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Abstract We argue that Left-Right parity symmetry P can
arise as a discrete remnant of a unified gauge symmetry.
The high-energy unification necessarily includes the gaug-
ing of the Lorentz symmetry, bringing into the game grav-
itational interactions, and leading to a gravi-GUT scheme.
Parity emerges unbroken below the Planck scale, and can be
broken spontaneously at lower energies making contact with
the Standard Model. This framework motivates the sponta-
neous origin of parity violation as in Left-Right symmetric
theories withP . The possible unifying gauge groups are iden-
tified as SO(1, 7) for gravitational and weak interactions, or
SO(7, 7) for a complete unification.

1 Introduction

The chiral asymmetry of weak interactions has been dis-
cussed since the seminal work of Lee and Yang on parity
violation [1], where the possibility of its restoration was
advocated in terms of mirror particles. Rather than dupli-
cating the matter spectrum, a different restoration of par-
ity is achieved in the popular Left-Right symmetric models
(LRSM) by extending the weak gauge group, as SUL(2) ×
SUR(2) × UB−L(1) [2–6], see [7] for a review.

Parity restoration demands a discrete symmetry exchang-
ing left with right, which can be realized either as a left-right
parity P or as a left-right charge conjugation C [8]. The latter
has a natural UV protection in SO(10) Grand Unified (GUT)
models, asC can be found among the gauge generators [9,10].
The former, on the other hand, is the original and preferred
choice if one aims for a true parity-conserving theory at high
energy but lacks a UV completion. In this Letter, we propose
a possible solution to this long-standing problem.

In analogy with C within SO(10), one would arrange P as
a generator of a unified gauge group, such that the discrete
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symmetry at low energy can be interpreted as a remnant of a
continuous one. However, this approach for P is hampered
by the fact that a continuous rotation mixing chiralities does
not commute with the Lorentz symmetry. Probably, this is
the main obstacle to formulating a theory of P . A possible
approach, rooted in the idea of Kaluza–Klein theories [11],
considers parity as part of the 5D Lorentz and coordinate
transformations so that it can be obtained as a discrete rem-
nant symmetry in 4D, an idea explicitly considered in e.g.
Ref. [12]. The price to pay in this approach is the depen-
dence on the unknown dynamics of dimensional reduction,
in addition to issues in anomaly matching [13,14].

However, since the crucial point is the non-commutation
of parity with the Lorentz symmetry, extra dimensions are
not strictly necessary: an effective and more economical
approach is to promote both as part of unified internal
gauge symmetry. At high energy, this internal symmetry is
completely disentangled from space-time diffeomorphisms,
while they are soldered below a breaking scale, where a stan-
dard Lorentzian physics emerges. This framework necessar-
ily brings into the game also gravity, in Cartan formulation.

In addition, since in the real world left and right fermions
have different weak charges, one shall mix parity not just
with Lorentz, but also with the Standard Model (SM) gauge
symmetries, leading to a unified group whose gauge fields
include the gravitational connection along with standard
gauge fields. This is the approach put forward in [15,16] and
implemented as gravi-weak or gravi-GUT setups [17–19].
The unifying group is spontaneously broken by a vacuum
expectation value (VEV) of an extended vierbein field at the
Planck scale, leading to an unbroken gauge subgroup plus
the residual global Lorentz symmetry, as we shall review
below.1

It is thus interesting to uncover the role of parity in this
framework. In the present Letter, we investigate the viabil-

1 For unifications involving extra dimensions, see [20–24].
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ity of this approach from the point of view of symmetries
and show that realizing parity will lead us to select a gravi-
weak scenario based on the SO(1, 7) gauge symmetry, and a
complete unification for SO(7, 7).

We will conceptually decompose Left-Right parity P in
two operations: the inversion of space Is and the internal
action on fields, which we name P . These two operations
can be disentangled at high energy, allowing for the gauging
of the internal part P , i.e. its protection. At low scale, they
are soldered and give rise to P . Thus, P is automatic and
protected by the gauging if the theory is assumed to respect
basic spatial inversion Is . If, on the other hand, we allow for
inversion-violating terms at high energy, still internal parity
is gauged and just a few P-breaking terms are allowed to
emerge, notably the topological QCD F F̃ term, unified with
its gravitational analogue RR̃.

