesses to

32

3.1. Low-Code Development Platforms for IoT

create rules that trigger automated actions based on IoT data, such as sending alerts, updating records,
or creating new cases in Salesforce. Additionally, it provides real-time insights into IoT data, helping
businesses to optimize their operations and make data-driven decisions.

ThingWorx [127] offers a set of tools and services that assist companies to develop, implement,
and manage IoT solutions. ThingWorx is designed to make the process of developing and deploy-
ing IoT applications easier by allowing developers to focus on designing their applications instead
of infrastructure and platform difficulties. It includes a visual drag-and-drop interface that enables
developers to design complicated IoT apps without writing much code. ThingWorx also includes an
array of pre-built connectors and templates for fast integrating IoT devices and data channels. Finally
includes a powerful analytics engine that allows developers to analyze and visualize data from IoT
devices in real time as well as ensure data protection from unauthorized access.

Microsoft Power Platform [128] offered by Microsoft, is an LCDP for business software devel-
opment. While it’s not specifically designed for developing IoT applications, it can certainly be used
to develop IoT applications with some additional tools and services. PowerApps, which is part of the
platform, provides a visual interface for building custom mobile and web applications that can interact
with IoT devices. Power Apps include connectors that can be used to communicate with IoT devices,
such as Azure IoT Hub or IoT Central. Power Automate, another tool in the platform, can be used
to create automated workflows that connect IoT devices to other systems and services such as Azure
Event Grid or Azure Stream Analytics. Finally, Microsoft offers a variety of other services that can
be used to develop IoT applications, such as Azure IoT Edge and Azure IoT Hub. By using these
services in conjunction with the Power Platform, developers can quickly and easily create custom IoT
applications with minimal coding.

AWSIoTCore [129] is a fully-managed service provided by Amazon Web Services (AWS) that
allows developers to connect, manage, and securely communicate with IoT devices and applications.
It provides a platform for developing IoT applications by facilitating device connectivity, message
routing, and data management. It includes an LCDP called AWS IoT Things Graph, which allows
developers to visually model the structure and behavior of their IoT systems. It offers different de-
velopment features such as device management which register and manage devices; Rules Engine
which allows you to define rules to filter, transform, and route data between devices and AWS services
Finally, it integrates the developed application with other AWS services, including Amazon Kinesis,
Amazon DynamoDB, and AWS Lambda.

IBM Watson IoT Platform [130] provided by IBM, provides a set of tools and services to help
developers build IoT applications. It offers a range of capabilities such as device connectivity, data
management, analytics, and cognitive computing, all of which can be used to develop and deploy IoT
applications. The platform is designed to handle large volumes of data generated by IoT devices and
sensors and provides secure and scalable communication between devices and applications. It supports
a variety of protocols such as MQTT, HTTP, and CoAP, making it easy to connect different types of
devices and sensors to the platform. One of the key features of the IBM Watson IoT Platform is its
ability to apply analytics and machine learning to the data generated by IoT devices. The platform
includes a range of built-in analytics tools, such as dashboards and predictive analytics, that can be
used to gain insights into the data and make data-driven decisions.

Simplifier [131] integrates business and IoT applications that enable users to create, manage, de-
ploy, and maintain enterprise-grade SAPUI51 apps for web, mobile, and wearables. Simplifier uses
a pre-built interface for bidirectional integration of existing SAP and non-SAP systems and lever-
ages shop-floor integration with native IoT interfaces (OPC-UA, MQTT) [131]. It is provided as a
web-based environment available on-premise or in the cloud. Simplifier permits to the deployment of
applications on the SAP Cloud Platform, SAP NetWeaver, as stand-alone, or on a dedicated Simplifier
cloud.

GoogleCloudIoT [132] offered by Google, offers end-to-end solutions for device connectivity,
data ingestion, processing, storage, and visualization. The platform also supports a wide range of

1https://www.guru99.com/sapui5-tutorial.html

Jean Felicien Ihirwe 33

https://www.guru99.com/sapui5-tutorial.html

3.1. Low-Code Development Platforms for IoT

IoT devices and protocols, including MQTT, HTTP, and CoAP. It also integrates with popular IoT
development platforms such as Arduino and Raspberry Pi. With Google Cloud IoT, developers can
easily create and manage device registries, configure device settings, and monitor device health and
status. The platform also provides secure and reliable data transport and storage, using encryption and
authentication protocols to ensure data privacy and integrity. In addition, Google Cloud IoT offers
a range of analytics and machine learning tools, such as BigQuery and Cloud ML Engine, to help
developers gain insights from IoT data and build intelligent applications.

3.1.2 IoT specific LCDPs for system modeling and development

Modeling IoT systems need to take into account heterogeneous parts of the system which run at
different levels. There are several LCDPs available for IoT structural modeling and development. In
this section, we analyze approaches that propose the modeling of the entire structural aspects of the
system.

Node-RED [89] is a programming tool specifically conceived in the IoT context, with the aim of
wiring and connecting together hardware devices, APIs, and online services [89]. It provides a cloud-
based editor that makes it easy to connect together flows using the wide range of nodes in the palette
that can be deployed to its runtime easily. Node-RED provides a rich text editor built on top of Node.js
taking full advantage of its event-driven, non-blocking model. Node-RED can be run locally or on the
cloud. Node-RED is platform agnostic and compatible with several devices such as Raspberry Pi,
BeagleBone Black, Arduino, Android-based devices. Node-RED also supports its integration with
cloud-based resources such as IBM Cloud, SenseTecnic FRED, Amazon Web Services, and Microsoft
Azure. Finally, in Node-RED, the user can also create and deploy real-time dashboards.

AtmosphereIoT [90] provides IoT solution builders with languages and tools to build, connect,
and manage embedded-to-cloud systems. Atmosphere IoT Studio offers a free drag-and-drop online
IDE, to build all device firmware, mobile apps, and cloud dashboards. AtmosphereIoT connects de-
vices from a range of wireless options including Wi-Fi, Bluetooth and BLE, Sigfox, LoRa, ZigBee,
NFC, satellite, and cellular. This platform is entirely cloud-based but it offers downloadable artifacts.
Finally, AtmosphereIoT offers a range of analytics and visualization tools that allow developers to
monitor and analyze data from their IoT devices in real time. This helps developers to identify issues,
optimize performance, and improve the overall functionality of their applications.

DSL-4-IoT [133] is a cloud-based modeling tool for the IoT domain, which comprises a JavaScript-
based graphical frontend programming language and a runtime “OpenHAB” execution engine. DSL-
4-IoT provides a multistage model-driven approach for the design of IoT applications that supports
all stages of the life cycle of these systems. Automatic model transformations are provided to refine
abstract model elements into concrete ones. Those transformation results formatted as JSON-Arrays
are passed to the OpenHAB runtime engine for execution. In addition to that, it can help to improve
the reliability and performance of the system, DSL-4-IoT can make it easier to test and debug the
system, since the rules and automation logic can be evaluated independently of the underlying device
hardware and software.

BIoTA [134] offers a cloud-based modeling approach for IoT architectures. The specification and
implementation of the BIoTA language involve a grammar and a compiler, responsible for syntax and
semantic analysis, as well as code generation. A graphical DSL and supporting tools allow users
to perform syntax and semantic analysis. BIoTA renders it possible to computationally formalize a
software architecture suggested by a user according to formal automata techniques. The component
& connectors are created following specific rules to meet IoT-specific scenarios while exporting the
resulting software architecture to a software distribution package pattern based on containers (Docker
Compose) for future deployment.

Kiljander et al [135] proposed a cloud-based textual language and tool for Event-based Config-
uration of Smart Environments (ECSE) had been proposed. The tool enables the end-user, expert or
not, to configure a smart environment by employing an ontology-based model. In their approach, the
authors used the Resource Description Frameworks (RDF) to define the event-action rules.

Jean Felicien Ihirwe 34

3.1. Low-Code Development Platforms for IoT

Bezerra et al. [136] propose a cloud-based approach for creating responsive and configurable Web
of Things user interfaces. Models@Runtime are used to produce runtime interfaces based on a formal
model named Thing Description (TD). TD’s goal is to expose Web Things (WT) attributes, actions,
and events to the outside ecosystem. The modeling language has been developed in JavaScript, using
the VueJS framework, and it is publicly available2.

FloWare Core [137] is a model-driven open-source toolchain for building and managing IoT sys-
tems. FloWare supports the Software Product Line and Flow-Based Programming paradigms to man-
age the complexity in the numerous stages of the IoT application development process. The system
configures the IoT application following the IoT system model supplied by the IoT developer. A
Node-RED engine [89] is integrated into FloWare.

Vitruvius [138] is an MDD platform that allows users with no programming experience to cre-
ate and deploy complex IoT web applications based on real-time data from connected vehicles and
sensors. Users can design their ViWapplications straight from the web using a custom Vitruvius
XML domain-specific language. Furthermore, Vitruvius provides a variety of recommendation and
auto-completion features that aid in creating applications by reducing the amount of XML code to be
written.

3.1.3 IoT specific LCDPs for service-oriented applications development

This category includes approaches providing users with cloud-based modeling environments tar-
geting service-oriented architectures. Thus, different services are connected to build the final IoT
systems.

MIDGAR [139] is an IoT platform specifically developed to address the service generation of
applications that interconnect heterogeneous objects. This is achieved by using a graphical DSL in
which the user can interconnect and specify the execution flow of different things. Once the desired
model is ready, it gets processed through the service generation layer, generating a tree-based repre-
sentation model. The model is then used to generate a Java application that can be compiled and run
on the server.

IADev [140] is a model-driven development framework that orchestrates IoT services and gen-
erates software implementation artifacts for heterogeneous IoT systems while supporting multi-level
modeling and transformation. This is accomplished by converting requirements into a solution ar-
chitecture using attribute-driven design. In addition, the components of the produced application
communicate using RESTful APIs.

LogicIoT [141] offer a textual web-based DSL to ease data access and processing semantics in
IoT and Smart Cities settings. LogicIoT is implemented as a set of custom Jakarta Server Pages
(JSP)3 in which different custom JSP tags have been implemented to define the modeling semantics.
The language consists of seven constructs: relations, triggers, endpoints, timers, facts, rules, and
modules. Using the custom tags, the user can define the application’s operations required to enable
the communication between process instances and sensors without being concerned with low-level
programming details.

glue.things [142] offers a cloud-based mashup platform for wiring data of Web-enabled IoT de-
vices and Web services. glue.things take care of both the delivery and maintenance of device data
streams, apps, and their integration. In this regard, glue.things rely on well-established real-time com-
munication networks to facilitate device integration and data stream management. The glue.things
modeling tool combines device and real-time communication, allowing users to describe elements’
triggers and actions and deploy them in a distributed manner.

Taherkordi et al. [143] proposed a cloud-based framework for scalable and real-time modeling
of cloud-based IoT services in large-scale applications, such as smart cities. IoT services are modeled
and organized in a hierarchical manner by relying on references to services and their real-time data. In

2https://github.com/smar2t/td_interface_builder
3https://en.wikipedia.org/wiki/Jakarta_Server_Pages

Jean Felicien Ihirwe 35

https://github.com/smar2t/td_interface_builder
https://en.wikipedia.org/wiki/Jakarta_Server_Pages

3.2. Model-driven design and development of IoT systems

order to guarantee real-time and fresh service delivery to interested parties, the service tree supports
notification-based access to service data and changes.

Valsamakis et al. [144] presented a portable web-based graphical end-user programming en-
vironment for personal apps is proposed. This tool allows users to discover smart things in their
environment and create personalized applications that represent their own needs. Each of the defined
smart objects can provide various features that can be published via a well-defined API. The graphical
representation of the system is then generated from the constructed JavaScript objects in which the
user can interact with the system on the fly.

E-SODA [145] is a cloud-based DSL under the Cloud-Edge-Beneath (CEB) architecture ecosys-
tem. In E-SODA, a cloud sensor comprises a set of Event/Condition/Action (ECA) rules that define
the sensor service life-cycle. It allows the user to be abstract and simulate sensor behavior in an events-
based fashion. This is achieved by having the ECA rules listen for the occurrence of a predetermined
"event" and respond by performing the "action" if the rule’s "condition" is met. Finally, the generated
cloud sensor application can be used in any cloud-based application which needs sensor data.

Mayer et al. [146] introduced an integrated graphical programming tool based on a goal-driven
approach, in which end users are only required to specify their purpose in a machine-understandable
manner, rather than designing a service architecture that fulfills their goal. This allows a smart en-
vironment’s ultimate purpose to be graphically represented, but the complexities of the underlying
semantics are hidden. A reasoning component uses the provided goal statement and analyses whether
the goal can be achieved given the set of available services and infers whatever user actions (i.e.,
requests involving REST resources) are required to achieve it.

InteroEvery [147] is a cloud-based development tool that promotes a micro-service-based architec-
ture to deal with interoperability issues of the IoT domain. First, an IoT system is configured through
a web-based graphical interface showing each micro-service functionalities. A universal broker con-
nects a dedicated interoperability micro-service with various adaption micro-services depending on
employed choreography patterns.

3.2 Model-driven design and development of IoT systems

In this section, we present the related work with more emphasis on software modeling and devel-
opment that may further generate code ready for deployment on IoT devices.

Ciccozzi, F. et al. [36] presented MDE4IoT, an MDE platform that combines different UML
DSLs as profiles used through different viewpoints to enforce the separation of concerns. Its main
goal is to combine the support for the design, development, and runtime management of IoT systems.
This is achieved by providing means for supporting the modeling and self-adaptation of Emergent
Configurations (ECs) of connected systems. MDE4IoT performs a series of model-to-model as well
as model-to-text transformations to satisfy the generated platform-specific code from state machines.
The run-time monitoring and self-adaptations are supported through the re-allocations s well as re-
generation mechanisms according to the system’s runtime feedback.

Costa B. et al. [50] presented SysML4IoT a Model-Based Systems Engineering tool for IoT ap-
plication development, focusing on the design phase. SysML4IoT is strongly based on IoT-A domain
reference model [49] established by European research body as well as ISO/IEC/IEEE 15288 standard
4, aiming to enhance system models with Systems Engineering concepts [49]. To address different
stakeholders involved in the process, the tool adopts a multi-disciplined IoT application design by
using views and viewpoints. In [148], SysML4IoT was been extended to assist IoT application engi-
neers in precisely modeling IoT applications and verifying their quality of service (QoS) properties.
Through a model-to-text translator that converts the model and QoS properties specified on it to be
executed by NuSMV [68], a mature model checker that allows entering a system model comprising a
number of communicating Finite State Machines (FSM) and automatically checks its properties speci-
fied as Computational Tree Logic (CTL) or Linear Temporal Logic (LTL) formulas. The tool has been

4https://standards.ieee.org/ieee/15288/5673/

Jean Felicien Ihirwe 36

https://standards.ieee.org/ieee/15288/5673/

3.2. Model-driven design and development of IoT systems

adopted in [149] for developing IoT self-adaptive systems endorsing the public/subscribe paradigm to
model communication with other systems.

Thramboulidis K. et al. [150] introduced UML4IoT, an MDE platform for industrial automation
systems. It was designed to support the full automation of the generation process of the IoT-compliant
layer required for the cyber-physical component to be effectively integrated into the modern IoT man-
ufacturing environment. A model-to-model transformation has been implemented to automatically
transform the mechatronic components into Industrial Automation Things (IAT). The tool adopted the
Open Mobile Alliance (OMA) LWM2M application protocol running on top of the CoAP communi-
cation protocol as the mean for exposing the IoT interface as simple smart objects [151]. The approach
also enables the usage of high-level languages such as Java to specify the system’s behavior in case a
higher-level design specification such as the UML one is not available.

Harrand N. et al. [37] presented ThingML, an engineering IoT platform that combines well-
proven textual software-modeling constructs aligned with UML (statecharts and components) and
an imperative platform-independent action language for developing IoT applications. In ThingML, a
thing can be defined by a set of properties, functions, messages, ports, as well as state machines. These
behaviors are local to a thing and can be accessed only through interfaces inside the state machines
or functions. The interaction between things is enabled through required or provided ports by means
of message exchanges. The tools include an advanced multi-platform code generation framework that
supports multiple target programming languages such as C/C++, Java, Arduino, JavaScript, Python,
and Go. In [152], ThingML was extended to assist IoT/cyber-physical modeling with machine learning
needs. The new approach targets the issue of IoT communications and behavioral modeling which was
normally done using state machines.

Nicholson R. et al. [39] presented IoTML, a tool developed in the context of the BRAIN-IoT
project [39] as an integrated modeling tool to ease rapid prototyping of intelligent cooperative IoT sys-
tems based on shared models. The BRAIN-IoT modeling environment i.e IoTML is implemented as a
Papyrus profile. The BRAIN-IoT architecture mainly consists of three macro-blocks: the BRAIN-IoT
Modeling Framework, the Marketplace, and the Federation of BRAIN-IoT Fabrics. The constructed
models are transformed into XML format before being uploaded to the BRAIN-IoT marketplace for
run-time system deployment and dynamic remote edge/cloud reconfiguration.

M. de Farias et al. [153] presented a Cloud and Model-based IDE for the IoT tool (COMFIT)
to target wireless sensor networks (WSN) applications for IoT. The COMFIT modeling environment
is built on top of Papyrus, and it presents a simple multi-view environment to model the system’s
requirement, structural and behavioral aspects. The wireless nodes of the system and their communi-
cation links are created in the structural view, while the model activities and behaviors are modeled as
functional units, which later get linked according to the desired execution sequence. Finally, the tool
provides the model-checking infrastructure respecting the OCL rules specified in the meta-model.

Muccini H. et al. [72] introduced CAPS an architecture-driven modeling framework for the devel-
opment of Situational Aware Cyber-Physical Systems. CAPS is based on a multi-view architectural
approach that combines the design for the IoT system’s software components and their interactions,
the hardware specification of situational awareness, as well as the physical environment where hard-
ware equipment is deployed. To link together the modeled views, the authors introduced two auxiliary
languages, denoted Mapping Modeling Language (MAPML) and Deployment Modeling Language
(DEPML). The authors used the Atlas Model Weaver (AMW)5 to define relations among models and
to create semantic links among model elements. In [154], CAPSml extension to CAPS was introduced
to support the platform-specific code generation through the usage of the ThingML [37].

Dhouib S. et al. [155] introduced Papyrus4IoT, a modeling tool developed under the Smart, Safe,
and Security Software Development and Execution Platform (S3P) project. Papyrus4IoT environ-
ment that enables the design and deployment of complex IoT systems following an IoT-A reference
architecture [7]. the designer can define process specification definition, functional, and operational
platform, and the deployment which is done by allocating the system’s functional blocks to the device

5https://projects.eclipse.org/projects/modeling.gmt.amw

Jean Felicien Ihirwe 37

https://projects.eclipse.org/projects/modeling.gmt.amw

3.2. Model-driven design and development of IoT systems

processing units. The authors proposed the use of development-time models to supervise a running
IoT system to reflect the Models@Runtime monitoring approach. This typically helps in detecting
overall system critical states and helps make decisions on the adaptation of the running system. Au-
thors suggest the extension of Papyrus Moka [156] to perform model simulations. Concerning the
deployment of the modeled systems, authors make use of Prismtech’s Vortex as a dynamic platform
to discover and deploy microservices, and MicroEJ as the target operating system.

Salihbegovic A. et al. [133] presented DSL-4-IoT, a tool based on a high-level visual programming
language established to tackle the complexity and heterogeneity of IoT systems. The Editor enables
the application designer to configure the system structure and select devices, sensors, and actuators
either from built-in library modules available. When the design is finished, the user can export the
data into one JSON array configuration file. This file keeps the information about the position of all
the items within the configuration, relationships between items and groups, the value of all configured
fields associated with items, and of data types. After all configuration files are generated, they can
be transferred to the respective OpenHAB runtime directory manually or automatically downloaded,
using a simple web service for execution.

Erazo-Garzón L. et al. [26] presented Monitor-IoT, a graphical designer (high-level visual lan-
guage) built in the Obeo Designer Community and Eclipse Sirius tools to support developers in mod-
eling IoT multi-layer monitoring architectures with a high level of abstraction, expressiveness, and
flexibility. Monitor-IoT supports the definition of computing nodes and their resources that support
the monitoring processes (data collection, transport, processing, and storage) at the edge, fog, and
cloud layers. It is also possible to specify the properties to be monitored for each entity as well as the
definition of dataflows between digital entities, based on synchronous or asynchronous communica-
tion. Although Monitor-IoT supports a variety of different interesting concepts, it doe no support the
generation of any kind of code, monitoring scripts, or data flows which can be executed on an actual
IoT system.

Pramudianto F. et al. [157] presented IoTLink, a development toolkit based on a model-driven
approach to allow inexperienced developers to compose mashup applications through a graphical
domain-specific language. Modeled applications can be easily configured and wired together to create
an IoT application. Through visual components, IoT Link encapsulates the complexity of communi-
cating with devices and services on the internet and abstracts them as virtual objects that are accessible
through different communication technologies. To support interoperability with other services, authors
implemented custom components like ArduinoSerial for Arduino connectivity, SOAPInupt, RESTIn-
put, MQTTInput, etc. The tool is able to generate a complete Java project including an extendable Java
code. At runtime, the tool generates connections by using the Drools6 engine to poll the rules from a
database repository, which allows developers to deploy and change deployment rules at runtime. In a
controlled experiment, IoT Link was 42% faster than using a Java library and able to outperform the
Java library’s user satisfaction.

Corradini et al. [158] presented X-IoT, a model-driven approach supporting the development of
cross-platform IoT applications. X-IoT is based on a DSML and its related notation, whose devel-
opment has been guided by a deep analysis of IoT application characteristics. The proposal covers
the modeling, development, and deployment phases, supporting different actors in the development
process and the derivation of specific artifacts, resulting in a model-to-code transformation approach.
X-IoT tackles the IoT platform portability issue by promoting “a single development/multiple de-
ployments” strategy. Tool support is provided through the ADOxx platform 7, which allows using the
DSML to model platform-independent IoT applications. The resulting application can be successively
refined by introducing platform-specific information and then deployed on the selected IoT platform.

Thang Nguyen et a. [159] presented a FRAmework for Sensor Application Development (FRASAD),
a model-driven framework to develop IoT applications. The tool was developed with aim of tackling
the reusability, flexibility, and maintainability of sensor software. FRASAD relies on a node-centric

6https://www.drools.org/
7https://www.adoxx.org

Jean Felicien Ihirwe 38

https://www.drools.org/
https://www.adoxx.org

3.3. MDE for deployment of IoT systems

software architecture model in which a rule-based programming model is enabled by a DSL that un-
couples the programming language and the execution model used by the underlying operating system.
FRASAD has been developed on top of Eclipse EMF/GMF and consists of a graphical modeling lan-
guage, a code generator, and other supporting tools to help developers design, implement, optimize,
and test the developed IoT applications. Two case studies are provided to show the usability and
portability of our framework. The evaluation results demonstrate that our framework FRASAD can
be considered a promising solution to reduce the complexity of IoT software development.

Nepomuceno et al. [160] presented AutoIoT, a framework that allows users to model their IoT
systems using a simple JSON file. The process starts by modeling the system using the graphical
interface generated from GMF. When the modeling phase is completed, AutoIoT loads the content
of the model as a JSON file to be validated and transformed into Python objects using the Pydantic8

library. After that, the framework finally delivers these objects to an appropriate Builder that performs
model-to-text transformations to generate a ready-to-use IoT server-side application. The Prototype
Builder generates a Flask application written in Python, HTML, CSS, and Javascript. The generated
server-side application communicates with IoT devices and third-party systems through MQTT, Rest
API, and WebSockets.

Soukaras et al. [161] presented IoTSuite, a suite of tools for IoT applications development, for re-
ducing development effort. The tool consists of the following components: i) an editor to support the
application design phase by allowing stakeholders to specify high-level descriptions of the system un-
der development; ii) an ANTLR9 based compiler that parses the high-level specification and supports
the application development phase by producing programming framework that reduces development
effort in specifying the details of components of an IoT application; iii) a deployment module, which
is supported by the mapper and linker modules; iv) a runtime system, which leverages existing mid-
dleware platforms and it is responsible for the distributed execution of the modeled IoT application.
The current implementation of IoTSuite targets both Android and JavaSE-enabled devices and makes
use of an MQTT-based middleware.

Xuan Thang et al. [162] presented a DSL designed for specifying all aspects of a sensor node
application, especially for data processing tasks such as sampling, aggregation, and forwarding. The
proposed DSL offers a set of declarative sentences to express the behavior of sensor nodes applica-
tion such as sampling, aggregating, and forwarding which is necessary for developing data-centric
Wireless Sensor Networks (WSN) applications. The tool is based on Eclipse GMF for specifying
PIMs. The transformation from the PIM to nesC10 PSM models has been implemented by using the
ATL transformation language11. Acceleo-based model-to-text transformations have been developed
to generate the final nesC source code of the modeled system.

3.3 MDE for deployment of IoT systems

In the context of IoT, MDE can help to simplify the deployment process by automating many of
the tasks involved, such as configuring devices, setting up communication protocols, and managing
data flows. By creating models that capture the key aspects of an IoT system, such as the devices,
sensors, and data streams involved, MDE can provide a high-level view of the system and make it
easier to manage and maintain. In this section, we go over the MDE approach that focuses mainly on
the deployment modeling and automation of IoT systems.

Kirchhof et al. [17] introduced MontiThings a C&C language offering automatic error handling
capabilities and a clear separation between business logic and implementation details. Built on top of
MontiArc [163], MontiThing is an integrated modeling language for architectures of IoT applications,
their deployment, and error handling that lifts the level of abstraction in the IoT system engineering

8https://pydantic-docs.helpmanual.io/
9https://www.antlr.org/

10http://nescc.sourceforge.net/
11https://www.eclipse.org/atl/

Jean Felicien Ihirwe 39

https://pydantic-docs.helpmanual.io/
https://www.antlr.org/
http://nescc.sourceforge.net/
https://www.eclipse.org/atl/

3.3. MDE for deployment of IoT systems

process. The error-handling approach makes C&C-based IoT applications more reliable without clut-
tering the business logic with error-handling code that is time-consuming to develop and makes the
models hard to understand, especially for non-experts. Targeting mainly the edge layer, Montithings
provides a model-driven toolchain for the automated synthesis of executable IoT containers, and auto-
mated deployment planning, featuring deployment suggestions, for the generated containers. Finally,
the tool monitors the generated container and in case of need, the tool is able to suggest the deployment
goals changes based on deployment planning feedback.

Duran et al. [164] proposed a new technique for supporting the reconfiguration of running IoT
applications, represented as a set of coordinated rules acting on devices. These techniques compare
two versions of an application (before and after reconfiguration) to check if several functional and
quantitative properties are satisfied. This information can be used by the user to decide whether the
actual deployment of the new application should be triggered or not. The approach uses advanced
Event-Condition-Action (ECA) rules by providing means for the composition of rules, such as the
sequential execution of rules, the choice between several rules, the concurrent execution of several
rules, or the repetition of rules. Finally, the property property-based verification was implemented to
analyze whether the proposed reconfiguration preserves the consistency of the application.

Ivan A. et al. [165] proposed a model-based approach for the specification and execution of
self-adaptive multi-layered IoT systems. A domain-specific language (DSL) for the specification of
such architectures, and a runtime framework to support the system behavior and its self-adaptation at
runtime were presented. The proposed DSL covers modeling primitives covering the four layers of an
IoT system that includes IoT devices (sensors or actuators), edge, fog, and cloud nodes. The modeling
of the deployment and grouping of container-based applications on that node. In addition to that, the
tool supports a specific language to express adaptation rules to guarantee QoS at runtime. A proof
of concept of a generator for deploying and executing the runtime state of modeled IoT system on a
K3S-based infrastructure (Kubernetes distribution built for IoT and edge computing) is also provided.

Negash et al. [166] introduced DoS-IL, a textual domain scripting language for resource-constrained
IoT devices. It allows a flexible and scalable approach that enhances modifiability and programma-
bility through client-server-server-client architecture. DoS-IL allows changing the system’s behavior
after deployment through a lightweight script written with the DoS-IL language and stored in a gate-
way at the fog layer. This mainly is to support easy maintenance and modification after deployment,
without the need to physically access the end node. The gateway hosts an interpreter to execute DoS-
IL scripts accessible by devices in the perception layer. The interpreter splits the script into tokens
first, identifies the function of each token, and structures it in a convenient way for execution. On the
target node, the Device Object Model (DOM) exposes the available resources for the DoS-IL script to
manipulate.

Fei Li et al. [167] proposed Topology and Orchestration Specification for Cloud Applications
(TOSCA), a structured (XML-based) language that defines different components of an application
and relations between them using an application topology while capturing all management tasks in
management plans. TOSCA aims at automating the deployment and management of composite ap-
plications by providing a generic way to describe the application topology of composite cloud ap-
plications and leverages portable workflow languages to ensure the portability of deployment and
management plans. Moreover, it aims at improving the reusability of service management processes
and automating IoT application deployment in heterogeneous environments. In TOSCA, common IoT
components such as gateways and drivers can be modeled. In addition, the gateway-specific artifacts
necessary for application deployment can also be specified to ease the deployment tasks.

Ferry et al. [168] proposed GENESIS, a textual cloud-based domain-specific modeling language
that supports continuous orchestration and deployment of Smart IoT systems on edge, and cloud
infrastructures. GENESIS (Generation and Deployment of Smart IoT Systems) uses component-based
approaches to facilitate the separation of concerns and reusability; therefore, deployment models can
be regarded as an assembly of components. The GENESIS execution engines support three types
of deployable artifacts, namely ThingML model [37], Node-RED container [89], and any black-box
deployable artifact (e.g., an executable jar). The created deployment model is subsequently passed to

Jean Felicien Ihirwe 40

3.4. MDE for safety analysis of IoT systems

the GENESIS deployment execution engine, which is in charge of deploying the software components,
ensuring communication between them, supplying the required cloud resources, and monitoring the
deployment’s status.

Erazo-Garzón et al. [26] introduced Monitor-IoT, a graphical designer (high-level visual language)
built in the Obeo Designer Community and Eclipse Sirius tools to support developers in modeling IoT
multi-layer monitoring architectures with a high level of abstraction, expressiveness, and flexibility.
Monitor-IoT supports the definition of computing nodes and their resources that support the monitor-
ing processes (data collection, transport, processing, and storage) at the edge, fog, and cloud layers.
It is also possible to specify the properties to be monitored for each entity as well as the definition of
dataflows between digital entities, based on synchronous or asynchronous communication. Although
Monitor-IoT supports a variety of different interesting concepts, it doe no support the generation of
any kind of code, monitoring scripts, or data flows which can be executed on an actual IoT system.

3.4 MDE for safety analysis of IoT systems

MDE can help with safety analysis by allowing designers and safety engineers to create models
of the system that capture its behavior and interactions with the physical world. These models can
then be used to perform various types of safety analysis, such as hazard identification, Fault-Tree,
and Failure Mode and Effects Analysis (FMEA) [79]. MDE-based safety analysis can be particularly
effective for complex IoT systems, where the interactions between devices, sensors, and data streams
can be difficult to understand and analyze manually. By creating models that capture the system’s
behavior and interactions, MDE can provide a more complete and accurate view of the system and its
potential risks.

Fault tree analysis is one of the hugely used and suggested methods when performing different
dependability analysis studies, including safety analysis [34]. We have also mentioned that FTs are
among the mandatory artifacts that should be provided for performing Safety Analysis in different
domains and IoT is yet to follow [32]. However, most of the approaches presented in the literature
still rely on the manual construction of the FTs, which still makes the process time-consuming.

One of the widely used tools in the industry as well as in the academia to perform the FTA is
the ISOGRAPH tool [169]. The ISOGRAPH Reliability workbench is a powerful integral visual
modeling and analysis environment in which all the aspects of the reliability analysis such as failure
rate and maintainability prediction, Failure Mode Effects & Criticality Analysis (FMECA), Reliability
Allocation, Reliability Block Diagram as well as Fault Tree, Event Tree, and Markov analysis are
combined. Although this tool is seemingly powerful in terms of what can be covered, different from
our approach presented in Chapter 7 in which the system FTs are automatically generated from the
analysis, the FTs are still manually constructed from the system failure requirements provided by the
safety experts.

Haider et al. [3] employs the CHESS Failure Logic Analysis results to build European Cooperation
for Space Standardization (ECSS)12 compatible FTs. Although their approach is linked with ours,
it differs significantly in various points. To name a few, their approach only supports system-level
component composition while creating FT, while our approach supports any level of composition. For
instance, with our approach, FTs of a single composite component can be generated and analyzed
individually. Furthermore, in their approach, only basic events from the system-level input ports can
be generated, whereas in our case, any component can initiate a basic failure event. Finally, their
approach only supports FT generation, however, unlike our approach, they neither support qualitative
nor quantitative FT analysis.

Parri et al. [170] presented JARVIS (Just-in-time ARtificial intelligence for the eValuation of
Industrial Signals), a model-driven tool that facilitates the development and verification of the inte-
gration of physical IoT devices, enterprise-scale software agents, data analytics, and human operators.

12https://ecss.nl/standards/

Jean Felicien Ihirwe 41

https://ecss.nl/standards/

3.4. MDE for safety analysis of IoT systems

JARVIS promotes semi-formal specification of structural elements, functional requirements, and be-
havioral characteristics of subsystems from a System of a Systems perspective. JARVIS employs
agents to facilitate the development and integration of intelligent data agents capable of detecting fail-
ure events that occur in accordance with a set of failure modes. Eventually, a FaultTreeAnalyzer agent
is used to perform Fault Tree Analysis on detected failure events. Although their approach performs a
qualitative analysis, the quantitative one is not supported. Finally, their FT generation approach relies
on the practical data model constructed by the deployed agent, while our approach relies on FLA for
the FT generation.

Several approaches have been proposed for the automatic generation of FTs from SysML models.
For example, Mhenni et al. [171] present an approach for generating FTs from SysML models, relying
on a combination of information provided in activity and IBD diagrams as well as information in the
FMEA table. Although the current tool generates a single FT picture representing the system failure
paths, no FT models are generated. Another critical difference with respect to our proposed approach
regards the use of directed graph traversal and block design patterns to generate FTs which is nothing
but using the component-directed edge relationships to determine how the next component has to
be represented in an FT. Even though the presented block design patterns are useful to derive the
component failure propagation behaviors, they do not cover certain topics such as "internal failure of
the components", since this information is probably picked from the FMEA table, as well as they do
not provide any support for any kind of automated qualitative or quantitative FT analysis.

Alshboul et al. [4] presented an MDE environment for performing preliminary safety analysis
from SysML models. The approaches use UML state machines to model the component functional
behavior and annotate them with failure behaviors; later this information is used to generate the system
FTs. Although the proposed approach generates the FTs, certain aspects of the safety analysis are not
covered such as injected or external failures, as well as the qualitative or quantitative analysis of
the generated FTs. On another hand, Yakymets et al. [172] presented a framework that integrates
the formal method approach for facilitating the automatic FT generation within an MDE workflow.
The approach annotates to the SysML model elements the formal analytical expressions showing
how deviations in the block outputs can be caused by internal failures of the block and/or possible
deviations in the block inputs. Later this information is transformed into an AltaRica model [173]
representation which is used to perform qualitative and quantitative analysis using the XFTA tool
provided by the framework. Although this approach seems very interesting, the process of annotating
the model with formal analytical expression can be very complex to grasp whereas, in our proposed
approach, failure logic behavior rules following FPTC notation are used and we retain they are simpler
and straightforward to be used.

In terms of safety-critical systems, Han et al. [84] presented an approach for performing a com-
bination of FMEA and FTA analysis on safety-critical systems starting from the Preliminary Hazard
Analysis (PHA) method, initially conducted by the safety experts. However, no supporting tool is
provided. Same as Hame at al. [174] an approach for manually deriving FT diagrams from the Re-
liability Block Diagram (RBD) was also presented, however, the qualitative and quantitative analysis
are manually performed, differently from our approach where the analysis is performed automatically.
Furthermore, unlike our approach which models the system architecture, annotates the model with
safety-related information, and later generates and analyzes FTs, several approaches, such as [175–
177], propose SysML profiles which are used to create FT models and later translate them into FT
graphs without any support for system modeling itself. On another hand, Chaari et al. [178] proposes
a Meta-modeling-based Failure Propagation Analysis (MetaFPA) framework to support the synthesiz-
ing of the system failure propagation models in order to help the creation of the system FTs. Although
the presented framework presents an alternative to FPTC on how system failure propagation rules can
be modeled, unlike our proposed approach, the framework does not generate the system FTs but relies
on the ISOGRAPH tool [169] to perform the FTA. The same goes with the approaches proposed in
[174, 179] which rely on the ISOGRAPH software to manually construct and analyze the FTs.

In the IoT domain, very few approaches specifically target the execution of safety analysis on
IoT systems. This might be mainly caused by the lack of systematic, disciplined, and quantifiable

Jean Felicien Ihirwe 42

3.5. Software product quality model for IoT LCEPs

software engineering standards, as well as comprehensive abstraction models for dealing with the
increasing complexity and safety requirement heterogeneity present in the IoT domain. Silva et al.
[180] presented a dependability evaluation tool for IoT applications, when hardware and permanent
link faults are considered. The tool supports the modeling of system network architecture and, later,
the so-called network failure condition events (nfc) are defined to help in generating the FT. The nfc
formalism somehow follows the logical association rules for addition and multiplication in order to
reflect the "OR" and the "AND" gates respectively. Finally, the tool supports the qualitative analysis,
by generating minimal cut-sets, as well as the quantitative analysis. Although this tool supports the
automatic generation and the analysis of the FTs, it differs from our approach presented in Chapter 7
both in terms of system failure behavior formalism and because it does not support any mechanism
related to failure transformation, propagation, and injection.

Chen et al. [181] presented an intelligent method for fault diagnosis based on a combination of
FTA and fuzzy neural networks in the aquaculture IoT systems. In their approach, the FT is manually
constructed for each component of the system and later the “IF-THEN” rules are extracted from the
FT to be fed into the fuzzy neural network to train the relationship model between fault symptoms
(failures) and faults. Although this method uses the FTA for the safety analysis process, it differs
from our approach since the generation of the FT is done manually, while in our case it is performed
automatically. Furthermore, our approach conducts a quantitative analysis by calculating the system
failure probability, while their approach does not. Finally, Xing et al. [182] presented an FT modeling
infrastructure in which different reliability analyses for mesh topology IoT networks are performed
taking into account the quantitative analyses. However, same as the ISOGRAPH tool, the aspect of
the FT construction is still manually done from the system failure requirements provided by the safety
expert.

3.5 Software product quality model for IoT LCEPs

Practitioners typically rely on well-established standards and practices to improve confidence in
whether a system or a product fits the wanted quality requirements. ISO/IEC 25010:2011 standard is
one of the model standards that have been heavily used to assess the quality of complex software and
systems. In this section, we present the existing approaches that was been used to evaluate the quality
of IoT systems based on ISO/IEC 25010:2011 standard.

To name a few, Azham ate al. [18] relied on it to assess the quality of online health awareness
systems, Martinez et al. [19] relied on the model for assessing the quality of IoT brokers. Schipore
et al. [183] presented Euphoria, a software architecture design and implementation that enables easy
prototyping, deployment, and evaluation of adaptable and flexible interactions across heterogeneous
devices in smart environments. The tool was designed and developed following the requirement set
by the ISO/IEC 25010:2011 standard. Johan et al. [20] relied on the standard to evaluate the quality
of IoT implementations. Although this quality model’s scope is intended general for software and
computer systems, it can also be applied to assess larger systems and services [14]. For instance,
Janine et al. [25] adopted the standard to assess the quality of mobile applications, as well as in
[21, 22] for Machine learning and Big data systems.

There have been several approaches in the modeling domain for quality measurements. For ex-
ample, Gökhan at al. [184] introduced a Framework for Qualitative Assessment of DSLs (FQAD)
was presented. The FQAD framework is based on ISO/IEC 25010:2011 when determining the eval-
uation’s perspective, the assessment’s goal, and selecting relevant quality characteristics to guide the
assessment process. In addition to that, in [185] Christian et el. relied on the standard to assess the
quality assurance of DSLs. In contrast, Mohamed et al. [186] employed the standard to evaluate the
quality of design architectures. In addition, Miguel et al. [187] relied on the standard to evaluate MDE
quality studies in attaining maximum quality evaluation level by considering that study that touched
more of the quality characteristics as specified by the standards would be ranked as optimal.

Luana et al. [23] used the standard to perform a mapping study on the quality assessment of

Jean Felicien Ihirwe 43

3.5. Software product quality model for IoT LCEPs

software product lines. The standard was used by Jara et al. [188] to assess the security quality
of mobile cloud computing-based technologies. Finally, Bernardes et al [24] used it to evaluate the
quality aspects of customer relationship management (CRM) systems. A large number of extensions
and suggestions on the standard have been proposed. To name a few, Estdale et al. [189] proposed
the extension to meet the lifetime service-oriented quality aspect of software systems. Rahman et al
[21] conducted a study to assess the product quality of Big Data systems concerning non-functional
requirements, while Gonzalez et al. [190] extended the model to Semantic Web exploration tools.

Finally, Farshidi et al. [191] presents a highly comprehensive effort to assist the quality evaluation
of MDD platforms, as well as a mapping from the proposed model to the ISO/IEC 25010:2011 stan-
dard. In their approach, a multi-criteria decision-making (MCDM) model for MDD platforms is used
to help in choosing an optimal quality sufficient platform for their requirements. External decision
models can be uploaded to the existing decision support system (DSS) knowledge base to support
long-term software-producing organizations make decisions based on their needs and preferences.
Nevertheless, the approach as well as the results presented are too generic, whereas our approach fo-
cuses primarily on IoT-specific platforms. Furthermore, the approach, in our opinion, focuses mostly
on LCDPs, while other conventional MDE platforms, such as those based on the Eclipse Development
Environment, are not taken into account at all.

Jean Felicien Ihirwe 44

Chapter 4

Limitations and open challenges of
existing IoT Engineering Platforms

IoT Engineering platforms have to cope with several challenges mainly because of the heterogeneity of
the involved sub-systems and components. With the aim of conceiving languages and tools supporting
the development of IoT systems, this chapter presents the results of different studies conducted to
understand the current state of the art of LCEPs in the IoT domain. By partially targeting to answer
the first research problem (RP1), this chapter initially focuses on MDE and Low-Code approaches to
satisfy the engineering support of IoT systems. First, we present a general overview of what an IoT
Engineering platform should support through a well-conceived taxonomy of features. By doing so,
we selected sixteen platforms, and such features were used to evaluate the functionalities and services
supported by each analyzed platform. Furthermore, we identified some weaknesses of the analyzed
platforms to pave the way toward a Low-Code platform for developing IoT systems. As a last step, we
have also identified some limitations of existing approaches and discussed possible ways to improve
and address them in the future.
The current evolution of cloud-based computing opens up many possibilities for software develop-
ment. In the near future, the engineering of complex systems in various domains, such as Space,
Automotive, IoT, and Smart Cities, will be done from cloud-based environments, lowering production
and maintenance costs. In particular, parts of the IoT domain have to run on Edge, Fog, or Cloud,
posing significant difficulties in determining what, where, and when to develop. Therefore, as a con-
tribution toward answering the first research problem (RP1), this chapter also present the results of the
state-of-the-art review we conducted to investigate where the IoT domain community stands concern-
ing the current trend of moving traditional modeling infrastructures to the cloud. After examining 611
articles, we focus on 22 different cloud-based IoT system development approaches. The considered
approaches have been analyzed to assess their strengths and weaknesses concerning many character-
istics, including their modeling focus, accessibility, openness, and artifact generation. Throughout the
chapter, we have discussed many challenges IoT developers encounter while adopting such tools. We
also discuss various generic technologies and tools which can be adopted in the IoT domain.
The chapter is organized as follows: Firstly, Section 4.1 demonstrates the current state of the art of
IoT engineering platforms in general, including both Low-code and MDE approaches. In fact, section
4.1.1 highlights the IoT engineering platform features, and 4.1.3 evaluates the outcomes of the study
while sub-section 4.1.4 concludes the section. Secondly, Section 4.2 covers the current state of the art
in cloud-based modeling methodologies in IoT. Section 4.2.1, for instance, presents related studies
on cloud-based modeling in IoT, Section 4.2.2 presents the study design methodology while Section
4.2.3 describes the study’s results. Section 4.2.4 presents the topic’s challenges, and Section 4.2.5
highlights related opportunities.

45

4.1. Engineering IoT platforms

4.1 Engineering IoT platforms

According to European Union CONNECT Advisory Forum report [192], IoT promises to be one
of the most disruptive technological revolutions since the advent of the Internet. It is projected that by
the end of 2030, fifty to hundred billion IoT devices will be connected to the Internet using a variety of
information technologies [193]. As we experience in daily life, now we see more and more intelligent
traffic lights, advanced parking technologies, smart homes, and intelligent cargo movement. This is
due to the rising adoption of artificial intelligence (AI), and 5G infrastructure is helping the global IoT
market register increased growth.

IoT engineering platform aims to simplify and streamline the process of developing and deploying
IoT applications, helping developers to focus on the higher-level functionality of their applications in-
stead of worrying about the underlying infrastructure and connectivity [8]. IoT engineering platforms
especially commercial ones may also include a set of pre-built components, such as sensors, actuators,
and communication protocols, that can be used to quickly develop IoT applications without having
to build everything from scratch [90]. Additionally, these platforms often support various program-
ming languages, making it easier for developers to build applications using the language they are most
comfortable with [89].

In this section, we present the current state of research model-based approaches for engineering
IoT systems by taking into account LCDPs in particular. We present a general overview of what
we think a typical IoT Engineering platform should support through a well-conceived taxonomy of
features. We present the results and the findings that have been done by analyzing sixteen IoT de-
velopment platforms. They are divided into two categories considering their basic implementation
mechanisms. In particular, the first category consists of tools based on the Eclipse technologies such
as Eclipse Modeling Framework(EMF), Graphical Modeling Framework(GMF), and Papyrus envi-
ronment. The second category is a collection of tailor-made platforms LCDPs.

4.1.1 Engineering IoT platforms features

In this section, we introduce a taxonomy of terms, which can support the description and the com-
parison of different approaches for the development of IoT systems. By analyzing different languages
and tools drafted from Chapter 3, we identified and formalized their corresponding variabilities and
commonalities in terms of a feature diagram. These features were selected mainly based on our ex-
pertise as well as the studies from different research papers. Figure 4.1 shows the top-level feature
diagram, where each sub-node represents a major point of variation.

Requirement modeling support: This group of features emphasizes the first stages of any MDE-
based development process. This evaluates whether a tool has an inbuilt requirement specification
environment. Supporting this feature is very important because it helps keep track of whether the
specified requirements are correctly implemented throughout the whole development. This also helps
in requirements traceability and verification.

Domain Modeling support: It refers to the kind of modeling tools the user is provided with
e.g., if it is graphical or not if it gives the possibility to model the static structure of the system’s
blocks or components. Some of the systems provide modelers with behavior modeling capabilities to
specify semantic concepts relating to how the system behaves and interacts with other entities (users or
other systems). For instance, OMG-based implementations of UML/SysML inherit all the modeling
functionalities which include structural and behavioral diagrams. Additionally, this also includes the
tool supports for design through multiple views which in turn is referred to as multi-view modeling
support should also be considered.

Testing and verification support: It refers to whether a tool has inbuilt mechanisms to evaluate
artifacts before deployment which can be done by conducting different verification checks. As IoT
applications are present in our daily life, developing systems that will cause no harm to users in case of
more and more sophisticated scenarios should be a priority. To be more specific this feature evaluates

Jean Felicien Ihirwe 46

4.1. Engineering IoT platforms

Figure 4.1: Feature diagram representing the top-level variation areas

if the tool support model-based testing, inbuilt model checking, and validation mechanism. This is
very important as it ensures the system’s correctness and robustness which make the system safe and
secure.

Analysis environment: Such a group of features is related to the capability of the considered
environment to support different analysis checks for the intended system before its deployment. This
can be done on different blocks or components of the system by checking on their responsiveness in
case of failure, network loss, security breach, and so on. In this regard, we can feature dependability
analysis, real-time analysis, and system quality of service in general.

Reusability: This category illustrates whether the tool under analysis allows the export of artifacts
for future reuse. This can be done on developed models or on generated artifacts. Reusability features
are also related to the way artifacts are managed e.g., locally or by means of some cloud infrastructure.

Deployment support: It is related to the ways developed systems are deployed and if the generated
artifacts are ready for deployment or not. To the best of our knowledge, this should be one of the
important features to focus on when implementing an IoT engineering tool. In addition to that, the
development tool can be installed locally or on the cloud depending on the client’s interest. Finally,
factors such as run-time adaptation mechanisms (on modeled or generated artifacts) to respond to the
contextual changes are also considered in this category.

