
Maeghrhe Pedine
.



2

”Au milieu de l’hiver, j’apprenais enfin qu’il y avait en moi un été invincible.”
Albert Camus



Contents

Ringraziamenti 5

Introduction 7

1 Integral Forms 13
1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Review of the symmetric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Garland’s basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 A ”mixed symmetric” integral form . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Some non commutative cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Kac-Moody algebras 31
2.1 Definition of finite and affine Kac-Moody Algebras . . . . . . . . . . . . . . . . . . 31
2.2 Loop construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Kostant, Garland and Mitzman integral form . . . . . . . . . . . . . . . . . . . . . . 35

3 Integral form of A1 37
3.1 The integral form of sl2 (A1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 The integral form of ˆsl2 (A(1)
1 ) 39

4.1 From A1 to A(1)
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 The integral form of ˆsl3
χ
(A(2)

2 ) 47

5.1 From A(1)
1 to A(2)

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 exp
(

x+0 u
)

exp
(

x−1 v
)

and Ũ 0,+
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amicizia. Il loro spessore umano e matematico è stato per me tecnicamente ed esistenzialmente
fondamentale, siete delle persone gentili. Tra di loro ovviemente un grazie speciale va a Riccardo
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Grazie a mamma e papà. Perchè avete saputo supportarmi nonostante le mie infinite fragilità.
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Introduction

We use the following notations: N = {n ∈ Z | n ≥ 0}, Z+ = {n ∈ Z | n > 0}.
Let X(k)

n be an affine Kac-Moody algebra (see Chapter 2) and U its universal enveloping algebra.
The aim of this work is to give a basis over Z of the Z-subalgebra of U generated by the divided
powers of the Drinfeld generators (see Definition 2.4), thus proving that this Z-subalgebra is
an integral form of U . The integral forms for finite dimensional simple Lie algebras were first
introduced by Chevalley in [2] for the study of the Chevalley groups and of their representation
theory. The construction of the “divided power”-Z-form for the simple finite dimensional Lie
algebras is due to Kostant (see [9]); it has been generalized to the untwisted affine Kac-Moody
algebras by Garland in [6] (see Section 2.3), as we shall quickly recall. Given a simple Lie algebra
g0 and the corresponding untwisted affine Kac-Moody algebra g = g0 ⊗C[t, t−1]⊕Cc provided
with an (ordered) Chevalley basis, the Z-subalgebra UZ of U = U (g) generated by the divided
powers of the real root vectors is an integral form of U ; a Z-basis of this integral form (hence its
Z-module structure) can be described by decomposing UZ as tensor product of its Z-subalgebras
relative respectively to the real root vectors (U re,+

Z and U re,−
Z ), to the imaginary root vectors (U im,+

Z

and U im,−
Z ) and to the Cartan subalgebra (Uh

Z): U re,+
Z has a basis Bre,+ consisting of the (finite)

ordered products of divided powers of the distinct positive real root vectors and (U re,−
Z , Bre,−)

can be described in the same way:

Bre,± = {x
(kβ1

)

±β1
· ... · x

(kβN
)

±βN
| N ≥ 0, β1 > ... > βN > 0 real roots, kβ j > 0 ∀j}.

Here a real root β of g is said to be positive if there exists a positive root α of g0 such that either
β = α or β− α is imaginary; xβ is the Chevalley generator corresponding to the real root β. A basis
Bh of Uh

Z, which is commutative, consists of the products of the “binomials” of the (Chevalley)
generators hi (i ∈ I) of the Cartan subalgebra of g:

Bh =
{

∏
i

(
hi
ki

)
| ki ≥ 0∀ i

}
;

it is worth remarking that Uh
Z is not an algebra of polynomials. U im,+

Z (and its symmetric U im,−
Z )

is commutative, too; as a Z-module it is isomorphic to the tensor product of the U im,+
i,Z ’s (each

factor corresponding to the ith copy of U ( ˆsl2) inside U ), so that it is enough to describe it in the
rank 1 case: the basis Bim,+ of U im,+

Z ( ˆsl2) provided by Garland can be described as a set of finite
products of the elements Λk(ξ(m)) (k ∈ N, m > 0), where the Λk(ξ(m))’s (k ≥ −1, m > 0) are
the elements of U im,+ = C[hr(= h⊗ tr) | r > 0] defined recursively (for all m ̸= 0) by

Λ−1(ξ(m)) = 1, kΛk−1(ξ(m)) = ∑
r≥0,s>0
r+s=k

Λr−1(ξ(m))hms :

Bim,+ =

{
∏
m>0

Λkm−1(ξ(m)) | km ≥ 0 ∀m, #{m > 0 | km ̸= 0} < ∞

}
.
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It is not clear from this description that U im,+
Z and U im,−

Z are algebras of polynomials.
Thanks to the isomorphism of Z-modules

UZ
∼= U re,−

Z ⊗Z U im,−
Z ⊗Z Uh

Z ⊗Z U im,+
Z ⊗Z U re,+

Z

a Z-basis B of UZ is produced as multiplication of Z-bases of these subalgebras:

B = Bre,−Bim,−BhBim,+Bre,+.

The same result has been proved for all the twisted affine Kac-Moody algebras by Mitzman in
[11], where the author provides a deeper comprehension and a compact description of the com-
mutation formulas by means of a drastic simplification of both the relations and their proofs.
This goal is achieved remarking that the generating series of the elements involved in the basis
can be expressed as suitable exponentials, observation that allows to apply very general tools of
calculus, such as the well known properties

x exp(y) = exp(y) exp([·, y])(x)

if exp(y) and exp([·, y])(x) are well defined, and

D(exp( f )) = D( f ) exp( f )

if D is a derivation such that [D( f ), f ] = 0.
Here, too, it is not yet clear that U im,±

Z are algebras of polynomials.
However this property, namely In Fisher-Vasta’s PhD thesis ([5] and see Section 2.3) is stated
that U im,+

Z = Z[Λk−1 = Λk−1(ξ(1, 1)) = pk,1 | k > 0], where the author describes the results

of Garland for the untwisted case and of Mitzman for A(2)
2 aiming at a better understanding of

the commutation formulas. Yet the proof is missing: the theorem describing the integral form
is based on observations which seem to forget some necessary commutations, those between
(x+r )(k) and (x−s )(l) when |r+ s| > 1; in [5] only the cases r+ s = 0 and r+ s = ±1 are considered,
the former producing the binomials appearing in Bh, the latter producing the elements pn,1 (and
their corresponding negative elements in U im,−