Finally, we will argue that unlike the usual breaking of
gauge to discrete symmetries, the proposed framework does
not lead to cosmic strings.

We will discuss first the internal symmetry part and later
the breaking which connects with space-time, and finally the
implications of this idea.

Making parity action continuous
Looking at the action of parity on fields, and ignoring for the
moment the weak isospin, we denote, using a Weyl basis in
1+3 dimensions,

� =
(

ψL

ψR

)
, P = γ0 ≡

(
0 1
1 0

)
≡ 1 ⊗ σ1 . (1)

As usual, parity swaps fermions as

ψL ↔ ψR or � → P � . (2)

Now, the discrete P can be enlarged to a continuous sym-
metry U (1)P in the (ψL , ψR) space, as follows:

U (α) = ei
α
2 X (P−1) = e−i α

2 X
(

cos
α

2
+ i X P sin

α

2

)
, (3)

where X is any matrix which commutes with P and has
X2 = 1. As readily checked, parity is a rotation by π :

U (π) = P , U (0) = U (2π) = 1 . (4)

While X = 1 is a possibility, the other and more interesting
choice, to appear in the following, is X = niσi ⊗ 1 with
n2 = 1, for instance X = σ3 ⊗ 1.

Unifying with Lorentz group
To promote the above U (1)P to a gauge symmetry, one is
clearly faced with the fact that parity does not commute with
the action of the Lorentz group, in particular, it commutes
with angular momentum but not with boosts.

Thus Lorentz has to be included. The simplest and illus-
trative example is provided by enlarging the Lorentz group
to SO(1, 4), which contains 3D parity and has precisely � as

its non-chiral 4-dimensional spinor representation. Labeling
the internal directions as 0, . . . , 4, the new internal spacelike
direction 4 requires four new generators: three rotations Ri

in the i-4 planes, and one boost K4. One can write

Li = σi ⊗ 1
2

, Ki = iσi ⊗ σ3

2
,

Ri = σi ⊗ σ1

2
, K4 = i1 ⊗ σ2

2
. (5)

Now, one notes that the angular momentum Li commutes
with P and that Ri = Li P . Comparing then with (3) we see
that U (1)P is precisely generated by Li − Ri , for whichever
i = 1, 2, 3. Thus, parity is interpreted geometrically in terms
of the new spatial direction: choosing for instance i = 3,
parity P = U (π) consists of two simultaneous rotations by
π : one among 3–4 generated by X P = R3, and one among
1–2 generated by L3. After these π rotations, effectively the
123 directions are reversed (and so is 4). It leads thus to
spinor exchange (4) plus internal spatial reflection. Different
i imply different rotation planes, but after the π rotation the
final effect is the same.

This first example misses the fact that ψL and ψR in the
SM belong to different gauge multiplets. In particular, they
have different weak and hypercharge representations or, in
the language of LR symmetry, they transform under differ-
ent SU(2)L ,R groups. Therefore, a realistic example must
involve at least the weak interactions, as we shall discuss
now.

SO(1,7) example
SO(1,7) has a Majorana representation of real dimension 16,
that can be mapped into complex dimension 8 and that, under
the decomposition SO(1, 7) → SO(1, 3) × SO(0, 4), leads
precisely to the required pattern where ψL and ψR transform
as doublets under the SU(2)L , SU(2)R components of SO(4),

16R ≡ 8s → (2L , 1R, 2l) ⊕ (1L , 2R, 2r ). (6)

Here the first two slots refer to SU(2)L ,R and the last to
Lorentz, namely 2l , 2r for left and right Weyl spinors. It is
convenient to spell out the SO(1, 7) generators acting on 8s
as (2/ i)�M,N :