Interoperability: This feature examines the ability of a tool to exchange information either inter-
nally between components, expose or consume functionalities or information from external services
e.g., by means of dedicated APIs.

Extensibility: The tool should provide the means for refining or extending the provided func-
tionalities. In the case of modeling tools, such a feature is related to the possibility of adding new
modeling features and notations.

Additionally to the above features, we have added the "additional characteristics" row to elicit
other orthogonal characteristics to the previously discussed elements. In particular, some tools target
early phases of development like system design, data acquisition, and system analysis by focusing on
the thing behavior. Some other tools target the application generation without taking much care of the
data acquisition phases which can be done by integrating the developed system with already imple-
mented data source engines, etc. Another peculiar aspect is if the considered approach is available as

Jean Felicien Ihirwe 47

4.1. Engineering IoT platforms

Table 4.1: Taxonomy table

open source or not has an important impact on the possibility for the community to contribute to its
development.

4.1.2 Findings

The elicited features, which have been discussed in the previous section, have been considered to
study and analyze 16 platforms selected following the above design process. Table 4.1 presents the
results from the selection and the assessment process. As it can be seen from such table, we have
added the Target Support to represent to the characteristics related to the infrastructure in which such
platform targets. Under such row, we have conceived the underlying infrastructure to exhibit the core
technologies a tool relies on, target platform, which presents different devices and platforms supported
by the generated code, and code generation language to refer the programming languages supported
by the considered system.

According to Table 4.1 most of the analyzed approaches rely on Eclipse and OSGi. We have
realized a huge lack of focus on requirement specification except for SysML4IoT (as it extends SysML
which enforces requirement specification) and FRASAD, which enforces the requirement specification
at the PIM level using rules that can be tracked throughout. The huge lack of analysis support for
almost all the tools selected is alarming. We think that it is highly important to analyze and verify the
intended system’s behavior before deployment as it gives developer indications of what may happen
before deployment and help make any adjustment earlier enough. Moreover, we can see that most
of the analyzed tools can be deployed locally especially concerning EMF-based tools but mostly all
LCDPs are cloud-based with some of them being able to be run also locally.

4.1.3 Limitations

From the above results we have identified the following main weaknesses:

Jean Felicien Ihirwe 48

4.1. Engineering IoT platforms

1. Lack of standards: we noticed a lack of a standards to support the model-based development
of IoT systems. We noticed that each tool proposes its own way of development by hampering
interoperability possibilities among different platforms. This is due to the presence of many
industrial players, which make the IoT meta-modeling convoluted. On the other hand, different
research attempts proposed IoT reference models, which cover different development phases
and perspectives. The IoT reference model presented in [49] has been adopted by different tools
[61, 155, 157] as a fundamental meta-model. This shows the potentials and benefits of having
the availability of standards in such a complex domain. We believe that it as a good starting
point, which needs to be further explored to better cover the interoperability dimension (e.g., to
enable the possibility of interacting with third-party data resources in general).

2. Limited support of multi-view modeling: we noticed that most of the approaches focus on
single view modeling. In particular, except for CAPS [72], MDE4IoT [36], AtmosphereIoT
[90], and Mendix [124], the analyzed approaches use one specific view to model everything,
which is not a good practice in general. Using multi-view modeling presents enormous benefits
as it enforces separation of concerns: the system component is designed using a single model
with dedicated consistent views, which are specialized projections of the system in specific di-
mensions of interest [106]. Multi-view modeling is regarded as a complicated matter to address
for tailor-made LCDP as they mostly focus on connecting dots aiming at having an application
up and running.

3. Limited support for cloud based MDE: Moving model management operations to the cloud
and supporting modeling activities via cloud infrastructures in general is still an open subject.
From our study, we noticed that mostly Low-Code development approaches provide the option
to run tools on cloud or on-premise. This is not yet the case of tools based on Eclipse EMF,
which still requires local deployments. The research presented in [194] proposed a DSL as a
Service (DSMaaS) as a solution to address the reusability of so many created DSL over the
cloud. Other attempts like MDEforge [195] aim at realizing cloud based model manipulations
[195].

4. Limited support for testing and analysis: According to the performed study, very few tools
care about the testing and analysis phases of the IoT system development process. There is
still a big challenge regarding how to analyze IoT systems responsiveness before deployment.
The complexity of the problem relies on the fact that IoT system involve human interaction,
environment constraints and we have also to recognize the heterogeneity of the target platforms
that makes it hard to depict the kind of analysis properties to address.

4.1.4 Conclusion

In this section, we discussed state of the art on existing approaches supporting the development
of IoT systems. In particular, we focused on languages and tools available in the MDE field and the
emergent LCDPs covering the IoT domain. The study has been performed in three main steps: first,
we conceived a taxonomy consisting of features characterizing the studied IoT development platforms.
Then, such features are used to evaluate the functionalities and the services supported by each analyzed
platform. As a last step, we identified some weaknesses of the analyzed platforms to pave the way
toward an LCDP for developing IoT systems. We have also identified some limitations of already
existing approaches and discussed possible ways to improve and address them in the future. In future
work, we want to continue the investigation of MDE-based IoT platforms by considering both the
quantitative and qualitative aspects of the solutions developed.

Jean Felicien Ihirwe 49

4.2. Cloud-based modeling in IoT domain

4.2 Cloud-based modeling in IoT domain

Cloud-based modeling is one of the relevant topics in the MDE community due to the induced
possibilities of designing, developing, analyzing, and deploying applications seemingly with reduced
efforts. This has also been recently favored by the increasing adoption of LCDPs. Ideally, domain-
specific LCDPs have to run on cloud infrastructures. However, in some industrial settings such as
IoT, domain-specific modeling environment tends to be local-based [12]. Nowadays, industries and
companies are trying to migrate their modeling infrastructures to the cloud. However, especially in
industrial contexts, the existing modeling infrastructures are implemented in complex environments
in which the migration cost can be far more expensive and very complicated.

The future of modeling will forcefully be cloud-based [62]. Several initiatives, including Visual
Studio Code1, Eclipse Che2, Theia3, and others have shown a lot of potential in shifting modeling envi-
ronments from local-based and monolithic installations to cloud-based platforms in order to eliminate
accidental complexity and expand the variety of available functionalities. Adopting cloud-based mod-
eling will not only attract more citizen developers, but it will unravel a lot of modeling opportunities
on different devices such as tablets, and mobile devices [144, 196].

In the IoT domain, modeling and development infrastructures need to consider several heteroge-
neous aspects of the system’s data, communication, and implementation layers. The Web of Things
(WoT) paradigm has brought the IoT a step closer to people’s perception because it allows treating a
networked thing as a Web resource [197]. We think that adopting the concept "Thing-as-a-service"
[198] could provide tremendous help in addressing the interoperability issue that exists in the IoT
domain [147]. In this case, all the system’s sub-components will be modeled as black boxes (ser-
vices), and they only communicate with well-defined mechanisms (e.g., employing REST APIs). For
instance, approaches such as [139, 141, 142, 147] had taken a step toward this modeling paradigm.
This section looks at what has been done so far in the IoT domain to support IoT systems’ develop-
ment through cloud-based modeling approaches. In particular, we conducted a thorough investigation
to see where the IoT community stands concerning the current trend of moving traditional modeling
infrastructures to the cloud. Following an examination of 611 articles, we identified 22 different cloud-
based IoT system development tools and platforms. We perform an analysis of the various issues that
the IoT community is encountering while implementing cloud-based modeling tools. As a result, we
take a deeper look at a few options and discuss the research and development opportunities enabled
by adopting cloud-based modeling approaches in the IoT domain.

4.2.1 Related cloud-based modeling studies

We identified very few studies that focus explicitly on cloud-based MDE approaches ([12, 199–
201] to mention a few). In this section, we are interested in examining the possible approaches helping
in migrating the classical local-based MDE in IoT technologies to the cloud and its adoption.

Our previous study [8] looked at the current state of LCE adoption in the IoT domain. LCE com-
bines LCDPs, MDE, machine learning, and cloud computing to facilitate the application development
life-cycle, namely from the design, development, deployment, and monitoring stages for IoT applica-
tions. A comparable set of features has been identified by examining sixteen platforms to represent
the functionalities and services that each of the investigated platforms could support. We discovered
that just 7 of the 16 could be deployed on the cloud, with the majority of them being LCDPs, whereas
classical MDE approaches rely on a local-based design paradigm.

In [202], the authors conducted a comprehensive assessment of model-based visual programming
languages in general before narrowing their focus to 13 IoT-specific visual programming languages.
The research was carried out based on their characteristics, such as programming environment, li-
censing, project repository, and platform support. According to a comparison of such features, 72%

1https://code.visualstudio.com
2https://www.eclipse.org/che/
3https://theia-ide.org

Jean Felicien Ihirwe 50

https://code.visualstudio.com
https://www.eclipse.org/che/
https://theia-ide.org

4.2. Cloud-based modeling in IoT domain

of open-source projects are cloud-based, whereas only 17% percent of closed-source platforms are
cloud-based, which confirms a strong uptrend of cloud-based systems in open-source IoT projects.

In [203], the authors discussed tools and methods for creating Web of Things services, in partic-
ular, mashup tools as well as MDE approaches. The techniques regarding expressiveness, suitability
for the IoT domain, ease of use, and scalability have been analyzed. Although this study is related to
this section, it solely focuses on mashup tools and only includes a few approaches. We can observe
from the preceding discussion that only a few techniques attempted to explore cloud-based MDE ap-
proaches implicitly. According to this, and to the best of our knowledge, this is the first study analyzing
the status of cloud-based modeling in the IoT domain.

4.2.2 Study design

This section aims to analyze how the IoT domain is coping with the trend of moving existing
modeling and development infrastructures to the cloud. To this end, we followed the process shown
in Fig. 4.2 according to the methodology presented in [204]. In particular, the search and selection
process was mainly conducted in four main phases. In the first phase, we formally and explicitly
represented the problem to get a head start on the search. Second, we defined a search string and
selected well-known academic search databases. Third, we performed a search to gather approaches to
answer properly defined research questions. Fourth, we narrowed down the potential approaches and
mapped them based on their similarity and variability. Finally, we analyzed the collected approaches
and elaborated some recommendations on the identified difficulties.

Figure 4.2: Search and selection process

Phase 1: Problem formalization: This phase mainly focused on formalizing the problem we wanted
to solve by looking at the current MDE tendency. One of the sources of inspiration for this study was
the work in [62] which addresses the topic of "What is the future of modeling?". Thus, we came up
with the formulation of the following research questions:

• RQ1: How is the IoT community adopting cloud-based modeling approaches?

• RQ2: What challenges do researchers face when developing cloud-based IoT modeling and
development infrastructures?

• RQ3: What are the main potential opportunities laying ahead for future researchers and devel-
opers in the IoT domain?

Jean Felicien Ihirwe 51

4.2. Cloud-based modeling in IoT domain

Phase 2: Automatic search: In this phase, we applied a search string to different academic databases,
i.e., Scopus (Elsevier)4, IEEE Xplore5 and ACM library6 by limiting the search on the last 10 years.
The query string we used for the automatic search was: ("MDE" OR "Model Driven Engineering")
AND ("IoT" OR "Internet of Things") AND ("Cloud" OR "Web").
Table 4.2 shows the number of approaches we managed to collect in this phase.

Table 4.2: Results table
Database Results

Scopus (Elsevier) 233
IEEE Xplore 263
ACM library 115

Total 611

Phase 3: Inclusion & exclusion, 1st pass: Table 4.2 shows that 611 publications were initially
discovered from different sources. At this point, we have reviewed the approach’s title, keyword, and
abstract and exclude approaches that were not satisfying the following criteria:

• Studies published in a peer-reviewed journal, conference, or workshop.

• Studies written in English.

• Approaches that focus explicitly on the IoT topic.

• Studies that propose a cloud-based modeling approach, either explicitly or implicitly.

At the end of this point only 80 approaches were deemed to be satisfying the above set criteria and
were considered for the next phases.

Phase 4: Inclusion & exclusion, 2nd pass: In this phase, we read the introduction and the conclusion
of the approaches previously collected. We also removed some duplicates. Various documents were
rejected during this phase for a variety of reasons, for instance, because the presented approach is not
explicitly offering an IoT-based cloud-based development environment. At the end of this phase, we
ended up with 33 documents. Furthermore, via the 33 papers, we conducted a more in-depth manual
search of potentially related work referenced by them, in which 14 approaches were selected and
manually added, bringing the total to 47.

Phase 5: Reading of the whole approach text: We’ve gone over the entire articles in this phase,
focusing on the proposed approaches and their evaluation sections. Several documents were discarded
because of different reasons. For instance, approaches that presented hybrid solutions (e.g., enabling
local modeling with the possibility of storing models on remote repositories) were discarded. In addi-
tion, the approaches that claim to build web-based IoT data-wrangling platforms by reusing existing
IoT data storage platforms were also discarded. Finally, we selected 22 documents that leverage a
cloud-based modeling environment to design, develop, or deploy IoT applications.

Figure 4.3 shows the distribution of the selected approaches with respect to their corresponding
sources. As you might notice from Fig. 4.3, a portion of the selected approach (4 out of 22) was found
from manual snowballing process. In the next section, the research questions presented in Sec. 4.2.2
are answered singularly by analyzing the research approaches that have been collected as previously
described.

4https://www.elsevier.com/
5https://ieeexplore.ieee.org
6https://dl.acm.org/

Jean Felicien Ihirwe 52

https://www.elsevier.com/
https://ieeexplore.ieee.org
https://dl.acm.org/

4.2. Cloud-based modeling in IoT domain

Figure 4.3: Selected approach distribution

4.2.3 Findings

In general, cloud-based modeling is not a new topic in terms of demand and market viability,
but when it comes to the IoT domain, there are few approaches in research. In contrast to LCDPs,
which have largely adopted cloud-based methods even in the IoT domain, the move from traditional
local-based MDE practices to the cloud is still in its infancy. This section goes over different cloud-
based modeling approaches that target the IoT domain. We organized the analyzed approaches into
three categories according to their main focus of interest i.e., modeling IoT structural aspects, service-
oriented approaches, and deployment orchestrations. The aim is to answer the research question RQ1:
How is the IoT community adopting cloud-based modeling approaches?

As previously presented, several approaches are available to support cloud-based modeling in the
IoT domain. Table 4.3 shows an overview of the analyzed approaches; half of them are concerned
with structural issues, whereas only a few deal with deployment concerns. The current state of the art
suggests that there is no predominant common language, although the graphical syntax is preferred.
In terms of technical needs, textual cloud-based modeling environments might be simpler to adopt as
opposed to graphical ones.

To assess the tool’s source-code accessibility, the open-source status factor was chosen. This is
a key factor that contributes to the tool’s scalability because more individuals can access the source
code and potentially extend it. This goes hand in hand with the criterion for determining whether the
tool is still accessible. The relationship between the two parameters is depicted in Figure 4.4. We can
observe that practically all of the tools that are not open-source are also not currently accessible. When
looking at industrial settings, this is especially true when it comes to internal proprietary tools. The
same can be said for open-source tools, with the majority of them being freely available. Most of the
analyzed approaches are supported by tools, which are not open source. This goes hand in hand with
the public availability of the methodologies. We can observe that all the tools that are not open-source
are also not publicly accessible. When looking at industrial settings, this is especially true when it
comes to internal proprietary tools. The same can be said for open-source tools, with the majority of
them being freely available.

While analyzing each approach, we also looked at the supporting infrastructures and their ability
to generate deployable artifacts. In this regard, we have discovered that JavaScript-based environments
like Node.js and Angural.js are widely used for tool development. This might be due to the fact they are
among the modern languages for front-end technology implementation. On the other hand, it appears
that the majority of techniques generate artifacts, even though few of them are standalone deployable
components. It is also worth noting that the generated deployable artifacts can only be deployed within
the same original environment in most of cases. To ensure interoperability, scalability, and reusability
of the tools, the generated artifacts should generally be deployed anywhere.

In traditional local-based modeling environments, the aforementioned evaluation factors also ap-
ply. We chose not to include more complex evaluation criteria such as tool extensibility, scalability,
analysis, model verification and validation, and so on. This is due to the fact that the cloud-based

Jean Felicien Ihirwe 53

4.2. Cloud-based modeling in IoT domain

Table 4.3: Analyzed approaches
Tool name Category Language

syntax
Open-
source

Tool
availability

Underlying
infrastructure

Generated artifact

DSL-4-IoT Structure Graphical no no js, OpenHAB JSON config
BIoTA Structure Graphical no no Apache Tech.

GraphQL
YAML file

IADev Service Textual no no ASR,REST,ATL REST app
Node-RED Structure Graphical yes yes Node.js Node-RED app

AutoIoT Structure Graphical
textual

& no no Python, js Flask app

[135] Structure Textual no no Smart-M3 –
AtmosphereIoT Structure Graphical no yes Multi-platform Multi-platform

apps
[136] Structure Textual yes yes js,VueJS UI code
[205] Structure Graphical no no WebRatio, IFML UI code

FloWare Core Structure Graphical yes yes JavaScript Node-RED Config
file

Vitruvius Structure Textual yes no XML,HTML,js HTML5 with
JavaScrit app

MIDGAR Service Graphical no no Ruby, js, HTML
Java

Java app

LogicIoT Service Textual no no JSP -
glue.things Service Graphical yes no AngularJS,Meshblu

PubNub
NodeRED service

[143] Service Textual no no Firebase&Node.js –
TOSCA Deployment Textual yes yes Multi-platform Config files

[144] Service Graphical no no - -
E-SODA Service Textual yes no OSGI cloud OSGI java bundles

[146] Service Textual yes yes ClickScript,AJAX REST services
InteroEvery Service Graphical no no Spring Boot,Rest

RabbitMQ,Angular
–

DoS-IL Deployment Textual no no js,HTML,DOM Config files
GENESIS Deployment Textual no no multi-platform Genesis dep. agents

Figure 4.4: Accessibility vs Open

modeling topic is still in its early phases. Nonetheless, we’ve discovered that with the exception of
NodeRED [89], which partially implements some of the above functionalities, none of the other tools
clearly express their support for it. This illustrates the magnitude of the task that needs to be ad-
dressed. In this regard, we recognize that developing the modeling environment (whether graphical or
textual) is critical and that once this is done, other services can be migrated to the cloud and used via
a consumable API.

Jean Felicien Ihirwe 54

4.2. Cloud-based modeling in IoT domain

4.2.4 Open challenges

Multiple issues have arisen as a result of the expansion of connected smart and sensor devices,
as well as the increased usage of cloud-based models [66]. As a typical IoT system consists of mul-
tiple complex sub-systems, having an all-in cloud-based environment can become even more com-
plicated. On the other hand, overcoming these barriers is worth the effort because it opens up more
opportunities. This section elaborates on the current challenges IoT systems face while developing
and integrating such tools in a cloud-based environment. Essentially, we are answering the research
question RQ2: What challenges do researchers face when developing cloud-based IoT modeling and
development infrastructures?

Extensibility mechanisms: Extensible platforms allow the addition of new capabilities without having
to restructure the entire ecosystem. Because IoT systems are distributed, a typically recommended
architecture would be to use the micro-service architecture throughout the development process [85].
Aside from that, IoT systems may require additional interactions with third-party technologies. As a
result of the previous scenario, developing tools to design and develop such distributed applications
on the cloud need efficient tools that traditional domain specialists may not have. Accessibility mech-
anisms are presented through tools like [89, 137], but there is still a lot to be done. Currently, domain
experts must provide cloud-based automation mechanisms and tools to allow citizen developers to add
new features without requiring sophisticated knowledge or changing existing architectures.

Heterogeneity: It is an important challenge of the IoT domain, which involves different players de-
veloping various applications running at different layers, namely the edge, fog, and cloud [85]. In
addition, deployments and data consumption methods are very diverse, increasing the complexity of
traditional code-centric approaches [206]. Cloud-based modeling in IoT brings even more sophistica-
tion regarding the environment in which the system should be designed and developed. The typical
cloud-based modeling platform should foster the integration of heterogeneous technological imple-
mentations, promoting reusability and developing solutions close to the problem domain. Approaches
such as [139, 140, 167] have presented different strategies to tackle such issues, but much more have
to be investigated.

Scalability: IoT systems are expected to handle a wide range of users, perform demanding computa-
tions, and share enormous amounts of data among nodes. Therefore, supporting cloud-based modeling
approaches must be implemented in such a way that scalability concerns are mitigated. One of the
approaches to tackle such challenges is to adopt container-based orchestration tools such as Kuber-
netes. The use of such tools can offer out-of-box features such as self-healing, fault-tolerance, and
elasticity of containerized resources [86]. This will also help automate cognitive processes that can
detect scalability needs and adjust autonomously without human intervention.

Interoperability: The interoperability of various tools, services, and resources is critical in the IoT
domain. The interoperability of cloud-based modeling platforms, particularly in the IoT area, is cur-
rently limited since different tools run in different environments and have different natures. A tool
like [147] promotes the micro-service architecture by allowing all parts of the system to communi-
cate with each other. Several regulations, such as standardization, will need to be implemented to
achieve interoperability among different cloud-based modeling environments. To address interoper-
ability concerns, technologies like [89, 133, 137, 160] promote a common format based on JSON to
encode models. It is worth noting that adopting Model-as-a-Service (MaaS) architectures could also
promote the interoperability of services and artifacts.

Learning curve: It is not easy to find professionals who can master and combine the different so-
phisticated technologies involved in developing and managing IoT systems. IoT domain experts may
lack modern programming expertise, whereas experienced software programmers may lack modeling
domain expertise. For instance, conceiving a cloud-based code generator requires understanding dif-
ferent model transformation techniques and particular programming abilities; Implementing a visual
mashup tool will necessitate knowledge of modern languages such as JavaScript, HTML, and CSS.

Security concerns: Current IoT systems suffer from security concerns as data are collected from a

Jean Felicien Ihirwe 55

4.2. Cloud-based modeling in IoT domain

wide distribution of private and public nodes. Furthermore, the data is transferred using remote IoT
gateways, which might get exposed in the process. This heterogeneity of secured and unsecured data
might favor attackers to target devices and compromise the integrity of data and operations [207].
Therefore, proper abstractions and automation techniques are needed to help target users that might
not necessarily have the required knowledge of the security practices to be employed.

4.2.5 Opportunities

In this section, we examine several opportunities that we think researchers and developers can
leverage to improve the cloud-based development and management of IoT systems. Therefore, we
aim at answering the research question RQ3: What are the main potential opportunities laying ahead
for future researchers and developers in the IoT domain?.

Tools and platforms

Numerous tools and platforms are being built to tackle cloud-based modeling concerns. Thus,
now is the right moment to suggest powerful and extensible tools that the IoT community may harness
to solve their domain-specific issues. In this section, we look at various open-source and highly
extensible platforms that are popular among the modeling community and that we would recommend
for the IoT domain.
Cloud-based development tools based on Eclipse: We believe that a significant part of the MDE com-
munity, or at least for research purposes, uses Eclipse-based technologies. This is because most
Eclipse projects and technologies are open-source, making them more accessible and encouraging
individuals to participate. As of March 2021, the Eclipse Foundation hosts over 400 open source
projects, 1,675 committers, and over 260 million lines of code have been contributed to Eclipse project
repositories [208]. Through the Eclipse Cloud Development (ECD)7 effort, the Eclipse community has
demonstrated its willingness to transit a part of its ecosystem to the web. Eclipse’s ECD Tools working
group strives to define and construct a community of best-in-class, vendor-neutral open-source cloud-
based development tools and promote and accelerate their adoption. Some of the best cloud-based
technologies that the IoT community can benefit from are the following:

– EMF.cloud, GLSP, Theia - Independently from the Eclipse modeling framework (EMF), the
EMF.cloud community recently expressed a strong desire to migrate the Eclipse-based model-
ing infrastructure to the cloud. This project aims to develop a web-based environment for creat-
ing modeling tools that can support the editing mechanisms of EMF-based models. EMF.cloud
allows users to interact with models through the EMF.cloud model server, which coordinates the
use of GLSP for graphical modeling, and LSP for textual modeling. Code generation infrastruc-
tures based on Eclipse Xtend are also included, while Eclipse Theia provides a web-based code
editing and debugging infrastructure. Several resources are available in the community for ex-
tending those tools, and we believe that IoT developers may use such technologies to construct
cloud-based IoT DSLs.

– Sirius Web8 - It is an Eclipse Sirius-based modeling tool that provides a powerful and extensible
graphical modeling platform for users to design and deliver modeling tools on the web. In
Sirius Web, the ability to create your modeling workbench in a configuration file is supported.
In this case, no code generation is required because everything is interpreted at run-time [209].
Furthermore, being open-source, Sirus Web provides greater accessibility and customizability
than the desktop version, making it easier for the IoT community to get started with their cloud-
based solutions.

Another alternative, such as Eclipse Che9 makes Kubernetes development accessible for developer
7https://ecdtools.eclipse.org/
8https://www.eclipse.org/sirius/sirius-web.html
9https://www.eclipse.org/che/

Jean Felicien Ihirwe 56

https://ecdtools.eclipse.org/
https://www.eclipse.org/sirius/sirius-web.html
https://www.eclipse.org/che/

4.2. Cloud-based modeling in IoT domain

teams. Che is an in-browser IDE that allows you to develop, build, test, and deploy applications from
any machine. Finally, Epsilon playground10 has been recently launched to offer cloud-based tools for
run-time modeling, meta-modeling, and automated model management.

Low-Code Development Platforms: Looking at the LCDPs, the only powerful cloud-based open-source
platform we would recommend is Node-RED [89]. Due to its high extensibility and accessibility,
Node-RED offers an excellent IoT system mashup environment in which IoT systems can be de-
signed, developed, and deployed on the fly. The Node-RED platform is open, and IoT system de-
velopers can build their custom nodes, compile, test, and deploy them in the Node-RED ecosystem.
Several extensions have been made, such as [210] tackling the reusability issues in cloud-based mod-
eled components, [211] to tackle the heterogeneity and complexity challenges found in the Fog based
development. Finally, in [212], the authors presented SHEN to enable self-healing capabilities of
applications based on Node-RED. In terms of interoperability, Node-RED models are represented as
JSON objects, which any third-party tools can easily consume. Some of the tools in this domain, such
as FloWare [137] and GENESIS [168] already support the Node-RED models, which shows a great
sign of its high impact. Table 4.4 outlines the essential characteristics of the recommended platforms.

Table 4.4: Recommended technologies

EMF.cloud GLSP Theia Che Node-RED

Open-source ✓ ✓ ✓ ✓ ✓
Extensible ✓ ✓ ✓ ✓ ✓
Scalable ✓ ✓ ✓ ✓ ✓

IoT-specific — — — — ✓
Application Web-based

EMF modeling
tools

Graphical
language-
server-
editor

Web-based
code editor

Kubernetes-
native IDE
for DSL
deployment

Flow-based
programming

Benefits of cloud-based modeling

Although there are difficulties in adopting a cloud-based modeling approach in the IoT domain,
various opportunities will emerge, making the investment worth it. This section outlines various op-
portunities that will emerge once cloud-based modeling is widely adopted in the IoT domain.

1. User communities: Adopting cloud-based modeling in the IoT domain will have the potential
of attracting more citizen developers, and it will unravel a lot of modeling opportunities on
different devices such as tablets and mobile devices [144, 196, 213].

2. Collaborative modeling: Once IoT modeling infrastructures are moved to the cloud, it can be
necessary to introduce collaborative modeling features to simplify the interaction of both devel-
opers and stakeholders. Unfortunately, none of the discussed approaches provide collaborative
modeling functionalities. However, collaborative modeling can harness the power of real-time
information, artifacts, and service exchange.

3. Productivity: Empowering users to develop their applications by embracing cloud-based mod-
eling is a head-start toward high production and reducing time to market [12]. Users can create
applications that cater to their problems, and engineers focus on developing features that fa-
cilitate the user for a smooth development at an appropriate abstraction level. In addition, the
participants will focus on problem-solving in their particular domain and avoid wasting time
and resources on solving problems that are outside their competencies.

10https://www.eclipse.org/epsilon/live/

Jean Felicien Ihirwe 57

https://www.eclipse.org/epsilon/live/

4.2. Cloud-based modeling in IoT domain

4. Maintenance: Traditional code-centric methodologies necessitate a significant investment in
the ongoing maintenance of developed systems. In addition, systems require regular upgrades
and installations, which can be error-prone and time-consuming. During upgrades or trou-
bleshoots times of the system, sometimes system downtime is necessary, impacting production.
Furthermore, the growing need for software systems in our daily lives and constantly chang-
ing user requirements required an agile approach for addressing these issues quickly without
compromising system availability or user access. In many cases, such challenges are handled
by cloud providers, leaving developers and engineers to focus on developing applications that
directly impact customer demands [214].

5. Monitoring and debugging: Cloud-based modeling enables monitoring of activities and their
archive through its cloud providers. This is a head-start when debugging distributed applica-
tions because developers can track down the microservices, which are the root of the detected
problems. Without appropriate cloud infrastructures, it would be challenging to solve these is-
sues, even with features such as self-healing and repair strategies. Current cloud-based solutions
come bundled with monitoring tools that assist in problem diagnosis and monitor the usage of
the applications.

4.2.6 Conclusion

To develop IoT applications, developers must overcome various challenges, including heterogene-
ity, complexity, and scalability. Moving development infrastructure to the cloud will open up plenty
of new opportunities regarding accessibility, productivity, maintenance, and monitoring. In this sec-
tion, we conducted a systematic study to assess the current state of the art on cloud-based modeling
approaches in the IoT domain. We looked at 22 approaches proposing cloud-based modeling environ-
ments in the IoT domain. The considered approaches have been analyzed to assess their strengths and
weaknesses concerning many characteristics, including their modeling focus, accessibility, openness,
and artifact generation. Throughout the section, we have discussed many challenges that IoT devel-
opers encounter while adopting such tools. We also discussed various generic technologies and tools,
which can be adopted in the IoT domain.

Jean Felicien Ihirwe 58

Chapter 5

Assessing the quality of IoT Engineering
Platforms

Over the last few years, industry and academia have proposed several Low-Code and MDE platforms
to ease the engineering process of IoT systems. However, deciding whether such engineering plat-
forms meet the minimum required software quality standards is not straightforward. Software quality
can be defined as the degree to which a software system achieves its intended goal. Various software
quality standards have been established to aid in the software quality assessment process; however,
due to the nature of engineering IoT platforms, such models may not entirely suit the IoT domain.
This chapter presents a model for assessing the software quality of Low-Code and MDE platforms
for engineering IoT platforms. Tackling the second research problem (RP2), the proposed software
quality model was based on and extends the ISO/IEC 25010:2011 software product quality model
standard. It is intended to assist IoT practitioners in assessing and establishing quality requirements
for engineering IoT platforms. To determine the effectiveness of the proposed model, we used it to
evaluate the quality of 17 IoT engineering platforms, and the results obtained are promising.
This chapter is structured as follows: The background of the study is presented in Sect. 5.2. The
proposed product quality model is presented in Section 5.3. In Section 5.4 we go through the selected
primary studies and present the followed evaluation process. In Section 5.5, we present the results
from the conducted assessment by reflecting on specific research questions. Section 5.6 discusses the
results as well as its limitations. Section 5.7 concludes the chapter and discusses perspective future
work.

5.1 Introduction

IoT systems offer enormous benefits in our daily lives by enabling seamless communication with
our surroundings. Such systems demand many development skills, from handling tiny microcon-
trollers to more extensive and complex cloud-based systems. In the IoT domain, systems often in-
clude safety-critical tasks that, if mishandled, might have disastrous consequences and even cost hu-
man lives [34]. To guarantee robustness and safety during operation, it is critical to investigate the
correctness and the quality of the platforms and the process by which systems are developed.

Over the last few years, both academia and industry have proposed novel languages and tools to
support the engineering of IoT systems. To this end, MDE and Low-Code paradigms are employed to
conceive engineering platforms specific to the IoT domain. In the software engineering process, MDE
promotes the use of models as first-class citizens in software development [42]. Its goal is to improve
productivity and reduce time to market by allowing the development of systems using models defined
with concepts that are much less linked to the underlying implementation technology and much closer
to the problem domain [35]. LCDPs are generally cloud-based software development platforms that
leverage a Platform-as-a-Service paradigm to enable users with little or no programming skills to
create fully functional apps with dynamic graphical user interfaces [11, 87, 215]. For the sake of

59

5.2. Overview on Software Quality Models

readability, we use IoT Engineering Platforms when we need to refer Low-Code and MDE platforms
indistinguishably.

Deciding whether an IoT engineering platform meets the required standards for adoption in terms
of quality is not a straightforward process as it involves considering and exploring various sources of
information. MDE and low-code development technologies frequently rely on rigorous verification
and validation processes conducted under predefined arbitrary constraints to guarantee the quality of
generated systems. However, in most cases, the quality of such employed engineering tools is not
taken into account seriously or simply overlooked [184, 185].

Practitioners typically rely on well-established standards and practices to improve confidence in
whether a system or a product fits the wanted quality requirements. The ISO/IEC 25000 to ISO/IEC
25099 series of International Standards, titled “Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQUARE)", aims to address issues concerning software
quality requirements specification and evaluation [189]. The ISO/IEC 25010:2011 standard, in par-
ticular, [14], is intended to help people who are interested in developing or purchasing systems and
software products to specify and evaluate their quality requirements.

This chapter presents a quality model for assessing the quality of IoT engineering platforms based
on the ISO/IEC 25010:2011 standard. In doing so, we enhanced the standard’s product quality model
by defining a product quality assessment model that is more suitable for the IoT domain. Initially, the
ISO/IEC-25010:2011 standard, which replaced ISO/IEC-9126-1:2001 standard, defines two main sets
of quality models, namely “quality in use model", and “product quality model".

The former is related to the outcome of interaction when a product is used in a specific context. In
contrast, the latter is related to software platforms’ static and dynamic properties. These models are
defined in terms of characteristics, with some of them further subdivided into sub-characteristics [14].
Both models are equally crucial for thoroughly assessing the quality of a given platform. However,
the proposed model focuses on the product quality model since it emphasizes on platform’s technical
quality rather than using quality which can be challenging to measure for platforms in their early
development stages.

Even though all of the approaches presented in 3.5 relied on the ISO/IEC-9126-1:2001 standard
like ours, none specifically target IoT engineering platforms. While there are many quality assessments
of DSLs available, only a small number of them refer to an established standard in the evaluation [184],
and we could not find any that addresses the IoT modeling domain in particular. As a result, we are
confident that our study is the premier to use a well-established quality standard to evaluate the product
quality of IoT engineering platforms.

To evaluate the effectiveness of the proposed model, we employ it to assess the quality of 17 IoT
platforms selected from our previous studies [8, 13]. We present the methodology we used to choose
such platforms, perform the quality assessment, and subsequently present and discuss the obtained
results. We summarize this chapter’s contribution as follows:

• We propose a quality model based on the ISO/IEC 25010:2011 standard for evaluating the
quality of IoT engineering platforms;

• We assess the quality of 17 IoT engineering platforms by relying on the proposed model;

• We present and discuss the findings as well as the limitation of the study in order to validate the
effectiveness of the proposed model.

5.2 Overview on Software Quality Models

The discipline of Software Quality Engineering [216] is concerned with improving the approach
to software quality. However, the various perspectives present throughout the software life cycle
show what constitutes software quality is frequently contested. In this context, relying on software
quality models to support the quality management of software systems is widely accepted [217]. A

Jean Felicien Ihirwe 60

5.3. The product quality model

quality model is typically defined as a set of sub-characteristics and their interrelationships that serve
as the foundation for specifying quality standards and evaluating quality [218]. Various standards have
been defined in the literature to assist in the evaluation process. The ISO/IEC 9126:1991 standard
aimed at defining a software quality paradigm and a set of guidelines for assessing the characteristics
associated with it [219]. This standard was later revised by ISO/IEC 25010:2011, which included
a model for software system quality with well-formed specifications for quality characteristics of
software products [184].

The ISO/IEC 25010:2011 standards help design, develop and acquire systems and software prod-
ucts with the specification for evaluating their quality requirements [189]. The standards are made
up of two quality models, each with its own set of characteristics, some of which are further subdi-
vided into sub-characteristics. First, the “quality in use model" focuses on the outcome of interaction
when a product is used under particular contexts [14]. This model is primarily intended to provide
targets for promoting the development and verification efficiency, as well as to anticipate quality in
use before delivery [189]. This model includes five characteristics, namely effectiveness, efficiency,
satisfaction, risk freedom, and context coverage where some of them are further subdivided into nine
sub-characteristics. The “product quality model" refers to the static and dynamic qualities of a soft-
ware platform. This model primarily focuses on providing assessment ground for people supplying
software products and those acquirers who wish to get more involved in the process technically [189].
The model is divided into eight characteristics, namely functional appropriateness, performance effi-
ciency, compatibility, reliability, usability, security, maintainability, and portability which are further
elaborated into 31 sub-characteristics.

In the past, the ISO/IEC 25010:2011 standard has been adopted to assess not only the product
quality of IoT systems [18–20] but also in domains such as Big data [21], Machine Learning [22],
Software Product Lines (SPL) [23], Customer Relationship Management (CRM) systems [24] and
mobile apps [25], just to mention a few. In the MDE world, approaches such as [187] relied on it for
assessing the performance of MDE quality studies, while [184, 185] adopted it in order to assess the
quality of Domain Specific Languages (DSLs) while and design architectures quality [186] adopted
it to assess the quality of design architectures. Although ISO/IEC 25010:2011 cannot be considered a
one-size-fits-all solution, it can be a beneficial approach for evaluating the quality of IoT engineering
platforms. A detailed description of the mentioned quality characteristics is given in the next section.

5.3 The product quality model

In this section, we discuss the product quality model of the ISO/IEC 25010:2011 standard to
enable the quality evaluation of IoT engineering platforms. To this end, by referring to Figure 5.1, in
the following, we discuss the common model characteristics concerning the peculiarities of the IoT
domain.

5.3.1 Functional suitability

This factor evaluates how well a platform meets specified and implied objectives when used in
specific contexts. In the IoT engineering context, its corresponding sub-characteristics can be defined
as follows.

Functional completeness is the extent to which a given platform supports the design of all the
layers that comprise an IoT ecosystem. For instance, the platform’s capacity to represent the complete
IoT ecosystem from the edge, fog, to the cloud layers while seemingly handling all of the commu-
nication heterogeneity that might occur. Concerning Functional Correctness, this can be defined as
the extent to which the platform applies specific correctness methodologies during the development
phases, including but not limited to correct by construction, model-checking, model validation, and
rule-based modeling. Finally, the Functional appropriateness refers to the amount to which the given
functionalities facilitate the completion of defined activities and objectives. IoT engineering platforms

Jean Felicien Ihirwe 61

5.3. The product quality model

Figure 5.1: Software Product Quality Model

have diverse functionalities; in this case, we can propose to analyze how the specified correctness
methodology permits achieving the goal.

5.3.2 Performance efficiency

This characteristic determines how the platforms consume resources under specific conditions.
This characteristic is mainly related to run-time attributes of the underlying system infrastructure,
which in some situations cannot be predicted accurately. In the context of IoT engineering platforms,
the corresponding sub-characteristics can be defined as follows: Time behavior refers to how well a
platform function meets its criteria in terms of response and processing times, as well as throughput
rates. The platform’s responsiveness can primarily indicate this, and it is worth noting that it can only
be evaluated on platforms that are accessible.

Resource utilization measures how much and what kind of resources are used to suit the platform’s
needs. Although this can somewhat be predicted when a platform runs on well-known underlying
infrastructures, the actual utilization can only be evaluated accurately during the platform’s usage.
Finally, the Capacity is defined to assess the platform’s ability to model and coordinate a large and
complex system that spans multiple IoT sub-domains.

5.3.3 Compatibility

This characteristic implies the platform’s capacity to interchange data with other platforms. The
two sub-characteristics are defined as follows: Co-existence refers to the degree to which a platform
continues to operate efficiently while sharing a shared environment and resources with other platforms
without hammering the other platforms. Interoperability is referred to the degree to which a platform

Jean Felicien Ihirwe 62

5.3. The product quality model

can exchange information with other platforms while in use. In our context, this can be assessed in
terms of the platform’s capability to support the data exchange during the development process by
consuming or sending information to/from external services via dedicated means such as REST APIs.

5.3.4 Reliability

This characteristic reflects how a platform can complete a set of tasks in a given amount of time.
Its sub-characteristics can be defined as follows: Maturity reflects how well the platform supports
all of the basic functionalities of a typical engineering platform, such as design, code generation,
and deployment. Availability is concerned with the extent to which a platform is operational when
needed. Fault tolerance is the degree to which a platform performs as expected despite the presence
of hardware or software faults. In our case, this can be evaluated as the platform’s capability to
support advanced mechanisms, including but not limited to self-adaption and self-healing. Finally, the
Recoverability reflects the extent to which a platform, in case of interruptions or failures, can recover
data directly affected and re-establish the desired state of the system. To that end, the platform should
be able to handle the mechanisms including but not limited to self-recovery or self-redeployment, etc.

5.3.5 Usability

This characteristic reflects how well specific users can use a platform to achieve particular goals
with efficiency, effectiveness, and satisfaction. The sub-characteristics are as follows: Appropriateness
recognizability is defined as the degree to which users can determine whether a platform is appropriate
for their needs. This can be promoted in the IoT engineering world by the degree to which the platform
is customized concerning the underlying environment. Learnability can be defined as the extent to
which the platform aids developers in learning how to use it, e.g. with context-based modeling support,
on-the-fly suggestions, and so on.

Operability represents the extent to which a platform has attributes that make the entire devel-
opment process more accessible, for instance, using functionalities like auto-completion for textual
languages, guide-through mechanisms, multi-view modeling, palette show/hide, and palette element
search. User error protection reflects the extent to which the platform provides some protection to
avoid errors, such as static analysis or on-the-fly error handling. User interface aesthetics is the ex-
tent to which the platform provides pleasant and satisfying user interfaces. Finally, Accessibility can
be considered as to whether the platform is easily reachable in case of needs, either being locally or
online.

5.3.6 Security

This characteristic refers to how successfully a platform protects information and data so that
users, services, and external systems have appropriate access to data according to specific authoriza-
tion levels. Its six sub-characteristics have been renamed as follows: Confidentiality refers to the
extent to which a platform assures that data is exclusively available to those who have been granted
access. Integrity can be defined as the extent to which an IoT platform prohibits unwanted access,
modification of the platform, or data.

Non-repudiation can be measured by the extent to which the platform enables methods for record-
ing all actions conducted during development and proves that they have been performed so that they
cannot be contradicted later. Accountability can be measured as the extent to which a platform enables
tracing attributes like versioning, historical action retrieval, and so on. Finally, Authenticity can be
described as the ability of the platform to support different types of authentication mechanisms while
accessing platform resources.

Jean Felicien Ihirwe 63

5.4. Quality assessment of IoT engineering platforms

5.3.7 Maintainability

This characteristic refers to the degree to of a platform to be improved, repaired, or adapted to
changes. Its corresponding sub-characteristics are defined below: Modularity can be measured as the
extent to which a platform is decoupled into discrete sub-systems that can be modified independently
of other parts. Reusability reflects the extent to which a platform or a component of a platform can
be used in more than one system. While evaluating this, we can focus on the platform’s ability to be
decomposed into small reusable sub-systems.

Analyzability assesses the efficacy and efficiency with which it is feasible to determine the impact
of modifying parts of the platform by either removing it or injecting failures into it. In the IoT en-
gineering context, whether the platform provides means supporting the analysis of the system under
development and/or the platform itself is also looked at. In terms of Modifiability, the assessment can
be performed on the extent to which a platform can be successfully and efficiently modified without
introducing flaws or deteriorating the quality of existing products. Finally, Testability can be assessed
in terms of the capability of the platform to provide testing supports for its components or the system
under development.

5.3.8 Portability

This characteristic refers to how fast and successfully a platform can be moved from or to differ-
ent hardware and software operational environments. Its corresponding sub-characteristics are defined
below Adaptability refers to the extent to which a platform can be effectively and efficiently adapted to
different environments. Installability reflects the degree of effectiveness and efficiency with which a
platform can be successfully installed and/or uninstalled in a given environment. Replaceability mea-
sures the extent to which a platform can be updated, replaced, and redeployed in the same environment
and still performs as expected.

5.4 Quality assessment of IoT engineering platforms

This section shows the quality assessment process followed to analyze 17 IoT engineering plat-
forms using the product quality model discussed in the previous section. The platforms of interest
have been identified as presented in Section 5.4.1. The research questions that we answered through
the performed evaluation are presented in Section 5.4.2. The quality assessment process that has been
followed is presented in Section 5.4.3.

5.4.1 Selection of the evaluated IoT engineering platforms

In [8], we examined 16 different platforms to gain a better understanding of the current state of
the art in supporting the development of IoT systems, with a focus on languages and tools available in
the MDE field and emerging LCDPs. In [13], we examined 22 IoT modeling environments, assessing
their strengths and weaknesses in terms of cloud-based modeling capacity, accessibility, openness, and
artifact generation. Combining the two data sources, we started with a total of 38 approaches, which
have been filtered by considering the following exclusion criteria:

• Approaches that were published before 2012 have been discarded;

• Duplicated approaches have been removed;

• Approaches that do not permit the development of fully functional IoT applications have not
been considered.

• Approaches that depend on already-included platforms have been filtered out;

Jean Felicien Ihirwe 64

5.4. Quality assessment of IoT engineering platforms

Figure 5.2: Primary studies selection process

• Approaches that are generic and that do not explicitly target the IoT domain have not been
considered in this study.

By applying such criteria, 15 out of the initial 38 IoT development platforms were identified.
In addition, we have added two more approaches that we believe are very promising and were pub-
lished after our first study, bringing the total to 17. Figure 5.2 depicts the detailed approach selection
procedure that we used. To better understand the selected basic studies, we have categorized them
quantitatively based on publishing year, publisher type, article type, and the distribution among MDE
and LCDP approaches. The result is shown in Figure 5.3a, 5.3b, 5.3c and 5.3d respectively.

5.4.2 Research questions

The performed assessment aimed at answering the following research questions:

• RQ1: To what extent do the considered IoT engineering platforms meet the characteristics of
the proposed quality model?

• RQ2: What are the most and the least addressed quality sub-characteristics by the considered
IoT engineering platforms?

5.4.3 Assessment process

The quality assessment process of the considered IoT engineering platform has been done iter-
atively by going over all of the reference approaches. We established a set of questions for each
sub-characteristic that must be addressed to confirm the platform’s competence with respect to what is
included in the model described in Section 5.3. By doing this, we made the evaluation process result
easier and more reflective of the proposed model. Following that, we read the entire document and
responded to the questions. Each question can be answered with “Yes" or “No". For instance, the
following questions have been formulated to help in assessing the platform’s Functional Suitability:

• Does the platform support the design and development of IoT systems?

• Does it support all layers (Edge, Fog, Cloud)?

• Does it mention any support for dealing with different communication protocols?

Consequently, given the approach under analysis, if the corresponding presented platform suc-
ceeds on at least 50% of the questions, it is marked as supporting the quality characteristic of interest.
This procedure has been developed and implemented for all 31 sub-characteristics. The defined ques-
tions have been created purely to facilitate the review process and are entirely consistent with what
is provided in the model. Unfortunately, due to space constraints, we could not present the extended
table of questionnaires used to assess all of the quality characteristics. In this regard, a full set of eval-
uation questionnaires used in the evaluation has been published and can be accessed from an online
database available at [220] as well as at the Appendix A.

Jean Felicien Ihirwe 65

5.5. Assessment results

(a) Publications by year
(b) Publications by publisher

(c) Publications by approach type (d) Publications by category

Figure 5.3: Overview of the selected basic studies

As mentioned in the previous section, some of the characteristics heavily depend on the dynamic
properties of the underlying system infrastructures as well as during their usage. For instance, veri-
fying sub-characteristics related to performance efficiency and usability might be difficult in general.
Thus, during the performed analysis we relayed on information provided in the reference approaches
when available. We considered such kinds of characteristics unsupported if the corresponding articles
do not mention any mechanism addressing them.

5.5 Assessment results

This section presents the comprehensive findings of our assessment by answering the research
questions. Table 5.1 summarizes the results of the study. The MDE and LCDP platforms supporting
each quality characteristic of the considered product model are shown.