Z ).
Comparing the Kac-Moody presentation of the affine Kac-Moody algebras with its “Drinfeld”
presentation as current algebra, one can notice a difference between the untwisted and twisted
case, which is at the origin of our work. As in the simple finite dimensional case, also in the affine
cases the generators of UZ described above are redundant: the Z-subalgebra of U generated by
{e(k)i , f (k)i | i ∈ I, k ∈N}, obviously contained in UZ, is actually equal to UZ.
On the other hand, the situation changes when we move to the Drinfeld presentation and study
the Z-subalgebra ∗UZ of U generated by the divided powers of the Drinfeld generators (x±i,r)

(k):
indeed, while in the untwisted case it is still true that UZ = ∗UZ and (also in the twisted case) it
is always true that ∗UZ ⊆ UZ, in general we get two different Z-subalgebras of U ; more precisely
∗UZ ⊊ UZ in case A(2)

2n , that is when there exists a vertex i whose corresponding rank 1 subalgebra
is not a copy of U ( ˆsl2) but is a copy of U ( ˆsl3

χ
).

Thus in order to complete the description of ∗UZ we need to study the case of A(2)
2n .

In the present work we prove that the Z-subalgebra generated by

{(x+i,r)
(k), (x−i,r)

(k) | r ∈ Z, k ∈N}

is an integral form of the enveloping algebra also in the case of A(2)
2n , we exhibit a basis general-

izing the one provided in [6] and in [11] and determine the commutation relations in a compact
yet explicit formulation (see Theorems 5.44, 8.39 and Appendix 9.A). We use the same approach
as Mitzman’s, with a further simplification consisting in the remark that an element of the form
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G(u, v) = exp(xu) exp(yv) is characterized by two properties: G(0, v) = exp(yv) and dG
du = xG.

Moreover, studying the rank 1 cases we prove that, both in the untwisted and in the twisted case,
U im,+

Z and ∗U im,+
Z are algebras of polynomials: as stated in [5], the generators of U im,+

Z are the
elements Λk introduced in [6] and [11] (see Proposition 1.13 and Remark 4.12); the generators of
∗U im,+

Z in the case A(2)
2 are elements defined formally as the Λk’s after a deformation of the hr’s

(see Definition 5.12 and Remark 5.13): describing ∗U im,+
Z ( ˆsl3

χ
) (denoted by Ũ 0,+

Z ) has been the
hard part of this work. In the higher rank the situation changes: it is no longer true that U im,+

Z is

an algebra of polynomial in the A(2)
2n case if n > 1 (see Remark 1.39).

We work over Q and dedicate a preliminary particular care to the description of some integral
forms of Q[xi | i ∈ I] and of their properties and relations when they appear in some non com-
mutative situations, properties that will be repeatedly used for the computations in g: fixing the
notations helps to understand the construction in the correct setting. With analogous care we
discuss the symmetries arising in ˆsl2 and ˆsl3

χ. We chose to recall also the case of sl2 and to give
in a few lines the proof of the theorem describing its divided power integral form in order to
present in this easy context the tools that will be used in the more complicated affine cases.
The thesis is organized as follows.
Chapter 1 is devoted to review the description of some integral forms of the algebra of polyno-
mials, polynomials over Z, divided powers ,”binomials” are described in Section 1.1, symmetric
functions (see [10]) are described in Section 1.2: they are introduced together with their gener-
ating series as exponentials of suitable series with null constant term, and their properties are
rigorously stated, thus preparing to their use in the Lie algebra setting. We have inserted here,
in Proposition 1.13, a result about the stability of the symmetric functions with integral coeffi-
cients under the homomorphism λm mapping xi to xm

i (m > 0 fixed), which is almost trivial
in the symmetric function context; it is a straightforward consequence of this observation that
U im,+

Z is an algebra of polynomials and so is ∗U im,+
Z in the rank-1 twisted case. We also provide

a direct, elementary proof of this proposition (see Proposition 1.14). Section 1.3 is devoted to the
description of a Z-basis of Z(sym)[hr | r > 0] alternative to that introduced in the Example 1.2.
Z(sym)[hr | r > 0] is the algebra of polynomials Z[ĥk | k > 0], and as such it has a Z-basis consist-
ing of the monomials in the ĥk’s, which is the one considered in our work. In Section 1.4 we study
a very special case of generalized (sym)-functor that depends on certain sequences d : Z+ → Q,
that is Z(ĥd

k | k ∈ Z+) = Z(sym)[hrdr | r > 0] . In particular we deal with two special case, that

is d(r) = 1+(−1)r

2 and d(r) = 2r−1, these two sequences will play a crucial role in the study of the

Integral form of A(2)
2 , when A(2)

2 is seen has copy of the first node of the Dynkin Diagram of A(2)
2n

(see Chapter 7). In Section 1.5 we collect some computations in non commutative situations that
we shall systematically refer to in the following chapters.
In Chapter 2 we recall the information that frames this work. More precisely in Section 2.1 we
recall general definition about Kac Moody algebras, in Section 2.2 we recall the loop presentation
of the affine Kac-Moody algebras and in Section 2.3 we recall the results of Kostant, Garland and
Mitzman about integral forms.
Chapter 3 deals with the case of sl2: the one-page formulation and proof that we present (see
Theorem 3.2) inspire the way we study ˆsl2 and ˆsl3

χ, and offer an easy introduction to the strat-
egy followed also in the harder affine cases: decomposing our Z-algebra as a tensor product of
commutative subalgebras; describing these commutative structures thanks to the examples in-
troduced in Chapter 1; and gluing the pieces together applying the results of Section 1.5.
Even if the results of this section imply the commutation rules between (x+r )(k) and (x+−r)

(l)

(r ∈ Z, k, l ∈ N) in the enveloping algebra of ˆsl2 (see Remark 4.13), it is worth remarking
that Chapter 4 does not depend on Chapter 3, and can be read independently (see Remark 4.20).
In Chapter 4 we discuss the case of ˆsl2. The first part of the Chapter is devoted to the choice
of the notations in Û = U ( ˆsl2); to the definition of its (commutative) subalgebras Û± (corre-
sponding to the real component of Û ), Û 0,± (corresponding to the imaginary component), Û 0,0

(corresponding to the Cartan), of their integral forms Û±Z , Û 0,±
Z , Û 0,0

Z , and of the Z-subalgebra
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ÛZ of Û ; and to a detailed reminder about the useful symmetries (automorphisms, antiauto-
morphisms, homomorphisms and triangular decomposition) thanks to which we can get rid of
redundant computations. In the second part of the chapter the apparently tough computations
involved in the commutation relations are reduced to four formulas whose proofs are contained
in a few lines: Proposition 4.14, Proposition 4.15, Lemma 4.21, and Proposition 4.22, (together
with Proposition 1.13) are all what is needed to show that ÛZ is an integral form of Û , to rec-
ognize that the imaginary (positive and negative) components Û 0,±