⎛
⎜⎜⎜⎜⎜⎜⎝

0 iσi ⊗ 1⊗ σ3 i1⊗ 1⊗ σ2 i1⊗ σb ⊗ σ1

−iσ j ⊗ 1⊗ σ3 εi jkσk ⊗ 1⊗ 1 −σ j ⊗ 1⊗ σ1 σb ⊗ σ j ⊗ σ2

−i1⊗ 1⊗ σ2 σi ⊗ 1⊗ σ1 0 −1⊗ σb ⊗ σ3

−iσb ⊗ 1⊗ σ1 −σi ⊗ σb ⊗ σ2 1⊗ σa ⊗ σ3 εabc1⊗ σc ⊗ 1

⎞
⎟⎟⎟⎟⎟⎟⎠

where, out of the internal directions M, N = 0, . . . , 7, the
first four (0123) are along Lorentz. Thus the upper-left block
represents the SO(1, 3) generators and the lower-right the
SO(4) ones. In the respective spaces we denoted i, j or a, b
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as indices from 1 to 3, thus matching M, N = 1, 2, 3 →
i, j = 1, 2, 3 and M, N = 5, 6, 7 → a, b = 1, 2, 3.

The three boxed generators 123–4 correspond precisely
to Ri ∼ σi ⊗ 1⊗ σ1, while just above one finds the rotations
Li ∼ σi ⊗ 1⊗ 1. As before, we find that for any i the com-
bination Ri − Li generates a U(1)P and a rotation by π

generates P = U (π) = 1⊗ 1⊗ σ1. Here the novelty is that
this time, under P , the swapping of left and right spinors is
accompanied by the swapping of the Left and Right weak
groups, as required in a realistic model.2

Symmetric phase and breaking.
We can turn now to describe a mechanism of symmetry break-
ing which preserves parity as a discrete remnant of the orig-
inal continuous gauge group. The task is complicated by the
unification of local Lorentz with the other gauge forces, and
by the fact that spacetime symmetries must be involved in
such a way that at low energyP includes the spacetime inver-
sion.

As anticipated, in the first-order approach the Lorentz
symmetry is disentangled from spacetime transformations
(diffeomorphisms) and treated as an internal gauge symme-
try, further extended to include other interactions.

The framework is based on the first-order (Cartan) for-
mulation of Gravity (see e.g. [25]) where the gauge field of
the Lorentz group is a spin connection ωm

μ n and the vierbein
field emμ transforms as a vector under the local Lorentz group
(index m = 0, . . . , 3). A background value (VEV) of the
vierbein is needed for a sensible low energy spacetime met-
ric: for a standard Minkowski background it is emμ = Mpl δ

m
μ ,

with Mpl the Planck mass. This VEV, regarded as the choice
of a fixed (unitary) gauge, breaks both the local Lorentz group
and the diffeomorphism invariance. It nevertheless leaves
unbroken a joint global Lorentz symmetry, realized when
Lorentz and diff transformations on μ and m are matched.
This is the global Lorentz invariance of the Minkowski back-
ground that we experience at low energy. The counting of
degrees of freedom confirms that of the 16 independent fields
in emμ , 6 fields correspond to the gauge modes of local Lorentz
transformations and are set to zero with the gauge fixing,
or “eaten” by the spin connection, which can be shown to
acquire a mass of the order of the Planck scale Mpl . The
other 10 degrees of freedom become propagating and carry
the standard graviton. In this formulation, the vierbein acts
as a Higgs field for the breaking of the local Lorentz group
to a global symmetry.

It is worth stressing again that in the symmetric phase
the internal (gauge) Lorentz transformations are disentangled
from the spacetime (diff) ones, while in the broken phase
they are glued. Accordingly, spinors are originally scalars

2 The further nine generators below the boxed ones also lead to P ,
modulo a SO(4) gauge rotation.

under spacetime transformations and just transform under
internal local Lorentz. Only in the broken phase they become
spinors also of spacetime transformations, being these glued
to Lorentz. As an example, their fermionic kinetic term arises
from a symmetric-phase lagrangian written geometrically as

Lψ kin = ψγmDψ ∧ en ∧ er ∧ esεmnrs, (7)

where i) ψ are spinors under the gauge group and scalars
under diffs; ii) the vierbein one form is em = emμdx

μ; iii) the
covariant derivative D contains the gauge connection one
form ωm

n = ωμ
m
n dx

μ. In the broken phase, this action repro-
duces the standard fermionic kinetic term, including gravi-
tational interactions.