Quality characteristics support of IoT engineering platforms (RQ1)

According to the proposed model, eight characteristics with their associated sub-characteristics
were evaluated on the approaches considered in this work. This section elaborates on the overall qual-
ity performance of such development platforms by comparing LCDPs and MDE platforms. As shown
in Table 5.1, MDE approaches to support an average of 12 of the 31 possible sub-characteristics,
whereas LCDPs support an average of 18. Furthermore, different sub-characteristics are not sup-
ported at all. Figure 5.4 shows the overall characteristic-level performance of the analyzed platforms.
Figure 5.4a and Figure 5.4b depict the overall performance of MDE platforms and LCDPs against
the eight main characteristics, respectively. To this end, an aggregated performance sum from all
sub-characteristics was produced for each characteristic.

Both categories (MDE and LCDPs) perform well enough in quality characteristics related to Func-
tional suitability, Portability, and Usability, with general supporting rates of 75.8%, 57.8%, and 50%

Jean Felicien Ihirwe 66

5.5. Assessment results

Table 5.1: Assessment overview
Characteristic Sub-characteristic MDE platforms MDE(%) LCDP platforms LCDP(%)
Functional 75.8 83.3
suitability Func. Completeness [38] [61] [150] [157] [37] [161]

[140] [40] [17]
81.82 [139] [89] [90] [138] [147] 83.3

Func. Correctness [36] [61] [38] [157] [37] [160]
[140] [40] [17]

81.82 [89] [90] [138] [147] [144] 83.3

Func. Appropriateness [36] [150] [38] [37] [140] [40] [17] 63.6 [89] [90] [138] [139] [144] 83.3
Performance 24.2 38.9
efficiency Time-behavior Unsupported 0 [89] [90] 33.3

Resource Utilization [38] 9.09 [89] [90] 33.3
Capacity [61] [38] [37] [161] [140] [40] [17] 63.3 [89] [90] [139] 50

Compatibility 27.3 58.3
Co-existence Unsupported 0 [89] [90] [138] 50
Interoperability [38] [157] [37] [160] [140] [40] 54.5 [89] [90] [138] [147] 66.6

Reliability 40.9 41.7
Maturity [36] [150] [38] [157] [37] [160]

[140] [40] [17]
81.82 [89] [90] [138] [139] [147] 83.3

Availability [37] [17] 18.18 [89] [90] 33.3
Fault tolerance [36] [61] [140] [40] [17] 45.45 [89] 16.6
Recoverability [38] [17] 18.18 [89] [90] 33.33

Usability 50 66.7
Appropriateness [61] [150] [38] [37] [17] 45.45 [89] [138] [139] 50
Learnability [140] 9.09 [89] [90] [144] [147] [40] 83.3
Operability [36] [38] [37] [160] [161] [140]

[40] [17]
72.72 [89] [90] [138] [139] [144] 83.3

User error protection [37] [161] [140] [40] [17] 45.45 [89] [90] [138] [144] 66.6
User interface [36] [61] [150] [38] [157] [37]

[160] [161] [140] [40] [17]
100 [89] [90] [138] [139] [144]

[147]
100

Accessibility [37] [17] 18.18 [89] [90] 33.3
Security 5.5 36.7

Confidentiality [38] 9.09 [90] [138] 33.3
Integrity [38] 9.09 [90] [138] [147] 50
Non-repudiation Unsupported 0 [90] 16.6
Accountability Unsupported 0 [89] [90] 33.3
Authenticity [38] 9.09 [90] [138] [147] 50

Maintainability 43.6 30
Modularity [150] [38] [157] [37] [40] [17] 54.54 [89] [90] [139] [147] 66.6
Reusability [36] [40] [61] [38] [37] [140] [17] 63.3 [89] 16.6
Analyzability [61] [38] [140] 27.3 [89] 16.6
Modifiability [61] [150] [38] [37] [140] [40] 54.5 [89] [147] 33.3
Testability [40] [17] 18.18 [89] 16.6

Portability 57.6 66.7
Adaptability [38] [157] [140] [17] 36.36 [89] [90] [138] 50
Installability [36] [61] [150] [38] [157] [37]

[160] [161] [140] [40] [17]
100 [89] [90] [138] [139] [144]

[147]
100

Replaceability [38] [37] [40] [17] 36.36 [89] [90] [147] 50

Overall 135 out of 341 possible 39.6 95 out of 186 possible 51.1
Standard deviation 30.6 25.5

for MDE and 83.3%, 66.7%, and 66.7% for LCDPs, respectively. It is important to note that the listed
supporting/non-supporting rates reflect the aggregated characteristic performance calculations from
its corresponding sub-characteristics. Although this provides us with an overall picture of characteris-
tic performance, it does not allow us to make a final judgment on whether certain sub-characteristics
are better supported than others. For example, in terms of Usability aspects, all 11 MDE platforms
satisfy the User interface quality characteristic, although only two of them satisfy the accessibility
sub-characteristic.

MDE platforms have limited security and performance efficiency support, with overall support
rates of 5.5% and 24.2%, respectively. For instance, in MDE, from the studies considered, only IoTML
[38] promotes security by enhancing authentication, confidentiality, and integrity mechanisms while
accessing the platform. On the other hand, LCDPs fall short concerning security and maintainability,
with overall support rates of 36.7% and 30%, respectively. Each of the security aspects is implemented
at least once by LCDPs, with the AtmosphereIoT [90] platform supporting all. Consequently, as shown
in Table 5.1, MDE accounts for 135 points out of 341 possible support, representing approximately

Jean Felicien Ihirwe 67

5.5. Assessment results

(a) MDE platforms

(b) LCDPs

Figure 5.4: Quality characteristics support

39.6%, whereas LCDPs account for 95 points out of 186 possible, which would be about 51.1%.

Answer to RQ1: Overall, MDE quality is around 39.6%, while LCDPs account for 51.1%, re-
sulting in the overall quality of the selected engineering platforms being approximately 45.5%.

Quality sub-characteristics support of IoT engineering platforms (RQ2)

In the previous section, we focused on overall quality characteristic support; in this section, we
focus on individual sub-characteristic by highlighting the most and least addressed ones. Even though
the average supporting rate of studied quality sub-characteristics for both MDE and LCDPs will
be equal to the average supporting rate for the quality characteristics presented above (Sec. 5.5:
MDE:39.6%, LCDP:51.1%), they differ in their deviation from the mean of individual supports. Ac-
cording to the standard deviation indicated in Table 5.1, MDE platforms have an average supporting
standard deviation of 30.6, while LCDPs have a standard deviation of roughly 25.5, which is less than
of MDE platforms. Such figures suggest that LCDPs are more likely to consistently touch all of the
model’s individual quality sub-characteristics than MDE approaches.

As shown in Table 5.1, IoT MDE and LCDPs cover all quality sub-characteristics such as user
interface and installability. This is expected, given that the fundamental principle of MDE and LCDP
technologies centers around enabling an easy-to-use and executable environment for developing ap-
plications with less effort, which cannot be accomplished without providing a user interface.

Figure 5.5 depicts an overall performance of sub-characteristics among IoT MDE and LCDPs
engineering platforms. As indicated, none of the chosen MDE approaches address quality sub-
characteristics such as non-repudiation, time-behavior, accountability, and co-existence. LCDPs, on
the other hand, fall short on fault-tolerance, non-repudiation, reusability, analyzability, and testability,
with a consistent minimal support rate of 16.7%, which implies a generic rate of at least 1 out of
6 LCDPs supports at least one of the sub-characteristics. On the other hand, Figure 5.6 depicts the
average quality performance for both MDE and LCDP platforms. As can be seen, sub-characteristics

Jean Felicien Ihirwe 68

5.6. Discussion

Figure 5.5: Quality sub-characteristics performances

such as user interface, installability, and functional completeness are the most well-supported by both
categories, while testability, time behavior, accountability, and non-repudiation are the least supported.

Answer to RQ2: The top three quality sub-characteristics addressed by both technologies are
user interface, installability, and maturity. On the other hand, selected MDE approaches
were unable to address quality sub-characteristics such as non-repudiation, accountability,
co-existence, and time behavior. In contrast, LCDPs fall short of addressing fault tolerance,
non-repudiation, and reusability with a consistent rate of 1 out of 6 LCDPs.

5.6 Discussion

In this section, we discuss the proposed model’s suitability and its limitation with respect to general
software quality assessment of software systems.

5.6.1 Model suitability

The proposed model aims to assist practitioners who have to design and develop IoT systems by
exploiting low-code or MDE platforms. According to the results presented in Section 5.5, security-
related characteristics are the least addressed. This is particularly pertinent given how IoT security
concerns are dynamic and unstructured, leading to uncertainty among software developers in terms of
concepts and terms [221]. MDE approaches are most affected since most conventional MDE platforms
are deployed locally and used offline, making incorporating any form of security capabilities less
required (e.g., authentication). We can argue that the dominant Eclipse Development Environment1,
which hosts a lot of classical MDE-based platforms, has a significant impact on this problem. On the
other hand, although LCDPs neither excel in such security-related aspects, it is critical and rational to
be integrated since such platforms are deployed in cloud-based environments, which are more likely
to be attacked by unwanted intruders.

Furthermore, besides security, the results show that LCDPs lack quality criteria for general main-
tainability. For instance, according to Table 5.1, the reusability of LCDP is shown to be less supported

1https://www.eclipse.org/

Jean Felicien Ihirwe 69

https://www.eclipse.org/

5.6. Discussion

Figure 5.6: Average quality sub-characteristics performances

among others. This is generally true and can mainly be since more LCDPs are tailor-made, and most
of their application developments and deployments are bound to a particular technology [58], making
them difficult to modify and reuse elsewhere. In our study, only Node-RED [89] showcased means
for supporting the usability of aspects of its components through the Node-RED modules that can be
composed, built, deployed, and reused separately from one instance to another.

Due to the tight coupling between functions and their sub-functions found in different LCDPs
and some MDE platforms, analysability becomes very hard to achieve. Our proposed model defines
software analysability as the means to assess the efficacy and efficiency with which it is feasible to
determine the impact of modifying parts of the platform by either removing it or injecting failures
into it. According to the obtained results, only 27% of MDE platforms support such features, while
for LCDPs, only one out of 6 support them. This quality characteristic is generally considered in the
software design phase through different model-based system analyses. Still, in the actual implemen-
tation of the system, such quality is often ignored [222]. Concerning software testability, as indicated
above, only 2 out of 11 of the analyzed platforms showed means for supporting it. The testing can
either be done at the platform sub-functions level or at the system they develop. In general, developers
tend to disregard this aspect. For instance, in the LCDP domain, low-code testing is still in its early
stages, with no formal structure to the domain’s ideas, concepts, and hypotheses which undoubtedly
contributes to such lacking [215].

Another interesting fact is that the overall performance of IoT engineering platforms (MDEs and
LCDPs combined), regardless of characteristics and sub-characteristics, is about 45.5%, in which
MDE accounts for 39.6%, whereas LCDPs have 51.1%. Although we acknowledge that these mea-
sures cannot be regarded as a definitive measure of the IoT engineering platforms’ quality questions,
we believe they can point researchers in the right direction regarding the present state of the art in
IoT engineering quality evaluation support. Consequently, we can finally draw the line of how the
proposed model satisfies the quality evaluation procedure as “promising"; it unveiled several concepts
that reflect what is already available in the IoT engineering domain.

5.6.2 Model limitations

In this chapter, we have extended the ISO/IEC 25010:2011 standard model to propose a software
product model for assessing the quality of IoT engineering platforms. To evaluate the effectiveness of
the proposed model, we employed it to determine the quality of 17 IoT platforms selected from our
previous studies [8, 13]. In terms of limitations, we can state the followings:

Jean Felicien Ihirwe 70

5.7. Conclusion and Future work

• Although the presented model contributes positively to the software product quality assessment
of IoT engineering platforms, it only performs very well when the evaluation is done at the
platform’s technical implementation level. However, the proposed model performed poorly
regarding run-time software product quality assessment, such as quality linked to performance
efficiency. This is primarily due to the implementation nature of the LCDP and MDE platforms.
We believe that assessing such quality could be heavily influenced by the environment in which
such software is deployed.

• The evaluation methods employed in this study and the reported results are critical because they
are exclusively based on what was identified in the selected tool’s approaches. However, in
some instances, the published content of the approach may not correctly reflect the full capa-
bilities of the platform under consideration. Furthermore, software platforms evolve, and new
development is regularly contributed to the platforms. Therefore, we believe that integrating
the results found in the approaches and the actual inputs from the tool vendors can significantly
increase the legitimacy of the findings. We intend to address this in future research.

5.7 Conclusion and Future work

The rising market adoption of LCDPs has pushed businesses to incorporate LCDPs into their
general-purpose solution stack. However, the effectiveness of such platforms’ quality assessment can
be controversial since it is linked to how satisfying the platform is to the party evaluating it. To
address such concerns, it is strongly encouraged to rely on well-agreed and established standards to
eliminate prejudice during decision-making. In this chapter, we presented an extension of the ISO/IEC
25010:2011 product quality model for assessing the quality aspects of IoT engineering platforms. We
evaluated the software product quality of 17 IoT engineering platforms using the proposed model.
The findings revealed that the overall performance of IoT engineering platforms is roughly 45.5%,
with LCDPs doing slightly better than MDE platforms. Furthermore, security and maintainability
aspects are found to be less addressed, whereas functional appropriateness, portability, and usability
were found to be the most addressed. In the future, we plan to evaluate the quality in the use of the
IoT engineering platform by extending the quality in use model of the ISO/IEC 25010:2011 standard
in which we will be able to accommodate other quality aspects beyond the software product quality
model.

Jean Felicien Ihirwe 71

Chapter 6

CHESSIoT: An approach for engineering
multi-layered IoT systems

The challenges related to the complexity and heterogeneity of IoT systems are present in all of its
aspects. On the one hand, the development processes need to take into account different design
options, such as physical, functional, and behavioral architecture. MDE has demonstrated a signif-
icant benefit in automating software development by promoting the use of domain-specific languages
(DSLs) tailored to a specific application domain. These models provide abstract system properties in
which different sub-systems can be independently modeled, developed, and analyzed before being in-
tegrated to construct a fully functional system. As a contribution toward answering the third research
problem (RP3), this chapter present the CHESSIoT, an approach for engineering multi-layered IoT
systems. Initially the chapter evaluates potential contribution of our proposed approach in terms of
modeling language coverage as well as engineering support. We do so by presenting two comparative
analysis results that aim to clearly establish the potential of CHESSIoT in the above engineering sup-
port by taking into consideration the multi-layered engineering support. In addition to that, we also
presents CHESSIoT domain specific languages covering the system, software and deployment aspect
of a multi-layered IoT system. Finally a brief discussion is drawn around the above contributions.
The chapter is organized as follows: Section 6.1 presents an introduction to the topic. Section
6.2 briefly presents the high-level CHESSIoT engineering methodology. Section 6.3 presents the
motivating comparative analysis between CHESSIoT engineering methodology with respect to 12
existing platforms. Section 6.4 presents in detail three DSL extensions used in the whole engineering
process. Finally, Section 6.5 discusses the findings, whereas Section 6.6 concludes the chapter.

72

6.1. Introduction

6.1 Introduction

Due to the inherent heterogeneity present in the IoT domain, engineering platforms such as MDE4IoT
[36], ThingML [37], IoTML/BRAIN-IoT [38, 39], SimulateIoT [40] and Montithings [17] (just to
name a few), have demonstrated the potential of MDE to be a realistic alternative for engineering scal-
able IoT systems. While that is the case, finding a platform capable of fully integrating different core
engineering features becomes critical. From now on, we will constantly use the term "Engineering"
to refer to a process that integrates the "development, analysis, and deployment" support from a unique
environment when realizing an IoT system.

In this chapter, we introduce CHESSIoT, an approach and a tool for engineering multi-layered IoT
systems. We briefly discuss the general methodology supported by CHESSIoT as well as a compari-
son with the existing engineering approaches in the industry. The CHESSIoT environment is built on
top of the existing CHESS toolchain [16] with the aim of providing a fully decoupled extension for
supporting the modeling, development, analysis, and deployment of the IoT systems. The CHESSIoT
DSLs namely SystemDSL, SoftwareDSL, and DeploymentDSL are aligned with different modeling
views as well as the engineering task that they correspond to. Through CHESSIoT, a user can ben-
efit from a multi-view development environment in which each of the supported views has its own
underlined constraints that enforce its specific privileges on model entities and properties that can be
manipulated

For instance, System-level DSL was designed to satisfy the high-level physical representations
and their relationships within a typical multi-layered IoT system. The DSL supports the specification
of a typical IoT system covering from the low-level edge layer, Fog-layer as well as to the cloud. Note
that, at this level, the model does not include any information related to the functional behavior of
elements rather than their main physical construct. Furthermore, this model can later be annotated
with failure behavior rules following CHESS-FLA constructs [44] which ultimately is used to conduct
the early safety analysis tasks on the model.

In addition to that, the CHESSIoT Software DSL supports the system’s functional and behavioral
aspects of the system. The DSL extends the rich UML modeling language by means of defining new
IoT-specific stereotypes and their interrelation targeting the low level. It is worth noting again that to
enforce the model correctness as well as error avoidance during the design phase, palette elements can
be hidden or shown based on the current state of the modeling process (eg: diagram type or view type).
When the model is complete, a CHESSIoT2ThingML model transformation is launched to generate a
series of fully functional ThingML [37] source models.

Finally, CHESSIoT offers means for modeling IoT system deployment plans as well as its runtime
service provisioning. The IoT system components of a typical IoT system can be deployed at any layer
namely edge, fog, and cloud. Designing the deployment plan of such a complex and heterogeneous
system has to take into consideration several aspects and be aware of different satisfactory require-
ments [223]. The deployment model connects the software to the actual system nodes in which the
software program will be executed. The model decomposes the inter-dependency between different
nodes, machines, and services deployed to it. When the model is complete, a model-to-text transfor-
mation can be launched which generate a .yaml configuration file ready to be executed on a docker
server.

In addition to the comparative analysis between CHESSIoT and other existing related approaches
in terms of their abilities for supporting the engineering features specified above, we have presented the
results from the evaluation between CHESSIoT DSL specification and modeling application entities
across all layers in relation to the existing DSL. The results have shown huge gap in which CHESSIoT
can potentially contribute. We believe that an effective tool should be capable of modeling all aspects
of a typical IoT system, from the low-level edge layer to the fog and cloud layers, while maintaining
consistency throughout the process.

Jean Felicien Ihirwe 73

6.2. The CHESSIoT engineering methodology

6.2 The CHESSIoT engineering methodology

Through CHESSIoT, a user can benefit from a multi-view development environment in which
each of the supported views has its own underlined constraints that enforce its specific privileges on
model entities. In the end, the user can perform different engineering activities on the CHESSIoT
models such as generating IoT device code, early safety analysis as well as deploying and managing
the deployed services.

Figure 6.1 depicts the high-level illustration of the CHESSIoT methodology proposed in this dis-
sertation. As from Figure 6.1, the 3 main primary DSLs namely SystemDSL, SoftwareDSL, and
DeploymentDSL are the basic starting points for conducting additional engineering tasks supported
by our tool. These DSLs are aligned with different modeling views as well as the engineering task that
they correspond to. A more detailed explanation of the DSLs is presented in Section 6.4. Depending
on the user’s needs, as well as the stage of the development process, a specific view-compliant model
corresponding to a specific metamodel is picked for usage.

Figure 6.1: High-level approach

In CHESSIoT, different aspects of the system can be designed independently and then interlinked
to satisfy specific engineering tasks to be performed on the model. For instance, under the "System
view", an IoT Engineer model the IoT system-level architecture that contains all of the system’s major
physical components, parts, sub-parts, and their interconnections. This model can then be handed to
a safety expert who comes up with the system’s failure logic behavior as well as basic component
failure rates to be annotated to the model in order to perform the safety analysis. In the end, a series
of model-to-model transformations is performed for achieving both qualitative and quantitative Fault
Trees Analyses. More on the safety analysis approach is thoroughly discussed in Chapter 7

In addition to that, under the "component view", the user can define a functional model which
contains the system’s key software components, sub-functions, and interrelationships. Furthermore,
a behavior model entitles each system’s main sub-function to its own state machine in which aspects
such as events, actions, and guards are associated with states and their transitions to realize the de-
sired behavioral goal. When the model is complete, a CHESSIoT2ThingML model transformation is
launched to generate a series of fully functional ThingML source models which is then used to gen-

Jean Felicien Ihirwe 74

6.3. Motivating comparative analysis

erate platform-specific code ready to be deployed on low-level IoT devices. The same CHESSIoT
software model extended with other extra-functional properties and benefited from the existing sup-
ported analysis. For instance, in our previous work, we demonstrated CHESS support for performing
early real-time schedulability analysis on CHESSIoT models [42, 43]. More details on the CHESSIoT
development approach is discussed in Chapter 8.

Finally, under the "Deployment view", the same user could be able to define the IoT system de-
ployment plan as well as define rules on how to manage deployed services at runtime. The deployment
model decomposes the inter-dependency between different node layers, machines, and one or more
services deployed to it. In addition to that, a DevOps engineer can come through to define a run-
time service provisioning model by automatically configuring software services based on a predefined
model. When the model is complete, a model-to-text transformation is performed which generate a
full .yaml configuration as well as Ansible [224] playbook scripts ready to be executed on a docker
server. More details on the CHESSIoT deployment approach is discussed in Chapter 8.

6.3 Motivating comparative analysis

In the Chapter 3, we provided an overview of existing approaches for engineering IoT systems.
These approaches covered categories such as modeling and development, safety analysis, and deploy-
ment support. In this section, we aim to conduct a comparative analysis between CHESSIoT and
12 approaches selected from these approaches to highlight their strengths and weaknesses, thereby
emphasizing the need for a novel approach like CHESSIoT.

Generally, a comparative analysis is a systematic approach used to compare two or more things
to identify their similarities and differences and evaluate their relative strengths and weaknesses. In
the model-driven community, this approach was widely used. The results of comparative analysis can
potentially provide valuable insights that can help developers, researchers, or other interested parties
make better decisions about which technology to utilize for a particular task.

The upcoming section will compare existing model-based approaches for engineering IoT sys-
tems based on two primary relative contexts: the tool’s supported modeling aspects and their engi-
neering supports. Section 6.3.1 presents an overview of the analyzed approaches, whereas Section
6.3.2 presents the comparative assessment related to the tools’ capability of supporting different mod-
eling features in achieving a multi-layered architecture. To be more specific, this part looks at the
tools support for modeling application entities across all layers, namely the low-level edge layer, fog,
and cloud layers elements. Additionally, in Section 6.3.3, existing tools are discussed and compared
with respect to their support for different IoT engineering tasks, including system development, safety
analysis, deployment, and run-time service provisioning.

6.3.1 Selected platforms

Table 6.1 lists the 12 approaches, which have been selected according to the following criteria:

• Basic support for IoT system modeling: The approach focuses on modeling IoT systems and
may provide advanced features for manipulating the model.

• Tool maturity: The approach has advanced beyond its initial or conceptual stages and is more
mature.

• Age of the tool: The approach has been implemented within the last 10 years.

• IoT-specific: The approach is explicitly designed for engineering in the IoT domain.

The selection process was conducted iteratively, and we considered all three categories presented
in Chapter 3 especially Sections 3.2, 3.3 and 3.4. From the selected approaches, only one approach
was chosen from the analysis category. This is because most of the presented approaches do not

Jean Felicien Ihirwe 75

6.3. Motivating comparative analysis

provide any means for designing IoT system models but rather focus on the manual development of
FTs. Moreover, most of the approaches in the analysis category are considered to be outdated and
conceptual, which does not meet our established criteria.

Table 6.1: Selected approaches for the comparative analysis
Tool name Title Year Type

MontiThings [17] MontiThings: Model-driven development and deployment of
reliable IoT applications

2021 Journal

ThingML[37] ThingML: A language and code generation framework for het-
erogeneous targets

2016 Conference

MDE4IoT[36] MDE4IoT: Supporting the Internet of Things with model-
driven engineering

2017 Conference

SysML4IoT[50] Modeling IoT applications with SysML4IoT 2016 Conference

Monitor-IoT[26] A domain-specific language for modeling IoT system architec-
tures that support monitoring

2022 Journal

Simulate-IoT[40] Simulate-IoT: Domain-specific language to design, code gen-
eration and execute IoT simulation environments

2021 Journal

DSL-4-IoT[133] Design of a domain-specific language and IDE for Internet of
Things applications

2015 Conference

UML4IoT[150] UML4IoT-A UML-based approach to exploit IoT in Cyber-
Physical manufacturing systems

2016 Journal

IoT-ML/
BRAINIoT[39]

BRAIN-IoT: Model-based framework for dependable sensing
and actuation in intelligent decentralized IoT systems

2019 Conference

CAPS[72] CAPS: Architecture description of situational aware Cyber-
Physical systems

2017 Conference

Node-RED[89] Node-RED: Low-code programming for event-driven applica-
tions

2016 Open tool

Silva I. et al. [180] A dependability evaluation tool for the Internet of Things 2013 Journal

6.3.2 IoT modeling support

This section presents the comparative analysis of the considered approaches in terms of their
abilities to model application entities across all layers of a typical IoT system (see Tab. 6.2). Our
evaluation criteria aim at identifying tools that can effectively model all aspects of an IoT system,
from the low-level edge layer to the fog and cloud layers, while maintaining consistency throughout
the process. To achieve this, we broke down each layer into more detailed elements. For instance, at
the edge layer, we considered modeling node elements such as sensor/actuators, their functionality and
behavior, and hardware modeling. We also evaluated support for wireless communication modeling,
which we believe is crucial for enabling access to data generated by physical devices and making the
edge layer system operational in the digital world.

In the fog layer, we evaluated the tools’ support for various fog components such as fog devices,
gateways, and fog servers. Similarly, for the cloud layer, we assessed the modeling capabilities of the
tools for cloud-based elements like cloud nodes, machines, and services. We also investigated if the
tools support multi-view modeling and if they come with a graphical user interface. Additionally, we
acknowledged that some tools may have unique modeling capabilities that may not be captured in the
checklist, so we added a column to highlight any additional features.

The comparative findings from the assessment presented in Table 6.2 are highlighted below relative
to CHESSIoT-supported modeling features that will be presented with details in the next section:

1. From Table 6.2, it can be seen that all of the selected platforms provide a modeling environment,
with most of them offering a graphical modeling option, except for ThingML[37], which only of-
fers a textual modeling option. While textual-based approaches may be more scalable, graphical
ones are usually more accessible and user-friendly. Textual interfaces can become overwhelm-
ing, particularly when the system becomes more complex, and can often come with their learning
curve in terms of understanding new textual languages. Similar to MontiThing [17], CHESSIoT

Jean Felicien Ihirwe 76

6.3. Motivating comparative analysis

Table 6.2: Comparative table on supporting different IoT modeling features
Tool Graphical

user
Multiview
modeling

Edge layer Fog layer Cloud layer Other supported modeling capa-
bilities

interface Device
node

Functional
design

Behavior
design

Hardware
design

Wireless
support

Fog
node

Fog
device

Fog
gateway

Fog
server

Cloud
node

Cloud
machine

Services

MontiThings[17] Yes No Yes Yes Yes Yes Yes No No No No No No No Error handling design capabilities,
deployment planning, featuring de-
ployment design suggestions

ThingML[37] No No Yes Yes Yes No Yes No No No No No No No Textual Component and Connector
architectures, asynchronous mes-
saging

MDE4IoT[36] Yes Yes Yes Yes Yes Yes No No No No No No No No Software to hardware allocations,
consistency assurance, and run-
time self-adaptation design

SysML4IoT[50,
148, 225]

Yes Yes Yes Yes Yes Yes No No No No No No No No System quality of service (QoS),
Publish/subscribe paradigm, sys-
tem’s self-adaptive designs

Monitor-IoT[26] Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Synchronous and asynchronous
dataflows design across the edge,
fog, and cloud layers to support the
monitoring.

Simulate-IoT[40] Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Database designs, wireless sensors
and actuator network (WSAN) de-
sign support

DSL-4-IoT[133] Yes No Yes Yes Yes Yes Yes No No No No No No No A visual domains specific modeling
language for modeling IoT wireless
sensor network

UML4IoT[150] Yes No Yes Yes Yes Yes Yes No No No No No No No Source code level annotations in
case the UML design specification
is not available

IoT-ML/
BRAINIoT[38,
39]

Yes No Yes Yes No No No No No No No Yes Yes Yes Run-time system deployment and
dynamic remote edge/cloud recon-
figuration designs

CAPS[72, 154] Yes Yes Yes Yes Yes Yes No No No No No No No No Physical space view modeling to
describe the area involved in situa-
tion awareness

Node-RED[89] Yes No Yes Yes No No Yes Yes Yes Yes Yes No No Yes Cloud-based data flow modeling.
Wiring together pieces of code
blocks to carry out tasks.

Silva I. et al. [180] Yes No No No No No No Yes Yes Yes Yes No No No Modeling of IoT network layer as
a graph of devices (vertices) and
edges (links).

CHESSIoT Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Support for the design of system
failure logic behavior as well as
run-time service provisioning

has adopted an approach that integrates both textual and graphical modeling approaches, limiting
the use of the textual interface to simple definition tasks such as failure logic behavior rule anno-
tation and run-time service provisioning, while major and complex system modeling is supported
graphically.

2. After analyzing the selected approaches, it is evident that a considerable number of them do not
support the multi-view modeling approach. This modeling approach is crucial in improving the
accuracy of system design and enforcing the separation of concerns, where the model is simplified
and designed from various perspectives. Multi-view modeling generally complements component-
based design [107], which is also supported by CHESSIoT. These two methodologies have tremen-
dous potential in dealing with the complexities of IoT systems. Among the 12 considered tools,
only MDE4IoT [36], SysML4IoT [50], and CAPS [72] platforms provide support for these method-
ologies.

We acknowledge that there are other platforms that implement alternative approaches that might
complement multi-view modeling depending on the modeling context supported by the tool. For
example, Node-RED [89] supports a multi-flow modeling approach, allowing different parts of the
system to be developed separately from various flows while still sharing a common development
context. However, Node-RED practically supports only a single data view that is shared among
different flows, and other views are not supported. Therefore, it may not be suitable for more
complex IoT systems that require multiple perspectives and separation of concerns.

3. As it can be seen from Table 6.2, the majority of approaches support modeling at the edge layer
elements, namely components such as sensors/actuators, computing boards, and so on [17, 26, 36,
89, 225]. Except for IoT-ML [39], which exclusively focuses on the functional aspects targeting

Jean Felicien Ihirwe 77

6.3. Motivating comparative analysis

cloud-based resource allocation, other platforms offer even more advanced design mechanisms,
such as run-time self-adaptation [36, 225] as well as runtime error handling capabilities [17, 26]
at the edge. While technically allowing predefined functional node behaviors to be defined, Node-
RED [89] can model the data processing logic of the device-layer elements; however, it does not
explicitly support any form of out-of-loop logical behavior specification. CHESSIoT, on the other
hand, combines both functional and behavioral modeling of the element at the edge, and through
different modeling views, a model portion can then be used for different engineering purposes.

In addition to that, CHESSIoT can explicitly model wirelessly communicated ports that support the
MQTT protocol [226]. We have stressed this necessity as an essential factor in making the device
layer components alive and suitable to be integrated into the digital world. Eight out of twelve
platforms support this feature, which is very promising evidence of how mature MDE approaches
are ready to address the scalability and interoperability issues faced in the IoT field.

4. Analysis of the table reveals that only a few of the considered platforms, namely [26, 40, 89, 180],
support the modeling of fog layer elements. This lack of support for fog layer modeling is a sig-
nificant limitation and is frequently cited as one of the drawbacks of MDE approaches in IoT. In
our experience, IoT language developers tend to prioritize device-level modeling and development
over the fog layer, even though implementing a robust code generator capable of generating fully
integrated fog-layer code is a complex task due to the required designs and heterogeneity. Nev-
ertheless, we believe that considering the fog layer is crucial for realizing a fully functional IoT
system. While CHESSIoT does not explicitly focus on fog-layer code generation, our approach
does provide deployment modeling and artifact generation targeting fog-layer deployment.

5. In the realm of cloud-layer modeling support, it is apparent from the table that only IoT-ML [39]
and SimulateIoT [40] offer complete support for cloud-based design. IoT-ML is specifically de-
signed to enable run-time system deployment modeling and dynamic remote edge/cloud reconfig-
uration, while SimulateIoT provides an IoT simulation and execution environment. This highlights
the same issue discussed earlier, namely that most approaches concentrate on low-level develop-
ment at the expense of other layers. For instance, Node-RED [89] and MonitorIoT [26] focus on
service-oriented modeling while ignoring the context in which such services are deployed. In con-
trast, CHESSIoT enables the modeling of inter-dependencies between different nodes, machines,
and services, and facilitates the provision of services deployed on such nodes across all layers.

6.3.3 IoT engineering capabilities

In this section, we evaluate the selected IoT approaches based on their ability to support vari-
ous engineering tasks in developing, analysing, and deploying IoT systems. Table 6.3 shows our
investigation of whether a platform follows a well-structured development approach that integrates
all its supported engineering tasks and how these tasks are emphasized and followed during the entire
process. Specifically, we looked at the tool’s capability to generate platform-specific code for develop-
ment and assessed its support for safety analysis and other types of analysis. Regarding deployment,
we focused on the platform’s ability to generate deployment-related artifacts and support run-time
service provisioning mechanisms. Additionally, we highlighted each approach’s specific focus and
the typical validation methodology used. We acknowledge that safety-related analysis is not the only
important aspect for IoT systems, and we also considered other types of analysis that are supported by
each platform.

The results of the assessment are summarized in Table 6.3. Based on these results, we can high-
light several interesting findings related to the engineering support provided by CHESSIoT, which is
presented in the next section.

1. Table 6.3 shows that three of the considered approaches, namely [133, 150, 180], do not provide
any details on the supported engineering methodology throughout their development process. We
strongly believe that engineering platforms should have a well-defined methodology that guides

Jean Felicien Ihirwe 78

6.3. Motivating comparative analysis

Table 6.3: Comparative table on supporting different IoT engineering capabilities
Tool Following a Development Analysis Deployment Empirical assessment

well-defined
engineering
methodology

Generate
code

Safety
analysis

Others Generate
config.

Service
provision

Approach Tool’s specific focus

MontiThings[17] Yes Yes No No Yes Yes Proof of concept
and a case study

Engineering reliable IoT systems
by separating concerns, handling
errors, and enabling deployment
to heterogeneous edge devices.

ThingML[37] Yes Yes No No No No Proof of concept
and a case study

A modeling tool and a highly
customizable multi-platform code
generator targeting only the edge
layer

MDE4IoT[36] Yes Yes No No No No Case study Support design, development, and
run-time management of IoT sys-
tems

SysML4IoT[50,
148, 225]

Yes Yes No System
QoS

No No Proof of concept
and a case study

System functional design,
publish/subscribe and self-
adaptations at the edge.

Monitor-IoT[26] Yes No No No No No Proof of concept,
case study, and
experimental re-
sults

Multi-layer visual modeling lan-
guage for monitoring architec-
tures of IoT systems based on the
ISO/IEC30141:2018 reference ar-
chitecture1.

Simulate-IoT[40] Yes Yes No No Yes Yes Proof of concept
and a case study

Define an IoT simulation envi-
ronment and execute it. Support
for databases, complex-event pro-
cessing engines, or message bro-
kers

DSL-4-IoT[133] No No No No Yes No Case study A high-level visual programming
language tailored to develop IoT
applications compatible with the
OpenHAB framework.

UML4IoT[150] No Yes No No No No Proof of concept
and experiment

IoT environment to support in the
integration of CPS components
into modern IoT manufacturing
environment.

IoT-ML/
BRAINIoT[38, 39]

Yes Yes No Risk
analysis

Yes Yes Proof of concept Edge/cloud deployment market-
place. Orchestration of dis-
tributed IoT systems leveraging
dynamic and heterogeneous de-
signs

CAPS[72, 154] Yes Yes No No No No Proof of concept
and a case study

A multi-view modeling approach
that uses ThingML for code gen-
eration at the edge/device layer.

Node-RED[89] Yes No No No No Yes Well established
tool

Multi-flow based development
approach. Acts as an interpreter
for the data flow-related aspect of
the system.

Silva I. et al. [180] No No Yes No No No Proof of concept
and experiment

A dependability evaluation tool
for IoT that considers hardware
faults and permanent link faults
performing safety analyses and
generating system FTs

CHESSIoT Yes Yes Yes Existing
real-time

Yes Yes Proof of concept
and a case study

Multi-layered system and soft-
ware design, code generation,
safety analysis, and deployment
for IoT systems within a unified
platform.

the development process of IoT systems. Such a methodology can potentially reduce complexity
and provide users with fewer complications while using the platform. On the other hand, as shown
in Figure 6.1, CHESSIoT offers a well-defined component-based design approach that supports
different engineering tasks, such as code generation, safety analysis, and deployment, at different
stages of the design and through different viewpoints. This approach enhances the tool’s suitability

Jean Felicien Ihirwe 79

https://www.iso.org/standard/65695.html

6.3. Motivating comparative analysis

and significantly contributes to the model’s correctness throughout all engineering stages.

2. In terms of code generation, three platforms - MonitorIoT [26], DSL-4-IoT[133], and Node-
RED[89] - do not support any form of code generation that can be deployed on IoT devices.
However, one of the main goals of Model-Driven Engineering (MDE) is to enhance automation
in the development process [35]. We believe that generating partial or full system code is one of
the most critical factors in speeding up the development process. While we recognize the complex-
ities involved in generating fully functional code that can be deployed at any layer without manual
intervention, continuous improvement of code generators that attempt to cover the different hetero-
geneous aspects of an IoT system could help bridge this gap.

ThingML is a platform that provides a code generator capable of producing fully functional code
in various programming languages, such as Java, C, C++, JavaScript, Python, and Go, with a par-
ticular focus on the edge layer. While the number of supported languages may vary depending on
the ThingML version and code generator, additional languages can be integrated by implementing
new code generators or expanding existing ones. To save time and resources, CHESSIoT uses
ThingML’s code generation system. This is done by transforming CHESSIoT’s software models
into ThingML’s models. More information will be provided in Chapter 8.

3. Developers of IoT systems often assume that their devices or systems will always succeed, but
this is not the case [29]. Failures can occur for various reasons, including device age, communi-
cation protocols, data sources, deployment environment, and human error. In our assessment of
12 platforms, we found that only Silva I. et al.’s approach [180] supports safety analysis through
Fault-Tree. However, even this approach only analyzes the fog layer network, which is only a small
part of the overall functionality of an IoT system. It is important to note that safety requirements for
IoT systems are still emerging and do not always keep up with changing technologies [46]. Many
safety analysis approaches presented in Section 3.4 are conceptual and do not support automated
fault-tree analysis.

In addition to safety analysis, we discovered that only two out of 12 platforms we examined offer
different types of analysis. SysML4IoT [148] supports reliability analysis of IoT systems through
verification of the system’s QoS properties, while the BRAINIoT platform [39] uses IoT-ML [38] to
support security and privacy risk analysis through a decentralized process that ranks vulnerabilities
into four levels: negligible, limited, significant, and maximum. This is a significant engineering
challenge in the IoT field.

To enhance the capabilities of CHESSIoT models, additional analyses can be performed using the
underlying CHESS infrastructure [16] on which the platform is built. For example, in previous
research [42, 43], we showed how timing characteristics could be added to CHESSIoT functional
models to conduct real-time schedulability analyses.

4. When it comes to deployment support, MontiThings and SimulateIoT have different approaches.
MontiThings uses a deployment manager to capture device states at runtime, generate a valid
docker-compose.yml, and send it to devices for execution. SimulateIoT, on the other hand, uti-
lizes Docker swarm to manage deployed docker containers across all node layers. Only four of
the twelve platforms examined offer runtime deployment artifact generation or service monitor-
ing. However, CHESSIoT provides an environment that allows for modeling and generation of
docker-compose files reflecting services that need to be deployed on machines running at a given
node.

Jean Felicien Ihirwe 80

6.4. The CHESSIoT domain specific language

6.4 The CHESSIoT domain specific language

The CHESSIoT modeling environment has been built on top of the Eclipse Papyrus2 in terms of
extensions of UML/SysML. The three profiles that make up the CHESSIoT DSL are explained in
detail below.

6.4.1 System-level DSL

The System DSL has been designed to satisfy the high-level physical representations and their
relationships within a typical IoT system. The DSL supports the multi-layered specification of a typ-
ical IoT system ranging from the low-level edge layer, Fog-layer as well as the cloud. The language
extends the rich SysML modeling language in terms of new IoT-specific stereotypes and their interre-
lations. Note that, at this level, the model does not include any information related to the functional
behavior of elements rather than their main physical construct.

The modeling concepts underpinning the system DSL are shown in the metamodel depicted in
Fig. 6.2. The System metaclass represents an IoT system as a collection of physical devices and other
entities connected to collect, process, send, receive, and store data. These device entities can range
from tiny sensors to much larger items like cars and planes. As the top-level representation element,
the system can encapsulate other subsystems, allowing the IoT system-of-systems architectures to be
supported.

The IoTElement represents things that can be physically represented in the IoT ecosystem. This
can be of any type depending on the layer from which such an element is regarded. This can range
from a tiny micro-controller at the thing layer, a gateway at the fog layer, and a cloud server when
looked at from the cloud side. In the physical world, the IoTElement can also represent an object as
bigger as a car, a plane, or a house. The system can have one or more IoTElements; each with one or
more communicating ports. The modeling constructs can be conceptually grouped with respect to the
main layers they define, i.e., edge, fog, and cloud layers as described below.

Figure 6.2: CHESSIoT System-level metamodel

2https://www.eclipse.org/papyrus/

Jean Felicien Ihirwe 81

https://www.eclipse.org/papyrus/

6.4. The CHESSIoT domain specific language

Edge Layer: OnDeviceElement represents any form of low-level IoT device that may contribute to the
system’s functional behavior at the edge layer. A SensorBlock is primarily responsible for detecting
changes in its surroundings and reacts accordingly by generating signals that can be interpreted by
either a human or a machine. A sensor, lacks a physical input port and, in the event of a failure, can
react differently based on the nature and severity of the internal failures. ActuatorBlock is a device
responsible for reacting to received electric signals and acting upon them by changing the shape,
position, or state of the component or part of the system to which it is attached. An electric servo
motor, for instance, responds to a signal by turning on, off, changing direction, or speed. In the case
of a door-locking system, it can either close or open the door.

PhysicalBoard represents a hardware controller on which the software runs. This can include a
number of IoT-related boards that are expected to execute the actual code, thus interfacing the sensor
and actuator. A RaspberryPi or Arduino board, for example, processes data from various sensors and
sends appropriate signals to actuators and other connected devices as the Fog layer. PhysicalEntity can
be almost any physical object or environment on which a OnDeviceElement can act up. A self-driving
car software, for instance, runs on various boards attached to the car but not on the car itself. So a
car is a physical entity, while those controlling elements can be classified as any type of on-device
element.

It should be noted that a physical entity may host other physical entities and interact with other
physical entities. In general, we consider physical entities to be passive elements, and in the event of
a system failure, they cannot be considered the root cause unless they are categorized as "User". In
particular, the concept of User refers to a human actor that uses the system or, in certain contexts, is
part of the system itself. A user is a special type of PhysicalEntity that interacts with other parts of the
system at all levers. For example, a user might interact with an IoT application deployed on a remote
server while actively participating in such a system’s decision-making process. It’s worth noting that
a user doesn’t necessarily need to be a human; it can also be an autonomous entity that’s intelligent
enough to interact with the system.

Fog Layer: FogElement is any device that serves as a computational link between the physical and
virtual worlds, in this case, cloud infrastructures. If necessary, these components can do preliminary
computations and convey the results to the on-device elements. This implies that they may have
varied storage and processing capacities depending on the use case and completely different hardware
and software features. Any IoT device installed at the fog layer for data processing and storage is
represented by a FogDevice. The FogGateway, on the other hand, transfers information between fog
devices and fog servers, as well as cloud servers connected to it. Finally, FogServer computes this
data to determine the next operation. This layer is critical because it regulates processing speed and
information flow. Fog node configuration involves understanding different hardware compatibility, the
devices they influence, and networking capabilities.

Cloud Layer: A CloudElement is a type of IoT device that operates at the cloud level and contributes
to the overall functionality of the system. It builds upon standard IoT elements and can be shown as
follows. Similar to a FogServer, a CloudServer hosts various cloud-based services and applications.
A consumer entity refers to any third-party element that can communicate with the server to access its
data, and can be classified as active or passive. An example of an active consumer entity is a computer
running software to monitor and control sensors remotely. On the other hand, a passive consumer
entity is a traffic light actuator that receives commands from the server to function.

6.4.2 Software DSL

The CHESSIoT’s software DSL has modeling constructs that allow for the specification of IoT
system behavior. These constructs are displayed in the metamodel shown in Figure 6.3. It is important
to note that the software meta-model mainly supports low-level devices at the edge layer, but in some
cases, these devices could also be deployed at the fog layer if they fall into that layer. The DSL
extends the UML modeling language by defining new IoT-specific stereotypes and their interrelation.

Jean Felicien Ihirwe 82

6.4. The CHESSIoT domain specific language

The CHESSIoT Software metamodel can be divided into two main sections, for specifying functional
and behavior aspects of the constituting components as described below.

Figure 6.3: CHESSIoT Software Metamodel

Functional aspects: VirtualElement represents an IoTelement in the virtual world. As mentioned in
Section 6.4.1, this could be classified as any IoT device, an element that could be of interest at the
edge. As shown in Fig. 6.3, the System can consist of one or many virtual elements, and depending on
the use case, a virtual element could contain one or more virtual elements.

VirtualEntity is a virtual representation of the PhysicalEntity from the system model in the digital
world. This element can represent any object or place where IoT devices or equipment are installed.
In a room monitoring system, for example, a room is usually represented as a virtual entity in which
other sensors and actuators are installed.

One of the most fundamental components of the IoT ecosystem is the Sensor, which is responsible
for transforming relevant information from its surroundings into an electric signal that the computing
board can process. On the other hand, the Actuator converts electric signals from the board into
physical events or states, depending on its type. The language supports different sensor categories
and types. A combination of sensor category and type servers is a crucial determining factor during
transformation, and it is also the same case for the actuator. We understand that there are many more
types of sensors and actuators than our approach supports, but for the sake of simplicity, we focused
on only a few, as illustrated by the proposed meta-model.

IoTPort allows message exchange between two different components by exposing or requiring the
data from components. An IoTPort can have one or more integer pins used to generate pin-related code
on the virtual board. Two special types of ports, MQTTPort and ClockPort, are employed in specific

Jean Felicien Ihirwe 83

6.4. The CHESSIoT domain specific language

cases. For instance, MQTTPort specifies the MQTT-related interface that wirelessly communicates
with a remote broker. This port contains information about the payload type, broker URL, device
topic, and access mode (i.e., publisher, subscriber, or both). When necessary, the clock port is utilized
to define logical delay checks. It should be noted that these two special port types are not required to
be physically connected to others.

VirtualBoard is a virtual representation of the computing board device where the code runs. This
device interacts with sensors and actuators and uses the IoTPorts to communicate with the external
components.

Behavioral aspects: Every type of VirtualElement has a state machine with a behavioral specification.
The following syntax is used to define the behavior of the component. Payload is a simple and stand-
alone message object that transports data between components. These elements can have zero or more
parameters that define the type of data that must be sent.

Events are triggered in various ways based on the component’s current processing phase. An
event can generally be triggered based on the payload condition detected at the ports. An Event can
be a ConditionalEvent, which occurs during the transition process from one state to the other, or an
InternalEvent, which occurs internally within the state of a certain component.

Depending on the sort of action to be taken, IoTAction(s) can be of many forms. These actions can
be customarily defined, or they can reuse the information about the payload and the port where such
action must be carried out. For example, when entering or quitting a state, an action can be classed as
OnEntry or OnExit actions. There are two main types of actions:

• SetAction: This is used during external communication between two components through a
predefined port.

• GenericAction: It is a specific type of action that can be implemented during the design phase
for particular measures such as assignment, print, loop, checking a value status, function call,
and so on. These actions require different arguments and can be customarily implemented with
platform-specific code.

IoTState defines the situation of the component from its initial engagement to its final disposal in
the ecosystem. IoTState extends existing UML states by collecting all behavior information relating
to events and activities that must be performed at a specific time. From a transition standpoint, an
IoTState can be classified as a source or target, along with an initial, intermediate, or final state.

IoTTransition makes it possible to transition from a source state to a target state while preserving
the trigger from the invoking condition as well as the guard value. IoTGuard expressions are boolean
expressions defined by state values. They enable a state transition by determining whether the OnExit
action was correctly completed.