Z of ÛZ are the algebras of
polynomials Z[Λk(ξ(±1)) | k ≥ 0] = Z[ĥ±k | k > 0], and to exhibit a Z-basis of ÛZ (see Theo-
rem 4.25).
In Chapter 5 we present the case of A(2)

2 . As for ˆsl2, we first highlight some general structures of
U ( ˆsl3

χ
) (that we denote here Ũ in order to distinguish it from Û = U ( ˆsl2)): notations, subalge-

bras and symmetries. In order to study the Z-subalgebra of Ũ generated by the divide powers of
the Drinfeld generators that we denote by ŨZ, here we introduce the elements h̃k through the an-
nounced deformation of the formulas defining the elements ĥk’s (see Definition 5.12 and Remark
5.13). We also describe a Q[w]-module structure on a Lie subalgebra L of ˆsl3

χ (see Definitions
5.8 and 5.10), thanks to which we can further simplify the notations. In addition, in Remark 5.27
we recall the embeddings of Û inside Ũ thanks to which a big part of the work can be translated
from Chapter 4. The heart of the problem is thus reduced to the commutation of exp

(
x+0 u

)
with

exp
(

x−1 v
)

(which is technically more complicated than for A(1)
1 since it is a product involving a

higher number of factors) and to deducing from this formula the description of the imaginary
part of the integral form as the algebra of the polynomials in the h̃k’s. To the solution of this prob-
lem, which represents the central contribution of this work, we dedicate Subsection 5.2, where
we concentrate, perform and explain the necessary computations.
In Chapter 6 we compare the Mitzman’s integral form of the enveloping algebra of type A(2)

2 with
the one studied here, proving the inclusion stated above. We also show that our commutation
relations imply Mitzman’s Theorem, too.
In Chapter 7 we present two other integral forms of A(2)

2 that we denote by ŪZ and ǓZ in order
to distinguish to ŨZ. ŪZ is generated by the divided powers of the Drinfeld generators x±r and
by the divide powers of the elements 1

2 X±2r+1, adapting certain straightening relations already
studied in the case of ŨZ (see for example Lemma 7.10, Remarks 7.4, 7.5 and Proposition 7.6)
we automatically deduce the structure of ŪZ ∩ Ũ±. The heart of the problem is thus reduced
to describe Ū 0,+

Z = ŪZ ∩ Ũ 0,+ and its symmetric (Ū 0,−
Z ). Here we introduce new elements that

is: h̄2r (see Definition 1.31), then thanks to Section 1.4 (Theorems 1.42 and 1.46), we can prove
that is an integral form but not longer an algebra of polynomials. For this reason we decided to
study ǓZ, that is obtained by ŪZ adding extra elements ȟr (see Definition 1.31) in order to have a
polynomial structure in the imaginary components.
In Chapter 8 we present the case of A(2)

2n . In Section 8.1 we introduce general definitions (see
Definition 8.1), in particular we devote care to the description of the root system and the related
group of automorphisms WT generated by the τi (see Notation 8.4), also we highlight the pres-
ence of certain embeddings, namely a copy of A(2)

2n−2 and A(1)
n−1 (see Definition 8.9). Section 8.2

is devoted to the case of A(2)
4 . In the first part we devote ourselves to the study of positive real

roots from which we see that the restriction of the integral form at the first node of the diagram
turns out to be a copy of ŪZ while the restriction at the second turns out to be a copy of ÛZ, at
this point we reattach the various pieces of the decomposition and using the general relations
from Chapter 1 it is possible to easily describe the structure of the integral form. In Section 8.3
we show inductively that the study of A(2)

4 leads immediately to the case of A(2)
2n with n > 2.

At the end of the work some appendices are added for the sake of completeness.
In Appendix 9.A we collect all the straightening formulas: since not all of them are necessary to
our proofs and in the previous sections we only computed those which were essential for our
argument, we give here a complete explicit picture of the commutation relations.
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Appendix 9.B As mentioned above, this algebra, that we are naturally interested in because it is
isomorphic to the imaginary positive part of the integral form of the rank 1 Kac-Moody algebras,
was not recognized by Garland and Mitzman as an algebra of polynomials: in this appendix the
Z-basis they introduce is studied from the point of view of the symmetric functions and thanks
to this interpretation it is easily proved to generate freely the same Z-submodule of Q[hr | r > 0]
as the monomials in the ĥk’s.
Finally, in order to help the reader to orientate in the notations and to find easily their definitions,
we conclude the work with an index of symbols, collected in Appendix 9.C.
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Chapter 1

Integral Forms

In this chapter we give the definition of integral form, fixing the notations used throughout the
thesis. We first expose some simple commutative examples (polynomials, binomials, etc.), then
we recall some well-known examples related to symmetric polynomials (deeply studied and sys-
tematically exposed in [10]), and finally we show some integral forms that emerge in a completely
new way in the case of some affine algebras of twisted type. All these integral forms will play a
central role in understanding in more detail the structure of a specific integral form in the case of
enveloping algebras of finite and affine Kac-Moody algebras.

1.1 Generalities

Notation 1.1. Let us define V = Q⊗Z M where M a free Z-module. We will denote by SV the symmetric
algebra of V.

Definition 1.2. Let U be a Q-algebra. An integral form of U is a Z-algebra UZ such that

1. UZ is a free Z-module;

2. U = Q⊗Z UZ

In particular an integral form of U can be identified to a Z-subalgebra of U and consequently a Z-basis of
an integral form of U is a Q-basis of U .

Example 1.3. Clearly Z[xi | i ∈ I] is an integral form of Q[xi | i ∈ I]. If {xi | i ∈ I} is a Z-basis of M
then SZM := Z[xi | i ∈ I] is an integral form of SV = Q[xi | i ∈ I] and SZM ∩V = M.

By definition, every integral form of SV containing M contains SZM, that is SZM is the least
integral form of SV containing M.

Remark 1.4. Let U be a unitary Z-algebra and f (u) ∈ U[[u]].