In this formulation, gravity is ready for enlargement of the
Lorentz gauge group to a generic group G, including Lorentz
and other gauge interactions. One promotes the local Lorentz
index m to a larger index M in a representation of G, while
space-time and its indices μ remain four-dimensional. The
extended vierbein eMμ still transforms as a one-form under
standard 4D diffs, but M is enlarged. The gauge field ωM

μ N
of the enlarged group G contains both the spin connection
and standard gauge interactions.

Let us exemplify this construction in the case of G =
SO(1, 3 + N ), which preserves the metric ηMN = diag
{1,−1,−1,−1,−1 . . .} with M = 0, . . . N + 3.

Notably, a vierbein VEV can be arranged again in just four
directions,

eMμ =
{
Mpl δ

M
μ , for 0 ≤ M ≤ 3

0 , for 4 ≤ M ≤ N + 3
(8)

which does a twofold job. It breaks again diffs and the 4D part
of G down to global simultaneous Lorentz transformations
of μ and the first four indices M , and in addition it leaves
unbroken a local subgroup SO(N ), mixing the last N direc-
tions where the VEV vanishes. This mechanism was used in
[17], with SO(11, 3) broken in this single step to a SO(10)

GUT. As analyzed there, the correct fermionic, gauge, and
gravitational lagrangians emerge after the symmetry break-
ing of the G-invariant unified theory, for instance from a
direct generalization of (7).

In this work, the VEV (8) is assumed. It was shown in
[17,18] that it is a solution of the connection’s equations
of motion, while a dynamical mean field origin was pro-
posed in [16]. An other interesting possibility is that the vier-
bien is realized as bilinear condensate of more fundamental
fermions, see for instance [26–29].

In [17,18] it was also discussed how this unification
respects the Coleman Mandula theorem. The point is that
in the broken phase the symmetry group is indeed the direct
product of an internal gauge and global Lorentz. Conversely,
in the unified phase, a background metric is absent and the
theorem does not apply. We refer to [16,30] for extra discus-
sions.
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We wish here to study the action of U(1)P and of P on the
background (8). Because U(1)P contains a gauge rotation in
(e.g.) the 1–2 and 3–4 planes and the VEV eMμ is nonzero
in these subspaces, the continuous U(1)P symmetry is bro-
ken (indeed only SO(N ) survives). The discrete P = U (π)

instead has a more interesting fate. After this π rotation,
four internal spatial directions change sign, eMμ → −eMμ for
M = 1, 2, 3, 4. Because the VEV is nonvanishing only in
the first three directions M = μ = i = 1, 2, 3, one can write

eM=0,...,3
μ = Mpl diag(1, 1, 1, 1)

U (π)→ Mpl diag(1,−1,−1,−1) , (9)

or eMμ → eMμ ηMM (no summation). Thus also P = U (π) is

broken, as it does not preserve eMμ .
We however notice that the VEV can be restored by adding

a Is spatial inversion, eMμ → ημμeMμ , which completes the
action of P . We then find

P : eMμ → ημμe
M
μ ηMM = eMμ , (10)

i.e. the vierbein VEV is invariant under combined internal
parity and spatial inversion, P = Is ◦ P . This result shows
that the breaking mechanism glues not only the gauge and
diff Lorentz transformations but also glues internal parity
with spatial inversion, to produce the standard behavior of
parity in the low energy field theory.

Thus, if the Lagrangian is invariant under space inversion,
then the low energy theory will be exactly P invariant.