6.4.3 Deployment metamodel

The CHESSIoT’s deployment DSL has been defined to aid in the design of the deployment strat-
egy. The primary purpose is to provide an intuitive way for the user to define the deployment architec-
ture as well as runtime service provisioning procedures that can be applied to configure such generated
services remotely. The DSL addresses service-oriented deployment topologies, mostly at the fog and
cloud layers. The main concepts of the deployment metamodel are shown in Fig. 6.4.

A Node is a central component that connects all other deployment elements. It represents a com-
puting cluster at the center that combines one or more data processing units. These nodes can be found
at any layer, including edge, fog, or cloud, and are labeled as DeviceNode, FogNode, and CloudNode,
respectively.

The Machine construct is for specifying a dedicated middleware server that can host one or more
services running on it. Machines could be anything from small computer boards at the edge and fog
layers to huge cloud-computing servers. In our context, the machine is always declared inside a node

Jean Felicien Ihirwe 84

6.4. The CHESSIoT domain specific language

Figure 6.4: CHESSIoT Deployment Metamodel

and should eventually have an IP address that the service operating on could be identified from. Other
properties, such as memory capacity and operating system, can be also specified by the user.

In IoT, a Service is a self-contained entity that can consume acquired data and apply computational
logic to achieve a goal. It can be deployed at practically any layer of the system, depending on the
type of need and the computation capabilities of the node in which the service is to be run. Services
can connect via Web protocols (e.g., HTTPS, MQTT) and may also depend on one another.

As with CHESSIoT, the end goal of deployment modeling is to generate docker configuration files
(.yaml files), therefore, a service must be established with basic parameters like imageURL, ports,
persistence, and so on. If the service needs to persist data on the platform, a volume attribute must be
specified, as well as the boolean persistence value set to true. The priority attribute specifies the order
in which individual services are prioritized in case of a machine memory shortage.

We are mainly concerned with IoT services that are generally involved in a typical IoT ecosystem.
An MQTTBroker, for example, is used to define a remote MQTT server service, and attributes such
as broker type (Mosquitto, HiveMQ, Moquette) are supported. The broker, which is also a service,
captures its specific properties such as type, anonymous access, persistence, username, and password.
The current implementation enables a user-friendly environment, and in case no data is provided for a
given property, default values are used instead. Other services, such as DataDistributionService like
KAFKA, RabitMQ, and ApacheSpart, are due to be supported.

Furthermore, the environment enables customary configured services, and when such a property
is employed, the definition is added to the generated file unchanged. Furthermore, any IoT-specific
ExternalService, such as Node-Red3, as well as StorageServices such as database containers, could be
specified. Finally, OnDeviceApp can be defined, allowing it to be distributed on edge devices.

A DeploymentAgent is a collection of predefined expressions determined at the node level to
demonstrate the run-time service provisioning behavior on the machines deployed at the nodes. De-
viceDepAgent, FogDepAgent, and CloudDepAgent are defined to perform this task at the edge, fog,
and cloud layers, respectively. Details on the developed textual deployment language and the corre-
sponding code generator are given in Chapter 8.

3https://nodered.org/

Jean Felicien Ihirwe 85

https://nodered.org/

6.5. Discussion

6.5 Discussion

In the preceding sections, we presented the results of a comparative study that examined the capa-
bilities of CHESSIoT in relation to 12 other related works. Our focus was on assessing the platform’s
ability to provide a multi-layered modeling environment and offer engineering support in terms of
development, analysis, and deployments. In this section, we will discuss the significant findings by
highlighting key outcomes from the two contexts considered.

Regarding the support for IoT modeling, when evaluating a cumulative sum of all 12 platforms,
we found that out of the 154 feasible possibilities (excluding the CHESSIoT row), 80 were supported,
while 74 remained unsupported. This translates to an average gap of 48.08%. On the other hand, in
terms of IoT engineering support, out of the 66 possible points, only 26 were supported, leaving 40
unsupported, resulting in a gap of 60.6%. Figure 6.5 provides an overview of the study’s outcomes,
displaying the percentage of supporting and non-supporting aspects in both contexts.

Figure 6.5: Overall comparative supporting results

According to Figure 6.5, when considering both modeling and engineering non-supporting as-
pects, the average gap where CHESSIoT could potentially contribute is 54.34%. While SimulateIoT
[40] was found to be the best-performing platform, covering 13 out of the 14 basic modeling features
of interest, it lacks certain features that CHESSIoT supports, such as multi-view modeling, system
failure logic design, and run-time service provisioning.

In Sec. 6.3.3, we observed that SimulateIoT [40] does not support various engineering tasks re-
lated to IoT system analysis and takes a different approach to run-time management of IoT services.
Although it may not be feasible for CHESSIoT to incorporate all platform-specific modeling capabili-
ties supported by other platforms, the flexibility and customizability of the CHESSIoT platform allow
for the potential integration of relevant modeling features in the future.

One notable gap in the analyzed IoT platforms is their performance in IoT system analysis, in-
cluding verification, validation, and analysis of IoT systems under development [42]. Due to the com-
plexity and scale of IoT systems, physical replication, and testing become challenging [69]. The lack

Jean Felicien Ihirwe 86

6.6. Conclusion

of standardized realistic reference models that accurately capture the interactions between sensors,
apps, and actuators further exacerbates the issue. CHESSIoT addresses this by extending models with
extra-functional properties and supporting analysis capabilities, as demonstrated in previous work on
real-time schedulability analysis [42, 43].

While CHESSIoT contributes to both system modeling and engineering aspects of IoT systems,
including code generation, safety analysis, deployment, and run-time service provisioning, there are
limitations that need to be addressed in the future. The absence of standardization and agreed-upon
reference architecture in the IoT domain often results in platforms not adequately addressing essential
requirements. Although CHESSIoT’s modeling language drew inspiration from the IoT-A reference
architecture’s multi-view approach [7], it deviates from it by introducing new concepts like failure
logic modeling and deployment-related design. However, other modeling constructs related to infor-
mation flow, security, and more are not yet covered in CHESSIoT.

Furthermore, the Fault-Tree Analysis approach used for safety analysis in system dependability
analysis needs to comply with international software dependability and safety standards, such as [227].
While the current tool has not yet achieved international certification, it is being tested in industrial
settings with large models and increased complexity to validate its effectiveness. Lastly, CHESSIoT
currently lacks the means for testing generated software to support safety analysis results that reflect
real-world conditions.

6.6 Conclusion

In this chapter, we present briefly introduce CHESSIoT engineering methodology. we have pre-
sented the general overview of CHESSIoT support for modeling, developing, analyzing, and deploy-
ing IoT systems. We have presented a motivating comparative analysis that draws the CHESSIoT
contribution in relation to 12 existing platforms. To put things into context we have presented the
CHESSIoT DSL which constitutes 3 main primary DSLs namely SystemDSL, SoftwareDSL, and De-
ploymentDSL. In order to assess the contribution of our DSL with respect to other existing DSLs,
we have presented an evaluation between CHESSIoT and the same 12 platforms considered above in
order to present their abilities for model IoT system entities that cover all layers. Finally, we have
observed that in overall modeling features and engineering capabilities, an average gap of 54.34% gap
was discovered to which CHESSIoT is potentially going to contribute.

Jean Felicien Ihirwe 87

Chapter 7

CHESSIoT safety analysis support for
safety-critical IoT systems

Safety-critical IoT systems are those systems whose failure could result in loss of life, significant
property damage, or environmental damage. Although the IoT industry seeks to cut development
costs and bring new products to market as fast as possible, the safety analysis of such products is
sophisticated and time-consuming, and sometimes it is not seriously taken into account, or it is simply
neglected. Early-stage safety analyses can not only potentially reduce the cost of late failures, but
they can as well help to easily trace and determine the source of the failure if something goes wrong
within the system. As a contribution toward answering the fourth research problem (RP3), this chapter
presents a two-fold safety analysis approach built on the extended CHESS Failure Logic Analysis
(FLA) technique to support the safety analysis of IoT systems based on Fault Trees (FTs). In addition
to its ability to generate the system FTs, the new Fault-Tree Analysis (FTA) approach automatically
performs qualitative analyses by eliminating unnecessary paths as well as redundancies in the FT’s
events. Furthermore, the presented FTA performs a quantitative probabilistic analysis by calculating
the system-level top failure event probability from the failure rates of the system’s internal parts. This
approach contributes to an improvement in terms of time spent performing safety analysis, as well
as the correctness, consistency, and modularity of the analysis process. Furthermore, we employ a
Patient Monitoring System (PMS) case study to demonstrate the efficiency of the proposed approach
as well as the capability of the supporting tool. Finally, to assess the effectiveness of the presented
approach, we used an experimental approach to compare it with 14 existing techniques.
The chapter is organized as follows: Section 7.1 presents an introduction. Section 7.2 presents the
proposed safety analysis approach; Section 7.3 presents the evaluation mechanism while Section 7.4
presents the experimental results from the evaluation. In Section 7.5 concludes the chapter and draws
some perspective work.

88

7.1. Introduction

7.1 Introduction

Dependability is regarded as the ability of the system to provide services that can be trusted within
a specific period [57]. It is mainly characterised by five essential attributes: availability, reliability,
maintainability, integrity, and safety. In this chapter, we focus on safety, which is defined as the
absence of catastrophic effects for the user(s) and the environment [4]. It is one of the major features
that must be investigated and taken into account during the development phase of such systems to
prevent further disasters. Again, from the healthcare system’s point of view, when something goes
wrong, it is critically important to react quickly and with high precision to isolate the danger before
it happens. However, these systems are very complex and involve high-tech interconnected devices in
which the process of discovering faults can be very long and tedious.

In the past, safety engineers relied on different informal design artifacts and documents, such as
requirements documents, to measure the safety compliance of the system with less or no involvement
of system engineers. Later, several approaches, such as [4, 30–33] (to mention a few), have emerged in
the field. These approaches add a degree of automation during the analysis process, bridging the gap
between the system and safety engineers. However, these approaches were designed and developed
to fit domains such as aerospace, automotive, and cyber-physical systems. In some cases, they might
not fully suit the IoT domain. This is mainly due to the inherent huge degree of heterogeneity in IoT
ecosystems, not to mention its current rapid evolution.

This chapter presents both a modeling and an early-safety analysis environment for safety-critical
IoT systems based on the Fault-Tree Analysis (FTA). The approach runs on top of CHESSIoT, a
model-driven environment for engineering industrial IoT systems [42, 43]. The CHESSIoT environ-
ment is built on top of the CHESS tool [16], an open-source model-driven tool that offers cross-domain
modeling, development, and analysis of high-integrity systems. CHESS supports different kinds of
analysis including but not limited to real-time schedulable analysis [16], Contract-Based Analysis
[111], and Quantitative Reliability Analysis based on Mobius [116]. In addition to this, CHESS also
offers means to perform early safety analysis based on Failure Logic Analysis (CHESS-FLA) [44],
however, that existing infrastructure is not suitable enough to support the IoT domain as well as not
mature enough to support the Fault-Tree Analysis as one of the common and necessary artifacts used
in the process of safety analysis [78, 79].

This chapter mainly focuses on CHESSIoT’s extension to CHESS for supporting the early-safety
analysis of IoT systems based on the FTA. The presented approach relies on and extends the exist-
ing CHESS-FLA infrastructure [44]. Normally, CHESS-FLA offers means to: i) model the system’s
failure behavior through the decoration of the system’s simple components following the Failure Prop-
agation Transformation Calculus (FPTC) annotation [33], ii) run the Failure Logic Analysis (FLA),
iii) and propagate the analysis results back onto the original model [45]. Throughout the CHESS-FLA
analysis process, the entire system’s behavior is automatically determined solely from the composi-
tion of its elements. Thus the potential of automatic model-based safety analysis is significant. It is
achieved by calculating the failure behavior from the composite parts up to the system level. This can
help in predicting the impact of a component change or architectural change on a system in a very
cheap way [33]. Furthermore, suppose an essential failure behavior occurs at the model system level.
In that case, it will be easy to discover the source of the fault immediately and identify where the fault
tolerance measures should be directed in the architecture to mitigate them.

The new proposed extension extends the CHESS-FLA by supporting the definition of the failure
behavior of a simple component with no input ports. In addition to that, the extension support the
generation of the system’s complete Fault-Trees as well as performing qualitative and quantitative
FTA Analysis. In the proposed approach, the qualitative analyses help in eliminating unnecessary
paths as well as redundancies in the FTs’ events. Quantitative analysis, on the other hand, allows the
user to set the basic event probabilities and calculates the failure probabilities of an entire system from
its constituent parts’ failure event probabilities. This calculation is automatically performed following
the well-known logic probabilities calculation mechanism techniques [46–48]. Aside from the FTA,
the existing CHESS infrastructure also supports the generation of the Failure Mode Effect Analysis

Jean Felicien Ihirwe 89

7.2. Proposed safety analysis approach

(FMEA) table [83], one of the common and necessary artifacts used in the process of safety analysis.
Throughout the chapter, we present the evaluation mechanism and the outcomes of the experi-

mental evaluation we conducted to better assess how the proposed approach performs compared to 14
existing approaches drafted from the literature. In doing so, five main features have been considered: i)
support for system design modeling, ii) support the failure behavior modeling, iii) automated FT gen-
eration, iv) support for automated qualitative FT analysis, v) and support for automated quantitative
FT analysis. In addition, we used a Patient Monitoring System (PMS) case study to demonstrate the
effectiveness as well as the capability of the supporting tool. As a result, we summarize this chapter’s
key contribution as follows:

• We present CHESSIoT’s system-level modeling environment for designing IoT systems, con-
sidering the system’s physical aspects.

• We presented the CHESS-FLA extension to support the safety analysis suitable for the IoT
domain.

• We introduce an automated Fault Tree generation approach that can handle large and complex
models while still supporting critical features like event tracking and component sub-tree gen-
eration.

• We present both qualitative and quantitative FTA analysis approaches on the generated Fault-
Tress.

• We present the experimental results from a relative evaluation mechanism conducted in com-
parison with 14 existing approaches in the literature.

• We present a Patient Monitoring System (PMS) case study to demonstrate the effectiveness of
the proposed approach as well as the capability of the supporting tool

7.2 Proposed safety analysis approach

This section presents a model-based safety analysis approach based on automated calculus that
can potentially reduce the time-consuming human effort and error-proneness of the IoT safety anal-
ysis procedure. In Section 7.2.1, we present the safety analysis process supported by the proposed
tool; in Section 7.2.2, we describe the extended FPTC syntax while Section 7.2.3 describe briefly the
transformation process. In Section 7.2.4, we introduce the FT generation process whereas Section
7.2.5 introduces the FTA approach detailing both the qualitative and quantitative approaches.

7.2.1 Model-based safety analysis process

IoT systems can experience failures due to various factors, including device age, data source prob-
lems, network issues, deployment environment, and external constraints. For instance, human error
can also cause problems. The CHESSIoT safety analysis approach proposes an early safety analysis
method using Fault-Tree Analysis, which involves annotating a system model with failure behavior
rules using the Failure Propagation Transformation Calculus (FPTC) notation [33].

As illustrated in Figure 7.1, the safety analysis process typically commences with the IoT system
engineer creating a model based on the gathered system functional requirements 1 in Figure 7.1.
These requirements are mainly acquired through close collaboration with the client. The system-level
model encompasses the system’s major functional components, sub-components, and their intercon-
nections. These system components can be represented as blocks in SysML Block Definition Di-
agrams (BDD), which align with the abstract syntax meta-model illustrated in Figure 6.2. Internal
Block Diagrams (IBD) are employed to illustrate the interdependencies between these components,
facilitating the identification of error propagation paths. Each part or block can be assigned to a spe-
cific architectural subsystem or component. The physical architecture should possess extensibility

Jean Felicien Ihirwe 90

7.2. Proposed safety analysis approach

to accommodate the addition of new components or blocks as necessary. The entire safety analysis
process is fully detailed in the next sections.

Figure 7.1: Safety analysis process

Once the system model is complete (see the CHESSIoT model 2 in Fig. 7.1), it can be handed to
the safety engineer for further safety analysis. The safety expert, similarly to the system engineer, can
derive safety requirements 3 from the needs of the client, domain standards, and his or her expertise
in order to ensure optimal safety. Starting from identifying the typical system-level failures, the safety
engineer identifies the failure behavior for each component following the Failure Propagation Trans-
formation Calculus (FPTC) notation. The FPTC technique enables the analysis of component-based
systems with cyclic data, control-flow structures, and closed feedback loops. Such failure behavior
referred to as FLA rules 4 are annotated to the system’s simple comments to illustrate how failures
might occur in a system component and how they are propagated from one component to another.
At this stage, the safety engineer can additionally set the component’s failure rates 5 to be used for
quantitative analysis.

7.2.2 FPTC Calculus

The FPTC technique solves a significant limitation by allowing the analysis of component-based
systems with cyclic data, control-flow structures, and closed feedback loops. The extended annota-
tions explain how failures might occur in a system component and how they are propagated from one
component to another. Based on its nature, a function/component can propagate a failure (carrying a
failure from input to output), transform a failure (changing the nature of a failure from input to out-
put), act as a source of failure (creating a failure despite no failure in input), or act as a sink (avoiding
the failure to be either propagated of transformed). The following three abstract categories of failure
modes are assessed: service provision failures, such as the omission or commission of the output;
timing failures, such as the early or late delivery of the output; and value domain failures, such as the
output value being out of a valid range, stuck, biased, exhibiting a linear or non-linear drift, or erratic
behavior. In addition to that, a noFailure annotation is used to indicate a no-failure mode at the input
port. Table 7.1 describes different failure modes and their description.

First integration of the CHESS-FLA in CHESS was done in [44] with the support for FI4FA (For-
malism for Incompletion, Inconsistency, Interference, and Impermanence Failures Analysis) [228],
which is an extension of FPTC that takes into consideration Incompletion, Inconsistency, Interfer-

Jean Felicien Ihirwe 91

7.2. Proposed safety analysis approach

Failure type Description
Early output is provided too early
Late output is provided too late

ValueCoarse output out of range in a detectable way
ValueSubtle output not in range in an undetectable way
Omission no output is provided

Commission an output is provided when not expected

Table 7.1: Failure types

ence, and Impermanence Failures, and their corresponding countermeasures. However, in the previous
version, it was impossible to express a component’s failure behavior when it possesses no input ports.

In the existing infrastructure, when modeling the failure expression at a certain port, always the
port’s name and the failure type are always necessary. This means that a "noFailure" mode is assigned
to that port to depict the event in which an internal failure has occurred in the systems causing a failure
at any output post of interest. However, it is not always obligatory for a component to an input port
for it to fail. For instance, in IoT domain, a temperature sensor’s role is to sense the surrounding
environment and relay the information to the connected parties. In that case, the sensor needs only
a physical output port in order to function properly. The new extension allows such internal failure
scenario to be expressed using a "(∗)" notation. The new extended syntax is depicted in Listing 7.1.

1 FLA:"LHS"=>"RHS"; #left/right hand side of an expression
2 LHS=portName."bL"|portName."bL"(,portName."bL")+|"(*)"
3 RHS=portName."bR"|portName."bR"(,portName."bR")+
4 bL=wildcard|"bR"
5 bR=noFailure|"FAILURE"
6 FAILURE=early|late|commission|omission|valueSubtle|valueCoarse

Listing 7.1: Extended FLA syntax expression

7.2.3 CHESS2FLA transformation

The Annotated CHESSIoT model 6 , produced by the system expert as previously explained, gets
automatically transformed by means of the CHESS2FLA model-to-model transformation to generate
the CHESSIoT FLA model 7 . During the transformation, each component is essentially considered a
black box that can only exchange data through its ports. The FLA technique automates the calculation
of a complete system failure behavior starting from the failure behavior rules of its separate composite
components and interconnections. This, in turn, means that the failure behavior of composite elements
is also determined by the failure behaviors of its instantiated simple components and their internal
decomposition. Simple components have no other parts and rely on the failure behavior defined in the
previous stages. When the failure modeling is finished, the model undergoes a CHESS2FLA model-
to-model transformation which transforms it into an FLA model following the meta-model presented
in Figure 7.2. This transformation is domain agnostic, and it does not consider any domain-specific
construct other than linking each component and its final state of failure into a single model instance.

As seen from the FLA meta-model, a composite component represents a subsystem that contains
one or more sub-components. As mentioned in the previous stages, this component does not possess
the failure behavior by itself, but it relies on its sub-components to determine its failure behavior. On
the other hand, a simple component represents a functional component that can contribute to system
failure. Each component contains input and output ports and the annotated failures (according to
FLA rules) for simple components. In contrast, in composite components, the propagated failure is
assigned to the ports. Furthermore, each simple component is assigned rules where each rule contains
input and output expressions reflecting failures and their respective ports. During the transformation,
the extended notation of the internal failure of a component with no input ports creates a unique
virtual port assigned with a "noFailure" failure type at the component input port to reflect the idea of
the component’s internal failure source.

Jean Felicien Ihirwe 92

7.2. Proposed safety analysis approach

Figure 7.2: CHESS-FLA meta-model [3]

At each level of the FLA analysis, the results are back-propagated onto the original model to
assign each component’s failure state to be reflected in the model. The final failure state at simple and
composite components as well as at the system level is reflected when the analysis is done. The system
FT 9 and FMEA 8 table can be automatically generated and analyzed before being sent back to the
safety expert for consultation. If something is wrong, changes can be made before the final inspection.
In the following sections, we briefly review each step of the supported analysis process. Although the
FMEA analysis is included in the CHESSIoT safety analysis process, this paper focuses primarily on
the FT-based analysis approach.

7.2.4 Fault-Tree generation

The FT generation process is performed following a FLA2FT model for the transformation of a
CHESS-FLA model into a conforming FT model. Figure 7.3 shows an FT meta-model adopted from
[4]. The FTModel element is the top element of the tree, and it is instantiated for each failure that
propagates to the system output ports during the FLA analysis. Each FTModel element contains a
logical network of events and gates that together form an FT. The entire FT generation process is
covered in the following sections.

Fault-tree events

In our proposed approach, each event can be graphically identified in the FT from its unique iden-
tifier (ID). An event ID is defined as a pair of “failure names” and “port names” in a given component.
This ID never changes through the FT generation as well as in the FT analysis process. This can po-
tentially help in event tracking when comparing generated and analyzed FTs. In addition to that, each
event has its own name which by default combines the information regarding its corresponding failure
and its effect in a given component. The effects can be of type top failure type at the system level,
local failure caused by the system’s intermediate failures across the tree, injected failure resulted from
injected faults, and internal failure resulted from the component’s internal faults. In the next part, we
are going over the various event types that we use to construct the FT and we will describe how events
are generated throughout the transformation process.

Jean Felicien Ihirwe 93

7.2. Proposed safety analysis approach

Figure 7.3: FT meta-model [4]

• Basic events: A simple component may suffer different kinds of malfunctions, generating either
one or more kinds of internal failures. One or more notations may be required to define such
events for a given component. A basic event is used to represent a failure that is initiated
inside a simple component. This can be basically referred to as a simple component acting as a
source of failure. In this case, a failure condition is present on any of the output ports despite
no failure at its input port. In case a simple component does not possess any input port, the
newly developed approach allows the definition of such condition following Expression (7.1).
On the other hand, in case a simple component possesses one or more input ports, its failure
behavior can be defined by explicitly initializing all the input failures of the component with a
"noFailure" condition (Expression 7.2). Figure 7.4a shows the basic event representation in an
FT resulting from an internal failure of a component.

(∗)→ p. f ailure(out); (7.1)

p1.noFailure,, pn.noFailure→ p(out). f ailure(out); (7.2)

NOTE: Considering p1,p2 to pn to be the input ports and p(out) to be an outport of a simple
component. If any of their corresponding failure condition is different to "noFailure", then the
above condition is not met, so, all "noFailure" conditions on other ports are ignored as they do
not contribute toward to the logical failure behavior of the component.

• External events: External events are used to represent failures that can be introduced from the
environment outside the system boundaries. CHESS provides the possibility to inject failures
in the system through the system-level input ports. These faults are modeled with a comment
annotation with «FPTCSpecification» stereotype attached to the relevant input port where the
fault is being injected in SysML block diagrams (the case study in Section 7.4 demonstrates this
concept in more details). The injected fault comment specifies the type of failure attribute being
injected into the system. This fault injection can also be done on a composite sub-system under
analysis. Figure 7.4b shows a graphical representation of an external event resulting from an
injected fault in the system.

• Intermediate events: An intermediate event is used to describe the local failure effects result-
ing from a logical output of one or many events. In the presented approach, these events are
generated to represent the failure condition at the input or output port(s) of the simple compo-
nent resulting from an internal failure or other failure condition from the outside of that simple
component. It is also used to represent the top event of an FT. Figure 7.4c is used to represent
an intermediate event.

Jean Felicien Ihirwe 94

7.2. Proposed safety analysis approach

• Underdeveloped events: The underdeveloped event is used to specify an event resulting from a
failure in which we do not have sufficient information about it. This can basically happen when
a failure is introduced at the input port of a simple component without a preceding definition of
how it was been propagated or injected at that input port. During the FT generation process the
symbol in Figure 7.4d is used.

(a) Basic event (b) Injected failure event (c) Intermediate event type (d) Undeveloped event

Figure 7.4: Event types

Failure propagation

Failure propagation occurs in a component when a single input port failure condition of a com-
ponent is directly transferred to the output ports of the same component without changing its nature.
This failure propagation can be modeled in CHESS-FLA using the notation in Expression 7.3. A
propagation also occurs between two connected components, when a failure condition at the output
port of the preceding component is transferred to the input port of the following component.

p(in). f ailure1→ p(out). f ailure1; (7.3)

Failure transformation

A failure transformation occurs within a component when a failure condition present at the input
port of a simple component is converted into another type before reaching the output port (Expression
7.4). A failure transformation can also occur when more than one failure expression of any type the
exception of a "noFailure" or "wildcard" at multiple input ports is transmitted to a single output port
(Expression 7.5). Even if the failure has the same type, the fact that the component converts two
failures at its input ports to a single failure at the output port is regarded as a failure transformation.

p(in). f ailure1→ p(out). f ailure(out); (7.4)

p(in1). f ailure1,, p(inN). f ailureN → p(out). f ailure(out); (7.5)

Fault-tree generation process

The system FTs are generated through a series of model-to-model transformation mechanisms
written using the Epsilon Transformation Language (ETL) [229]. The process starts by instantiating
a number of FT objects equal to the number of failures that propagates to the output port(s) of the
system. At this stage, each error that propagates to the output port(s) of the system is represented in
its own FT. Note that when a "noFailure" condition is propagated to the output, it is ignored. This
technically means that the system acts like a failure sink and it is able to mitigate its propagation to
the output of the system, which is also true for all other sub-systems. To achieve that, the Algorithm 1
is followed.

In the next steps, each FT is built separately and recursively. The initial action involves the creation
of a top event among all. A top event is generated as a result of the failure propagation to the system
output port. In terms of logic gates used in the FT, only "AND" and "OR" gates are adopted. An

Jean Felicien Ihirwe 95

7.2. Proposed safety analysis approach

Algorithm 1: Instantiate fault-tree

for p in allPorts do
if p is output of the system then

for f in failures assigned to p do
if f is not "noFailure" then

Create an FT relative to the failure f and p;
Add FT to FTs sequence;

end
end

end
end

AND gate is used to indicate a failure transformation from an input to an output port of a component
(see Section 7.2.4). An OR gate, on the other hand, is used to depict a failure propagation situation
(see Section 7.2.4). The OR gate can also depict a scenario in which one or more failure outputs from
distinct components are passed to the input of the following component. The whole FT generation
population algorithm is described in Algorithm 2.

Algorithm 2: FLAComposite2FT rule algorithm
Data: FLA composite component (system-level)
Result: FT model
count=0;
for port in allPorts do

if port is output of the system then
for f in failures assigned to port do

if f.name is correspond to an FT then
Create an intermediate event← TOP FAILURE;
Assign an OR gate to it;
Add it to its corresponding FT ;
for con_port in port.connectedPorts do

recurseFT(f,con_port,FT,topEvent);
//Call Algorithm 3

end
end

end
end

end

When the top-event creation is done, the intermediate events are created and populated into the FT,
based on the failure expressions and the components they are assigned to. The FT population involves
a recursive transformation process in which, as indicated by the FLA meta-model (Figure 7.2), from a
component, we can have information on ports, and from ports, we can get to rules, rules to expressions
and back to the components. So, at this stage, the only crucial stopping case is when the transformation
hits a condition matching an internal, underdeveloped, or injected failure. For instance, in Figure 7.5,
a simple transformation example with indications showing a simple transformation mapping of the
Expression 7.5 is shown. From the example, each of the output expressions is mapped to an output
event of a logical combination of the input expressions. Each input expression is mapped to an event
and the type of such event is determined by the expression condition. In addition to that, the logic
gate is defined based on the nature of the input expressions to satisfy the failure propagation and

Jean Felicien Ihirwe 96

7.2. Proposed safety analysis approach

transformation concepts. A brief description of the following algorithm is described in Algorithm 3.

Figure 7.5: Expression 7.5 corresponding tree

In the newly developed environment, it is possible for a safety expert to assign failure rates of any
of the events leading to a basic failure condition. These events include the internal failure condition
and the injected failures. In addition to the failure rate assignment, the user is also able to add a failure
description in a textual format to reflect the proper cause of the failure. This is potentially important
when, for instance, a simple component might have two different internal failure conditions leading
to two different outputs. For instance, an aging device can still work by providing the wrong output
leading to a valueCoarse or valueSubtle failure at the output port whereas a blown device fuse will
automatically halt its functionality, therefore, leading to an "omission" failure at the output port. As-
signing such information to the FT model will eventually improve its readability. This assignment is
done way before the FLA2FT transformation process and when the transformation finishes, a proba-
bility file is generated separately from the model in an Excel file format. This file is later loaded into
the model to support the quantitative probabilistic analysis process.
Note: the full transformation code on FT generation can be found in the appendix B.1

7.2.5 Fault-Tree Analysis

The proposed approach support both the qualitative and the quantitative FT analysis through the
use of rigorous model transformation techniques. In this section, we are going through the supported
analysis.

FT Qualitative analysis

The FT qualitative study is conducted using an FT2FT model-to-model transformation (ie: trans-
formation from 9 to 10) in which the FT meta-model in Figure 7.3 serves as both the source and
the target meta-model. This effectively creates new FT representations in the workspace, permitting
users to reuse both the generated and the analyzed FTs at the same time. The goal of this qualitative
analysis approach is to provide a new representation of the existing FT that only includes the essential
representations. Although the current qualitative analysis does not fully reflect the calculation of the
minimal event sets needed for a system to fail (minimal cut-sets [230]), it does provide a much shorter
and more readable FT that still reflects the goal for the analysis.

During the qualitative analysis process, the following actions are performed:

• 1. Removal of internal component failure propagation: One of the goals of an FT is to help
users to discover and trace down the source event of a system failure in a more easy and intuitive

Jean Felicien Ihirwe 97

7.2. Proposed safety analysis approach

Algorithm 3: Recurse FT operation
Data: current_failure as f, current_port as p, current_FT as FT, event_to_construct as eG
Result: final populated FT
if p is of not system’s port then

if p is of a "Simple Component" then
for outExp in p.owner.rules.outputExpressions do

for f1 in outExp.failures do
if f1==f then

Create an intermediate event e0← LOCAL FAILURE;
Assign gate to e0 based failures at the p port;
Add e0 to eG;
Add e0 to FT ;
for inpExp in p.owner.rules.inputExpressions do

for f2 in inpExp.failures do
if f2 is not a "wildcard" then

if f2 is a "noFailure" then
Create a basic event eT ← INTERNAL FAILURE;
Add eT to eG;
Add eT to FT ;

else
Create a intermediate event e1← LOCAL FAILURE;
Assign an OR gate to e1;
Add e1 to e0;
Add e1 to FT ;
for p1 in inpExp.port.connectedPorts do

recurseFT(f2,p1,FT,e1); //Recurse from the start of the
Algorithm 3

end
end

end
end

end
end

end
end

else
for p1 in p.connectedPorts do

recurseFT(f,p1,FT,ev); //Recurse from the start of the Algorithm 3
end

end
else

Create a external event eX ← INJECTED FAILURE;
Add eX to eG;
Add eX to FT;

end

Jean Felicien Ihirwe 98

7.2. Proposed safety analysis approach

fashion. As described in Section 7.2.4, the internal component failure propagation occurs when
a single input port failure condition of a component is directly transferred to the output ports of
the same component without changing its nature. Although keeping such information in the FT
is important, when the model becomes increasingly big, this information can be very exhausting
to glance at. Therefore, each path meeting such a condition is omitted and removed from the
FT. This process drastically reduces the vertical magnitude of an FT but it does not change its
nature.

• 2. Removal of external component-to-component failure propagation: This refers to a condi-
tion in which a component-to-component propagation is solicited from a single channel in the
FT. For instance, if a single failure condition at the input port of a component is propagated
from a single source, then this information is omitted in the analyzed FT. Mainly on the basic
events, events involved in a failure transformation, and the top event are kept in the FT.

• 3. Removal of basic events redundancy: A single failure can be initiated from a single source
and passes through different propagation paths until it reaches the output port(s). If, in all the
propagation paths, no transformation occurs, then, from the output failure conditions, only one
path is considered, and from that path, all intermediate propagation representations are removed
according to the two previous rules.

During the transformation process, only the paths that satisfy the internal or external failure trans-
formation are kept in the tree. This is to help users to only care about the important information when
tracing the origin of the failure. One special case of the propagation that is kept in the tree is when
the FT that has to be analyzed contains a single path in which a single basic event propagates up the
tree all the way to the top event. Then, in such cases, only the top event and the basic event are kept
in the analyzed FT. Finally, each of the omitted intermediate paths as well as each gate resulting from
a simple component internal failure transformation is replaced by a feed-forward intermediate gate to
enhance the FT readability.

For example, taking the generated FT branch shown in Figure 7.6, the event 0 is obtained from
a logical "AND" output from 3 subsequent paths, which makes this event a result of a component-to-
component external transformation. Starting from event 2 ("omission") failure at the input port to
the event 1 ("commission") event at the output port, indicates internal failure transformation. So in
such a case, event 1 and its next gate are kept permanently, while event 2 is kept temporally for
future analysis. Further down to event 3 ("omission") up to event 2 ("omission") is component-to-
component failure propagation, so event 3 will be permanently removed while event 2 will be kept
again temporarily for further analysis.

Next, we remain with event 4 ("omission") up to 2 ("omission") which is a propagation as well
(omission-to-omission). From here, normally event 4 is supposed to be removed; however, as event
4 is a basic event, event 2 will be removed instead. Finally, the whole omitted part of the tree

will be substituted by a feed-forward intermediate gate to enhance the readability of the FT. The final
version of the FT is provided in the right-hand figure, 7.6(b). To sum up, we would say that "the
internal failure 4 leading to an "omission" at the output port of a basic component had transformed
into event a "commission" failure event 1 at some point in the system, in which then combined with
the other two failure sources had caused an "omission" at the top level of the system.

FT Quantitative analysis

The quantitative probabilistic analysis is meant to automatically calculate the system-level (top
event) failure rate. In the proposed approach, the user is able to assign the failure probability rates of
the basic failure events such as internal failure and injected failure. This information can be supplied
from the device manufacturer’s data sheet as well as the safety experts. In safety engineering, the
device failure probability is often considered to be extremely low and often expressed as failures per
million (10−6), particularly for individual components [231]. The probability calculation follows a

Jean Felicien Ihirwe 99

7.2. Proposed safety analysis approach

Figure 7.6: Qualitative transformation example (a) before, (b) after

widely used formula for conducting a logical output of an "AND" or an "OR" gates in the FT [46, 47].
The output of an "AND" gate means that the output event will only happen when a combination of
independent events occurs at the same time. On the other hand, the output of an "OR" gate implies
that the output event will occur if any one of the input events occurs.

For each FT to be analyzed, the system failure rate (the top event probability) is calculated fol-
lowing a recursive calculation of the intermediate probabilities to the intermediate events. Based on
the probabilities of the basic events, the probability values of their parent event can be calculated from
input event probabilities. The probability calculation follows the formula in Figure 7.7. Let N be the
number of input events and Pin the probability of the input event, the output probability Pout , for both
"AND" and "OR" gate types, is calculated as follows:

Figure 7.7: Probability calculation formula

During the probability calculation process, in the case of an internal component failure transforma-
tion condition, the probability corresponding to an input port failure event is forwarded to the output
port event. When the qualitative analysis finishes, this in turn implies that the probability of an event
at the input of an intermediate gate is forwarded to the immediate output event. In addition to that,
in an event resulting from an undeveloped event being fed into an "OR" gate, that branch probability

Jean Felicien Ihirwe 100

7.3. Evaluation process

is first set to zero while in the case of an "AND" gate, the branch probability is set to 1. This in fact
does not affect the probability calculation process as 0 and 1 are neutral values in the addition and
multiplication process respectively.
Note: the full transformation code on both quantitative and qualitative FT analysis can be found
in the appendix B.2

7.3 Evaluation process

In this section, we describe the approach used to evaluate the performance of the proposed ap-
proach in supporting the safety analysis of safety-critical IoT systems with respect to other existing
approaches in the literature. In Section 7.3.1, we present the following evaluation process; in Section
7.3.2, we introduce the case study exploited to support our evaluation; finally, Section 7.3.3 describes
the research questions we targeted to address.

7.3.1 Evaluation process

The evaluation procedure we adopted followed six different steps. We first identified a use case
that precisely fits in the context of safety-critical IoT systems. Next, we defined research questions
that primarily focus on evaluating and demonstrating the effectiveness and potential of the proposed
approach. Third, we briefly assessed the key features offered by our system and the supporting tool.
This stage allowed us to recognize the most powerful safety analysis tools to be compared to demon-
strate our approach’s superiority. Following that, we presented the experimental results, emphasizing
answering the posed research questions. Because our proposed approach can be employed in areas
other than IoT, the evaluation approach will also consider the widely used FTA approach used in sys-
tem engineering. Finally, we compared our approach with the most relevant state-of-the-art platforms,
including but not limited to ISOGRAPH Reliability Workbench [169], FT generation approach based
on CHESS-FLA implemented in [3], and the safety analysis approach for IoT presented in [180].

7.3.2 Motivating example: Patient Monitoring System (PMS)

Due to the general rapid evolution of electronics and information technology, more powerful bed-
side patient monitors capable of complex bio-signal processing and interpretation are becoming avail-
able, and they are usually equipped with some highly specialized communication interfaces [232].
This goes hand in hand with the huge advances in IoT technologies allowing the integration on such
devices of the capability to connect to the internet, which makes it possible to monitor the health state
of multiple patients remotely. To support our evaluation process, we adopted an "Efficient Patient
Monitoring for Multiple Patients Using WSN" case study [5]. The case study is an advanced system
capable of reliably monitoring the multiple parameters of up to six hospitalized patients simultane-
ously in real time.

The system investigates the potential of employing Wireless Sensor Networks (WSN) to reliably
and wirelessly collect multiple parameters such as blood pressure, temperature, electrocardiography
(ECG), electroencephalography (EEG), and pulse oximeter (SPO2). These parameters are collected
through a set of sensors placed on different parts of the patient’s body. For instance, the ECG Sensor is
placed on the chest and on the limbs to extract the patient’s heart rate data, the EEG sensor is placed on
the patient’s head to read electrical activity generated by the brain. Furthermore, the Blood Pressure
sensor is placed on the arm to detect the level of the pressure in the blood; while the SPO2 sensor is
placed on the patient’s finger to measure the oxygen saturation of a patient’s blood; and, finally, the
Temperature sensor is placed to any part of the body to measure the temperature. Figure 7.8 describes
the high-level architecture of the system.

As a result, the recorded parameters are wirelessly transmitted to a computer running PMS soft-
ware, which feeds them on the monitor screen in the doctor’s office. The software can also wirelessly

Jean Felicien Ihirwe 101

7.3. Evaluation process

Figure 7.8: Basic architecture of Patient Monitoring System [5]

send alarming messages to the doctor’s phone, if they are not present, to respond to the patient’s
requests. The architecture in great detail is discussed in Section 7.4.2.

7.3.3 Research questions

We study the performance of our proposed approach by considering the following research ques-
tions:

• RQ1: How does the presented approach distinguish itself from state-of-the-art techniques?
We simply did a short review of the existing methodologies in relation to what the proposed
approach offers in order to derive its unique contribution.

• RQ2: Does the system-level modeling infrastructure address all the aspects of modeling a
multi-layered IoT system suitable for safety analysis? Apart from the modeling language, does
the modeling approach captures all the required information to facilitate the safety analysis?
For instance, are all the provided information taken into consideration when performing the
analysis?

• RQ3: How well do the proposed FLA rules efficiently reflect the system failure behavior
leading to the system top failure events? We look at the efficiency of the derived rules from
the possible system failure events in clearly supporting actual logical analysis leading to the
expected results.

• RQ4: Does the proposed FT qualitative and quantitative analysis improve the existing FT
analysis techniques? We will concentrate reliability of the result from the supported automated
calculus with regard to the existing approaches. We will also have a look at the final FTs and
how they better describe the important system failure paths.

Jean Felicien Ihirwe 102

7.4. Experimental results

7.4 Experimental results

In this section, we report the results of the conducted experiment mainly focusing on answering
the research questions formulated in Section 7.3. In Section 7.4.1, provide a brief assessment of the
related tools in response to RQ1. In Section 7.4.2, present the PMS system’s model architecture while
attempting to answer RQ2. Section 7.4.3 present the system failure behavior modeling approach to
answer RQ3. Finally, Section 7.4.4 present the results of the FT analysis aimed at answering RQ4.

7.4.1 Short literature review (RQ1)

RQ1: How does the presented approach distinguish itself from state-of-the-art techniques?
To sufficiently answer the research question, we needed to first understand the available tools that

employ the FTA technique to conduct the safety analysis in the literature. We did not only focus
on tools that solely support the IoT domain since we wanted to understand the methodologies used
by the existing tools in their FT formalism and analysis process in comparison with our proposed
approach. In the end, 14 different platforms were found in the literature with much closer relations to
our approach.

Search and selection process

The search and selection procedure was divided into four major stages. Since the purpose of
the chapter is not to undertake an empirical study, we did not conduct this review using well-known
databases, but we only relied on Google Scholar results. We performed an automatic search using the
keywords: "Model-based Safety analysis in IoT systems," "Fault Tree analysis in IoT systems," "Fault
Tree analysis from SysML models," and "Model-based safety analysis or Fault-Tree analysis." The
goal was to offer us a sample of current publications on topics related to such information in the search
strings. Because each search returned a large number of results, we only analyzed the first two pages
of the results. The second phase was conducted for each search in which we filtered out such results
by reading through the title and abstracts. To pass this step, an approach title and abstract must include
at least one of the terms "Fault-Tree Analysis" or "Model-Based Safety Analysis." Following that, we
skimmed through the selected articles to exclude those that merely present an analysis approach but no
supporting tool, resulting in a total of 13 approaches. Finally, we included ISOGRAPH [169] as one
of the most extensively used workbenches in the industrial domain for dependability analysis, which
lead us to a total of 14. Table 7.2 presents a list of selected primary approaches.

Results

To better answer RQ1, we have defined a set of fundamental features we think a safety analysis
tool should possess. These features were evaluated on the selected approach in comparison with the
proposed infrastructure. The features such as supporting system design modeling, failure behavior
modeling, automated FT generation, performing qualitative FT analysis, and performing quantitative
FT analysis. Table 7.3 summarizes the findings of the study, in which for each approach, a "Yes" or
"No" label was used to indicate if that approach supports that particular feature. As indicated, all 14
approaches are represented against the 5 features. It can be seen that at least one feature is supported
at least once. In this section, we go over the result of the study and have some discussion in line with
the features defined above.

• Support for system modeling: This feature assesses whether the suggested tool supports system
design before proceeding with its safety analysis. Conducting safety analysis needs to go hand
in hand firstly with the design of the system under analysis. We believe that integrating the
design and analysis infrastructure can improve transparency and consistency among system and
safety experts. According to Figure 7.9, 78.6% of the selected approaches has the infrastructure
for designing the system before starting the analysis. Table 7.3, on the other hand, indicates that

Jean Felicien Ihirwe 103

7.4. Experimental results

Table 7.2: Selected approaches
Tool Title Year Type
ISOGRAPH [169] Fault tree analysis in reliability workbench 1980s Community

tool
Haider et al. [3] FLA2FT: Automatic generation of fault tree from Con-

certoFLA results
2018 Conference

JARVIS [170] A framework for model-driven engineering of resilient
software-controlled systems

2021 Journal

Mehnni et al. [171] Automatic fault tree generation from SysML system models 2014 Conference
Alshboul et al. [4] Automatic derivation of fault tree models from SysML models

for safety analysis
2018 Journal

Yakymets et al. [172] Model-based system engineering for fault tree generation and
analysis

2013 Conference

Hamed et al. [174] Fault tree analysis for reliability evaluation of an advanced
complex manufacturing system

2018 Journal

Silva et al. [180] A dependability evaluation tool for the internet of things 2018 Journal
Chen et al. [181] Application of fault tree analysis and fuzzy neural networks to

fault diagnosis in the Internet of Things (IoT) for aquaculture
2017 Journal

Xing et al. [182] Reliability modeling of mesh storage area networks for Internet
of Things

2017 Journal

MetaFPA [178] Transformation of failure propagation models into fault trees
for safety evaluation purposes

2016 Conference

Clegg et al. [175] Integrating existing safety analyses into SysML 2019 Conference
smartIflow [233] Model based safety analysis with smartIflow 2017 Journal
Xiang et al. [177] Automatic static fault tree analysis from system models 2010 Conference

approaches such as [175, 178, 181] do not provide such a feature and instead rely on manually
created FT models, which are then transformed into FT graphs. In contrast to the previous
approach, our proposed approach completely supports this feature by providing an environment
in which system main blocks and sub-systems can be decomposed and analyzed separately.
Even though approaches such as [4, 171, 175, 176, 234] extend the SysML language in the same
way that we do, our environment is more user-friendly due to the advanced component-based
and multi-view modeling infrastructure, where each view has its own underlined constraints that
enforce its specific privileges on model entities and properties that can be manipulated [42].

• Support for failure behavior modeling: This feature determines whether the proposed approach
provides mechanisms for explicitly stating the system failure modes as well as the system failure
behavior, both of which contribute to the generation of the FT. As shown in Figure 7.9, 85.7 % of
the investigated approaches support this feature, which is a good number given that it is the key
driver for FT generation. In our approach, we extend FPTC [33] rules when modeling the system
failure behavior because we consider it to be straightforward to understand. Other approaches
use formalism including, but not limited to, "IF-THEN" or logical math association expressions
to formalize that ([171, 178, 180, 181]). Nonetheless, all these approaches lack the concepts
of external failure injection as well as internal failure transformation and propagation. On the
other hand, [172] uses a formal method approach in modeling system failure logic; however, the
complexity of formal method formalism can be difficult to handle. Furthermore, [4] depends
on annotating failure information in the model state machines, which can be a difficult and
time-consuming task due to the complexity of state machine definition.

• Perform automated FT generation: This feature determines whether the proposed approach
automatically generates the FT from the model rather than manually constructing it. This is
one of the main motivations for our proposed approach since we believe that automating the
FT generation process is critical to reducing the time safety engineers spend in performing the
safety analysis as well as increasing transparency in the process. According to the findings,
around 64.3% of the techniques support such a feature. One commonly used tool in the industry

Jean Felicien Ihirwe 104

7.4. Experimental results

Table 7.3: Results from the studied approaches
Approach System

modeling
Failure
behavior
modeling

Perform
automatic
FT genera-
tion

Perform
qualitative
FT analysis

Perform
quantitative
FT analysis

ISOGRAPH [169] Yes Yes No Yes Yes
Haider et al. [3] Yes Yes Yes No No
JARVIS [170] Yes Yes Yes Yes No
Mehnni et al. [171] Yes Yes Yes No No
Alshboul et al. [4] Yes Yes Yes No No
Yakymets et al. [172] Yes Yes Yes Yes Yes
Hamed et al. [174] Yes No No Yes Yes
Silva et al. [180] Yes Yes Yes Yes Yes
Chen et al. [181] No Yes No Yes No
Xing et al. [182] Yes No No Yes Yes
MetaFPA [178] No Yes No No No
Clegg et al. [175] No Yes Yes No No
smartIflow [233] Yes Yes Yes Yes No
Xiang et al. [177] Yes Yes Yes No No
CHESSIoT Yes Yes Yes Yes Yes

(ISOGRAPH [169]) does not support this; this could be due to the scale at which FTs can be
used, not only in safety analysis but also in other domains like reliability analysis, risk analysis,
and so forth. However, as technology advances, we strongly believe that this should change in
order to remain relevant in the market. Our approach provides a solid FT generation mechanism
that can support large and complex models with advanced features including but not limited to
event tracking, component sub-tree generation, analysis, and undeveloped branch identification.