1. If f (u) ∈ 1 + uU[[u]] then:

i. f (u) is invertible in U[[u]];

ii. the coefficients of f (u), those of f (−u) and those of f (u)−1 generate the same Z-subalgebra
of U;

2. If f (u) ∈ uU[[u]] then exp( f (u)) is a well defined element of 1 + uU[[u]];

3. If f (u) ∈ 1 + uU[[u]] then ln( f (u)) is a well defined element of uU[[u]];

13
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4. exp ◦ ln |1+uU[[u]]= Id and ln ◦ exp |uU[[u]]= Id;

5. If f (u) ∈ U[[u]] then there exists a unique continuous algebra homomorphism Z[[u]] → U[[u]]
such that u 7→ u f (u).

Definition 1.5. Let a be an element of a unitary Q-algebra U and n ∈ N. The n-th divided powers of a
is the element

a(n) =
an

n!
.

Notice that the generating series of the a(n)’s is exp(au), that is

∑
n≥0

a(n)un = exp(au).

Definition 1.6. Let {xi}i∈I be a Z-basis of M. The Z-subalgebra S(div)M ⊆ SV generated by {x(k)}x∈M,k∈N

containing M is called the algebra of the divided powers of M.

It is well known that S(div)M satisfies the following properties

i) S(div)M ∩V = M;

ii) {x(k)i }i∈I,k∈N is a set of algebra-generators over Z of S(div)M;

iii) the set {x(k) = ∏i∈I x(ki)
i | k : I →N is finitely supported} is a Z-basis of S(div)M;

iv) S(div)M is an integral form of SV.

Notation 1.7. S(div)M is also denoted Z(div)[xi | i ∈ I].

Setting m(u) = ∑r∈N mrur ∈ M[[u]], notice that if m0 = 0 then

m(u)(k) ∈ S(div)M[[u]] ∀k ∈N

or equivalently
exp(m(u)) ∈ S(div)M[[u]].

The vice versa is obviously also true:

m(u) ∈ uV[[u]] and exp(m(u)) ∈ S(div)M[[u]]⇔ m(u) ∈ uM[[u]]. (1.7.1)

Definition 1.8. Let a be an element of a unitary Q-algebra U. The binomials of a are the elements(
a
k

)
=

a(a− 1) · · · · · (a− k + 1)
k!

(k ∈N).

Remark that the generating series of the (a
k)’s is ∑k≥0 (

a
k)u

k = exp(a ln(1 + u)).
Since a ln(1 + u) ∈ uU[[u]], exp(a ln(1 + u)) is a well defined element of U[[u]] and it can and

will be denoted as (1 + u)a; more explicitly

∑
k∈N

(
a
k

)
uk = (1 + u)a = exp

(
∑
r>0

(−1)r−1 a
r

ur
)

.

It is clear from the definition of (1 + u)a that if a and b are commuting elements of U then

(1 + u)a+b = (1 + u)a(1 + u)b.
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It is also clear that the Z-submodule of U generated by the coefficients of (1 + u)a+m (a ∈ U,
m ∈ Z) depends only on a and not on m; it is actually a Z-subalgebra of U: indeed for all k, l ∈N(

a
k

)(
a− k

l

)
=

(
k + l

k

)(
a

k + l

)
.

More precisely for each m ∈ Z and n ∈ N the Z-submodule of U generated by the (a+m
k )’s

for k = 0, ..., n (a ∈ U) depends only on a and n and not on m.

Finally notice that in U[[u]] we have d
du (1 + u)a = a(1 + u)a−1.

Definition 1.9. Let {xi}i∈I be a Z-basis of M. The Z-subalgebra S(bin)M ⊆ SV generated by {(x
k)}x∈M,k∈N

containing M is called the algebra of binomials of M. Then it is well known that:

i) {(xi
k )}i∈I,k∈N is a set of algebra-generators (over Z) of S(bin)M;

ii) the set {(x
k) = ∏i∈I (

xi
ki
)} | k : I →N finitely supported} is a Z-basis of S(bin)M;

iii) S(bin)M ∩V = M;

iv) S(bin)M is an integral form of SV (called the algebra of binomials of M).

Notation 1.10. S(bin)M is also denoted Z(bin)[xi | i ∈ I].

1.2 Review of the symmetric functions

In this section we briefly recall the definition of the Symmetric Functions and some of their prop-
erties, for more details see [10] .

Let n ∈ N. Consider the ring Z[x1, ..., xn] on n independent variables over Z, then the sym-
metric group Sn acts on the variables permuting them and we set Λn = Z[x1, ..., xn]Sn . It is
well known that Λn is an integral form of Q[x1, ..., xn]Sn and that Z[x1, ..., xn]Sn = Z[e[n]1 , ..., e[n]n ],

where the (algebraically independent for k = 1, ..., n) elementary symmetric polynomials e[n]k ’s
are defined by

n

∏
i=1

(T − xi) = ∑
k∈N

(−1)ke[n]k Tn−k

and are homogeneous of degree k, that is e[n]k ∈ Z[x1, ..., xn]
Sn
k ⊆ Q[x1, ..., xn]

Sn
k .

It is also well known and trivial that for n1 ≥ n2 the natural projection

πn1,n2 : Q[x1, ..., xn1 ]→ Q[x1, ..., xn2 ]

defined by

πn1,n2(xi) =

{
xi if i ≤ n2

0 otherwise

is such that πn1,n2(e
[n1]
k ) = e[n2]

k for all k ∈N. Then

⊕
d≥0

lim←−Z[x1, ..., xn]
Sn
d = Z[e1, ..., ek, ...] (ek inverse limit of the e[n]k )

is an integral form of ⊕d≥0 lim←−Q[x1, ..., xn]
Sn
d , which is called the algebra of the symmetric func-

tions.
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Moreover the elements

p[n]r =
n

∑
i=1

xr
i ∈ Z[x1, ..., xn]

Sn (r > 0, n ∈N)

and their inverse limits pr ∈ Z[e1, ..., ek, ...] (πn1,n2(p[n1]
r ) = p[n2]

r for all r > 0 and all n1 ≥ n2) give
another set of generators of the Q-algebra of the symmetric functions: the pr’s are algebraically
independent and ⊕

d≥0

lim←−Q[x1, ..., xn]
Sn
d = Q[p1, ..., pr, ...].

Finally Z[e1, ..., ek, ...] is an integral form of Q[p1, ..., pr, ...] containing pr for all r > 0 (more pre-
cisely a linear combination of the pr’s lies in Z[e1, ..., ek, ...] if and only if it has integral coefficients),
the relation between the ek’s and the pr’s being given by:

∑
k∈N

(−1)kekuk = exp
(
− ∑

r>0

pr

r
ur
)

.

In this context, to stress the dependence of the ek’s on the pr’s, we set ek = p̂k, that is we fix
the following notations:

p̂(u) = ∑
k∈N

p̂kuk = exp
(

∑
r>0

(−1)r−1 pr

r
ur
)

and

Z(sym)[pr | r > 0] = Z[ p̂k | k > 0] ⊆ Q[pr | r > 0].