Emergence of LRSM Yukawa terms
It is instructive to explicitly discuss, in the SO(1, 7) example,
the emergence of the P-invariant fermionic Yukawa terms of
the LRSM. While in the symmetric phase a direct (Majorana)
mass term for the fermions � tC� is forbidden by the other
gauge interactions, e.g. B − L and color (or SU(4)) one can
have Yukawa terms by introducing some extra bosonic field,
for instance a generic (reducible) H ∈ 8c8

†
c :

LYuk = YH�†H� + h.c. , (11)

where YH is a generic complex Yukawa matrix.
It is also useful to spell out the decomposition of  under

the breaking SO(1, 7) → SU(2)L × SU(2)R × SO(1, 3),

H = (
1L + 3L , 1R, 2l2l

) + (
1L , 1R + 3R, 2r2r

)
+ (

2∗
L , 2R, 2l2r

) + (
2L , 2∗

R, 2r2l
)

= Lμ (1L , 1R, 4l) + La
μ (3L , 1R, 4l) + Li

(
2∗
L , 2R, 3lr

)
+ LR

(
2∗
L , 2R, 1lr

) + L ↔ R . (12)

Thus H contains Lorentz 4-vector, 3-vector, and singlet rep-
resentations transforming under the weak groups.

The last term represents a scalar bidoublet, as found in
Left-Right symmetric theories, where its weak scale VEV
breaks electroweak symmetry and gives standard masses to

fermions. We find actually two independent such complex
bidoublets, LR = 1 and RL = 

†
2. Decomposing YH

in hermitian components, YH = Y + i Ỹ , (11) becomes a
generic Yukawa lagrangian ψ L [Y (1 + 2) + Ỹ i(1 −
2)]ψR + h.c.. The invariance under P is confirmed by not-
ing the bidoublets transformation 1,2 ↔ 

†
2,1.

Now, since the minimal LRSM has only one bidoublet, a
fact tied to the nice model predictivity, one may be tempted to
restrict the H field. However, the only possibility is to assume
a hermitian representation, H ≡ H†, i.e. 1 ≡ 2, but this
would lead to unrealistic fermion masses, given by the sole
matrix Y . The natural possibility is instead to allow generic
1, 2 fields and realize that after the G breaking at Planck
scale, only one combination can (and has to) be kept light,
with mass at the vR scale, and identified with the LRSM
bidoublet. The situation is parallel to what happens when
embedding the SM into the LRSM: the SM Higgs doublet
φ may be rewritten as a real LR bidoublet (≡ ε∗ε), but
then the Yukawa lagrangian would unrealistically allow just a
single hermitian matrix. One considers thus a complex bidou-
blet: one real component is kept light and identified with the
SM Higgs doublet at weak scale by careful choice of cou-
pling constants (μ-terms); without further choices, the other
remains naturally heavy at the high (vR) breaking scale. In
the present framework, one combination  of the two above
bidoublets shall be kept light and leads effectively to LRSM
Yukawa lagrangian,

LYuk → ψ L

[
Y + Ỹ ̃

]
ψR + h.c. (13)

The other bidoublet has a natural mass at the Planck breaking
scale, disappearing from the low energy spectrum. Inciden-
tally, the same fate can be assumed for all the other compo-
nents transforming nontrivially under Lorentz in (12), Lμ,
La

μ, Li , also avoiding possible issues with the signature of
their nonstandard kinetic terms, see discussion below.

Similarly, one can implement Majorana Yukawa terms
for fermions as LMaj = Y�� t�� where, still in SO(1, 7),
� transforms in the 8s8s representation. Its decomposition
contains the two SU (2)L ,R triplets �L ,R , and generates the
standard Yukawa terms Y�ψ t

LC�LψL + L ↔ R, leading
to Majorana masses for neutrinos via type-I and II seesaw.
As above, several field components which transform nontriv-
ially under Lorentz are present and naturally have mass at the
Planck scale.

A comment is in order regarding the consequences of hav-
ing noncompact gauge groups, which are known not to have
finite-dimensional unitary representations. Indeed, the Lμ,
La

μ and Li states appeared above in Eq. (12) are a mani-
festation of this fact. This is potentially a serious problem,
that could make the whole approach fundamentally flawed. A
possible solution argued above is that no ghost state shall have
mass below the Planck scale. A complete modeling, going
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Table 1 Breaking of unifying orthogonal groups and emerging discrete
symmetries

beyond the scope of this study, should pay special atten-
tion to this requirement. It is worth recalling that states with
Planck mass and seemingly negative kinetic terms appear
also in generic gravitational theories with propagating tor-
sion, regardless of unification [31]. Various proposals to cir-
cumvent this problem exist in the literature (see e.g. [32,33])
including recent ones, where the possible metastability of
ghost states is investigated [34], or their quantization with a
dedicated prescription is proposed [35].