• Perform automated qualitative FT analysis: This feature determines whether or not the proposed
approach supports any means for performing qualitative analysis on the generated FT, including
detecting minimal cut-sets, FT path reduction, FT event redundancies, and so on. According to
the findings of our study, 57% of the approaches support this. Since FTs can be large, depending
on the system size and its complexity as well as the individual component failure behavior, it is
vital for an FTA platform to make it easier for the user to navigate through the system’s main
failure paths in order to better help in defining how they might be easily mitigated. This can
be accomplished either graphically, through actions such as path reduction, as well as textually
through deriving minimal sets of events required for a system to fail (minimal cut-sets). Aside
from that, alternative approaches may be completely platform-specific and dependent on the
failure behavior modeling approach and FT generation mechanisms.

• Perform automated quantitative FT analysis: This feature determines whether the proposed
approach allows quantitative analysis, mainly the top failure event probability estimation. Of-
fering such support could potentially aid in quantifying the risk and determining how to manage
it. However, this is regarded as optional in the FTA mechanism due to the lack of a standard
means of determining individual component failure rates, since basic event failure rates en-
compass not just hardware failures but also software, human, and environmental factors. Only
35.7% of the approaches evaluated support such a feature, namely [169, 172, 174, 180]. Our
proposed approach not only computes the intermediate and top event probabilities from the ba-
sic events, but it also recognizes underdeveloped branches and injected failures. It is also worth
noting that, during the FT generation process, a file containing the probability information is
generated, which allows you to still update the component failure rates and re-run the analysis,

Jean Felicien Ihirwe 105

7.4. Experimental results

in which the new values are picked up by the tool without having to re-generate the FT again.

Figure 7.9: Feature support performances

As it can be seen from the table, our approach supports all five features; among the others, only
[172] and [180] support all of them. However, as previously discussed, these differ significantly
from our proposed approach in terms of capacity and efficiency. In summary, the proposed approach
is completely unique in terms of advancing the state-of-the-art through various novel mechanisms
such as support for system design modeling, failure behavior modeling, automated FT generation,
automated qualitative FT analysis, and automated quantitative FT analysis.

7.4.2 PMS system modeling (RQ2)

RQ2: Does the system-level modeling infrastructure address all the aspects of modeling a multi-
layered IoT system suitable for safety analysis?

Patient monitoring system design

In order to better answer this question, we showcase the capability of our proposed modeling
environment employing the case study presented in Section 7.3.2. As can be seen in Figure 7.8, the
Patient Monitoring System (PMS), uses a set of sensors to collect sick patient data and send them
to a remote server. The system can display the data on the monitor as well as send an alarming
signal when something gets wrong. Figure 7.10 represents the internal physical architecture of the
proposed system. For the sake of simplicity and to facilitate the analysis process able to produce
presentable results, we have considered the following changes to the architecture presented in 7.8.
Firstly, we designed a PMS that only monitors a single patient. Secondly, we introduced a remote
server component that acts as a bridge by hosting the service that saves the received data and exposes
them to other third parties services that might need them. Thirdly, we replaced the doctor’s phone sub-
system with an alarming system component that receives data from the PMS software on the monitor
side. Finally, we added a "Human" component to reflect the role of a doctor in the overall system
functionality.

As shown in Figure 7.10, a "SensingUnit" composite component consisting of five sensors namely
ECG, EEG, SPO2, pressure, and temperature sensors. All the sensors are placed on a patient’s body to
collect the patient’s health parameters. They are directly sent to the controller, which aggregates all of
that information and sends it to a gateway (in this case a transceiver). The gateway processes the data
and forwards them wirelessly to a remote server. The server hosts the software services that save the
data as well as exposes them to other authenticated parties in need. On the other hand, the monitoring

Jean Felicien Ihirwe 106

7.4. Experimental results

software deployed on the computer accesses such information and sends them to a displaying screen.
When something goes wrong, for instance, in terms of sensor reading values that exceed or are below
a certain threshold, the monitoring software can decide to raise an alarm in order to alert the doctor
about the unusual condition of the patient. In this case, a doctor checks on the displayed data and
decides to act accordingly by either shutting off the alarm, changing the configuration in the systems,
or fixing some issues that might be related to the sensors.

Figure 7.10: Patient monitoring system

PMS model includes failure behavior data

To facilitate the modeling of the system failure behavior data needed for the safety analysis data,
the infrastructure allows annotating the failure behavior rules as well as the failure rates on each
of the low-level simple components and this information is fully part of the model itself. As we
all know, external influences can cause a system to fail. Through two system-level input ports, the
presented architecture allows for simulation effects in which an external failure introduced in the
system would affect the overall system functionality. For instance, the sys_power_in port, used to
model the power source outlet, was been injected with an "omission" failure which basically models
the event in case there is a power outage. On the other hand, the sys_hum_in port is used for modeling
the external influence of the doctor. In our case, a "late" failure was used to simulate an event in
which a doctor reacted late due to some external factors. Finally, the system contains two output ports,
namely system_monitor_out for modeling the output port from the monitor, and the system_alarm_out
to model the output of the alarm system. According to the direction of the ports at the system level as
well as the type of failures that are able to propagate to them, different FTs are generated accordingly.

7.4.3 System failure behavior (RQ3)

RQ3: How well do the proposed FLA rules efficiently reflect the system failure behavior leading
to the system top failure events?

As was previously anticipated, the above system is subjected to different kinds of failures either
being internally generated from the system or coming from the surrounding environment. As we
described in the previous section, it is possible to model the individual component’s failure behavior

Jean Felicien Ihirwe 107

7.4. Experimental results

that later gets assessed in determining the failure behavior of a sub-system or an entire system. Note
that we are not focusing on software-level functional behavior but on physical failure behavior which
can be even understood by non-professional users. In order to understand the need for the conducted
analysis, let’s first discuss different top failure scenarios that we have taken into account in defining
individual component rules.

• The alarm sub-system malfunctions by sending out a false signal: In normal settings, this
can occur when the alarm component receives a wrong alarm notification. This is usually caused
by the monitor software making a decision based on incorrect data from one of its input ports.
The alarming system, on the other hand, can send false signals due to its internal failure for a
variety of reasons such as poor internal configuration or simply aging.

• The alarm subsystem has completely stopped working: It is possible that the alarm system
no longer works completely. This can be caused by several reasons; for example, the alarm
system being physically disconnected, or internal failure which causes a total black-out.

• The monitor is displaying incorrect data: As it is obvious, the main cause of this could be
due to incorrect data being sent to the monitor. However, other factors, such as a faulty monitor,
losing connection to the internet make it display the last received data, and so on. It should
be noted that these are only generalized assumptions; the extensive individual study, as well as
their corresponding failure rules, is shown in Table 7.4.

• The monitor completely fails to display data on the screen: This can occur due to internal
and/or external monitor issues such as the monitor not being physically connected to the system
power source, being unable to connect to the server, internal monitor malfunction due to aging,
and so on. On the other hand, this could be caused by the monitor is properly connected but the
server not receiving any data from the sensing unit.

The next step is to derive internal failure rules as well as the propagation rules for the basic com-
ponents. For instance, for each sensor, two rules were defined to model two different scenarios in
which a sensor can fail. A sensor can fail internally leading to a complete omission in providing the
data to the output port, thus an "omission" failure will be propagated to the output port of the sensor.
On another hand, a sensor can start to fail but not completely due to age. This may result in providing
incorrect data to the output; this can also be caused by sensor components that are not properly placed
in the patient’s body. In this case, we consider that the value sent to the output port is of "valueCoarse"
type. Hence the two different types of failure can be propagated to the same output port in a different
scenario, and they will be represented as indicated in Expression 8.1 and 8.2 respectively. We consid-
ered only the two failure conditions to apply for all of the sensors. As it can be seen from Table 7.4, a
detailed set of failure behavior rules and their description are represented.

FLA : (∗)→ ecgsens_out.omission (7.6)

FLA : (∗)→ ecgsens_out.valueCoarse (7.7)

In CHESSIoT, to facilitate the quantitative analysis, the failure rates of the component internal
failure events as well as the injected failures events have to be set separately. As we did not have the
exact failure rates of the basic components, we considered the arbitrary failure rates of any component
to be practically small in a range of 10−8 to the 10−7. Figure 7.11 depicts the interfaces in which
the internal failure and their description are set. Having the event description is practically good in
order to facilitate the readability of the FT, but it is not mandatory to have it for performing qualitative
analysis. When no data is provided to any of the rows, the default values are used. For instance, an
unset basic event probability is assigned with a value of zero in the FT, while the unset basic event
description will still follow the conventional naming of "<failure type> at <port name> in <component
name>".

Jean Felicien Ihirwe 108

7.4. Experimental results

Component Rules Description
ECG, EEG, 1 FLA:(*)→ ecgsens_out.omission; Sensor fails internally which make it unable to read and push any at output port
Temp,
SPO2 and
Pressure
sensor

2 FLA:(*)→ ecgsens_out.valueCoarse; Sensors begin to fail as they age and provide incorrect data to the output; this can
also be caused by sensor components that are not properly mounted to the patient
body.

Rules 1 and 2 apply to other sensors Same as other sensors
Controller 3 FLA:ecg_cont_in.noFailure,eeg_cont_in.noFailure →

cont_trans_out.omission;
Controller fails completely omitting to send the data

4 FLA:mon_power_in.omission, trans_cont_in.omission →
cont_trans_out.omission;

The controller fails to function due to a power outage at its input power port, no
backup solution is available (trans_cont_in port)

5 FLA:ecg_cont_in.omission, eeg_cont_in.omission,
press_cont_in.omission, spo_cont_in.omission, temp_cont_in.omission
→ cont_trans_out.omission;

All of the sensors simultaneously stop sending data, preventing the controller
from sending any data to the server

6 FLA:ecg_cont_in.valueCoarse→ cont_trans_out.valueCoarse; The controller receives inaccurate data from the ECG sensor and sends it to its
output port

7 FLA:eeg_cont_in.valueCoarse→ cont_trans_out.valueCoarse; Controller receives inaccurate data from the EEG sensor and sends it to its output
port

8 FLA:press_cont_in.valueCoarse→ cont_trans_out.valueCoarse; Controller receives inaccurate data from the blood pressure sensor and sends it to
its output port

9 FLA:spo_cont_in.valueCoarse→ cont_trans_out.valueCoarse; Controller receives inaccurate data from the SPO2 sensor and sends it to its output
port

10 FLA:temp_cont_in.valueCoarse→ cont_trans_out.valueCoarse; Controller receives inaccurate data from the temperature sensor and sends it to its
output port

11 FLA:trans_cont_in.valueSubtle→ cont_trans_out.valueCoarse; The controller receives an undetected error at its from-system port, which impede
sensor data transmission.

12 FLA:trans_cont_in.valueSubtle→ cont_trans_out.omission; The controller receives an undetected error at its from-system port halting the
data transmission process.

Transceiver 13 FLA:trans_in_fr_unit.valueCoarse→ trans_out.valueCoarse; The transceiver received wrong data and transmit to its output port

14 FLA:trans_in_fr_unit.noFailure,trans_in_f_serv.noFailure →
trans_out.omission;

The transceiver fails internally causing the halt of data transmission process

15 FLA:trans_in_fr_unit.omission→ trans_out.omission; The transceiver receive no data and fails to transmit any data to its output port

16 FLA:trans_in_f_serv.valueSubtle→ trans_o_2_unit.valueSubtle; The transceiver receive an undetected errors at its server port and forwards it back
to the sensing unit

Server 17 FLA:server_in.noFailure→ server_out.omission; The server fails, bringing the transmission process to a halt

18 FLA:server_in.valueCoarse→ server_out.valueCoarse; The server routes the incorrect data received at the input port to the output port

19 FLA:server_in.omission→ server_out.omission; The server receives no data from its input port, and this error is forwarded to its
output port

20 FLA:serv_in_f_mon.valueSubtle→ serv_2_trans_out.valueSubtle; The server sends an undetected error from the monitor back to the transceiver’s
port

Monitor 21 FLA:monitor_in.noFailure → moni-
tor_out.omission,mon_alarm_out.omission;

The monitor fails internally omitting to display the data on the screen as well as
not communicating to the alarm component

22 FLA:monitor_in.omission → monitor_out.omission,
mon_alarm_out.omission;

The monitor receiving no data from the server omitting to display the data as well
as not sending any communicating signal to the alarm component

23 FLA:monitor_in.valueCoarse → monitor_out.valueCoarse,
mon_alarm_out.commission;

The monitor receives inaccurate data and displays it on the screen, potentially
sending a unexpected notification to the alarm component (Commission)

24 FLA:hum_mon_in.valueSubtle → mon_2_serv_o.valueSubtle,
mon_alarm_out.commission, monitor_out.noFailure;

The monitor receive an unpredicted error from the human nurse component, the
failure propagates in the system in various ways with no direct effect on the data
displayed on the screen before (Refer to Rules 30 and 31 for possible causes)

25 FLA:hum_mon_in.omission→ mon_2_serv_o.valueSubtle; The monitor receives no engagement from the nurse intended to resolve the issue
in the system, the cause of which we do not know. As a result, such a failure will
go unnoticed by the system. (Refer to Rules 11 and 12 for possible effects)

Alarm 26 FLA:mon_alrm_in.commission→ alarm_out.commission; The alarm component received an inaccurate notification and immediately rings
because it lacks any type of logical reasoning on the signal receiving other than
ringing.

27 FLA:mon_alrm_in.noFailure→ alarm_out.commission; The alarm starts failing due to internal failure which can make it malfunction by
giving false alerts

28 FLA:mon_alrm_in.noFailure→ alarm_out.omission; The alarm component fails completely which makes it unable to make any alert

29 FLA:mon_alrm_in.omission→ alarm_out.noFailure; The alarm receive no data but that won’t affect the internal functionality of the
alarm component

Human
nurse

30 FLA:human_in.late→ human_out.valueSubtle; The human nurse reacts very slowly in the event of a system failure, which may
or may not affect the system in some way, which is why a "valueSubtle" is con-
sidered.

31 FLA:human_in.noFailure→ human_out.omission; The absence of the doctor results in an omission at the output port

Table 7.4: PMS failure behavior table

As proved in the preceding discussion, our proposed approach is capable of satisfying all potential
failure behaviors prescribed by the safety expert. As shown in Figure 7.10, our approach is capable of
modeling the backward failure propagation pattern. For instance, a server failure will affect the mon-
itor’s behavior, preventing data from being displayed on the screen. On the other hand, an erroneous
command sent by the doctor’s absence (for example, to fix an unmounted sensor) may eventually
propagate back to the sensing unit, causing a wrong value error to be transmitted at the controller
output port (valueCoarse failure) or possibly suspending the data transmission process (omission fail-
ure). Well, it is also worth noting that the ability to integrate all of their component failure rules as
well as their failure rates in the same model has the potential to boost model consistency as well as
transparency in the modeling process.

Jean Felicien Ihirwe 109

7.4. Experimental results

Figure 7.11: PMS components failures rates set

7.4.4 PMS Fault tree analysis (RQ4)

RQ4: Does the proposed FT qualitative and quantitative analysis improve the existing FT analysis
techniques?

The FT analysis begins after the CHESS-FLA transformation, as described in Section 2. The FT
generation process is performed prior to running the FT analysis, in which each of the top events
described in Section 4 results in its own FT. For instance, FT leading to an "omission" failure at the
system monitor out port is generated to show the entire failure contribution leading to that top event.
Other FT representing the remaining 3 top events are generated as well. At this stage, the generated
FTs are very large as they contain every detail related to failure propagation and transformation from
component to component, making it tricky to read. Therefore, FT analysis can then be launched to
automatically perform both qualitative and quantitative analysis on the model.

Figure 7.12 shows the analyzed FT of the event "the monitor fails to display data completely on
the screen". The presented FT showcases only the important events and logical gate combinations. It
can be clearly anticipated that the analyzed FT makes it easier to identify and trace any failure source
events in their contribution to the top failure event. For instance, we can easily grasp that the monitor
would display no data on the screen completely when any of the following events occur:

• Internal failure in the monitor (10−8 probability)

• Server is down (2x10−8 probability)

• The transceiver (gateway) fails completely to transmit the data (3x10−8 probability)

• A combination of events (low-left AND gate) in which there is a problem with the sensing unit
power source and there is no person to fix that at the moment. (5x10−15 probability)

• The controller of the sensing unit fails completely which halts the transmission process (1.2x10−8

probability)

• An event in which all the sensor does not send the data at all (This is more unlikely but possible,
that’s why we have a lower-middle and gate combination with 2.088x10−38 probability).

• An unknown human error occurred from the monitor side (2x10−7 probability)

When the event of the monitor not displaying any data occurs, medical personnel can rely on such
a narrow series of events to determine the cause of the event. Furthermore, medical personnel can
use the probability associated with each basic event in the list to quickly locate the source of failure,
moving from the most probable basic event (highest probability) to the least probable event (lowest

Jean Felicien Ihirwe 110

7.4. Experimental results

Figure 7.12: PMS monitor screen shown no data

probability). The overall probability of this system-level failure event occurring is calculated to be
2.72x10−7, which is practically small, however, this value is calculated automatically and is solely
dependent on the arbitrary basic event failure rates as well as their logical combination analysis, as
shown in the FT.

Other analyzed FT on the event in which "monitor displaying incorrect data" and "PMS alarm
sub-system alert false signal" is shown in figure 7.13 and 7.14 respectively. As it can be seen from
figure 7.13, the event in which the monitor will display incorrect data can be caused by any of the
sensors (OR gate), as well as an unforeseen human error that transforms throughout the system and
hinders the data that are being transmitted. The overall probability in which such an event can occur is
calculated to be about 3.39x10−7 which is higher that the event in which the monitor can stop working
a all.

Jean Felicien Ihirwe 111

7.4. Experimental results

Figure 7.13: The monitor fails to display data completely on the screen

On the other hand, as shown in Figure 7.14, the same events that cause the monitor to display
incorrect information can also cause the monitor to send a false signal via a failure transformation,
resulting in a false alter event in the alarm system. It is also worth noting that an event like the
alarm sub-system failing with a probability of 4x10−8 would also contribute to that cause. the overall
probability of such an event to occur is projected to be around 5.79x10−7 which is much higher that the
previous two top events. Furthermore, while the "Human error" basic event appears twice in the tree,
such failure passes through different channels and eventually transforms into other types throughout
the system. This is practically important to understand which component of a system’s error would
change its nature, potentially causing a lot more damage than expected. Finally, It is worth noting that
this FT does not include the top event in which the alarm sub-system stopped working completely. An
FT reflecting such an event was generated and analyzed separately.

Typically, safety engineers will collaborate with system engineers to keep the safety model up
to date during the development process. Maintaining coherence between system architecture and the
safety model can be difficult as the model gets larger and more complicated. Having a framework
that can integrate modeling and analysis processes from a single place would potentially improve
consistency, and transparency, and minimize analysis time. Overall, the proposed analysis approach
is capable of achieving that by the means of automated qualitative and quantitative calculus.

Jean Felicien Ihirwe 112

7.5. Conclusion and future work

Figure 7.14: Alarm sub-system alert false signal

7.5 Conclusion and future work

Automated safety analysis is critical for increasing transparency and reducing the time required
for manual analysis. However, when the system becomes too large and complex, it is very difficult
to maintain the coherence between the safety analysis model with the corresponding system architec-
ture. In addition, the architecture usually has to be reworked so many times, which can hinder the
consistency of the process. This chapter presented CHESSIoT, a novel approach for developing and
performing safety analysis on safety-critical IoT systems. The proposed method combines rigorous
automated analysis procedures with annotated failure behavior on components and associated failure

Jean Felicien Ihirwe 113

7.5. Conclusion and future work

rates to generate fault trees. The supporting tool can perform both qualitative and quantitative anal-
ysis on generated FTs. We presented an evaluation mechanism compared to existing techniques to
showcase its novelty, and the results were very promising. The approach improves model compos-
ability and reuses while reducing the time required to perform the analysis. In the future, we want
to integrate time-based failure logic analysis into our analysis approach if a given failure would only
affect the system for a short period. Furthermore, we plan to investigate the feasibility of combining
with Markov chain analysis land/or dynamic fault tree analysis using Monte Carlo simulation when
performing the quantitative FT analysis.

Jean Felicien Ihirwe 114

Chapter 8

Supporting for development and
deployment of IoT systems with
CHESSIoT

Engineering tools that can handle this complexity while also reducing the development time will un-
doubtedly have a massive impact on the market. As a contribution toward answering the fifth research
problem (RP5), this chapter present the CHESSIoT development and deployment approach as a part
of the whole CHESSIoT-supported engineering process. In addition to the already presented safety
analysis support in Chapter 7, CHESSIoT integrates high-level visual design languages, software de-
velopment, and deployment mechanisms. Additionally, the tool offers means to define run-time ser-
vice provisioning modules through deployment agents, which are then used to configure remotely
deployed services. To showcase the effectiveness of our proposed approach, as well as the capabil-
ity of the supporting tool, a Home Automation System (HAS) example was developed, covering the
modeling, development, safety analysis, and deployment views.

This chapter is organized as follows: Section 8.1 presents a brief introduction to the topic. Section
8.2 presents CHESSIoT software development methodology and code generation process. Section 8.3
present the deployment methodology as well as the run-time service provisioning modeling approach.
Section 8.4 presents a Home Automation System running example showcasing the capabilities of the
proposed supporting tool. Finally, Section 8.5 concludes the chapter.

115

8.1. Introduction

8.1 Introduction

Model-driven development and deployment of IoT systems is a challenging task that requires
comprehensive and flexible support. With the increasing complexity of IoT systems, model-driven
approaches have become a popular solution to enable efficient development and deployment [235].
These approaches use models to represent the structure and behavior of IoT systems and automate
the development and deployment process. During the modeling phase, developers create models that
capture the requirements, architecture, and behavior of the IoT system. These models are then used
to perform analysis, such as simulation and verification, to ensure that the system meets the desired
specifications [68]. Furthermore, developers use the models to generate code that implements the
system’s functionality. The code is then tested to ensure that it works as intended, and the system is
finally deployed to the target environment.

However, MDE in IoT systems poses unique challenges, such as heterogeneity of devices and com-
munication protocols, dynamic and unpredictable environments, and the need for real-time response
[86]. To address these challenges, there is a growing need for tools and frameworks that support
MDE for IoT systems. One promising approach is to use domain-specific languages (DSLs) that are
tailored to the specific requirements of IoT systems [71]. DSLs provide a higher level of abstraction
than general-purpose modeling languages, enabling developers to create models that are closer to the
problem domain. Moreover, DSLs can be used to generate platform-specific code, making it easier to
integrate with IoT platforms and devices [37].

In addition to that, efficient and scalable deployment of IoT systems is also critical for the success
of IoT applications. Deployment of IoT systems involves a wide range of tasks, including configura-
tion, provisioning, monitoring, and maintenance of devices and services [17]. To support efficient and
scalable deployment, there is a need for tools and frameworks that automate these tasks, and enable
seamless integration with IoT platforms and infrastructure. In particular, the deployment of IoT sys-
tems involves several challenges, such as managing the heterogeneity of devices and communication
protocols, dealing with resource constraints, and ensuring the reliability and security of the system
[166].

To address these challenges, there is a need for tools and platforms that support the model-driven
deployment of IoT systems. These tools should provide a high-level abstraction of the system by en-
abling developers to focus on the system’s deployment requirements. They should also support the
automatic generation of deployment artifacts, such as configuration files, scripts, and Docker contain-
ers, based on the models of the system [223].

As introduced in Chapter 6, CHESSIoT integrates the modeling, software development, analy-
sis, and deployment for engineering multi-layered IoT systems. In this chapter, we demonstrate in
great detail CHESSIoT’s development and deployment approach in addressing some of the poten-
tial challenges presented above. Concerning software development, CHESSIoT provides the user
with means to define a functional model which contains the system’s key software components, sub-
functions, and interrelationships. Furthermore, a behavior model is entitled to each of the system’s
main sub-function in form of a state machine in which aspects such as events, actions, and guards
are associated with states and their transitions to realize the desired behavioral goal. When the model
is complete, a CHESSIoT2ThingML model transformation is launched to generate a series of fully
functional ThingML source models which is then used to generate platform-specific code ready to be
deployed on low-level IoT devices.

In addition to that, The CHESSIoT includes a deployment environment that aims at supporting the
users with decomposing the IoT system deployment plan as well as managing deployed node services
across all layers. As a matter of fact, IoT services are no different from other domains their deployment
should also follow a multi-tenant approach in which a single service instance should be running on the
host servers, and that single instance serves each subscribing customer or cloud tenant [236]. Runtime
service provisioning refers to the process of allocating and configuring resources, such as computing
power, storage, and network connectivity, at the time a program or application is run [237].

In runtime service provisioning, resources are dynamically allocated based on the needs of the

Jean Felicien Ihirwe 116

8.2. Software modeling and development approach

program or application at any given time. Mastering a variety of deployment languages can be tough
and not to mention the tight coupling between the script being used and the environment they are
intended to apply to. But always the question remains "Should really the deployment plan change
every time the target environment changes?"

To potentially address such a problem, CHESSIoT offers a model-driven runtime service provi-
sioning environment that allows the automatic configuration of software services based on a prede-
fined model. The CHESSIoT provisioning abstraction is defined using deployment scripts referred to
as agents. These agents are annotated to the deployment nodes in the model, to provide run-time mon-
itoring of the deployed services. A textual language for defining deployment rules is used to describe
the agents’ behavior. These rules will eventually be transformed into Ansible deployment playbook
scripts [224] that can be run manually on a remote machine. To evaluate the proposed approach as well
as showcase the capability of the tool, we have demonstrated a Home Automation System (HAS) use
case in which we used the tool for modeling, developing, conducting safety analysis, and supporting
its deployment.

8.2 Software modeling and development approach

Software design and development is the process of creating and implementing software systems
and applications. The software design phase involves creating high-level conceptual models of the
system, identifying key components and interfaces, and defining the overall software architecture.
CHESSIoT follows a multi-view design paradigm, the software design is done under the "Component
View" to enable users to design functional and behavioral aspects of the software’s edge layer.

In CHESSIoT, the user benefits from a dedicated IoT-specific graphical modeling environment
consisting of specific diagrams and palettes that are hidden or shown based on the current design step
via the "IoT sub-view". Having such a sub-view enables CHESSIoT to be a completely decoupled
environment from CHESS, which is relevant throughout the whole design process. Figure 8.1 shows
the support of the complete design and development phase.

Figure 8.1: Software development process

The software development process initiates with the user creating functional and behavioral mod-
els that conform to the software metamodel shown in Fig. 6.3. Once the model reaches its final form,

Jean Felicien Ihirwe 117

8.2. Software modeling and development approach

a transformation called CHESSIoT2ThingML is executed to generate ThingML model files. These
files can then be utilized within the ThingML environment to generate platform-specific code that is
ready for deployment on devices. Alternatively, the functional model can be expanded to incorporate
real-time properties, enabling real-time analysis to be conducted. This section does not delve into
the runtime analysis, as it has already been covered in the work presented in [42]. However, it does
provide specific details regarding the design strategy and code generation approach supported by the
CHESSIoT tool.

8.2.1 Specification of CHESSIoT software models

In CHESSIoT, the modeling of software components is closely intertwined with the definition of
their behaviors, ultimately resulting in the generation of platform-specific code. The software de-
sign approach encompasses both the functional design and behavioral design aspects of the system.
The functional design entails a systematic definition of the primary software components, their sub-
components, and their interconnections. This process employs component structure diagrams that
adhere to a component-to-connector design methodology [37]. During this stage, communication be-
tween components is exclusively facilitated through dedicated ports utilizing payload entities. For
designing systems that involve wireless communication, such as MQTT-based systems, a special port
with an MQTT stereotype is utilized. This MQTT port captures all MQTT-related information, in-
cluding the broker URL, client type, and topic.

When modeling the internal behavior of a component, internal class diagrams are used, where
only specific palette elements are displayed to the user at this stage. Each main sub-function of the
system is assigned its own state machine, which encompasses events, actions, and guards associated
with states and transitions to achieve the desired behavioral objective. Figures 8.2 and 8.3 presents
the high-level mechanisms that are followed during the definition of the component’s state machine
as well as the event, action semantics definition process. For instance, according to Figure 8.2, an
event can be categorized as either an Internal event or a Conditional event. The event references the
payload values found at the corresponding port for verification. When an event is triggered, it initiates
an action, which can be either a SetAction or a GenericAction, depending on the context.

A SetAction always sends a Payload through a given port, while a generic action would mostly be
customarily implemented. A guard which enables a state transition based on the OnExit action status
or can be customarily implemented. Such a condition is added to the code unchanged during the code
generation. A combination of such events and actions is referenced throughout different states and
transitions accordingly. Figure 8.2 depicts the basic activities that need to be fulfilled from one state
to the other.

Figure 8.2: Behavior event & action relationship

Figure 8.3 depicts the general idea behind the basic state-based behavior process supported by our
approach. The diagram illustrates an example of two states, i.e., S1 and S2, and the requirements and

Jean Felicien Ihirwe 118

8.2. Software modeling and development approach

activities that must be met to perform the transitions among them. Moreover, when leaving a state,
zero or more OnExit actions might be fulfilled. This is defined within a state and will be checked using
the guard expression.

Figure 8.3: State and state transition

Conditional events must be attached to state transitions when moving from one state to another.
Furthermore, zero or more onEntry actions may be performed when entering a state. An internal event
is used within a state to trigger actions of interest. It is important to note that at this point, a conditional
event always inspects the payload state at the ports to initiate a state change.

8.2.2 The CHESSIoT to ThingML transformation

The CHESSIoT2ThingML transformation process is done through model text transformations
written in Accelleo1. Acceleo is an open template-based source code generation technology developed
in the context of the Eclipse Foundation. In this section, we will delve into the details of ThingML
and the steps involved in generating ThingML models from CHESSIoT models.

What is ThingML? ThingML is a model-driven development and code generation framework which
combines a textual modeling language and a set of compilers targeting a range of different platforms
(from micro-controllers to servers) to generate ready-to-use platform-specific code. ThingML code
generators support the generation of three main languages (C/C++, Java, and JavaScript) and several
libraries and open platforms (Arduino, Raspberry Pi, Intel Edison, Linux, and so on) [235].

The ThingML approach targets distributed reactive systems and is especially beneficial for applica-
tions that include heterogeneous platforms and heterogeneous communication channels. In ThingML,
a Thing is an implementation unit, also referred to as a component or process. It can define properties,
functions, messages, ports, and a set of state machines [37]. All the properties are local variables and
can be accessed globally from within a thing through a function or a state machine. Same as prop-
erties, the functions are also local to a thing, and they can be used from anywhere in a thing. Same
as CHESSIoT, things can be interfaced with other things through the ports employing sending and
receiving a set of messages.

The ThingML language relies on two key structures: Thing, which represents software compo-
nents, and Configurations, which describe their interconnection [37]. During the CHESSIoT2ThingML
transformation, the generation of those two main sets of code is done separately, as described in the
next sections. Over the years, the ThingML approach has continuously evolved and applied to cases
in different domains, including commercial e-health applications such as fall detection systems called
Safe@Home [235], Micro-aerial vehicle platform as well as the Arduino Yùn IoT-based projects [37].

CHESSIoT to ThingML generator: The CHESSIoT component’s semantics differ from the ThingML,
which is why mapping the elements is needed to solicit an efficient transformation. In the following,
we discuss how the different CHESSIoT modeling constructs contribute to generating target ThingML
elements. As shown in Figure 8.4, the transformation process starts from the top-level generation of
main software components such as VirtualElement, VirtualBoard, VirtualEntity, Sensor and Actuator
as the main building blocks elements. Each of those components is mapped to a ThingML thing.
Each of these types undergoes a dedicated transformation route based on relevant semantics found in

1https://www.eclipse.org/acceleo/

Jean Felicien Ihirwe 119

https://www.eclipse.org/acceleo/

8.2. Software modeling and development approach

the model and its typical properties to satisfy its existence in the entire ecosystem. When the trans-
formation finishes, the tool generates CHESSIoT code licenses, the ThingML dependencies such as
ThingML DataTypes, and Times. In general, Table 8.1 depict the CHESSIoT2ThingML transforma-
tion mappings implemented by the developed CHESSIoT to ThingML code generator.

Figure 8.4: High-level transformation steps

CHESSIoT element ThingML element
VirtualElement, Virtual-
Board, VirtualEntity, Sen-
sor, Actuator

Thing

IoTPort Provided/required
port

Component’s property Thing’s property
Component’s operation Thing’s function
Payload Message
Set of Payloads Fragment
IoTState/Transition State/Transition
IoTGuard Guard
IoTEvent/Action Event/Action

Table 8.1: CHESSIoT2ThingML transformation mapping

IoTPorts are used to support the communication between two or more components by exposing
or requiring the interfaces from other components. During the transformation, IoTPorts of the com-
ponents are transformed to the required/provided port of a ThingML’s thing. Deciding on whether a
given port is a required port or provided port depends on the desired direction of communication, and
this can be specified in the language itself. Same as in ThingML, properties are used to retain the
variable functional value of a Thing, in which during the transformation, the component’s property is

Jean Felicien Ihirwe 120

8.2. Software modeling and development approach

transformed to thing’s property.
Payload elements are mapped to Message ones in the ThingML model. For each component, all

the payloads that it defines are collected into one ThingML element called a Fragment. The payload
can have zero or many primitive or derived properties to be defined in a message. For instance, suppose
a component message to be communicated among components contains a string value, an integer, or
even an instance of another payload. In this case, a payload will include three different attributes,
represented as message arguments in ThingML. Figure 8.5 depicts a fragment of the Payload fragment
generator.

Figure 8.5: Payload generation process

Figure 8.6: State machine generation process snippet

IoTState elements are mapped to instances of ThingML state, same goes for State transition that
will also be mapped to their corresponding transition provided by ThingML. As shown in Figure 8.6,
the state-chart transformation process as a core is one of the complex generation processes in the

Jean Felicien Ihirwe 121

8.3. Model-based deployment plan and run-time services provisioning

whole transformation process, and it involves two main steps. First, the generation of the internal state
behaviors such as OnEntry action, internal events, and the OnExit actions. The Second step of the
generation process involves generating the state transitions. This stage involves the generation of con-
ditional events to be attached to the state transitions. In certain cases, the guards associated with these
transitions are also checked for potential effects and transformed accordingly. Once the generation of
Things is completed, the final task is to generate the configuration files, which encompass the instances
of Things and their connections. This process aligns with a component-to-connector methodology, fol-
lowing the internal structure of the nodes. The above-mentioned transformation process only occurs
when the corresponding behaviors have been specified and are present in the CHESSIoT model. For
instance, not every system will necessarily have all three internal state behaviors present at all times.

8.3 Model-based deployment plan and run-time services provisioning

The deployment plan refers to the steps involved in planning and implementing the deployment of
a software system or application. This can include identifying and specifying hardware and software
requirements, determining the most appropriate deployment architecture, and creating a detailed de-
ployment plan that outlines the specific steps and resources needed to deploy the system successfully.
Docker2 and Kubernetes3 are two popular technologies used in modern software development and
deployment. While Docker provides containerization capabilities, Kubernetes is an orchestrator for
managing containerized applications.

Ideally, the software components of a typical IoT system can be deployed in the Cloud, at the Fog
layer, and the Edge of the network. Designing the deployment plan of such a complex and heteroge-
neous system has to consider several aspects and be aware of different satisfactory requirements [223].
In fact, as in other domains, IoT software services need to follow a multi-tenant approach in which
a single service instance should be running on the host servers, and that single instance serves each
subscribing customer or cloud tenant [236].

IoT systems interact with humans and are always at the intersection between human survival, for
instance, in the healthcare and transportation domains. As such, monitoring, reviewing and managing
deployed services is necessary to avoid any operational mistake in the IoT cloud-based infrastructure.
The CHESSIoT deployment environment aims to support the users in decomposing the IoT system
deployment plan and managing deployed node services at all layers. The overall deployment design
is depicted in Figure 8.7. Alongside the design of the deployment model, the environment also of-
fers support for specifying deployment rules using textual grammar. This enables the expression of
mechanisms to monitor the life cycle of deployed services through deployment agents.

This section comprises three parts. First, in Sec. 8.3.1, we present the approach for designing the
deployment plan. Second, in Sec. 8.3.2, we delve into the design approach for service provisioning.
Finally, in Sec. 8.3.3, we describe the approach for generating deployment artifacts.

8.3.1 Deployment plan design

In CHESSIoT, the deployment design showcases the physical hardware architecture for running
IoT software services. It links the software architecture design to the real system architecture, out-
lining the nodes where the software program will be executed. The Deployment view allows users to
break down the inter-dependency between different nodes, which may include a machine with one or
multiple services running on it. The goal of this process is to generate ready to be deployed Docker
compose files for each of the machines at a certain node.

The design process, illustrated in Figure 8.7, commences with the user defining the system’s de-
ployment model. This model, which aligns with the metamodel discussed in Sec. 6.4.3, primarily
focuses on the interconnections between computing nodes, machines, and the IoT services they host.

2https://www.docker.com/
3https://kubernetes.io/

Jean Felicien Ihirwe 122

https://www.docker.com/
https://kubernetes.io/

8.3. Model-based deployment plan and run-time services provisioning

Figure 8.7: Deployment design process

Nodes play a crucial role in the entire design process, as they not only encompass the computing
machines but also bear the responsibility of hosting deployment agent annotations. The inclusion of
machines in the process serves to enhance the decoupling of how and where IoT services are deployed.

The definition of the deployment concrete syntax model is achieved by using the Papyrus modeling
editors. A deployment context model was developed and used to create an IoT-specific deployment
editor, which it easy to define element properties, inter-connection, and their intra-compositions using
a rich editor. CHESSIoT context model in 8.8 primarily defines tabs, views related to the selected
element, and a section as part of a view related to a given tab. The section includes the element’s
direct representation as a widget and a layout. Depending on the layer at which a node is, services
deployed at the same layer or not could communicate between themselves. For instance, an MQTT
client running on the device layer need to know the address to which a fog MQTT server is running to
better communicates and vice versa.

The communication relationship between nodes can be explicitly indicated at the node level as
well as down to the service itself. As previously mentioned, services could have a dependency rela-
tionship between themselves. This relationship is critical when determining the startup and shutdown
dependencies between services. For instance, when running Apache Kafka in a distributed mode
(i.e., with multiple brokers forming a cluster), ZooKeeper 4 is typically required to provide highly
reliable coordination and synchronization for such distributed systems. In this case, Apache Kafka
will have a dependency relationship to ZooKeeper in the deployment plan model. Hence, during the
docker-compose file generation process a "depends_on" value is used and it is set to the correspond-
ing service following the service-to-service dependency relationship it applies to (in our previous case
"ZooKeeper"). Finally, the service priority property is used when determining the order in which in-
dividual service configurations are generated as well as their run-time prioritization later in the event
of a machine memory shortage.

4https://zookeeper.apache.org/

Jean Felicien Ihirwe 123

https://zookeeper.apache.org/

8.3. Model-based deployment plan and run-time services provisioning

Figure 8.8: CHESSIoT context model

8.3.2 Service provisioning design

There are different ways to achieve runtime service provisioning, one of them is by using con-
tainerization technology. Docker and Kubernetes technologies enable users to package an application
along with its dependencies into a container. This containerization approach facilitates the manage-
ment of deployment, scalability, and runtime monitoring of these applications. However, in the present
software deployment landscape, many runtime service provisioning approaches still rely on workflow-
driven methods that utilize scripts and follow well-defined deployment steps. Mastering multiple de-
ployment languages can be challenging, and there is a notable issue of tight coupling between the
scripts and the specific deployment environments they are intended for. But always the question re-
mains "should the deployment plan change every time the target environment changes?"

To address this challenge, the CHESSIoT approach utilizes a model-driven strategy for handling
runtime service provisioning. This involves the automatic configuration and deployment of software
services based on a pre-defined model. The runtime provisioning notations model integrates all the
essential information about a specific type of action required at runtime, including its dependencies,
requirements, and configuration settings. This information is presented in the deployment model,
which includes nodes, machines, and deployed services. Depending on the client’s needs, the model
can be translated into any target configuration language for the desired environment. The abstract
syntax for the service provisioning language is illustrated in Figure 8.9.

Jean Felicien Ihirwe 124

8.3. Model-based deployment plan and run-time services provisioning

Figure 8.9: Service provisioning metamodel

CHESSIoT element Ansible element
DepPlan PlayBook
- Name - PlayBook filename

AbstractAgent Play
- Description - Name

Rule Module
- Name - Name
- Arguments - Arguments (depends on

rule)
- MachineName - HostName

- HostAddress (from the
inventory)

Set of rules Task

Table 8.2: CHESSIoT2Ansible transformation mapping

To support the easy deployment and run-time service provisioning of the deployed services, CHES-
SIoT provides a textual grammar to express the means for monitoring the life-cycle of the deployed
containers. At each node, a deployment plan is annotated, consisting of a collection of expressions.
These expressions take the form of deployment agents, where each agent specifies a series of one-time
actions to be executed on a remote machine’s configuration. These activities are aimed at facilitating
the deployment and provisioning of services.

As the Agents are attached to the nodes, their expressions are meant to be directly dependent on
the number of machines running at such nodes, their names as well as their addresses. In practice, a
deployment agent could extend another one to better avoid rewriting rules over and over in case the
same or even with some additional run-time actions are applied from one machine to the other.

Jean Felicien Ihirwe 125

8.3. Model-based deployment plan and run-time services provisioning

In addition to that, the rules which are meant to express the runtime actions that are meant to be
performed on the machine are the only target "services" they are intended to support. Please note that
the following rules are intended to support the services that have been already defined in the previous
deployment model as well as other dependencies or supporting services that could be of interest to the
efficient deployment and runtime service provisioning of a given system.

An example of run-tine service provisioning definition is depicted in listing 8.1. The Create rule
takes into account the service name and the machine name; it is meant to create and install a con-
tainerized service at a given machine server. Start/Stop/Re-start rules are meant to start, stop, and
re-start an already created or existing service, respectively. The Log rule is intended to capture either
the machine logs at which the target service is deployed or the deployed service logs itself depending
on the developer’s needs. If needed, the location of the log file for the root directory as well as the
filename can be defined. The Re-deploy rule is intended to recreate and restart a service on a given
machine. The Re-runAgent is meant to re-run all the rules that are encapsulated in a given agent.

1 DepPlan:Setup{
2 setup:true
3 }
4 DepPlan:Name1
5 {
6 re-use-plan:Setup
7 agent: newAgent1{
8 Description:"This is a first agent"
9 RULE:create=>"Service_name" on: "Machine_name"

10 RULE:start=>"Service_name" on:"Machine_name"
11 RULE:log=>"Service_name" log_type: machine
12 filename:"Filename" location:"Filename"
13 on:"Machine_name"
14 }
15 }
16 DepPlan:Name2{
17 agent:newAgent2 {
18 Description:"This is a second agent"
19 RULE:stop=>"Service_name"on:"Machine_name"
20 RULE:re-deploy=>"Service_name"
21 log_type: machine
22 }
23 agent:newAgent3 extends newAgent2{
24 Description:"This is a third agent"
25 RULE:log=>"Service_name" log_type:service
26 filename:"Filename" location:"Location"
27 on:"Machine_name"
28 }
29 }
30 DepPlan:Name3{
31 re-use-plan:Name1
32 agent:newAgent4 {
33 Description:"This is a fourth agent"
34 RULE:re-runAgent=> newAgent1
35 }
36 }

Listing 8.1: Run-tine Service provisioning definition example

8.3.3 Deployment artifacts generation

When the whole deployment plan design, as well as its service provision annotations, are finished,
the user can perform the deployment artifacts generation through a series of model-to-text transforma-
tions. The two main types of transformations take generate different configuration files for two main
tasks. First, by following the deployment metamodel presented in Sec. 6.4.3 and the concepts in Sec.
8.3.1, each node is transformed into a series of docker-compose files targeting each of the machines.

Jean Felicien Ihirwe 126

8.3. Model-based deployment plan and run-time services provisioning

A Docker-Compose file5, usually named docker-compose.yml, is used to configure the applica-
tion’s services, networks, and volumes. During the transformation process, each machine is allocated
its docker-compose file which contains the docker set-up information of each service hosted by such
machine. Depending on the nature of the service, another dependency file could be generated and
placed in the same folder to fully satisfy the run-time requirements (e.g., security and storage).

Figure 8.10: Deployment artifact generation (Acceleo)

Figure 8.10 depicts a fragment of CHESSIoT to .yaml translation code written in the Acceleo
M2T transformation language. During the transformation, each service type goes through a separate
transformation path before being added back to the parent configuration file. For example, if a service
is of the type "Broker" and the anonymous access mode is set to false, different security-related files
such as passwords are generated according to the user definitions. When the docker-compose config-
uration files generation is finished, the next step is to generate the Ansible script based on the service
provision agents specified.

Ansible6 is a powerful, flexible, and user-friendly tool designed for automating various infrastruc-
ture tasks, executing ad hoc commands, and deploying multitier applications across multiple machines
[224]. Its simplicity lies in the usage of human-readable YAML templates, known as playbooks. With
Ansible, users can easily program repetitive tasks to be executed automatically, without the need for
advanced programming knowledge.

In the right-hand side of Figure 8.7, the generation of Ansible scripts involves three main com-
ponents: set-up scripts, inventory, and playbook scripts. The set-up scripts are responsible for tasks
such as installing and configuring Docker (if it is not already installed), updating the Ubuntu system,
and performing other necessary setup actions. These scripts are typically used on cloud nodes. On
the fog layer, the set-up process varies depending on the operating system running on the machines.
Different mechanisms for basic setup and upgrades are employed based on the specific operating sys-
tem requirements. The next files to be generated are inventory files which define the managed nodes

5https://www.docker.com/
6https://www.ansible.com/

Jean Felicien Ihirwe 127

https://www.docker.com/
https://www.ansible.com/

8.4. Case study: Home Automation System (HAS)

to be automated. The host data from the deployment model are drafted to create the inventory file.
The inventory file is created with groups of different machines and addresses so that the user can run
automation tasks on multiple hosts at the same time. The creation of the inventory groups will be
based on each deployment agent attached to the node. The Ansible playbooks are generated next.

Ansible Playbooks are sets of automated operations that need to be executed by the hosts on a
remote server. They use several "plays" to manage multi-machine deployments on one or more hosts.
Ansible Playbooks are frequently used to automate IT infrastructures, including networks, security
systems, operating systems, and Kubernetes platforms. One or more Ansible tasks might be combined
to make a play. A Modules have a specific activity to complete within a task. Each module contains
metadata that identifies the user, the location, and the time and place at which a task is completed.
During the transformation, the mapping in Table 8.2 is duly followed.

8.4 Case study: Home Automation System (HAS)

To demonstrate the capabilities of our tool, we conducted a case study on a Home Automation
System (HAS), utilizing both the tool itself and the methodology described in this paper. In Section
8.4.1, we present the safety analysis of the system. Section 8.4.2 focuses on the system development,
specifically addressing the modeling and code generation aspects. Lastly, in Section 8.4.3, we discuss
the system deployment and the runtime service provisioning aspects.

The Internet of Things (IoT) has experienced significant market growth in sectors like industrial
automation, healthcare, and transportation. As technological advancements continue to permeate var-
ious aspects of our lives, home automation is gaining increasing attention. A Home Automation
System (HAS) is a technological solution that enables users to remotely control different aspects of
their homes, including lighting, heating, appliances, and security, using smartphones or other devices.
These systems typically combine software and hardware components, such as sensors, to automate
various tasks and functions within the home. While home automation systems primarily serve energy-
saving purposes, some also cater to the needs of elderly or disabled individuals, facilitating their
interaction with home appliances. Figure 8.11 provides an overview of the high-level structure of the
system implemented in this study.

With the scenario in mind, we could potentially explain our motivating example:
John is a software engineer and homeowner who works at a bank 40 minutes away from his home.

John has installed a home automation system to control his house remotely while he is away for work.
His house has many rooms, but we just consider two for simplicity. The major components he seeks to
automate in a room are an air conditioning unit (AC), a light bulb, and double-hung windows. This
will primarily be dependent on temperature sensor readings installed in each room, and based on that,
the AC should switch on and off automatically, as will the window open and close down. Depending
on his preferences, he can remotely turn on and off the light bulb as well as other appliances using
his smartphone, regardless of sensor readings. The system board installed in the room is wirelessly
connected to a RaspberryPi gateway, which interfaces the room system appliances with his Android
phone’s application. Finally, he can use his own PC at work to remote interface with his home system.