Remark 1.11. With the notations above, let φ : Q[p1, ..., pr, ...] → U be an algebra-homomorphism and
a = φ(p1):

i) if φ(pr) = 0 for r > 1 then φ( p̂k) = a(k) for all k ∈N;
ii) if φ(pr) = a for all r > 0 then φ( p̂k) = (a

k) for all k ∈N.

Hence Z(sym) is a generalization of both Z(div) and Z(bin).

Remark 1.12. Let {pr | r > 0} be a Z-basis of M. Then:
i) as for the functors SZ, S(div) and S(bin), we have Z(sym)[pr | r > 0] ∩V = M;
ii) unlike the functors SZ, S(div) and S(bin), Z(sym)[pr | r > 0] depends on {pr | r > 0} and not only on
M, for instance

Z(sym)[−p1, pr | r > 1] ̸= Z(sym)[pr | r > 0]

(it is easy to check that these integral forms are different for example in degree 3);
iii) not all the sign changes of the pr’s produce different Z(sym)-forms of Q[pr | r > 0]:

Z(sym)[(−1)r pr | r > 0] = Z(sym)[−pr | r > 0] = Z(sym)[pr | r > 0]

since

exp

(
∑
r>0

(−1)r−1 (−1)r pr

r
ur

)
= exp

(
∑
r>0

(−1)r−1 pr

r
(−u)r

)
and

exp

(
∑
r>0

(−1)r−1−pr

r
ur

)
= exp

(
∑
r>0

(−1)r−1 pr

r
ur

)−1

(see Remark 1.8,1),ii)).
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In general it is not trivial to understand whether an element of Q[pr | r > 0] belongs or not
to Z(sym)[pr | r > 0]; Proposition 1.13 gives an answer to this question, which is generalized in
Proposition 1.18 (the examples in Remark 1.12, ii) and iii) can be obtained also as applications of
Proposition 1.18).

Proposition 1.13. Let us fix m > 0 and let λm : Q[pr | r > 0] → Q[pr | r > 0] be the algebra
homomorphism defined by λm(pr) = pmr for all r > 0.

Then Z(sym)[pr | r > 0] (= Z[ p̂k | k > 0]) is λm-stable.

Proof. For n ∈ N let λ
[n]
m : Q[x1, ..., xn] → Q[x1, ..., xn] be the algebra homomorphism defined by

λ
[n]
m (xi) = xm

i for all i = 1, ..., n.
We obviously have that

Z[x1, ..., xn] is λ
[n]
m −stable,

Q[x1, ..., xn]d is mapped to Q[x1, ..., xn]md ∀d ≥ 0,

λ
[n]
m ◦ σ = σ ◦ λ

[n]
m ∀n ∈N, σ ∈ Sn,

πn1,n2 ◦ λ
[n1]
m = λ

[n2]
m ◦ πn1,n2 ∀n1 ≥ n2,

λ
[n]
m (p[n]r ) = p[n]mr ∀n ∈N, r > 0,

hence there exist the limits of the λ
[n]
m |

Q[x1,...,xn ]
Sn
d

’s: their direct sum over d ≥ 0 stabilizes

⊕d≥0 lim Z[x1, ..., xn]
Sn
d = Z[ p̂k | k > 0] and is λm.

In particular λm( p̂k) ∈ Z[ p̂l | l > 0] ∀k ∈N.

We also propose a second, direct, proof of Proposition 1.13, which provides in addition an
explicit expression of the λm( p̂k)’s in terms of the p̂l’s.

Proposition 1.14. Let m and λm be as in Proposition 1.13 and ω ∈ C a primitive mth root of 1. Then

λm( p̂(−um)) =
m−1

∏
j=0

p̂(−ω ju) ∈ Z[ p̂k | k > 0][[u]].

Proof. The equality in the statement is an immediate consequence of

m−1

∑
j=0

ω jr =

{
m if m | r
0 otherwise,

so that

−
m−1

∑
j=0

∑
r>0

pr

r
ω jrur = −∑

r>0

pmr

r
umr = λm

(
−∑

r>0

pr

r
(um)r

)
,

whose exponential is the claim.
Then for all k > 0

λm( p̂k) ∈ Q[ p̂l | l > 0] ∩Z[ω][ p̂l | l > 0] = Z[ p̂l | l > 0]

since Q∩Z[ω] = Z.
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In order to characterize the functions a : Z+ → Q such that

Z(sym)[ar pr | r > 0] ⊆ Z(sym)[pr | r > 0]

we introduce the Notation 1.15, where we rename the pr’s into hr since in the affine Kac-Moody
case the Z(sym)-construction describes the imaginary component of the integral form. Moreover
from now on pi will denote a positive prime number.

Notation 1.15. Given a : Z+ → Q set

∑
k≥0

ĥ{a}k uk = ĥ{a}(u) = exp

(
∑
r>0

(−1)r−1 arhr

r
ur

)
;

11 denotes the function defined by

11r = 1 for all r ∈ Z+;

for all m > 0, 11(m) denotes the function defined by

11(m)
r =

{
m if m | r
0 otherwise.

Thus ĥ{11}(u) = ĥ(u) (see the notation in Example 1.2) and ĥ{11
(m)}(−u) = λm(ĥ(−um)).

Remark 1.16. Remark that ĥ{a+b}(u) = ĥ{a}(u)ĥ{b}(u) and that the function

1 + uQ[[u]]→ Q[hr | r > 0][[u]]

f (u) 7→ ĥ{a}(u),

where a is defined by ln( f (u)) = ∑r>0(−1)r−1 ar
r ur, preserves the multiplication. Of course 1 + u 7→

ĥ(u) and 1 + um 7→ λm(ĥ(um)).

Recall 1.17. The convolution product ∗ in the ring of the Q-valued arithmetic functions

Ar = { f : Z+ → Q}

is defined by
( f ∗ g)(n) = ∑

r,s:
rs=n

f (r)g(s).

The Möbius function µ : Z+ → Q defined by

µ

(
n

∏
i=1

pri
i

)
=

{
(−1)n if ri = 1 ∀i
0 otherwise

is the inverse of 11 in the ring of the arithmetic functions, where n ∈ N, the pi’s are distinct positive prime
integers and ri ≥ 1 for all i.

Proposition 1.18. Let a : Z+ → Q be any function; then, with the notations fixed in 1.15,

ĥ{a}k ∈ Z[ĥl | l > 0] ∀k > 0⇔ n | (µ ∗ a)(n) ∈ Z ∀n > 0.