We can add on top of these possibilities, that the stan-
dard tree level analysis is hardly conclusive, as these ghosts
occur with the transition to a different regime. Indeed, in the
symmetric phase, as noted in [16,17,30], the theory does not
possess a background metric and has no quadratic kinetic
terms. It thus belongs to a topological nonperturbative phase
of quantum gravity, where new representations may appear as
bound states. Interestingly, recent proposals where the vier-
bein is built as from fermion biliners, may help in dealing
with these issues, see e.g. [26,27,29,36,37].

These comments apply to the SO(1, 7) example and to the
more general groups that we discuss now.

Complete unifications and other symmetries
The analysis of other groups and the inclusion of strong inter-
actions can proceed straightforwardly: a good path is to pre-
unify color SU(3) and hypercharge U(1) into SU(4) ≈ SO(6)

of Pati and Salam [3], ready to be included in a pseudo-
orthogonal group. Considering in generality SO(p, q), we
display in Table 1 the realistic cases involving weak interac-
tions, which we briefly comment.

First, from the SO(1, 7) example above, we have seen that
the Ri generator involved in P is a cross rotation between one
spatial Lorentz direction and one relative to SO(0, 4). It is
then clear that if SO(4) were to be included with a time-like
signature, like SO(4, 0) inside SO(5, 3), then P could not
be achieved, as the cross generators are noncompact, boost-
like. Instead, one can rotate one of the SO(4) directions with
internal direction 0 to obtain its inversion, and the VEV may
be preserved by adding a time inversion It . We indicate the
symmetry as T in the table: it amounts to time-reversal plus
exchange of the Left and Right weak groups. Its enforcement
leads to realYukawa matrices, thus requiring spontaneous CP

violation, which is not so appealing at least from the point of
view of model minimality.

Complete unifications involving strong interactions can
give rise to more general discrete symmetries. We list in the
table the realistic cases, which can be implemented only by
the groups SO(11, 3) (proposed in [17,23]) or SO(7, 7) (also
proposed in [21,22]). In both cases, the minimal Majorana–
Weyl spinor representation has real dimension 64 which,
when mapped into 32 complex [17], leads precisely to a com-
plete SM family,

64R ≡ 32 → (2l , 2L , 1R, 4) ⊕ (2r , 1L , 2R, 4), (14)

in Lorentz × Pati–Salam notation.
Other groups as SO(1, 13) or SO(5, 9) are not viable as

they have only symplectic Majorana–Weyl representations,
leading to extra mirror families of opposite chirality.

In the SO(7, 7) case, SO(4) is present with spatial signa-
ture and leads to P , but SO(6) is included as time-like. By an
analysis similar to above, one finds a new discrete symme-
try, amounting to time-reversal plus SU(4) color conjugation,
named Tcol in the table. This additional discrete symmetry
may or may not survive the lower stages of symmetry break-
ing.

We stress that the breaking of SO(7, 7) has arguably to
proceed in one step at Planck scale, at least to the Pati–Salam
subgroup SO(4)×SO(6), so that the noncompact generators
of SO(4, 6) have mass at or above the Planck scale.

In the case SO(11, 3) we find an analogous symmetry,
Tso10, while P is absent. Tso10 may lead to T and/or Tcol ,
depending on the SO(10) breaking pattern. In the table, we
list also the more standard C LR-symmetry, i.e. charge conju-
gation plus exchange of Left and Right weak groups, which
is part of SO(10).

We confirm that, in the Pati–Salam notation (14), P acts
linearly by exchanging the two Left and Right components,
while T and Tso10 act antilinearly, replacing the spinor with
its complex conjugate, as is required for a time-reversal (see
also [17] for a discussion of antilinearity of broken genera-
tors).