8.4.1 HAS modeling and Fault-Tree analysis

In the Home Automation System (HAS) example mentioned earlier, a temperature sensor is uti-
lized to collect temperature values within the home. Based on these readings, the system can automat-
ically perform certain actions, such as controlling the AC or adjusting the windows. Additionally, the
system allows users to remotely control the light bulbs and windows regardless of the sensor data. Fig-
ure 8.12 illustrates the internal physical architecture of the system. For simplicity, we have depicted
only two rooms and have assumed that the window actuation is directly connected to the window and
represented by the servo motor. We have not accounted for alternative designs that incorporate elec-
trical and mechanical configurations that could impact the physical functionality, such as appliances

Jean Felicien Ihirwe 128

8.4. Case study: Home Automation System (HAS)

Figure 8.11: Home Automation System

requiring high power (e.g., window motors). Such considerations are beyond the scope of this study.
Figure 8.12 illustrates the power supply configuration of the system, where a single battery source

supplies power to the two rooms independently. The two room components communicate individually
with a central gateway. The server hosts the necessary software services for data storage, processing,
and accessibility by authenticated parties. Users can access these services remotely through active
devices such as mobile phones or PCs, which display the relevant information on their screens. In the
event of abnormal sensor readings that exceed or fall below certain thresholds, the system may auto-
matically trigger actions such as turning on/off the AC or opening/closing the windows. Moreover, the
system should be capable of sending notifications to the user regarding any unusual room conditions.
For example, John can view the displayed data on his phone or PC and choose to manually override
the system’s decisions by forcibly opening the windows or turning on the AC, disregarding the sensor
readings.

As stated, the above system is vulnerable to several types of failures, usually generated by the
system or caused by the surrounding environment. It is essential to model the failure behavior of
individual components, which could be used to establish the failure behavior of all subsystems or a
whole system. It is crucial to note that we do not focus on software-level functional behavior, but
rather on hardware failure behavior that users could understand. To grasp the requirement for the

Jean Felicien Ihirwe 129

8.4. Case study: Home Automation System (HAS)

Figure 8.12: Home Automation System internal diagram

conducted analysis, let us first review the several top failure scenarios that we believe could occur at
the system’s output port, such as the phone or the PC.

1. Phone/PC displaying wrong data: This can happen at any time the data received from the
server is wrong with regards to the actual data to be represented.

2. Phone/PC is off completely and does not display any data: This can happen either when the
phone or PC does not receive any data or those entities are faulty.

Figure 8.12 depicts the system’s two input ports: inHuman2Phone and inHuman2PC, correspond-
ing to the mobile phone and PC, respectively. These ports enable us to simulate the effects of external
failures on the overall system functionality. For example, the inHuman2Phone port can simulate a
scenario where the user mistakenly turns an appliance "ON/OFF" when it is not required. This situ-
ation represents a "commission" failure injected externally into the system. Similarly, for the PC, we
simulate a scenario where the user responds to a "LATE" system condition, indicating a "late" failure
externally injected into the system. It is important to note that the consequences of both scenarios
propagate throughout the system and elicit different responses based on the actual failure behavior of
each component they encounter. The routes of failure propagation are highlighted in pink in Figure
8.12

The next step involves deriving the system components’ internal failure and propagation rules.
To determine the failure behavior of each component, it is necessary to understand their functional
behavior. Let’s consider the example of a sensor. A sensor can fail in two different ways. First, it may
completely cease providing data (resulting in an "omission" at the output port). Alternatively, the
sensor may experience internal failures, such as inaccuracies in the readings or data values outside the
expected range (leading to a "valueCoarse" at the output port). We can establish distinct failure rules
for these scenarios, as depicted in Equation 8.1 and 8.2, respectively. It is important to note that the
asterisk notation denotes an unknown source of failure in cases where a component does not possess
any input ports. Additionally, other components like the power battery, gateway, server, ACUnit, etc.,
can fail by ceasing to provide power (omission at the outputs). A comprehensive list of failures and
detailed descriptions can be found in the table set provided in [238].

FLA : (∗)→ outSensor2Board.omission (8.1)

Jean Felicien Ihirwe 130

8.4. Case study: Home Automation System (HAS)

FLA : (∗)→ outSensor2Board.valueCoarse (8.2)

Once the failure behavior specifications of the components are finalized, the safety expert can
assign basic failure probabilities to aid in quantitative analysis. Determining the failure probability
of a component can be a challenging task. It is recommended to consult the device manufacturer’s
documentation, and industry standards, or seek advice from device experts. In safety engineering, the
device failure probability is often considered to be extremely low and often expressed as failures per
million (10−6), particularly for individual components [231]. To maintain simplicity, we have set a
default probability value of 4 ·10−5 for all basic failure events. It is important to note that the Fault Tree
Analysis (FTA) can also be applied at the sub-composite component level, such as the ROOM level.
This allows for investigating the potential impact of failures originating from internal sub-components,
as well as the effects of externally injected failures on the behavior of internal components.

Figure 8.13: Analysis results

Upon completing the analysis, fault-tree models are generated based on the failures that have
propagated to the system’s output port. The analysis results are represented for both the "ROOM-
level" and the "System-level" in Figure 8.13. In particular, the "omission" and "valueCoarse" failures
have propagated to the system’s outSystemFmPC and outSystemFmPhone output ports. Furthermore,
at the ROOM-level, the "commission" and "omission" failures have propagated to the output ports of
components such as ACUnit, LightBulb, and Window, whereas the "commission" and "valueCoarse"
failures have propagated to the outRoomData port which sends data to the gateway.

An FT is generated and analyzed accordingly for each analysis result described above. The two
system-level propagated failures match the two big top failure scenarios described earlier. Fig. 8.14,
Fig. 8.15, and Fig. 8.16, present generated and analyzed FTs for both at the Room level as well as at
the system level.

Figure 8.14 shows an analyzed fault tree in the situation where the window stops working totally.
As can be observed, at the low lever, there are three basic events: "a completely broken board", "a
completely broken sensor", and "an external failure related to the battery, for example, a drained

Jean Felicien Ihirwe 131

8.4. Case study: Home Automation System (HAS)

Figure 8.14: Room-level FT diagram: Window not working (omission at the window output port)

battery". Based on the shown fault tree in Fig. 8.14, the three basic events are fed into an "OR"
gate, which means that if any of them occurs, it will flow directly through the gate. As the simulation
evolves, the resulting intermediate event is OR’ed with the "window servo broken completely" internal
failure resulting in the undesired top failure. Eventually, one of the four basic failures will directly
propagate to the output port.

Overall, the top-level undesired event probability for such a scenario is estimated to be 1.2 ·10−4.
Because the scope of the room is substantially smaller than that of the system, the external event, in
this case resulted from the injected failure from the battery port and was assigned a probability of
zero. This may appear irrational, however, to obtain the probability values of such an event, the entire
system’s probability must first be computed and then assign the corresponding probability value to
such an event. We plan to tackle this issue in the future.

In Figure 8.15, we present another example of a room-level Fault Tree (FT) that illustrates an
event where the ACUnit unexpectedly switches on and off, resulting in a "commission" failure at the
ACUnit’s output port. The diagram includes two external events: one located at the bottom right,
representing an external "valueSubtle" failure injected from the outside due to a late reaction from the
PC, and another event in the middle-left depicting the user pressing the commanding button when it is
not needed. Both scenarios elicit different responses from the system. It is important to note again that
the two external events labeled as injected failure events are beyond the scope of the current analysis
context, and thus no probability can be assigned to them at this stage.

Finally, at the system level, we discuss the fault tree depicted in Fig. 8.16. It shows the fault tree
in which the "Mobile phone displays erroneous data," inferring a "valueCoarse" failure propagating
at the output port. In this situation, the two rooms will have equal control over whether the data on
the display is totally incorrect. Two rooms in the tree have the same sub-tree since they are from the
same instance, and their failure outcomes are joined by a "AND" gate. According to the above tree,

Jean Felicien Ihirwe 132

8.4. Case study: Home Automation System (HAS)

Figure 8.15: Room-level FT diagram: ACUnit turn on and off when not expected

erroneous sensor data in an event with a late reaction from the user PC will permit erroneous data to
propagate up the tree. The event in which the "Board is failing and sent inaccurate data" will also play
a role in the loop.

Maintaining coherence between the system and the safety model can be challenging when the
model grows in size and complexity. Having a framework that can automate the safety analysis process
by allowing the safety expert and the IoT engineer to work on the same problem from the same unique
environment can potentially improve transparency while significantly reducing the time required to
perform such rigorous analysis tasks. Based on the previous findings, we discuss the feasibility of
establishing a collaborative analysis mechanism in which both parties collaborate to keep the system
and safety model up to date, thereby improving consistency throughout the process.

8.4.2 Software design and development

The software development approach supported by CHESSIoT encompasses the functional and
behavioral design aspects of the system, along with code generation, with a specific emphasis on the
edge layer. These aspects are described in detail in Section 8.2. In this section, we will primarily focus
on the Room level, providing models for the functional and behavioral aspects of its sub-components:
the Temperature sensor, ACUnit, Bulb, and WindowServo.

To maintain continuity with our previous system-level model, which is presented in Figure 8.12,
we refer to it as a point of reference.

Behavior modeling

The internal component model representation of the room is depicted in Figure 8.17. This model
illustrates the structure and interactions of the sub-components within the room, offering insights into
their functionalities and behaviors. As shown in the figure, communication between components is
accomplished by sending and receiving payload messages over provided and required ports. A set
of payloads initiated by each component is created internally, and a pin number is specified for each
port of the actuating or sensing component to be connected to the board. For instance, two payloads

Jean Felicien Ihirwe 133

8.4. Case study: Home Automation System (HAS)

Figure 8.16: System-level FT diagram: Mobile phone displays inaccurate data scenario

(i.e., ON/OFF or OPEN/CLOSE) are defined for each actuating component, namely ACUnit, Light-
Bulb, and WindowServo, to be used when communicating with the board. Furthermore, the generic
actions that are fired were defined internally to set the associated pins HIGH or LOW accordingly.
Furthermore, internal events are initiated for each component to determine whether there is a received
actuating payload from the board via the dedicated port.

Each component is associated with its respective state machine. The working principle of actuating
components is to react on a source of electric energy received to move or change the physical state
of something. From that, each actuating component state machine has been assigned a single state.

Jean Felicien Ihirwe 134

8.4. Case study: Home Automation System (HAS)

Figure 8.17: Room internal composite structure

In this case, it waits for the board’s command and reacts accordingly using the previously defined
actions. A sensor, on the other hand, has a state called "Sensing" in which it constantly monitors the
"readSensor" communication payload from the board to sense the temperature and send a new payload
"sensorData" the board through the same port (Figure 8.17).

The board serves as a central computing component in the process, coordinating all connected ele-
ments by reusing previously defined actions, payload, and guards. Figure 8.18 shows a partial caption
of the inner events and guard defined within the board. As we can see, only the necessary internal
events, such as checking if the sensor data has arrived to send the ON/OFF commands to the ap-
pliance (i.e HighSensorDataReceived and LowerSensorDataReceived), as well as conditional events
i.e:High_to_low and Low_to_high) and transition guards ValueLow and ValueHigh) to be fulfilled
accordingly when transiting from one state to the other.

Figure 8.18: Portion of the Board event, action, guard specification

As we can see from the board state machine figure 8.19, three main states are defined, namely
"IDLE", "AC_OFFBulbOFFWindowClose" as well as the "AC_ONBulbONWindowOpen" states are

Jean Felicien Ihirwe 135

8.4. Case study: Home Automation System (HAS)

Figure 8.19: Board state machine

defined to control the basic behavior of the board. In each of the two main states, the internal event
internal events such as HighSensorDataReceived and LowerSensorDataReceived are used to send trig-
ger the ON/OFF actions accordingly refer to Figure 8.18. Coming from the "IDLE" state, the transi-
tion from the "AC_OFFBulbOFFWindowClose" state to the following "AC_ONBulbONWindowOpen"
state happens when the conditional event check is confirmed (i.e: we are still getting the payload being
sent at the sensor port) as well as the guard condition is fulfilled (in our case we choose to go for a
temperature of 30 degree Celsius as a threshold).

Code generation

When the functional and behavior modeling is done, the CHESSIoT2ThingML transformation is
launched to generate the ThingML model files ready to be compiled in the ThingML environment
for generating platform-specific code. The transformation process follows the mapping presented in
8.1. Figure 8.20 depicts the structure of the generated ThingML models infrastructure. During the
transformation process, each of the Room’s sub-component is transformed into its unique ThingML
model. Furthermore, the utility files such as license files as well as the global data types and timing
messages are generated separately.

Figure 8.21 depicts the generated ThingML model of the board mapped back to the state machine
diagram presented in Figure 8.19. As we can see from Figure 8.20, the ThingML model associated
with the board model is generated in the parent folder of the Room and it imports all of its connected
siblings. This gives the board the possibility to have access to the message of all the other components.
For instance, at this level, the board can use its port to send and receive payloads from other compo-
nents through its required ports. Each of the states indicated in the state machine diagram is converted
into a ThingML thing’s state with all its internal actions and events transformed accordingly.

Upon executing the transformation process, the code generator generates the configuration code,
adhering to a component-to-connector architecture [37] that aligns with the Room’s internal struc-
ture. As depicted in the bottom-left section of Figure 8.21, the configuration code instantiates all
components as ThingML objects. From there, internal connections are established by linking the cor-
responding ports of these objects. Additionally, the properties of each Thing object are set to their
original values as specified in their respective Things.

The current CHESSIoT generator supports the ThingML code generation compiled into Arduino

Jean Felicien Ihirwe 136

8.4. Case study: Home Automation System (HAS)

Figure 8.20: Generated ThingML models

Figure 8.21: Generated Board’s ThingML model mapped to the state machine diagram

code and from the generated models we could successfully generate Arduino code ready to be de-
ployed on IoT devices. To validate the generated code, we have successfully deployed the generated

Jean Felicien Ihirwe 137

8.4. Case study: Home Automation System (HAS)

code without any single change in the same project designed in the Proteus Simulation software 7 and
the code worked perfectly as expected. The full example with all the materials is online available at
https://github.com/fihirwe/HomeAutomationSystem.git

8.4.3 Deployment and service provisioning

In this section, we cover the "Home Automation System" deployment designs as well as the de-
ployment artifact generation aspects.

HAS Deployment plan design

As we described above, the HAS system involves the code running at all layers, namely the edge
device, i.e., Arduino, and the mobile phone, at the Fog, i.e, a RasberryPi running the MQTT broker, as
well as the on the cloud i.e-, a web server running a Node-RED dashboard instance. Figure 8.22 shows
the deployment model of the system. As can be seen, all three main node layers are present, namely
"DeviceNode", "FogNode", and "CloudNode" reflecting the level of computation involved other than
the device layer.

Figure 8.22: HAS system deployment plan

At the edge layer, two machines are defined namely to reflect the generated Arduino code running
at the Arduino micro-controller as well as the Mobile-Phone as a machine running the Android app.
The deployment at this layer is done manually and for now, no automation is provided. This is mainly

7https://www.labcenter.com/

Jean Felicien Ihirwe 138

https://github.com/fihirwe/HomeAutomationSystem.git
https://www.labcenter.com/

8.4. Case study: Home Automation System (HAS)

due to the computing limitation presented by such chosen deployment platform for this example. At
the FogNode, one machine running a Raspbian operating system was chosen to host the MQTT broker,
which receives the communication from the edge layer (i.e., the Android app as well as the system
code running on the Arduino code which publishes/subscribes messages to it).

As shown in Fig. 8.22, the Broker allows anonymous connections, so no username and password
are needed to be created for such a server. Furthermore, the service priority property at this stage
doesn’t matter because we have only one service running on such a machine. This is typically used as
a priority reference during the run-time management of services as a given machine. The persistence
is set to true in which, during the transformation, the default Eclipse-Mosquitto broker persistence
directories are chosen by default. Finally, at the cloud layer, one Ubuntu-based machine is used to
host both the Node-RED dashboard instance.

During the transformation process, a docker-compose file is generated for each machine at any
layer. These docker-compose files contain the necessary information for hosting the services on each
machine. However, due to missing information and service incompatibility at the Device layer, the
generated docker-compose file in this case is incomplete and cannot be used. For illustration purposes,
the generated docker-compose file at the Fog layer is presented in Figure 8.23.

Figure 8.23: Generated deployment configuration Fog

HAS runtime service provisioning

As shown in the deployment plan model in Figure 8.22, the FogNode and the CloudNode elements
are annotated with their corresponding FogDepAgent and CloudDepAgent, respectively. These anno-
tations enable the definition of runtime deployment rules associated with the runtime management of
the services deployed at each of the machines running at the node.

In Figure 8.24, we present an example of agent rules defined at the edge node. The provided agent
includes four distinct deployment plans. The first plan, known as the setup plan, is responsible for
installing all the necessary dependencies on the target machine. This setup plan is highly dependent
on the specific target host, and the actual setup tasks will be defined accordingly.

Furthermore, the "installServiceOnFogMachine" plan will create and install the MQTT broker
instance at the target fog machine. In addition to that, on the next plan, a "StartMQTTBroker" plan is
defined to start and save the broker logs in the file with the name specified. By default, such a file will

Jean Felicien Ihirwe 139

8.5. Conclusion

Figure 8.24: FogDepAgent rules

be located in the root folder of the machine server. The log type in this case is set to service to limit
the logging to the Service log, not the machine host in which the broker is running. Note that during
the transformation process, each of the "DepPlan" is translated into the corresponding playbook with
its corresponding name. At this stage, the playbook can be used and launched separately depending
on the user’s need (see Fig. 8.23).

8.5 Conclusion

This chapter presented CHESSIoT, a model-driven environment for developing and deploying
multi-layered IoT systems. In the chapter, we illustrated the CHESSIoT approach for software mod-
eling IoT systems across all three primary layers. A deployment modeling approach, together with a
run-time service provisioning approach was presented. Through the use of a home automation case
study, we demonstrated the fully CHESSIoT tool capability for conducting both qualitative and quan-
titative safety analyses, model software aspect of the system and generate a set of fully functional
ThingML source models, which are then used to generate platform-specific code ready for deployment
on low-level IoT devices. Finally, a full deployment model was designed and generated deployment
artifacts ready ti be executed on a remote docker environment. In the future, we intend to provide test-
ing support for generated code, with the outputs potentially assisting in the recommendation of any
potentially missing safety rules. Finally, we plan to enhance the qualitative safety analysis mechanism
by enabling the generation of minimal cut-set FTs.

Jean Felicien Ihirwe 140

Chapter 9

Conclusion and future work

9.1 General contributions

We summarize the key contributions of this thesis as follows:

1. Low-code engineering and its current adoption in IoT software development domain
In this dissertation, we have covered the current state of the art of LCE, particularly in the IoT
domain, and how the model-driven approach is playing a huge role in its realization. We have
mapped its similarities and differences with respect to existing trends in LCDPS as to where
MDE fits in the loop. We have presented the analysis that has been performed by conceiving
a taxonomy, which has been formalized as a feature diagram presenting all the features of a
typical modeling platform supporting the engineering of IoT systems. We have conducted and
presented the current state of the art regarding which IoT domain developers adopt cloud-based
modeling technology revolutions. The considered approaches have been analyzed to assess
their strengths and weaknesses concerning many characteristics, including their modeling focus,
accessibility, openness, and artifact generation. We have also presented the challenges that
are being faced in order to migrate the legacy platforms into cloud-based low-code ones. For
instance, issues such as the extensibility of the legacy platforms, and IoT system complexity,
in general, make the learning curve route even more hard and scalability concerns. We also
conceived some opportunities that this initiative could bring to the community such as attracting
more citizen developers, collaborative modeling, low cost of maintenance, and so on.

2. Software product quality evaluation of Low-Code/MDE engineering platforms
Evaluating the quality of engineering platforms, especially in IoT, is still an open issue due to
the technological revolution that the IoT domain experience to enhance our everyday livelihood.
This thesis presented a model for evaluating the quality of IoT Low-code/MDE engineering
platforms targeting the software product quality features. The presented model is based on and
extends the ISO/IEC 25010:2011 software product quality model [14] standard targeting to help
IoT practitioners in assessing and establishing the software quality requirements for engineer-
ing IoT platforms. Among others, security and maintainability features were found to be less
addressed, whereas functional appropriateness, portability, and usability were found to be the
most addressed. The model has been used to evaluate the software quality of 17 IoT platforms
in which it was discovered that the overall quality performance of considered IoT engineering
platforms (MDEs and LCDPs combined), regardless of characteristics and sub-characteristics,
was about 45.5%, in which MDE accounts for 39.6%, whereas LCDPs have 51.1%. In gen-
eral, the proposed model could be used mostly to evaluate the software platforms’ static and
dynamic properties rather than the quality of the outcome of interaction when a product is used
in a specific context.

141

9.1. General contributions

3. Supporting model-based safety analysis of IoT systems

As the current technological revolution evolves around the improved quality of life of human be-
ings, the safety of that system needs to be well studied and certified beforehand. The IoT domain
is one of the emerging domains; fewer approaches have been developed to assess the safety of
the system under development at its earliest stages. In this dissertation, we presented the CHES-
SIoT safety analysis approach for IoT systems based on the Fault-Tree Analysis technique. The
presented approach relies on and extends CHESS Failure Logic Analysis (CHESS-FLA) [44], a
methodology that enables the user to model the system’s failure behavior, run the Failure Logic
Analysis, and propagate the analysis results back onto the original model [45]. In addition to its
ability to generate the system’s complete FTs, the new FTA approach automatically performs
qualitative analyses by eliminating unnecessary paths and redundancies in the FTs’ events. Fi-
nally, the proposed approach also calculates the failure probabilities of an entire system from
its constituent parts’ failure event probabilities. In addition to a short comparative analysis con-
ducted based on related works, a safety critical example was used to showcase the capability
of the tool. The proposed approach can hugely help in predicting the impact of a component
change or architectural change on a system in a very cheap way [81]. For instance, in case
of an essential failure behavior occurring at the model system level, it will be easy to discover
the source of the fault immediately and identify where the fault tolerance measures should be
directed in the architecture to mitigate them.

4. Supporting model-based development and deployment of IoT systems

In addition to the safety analysis contribution, the CHESSIoT engineering environment pre-
sented in this thesis gives the user the opportunity to perform the modeling, development as
well as deployment tasks of IoT systems. The new approach employs a range of DSL for each
task to better enhance the separation of concerns as well as the model’s correctness. CHESSIoT
brings a unique possibility for the user to design, develop, analyze, and deploy engineering
IoT systems all from the same environment. Through CHESSIoT, a user can benefit from a
multi-view development environment in which each of the supported views has its own under-
lined constraints that enforce its specific privileges on model entities and properties that can be
manipulated. The software model containing the system’s functional and behavioral aspects is
transformed to ThingML [37] models, which eventually can later be transformed into platform-
specific code. A deployment modeling approach together that supports the users in decomposing
of IoT system deployment plan as well as managing deployed node services at all layers, namely
Edge, Fog, and Cloud was presented. Finally, CHESSIoT offers a model-driven runtime service
provisioning environment that allows the automatic definition of software services’ life cycle
based on predefined rules referred to as agents. To evaluate or approach, we have presented
results from two different comparative analyses, and discussions were developed, taking into
consideration modeling support as well as other supporting activities, revealing an averaged gap
of 54.34%, which CHESSIoT potentially addresses.

Jean Felicien Ihirwe 142

9.2. Publications

9.2 Publications

The following contains a list of all research publications that I was involved in during the course
of my PhD research.

9.2.1 Journal papers

1. Under review: Felicien Ihirwe, Katia Di Blasio, Davide Di Ruscio, Simone Gianfranceschi,
and Alfonso Pierantonio. “Supporting the model-based safety analysis for safety-critical IoT
systems” Submitted to Journal of Computer Languages (May 2022) This paper was presented
in Chapter 7

2. Under supervisor review: Felicien Ihirwe, Davide Di Ruscio, Simone Gianfranceschi, and
Alfonso Pierantonio. “A model-driven environment for engineering multi-layered IoT systems”
Submitted to Journal of Computer Languages (May 2023) This paper was presented in Chap-
ter 6 and 8

3. Murorunkwere Belle Fille, Felicien Ihirwe, Idrissa Kayijuka, Joseph Nzabanita, and Dominique
Haughton. "Comparison of Tree-Based Machine Learning Algorithms to Predict Reporting Be-
havior of Electronic Billing Machines" Information Volume:14, Issue no. 3: 140. February
2023. https://doi.org/10.3390/info14030140 Not presented in this thesis

9.2.2 Conference papers

4. Felicien Ihirwe , Davide Di Ruscio, Simone Gianfranceschi, and Alfonso Pierantonio. "As-
sessing the Quality of Low-Code and Model Driven Engineering Platforms for Engineering
IoT Systems". In Proceedings of the 22nd IEEE International Conference on Software Qual-
ity, Reliability, and Security (QRS22). 12 Pages. November 2022. Available at SSRN: http:
//dx.doi.org/10.2139/ssrn.4267269. This paper was presented in Chapter 5

5. Alberto Debiasi, Felicien Ihirwe , Pierluigi Pierini, Silvia Mazzini, and Stefano Tonetta. "Model-
based Analysis Support for Dependable Complex Systems in CHESS". In Proceedings of the 9th
International Conference on Model-Driven Engineering and Software Development - MODEL-
SWARD’21. ISBN 978-989-758-487-9; ISSN 2184-4348, pages 262-269. DOI: http://doi.
org/10.5220/0010269702620269. February 2021 This paper was presented in Chapter 2

6. Felicien Ihirwe, Giovanni Iovino, and Davide Di Ruscio. "Towards an MQTT5 geo-location
extension for location-aware applications". In the 44th IEEE International Conference on
Telecommunications and Signal Processing (TSP’21). July 2021. DOI: http://doi.org/
10.1109/TSP52935.2021.9522590. Not presented in this thesis

7. Felicien Ihirwe , Davide Di Ruscio, Silvia Mazzini, and Alfonso Pierantonio. "A domain-
specific modeling and analysis environment for complex IoT applications". In the 7th Italian
Conference on ICT for Smart Cities And Communities (I-CiTies’21). September 2021. https:
//arxiv.org/abs/2109.09244 This is an extended abstract that introduces the approach
presented in Chapter 2

9.2.3 Workshop papers

8. Felicien Ihirwe, Davide Di Ruscio, Silvia Mazzini, Pierluigi Pierini, and Alfonso Pierantonio.
"Low-code engineering for internet of things: a state of research". In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings (MODELS ’20). Association for Computing Machinery, New York,
NY, USA, Article 74, 1–8. November 2020
https://doi.org/10.1145/3417990.3420208 This paper was presented in Chapter 4

Jean Felicien Ihirwe 143

https://doi.org/10.3390/info14030140
http://dx.doi.org/10.2139/ssrn.4267269
http://dx.doi.org/10.2139/ssrn.4267269
http://doi.org/10.5220/0010269702620269
http://doi.org/10.5220/0010269702620269
http://doi.org/10.1109/TSP52935.2021.9522590
http://doi.org/10.1109/TSP52935.2021.9522590
https://arxiv.org/abs/2109.09244
https://arxiv.org/abs/2109.09244
https://doi.org/10.1145/3417990.3420208

9.3. Developed tools

9. Felicien Ihirwe , Davide Di Ruscio, Silvia Mazzini, and Alfonso Pierantonio. "Towards a
modeling and analysis environment for industrial IoT systems". In the International Work-
shop on MDE for Smart IoT Systems co-located with Software Technologies: Applications
and Foundations (MESS@STAF21) conferences. June 2021. Bergen, Norway. Available
https://ceur-ws.org/Vol-2999/messpaper1.pdf This paper presents the preliminary
results of the approach presented in Chapter 2

10. Felicien Ihirwe , Arsene Indamutsa, Davide Di Ruscio, Silvia Mazzini, and Alfonso Pieran-
tonio, "Cloud-based modeling in IoT domain: a survey, open challenges, and opportunities".
In 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C 2021), Fukuoka, Japan, 2021, pp. 73-82, doi:http://doi.
org/10.1109/MODELS-C53483.2021.00018. This paper was presented in Chapter 4

9.2.4 Technical Reports

11. Léa Brunschwig, Felicien Ihirwe, Panagiotis Kourouklides, Joost Noppen "D3.2. Lowcomotive
Integrations - Interim Version". Technical report in the context of Training the Next Generation
of Experts in Scalable Low-Code Engineering Platforms (Lowcomote). November 30th, 2020.
The report available at:
https://cordis.europa.eu/project/id/813884/results

9.3 Developed tools

The full code and the instruction on how to use CHESSIoT can be found in detail in the appendix C

Jean Felicien Ihirwe 144

https://ceur-ws.org/Vol-2999/messpaper1.pdf
http://doi.org/10.1109/MODELS-C53483.2021.00018
http://doi.org/10.1109/MODELS-C53483.2021.00018
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5d67123bb&appId=PPGMS

9.4. Future Directions

9.4 Future Directions

1. Low-Code Engineering platforms capabilities on tackling complex IoT system: While
MDE is often referred to as an essential building block of low-code but with certain differences
[58], however, there is still a question of which if the current generation of domain-agnostic
LCDPs will keep up with the growing complexity of IoT stems. In the future, we will keep
exploring quantitatively as well as qualitatively to which extent IoT low-code approaches are
keeping up with the rise. We will keep exploring the limitations which such platforms are fac-
ing in terms of providing more engineering support, such as early analyses and verification,
deployment, and continuous maintenance of developed software. In addition to that, we plan to
explore the extent to which the generated solutions are to tackles complex tasks in comparison
to the existing code-centric approaches.

2. Quality in use product model for IoT engineering platforms: The proposed software quality
model was based on ISO/IEC 25010:2011 quality standard [14]. While the standard is composed
of two main sets of quality models, namely “quality in use model", and “product quality model",
the presented model only extends the software product model. In order to enhance the proposed
quality evaluation process, we plan to also examine the possibility of evaluating “quality in the
use" aspects for the IoT engineering platform. We plan on extending the quality in use model of
the as well as accommodate other quality aspects beyond the software product quality model.
This “quality in the use" model includes five characteristics, namely effectiveness, efficiency,
satisfaction, risk freedom, and context coverage where some of them are further subdivided into
nine sub-characteristics, however in “real-world” also other quality aspects matter. For example,
how about the viability of the community (e.g., support and answer rate) or other aspects not
covered by the model?

3. Enhanced Fault-tree qualitative safety analysis: The goal of the presented Fault-tree quali-
tative analysis approach is to provide a new representation of the existing FT that only includes
the essential event representations. Although the current implementation does not fully reflect
the final shape of the calculation of the minimal cut-set event sets [230], it does provide a much
shorter and more correct, shorter, and readable FT that still helps and reflects the goal for the
analysis. Due to the time constraint and the complexity that lies behind solving the logic func-
tion of the fault-tree model function, we did not manage to implement the probability logic
solver infrastructure. In the future, we plan to implement the infrastructure for deriving mini-
mal tree representation based on minimum cut-set events.In addition to that, we plan to integrate
time-based failure logic analysis as well as the severity aspects into our approach. This is mainly
to reflect the effect of which a component failure my cause on the entire system taking into ac-
count short or longer periods as well as how severe it could be. Finally, we intend to improve
our system failure mode abstraction method by making it easily customizable from one domain
to another as well as providing testing support to potentially assist in the recommendation of
any potentially missing safety rules.

4. Improved code generator for supporting other platforms: The presented software develop-
ment approach provides means for modeling the functional and behavioral model of the systems,
and later it is transformed into a ThingML model ready to be compiled into platform-specific
code. Although ThingML supports many different platform-specific languages, the provided
transformation infrastructure currently supports the ThingML models, which can be compiled
into Arduino platforms. In the future, we want to expand such infrastructure e.g., by including
other platforms running on Java and C++.

5. CHESSIoT services on the cloud: With the growing interest in cloud-based engineering tools,
traditional local-based solutions appear to be increasingly driven towards becoming cloud-
based. Although CHESSIoT is not a cloud-based tool, it provides significant support for more

Jean Felicien Ihirwe 145

9.4. Future Directions

complex and critical IoT system engineering tasks. Despite this, the lack of cloud-based sup-
port causes challenges with installability, dependencies, and, in some cases, usability. To sup-
port future accessibility as well as supporting our proposed LCEP concepts presented in 2.3.2,
we intend to detach all supported engineering features and deploy them separately, allowing
such facilities to be consumed via dedicated API. This will also allow re-engineering of the
modeling infrastructure to the cloud.

6. Extensive empirical validation: As CHESSIoT was developed as a tool to support the engi-
neering of IoT systems which involves capabilities that needs to abide with certain standards
and approvals from the external experts, in the future we plan to conduct an extensive empirical
evaluation of the approach to check the acceptance of the proposed method by various exter-
nal stakeholders in the industry. For instance, for what regards the safety analysis infrastructure,
conducting this can in turns give us possible recommendation on what to follow when proposing
potential fundamental principles on dealing with safety analysis for IoT systems an an evolving
domain.

Jean Felicien Ihirwe 146

Appendix A

Software product quality evaluation
questionnaire for IoT LCDP and MDE

147

Chapter A. Software product quality evaluation questionnaire for IoT LCDP and MDE

Characteristic Sub-
characteristic Questions

Functional
suitability

Functional
Completeness

"Does the platform support any form of modeling of the Edge layer?

Does the platform support any form of modeling of the Fog layer?
Does the platform support any form of modeling of the Cloud layer?
Does the supporting paper mention any support for dealing with different commu-
nication protocols?"

Functional
Correctness

"Does the platform employs at least one of correctness methodologies during the
development?
For instance: - Component based development
- Correct by construction
- Model-checking
- Model validation
- Rule-based development
- Model verification"

Functional
Appropriate-
ness

Does correctness approaches impact in the platform code generation process?

Performance
efficiency

Time-behavior "Does the platform respond well while in usage?

If it is not lively accessible, does the supporting paper mention any means for exe-
cution time efficiency?"

Resource Uti-
lization

"Does the platform require zero or very minimal set-up in usage?

If not accessible live, does the supporting paper mention any means for dealing
with resources needed?"

Capacity "Can the platform be used to develop apps from various IoT sub-domains?
Can the platform develop a scalable IoT platform with hundreds of connected de-
vices?"

Compatibility Co-existence "Can the platform be deployed and used in a shared server environment?
If the platform is not lively accessible, does the supporting paper mention any mean
for that?"

Interoperability
"Does the platform support any means for exchanging data from third parties ser-
vices?
Does the developed application support external data exchanges?"

Reliability Maturity
"Does the platform support both the design and code generation of engineering IoT
systems?
Does the platform support any kind of deployment of engineering IoT systems?
Does the platform support any kind of analysis?"

Availability "Does the platform operational when needed?
In case of a local based platform, is it downloadable and directly be used when
needed?"

Fault tolerance
"Does the platform provide any mean for fault tolerance such as self-adaptation or
self-healing operation mechanisms?
Does the supporting paper mention any mean for such support?"

Recoverability
"Does the platform provide any mean for fault tolerance such as self-recovery or
self-redeployment operation mechanisms?
Does the supporting paper mention any mean for such support?"

Usability Appropriateness "Does the name of the platform reveals easily any IoT related concepts?
Is the platform solery designed for IoT systems development
Does the platform’s concepts, elements and constructs used in development IoT
specific?"

Learnability
Does the platform provides any kind of the following supports: context-based mod-
eling, on-the-fly suggestions, and so on

Operability
Does the platform provide any kind of the following supports: as auto-completion
for textual languages, guide-through mechanisms, multi-view modeling, palette
show/hide, and palette element search?

User error pro-
tection

Does the platform provide any means for error protection such as static analysis or
on-the-fly error handling

User interface Does the platform provides pleasant and satisfying user interfaces?
Accessibility "Does the platform easily reachable in case of needs, either being locally or online?

Does the supporting paper mention any mean for such support (open accessed repo
for local based platforms)?"

Jean Felicien Ihirwe 148

Chapter A. Software product quality evaluation questionnaire for IoT LCDP and MDE

Security Confidentiality
"Does the platform provides any means for granting access only to authorized par-
ties?
Does the supporting paper mention any mean for such support?"

Integrity
"Does the platform provide any means to prohibits unwanted access, modification
of the platform, or data?
Does the supporting paper mention any mean for such support?"

Non-
repudiation

"Does the platform enforce the logging of all hortorical activities performed during
the developemnt process?
Can such activities be retrieved later?"

Accountability "Does the platform provide any kind of sofware under development versioning?
Does the supporting paper mention any mean for such support?"

Authenticity
"Does the platform support any kind of authentication mechanisms while accessing
platform resources?
Does the supporting paper mention any mean for such support?"

Maintainability Modularity
Does the platform be decoupled into differeent sub-parts for instance, micro-
services?

Reusability "Does the platform sub-parts be reused independently?
Does the supporting paper mention any mean for such support?"

Analyzability "Does the platform sub-parts be analysed independently?
Does the supporting paper mention any mean for such support?"

Modifiability
"Does the platform sub-parts be modified independently without introducing any
flaws or deteriorating the quality of existing products?
Does the supporting paper mention any mean for such support?"

Testability "Does the platform sub-parts be tested independently?
Does the supporting paper mention any mean for such support?"

Portability Adaptability
Can the platform be deployed effectively and efficiently adapts to different envi-
ronments

Installability
Can the platform be successfully installed and/or uninstalled in a given environ-
ment?

Replaceability
Can the pltform be updated, replaced, and redeployed in the same environment and
still performs as expected.

Jean Felicien Ihirwe 149

Appendix B

Fault-Tree generation

B.1 FLA2FT transformation rules

1 /***
2 * Copyright (c) 2022, Intecs Solutions SpA
3 *
4 * All rights reserved. This program and the accompanying materials
5 * are made available under the terms of the Eclipse Public License v2.0
6 * which accompanies this distribution , and is available at
7 * https://www.eclipse.org/org/documents/epl -2.0/EPL -2.0.html
8 *
9 * SPDX -License -Identifier: EPL -2.0

10 *
11 * Contributors:
12 * Felicien Ihirwe
13 * Initial API and implementation and/or initial documentation
14 ***/
15 pre{
16 "Running transformation -------------------------".println();
17 var mapping : Sequence ;
18 var ftas : Sequence ;
19 var parents : Sequence;
20 var events : Sequence;
21 var portNames : Sequence;
22 var count : Integer;
23 count=0;
24 mapping = flamm!Port.allInstances();
25 "Started the transformation -------------------------".println();
26 for(port in mapping){
27 if(port.owner.parent.isUndefined()and port.owner.outputPorts.contains(port)){
28 for(f in port.failures){
29 if(f.id.contains("noFailure") = false){
30 var fta = new emfta!FTAModel;
31 fta.name ="Fault Tree of "+ port.name+"+"+f.id+" \n--------------\n TOP FAILURE
32 <"+f.id+"> at "+port.name+" port in "+port.owner.name;
33 ftas.add(fta);
34 }
35 }
36 }
37 }
38 }
39

40 rule outputOfComposite2FTA
41 transform c : flamm!CompositeComponent
42 to ev : emfta!FTAModel{
43 guard : c.parent.isUndefined()
44 for(p in mapping){
45 if(p.owner.parent.isUndefined()and p.owner.outputPorts.contains(p)){
46 for(f in p.failures){
47 for(ft in ftas){
48 if(ft.name = "Fault Tree of "+p.name+"+"+f.id+" \n--------------\n TOP FAILURE
49 <"+f.id+"> at "+p.name+" port in "+p.owner.name){
50 var e= new emfta!Event;
51 e.name = p.name+"+"+f.id+" \n--------------\n TOP FAILURE <"+f.id+"> at
52 "+p.name+" port in "+p.owner.name;

150

B.1. FLA2FT transformation rules

53 e.type = emfta!EventType#Intermediate;
54 var gate : new emfta!Gate;
55 e.gate = gate;
56 e.gate.type = emfta!GateType#OR;
57 e.description=""+ftas.getCount()+"_"+f.id;
58 e.gate.description=""+e.description;
59 ft.events.add(e);
60 for(con in p.connectedPorts){
61 parents.clear();
62 con.recurseFaultTree(f,con,ft,e);
63 }
64 }
65 //take care of undeveloped events to avoid concurrent modification error
66 var k1=0;
67 while(k1<ft.events.size()){
68 var event= ft.events.at(k1);
69 if(event.type.name="Intermediate"){
70 if(event.gate.events.size() <1){
71 var eventSp : new emfta!Event;
72 eventSp.name= "UNDEVELOPED FAILURE";
73 eventSp.type = emfta!EventType#Undevelopped;
74 eventSp.description="unknown_undeveloped";
75 ft.events.add(eventSp);
76 event.gate.events.add(eventSp);
77 parents.add(eventSp);
78 }
79 //take care of internal propagation and transformation gate differences
80 if(event.gate.events.size()=1){
81 for(v1 in event.gate.events){
82 if(event.description.split("_").get(1)=v1.description.split("_").get(1)){
83 event.gate.type = emfta!GateType#OR;
84 }
85 }
86 }
87 }k1=k1+1;
88 }
89 }
90 }
91 }
92 }
93 // remove the undeveloped tree
94 var k=0;
95 while(k<ftas.size()){
96 var ft= ftas.at(k);
97 if(ft.events.size()=1){
98 ftas.remove(ft);
99 }k=k+1;

100 }
101 "Ended the transformation -------------------------".println();
102 }
103 operation flamm!Port recurseFaultTree(f : flamm!Failure , con : flamm!Port ,
104 ft : emfta!FTAModel ,e : emfta!Event) : Sequence{
105 if(con.owner.parent.isDefined()){
106 if(con.owner.type.name="SimpleComponent"){
107 for(rul in con.owner.rules){
108 for(outexp in rul.outputExpression){
109 if(outexp.port = con)
110 {
111 for(f1 in outexp.failures){
112 if(f1.id=f.id){
113 var eventSp : new emfta!Event;
114 eventSp.name= outexp.port.name+"+"+f1.id+" \n--------------\n
115 LOCAL FAILURE <"+f1.id+"> at "+outexp.port.name+"
116 port in "+ outexp.port.owner.name;
117 eventSp.type = emfta!EventType#Intermediate;
118 var gate : new emfta!Gate;
119 eventSp.gate = gate;
120 eventSp.gate.type = emfta!GateType#AND;
121 eventSp.description=""+ftas.getCount()+"_"+f1.id;
122 eventSp.gate.description=""+eventSp.description;
123 ft.events.add(eventSp);
124 e.gate.events.add(eventSp);
125 parents.add(eventSp);
126 for(inpexp in rul.inputExpression){

Jean Felicien Ihirwe 151

B.1. FLA2FT transformation rules

127 for(f2 in inpexp.failures){
128 if(f2.id.contains("wildcard")=false){
129 if(f2.id.contains("noFailure")=true){
130 if(rul.inputExpression.size()=1){
131 var ev : new emfta!Event;
132 ev.name =outexp.port.name+"+"+f1.id+" \n--------------\n
133 INTERNAL FAILURE <"+f1.id+"> at "+outexp.port.name+"
134 port in "+ outexp.port.owner.name;
135 ev.type = emfta!EventType#Basic;
136 ev.description=""+ftas.getCount()+"_"+f1.id;
137 eventSp.gate.events.add(ev);
138 ft.events.add(ev);
139 parents.add(ev);
140 }
141 else{
142 //check if all input failures are noFailures
143 var tempF=true;
144 for(inpexp2 in rul.inputExpression){
145 for(f3 in inpexp2.failures){
146 if(f3.id.contains("noFailure")=false and
147 f3.id.contains("wildcard")=false){
148 tempF=false;
149 break;
150 }
151 }
152 }
153 // add a internal failure only if no one was added before
154 if(tempF=true and eventSp.gate.events.size()=0){
155 var ev : new emfta!Event;
156 ev.name =outexp.port.name+"+"+f1.id+" \n--------------\n
157 INTERNAL FAILURE <"+f1.id+"> at "+outexp.port.name+"
158 port in "+ outexp.port.owner.name;
159 ev.type = emfta!EventType#Basic;
160 ev.description=""+ftas.getCount()+"_"+f1.id;
161 eventSp.gate.events.add(ev);
162 ft.events.add(ev);
163 parents.add(ev);
164 }
165 }
166

167 }
168

169 else{
170 var ev : new emfta!Event;
171 ev.name = inpexp.port.name+"+"+f2.id+" \n--------------\n
172 LOCAL FAILURE <"+f2.id+"> at "+inpexp.port.name+"
173 port in "+ inpexp.port.owner.name;
174 ev.type = emfta!EventType#Intermediate;
175 var gate : new emfta!Gate;
176 ev.gate = gate;
177 ev.gate.type = emfta!GateType#OR;
178 ev.description=""+ftas.getCount()+"_"+f2.id;
179 ev.gate.description=""+ev.description;
180 eventSp.gate.events.add(ev);
181 ft.events.add(ev);
182 parents.add(ev);
183 for(neWcon in inpexp.port.connectedPorts){
184 con.recurseFaultTree(f2,neWcon ,ft,ev);
185 }
186 }
187 }
188 }
189 }
190 }
191 }
192 }
193 }
194 }
195 }
196 else{
197 if(con.owner.outputPorts.contains(con)){
198 for(p in con.connectedPorts){
199 if(not p.owner.inputPorts.contains(p) and not (p.owner=con.owner.parent)){
200 p.recurseFaultTree(f,p,ft,e);

Jean Felicien Ihirwe 152

B.2. FT2FT transformation:Qualitative and quantitative analysis

201 }
202 }
203 }
204 else if(con.owner.inputPorts.contains(con)){
205 for(p in con.connectedPorts){
206 if(p.owner.parent=con.owner and p.owner.inputPorts.contains(p)){
207 }
208 else{
209 p.recurseFaultTree(f,p,ft,e);
210 }
211 }
212 }
213 }
214 }
215 else{
216 var ev : new emfta!Event;
217 ev.name =con.name+"+"+f.id+" \n--------------\n INJECTED FAILURE <"+f.id+">
218 at "+ con.name+" port in "+con.owner.name;
219 ev.type = emfta!EventType#External;
220 ev.description=""+ftas.getCount()+"_"+f.id;
221 e.gate.events.add(ev);
222 ft.events.add(ev);
223 parents.add(e);
224 }
225 return parents;
226 }
227 operation Any getCount(): Integer{
228 count=count+1;
229 return count;
230 }

Listing B.1: FLA2FT ETL transformation rules

B.2 FT2FT transformation:Qualitative and quantitative analysis

1 /***
2 * Copyright (c) 2022, Intecs Solutions Spa
3 *
4 * All rights reserved. This program and the accompanying materials
5 * are made available under the terms of the Eclipse Public License v2.0
6 * which accompanies this distribution , and is available at
7 * https://www.eclipse.org/org/documents/epl -2.0/EPL -2.0.html
8 *
9 * SPDX -License -Identifier: EPL -2.0

10 *
11 * Contributors:
12 * Felicien Ihirwe
13 * Initial API and implementation and/or initial documentation
14 ***/
15

16

17 pre{
18 "Running Analysis -------------------------".println();
19 var mapping : Sequence ;
20 var ftas : Sequence ;
21 var parents : Sequence;
22 var events : Sequence;
23 var count : Integer;
24 count=0;
25 mapping = emftanew!FTAModel.allInstances();
26 for(ft in mapping){
27 if(ft.events.size() >1){
28 var fta = new emfta!FTAModel;
29 fta.name = ft.name;
30 ftas.add(fta);
31 }
32 }
33 }
34 rule topEvent2FTA
35 transform ftSource : emftanew!FTAModel
36 to evTarget : emfta!Event{
37 var firstelement : Boolean = true;