Proof. Remark that a = 11 ∗ µ ∗ a, that is

∀n > 0 an = ∑
m|n

(µ ∗ a)(m) = ∑
m|n

(µ ∗ a)(m)

m
m = ∑

m>0

(µ ∗ a)(m)

m
11(m)
n ,
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which means

a = ∑
m>0

(µ ∗ a)(m)

m
11(m).

Let km = (µ∗a)(m)
m for all m > 0, choose m0 > 0 such that km ∈ Z ∀m < m0 and set a(0) =

∑m<m0
km11(m), a′ = a− a(0), so that (see Remark 1.16)

ĥ{a}(u) = ĥ{a
′}(u)ĥ{a

(0)}(u),

and, by Proposition 1.13 (see also Notation 1.15),

ĥ{a
(0)}(u) ∈ Z[ĥk | k > 0][[u]].

It follows that
i) ĥ{a}(u) ∈ Z[ĥk | k > 0][[u]]⇔ ĥ{a

′}(u) ∈ Z[ĥk | k > 0][[u]].

ii) ∀n < m0 ĥ{a
′}

n = 0, so that ĥ{a}n = ĥ{a
(0)}

n ∈ Z[ĥk | k > 0];

in particular ĥ{a}(u) ∈ Z[ĥk | k > 0][[u]] if km ∈ Z ∀m > 0.

iii) a′m0
= (µ ∗ a)(m0) = m0km0 so that ĥ{a

′}
m0 = km0 hm0 , which belongs to Z[ĥk | k > 0] if and

only if km0 ∈ Z (see Remark 1.12,i));

in particular ĥ{a}(u) ̸∈ Z[ĥk | k > 0][[u]] if ∃m0 ∈ Z+ such that km0 ̸∈ Z.

Proposition 1.19. Let a : Z+ → Z be a function satisfying the condition

pr | (ampr − ampr−1) ∀p, m, r ∈ Z+ with p prime and (m, p) = 1.

Then n | (µ ∗ a)(n) ∀n ∈ Z+.

Proof. The condition 1 | (µ ∗ a)(1) is equivalent to the condition a1 ∈ Z.
For n > 1 remark that

n | (µ ∗ a)(n)⇔ pr | (µ ∗ a)(n) ∀p prime, r > 0 such that pr | n.

Recall that if P is the set of the prime factors of n and p ∈ P then

(µ ∗ a)(n) = ∑
S⊆P

(−1)#Sa n
∏q∈S q

=

= ∑
S′⊆P\{p}

(−1)#S′(a n
∏q∈S′ q

− a n
p ∏q∈S′ q

).

The claim follows from the remark that pr | n if and only if pr | n
∏q∈S′ q .

Remark 1.20. The vice versa of Proposition 1.19 is trivially true, too, and is immediately proved applying
1.19 to the minimal n > 0 such that there exists p | n and r > 0 (pr | n, n = mpr) not satisfying the
hypothesis of the statement.

Proposition 1.13 will play an important role in the study of the commutation relations in
the enveloping algebra of ˆsl2 (see Remarks 4.11,vi) and 4.19) and of ˆsl3

χ (see Remark 5.16 and
Proposition 5.19,iv)).

Proposition 1.18 is based on and generalizes Proposition 1.13; it is a key tool in the study of
the integral form in the case of A(2)

2 , see Corollary 5.41.
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1.3 Garland’s basis

Here we discuss the precise connection between the integral form Z(sym)[hr | r > 0] of Q[hr | r >
0] and the homomorphisms λm’s, namely we give another Z-basis of Z(sym)[hr | r > 0] (basis
defined in terms of the elements λm(ĥk)’s and arising from Garland’s and Mitzman’s description
of the integral form of the affine Kac-Moody algebras, discussed in Appendix 9.B).

Definition 1.21. With the notations of Example 1.2 and Proposition 1.13 let us define the following
elements and subsets in Q[hr | r > 0]:

i. bk = ∏m>0 λm(ĥkm) where k : Z+ →N is finitely supported;

ii.

Bλ = {bk | k : Z+ →N is finitely supported} ;

iii. Zλ[hr | r > 0] = ∑k Zbk is the Z-submodule of Q[hr | r > 0] generated by Bλ

We want to prove the following:

Theorem 1.22. Z(sym)[hr | r > 0] is a free Z module with basis Bλ. Equivalently:

i. Z(sym)[hr | r > 0] = Zλ[hr | r > 0],

ii. Bλ is linearly independent.

Remark 1.23. Proposition 1.14 implies that Z(sym)[hr | r > 0] ⊆ Zλ[hr | r > 0] , so we are left to prove
the reverse inclusion and the linear independence of Bλ, that we shall prove by comparing Bλ with a well
known Z-basis of this algebra.

Remark 1.24. Recall that Z[ĥk | k > 0] is the algebra of the symmetric functions and that ∀n ∈ N the
projection πn : Z[ĥk | k > 0] → Z[x1, ..., xn]Sn induces an isomorphism Z[ĥ1, ..., ĥn] ∼= Z[x1, ..., xn]Sn

through which ĥk corresponds to the kth elementary symmetric polynomial e[n]k , and hr corresponds to the
sum of the rth-powers ∑n

i=1 xr
i ∀r > 0 (see Example 1.2).

Then it is well known and obvious that:
i) ∀k : Z+ →N finitely supported ∃!(σx)k ∈ Z[ĥk | k > 0] such that

πn((σx)k) = ∑
a1,...,an

#{i|ai=m}=km ∀m>0

n

∏
i=1

xai
i ∈ Z[x1, ..., xn]

Sn ∀n ∈N;

ii) {(σx)k | k : Z+ →N finitely supported} is a Z-basis of Z[ĥk | k > 0].
(It is the basis that in [10] is called {symmetric monomial functions} and is denoted by {mλ | λ =

(λ1 ≥ λ2 ≥ ... ≥ 0)}: mλ = (σx)k where ∀m > 0 km = #{i | λi = m}).
Notation 1.25. As in Remark 1.24, for all k : Z+ → N finitely supported let us denote by (σx)k the
limit of the elements

∑
a1,...,an

#{i|ai=m}=km ∀m>0

n

∏
i=1

xai
i (n ∈N).