Discussion on parity and strong CP
We have shown that by considering the presence of a high
scale gauge symmetry unifying local Lorentz and gauge
interactions, the theory automatically enjoys P-parity sym-
metry below the first stage of symmetry breaking. This moti-
vates the framework of Left-Right symmetric theories with
P as exact LR symmetry (then broken spontaneously at a
lower scale).

However, it is necessary to deepen and clarify our under-
standing of this result. We established that P arises from the
gluing of internal parity P and spatial inversion Is . This leads
us to consider the possibility that the theory respects P , as
a gauge symmetry, but might still violate space reflection.
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An example is the analog of the QCD theta term, namely
θFM

N ∧ FN
M , the two-form FM

N being the curvature of the
connection one-form ωM

N . This term respects internal parity
P because it is gauge-invariant but violates space inversion.
As a result, in the low-energy theory, it leads to a term such
as θF F̃ , which violates P .3

The spatial inversion could thus be assumed or not to be
an invariance of the theory. This is in accord with the fact
that, while in 4 dimensions diffeomorphisms have two dis-
connected components, the proper one and the one including
a reflection, General Relativity is formulated as invariance
under the proper component only. One might thus assume
invariance under the full diffeomorphisms as a funding prin-
ciple, and the theory would have no P violating terms. This
choice can be viewed as a solution to the Strong CP problem,
as in [2,6,39], see [40].

In a more physical approach, one shall test this hypothe-
sis by considering possible violations of spatial inversion in
the theory. In the present context, the unification of the inter-
nal symmetries leads at least to the prediction that various
P-violating terms, regarding different interactions, will be
connected.

For instance, one of the most stringent tests is the exper-
imental bound from the electric dipole moments (e.g. of the
neutron [41]). The relative bounds of the order θ < 10−10

directly translate for us into limits on the gravitational analo-
gous, θ R̃R. This is argued to be physical [42], and the ques-
tion of how it could be measured is the subject of some recent
studies, e.g. [43–45].

On the other hand, the bounds on parity-violating Chern-
Simons extensions [46] would be connected with the QCD
axion terms. Another example breaking spatial parity but not
the gauge symmetry is the Immirzi term αRMN ∧ eM ∧ eN ,
although there is practically no bound on it from semiclassi-
cal effects [47]. More in general, a detailed program inves-
tigating all possible terms violating spatial parity could be
undertaken, along the lines of the analysis for standard Car-
tan gravity [48].

Phenomenological implications
In the LRSM, the discrete parity P , among many constraints
on the parameters of the model [8,49–52], imposes that the
QCD θ is strictly zero [53]. In this case θ is computable,
and nEDM together with other CP-violating observables was
shown to put strong bounds on the right-handed scale [40,54–
57]. The RH scale is pushed beyond ∼ 28 TeV [52,54].

The present framework instead motivates also the situation
as described in Ref. [8,52], namely, θ is free. In this case, P

3 The P-violating term θF F̃ may be rotated away in the quark masses
via the anomaly [38]. The Yukawa couplings in (13) become non-
hermitian and only preserve a new internal parity P ′, because the chiral
rotation does not commute with U (1)P . The model is still P-violating,
but the non-hermiticity in (13) lies in an overall phase θ at most.

symmetry is valid in the Yukawa sector but strong CP poses
no additional constraints, in complete analogy with the case
of C symmetry [8]. In this scenario, the WR scale can be
lowered to ∼ 6 TeV.

The future LHC runs and next-generation colliders would
be able to probe WR up to ∼ 30 TeV [58], and the potential
discovery of WR in this range would point to the second
scenario, where θ is nonzero and determined. In this case,
the striking consequence is that together with the validity
of P in the quark sector [8,59], one would test predicted
correlations between the various electric dipoles of neutron
and nuclei, as analyzed in [55]. This would help to clarify
the underlying mechanism behind P .