Jean Felicien Ihirwe 153

B.2. FT2FT transformation:Qualitative and quantitative analysis

38 for(ftTarget in ftas){
39 if(firstelement = true){
40 for(evSource in ftSource.events){
41 if(ftTarget.name = "Fault Tree of "+evSource.name){
42 var nevEv= new emfta!Event;
43 nevEv.name=evSource.name;
44 if(evSource.gate.events.size() >1){
45 nevEv= AssignNewType(evSource ,nevEv);
46 nevEv.gate=getGate(evSource.description);
47 nevEv.probability=evSource.probability;
48 ftTarget.events.add(nevEv);
49 firstelement=false;
50 generateFollowings(evSource ,nevEv ,ftTarget);
51 }
52 else if(evSource.gate.events.size()=1){
53 getTheNextEvenWithOneEvent(evSource ,nevEv ,ftTarget ,firstelement);
54 }
55 }
56 }
57 }
58 //Cleaning fault tree;
59 cleanTree(ftTarget);
60 //Calculating probailities
61 for(event in ftTarget.events){
62 if("Fault Tree of "+event.name=ftTarget.name){
63 if (event.probability=0){
64 var eventProb=1;
65 //get the gate attached to it (in case it is a OR gate)
66 if(event.gate.type.name="OR"){
67 //check all following events and check if they are among the system’s events
68 for(ev in event.gate.events){
69 //sometimes these attached event includes the original events , they are

excluded
70 if(not(ev.name = event.name) and ftTarget.events.contains(ev)){
71 if(ev.type.name="Intermediate"){
72 var p=getProbability(ev,event.gate ,ftTarget).asDouble();
73 eventProb=eventProb*(1-p);
74 }
75 else{
76 eventProb=eventProb*(1-ev.probability);
77 }
78 }
79 }
80 event.probability=(1-eventProb).asDouble();
81 }
82 else if(event.gate.type.name="AND"){
83 for(ev in event.gate.events){
84 if(not(ev.name = event.name) and ftTarget.events.contains(ev)){
85 if(ev.type.name="Intermediate"){
86 var p=getProbability(ev,event.gate ,ftTarget).asDouble();
87 eventProb=eventProb*p;
88 }
89 else{
90 eventProb=eventProb*(ev.probability);
91 }
92 }
93 }
94 event.probability=(eventProb).asDouble();
95 }
96 }
97 }
98 }
99 cleanGates(ftTarget);

100 }
101 }
102 operation getTheNextEvenWithOneEvent(evSource: emftanew!Event , nevEv : emfta!Event ,
103 ftTarget : emfta!FTAModel ,firstelement : Boolean) : Sequence{
104 for(event in evSource.gate.events){
105 if(event.type.name="Basic"){
106 if(firstelement=true){
107 nevEv= AssignNewType(evSource ,nevEv);
108 nevEv.gate=getGate(evSource.description);
109 nevEv.description=evSource.description;
110 nevEv.probability=evSource.probability;

Jean Felicien Ihirwe 154

B.2. FT2FT transformation:Qualitative and quantitative analysis

111 ftTarget.events.add(nevEv);
112 firstelement=false;
113 var localEv= new emfta!Event;
114 localEv.name=event.name;
115 localEv.type= emfta!EventType#Basic;
116 localEv.description=event.description;
117 localEv.probability=event.probability;
118 nevEv.gate.events.add(localEv);
119 ftTarget.events.add(localEv);
120 parents.add(nevEv);
121 }
122 else{
123 firstelement=false;
124 nevEv.name=event.name;
125 nevEv.type= emfta!EventType#Basic;
126 nevEv.description=event.description;
127 nevEv.probability=event.probability;
128 ftTarget.events.add(nevEv);
129 parents.add(nevEv);
130 }
131 }
132 else if(event.type.name="External"){
133 if(firstelement=true){
134 nevEv= AssignNewType(evSource ,nevEv);
135 nevEv.gate=getGate(evSource.description);
136 nevEv.description=evSource.description;
137 nevEv.probability=evSource.probability;
138 ftTarget.events.add(nevEv);
139 firstelement=false;
140 var localEv= new emfta!Event;
141 localEv.name=event.name;
142 localEv.type= emfta!EventType#External;
143 localEv.description=event.description;
144 localEv.probability=event.probability;
145 nevEv.gate.events.add(localEv);
146 ftTarget.events.add(localEv);
147 parents.add(nevEv);
148 }
149 else{
150 firstelement=false;
151 nevEv.name=event.name;
152 nevEv.type= emfta!EventType#External;
153 nevEv.description=event.description;
154 nevEv.probability=event.probability;
155 ftTarget.events.add(nevEv);
156 parents.add(nevEv);
157 }
158 }
159 else if(event.type.name="Intermediate"){
160 if(event.description.split("_").get(1)=evSource.description.split("_").get(1)){
161 if(event.gate.events.size() >1){
162

163 if(firstelement=false){
164 nevEv.name=evSource.name;
165 }
166 nevEv= AssignNewType(event ,nevEv);
167 nevEv.gate=getGate(event.description);
168 nevEv.description=event.description;
169 nevEv.probability=event.probability;
170 ftTarget.events.add(nevEv);
171 firstelement=false;
172 generateFollowings(event ,nevEv ,ftTarget);
173 }
174 else if(event.gate.events.size()=1){
175 getTheNextEvenWithOneEvent(event ,nevEv ,ftTarget ,firstelement);
176 }
177 }
178 else{
179 //in case the two single events are not the same
180 //implement the source and check the next event properties
181 nevEv= AssignNewType(evSource ,nevEv);
182 nevEv.gate=getGate(evSource.description);
183 nevEv.description=evSource.description;
184 nevEv.probability=evSource.probability;

Jean Felicien Ihirwe 155

B.2. FT2FT transformation:Qualitative and quantitative analysis

185 ftTarget.events.add(nevEv);
186 firstelement=false;
187 if(event.gate.events.size() >1){
188 // if greater than one and different form source.. implement that
189 var localEv= new emfta!Event;
190 localEv.name=event.name;
191 localEv= AssignNewType(event ,localEv);
192 localEv.gate=getGate(event.description);
193 localEv.description=event.description;
194 localEv.probability=event.probability;
195 nevEv.gate.events.add(localEv);
196 ftTarget.events.add(localEv);
197 generateFollowings(event ,localEv ,ftTarget);
198 }
199 else if(event.gate.events.size()=1){
200 // else implement half and look the next different of many child event
201 var localEv= new emfta!Event;
202 localEv.name=event.name;
203 nevEv.gate.events.add(localEv);
204 getTheNextEvenWithOneEvent(event ,localEv ,ftTarget ,firstelement);
205 }
206 }
207 }
208 else if(event.type.name="Undevelopped"){
209 if(firstelement=true){
210 nevEv= AssignNewType(evSource ,nevEv);
211 nevEv.gate=getGate(evSource.description);
212 nevEv.description=evSource.description;
213 nevEv.probability=evSource.probability;
214 ftTarget.events.add(nevEv);
215 firstelement=false;
216 var localEv= new emfta!Event;
217 localEv.name=event.name;
218 localEv.type= emfta!EventType#Undevelopped;
219 localEv.description=event.description;
220 localEv.probability=event.probability;
221 nevEv.gate.events.add(localEv);
222 ftTarget.events.add(localEv);
223 parents.add(nevEv);
224 }
225 else{
226 firstelement=false;
227 nevEv.name=event.name;
228 nevEv.type= emfta!EventType#Undevelopped;
229 nevEv.description=event.description;
230 nevEv.probability=event.probability;
231 ftTarget.events.add(nevEv);
232 parents.add(nevEv);
233 }
234 }
235 }
236 }
237

238 operation generateFollowings(lookEv: emftanew!Event , grobalEv : emfta!Event ,
239 ft : emfta!FTAModel) : Sequence{
240 for(event in lookEv.gate.events){
241 if(event.gate.events.size() >1){
242 var localEv= new emfta!Event;
243 localEv.name=event.name;
244 localEv= AssignNewType(event ,localEv);
245 localEv.gate=getGate(event.description);
246 localEv.description=event.description;
247 localEv.probability=event.probability;
248 grobalEv.gate.events.add(localEv);
249 ft.events.add(localEv);
250 generateFollowings(event ,localEv ,ft);
251 }
252 else if(event.gate.events.size()=1){
253 var localEv= new emfta!Event;
254 localEv.name=event.name;
255 grobalEv.gate.events.add(localEv);
256 getTheNextEvenWithOneEvent(event ,localEv ,ft,false);
257 }
258 }

Jean Felicien Ihirwe 156

B.2. FT2FT transformation:Qualitative and quantitative analysis

259 }
260 operation getGate(st : String): emfta!Gate{
261 var g=new emfta!Gate;
262 for (gate in emftanew!Gate.allInstances()){
263 if(gate.description = st){
264 if(gate.type.name="OR"){
265 g.type=emfta!GateType#OR;
266 }
267 else{
268 g.type=emfta!GateType#AND;
269 }
270 g.description=gate.description;
271 for(oldEv in gate.events){
272 var evTemp=new emfta!Event;
273 evTemp.name=oldEv.name;
274 evTemp=AssignNewType(oldEv ,evTemp);
275 evTemp.description=oldEv.description;
276 g.events.add(evTemp);
277 }
278 g.nbOccurrences=gate.nbOccurrences;
279 return g;
280 }
281 }
282 }
283

284 operation AssignNewType(oldEv: emftanew!Event ,evTemp: emfta!Event):emfta!Event{
285 if(oldEv.type.name="External"){
286 evTemp.type=emfta!EventType#External;
287 }
288 else if(oldEv.type.name="Basic") {
289 evTemp.type=emfta!EventType#Basic;
290 }
291 else {
292 evTemp.type=emfta!EventType#Intermediate;
293 }
294 return evTemp;
295 }
296 operation getProbability(lookEv: emfta!Event , gate : emfta!Gate ,
297 ftTarget:emfta!FTAModel) : Any{
298 var eProb=1;
299 //Same process but here we need to return the lookEV probability
300 if(lookEv.gate.type.name="OR"){
301 for(ev in lookEv.gate.events){
302 if(not(ev.name = lookEv.name) and ftTarget.events.contains(ev)){
303

304 if(ev.type.name="Intermediate"){
305 var p=getProbability(ev,lookEv.gate ,ftTarget).asDouble();
306 eProb=eProb*(1-p);
307 }
308 else{
309 eProb=eProb*(1-ev.probability);
310 }
311 }
312 }
313 lookEv.probability=(1-eProb).asDouble();
314 return lookEv.probability;
315 }
316 else if(lookEv.gate.type.name="AND"){
317 for(ev in lookEv.gate.events){
318 if(not(ev.name = lookEv.name) and ftTarget.events.contains(ev)){
319

320 if(ev.type.name="Intermediate"){
321 var p=getProbability(ev,lookEv.gate ,ftTarget).asDouble();
322 eProb=eProb*p;
323 }
324 else{
325 eProb=eProb*(ev.probability);
326 }
327 }
328 }
329 lookEv.probability=(eProb).asDouble();
330 return lookEv.probability;
331 }
332 return lookEv.probability;

Jean Felicien Ihirwe 157

B.2. FT2FT transformation:Qualitative and quantitative analysis

333 }
334 operation cleanTree(ftTarget : emfta!FTAModel) : Any{
335 var k=0;
336 var gates= emfta!Gate.allInstances();
337 var toRemove : emfta!Event;
338 while(k<gates.size()){
339 var gate= gates.at(k);
340 var i=0;
341 var eventsLocal=gate.events;
342 while(i<eventsLocal.size()){
343 if(not (eventsLocal.at(i).type.name="Intermediate")){
344 var name=eventsLocal.at(i).name;
345 if(i+1<eventsLocal.size()){
346 if(name= eventsLocal.at(i+1).name){
347 //remove duplicated paths
348 toRemove= eventsLocal.at(i);
349 ftTarget.events.remove(toRemove);
350 eventsLocal.remove(eventsLocal.at(i));
351 emfta!Event.allInstances().remove(eventsLocal.at(i));
352 parents.remove(eventsLocal.at(i));
353 }
354 }
355 }i=i+1;
356 }k=k+1;
357 }
358 }
359 operation cleanGates(ftTarget : emfta!FTAModel) : Any{
360 var k=0;
361 var gates= emfta!Gate.allInstances();
362 var toRemove : emfta!Event;
363 while(k<gates.size()){
364 var gate= gates.at(k);
365 if(gate.events.size() <4){
366 gate.type=emfta!GateType#INTERMEDIATE;
367 gate.description="propagations and/or \n transformations";
368 }k=k+1;
369 }
370 }

Listing B.2: FT2FT ETL transformation rules

Jean Felicien Ihirwe 158

Appendix C

Installing CHESSIoT extension on top of
CHESS

The infrastructure that was implemented to test and validate our approach was implemented on top of
CHESS1.0.0. Although a newer version of CHESS (1.1.0) was been recently released, we haven’t yet
tested with our implementations. Therefore the following steps only apply to the CHESS1.0.0 version.
In this section We show you the steps to follow in order to successfully install the extension:

1. Prerequisite:

• Jdk/Java 8 (Mandatory not 11 or above)

• Git client (optional)

• Window OS

2. Download CHESS1.0.0 for Window OS from CHESS1.0.0 main page and extract it

3. Clone the repository contains CHESSIoTFeatures

“git clone https://github.com/fihirwe/CHESSIoT-features.git“

4. The CHESSIoT source code can be accessed through this CHESSIoTplugins git repo.

5. Launch CHESS.exe to start CHESS.

6. To install the CHESSIoT features proceed to Help-> Install New Software–> Add–> Local –>
Browse your computer then pick the folder with all of the extracted content and hit Finish.

7. When loading is finished make sure to uncheck the "Group items by category" option
and select "CHESSIoT extension supported FTA, ThingML model generation and IoT deploy-
ment support" features and Click next to continue

8. Click next for CHESSIoT updates on already existing installation

9. Accepts the license

10. This will take a few seconds or minutes to load and download all the dependencies.

11. After few moment remeber to "Agree to install unsigned contents"

12. When the process is finished, you will need to restart your CHESS tool.

13. Voila! Now you are ready to explore CHESSIoT!!

159

https://download.eclipse.org/chess/core/releases/1.0.0/CHESS-1.0.0-win32.win32.x86_64.zip
(https://github.com/fihirwe/CHESSIoTplugins_FMEAFTA

Bibliography

[1] Alexandru Serbanati, Carlo Maria Medaglia, and Ugo Biader Ceipidor. Building blocks of the
internet of things: State of the art and beyond. Deploying RFID-Challenges, Solutions, and
Open Issues, pages 351–366, 2011.

[2] Team CHESS, 2020. URL https://www.eclipse.org/chess/publis/CHESS_
ToolsetGuide.pdf.

[3] Zulqarnain Haider, Barbara Gallina, and Enrique Zornoza Moreno. FLA2FT: Automatic gener-
ation of fault tree from ConcertoFLA results. In 2018 3rd International Conference on System
Reliability and Safety (ICSRS), pages 176–181, 2018. doi: 10.1109/ICSRS.2018.8688825.

[4] Bashar Alshboul, Dorina C. Petriu, Bashar Alshboul, and Dorina C. Petriu. Automatic
derivation of fault tree models from SysML models for safety analysis. Journal of Soft-
ware Engineering and Applications, 11:204–222, 5 2018. ISSN 1945-3116. URL https:
//doi.org/10.4236/jsea.2018.115013.

[5] Rajesh Kannan Megalingam, Divya M. Kaimal, and Maneesha V. Ramesh. Efficient patient
monitoring for multiple patients using wsn. In 2012 International Conference on Advances
in Mobile Network, Communication and Its Applications, pages 87–90, 2012. doi: 10.1109/
MNCApps.2012.23.

[6] Petri Kettunen and Maarit Laanti. Future software organizations – agile goals and roles.
European Journal of Futures Research, 5(1):16, 2017. ISSN 2195-2248. doi: 10.1007/
s40309-017-0123-7. URL https://doi.org/10.1007/s40309-017-0123-7.

[7] Martin Bauer, Mathieu Boussard, Nicola Bui, Jourik De Loof, Carsten Magerkurth, Stefan
Meissner, Andreas Nettsträter, Julinda Stefa, Matthias Thoma, and Joachim W. Walewski. IoT
Reference Architecture, pages 163–211. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
ISBN 978-3-642-40403-0. doi: 10.1007/978-3-642-40403-0_8. URL https://doi.org/10.
1007/978-3-642-40403-0_8.

[8] Felicien Ihirwe, Davide Di Ruscio, Silvia Mazzini, Pierluigi Pierini, and Alfonso Pierantonio.
Low-Code engineering for internet of things: A state of research. In In the 23rd ACM/IEEE
MODELS’20: Companion Proceedings, MODELS ’20, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450381352. doi: 10.1145/3417990.3420208. URL
https://doi.org/10.1145/3417990.3420208.

[9] Abel Gómez, Markel Iglesias-Urkia, Lorea Belategi, Xabier Mendialdua, and Jordi Cabot.
Model-driven development of asynchronous message-driven architectures with AsyncAPI.
Software and Systems Modeling, pages 1–29, 2021. URL https://doi.org/10.1007/
s10270-021-00945-3.

[10] Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pierantonio. A Low-Code Development En-
vironment to Orchestrate Model Management Services. Advances in Production Management
Systems, 2021.

160

https://www.eclipse.org/chess/publis/CHESS_ToolsetGuide.pdf
https://www.eclipse.org/chess/publis/CHESS_ToolsetGuide.pdf
https://doi.org/10.4236/jsea.2018.115013
https://doi.org/10.4236/jsea.2018.115013
https://doi.org/10.1007/s40309-017-0123-7
https://doi.org/10.1007/978-3-642-40403-0_8
https://doi.org/10.1007/978-3-642-40403-0_8
https://doi.org/10.1145/3417990.3420208
https://doi.org/10.1007/s10270-021-00945-3
https://doi.org/10.1007/s10270-021-00945-3

BIBLIOGRAPHY

[11] Massimo Tisi, Jean-Marie Mottu, Dimitrios S. Kolovos, Juan De Lara, Esther M Guerra, Davide
Di Ruscio, Alfonso Pierantonio, and Manuel Wimmer. Lowcomote: Training the next genera-
tion of experts in scalable low-code engineering platforms. 1st Junior Researcher Community
Event, page 67–76, July 2019. URL https://hal.archives-ouvertes.fr/hal-02363416.

[12] Aymen J Salman, Mohammed Al-Jawad, and Wisam Al Tameemi. Domain-Specific Languages
for IoT: Challenges and Opportunities. IOP Conference Series: Materials Science and Engi-
neering, 1067(1):012133, 2021. ISSN 1757-8981. doi: 10.1088/1757-899x/1067/1/012133.

[13] F. Ihirwe, A. Indamutsa, D. Ruscio, S. Mazzini, and A. Pierantonio. Cloud-based model-
ing in IoT domain: a survey, open challenges and opportunities. In 2021 ACM/IEEE In-
ternational Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C), pages 73–82, Los Alamitos, CA, USA, oct 2021. IEEE Computer Society. doi:
10.1109/MODELS-C53483.2021.00018.

[14] ISO ISO. ISO/IEC 25010:2011, Systems and software engineering - Systems and Software
Quality Requirements and Evaluation (SQuaRE) - System and software quality models. ISO,
34:2910, 2011. URL https://www.iso.org/standard/35733.html. Last accessed March
2022.

[15] John Hutchinson, Jon Whittle, and Mark Rouncefield. Model-driven engineering practices in
industry: Social, organizational and managerial factors that lead to success or failure. Sci-
ence of Computer Programming, 89:144–161, 2014. ISSN 0167-6423. doi: https://doi.org/10.
1016/j.scico.2013.03.017. URL http://www.sciencedirect.com/science/article/pii/
S0167642313000786. Special issue on Success Stories in Model Driven Engineering.

[16] Alberto Debiasi, Felicien Ihirwe, Pierluigi Pierini, Silvia Mazzini, and Stefano Tonetta. Model-
based analysis support for dependable complex systems in CHESS. In Proceedings of the 9th
International Conference on Model-Driven Engineering and Software Development - Volume
1: MODELSWARD,, pages 262–269. INSTICC, SciTePress, 2021. ISBN 978-989-758-487-9.
doi: 10.5220/0010269702620269. URL https://doi.org/10.5220/0010269702620269.

[17] Jörg Christian Kirchhof, Bernhard Rumpe, David Schmalzing, and Andreas Wortmann. Mon-
tiThings: Model-driven development and deployment of reliable IoT applications. Journal of
Systems and Software, 183:111087, 2022. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.
2021.111087. URL https://doi.org/10.1016/j.jss.2021.111087.

[18] Azham Hussain and Emmanuel Mkpojiogu. An application of the ISO/IEC 25010 standard in
the quality-in-use assessment of an online health awareness system. Jurnal Teknologi, 77:9–13,
11 2015. doi: 10.11113/jt.v77.6107. URL https://doi.org/10.11113/jt.v77.6107.

[19] Eddas Bertrand-Martinez, Phelipe Dias Feio, Vagner de Brito Nascimento, Fabio Kon, and
Antônio Abelém. Classification and evaluation of IoT brokers: A methodology. International
Journal of Network Management, 31(3), may 2021. ISSN 1099-1190. doi: 10.1002/nem.2115.
URL https://doi.org/10.1002/nem.2115.

[20] Johan J.C. Tambotoh, Sani M. Isa, Ford Lumban Gaol, Benfano Soewito, and Harco Leslie
Hendric Spits Warnars. Software quality model for internet of things governance. In 2016 In-
ternational Conference on Data and Software Engineering (ICoDSE), pages 1–6, 2016. doi: 10.
1109/ICODSE.2016.7936138. URL https://doi.org/10.1109/ICODSE.2016.7936138.

[21] Md. Saifur Rahman and Hassan Reza. Systematic mapping study of non-functional require-
ments in big data system. In 2020 IEEE International Conference on Electro Informa-
tion Technology (EIT), pages 025–031, 2020. doi: 10.1109/EIT48999.2020.9208288. URL
http://dx.doi.org/10.1109/EIT48999.2020.9208288.

Jean Felicien Ihirwe 161

https://hal.archives-ouvertes.fr/hal-02363416
https://www.iso.org/standard/35733.html
http://www.sciencedirect.com/science/article/pii/S0167642313000786
http://www.sciencedirect.com/science/article/pii/S0167642313000786
https://doi.org/10.5220/0010269702620269
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.11113/jt.v77.6107
https://doi.org/10.1002/nem.2115
https://doi.org/10.1109/ICODSE.2016.7936138
http://dx.doi.org/10.1109/EIT48999.2020.9208288

BIBLIOGRAPHY

[22] Julien Siebert, Lisa Jöckel, Jens Heidrich, Koji Nakamichi, Kyoko Ohashi, Isao Namba, Rieko
Yamamoto, and Mikio Aoyama. Towards guidelines for assessing qualities of machine learn-
ing systems. In 13th International Conference on Quality of Information and Communica-
tions Technology - , QUATIC 2020, Faro, Portugal, September 9-11, 2020, volume 1266,
pages 17–31, 2020. doi: 10.1007/978-3-030-58793-2_2. URL https://doi.org/10.1007/
978-3-030-58793-2_2.

[23] Almeida Martins Luana, Afonso Júnior Paulo, Pimenta Freire André, and Costa Heitor. IET
Software, 14:572–581(9), December 2020. ISSN 1751-8806. URL https://doi.org/10.
1049/iet-sen.2020.0037.

[24] Jhonatan Bernardes Boarim and Ana Regina Cavalcanti da Rocha. CRM systems quality eval-
uation. In XX Brazilian Symposium on Software Quality, SBQS ’21, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450395533. doi: 10.1145/3493244.
3493273. URL https://doi.org/10.1145/3493244.3493273.

[25] Janine Koepp, Miriam Viviane Baron, Paulo Ricardo Hernandes Martins, Cristine Brandenburg,
and et al. The quality of mobile apps used for the identification of pressure ulcers in adults:
Systematic survey and review of apps in app stores. JMIR Mhealth Uhealth, 8(6):e14266, Jun
2020. ISSN 2291-5222. doi: 10.2196/14266. URL https://doi.org/10.2196/14266.

[26] Lenin Erazo-Garzón, Priscila Cedillo, Gustavo Rossi, and José Moyano. A domain-specific
language for modeling IoT system architectures that support monitoring. IEEE Access, 10:
61639–61665, 2022. doi: 10.1109/ACCESS.2022.3181166.

[27] Felicien Ihirwe, Davide Di Ruscio, Simone Gianfranceschi, and Alfonso Pierantonio. Assess-
ing the quality of Low-Code and MDE platforms for engineering IoT systems. 22nd IEEE
International Conference on Software Quality, Reliability, and Security (QRS22), 2022. doi:
http://dx.doi.org/10.2139/ssrn.4267269.

[28] Alexander Power and Gerald Kotonya. Providing fault tolerance via complex event processing
and machine learning for IoT systems. In Proceedings of the 9th International Conference
on the Internet of Things, IoT 2019, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450372077. doi: 10.1145/3365871.3365872. URL https://doi.org/
10.1145/3365871.3365872.

[29] Antero Taivalsaari and Tommi Mikkonen. A roadmap to the programmable world: Software
challenges in the IoT era. IEEE Software, 34(1):72–80, 2017. doi: 10.1109/MS.2017.26. URL
https://doi.org/10.1109/MS.2017.26.

[30] Akram Amin Abdellatif and Florian Holzapfel. Model based safety analysis (MBSA) tool for
avionics systems evaluation. In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference
(DASC), pages 1–5, 2020. URL https://doi.org/10.1109/DASC50938.2020.9256578.

[31] A. Joshi, S.P. Miller, M. Whalen, and M.P.E. Heimdahl. A proposal for model-based safety
analysis. In 24th Digital Avionics Systems Conference, volume 2, pages 13 pp. Vol. 2–, 2005.
URL https://doi.org/10.1109/DASC.2005.1563469.

[32] Gaëlle Girard, Ivan Baeriswyl, Jonathan James Hendriks, Roland Scherwey, Christian Müller,
Philipp Hönig, and Rüdiger Lunde. Model based safety analysis using sysml with automatic
generation of FTA and FMEA artifacts. In Proceedings of the 30th European Safety and Re-
liability Conference and the 15th Probabilistic Safety Assessment and Management Confer-
ence (Esrel 2020 PSAM 15), 1-5 November 2020, Venice, Italy, number CONFERENCE. 1-5
November 2020, 2020.

Jean Felicien Ihirwe 162

https://doi.org/10.1007/978-3-030-58793-2_2
https://doi.org/10.1007/978-3-030-58793-2_2
https://doi.org/10.1049/iet-sen.2020.0037
https://doi.org/10.1049/iet-sen.2020.0037
https://doi.org/10.1145/3493244.3493273
https://doi.org/10.2196/14266
https://doi.org/10.1145/3365871.3365872
https://doi.org/10.1145/3365871.3365872
https://doi.org/10.1109/MS.2017.26
https://doi.org/10.1109/DASC50938.2020.9256578
https://doi.org/10.1109/DASC.2005.1563469

BIBLIOGRAPHY

[33] Richard F Paige, Louis M Rose, Xiaocheng Ge, Dimitrios S Kolovos, and Phillip J Brooke.
FPTC: Automated Safety Analysis for Domain-Specific Languages. In Michel R V Chaudron,
editor, Models in Software Engineering, pages 229–242, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. ISBN 978-3-642-01648-6.

[34] Federico Ciccozzi, Ivica Crnkovic, Davide Di Ruscio, Ivano Malavolta, Patrizio Pelliccione,
and Romina Spalazzese. Model-driven engineering for mission-critical IoT systems. IEEE
Software, 34(1):46–53, 2017. doi: 10.1109/MS.2017.1. URL https://doi.org/10.1109/
MS.2017.1.

[35] Davide Di Ruscio, Romina Eramo, Alfonso Pierantonio, Marco Bernardo, Vittorio Cortellessa,
and Alfonso Pierantonio. Model Transformations, pages 91–136. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012. ISBN 978-3-642-30982-3. doi: 10.1007/978-3-642-30982-3_4.
URL https://doi.org/10.1007/978-3-642-30982-3_4.

[36] Federico Ciccozzi and Romina Spalazzese. MDE4IoT: Supporting the internet of things with
model-driven engineering. In Costin Badica, Amal El Fallah Seghrouchni, Aurélie Beynier,
David Camacho, Cédric Herpson, Koen Hindriks, and Paulo Novais, editors, Intelligent Dis-
tributed Computing X, pages 67–76, Cham, 2017. Springer International Publishing. ISBN
978-3-319-48829-5. doi: 10.1007/978-3-319-48829-5_7. URL http://dx.doi.org/10.
1007/978-3-319-48829-5_7.

[37] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa. ThingML: A language
and code generation framework for heterogeneous targets. In Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems, MOD-
ELS ’16, page 125–135, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450343213. doi: 10.1145/2976767.2976812. URL https://doi.org/10.1145/
2976767.2976812.

[38] Richard Nicholson, Timothy Ward, Derek Baum, Xu Tao, Davide Conzon, and Enrico Fer-
rera. Dynamic fog computing platform for event-driven deployment and orchestration of dis-
tributed internet of things applications. In 2019 Third World Conference on Smart Trends in
Systems Security and Sustainablity (WorldS4), pages 239–246, 2019. doi: 10.1109/WorldS4.
2019.8903975.

[39] Davide Conzon, Mohammad Rifat Ahmmad Rashid, Xu Tao, Angel Soriano, Richard Nichol-
son, and Enrico Ferrera. BRAIN-IoT: Model-based framework for dependable sensing and
actuation in intelligent decentralized IoT systems. In 2019 4th International Conference on
Computing, Communications and Security (ICCCS), pages 1–8, 2019. doi: 10.1109/CCCS.
2019.8888136. URL http://dx.doi.org/10.1109/CCCS.2019.8888136.

[40] José A. Barriga, Pedro J. Clemente, Encarna Sosa-Sanchez, and Alvaro E. Prieto. SimulateIoT:
Domain specific language to design, code generation and execute IoT simulation environments.
IEEE Access, 9:92531–92552, 2021. doi: 10.1109/ACCESS.2021.3092528. URL http://dx.
doi.org/10.1109/ACCESS.2021.3092528.

[41] Liudong Xing and Suprasad V. Amari. Fault Tree Analysis, pages 595–620. Springer London,
London, 2008. ISBN 978-1-84800-131-2. doi: 10.1007/978-1-84800-131-2_38. URL https:
//doi.org/10.1007/978-1-84800-131-2_38.

[42] Felicien Ihirwe, Davide Di Ruscio, Silvia Mazzini, and Alfonso Pierantonio. Towards a mod-
eling and analysis environment for industrial IoT systems. STAF Workshops, abs/2105.14136:
90–104, 2021. URL https://ceur-ws.org/Vol-2999/messpaper1.pdf.

Jean Felicien Ihirwe 163

https://doi.org/10.1109/MS.2017.1
https://doi.org/10.1109/MS.2017.1
https://doi.org/10.1007/978-3-642-30982-3_4
http://dx.doi.org/10.1007/978-3-319-48829-5_7
http://dx.doi.org/10.1007/978-3-319-48829-5_7
https://doi.org/10.1145/2976767.2976812
https://doi.org/10.1145/2976767.2976812
http://dx.doi.org/10.1109/CCCS.2019.8888136
http://dx.doi.org/10.1109/ACCESS.2021.3092528
http://dx.doi.org/10.1109/ACCESS.2021.3092528
https://doi.org/10.1007/978-1-84800-131-2_38
https://doi.org/10.1007/978-1-84800-131-2_38
https://ceur-ws.org/Vol-2999/messpaper1.pdf

BIBLIOGRAPHY

[43] Felicien Ihirwe, Davide Di Ruscio, Silvia Mazzini, and Alfonso Pierantonio. A domain-specific
modeling and analysis environment for complex IoT applications. CoRR, abs/2109.09244,
2021. URL https://arxiv.org/abs/2109.09244.

[44] Barbara Gallina, Muhammad Atif Javed, Faiz Ul Muram, and Sasikumar Punnekkat. A model-
driven dependability analysis method for component-based architectures. In 2012 38th Euromi-
cro Conference on Software Engineering and Advanced Applications, pages 233–240, 2012.
doi: 10.1109/SEAA.2012.35.

[45] Barbara Gallina, Edin Sefer, and Atle Refsdal. Towards safety risk assessment of socio-
technical systems via failure logic analysis. In ISSRE Workshops, pages 287–292, 2014.

[46] A.S. Cheliyan and S.K. Bhattacharyya. Fuzzy fault tree analysis of oil and gas leakage in subsea
production systems. Journal of Ocean Engineering and Science, 3(1):38–48, 2018. ISSN 2468-
0133. doi: https://doi.org/10.1016/j.joes.2017.11.005. URL https://doi.org/10.1016/j.
joes.2017.11.005.

[47] Stefan Markulik, Marek Šolc, Jozef Petrík, Michaela Balážiková, Peter Blaško, Juraj Kliment,
and Martin Bezák. Application of FTA analysis for calculation of the probability of the failure
of the pressure leaching process. Applied Sciences, 11(15), 2021. ISSN 2076-3417. doi:
10.3390/app11156731. URL https://www.mdpi.com/2076-3417/11/15/6731.

[48] Refaul Ferdous, Faisal Khan, Brian Veitch, and Paul R. Amyotte. Methodology for computer
aided fuzzy fault tree analysis. Process Safety and Environmental Protection, 87(4):217–226,
2009. ISSN 0957-5820. doi: https://doi.org/10.1016/j.psep.2009.04.004. URL https://www.
sciencedirect.com/science/article/pii/S0957582009000421.

[49] A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. van Kranenburg, S. Lange, S. Meissner, and
Eds. Enabling things to talk: Designing IoT solutions with the IoT Architectural Refer-
ence Model. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-40402-3. doi: 10.1007/
978-3-642-40403-0.

[50] Bruno Costa, Paulo F. Pires, and Flávia C. Delicato. Modeling IoT applications with
SysML4IoT. In 2016 42th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pages 157–164, 2016. doi: 10.1109/SEAA.2016.19.

[51] Ajay Krishna Muroor Nadumane. Models and Verification for Composition and Reconfigura-
tion of Web of Things Applications. Theses, Université Grenoble Alpes [2020-....], December
2020. URL https://theses.hal.science/tel-03188299.

[52] Jonathan Ostroff, Susan Gerhart, Dan Craigen, Ted Ralston, Nancy G. Leveson, Jonathan
Bowen, and Victoria Stavridou. Real-Time and Safety-Critical Systems, pages 359–
528. Springer London, London, 1999. ISBN 978-1-4471-3431-2. doi: 10.1007/
978-1-4471-3431-2_6. URL https://doi.org/10.1007/978-1-4471-3431-2_6.

[53] John C. Knight. Safety critical systems: Challenges and directions. In Proceedings of the 24th
International Conference on Software Engineering, ICSE ’02, pages 547–550, New York, NY,
USA, 2002. Association for Computing Machinery. ISBN 158113472X. doi: 10.1145/581339.
581406. URL https://doi.org/10.1145/581339.581406.

[54] Jonathan Bowen. The ethics of safety-critical systems. Commun. ACM, 43(4):91–97, apr 2000.
ISSN 0001-0782. doi: 10.1145/332051.332078. URL https://doi.org/10.1145/332051.
332078.

[55] Jaehyung An, Alexey Mikhaylov, and Keunwoo Kim. Machine learning approach in heteroge-
neous group of algorithms for transport safety-critical system. Applied Sciences, 10(8), 2020.

Jean Felicien Ihirwe 164

https://arxiv.org/abs/2109.09244
https://doi.org/10.1016/j.joes.2017.11.005
https://doi.org/10.1016/j.joes.2017.11.005
https://www.mdpi.com/2076-3417/11/15/6731
https://www.sciencedirect.com/science/article/pii/S0957582009000421
https://www.sciencedirect.com/science/article/pii/S0957582009000421
https://theses.hal.science/tel-03188299
https://doi.org/10.1007/978-1-4471-3431-2_6
https://doi.org/10.1145/581339.581406
https://doi.org/10.1145/332051.332078
https://doi.org/10.1145/332051.332078

BIBLIOGRAPHY

ISSN 2076-3417. doi: 10.3390/app10082670. URL https://www.mdpi.com/2076-3417/
10/8/2670.

[56] W.R. Dunn. Designing safety-critical computer systems. Computer, 36(11):40–46, 2003. doi:
10.1109/MC.2003.1244533.

[57] Raj kamal Kaur, Babita Pandey, and Lalit Kumar Singh. Dependability analysis of safety
critical systems: Issues and challenges. Annals of Nuclear Energy, 120:127–154, 2018.
ISSN 0306-4549. doi: https://doi.org/10.1016/j.anucene.2018.05.027. URL https://www.
sciencedirect.com/science/article/pii/S030645491730213X.

[58] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio, Massimo Tisi, and
Manuel Wimmer. Low-Code development and model-driven engineering: Two sides of the
same coin? Software and Systems Modeling, 21:437–446, 2022. ISSN 1619-1374. doi: 10.
1007/s10270-021-00970-2. URL https://doi.org/10.1007/s10270-021-00970-2.

[59] Luca Berardinelli, Alexandra Mazak, Oliver Alt, and Manuel Wimmer. Model-Driven Systems
Engineering: Principles and Application in the CPPS Domain, pages 261–299. 05 2017. ISBN
978-3-319-56344-2.

[60] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineering in
Practice. 2012. ISBN 9781608458820. doi: 10.2200/s00441ed1v01y201208swe001.

[61] Paulo F. Pires, Bruno Costa, Flávia C. Delicato, Wei Li, and Albert Y. Zomaya. De-
sign and analysis of IoT applications: A model driven approach. 2016 IEEE 14th Intl
Conf on Dependable, Autonomic and Secure Computing, pages 392–399, 2016. doi: 10.
1109/DASC-PICom-DataCom-CyberSciTec.2016.81. URL http://dx.doi.org/10.1109/
DASC-PICom-DataCom-CyberSciTec.2016.81.

[62] A. Bucchiarone, F. Ciccozzi, L. Lambers, A. Pierantonio, M. Tichy, M. Tisi, A. Wortmann, and
V. Zaytsev. What is the future of modeling? IEEE Software, 38(02):119–127, mar 2021. ISSN
1937-4194. doi: 10.1109/MS.2020.3041522.

[63] Jiwei Huang, Songyuan Li, Ying Chen, and Junliang Chen. Performance modeling and analysis
for iot services. International Journal of Web and Grid Services, 14:146, 01 2018. doi: 10.1504/
IJWGS.2018.090742.

[64] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pierantonio. Grand chal-
lenges in model-driven engineering: An analysis of the state of the research. Softw. Syst. Model.,
19(1):5–13, jan 2020. ISSN 1619-1366. doi: 10.1007/s10270-019-00773-6.

[65] Davide Di Ruscio, Mirco Franzago, Ivano Malavolta, and Henry Muccini. Envisioning the
future of collaborative model-driven software engineering. Proceedings - 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion, ICSE-C 2017, (May):219–221,
2017. doi: 10.1109/ICSE-C.2017.143.

[66] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang. A vision of iot: Applications, challenges, and
opportunities with china perspective. IEEE Internet of Things Journal, 1(4):349–359, 2014.

[67] Ábel Hegedüs, Gábor Bergmann, Csaba Debreceni, Ákos Horváth, Péter Lunk, Ákos Meny-
hért, István Papp, Dániel Varró, Tomas Vileiniskis, and István Ráth. Incquery server for team-
work cloud: Scalable query evaluation over collaborative model repositories. 21st ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, MODELS-Companion 2018, pages 27–31, 2018. doi: 10.1145/3270112.3270125.

Jean Felicien Ihirwe 165

https://www.mdpi.com/2076-3417/10/8/2670
https://www.mdpi.com/2076-3417/10/8/2670
https://www.sciencedirect.com/science/article/pii/S030645491730213X
https://www.sciencedirect.com/science/article/pii/S030645491730213X
https://doi.org/10.1007/s10270-021-00970-2
http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.81
http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.81

BIBLIOGRAPHY

[68] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M.Roveri, R. Sebastiani,
and A. Tacchella. NuSMV 2: An opensource tool for symbolic model checking. Technical
report, University of Trento, Berlin, Heidelberg, 2002.

[69] Dang Tu Nguyen, Chengyu Song, Zhiyun Qian, Srikanth V. Krishnamurthy, Edward J. M.
Colbert, and Patrick McDaniel. IotSan: Fortifying the safety of IoT systems. In Proceed-
ings of the 14th International Conference on Emerging Networking EXperiments and Tech-
nologies, CoNEXT ’18, pages 191–203, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450360807. doi: 10.1145/3281411.3281440. URL https:
//doi.org/10.1145/3281411.3281440.

[70] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37(4):316–344, dec 2005. ISSN 0360-0300. doi:
10.1145/1118890.1118892. URL https://doi.org/10.1145/1118890.1118892.

[71] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition, 2010.
ISBN 0321712943. URL https://dl.acm.org/doi/10.5555/1809745.

[72] Henry Muccini and Mohammad Sharaf. CAPS: Architecture description of situational aware
cyber physical systems. In 2017 IEEE International Conference on Software Architecture
(ICSA), pages 211–220, 2017. doi: 10.1109/ICSA.2017.21.

[73] Nicolas Ferry and et al. Development and operation of trustworthy smart iot systems: The
ENACT framework. In Software Engineering Aspects of Continuous Development and New
Paradigms of Software Production and Deployment, pages 121–138, 2020. ISBN 978-3-030-
39306-9.

[74] Imad Berrouyne, Mehdi Adda, Jean-Marie Mottu, Jean-Claude Royer, and Massimo Tisi.
CyprIoT: framework for modeling and controlling network-based IoT applications. In In 34th
ACM/SIGAPP Symposium on Applied Computing, pages 832–841, 2019.

[75] Atefeh Torkaman and M.A.Seyyedi. Analyzing IoT referencearchitecture models. International
Journal of Computer Science and Software Engineering (IJCSSE), 5, 2016. ISSN 2409-4285.

[76] ISO & ICE. Study report on IoT reference architec-
tures/frameworks, "August 2014". URL http://docplayer.net/
16351625-Study-report-on-iot-reference-architectures-frameworks.html.
July 2020.

[77] Paul Fremantle. A reference architecture for the internet of things, 10
2015. URL https://wso2.com/wso2_resources/wso2_whiteapproach_
a-reference-architecture-for-the-internet-of-things.pdf.

[78] ESA Requirements and Standards Division. Space Product Assurance - Fault Tree Analysis
- Adoption Notice ECSS/IEC 61025. ESA Publ. Division, 2008. URL https://ecss.nl/
standards/active-standards/.

[79] ESA Requirements and Standards Division. Failure modes, effects (and criticality) anal-
ysis (FMEA/FMECA). ESA Publ. Division, 2009. URL https://ecss.nl/standards/
active-standards/.

[80] Jacopo Parri, Samuele Sampietro, and Enrico Vicario. FaultFlow: a tool supporting an mde
approach for timed failure logic analysis. In 2021 17th European Dependable Computing Con-
ference (EDCC), pages 25–32, 2021. doi: 10.1109/EDCC53658.2021.00011.

Jean Felicien Ihirwe 166

https://doi.org/10.1145/3281411.3281440
https://doi.org/10.1145/3281411.3281440
https://doi.org/10.1145/1118890.1118892
https://dl.acm.org/doi/10.5555/1809745
http://docplayer.net/16351625-Study-report-on-iot-reference-architectures-frameworks.html
http://docplayer.net/16351625-Study-report-on-iot-reference-architectures-frameworks.html
https://wso2.com/wso2_resources/wso2_whiteapproach_a-reference-architecture-for-the-internet-of-things.pdf
https://wso2.com/wso2_resources/wso2_whiteapproach_a-reference-architecture-for-the-internet-of-things.pdf
https://ecss.nl/standards/active-standards/
https://ecss.nl/standards/active-standards/
https://ecss.nl/standards/active-standards/
https://ecss.nl/standards/active-standards/

BIBLIOGRAPHY

[81] Malcolm Wallace. Modular architectural representation and analysis of fault propagation
and transformation. Electronic Notes in Theoretical Computer Science, 141(3):53–71, 2005.
ISSN 1571-0661. doi: https://doi.org/10.1016/j.entcs.2005.02.051. URL http://www.
sciencedirect.com/science/article/pii/S1571066105051650. FESCA 2005.

[82] Leonardo Montecchi and Barbara Gallina. SafeConcert: A metamodel for a concerted safety
modeling of socio-technical systems. In Marco Bozzano and Yiannis Papadopoulos, editors,
Model-Based Safety and Assessment, pages 129–144, Cham, 2017. Springer International Pub-
lishing. ISBN 978-3-319-64119-5.

[83] Diomidis H Stamatis. Failure mode and effect analysis: FMEA from theory to execution. Qual-
ity Press, 2003.

[84] Xiangyu Han and Jun Zhang. A combined analysis method of FMEA and FTA for improving
the safety analysis quality of safety-critical software. In 2013 IEEE International Conference
on Granular Computing (GrC), pages 353–356, 2013. URL https://doi.org/10.1109/
GrC.2013.6740435.

[85] Mohsen Marjani, Fariza Nasaruddin, Abdullah Gani, Ahmad Karim, Ibrahim Abaker Targio
Hashem, Aisha Siddiqa, and Ibrar Yaqoob. Big IoT Data Analytics: Architecture, Opportuni-
ties, and Open Research Challenges. IEEE Access, 5:5247–5261, 2017. ISSN 21693536. doi:
10.1109/ACCESS.2017.2689040.

[86] Laith Farhan, Sinan T. Shukur, Ali E. Alissa, Mohmad Alrweg, Umar Raza, and Rupak Kharel.
A survey on the challenges and opportunities of the Internet of Things (IoT). Proceedings
of the International Conference on Sensing Technology, ICST, 2017-Decem(December):1–5,
2017. ISSN 21568073. doi: 10.1109/ICSensT.2017.8304465.

[87] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pierantonio. Sup-
porting the understanding and comparison of low-code development platforms. In 2020 46th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pages
171–178, 2020. doi: 10.1109/SEAA51224.2020.00036. URL https://doi.org/10.1109/
SEAA51224.2020.00036.

[88] Jordi Cabot. Positioning of the low-code movement within the field of model-driven engi-
neering. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, MODELS ’20, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450381352. doi: 10.1145/
3417990.3420210. URL https://doi.org/10.1145/3417990.3420210.

[89] Node-RED. Node-RED: Low-code programming for event-driven applications.
https://nodered.org/, 2020. URL https://nodered.org/. Last accessed May 2020.

[90] AtmosphereIoT. Fast time to first data. https://atmosphereiot.com/, 2020. URL https://
atmosphereiot.com/. Last accessed May 2020.

[91] Darnell Kenebrew. The difference between a software developer and a soft-
ware engineer, Jan 2023. URL https://www.computerscience.org/resources/
software-developer-vs-software-engineer/.

[92] RapidMiner Team. Amplify the impact of your people, expertise data, Oct 2022. URL https:
//rapidminer.com/.

[93] Shalin Hai-Jew. Running a ‘deep learning’artificial neural network in rapidminer studio. C2C
Digital Magazine, 1(10):17, 2019.

Jean Felicien Ihirwe 167

http://www.sciencedirect.com/science/article/pii/S1571066105051650
http://www.sciencedirect.com/science/article/pii/S1571066105051650
https://doi.org/10.1109/GrC.2013.6740435
https://doi.org/10.1109/GrC.2013.6740435
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1145/3417990.3420210
https://nodered.org/
https://atmosphereiot.com/
https://atmosphereiot.com/
https://www.computerscience.org/resources/software-developer-vs-software-engineer/
https://www.computerscience.org/resources/software-developer-vs-software-engineer/
https://rapidminer.com/
https://rapidminer.com/

BIBLIOGRAPHY

[94] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter, Thorsten
Meinl, Peter Ohl, Kilian Thiel, and Bernd Wiswedel. Knime - the konstanz information miner:
Version 2.0 and beyond. SIGKDD Explor. Newsl., 11(1):26–31, nov 2009. ISSN 1931-0145.
doi: 10.1145/1656274.1656280. URL https://doi.org/10.1145/1656274.1656280.

[95] Panagiotis Kourouklidis, Dimitris Kolovos, Joost Noppen, and Nicholas Matragkas. A model-
driven engineering approach for monitoring machine learning models. In 2021 ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C), pages 160–164, 2021. doi: 10.1109/MODELS-C53483.2021.00028.

[96] Lissette Almonte, Esther Guerra, Iván Cantador, and Juan De Lara. Building Recommenders
for Modelling Languages with Droid. Association for Computing Machinery, New York, NY,
USA, 2023. ISBN 9781450394758. URL https://doi.org/10.1145/3551349.3559521.

[97] Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador, and Juan de Lara. Au-
tomating the synthesis of recommender systems for modelling languages. In Proceedings
of the 14th ACM SIGPLAN International Conference on Software Language Engineering,
SLE 2021, page 22–35, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450391115. doi: 10.1145/3486608.3486905. URL https://doi.org/10.1145/
3486608.3486905.

[98] Claudio Di Sipio, Juri Rocco, Davide Di Ruscio, and Phuong Nguyen. Lev4rec: A low-code
environment to support the development of recommender systems, 04 2022.

[99] Antonio Cicchetti, Federico Ciccozzi, Silvia Mazzini, Stefano Puri, Marco Panunzio, Alessan-
dro Zovi, and Tullio Vardanega. CHESS: a model-driven engineering tool environment for aid-
ing the development of complex industrial systems. In 2012 Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, pages 362–365, 2012. doi:
10.1145/2351676.2351748.