By abuse of notation, when n ≥ ∑m>0 km we shall write

(σx)k = ∑
a1,...,an

#{i|ai=m}=km ∀m>0

n

∏
i=1

xai
i ,

which is justified because, under the hypothesis that n ≥ ∑m>0 km, k is determined by the set {(a1, ..., an) |
#{i = 1, ..., n | ai = m} = km ∀m > 0}.
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Definition 1.26. ∀n ∈N define B[n]
λ , B[n]

x , Z
[n]
λ , Z

[n]
x ⊆ Q[hr | r > 0] = Q[ĥk | k > 0] as follows:

B[n]
λ =

{
bk = ∏

m>0
λm(ĥkm) ∈ Bλ | ∑

m>0
km ≤ n

}
,

B[n]
x =

{
(σx)k | ∑

m>0
km ≤ n

}
,

Z
[n]
λ is the Z-module generated by B[n]

λ , Z
[n]
x is the Z-module generated by B[n]

x .

Remark 1.27. By the very definition of B[n]
x we have that:

i) B[n]
x is a basis of Z

[n]
x ⊆ Z[ĥk | k > 0] = ∑n′∈N Z

[n′ ]
x , see Remark 1.24, ii);

ii) h ∈ Z
[n]
x means that for all N ≥ n each monomial in the xi’s appearing in πN(h) with nonzero

coefficient involves no more than n indeterminates xi; hence in particular

h ∈ Z
[n]
x , h′ ∈ Z

[n′ ]
x ⇒ hh′ ∈ Z

[n+n′ ]
x .

Lemma 1.28. Let n, n′, n′′ ∈ N and k′, k′′ : Z+ → N be such that n′ + n′′ = n, ∑m>0 k′m = n′,
∑m>0 k′′m = n′′. Then:

i) (σx)k′ · (σx)k′′ ∈ Z(σx)k′+k′′ ⊕Z
[n−1]
x ;

ii) if k′mk′′m = 0 ∀m > 0 then (σx)k′(σx)k′′ − (σx)k′+k′′ ∈ Z
[n−1]
x .

Proof. That (σx)k′ · (σx)k′′ lies in Z
[n]
x follows from Remark 1.27,ii), so we just need to:

i) prove that if ∏n
i=1 xai

i with ai ̸= 0 ∀i = 1, ..., n is the product of two monomials M′ and M′′

appearing with nonzero coefficient respectively in (σx)k′ and in (σx)k′′ then #{i | ai = m} =
k′m + k′′m for all m > 0;

ii) compute the coefficient of (σx)k′+k′′ in the expression of (σx)k′ · (σx)k′′ as a linear combi-
nation of the (σx)k’s when ∀m > 0 k′m and k′′m are not simultaneously non zero, and find that it is
1.

i) is obvious because the condition ai ̸= 0 ∀i = 1, ..., n implies that the indeterminates involved
in M′ and those involved in M′′ are disjoint sets.

For ii) it is enough to show that, under the further condition on k′m and k′′m, the monomial
∏n

i=1 xai
i chosen in i) uniquely determines M′ and M′′ such that ∏n

i=1 xai
i = M′M′′: indeed

M′ = ∏
i:k′ai ̸=0

xai
i and M′′ = ∏

i:k′′ai ̸=0
xai

i .

Lemma 1.29. Let k : Z+ →N, n ∈N be such that ∑m>0 km = n. Then:
i) if ∃m > 0 such that km′ = 0 for all m′ ̸= m (equivalently km = n) we have

(σx)k = λm(ĥn) = bk ∈ Z
[n]
x ∩Z

[n]
λ ;

ii) in general bk − (σx)k ∈ Z
[n−1]
x .

Proof. i) ∀N ≥ n we have

(σx)k = ∑
1≤i1<...<in≤N

xm
i1 · ... · x

m
in = λm

(
∑

1≤i1<...<in≤N
xi1 · ... · xin

)
= λm(e

[N]
n )
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so that (σx)k = λm(ĥn).

ii) bk = ∏m>0 λm(ĥkm) = ∏m>0(σx)k[m] where k[m]
m′ = δm,m′km ∀m, m′ > 0; thanks to Lemma

1.28,ii) we have that ∏m>0(σx)k[m] − (σx)∑m k[m] ∈ Z
[n−1]
x ; but ∑m>0 k[m] = k and the claim

follows.

Theorem 1.30. Bλ is a Z-basis of Z[ĥk | k > 0] (thus Z[ĥk | k > 0] = Zλ[hr | r > 0]).

Proof. We prove by induction on n that B[n]
λ is a Z-basis of Z

[n]
x = Z

[n]
λ ∀n ∈ N, the case n = 0

being obvious.

Let n > 0: by the inductive hypothesis B[n−1]
λ and B[n−1]

x are both Z-bases of Z
[n−1]
x = Z

[n−1]
λ ;

by definition B[n]
x \ B[n−1]

x represents a Z-basis of Z
[n]
x /Z

[n−1]
x while B[n]

λ \ B[n−1]
λ represents a set

of generators of the Z-module Z
[n]
λ /Z

[n−1]
λ .

Now Lemma 1.29,ii) implies that if ∑m>0 km = n then bk and (σx)k represent the same ele-
ment in Q[ĥk | k > 0]/Z

[n−1]
x = Q[ĥk | k > 0]/Z

[n−1]
λ .

Hence B[n]
λ \ B[n−1]

λ represents a Z-basis of Z
[n]
x /Z

[n−1]
x = Z

[n]
x /Z

[n−1]
λ , that is B[n]

λ is a Z-basis

of Z
[n]
x ; but B[n]

λ generates Z
[n]
λ and the claim follows.

1.4 A ”mixed symmetric” integral form

Given a : Z+ → Q we have seen when ĥ{a}(u) ∈ Z[ĥk | k > 0][[u]]. But what happens if
ĥ{a}(u) ̸∈ Z[ĥk | k > 0][[u]] and we consider the Z-algebra generated by {ĥk, ĥ{a}k }? Is it still
an integral form of Q[hr | r > 0]? Is it still an algebra of polynomials? Here we study a very
particular case of this problem, that will play a crucial role in certain integral forms in the case of
A(2)

2 (see Chapter 7).

Definition 1.31. Using the notations introduced in Notation 1.15, let us define the sequences 1
2 11(2), 1

2 11 :
Z+ → Q, more precisely

1
2

11(2)(r) =

{
0 if r is odd,
1 if r is even.

and

1
2

11(r) =
1
2

for all r.

Let us set h̄(u) = ∑k≥0 h̄kuk = ĥ
1
2 11(2)(u) and ȟ(u) = ∑k≥0 ȟkuk = ĥ

1
2 11(u).