Cosmic strings
It is noteworthy that, although the present framework con-
tains the breaking of a continuous symmetry to a discrete
one, cosmic strings [9] do not appear. This can be under-
stood by looking at a possible transformation of the vierbein
VEV along a closed path around a string: with the gradual
3–4 plus 1–2 rotation up to final angle π , the result is the
new VEV (9). This would be matched with the starting one
by inverting the spatial coordinates μ = 1, 2, 3 as mentioned
above. However, inverting them just on the final part of the
path is not legitimate in a given space-time configuration,
because the whole space would be nonorientable, a situation
that clearly can not be generated by standard physics like
gravitational collapse or phase transition. In practice, ask-
ing for space-time orientability rules out the possibility of a
nontrivial P around a string.

It is interesting to speculate whether one may semiclas-
sically create such nonorientable cosmic strings in pairs, on
the line of nonorientable gravitational instantons [60]. Trav-
eling around one such string one would be faced with the P-
symmetric physics. In any case, the spontaneous breaking of
P at a lower scale would attach domain walls to these strings,
which would preclude the view of space nonorientability,
quite an exotic situation. Analogous comments apply to the
emergent T symmetry.

A final word is worth about topological defects that may
arise at the lower scales of symmetry breaking, such as
domain walls or GUT monopoles [61,62]. In our framework,
their appearance can not be cured by nonrenormalizable oper-
ators from gravity as in [63], but other ways out include low
scale inflation or symmetry nonrestoration at high tempera-
ture [64,65].

Summary and outlook
We have proposed a framework for UV completion of P-
parity, and thus of the LRSM in its original formulation,
where P was introduced as the LR restoration of standard
parity.

We have first decomposed P = P ◦ Is into simple space
inversion Is plus internal LR and chirality exchange P . Then,
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we have shown that P can be made continuous and gauged by
embedding it into the SO(1, 7)or SO(7, 7)gauge groups, uni-
fying Lorentz with gauge interactions and pointing respec-
tively to gravi-weak and gravi-GUT models. In these scenar-
ios, diffeomorphism and gauge symmetry are disentangled
at high energy and are broken together at the Planck scale
in such a way that the standard global Lorentz symmetry
remains. The breaking also preserves the simultaneous P
and Is transformations. This guarantees invariance under P ,
which is thus also protected by the gauging of P .

Space coordinate reflection Is needed an additional dis-
cussion. Because it is not strictly included in (proper) dif-
feomorphisms, one can choose whether to assume it as an
additional fundamental invariance or not.

By enlarging diffeomorphisms with Is , the low-energy
theory is automatically P invariant. In this case, a direct
implication is that there are no non-renormalizable P-
violating operators from gravity.

In case basic spatial inversion symmetry is not assumed,
one still deals with internal SO(1, 7) or SO(7, 7) gauge
groups, leading to a mostly P-invariant low energy the-
ory, save for a few P-violating terms that can now appear.
One notable case is a topological term θF F̃ in the QCD
lagrangian – unified with the gravitational equivalent θRR̃.
Therefore, even if the theory enjoysP symmetry in the quark
and scalar sectors, it does not require a vanishing of θ . In other
words, protecting P by gauge invariance alone does not solve
the strong CP problem.

On the other hand, this scenario has direct links with the
phenomenology of the LRSM. In that context, exact P sym-
metry is at the basis of predictivity in the flavor sector but
was also used to attack the strong CP problem, where the
nEDM limit implies a strong lower bound on the WR mass.
As we discussed, the possibility of nonzero θ motivates the
scenario of lower WR accessible at forthcoming colliders.

The choice of various unifying groups has uncovered the
possibility of novel low energy discrete symmetries, such
as time-reversal T involving LR exchange or Tcol involving
color conjugation. Their analysis is left for future work.

A further property of our framework is that, although fea-
turing a transition from continuous to a discrete symmetry,
due to the role of space there is no appearance of cosmic
strings, avoiding related cosmological issues.

Summarizing, in this work we have established a proof
of concept for the gauge protection of P as the remnant of
a high energy unified gauge group and investigated the rela-
tive symmetry structure and breaking mechanism. After this
stage, a viable model unifying gravitational and BSM degrees
of freedom will be the next outstanding challenge. We can
speculate that the large symmetry structure will pose strin-
gent constraints on the unified model.
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