[100] W. Godard and Geoffrey Nelissen. Model-based design and schedulability analysis for avionic
applications on multicore platforms. Ada User Journal, 37(3):157–163, 09 2016. ISSN 1381-
6551.

[101] L. Bressan, A. L. de Oliveira, L. Montecchi, and B. Gallina. A systematic process for applying
the CHESS methodology in the creation of certifiable evidence. In EDCC, pages 49–56, 2018.

[102] Lorenzo Pace, Mauro Pasquinelli, Diego Gerbaz, Joachim Fuchs, Valter Basso, S. Mazzini,
Laura Baracchi, Stefano Puri, Marco Lassalle, and Juhani Viitaniemi. Model-based approach
for the verification enhancement across the lifecycle of a space system. In INCOSE CIISE2014,
10 2014.

[103] Silvia Mazzini. The CONCERTO project: An open source methodology for designing, deploy-
ing, and operating reliable and safe cps systems. Ada User Journal, 36:264–267, December
2015.

[104] B. Gallina, E. Sefer, and A. Refsdal. Towards safety risk assessment of socio-technical systems
via failure logic analysis. In ISSRE Workshops, pages 287–292, 2014.

[105] Mahmood Shafiee, Evenye Enjema, and Athanasios Kolios. An integrated FTA-FMEA model
for risk analysis of engineering systems: A case study of subsea blowout preventers. Applied
Sciences, 9(6):1192, Mar 2019. ISSN 2076-3417. doi: 10.3390/app9061192. URL http:
//dx.doi.org/10.3390/app9061192.

[106] Laura Baracchi Silvia Mazzini, John Favaro. A model-based approach across the IoT lifecycle
for scalable and distributed smart applications. pages 149–154, 2015. doi: 10.1109/ITSC.2015.
33.

Jean Felicien Ihirwe 168

https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/3551349.3559521
https://doi.org/10.1145/3486608.3486905
https://doi.org/10.1145/3486608.3486905
http://dx.doi.org/10.3390/app9061192
http://dx.doi.org/10.3390/app9061192

BIBLIOGRAPHY

[107] Marco Panunzio and Tullio Vardanega. A component-based process with separation of concerns
for the development of embedded real-time software systems. Journal of Systems and Software,
96:105–121, 2014. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2014.05.076. URL
http://www.sciencedirect.com/science/article/pii/S0164121214001381.

[108] A. Bondavalli, I. Mura, S. Chiaradonna, R. Filippini, S. Poli, and F. Sandrini. DEEM: a tool
for the dependability modeling and evaluation of multiple phased systems. In DSN 2000, pages
231–236, 2000. doi: 10.1109/ICDSN.2000.857541.

[109] Leonardo Montecchi, Paolo Lollini, and Andrea Bondavalli. A reusable modular toolchain for
automated dependability evaluation. In VALUETOOLS, pages 298–303. ICST, 2013. ISBN
9781936968480. doi: 10.4108/icst.valuetools.2013.254395. URL https://doi.org/10.
4108/icst.valuetools.2013.254395.

[110] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mari-
otti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuXmv Sym-
bolic Model Checker. In Armin Biere and Roderick Bloem, editors, CAV, pages 334–342,
Cham, 2014. Springer. ISBN 978-3-319-08867-9. doi: 10.1007/978-3-319-08867-9_22. URL
https://doi.org/10.1007/978-3-319-08867-9_22.

[111] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta. OCRA: A tool for checking the
refinement of temporal contracts. In 2013 28th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 702–705, 2013. doi: 10.1109/ASE.2013.6693137.

[112] Marco Bozzano, Alessandro Cimatti, Marco Gario, David Jones, and Cristian Mattarei. Model-
based safety assessment of a triple modular generator with xsap. Formal Aspects of Computing,
33, 04 2021. doi: 10.1007/s00165-021-00532-9.

[113] Marco Bozzano, Alessandro Cimatti, Cristian Mattarei, and Stefano Tonetta. Formal safety
assessment via contract-based design. In ATVA, pages 81–97. Springer, 2014.

[114] Benjamin Bittner, Marco Bozzano, Roberto Cavada, Alessandro Cimatti, Marco Gario, Al-
berto Griggio, Cristian Mattarei, Andrea Micheli, and Gianni Zampedri. The xSAP Safety
Analysis Platform. In Marsha Chechik and Jean-François Raskin, editors, TACAS, pages
533–539, Berlin, Heidelberg, 2016. Springer. ISBN 978-3-662-49674-9. doi: 10.1007/
978-3-662-49674-9_31. URL https://doi.org/10.1007/978-3-662-49674-9_31.

[115] M. Bozzano and A. Villafiorita. Safety critical systems. In Encyclopedia of Software Engineer-
ing. CRC Press (Taylor & Francis Group), USA, 1st edition, 2013. ISBN 1439803315. doi:
https://doi.org/10.5555/1951720.

[116] T. Courtney, S. Gaonkar, K. Keefe, E. W. D. Rozier, and W. H. Sanders. Möbius 2.3: An
extensible tool for dependability, security, and performance evaluation of large and complex
system models. In DSN, pages 353–358, 2009. doi: 10.1109/DSN.2009.5270318.

[117] P. Popov. Models of reliability of fault-tolerant software under cyber-attacks. In ISSRE, pages
228–239, 2017.

[118] Eclipse Foundation. Qvto, . URL https://wiki.eclipse.org/QVTo.

[119] Eclipse Foundation. Generate anything from any emf model, . URL https://www.eclipse.
org/acceleo/.

[120] Stéphane Bonnet, Jean-Luc Voirin, Véronique Normand, and Daniel Exertier. Implementing
the MBSE cultural change: Organization, coaching and lessons learned. INCOSE International
Symposium, 25(1):508–523, 2015. doi: 10.1002/j.2334-5837.2015.00078.x.

Jean Felicien Ihirwe 169

http://www.sciencedirect.com/science/article/pii/S0164121214001381
https://doi.org/10.4108/icst.valuetools.2013.254395
https://doi.org/10.4108/icst.valuetools.2013.254395
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-662-49674-9_31
https://wiki.eclipse.org/QVTo
https://www.eclipse.org/acceleo/
https://www.eclipse.org/acceleo/

BIBLIOGRAPHY

[121] Marco Bozzano, Harold Bruintjes, Alessandro Cimatti, Joost-Pieter Katoen, Thomas Noll, and
Stefano Tonetta. COMPASS 3.0. In TACAS, pages 379–385. Springer, 2019. doi: 10.1007/
978-3-030-17462-0_25. URL https://doi.org/10.1007/978-3-030-17462-0_25.

[122] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A
Cyber-Physical Approach. Wiley-IEEE Press, 2 edition, April 2015. ISBN 978-1-118-85912-4.

[123] Jia Ming Cao and Tao Wu. Multi-domain modeling simulation and application based on
MapleSim. In Mechatronics and Intelligent Materials III, volume 706, pages 1894–1897. Trans
Tech Publications Ltd, 7 2013. doi: 10.4028/www.scientific.net/AMR.706-708.1894.

[124] Mendix. Mendix: IoT application development with a low-code platform.
https://www.mendix.com/building-iot-applications/, 2020. Last accessed May 2020.

[125] Paul Vincent, Kimihiko Iijima, Mark Driver, Jason Wong, and Yefim Natis. Magic quadrant
for enterprise Low-Code application platforms. https://www.gartner.com/, 2019. Last accessed
June 2020.

[126] Salesforce. Salesforce news, features and certifications. Online, 2023. URL https://www.
salesforceben.com. Accessed February 2023.

[127] ThingWorx ThingWorx. ThingWorx: Industrial IoT software: IIot platform, Feb 2023. URL
https://www.ptc.com/en/products/thingworx.

[128] Microsoft Corporation. Business application platform | microsoft power platform, Feb 2023.
URL https://powerplatform.microsoft.com/en-us/.

[129] Amazon. Aws IoT core: Easily and securely connect devices to the cloud, Feb 2023. URL
https://aws.amazon.com/iot-core/.

[130] IBM Watson IoT platform, Sep 2015. URL https://internetofthings.ibmcloud.com/.

[131] Simplifier. Simplifier: Enterprise apps made simple. https://www.simplifier.io/en/, 2020. Last
accessed May 2020.

[132] Google Cloud. Cloud IoT core | google cloud. URL https://cloud.google.com/iot-core.

[133] A. Salihbegovic, T. Eterovic, E. Kaljic, and S. Ribic. Design of a domain specific language and
ide for internet of things applications. In 2015 38th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), pages 996–1001,
2015. doi: 10.1109/MIPRO.2015.7160420.

[134] Fabrizio F. Borelli, Gabriela O. Biondi, and Carlos A. Kamienski. BIoTA: A buildout IoT
application language. IEEE Access, 8:126443–126459, 2020. doi: 10.1109/ACCESS.2020.
3003694.

[135] Jussi Kiljander, Janne Takalo-Mattila, Matti Etelapera, Juha-Pekka Soininen, and Kari Keina-
nen. Enabling end-users to configure smart environments. In 2011 IEEE/IPSJ International
Symposium on Applications and the Internet, pages 303–308, 2011. doi: 10.1109/SAINT.2011.
58.

[136] Jagni Dasa Horta Bezerra and Cidcley Teixeira de Souza. A model-based approach to generate
reactive and customizable user interfaces for the web of things. In Proceedings of the 25th
Brazillian Symposium on Multimedia and the Web, WebMedia ’19, page 57–60, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367639. doi: 10.1145/
3323503.3360631.

Jean Felicien Ihirwe 170

https://doi.org/10.1007/978-3-030-17462-0_25
https://www.salesforceben.com
https://www.salesforceben.com
https://www.ptc.com/en/products/thingworx
https://powerplatform.microsoft.com/en-us/
https://aws.amazon.com/iot-core/
https://internetofthings.ibmcloud.com/
https://cloud.google.com/iot-core

BIBLIOGRAPHY

[137] Flavio Corradini, Arianna Fedeli, Fabrizio Fornari, Andrea Polini, and Barbara Re. FloWare:
An Approach for IoT Support and Application Development. In Adriano Augusto, Asif Gill,
Selmin Nurcan, Iris Reinhartz-Berger, Rainer Schmidt, and Jelena Zdravkovic, editors, En-
terprise, Business-Process and Information Systems Modeling, pages 350–365, Cham, 2021.
Springer International Publishing. ISBN 978-3-030-79186-5.

[138] Guillermo Cueva-Fernandez, Jordán Pascual Espada, Vicente García-Díaz, Cristian González
García, and Nestor Garcia-Fernandez. Vitruvius: An expert system for vehicle sensor tracking
and managing application generation. Journal of Network and Computer Applications, 42:178–
188, 2014. ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2014.02.013. URL https:
//doi.org/10.1016/j.jnca.2014.02.013.

[139] Cristian González García, B. Cristina Pelayo G-Bustelo, Jordán Pascual Espada, and Guillermo
Cueva-Fernandez. MIDGAR: Generation of heterogeneous objects interconnecting applica-
tions. a domain specific language proposal for internet of things scenarios. Computer Networks,
64:143–158, may 2014. ISSN 1389-1286. doi: https://doi.org/10.1016/j.comnet.2014.02.010.
URL https://doi.org/10.1016/j.comnet.2014.02.010.

[140] Wajid Rafique, Xuan Zhao, Shui Yu, Ibrar Yaqoob, Muhammad Imran, and Wanchun Dou. An
application development framework for internet-of-things service orchestration. IEEE Internet
of Things Journal, 7(5):4543–4556, 2020. doi: 10.1109/JIOT.2020.2971013. URL http:
//dx.doi.org/10.1109/JIOT.2020.2971013.

[141] Manfred Sneps-Sneppe and Dmitry Namiot. On web-based domain-specific language for in-
ternet of things. In 2015 7th International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT), pages 287–292, 2015. doi: 10.1109/ICUMT.2015.
7382444.

[142] Robert Kleinfeld, Stephan Steglich, Lukasz Radziwonowicz, and Charalampos Doukas.
Glue.Things: A mashup platform for wiring the internet of things with the internet of services.
In Proceedings of the 5th International Workshop on Web of Things, WoT ’14, page 16–21,
New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450330664.
doi: 10.1145/2684432.2684436.

[143] Amir Taherkordi and Frank Eliassen. Scalable modeling of cloud-based IoT services for smart
cities. In 2016 IEEE International Conference on Pervasive Computing and Communication
Workshops (PerCom Workshops), pages 1–6, 2016. doi: 10.1109/PERCOMW.2016.7457098.

[144] Yannis Valsamakis and Anthony Savidis. Personal Applications in the Internet of Things
Through Visual End-User Programming. In Claudia Linnhoff-Popien, Ralf Schneider, and
Michael Zaddach, editors, Digital Marketplaces Unleashed, pages 809–821, Berlin, Hei-
delberg, 2018. Springer Berlin Heidelberg. ISBN 978-3-662-49275-8. doi: 10.1007/
978-3-662-49275-8_71. URL https://doi.org/10.1007/978-3-662-49275-8_71.

[145] Yi Xu and Abdelsalam Helal. Scalable cloud–sensor architecture for the internet of things.
IEEE Internet of Things Journal, 3(3):285–298, 2016. doi: 10.1109/JIOT.2015.2455555.

[146] Simon Mayer, Ruben Verborgh, Matthias Kovatsch, and Friedemann Mattern. Smart configu-
ration of smart environments. IEEE Transactions on Automation Science and Engineering, 13
(3):1247–1255, 2016. doi: 10.1109/TASE.2016.2533321.

[147] Badr El Khalyly, Mouad Banane, Allae Erraissi, and Abdessamad Belangour. InteroEvery:
Microservice based interoperable system. In 2020 International Conference on Decision Aid
Sciences and Application (DASA), pages 320–325, 2020. doi: 10.1109/DASA51403.2020.
9317159. URL http://dx.doi.org/10.1109/DASA51403.2020.9317159.

Jean Felicien Ihirwe 171

https://doi.org/10.1016/j.jnca.2014.02.013
https://doi.org/10.1016/j.jnca.2014.02.013
https://doi.org/10.1016/j.comnet.2014.02.010
http://dx.doi.org/10.1109/JIOT.2020.2971013
http://dx.doi.org/10.1109/JIOT.2020.2971013
https://doi.org/10.1007/978-3-662-49275-8_71
http://dx.doi.org/10.1109/DASA51403.2020.9317159

BIBLIOGRAPHY

[148] M. Hussein, S. Li, and A. Radermacher. Model-driven development of adaptive IoT systems. In
2017 MODELS Satellite Event, volume 2019, pages 17–23, Austin, United States, September
2017. CEUR-WS. doi: 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.81. URL https:
//hal-cea.archives-ouvertes.fr/cea-01843007.

[149] Mahmoud Hussein, Shuai Li, and Ansgar Radermacher. Model-driven development of adap-
tive IoT systems. 4th International Workshop on Interplay of Model-Driven Engineering
and Component-Based Software EngineeringAt: Austin, Texas, USA, 2017. URL https:
//www.researchgate.net/publication/319328820.

[150] Kleanthis Thramboulidis and Foivos Christoulakis. UML4IoT-A UML-based approach to ex-
ploit IoT in cyber-physical manufacturing systems. Comput. Ind., 82(C):259–272, oct 2016.
ISSN 0166-3615. doi: 10.1016/j.compind.2016.05.010. URL https://doi.org/10.1016/
j.compind.2016.05.010.

[151] Open Mobile Alliance. Lightweight machine to machine technical specification. Technical
Specification OMA-TS-LightweightM2M-V1, 2013.

[152] Armin Moin, Stephan Rössler, and Stephan Günnemann. ThingML+: Augmenting model-
driven software engineering for the internet of things with machine learning. MDE4IoT -
MODELS 2018, 2018.

[153] Claudio M. de Farias and Italo C. Brito et al. COMFIT: A development environment for the
internet of things. Future Generation Computer Systems, 75:128–144, 2017. ISSN 0167-739X.
doi: https://doi.org/10.1016/j.future.2016.06.031.

[154] Mohammad Sharaf, Mai Abusair, Rami Eleiwi, Yara Shana’a, Ithar Saleh, and Henry Muc-
cini. Modeling and code generation framework for IoT. In Pau Fonseca i Casas, Maria-Ribera
Sancho, and Edel Sherratt, editors, System Analysis and Modeling. Languages, Methods, and
Tools for Industry 4.0, pages 99–115, Cham, 2019. Springer International Publishing. ISBN
978-3-030-30690-8. doi: https://doi.org/10.1007/978-3-030-30690-8_6.

[155] S. Dhouib, A. Cuccuru, F. Le Fèvre, S. Li, B. Maggi, I. Paez, A. Rademarcher, N. Rapin,
J. Tatibouet, P. Tessier, S. Tucci, and S. Gerard. Papyrus for IoT – a modeling solution for IoT.
., 2016.

[156] Papyrus Moka team. Papyrus moka, 2019. URL https://wiki.eclipse.org/Papyrus/
UserGuide/ModelExecution.

[157] Ferry Pramudianto, Carlos Alberto Kamienski, Eduardo Souto, Fabrizio Borelli, Lucas L.
Gomes, Djamel Sadok, and Matthias Jarke. IoT Link: An internet of things prototyp-
ing toolkit. In 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and
2014 IEEE 11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intl
Conf on Scalable Computing and Communications and Its Associated Workshops, pages 1–
9, 2014. doi: 10.1109/UIC-ATC-ScalCom.2014.95. URL http://dx.doi.org/10.1109/
UIC-ATC-ScalCom.2014.95.

[158] Flavio Corradini, Arianna Fedeli, Fabrizio Fornari, Andrea Polini, Barbara Re, and Luca Rus-
chioni. X-IoT: a model-driven approach to support IoT application portability across IoT plat-
forms. Computing, 01 2023. doi: 10.1007/s00607-023-01155-z.

[159] Xuan Thang Nguyen, Huu Tam Tran, Harun Baraki, and Kurt Geihs. FRASAD: A framework
for model-driven IoT application development. In 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), pages 387–392, 2015. doi: 10.1109/WF-IoT.2015.7389085.

Jean Felicien Ihirwe 172

https://hal-cea.archives-ouvertes.fr/cea-01843007
https://hal-cea.archives-ouvertes.fr/cea-01843007
https://www.researchgate.net/publication/319328820
https://www.researchgate.net/publication/319328820
https://doi.org/10.1016/j.compind.2016.05.010
https://doi.org/10.1016/j.compind.2016.05.010
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
http://dx.doi.org/10.1109/UIC-ATC-ScalCom.2014.95
http://dx.doi.org/10.1109/UIC-ATC-ScalCom.2014.95

BIBLIOGRAPHY

[160] Thiago Nepomuceno, Tiago Carneiro, Paulo Henrique Maia, Muhammad Adnan, Thalyson
Nepomuceno, , and Alexander Martin. AutoIoT: a framework based on user-driven MDE for
generating IoT applications. The 35th ACM/SIGAPP Symposium on Applied Computing (SAC
’20), page 719–728, 2020. doi: https://doi.org/10.1145/3341105.3373873. URL https://
doi.org/10.1145/3341105.3373873.

[161] Dimitris Soukaras, Pankesh Pately, Hui Songz, and Sanjay Chaudhary. IoTSuite: A toolsuite for
prototyping internet of things applications. The 4th Workshop on on Computing and Network-
ing for Internet of Things (ComNet-IoT 2015), 2020. doi: https://doi.org/10.1145/3341105.
3373873.

[162] Nguyen Xuan Thang, Michael Zapf, and Kurt Geihs. Model driven development for data-
centric sensor network applications. In Proceedings of the 9th International Conference on
Advances in Mobile Computing and Multimedia, MoMM ’11, page 194–197, New York, NY,
USA, 2011. Association for Computing Machinery. ISBN 9781450307857. doi: 10.1145/
2095697.2095733. URL https://doi.org/10.1145/2095697.2095733.

[163] Arvid Butting, Arne Haber, Lars Hermerschmidt, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. Systematic language extension mechanisms for the montiarc architecture descrip-
tion language. In Anthony Anjorin and Huáscar Espinoza, editors, Modelling Foundations and
Applications, pages 53–70, Cham, 2017. Springer International Publishing. ISBN 978-3-319-
61482-3. doi: https://doi.org/10.1007/978-3-319-61482-3_4.

[164] Francisco Durán, Ajay Krishna, Michel Le Pallec, Radu Mateescu, and Gwen Salaün. Models
and analysis for user-driven reconfiguration of rule-based IoT applications. Internet of Things,
19:100515, 2022. ISSN 2542-6605. doi: https://doi.org/10.1016/j.iot.2022.100515.

[165] Ivan Alfonso, Kelly Garcés, Harold Castro, and Jordi Cabot. A model-based infrastructure for
the specification and runtime execution of self-adaptive IoT architectures. Computing, pages
1–24, 02 2023. doi: 10.1007/s00607-022-01145-7.

[166] Behailu Negash, Tomi Westerlund, Amir M Rahmani, Pasi Liljeberg, and Hannu Tenhunen.
DoS-IL: A Domain Specific Internet of Things Language for Resource Constrained Devices.
Procedia Computer Science, 109:416–423, 2017. ISSN 1877-0509. doi: https://doi.org/10.
1016/j.procs.2017.05.411.

[167] Fei Li, Michael Vögler, Markus Claeßens, and Schahram Dustdar. Towards automated IoT
application deployment by a cloud-based approach. In 2013 IEEE 6th International Conference
on Service-Oriented Computing and Applications, pages 61–68, 2013. doi: 10.1109/SOCA.
2013.12.

[168] Nicolas Ferry, Phu Nguyen, Hui Song, Pierre-Emmanuel Novac, Stéphane Lavirotte, Jean-
Yves Tigli, and Arnor Solberg. GeneSIS: Continuous orchestration and deployment of smart
IoT systems. In 2019 IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), volume 1, pages 870–875, 2019. doi: 10.1109/COMPSAC.2019.00127.

[169] ISOGRAPH. Fault tree analysis in reliability workbench, 2022. URL https://www.
isograph.com/. Last accessed May 2022.

[170] Jacopo Parri, Fulvio Patara, Samuele Sampietro, and Enrico Vicario. A framework for model-
driven engineering of resilient software-controlled systems. Computing, 103, 04 2021. doi:
10.1007/s00607-020-00841-6.

[171] Faida Mhenni, Nga Nguyen, and Jean-Yves Choley. Automatic fault tree generation from
SysML system models. In 2014 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, pages 715–720, 2014. doi: 10.1109/AIM.2014.6878163.

Jean Felicien Ihirwe 173

https://doi.org/10.1145/3341105.3373873
https://doi.org/10.1145/3341105.3373873
https://doi.org/10.1145/2095697.2095733
https://www.isograph.com/
https://www.isograph.com/

BIBLIOGRAPHY

[172] Nataliya Yakymets, Hadi Jaber, and Agnes Lanusse. Model-based system engineering for fault
tree generation and analysis. In Proceedings of the 1st International Conference on Model-
Driven Engineering and Software Development - Volume 1: MODELSWARD,, pages 210–214.
INSTICC, SciTePress, 2013. ISBN 978-989-8565-42-6. doi: 10.5220/0004346902100214.

[173] Tatiana Prosvirnova. AltaRica 3.0: a Model-Based approach for Safety Analyses. Theses,
Ecole Polytechnique, November 2014. URL https://pastel.archives-ouvertes.fr/
tel-01119730.

[174] Hamed Fazlollahtabar and Seyed Niaki. Fault tree analysis for reliability evaluation of an
advanced complex manufacturing system. Journal of Advanced Manufacturing Systems, 17:
107–118, 03 2018. doi: 10.1142/S0219686718500075.

[175] Kester Clegg, Mole Li, David Stamp, Alan Grigg, and John McDermid. Integrating existing
safety analyses into SysML. In Yiannis Papadopoulos, Koorosh Aslansefat, Panagiotis Kat-
saros, and Marco Bozzano, editors, Model-Based Safety and Assessment, pages 63–77, Cham,
2019. Springer International Publishing. ISBN 978-3-030-32872-6.

[176] Kester Clegg, Mole Li, David Stamp, Alan Grigg, and John McDermid. A SysML profile
for fault trees—linking safety models to system design. In Alexander Romanovsky, Elena
Troubitsyna, and Friedemann Bitsch, editors, Computer Safety, Reliability, and Security, pages
85–93, Cham, 2019. Springer International Publishing. ISBN 978-3-030-26601-1.

[177] Jianwen Xiang and Kazuo Yanoo. Automatic static fault tree analysis from system models.
In 2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing, pages
241–242, 2010. doi: 10.1109/PRDC.2010.35.

[178] Moomen Chaari, Wolfgang Ecker, Thomas Kruse, Cristiano Novello, and Bogdan-Andrei
Tabacaru. Transformation of failure propagation models into fault trees for safety evaluation
purposes. In 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshop (DSN-W), pages 226–229, 2016. doi: 10.1109/DSN-W.2016.18.

[179] Stefanos Katsavounis, Nikolaos Patsianis, E. Konstantinidis, and Pantelis Botsaris. Reliability
analysis on crucial subsystems of a wind turbine through FTA approach. 09 2014. doi: 10.
13140/2.1.2524.3849.

[180] Ivanovitch Silva, Rafael Leandro, Daniel Macedo, and Luiz Affonso Guedes. A dependability
evaluation tool for the internet of things. Computers & Electrical Engineering, 39(7):2005–
2018, 2013. ISSN 0045-7906. doi: https://doi.org/10.1016/j.compeleceng.2013.04.021. URL
https://www.sciencedirect.com/science/article/pii/S0045790613001171.

[181] Yingyi Chen, Zhumi Zhen, Huihui Yu, and Jing Xu. Application of fault tree analysis and
fuzzy neural networks to fault diagnosis in the internet of things (IoT) for aquaculture. Sensors,
17(1), 2017. ISSN 1424-8220. doi: 10.3390/s17010153. URL https://www.mdpi.com/
1424-8220/17/1/153.

[182] Liudong Xing, Massarrah Tannous, Vinod M. Vokkarane, Honggang Wang, and Jun Guo. Reli-
ability modeling of mesh storage area networks for internet of things. IEEE Internet of Things
Journal, 4(6):2047–2057, 2017. doi: 10.1109/JIOT.2017.2749375.

[183] Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Jean Vanderdonckt. Euphoria: A scalable,
event-driven architecture for designing interactions across heterogeneous devices in smart en-
vironments. Information and Software Technology, 109:43–59, 2019. ISSN 0950-5849. URL
https://doi.org/10.1016/j.infsof.2019.01.006.

Jean Felicien Ihirwe 174

https://pastel.archives-ouvertes.fr/tel-01119730
https://pastel.archives-ouvertes.fr/tel-01119730
https://www.sciencedirect.com/science/article/pii/S0045790613001171
https://www.mdpi.com/1424-8220/17/1/153
https://www.mdpi.com/1424-8220/17/1/153
https://doi.org/10.1016/j.infsof.2019.01.006

BIBLIOGRAPHY

[184] Gökhan Kahraman and Semih Bilgen. A framework for qualitative assessment of domain-
specific languages. Softw. Syst. Model., 14(4):1505–1526, oct 2015. ISSN 1619-1366. doi:
10.1007/s10270-013-0387-8. URL https://doi.org/10.1007/s10270-013-0387-8.

[185] Christian Moreira, Juan Cobos-Q, Wilson Valdez Solis, Cristina Sánchez-Zhunio, and Irene
Priscila Cedillo Orellana. Evaluating the usability in domain-specific languages. In Information
Systems Development: Crossing Boundaries between Development and Operations (DevOps)
in Information Systems (ISD2021 Proceedings), Valencia, Spain, September 8-10, 2021, 2021.
URL https://aisel.aisnet.org/isd2014/proceedings2021/hci/3.

[186] Mohamed Darwish and Essam Shehab. Framework for engineering design systems architec-
tures evaluation and selection: Case study. Procedia CIRP, 60:128–132, 2017. ISSN 2212-
8271. URL https://doi.org/10.1016/j.procir.2017.01.058. Complex Systems Engi-
neering and Development Proceedings of the 27th CIRP Design Conference Cranfield Univer-
sity, UK 10th – 12th May 2017.

[187] Miguel Goulão, Vasco Amaral, and Marjan Mernik. Quality in model-driven engineering: A
tertiary study. 24(3):601–633, sep 2016. ISSN 0963-9314. doi: 10.1007/s11219-016-9324-8.
URL https://doi.org/10.1007/s11219-016-9324-8.

[188] Diego X. Jara Juárez and Priscila Cedillo. Security of mobile cloud computing: A systematic
mapping study. In 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), pages 1–
6, 2017. doi: 10.1109/ETCM.2017.8247486. URL https://doi.org/10.1109/ETCM.2017.
8247486.

[189] John Estdale and Elli Georgiadou. Applying the ISO/IEC 25010 quality models to software
product. In Xabier Larrucea, Izaskun Santamaria, Rory V. O’Connor, and Richard Messnarz,
editors, Systems, Software and Services Process Improvement, pages 492–503, Cham, 2018.
Springer International Publishing. ISBN 978-3-319-97925-0. URL https://doi.org/10.
1007/978-3-319-97925-0_42.

[190] Jose Luis González, Roberto García, Josep Maria Brunetti, Rosa Gil, and Juan Manuel Gimeno.
SWET-QUM: A quality in use extension model for semantic web exploration tools. In Proceed-
ings of the 13th International Conference on Interacción Persona-Ordenador, INTERACCION
’12, New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450313148.
doi: 10.1145/2379636.2379651. URL https://doi.org/10.1145/2379636.2379651.

[191] Siamak Farshidi, Slinger Jansen, and Sven Fortuin. Model-driven development platform
selection: Four industry case studies. Softw. Syst. Model., 20(5):1525–1551, oct 2021.
ISSN 1619-1366. doi: 10.1007/s10270-020-00855-w. URL https://doi.org/10.1007/
s10270-020-00855-w.

[192] CONNECT Advisory Forum (CAF). Internet of things – the next revolution “a strategic reflec-
tion about an european approach to internet of things. Technical report, European Commission,
2014.

[193] Satya Nand. Environmental energy harvesting techniques to power standalone iot-equipped
sensor and its application in 5g communication. Emerging Science Journal, 4:116–126, 11
2021. doi: 10.28991/esj-2021-SP1-08.

[194] Amir H. Moin. Domain specific modeling (DSM) as a service for the internet of things &
services. In Internet of Things. User-Centric IoT. Springer, Cham, 2015. doi: 10.1007/
978-3-319-19656-5_47.

[195] Francesco Basciani, Juri Rocco, Davide Di Ruscio, Amleto Di Salle, Ludovico Iovino, and
Alfonso Pierantonio. MDEForge: An extensible web-based modeling platform. volume 1242,
09 2014.

Jean Felicien Ihirwe 175

https://doi.org/10.1007/s10270-013-0387-8
https://aisel.aisnet.org/isd2014/proceedings2021/hci/3
https://doi.org/10.1016/j.procir.2017.01.058
https://doi.org/10.1007/s11219-016-9324-8
https://doi.org/10.1109/ETCM.2017.8247486
https://doi.org/10.1109/ETCM.2017.8247486
https://doi.org/10.1007/978-3-319-97925-0_42
https://doi.org/10.1007/978-3-319-97925-0_42
https://doi.org/10.1145/2379636.2379651
https://doi.org/10.1007/s10270-020-00855-w
https://doi.org/10.1007/s10270-020-00855-w

BIBLIOGRAPHY

[196] Léa Brunschwig, Esther Guerra, and Juan de Lara. Towards access control for collaborative
modelling apps. In Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings, MODELS ’20, New
York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450381352. doi:
10.1145/3417990.3420201.

[197] Adriana Caione, Alessandro Fiore, Luca Mainetti, Luigi Manco, and Roberto Vergallo. Chapter
13 - WoX: Model-Driven Development of Web of Things Applications. In Quan Z Sheng,
Yongrui Qin, Lina Yao, and Boualem Benatallah, editors, Managing the Web of Things, pages
357–387. Morgan Kaufmann, Boston, 2017. ISBN 978-0-12-809764-9. doi: https://doi.org/10.
1016/B978-0-12-809764-9.00017-2.

[198] Darko Androcec and Neven Vrcek. Thing as a service interoperability: Review and framework
proposal. In 2016 IEEE 4th International Conference on Future Internet of Things and Cloud
(FiCloud), pages 309–316, 2016. doi: 10.1109/FiCloud.2016.51.

[199] Giancarlo Fortino, Claudio Savaglio, Giandomenico Spezzano, and MengChu Zhou. Internet
of things as system of systems: A review of methodologies, frameworks, platforms, and tools.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1):223–236, 2021. doi:
10.1109/TSMC.2020.3042898.

[200] Andreas Wortmann, Benoit Combemale, and Olivier Barais. A systematic mapping study on
modeling for industry 4.0. In Proceedings of the ACM/IEEE 20th International Conference on
Model Driven Engineering Languages and Systems, MODELS ’17, page 281–291. IEEE Press,
2017. ISBN 9781538634929. doi: 10.1109/MODELS.2017.14.

[201] Sergio Teixeira, Bruno Alves Agrizzi, José Gonçalves Pereira Filho, Silvana Rossetto, and
Roquemar de Lima Baldam. Modeling and automatic code generation for wireless sensor
network applications using model-driven or business process approaches: A systematic map-
ping study. Journal of Systems and Software, 132:50–71, 2017. ISSN 0164-1212. doi:
https://doi.org/10.1016/j.jss.2017.06.024.

[202] Partha Pratim Ray. A Survey on Visual Programming Languages in Internet of Things. Scien-
tific Programming, 2017:1231430, 2017. ISSN 1058-9244. doi: 10.1155/2017/1231430.

[203] Christian Prehofer and Ilias Gerostathopoulos. Chapter 3 - Modeling RESTful Web of Things
Services: Concepts and Tools. In Quan Z Sheng, Yongrui Qin, Lina Yao, and Boualem Bena-
tallah, editors, Managing the Web of Things, pages 73–104. Morgan Kaufmann, Boston, 2017.
ISBN 978-0-12-809764-9. doi: https://doi.org/10.1016/B978-0-12-809764-9.00004-4.

[204] Jorge Biolchini, Paula Gomes Mian, Ana Candida Cruz Natali, and Guilherme Horta Travas-
sos. Systematic review in software engineering. System Engineering and Computer Science
Department COPPE/UFRJ, Technical Report ES, 679(05):45, 2005.

[205] Marco Brambilla, Eric Umuhoza, and Roberto Acerbis. Model-driven development of user
interfaces for IoT systems via domain-specific components and patterns. Journal of Internet
Services and Applications, 8(1):14, 2017. ISSN 1869-0238. doi: 10.1186/s13174-017-0064-1.

[206] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. Interoperability in Internet of
Things: Taxonomies and Open Challenges. Mobile Networks and Applications, 24(3):796–809,
2019. ISSN 15728153. doi: 10.1007/s11036-018-1089-9.

[207] Mauro Conti, Ali Dehghantanha, Katrin Franke, and Steve Watson. Internet of Things security
and forensics: Challenges and opportunities. Future Generation Computer Systems, 78:544–
546, 2018. ISSN 0167739X. doi: 10.1016/j.future.2017.07.060. URL http://dx.doi.org/
10.1016/j.future.2017.07.060.

Jean Felicien Ihirwe 176

http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.1016/j.future.2017.07.060

BIBLIOGRAPHY

[208] Eclipse Foundation. 2020 annual eclipse foundation community report, 2020. URL https:
//www.eclipse.org/org/foundation/reports/annual_report.php. Last accessed July
2021.

[209] Melanie Bats and Stephane Begaudeau. Sirius web: 100 URL https://www.eclipsecon.
org/2020/sessions/sirius-web-100-open-source-cloud-modeling-platform. Last
accessed July 2021.

[210] André Restivo, Hugo Sereno Ferreira, João Pedro Dias, and Margarida Silva. Visually-defined
real-time orchestration of IoT systems. 2020.

[211] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C.M. Leung. Developing IoT
applications in the fog: A distributed dataflow approach. In 2015 5th International Conference
on the Internet of Things (IOT), pages 155–162, 2015. doi: 10.1109/IOT.2015.7356560.

[212] João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Empowering visual internet-of-
things mashups with self-healing capabilities. arXiv preprint arXiv:2103.07395, 2021.

[213] Yun Mi Antorini and Albert M Muñiz. The Benefits and Challenges of Collaborating with
User Communities. Research-Technology Management, 56(3):21–28, 2013. doi: 10.5437/
08956308X5603931. URL https://doi.org/10.5437/08956308X5603931.

[214] Olaf David, Wes Lloyd, Ken Rojas, Mazdak Arabi, Frank Geter, James Ascough, Tim Green,
G. Leavesley, and Jack Carlson. Model-as-a-service (MaaS) using the Cloud Services Innova-
tion Platform (CSIP). Proceedings - 7th International Congress on Environmental Modelling
and Software: Bold Visions for Environmental Modeling, iEMSs 2014, 1:243–250, 2014.

[215] Faezeh Khorram, Jean-Marie Mottu, and Gerson Sunyé. Challenges & opportunities in Low-
Code testing. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, MODELS ’20, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450381352. doi: 10.1145/
3417990.3420204. URL https://doi.org/10.1145/3417990.3420204.

[216] Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley Long-
man Publishing Co., Inc., USA, 2nd edition, 2002. ISBN 0201729156. doi: 10.5555/559784.
URL https://dl.acm.org/doi/10.5555/559784.

[217] Maryoly Ortega and et al. Construction of a systemic quality model for evaluating a software
product. Softw. Qual. J., 11(3), 2003. URL https://doi.org/10.1023/A:1025166710988.

[218] Oleksandr Gordieiev, Vyacheslav Kharchenko, Nataliia Fominykh, and Vladimir Sklyar. Evo-
lution of software quality models in context of the standard ISO 25010. In Proceedings of the
Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX.
June 30 – July 4, 2014, Brunów, Poland, pages 223–232, Cham, 2014. ISBN 978-3-
319-07013-1. doi: 10.1007/978-3-319-07013-1_21. URL https://doi.org/10.1007/
978-3-319-07013-1_21.

[219] Marc-Alexis Côté, Witold Suryn, and Elli Georgiadou. In search for a widely applicable and
accepted software quality model for software quality engineering. Software Quality Journal,
15(4):401–416, dec 2007. ISSN 0963-9314. doi: 10.1007/s11219-007-9029-0. URL https:
//doi.org/10.1007/s11219-007-9029-0.

[220] Felicien Ihirwe, Davide Di Ruscio, Simone Gianfranceschi, and Alfonso Pierantonio. Software
product quality evaluation questionnaire for IoT LCDP&MDE, June 2022. URL https://
doi.org/10.5281/zenodo.6631200.

Jean Felicien Ihirwe 177

https://www.eclipse.org/org/foundation/reports/annual_report.php
https://www.eclipse.org/org/foundation/reports/annual_report.php
https://www.eclipsecon.org/2020/sessions/sirius-web-100-open-source-cloud-modeling-platform
https://www.eclipsecon.org/2020/sessions/sirius-web-100-open-source-cloud-modeling-platform
https://doi.org/10.5437/08956308X5603931
https://doi.org/10.1145/3417990.3420204
https://dl.acm.org/doi/10.5555/559784
https://doi.org/10.1023/A:1025166710988
https://doi.org/10.1007/978-3-319-07013-1_21
https://doi.org/10.1007/978-3-319-07013-1_21
https://doi.org/10.1007/s11219-007-9029-0
https://doi.org/10.1007/s11219-007-9029-0
https://doi.org/10.5281/zenodo.6631200
https://doi.org/10.5281/zenodo.6631200

BIBLIOGRAPHY

[221] Bruno A. Mozzaquatro, Ricardo Jardim-Goncalves, and Carlos Agostinho. Towards a refer-
ence ontology for security in the internet of things. In 2015 IEEE International Workshop on
Measurements & Networking (M&N), pages 1–6, 2015. doi: 10.1109/IWMN.2015.7322984.
URL https://doi.org/10.1109/IWMN.2015.7322984.

[222] Eric Bouwers, Jose Pedro Correia, Arie van Deursen, and Joost Visser. Quantifying the
analyzability of software architectures. In 2011 Ninth Working IEEE/IFIP Conference on
Software Architecture, pages 83–92, 2011. doi: 10.1109/WICSA.2011.20. URL https:
//doi.org/10.1109/WICSA.2011.20.

[223] Fahed Alkhabbas, Romina Spalazzese, Maura Cerioli, Maurizio Leotta, and Gianna Reg-
gio. On the deployment of IoT systems: An industrial survey. In 2020 IEEE Interna-
tional Conference on Software Architecture Companion (ICSA-C), pages 17–24, 2020. doi:
10.1109/ICSA-C50368.2020.00012.

[224] Gourav Shah. Ansible Playbook Essentials. Packt Publishing Ltd, 2015.

[225] M. Hussein, S. Li, and A. Radermacher. Model-driven development of adaptive IoT systems. In
2017 MODELS Satellite Event, volume 2019, pages 17–23, Austin, United States, September
2017. CEUR-WS. URL https://hal-cea.archives-ouvertes.fr/cea-01843007.

[226] Banks Andrew and Gupta Rahul. Mqtt version 3.1.1 plus errata 01 [online], December 2015.
URL http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html. Last Ac-
cessed: September 2020.

[227] Commission Electrotechnique Internationale. IEC 61025:2006 - Fault tree analysis (FTA). IEC
Standards Online, 2006. URL https://webstore.iec.ch/publication/4311.

[228] Barbara Gallina and Sasikumar Punnekkat. FI4FA: A formalism for incompletion, inconsis-
tency, interference and impermanence failures’ analysis. In 2011 37th EUROMICRO Con-
ference on Software Engineering and Advanced Applications, pages 493–500, 2011. doi:
10.1109/SEAA.2011.80.

[229] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The epsilon transformation lan-
guage. In Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, editors, Theory and Practice
of Model Transformations, pages 46–60, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
ISBN 978-3-540-69927-9. doi: https://doi.org/10.1007/978-3-540-69927-9_4.

[230] He Ren, Xi Chen, and Yong Chen. Chapter 6 - fault tree analysis for composite structural
damage. In He Ren, Xi Chen, and Yong Chen, editors, Reliability Based Aircraft Maintenance
Optimization and Applications, Aerospace Engineering, pages 115–131. Academic Press, 2017.
ISBN 978-0-12-812668-4. doi: https://doi.org/10.1016/B978-0-12-812668-4.00006-X. URL
https://www.sciencedirect.com/science/article/pii/B978012812668400006X.

[231] Fatemeh Afsharnia. Failure rate analysis. In Aidy Ali, editor, Failure Analysis and Prevention,
chapter 7. IntechOpen, Rijeka, 2017. doi: 10.5772/intechopen.71849. URL https://doi.
org/10.5772/intechopen.71849.

[232] P. Varady, Z. Benyo, and B. Benyo. An open architecture patient monitoring system using
standard technologies. IEEE Transactions on Information Technology in Biomedicine, 6(1):
95–98, 2002. doi: 10.1109/4233.992168.

[233] Philipp Hönig, Rüdiger Lunde, and Florian Holzapfel. Model based safety analysis with
smartiflow. Information, 8(1), 2017. ISSN 2078-2489. doi: 10.3390/info8010007. URL
https://www.mdpi.com/2078-2489/8/1/7.

Jean Felicien Ihirwe 178

https://doi.org/10.1109/IWMN.2015.7322984
https://doi.org/10.1109/WICSA.2011.20
https://doi.org/10.1109/WICSA.2011.20
https://hal-cea.archives-ouvertes.fr/cea-01843007
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://webstore.iec.ch/publication/4311
https://www.sciencedirect.com/science/article/pii/B978012812668400006X
https://doi.org/10.5772/intechopen.71849
https://doi.org/10.5772/intechopen.71849
https://www.mdpi.com/2078-2489/8/1/7

BIBLIOGRAPHY

[234] Arthur Henrique de Andrade Melani and Gilberto Francisco Martha de Souza. Obtain-
ing fault trees through SysML diagrams: A MBSE approach for reliability analysis. In
2020 Annual Reliability and Maintainability Symposium (RAMS), pages 1–5, 2020. doi:
10.1109/RAMS48030.2020.9153658.

[235] Brice Morin, Nicolas Harrand, and Franck Fleurey. Model-based software engineering to tame
the IoT jungle. IEEE Software, 34(1):30–36, 2017. doi: 10.1109/MS.2017.11.

[236] Gözde Karataş, Ferit Can, Gamze Doğan, Cemile Konca, and Akhan Akbulut. Multi-tenant
architectures in the cloud: A systematic mapping study. In 2017 International Artificial Intel-
ligence and Data Processing Symposium (IDAP), pages 1–4, 2017. doi: 10.1109/IDAP.2017.
8090268.

[237] Katharina Görlach and Frank Leymann. Dynamic service provisioning for the cloud. In 2012
IEEE Ninth International Conference on Services Computing, pages 555–561, 2012. doi: 10.
1109/SCC.2012.30.

[238] Felicien Ihirwe. Home automation system failure logic behavior rules, January 2023.

Jean Felicien Ihirwe 179

Funding

“This project has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant agreement No 813884”

Jean Felicien Ihirwe, Pisa, March 2023

	Abstract
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Challenges and motivation
	Main achieved research and technological results
	Structure of the dissertation

	Background
	The Internet of Things
	IoT system architecture
	Safety Critical Systems

	Model-Driven Engineering
	Domain Specific Languages in IoT
	MDE for IoT reference model
	Model-Based Safety Analysis

	Low-Code Engineering
	Low-Code Development Platforms
	Low-Code Engineering Platforms

	CHESS environment
	CHESS in nutshell
	Supported Model-based Analysis
	Related tools
	Conclusions

	IoT Engineering Platforms: a state of the art
	Low-Code Development Platforms for IoT
	General-purpose LCDPs for supporting IoT applications development
	IoT specific LCDPs for system modeling and development
	IoT specific LCDPs for service-oriented applications development

	Model-driven design and development of IoT systems
	MDE for deployment of IoT systems
	MDE for safety analysis of IoT systems
	Software product quality model for IoT LCEPs

	Limitations and open challenges of existing IoT Engineering Platforms
	Engineering IoT platforms
	Engineering IoT platforms features
	Findings
	Limitations
	Conclusion

	Cloud-based modeling in IoT domain
	Related cloud-based modeling studies
	Study design
	Findings
	Open challenges
	Opportunities
	Conclusion

	Assessing the quality of IoT Engineering Platforms
	Introduction
	Overview on Software Quality Models
	The product quality model
	Functional suitability
	Performance efficiency
	Compatibility
	Reliability
	Usability
	Security
	Maintainability
	Portability

	Quality assessment of IoT engineering platforms
	Selection of the evaluated IoT engineering platforms
	Research questions
	Assessment process

	Assessment results
	Discussion
	Model suitability
	Model limitations

	Conclusion and Future work

	CHESSIoT: An approach for engineering multi-layered IoT systems
	Introduction
	The CHESSIoT engineering methodology
	Motivating comparative analysis
	Selected platforms
	IoT modeling support
	IoT engineering capabilities

	The CHESSIoT domain specific language
	System-level DSL
	Software DSL
	Deployment metamodel

	Discussion
	Conclusion

	CHESSIoT safety analysis support for safety-critical IoT systems
	Introduction
	Proposed safety analysis approach
	Model-based safety analysis process
	FPTC Calculus
	CHESS2FLA transformation
	Fault-Tree generation
	Fault-Tree Analysis

	Evaluation process
	Evaluation process
	Motivating example: Patient Monitoring System (PMS)
	Research questions

	Experimental results
	Short literature review (RQ1)
	PMS system modeling (RQ2)
	System failure behavior (RQ3)
	PMS Fault tree analysis (RQ4)

	Conclusion and future work

	Supporting for development and deployment of IoT systems with CHESSIoT
	Introduction
	Software modeling and development approach
	Specification of CHESSIoT software models
	The CHESSIoT to ThingML transformation

	Model-based deployment plan and run-time services provisioning
	Deployment plan design
	Service provisioning design
	Deployment artifacts generation

	Case study: Home Automation System (HAS)
	HAS modeling and Fault-Tree analysis
	Software design and development
	Deployment and service provisioning

	Conclusion

	Conclusion and future work
	General contributions
	Publications
	Journal papers
	Conference papers
	Workshop papers
	Technical Reports

	Developed tools
	Future Directions

	Appendices
	Software product quality evaluation questionnaire for IoT LCDP and MDE
	Fault-Tree generation
	FLA2FT transformation rules
	FT2FT transformation:Qualitative and quantitative analysis

	Installing CHESSIoT extension on top of CHESS
	Bibliography