Remark 1.32. h̄(u) ∈ Q[h2r | r > 0] and h̄2r+1 = 0 ∀r > 0. More precisely

Z[h̄2r | k > 0] = Z(sym)[
h2r

r
| r > 0]

and

h̄(u2) = λ2(ĥ
1
2 (u2)) = λ2(ȟ(u2)) = ȟ(u)ȟ(−u).

In particular ĥ(u) ̸∈ Z[h̄2r | r > 0] (see Proposition 1.14).

Remark 1.33. h̄(u) ̸∈ Z[ĥr | r > 0]. Indeed the sequence 1
2 11(2) does not satisfy condition of Proposition

1.19 (see Proposition 1.18).
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Remark 1.34. ĥ(u), h̄(u) ∈ Z[ȟk | k > 0] = Z(sym)[ hr
2 | r > 0].

Definition 1.35. Define Z(mix)[hr | r > 0] to be the Z-subalgebra of Q[hr | r > 0] generated by
{ĥr, h̄r | r > 0}.

Remark 1.36. Of course Z(mix)[hr | r > 0] ⊆ Z[ȟk | r > 0].

Remark 1.37. Let V be the Q-vector subspace of Q[hr | r > 0] with basis {hr | r > 0}. Then

Z(mix)[hr | r > 0] ∩V = Z⟨h2r−1,
h2r

2
| r > 0⟩.

Corollary 1.38. Z(mix)[hr | r > 0] ⊊ Z[ȟr | r > 0]. Indeed Z[ȟr | r > 0] ∩V = Z⟨ hr
2 | r > 0⟩.

Remark 1.39. Z(mix)[hr | r > 0] is a graded algebra with deg(hr) = r for all r > 0, that is

Z(mix)[hr | r > 0] =
⊕
d≥0

Z(mix)[hr | r > 0]d,

and we have Z(mix)[hr | r > 0]1 = Zh1 and

Z(mix)[hr | r > 0]2 = Z⟨h2
1, ĥ2 =

1
2
(h2

1 + h2), h̄2⟩ = Z⟨1
2

h2
1,

1
2

h2⟩

which implies that h2
1 does not belongs to any Z-basis of Z(mix)[hr | r > 0]2. Then Z(mix)[hr | r > 0]

is not a polynomial algebra in homogeneous variables. In particular there does not exist a sequence a :
Z+ → Q such that Z(mix)[hr | r > 0] = Z[ĥ{a}k | k ≥ 0].

We want tor prove that Z(mix)[hr | r > 0] is though an integral form of Q[hr | r > 0], by
exhibiting a λ-Garland type Z-basis of Z(mix)[hr | r > 0]. We shall also exhibit a polynomial-like
basis of this Z-algebra. In the following k : Z+ → N will denote a finitely support function.
Recall that

{bk = ∏
m>0

λm(ĥkm)}

is a basis of Z[ĥk | k > 0].

Definition 1.40. Let us fix the following notation:

b′k = ∏
m>0,m odd

λm(ĥkm) ∏
m>0,m even

λm(ȟkm),

B′λ = {b′k | k : Z+ →N is finitely supported},
Z′λ[hr | r > 0] = Z-linear span of B′λ.

Remark 1.41. i. b′k ∈ Z(mix)[hr | r > 0],

ii. ĥk, h̄k ∈ Z′λ[hr | r > 0] ∀k ≥ 0: indeed ĥk = λ1(ĥk) and again λ2(ȟk) = h̄2k.

Theorem 1.42. Z(mix)[hr | r > 0] = Z′λ[hr | r > 0] is and integral form of Q[hr | r > 0] and B′λ is
Z-basis of Z(mix)[hr | r > 0].

Proof. Thanks to previous remark, in order to prove that Z(mix)[hr | r > 0] = Z′λ[hr | r > 0] it is
enough to show that Z′λ[hr | r > 0] is closed by multiplication. Notice that ∀m > 0 λ2m(ĥ(u)) ∈
Z[h̄2r | r > 0][[u]] since ĥ(u) ∈ Z[ȟk | k > 0] and λ2(ȟk) = h̄k. Then the fact that {bk} is a Z-basis
of Z[ĥk | k > 0] implies the following facts, which imply the claim:
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i. {∏m>0,m is even}λm(ȟk) | k : Z→N is a Z-basis of Z[h̄2k | k > 0];

ii. bk = ∏m>0,m is oddλm(ĥk) · beven
k with beven

k ∈ Z[h̄2k | k > 0].

iii. b′k′ , b′k′′ = ∏m>0,m is odd λm(ĥk′m)λm(ĥk′′m) · b̄
′ b̄′′ with b̄′, b̄′′ ∈ Z[h̄2k | k > 0] is a Z-linear

combination of elements of the form ∏m>0,m is odd λm(ĥkm)b̄ with b̄ ∈ Z[h̄2k | k > 0].

Finally it is obvious that the Q-span of Z′λ[hr | r > 0] is Q[hr | r > 0] and the linear independence
of B′λ now follows by dimension considerations:

#{b′k | deg(b′k) = d} = #{k : Z+ →N | ∑
m>0

mkm = d} =

#{bk | deg(bk) = d} = dimQ[hr | r > 0]d.

Corollary 1.43. Z(mix)[hr | r > 0] is a Z[h̄2k | k > 0]-free module with basis

{∏
m>0

λ2m−1(ĥkm) | k : Z+ →N is finitely supported.}

We now give also a polynomial-like Z-basis of Z(mix)[hr | r > 0], before let us recall the
following classical result:

Theorem 1.44 (Euler[4]). The number of partitions of a positive integer n into distinct parts is equal to
the number of partitions of n into odd parts.

Proof. Let us denote by D(n) and by O(n) respectively the number of partitions of n into distinct
parts and the number of partitions of n into odd parts, then it is immediate to see that:

∑
n≥0

D(n)xn = ∏
i≥1

(1 + xi),

∑
n≥0

O(n)xn = ∏
i≥1

1
1− x2i−1 .

The claim follows observing that

∏
i≥1

(1 + xi) = ∏
i≥1

1− x2i

1− xi = ∏
i≥1

1
1− x2i−1 .

Lemma 1.45. The following identities hold in Q[hr | r > 0][[u]]:

λ2(ĥ(u2)) = ĥ(u)ĥ(−u) = h̄(u2)2, (1.45.1)
2r

∑
s=0

ĥ2r−s ĥs(−1)s =
r

∑
s=0

h̄2r−2s h̄2s. (1.45.2)

Proof. Equation (1.45.1) follows directly from Definition 1.31 and Notation 1.15, Equation (1.45.2)
follows from Equation (1.45.1) and Proposition 1.14.
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Theorem 1.46. Z(mix)[hr | r > 0] is a Z[h̄2r | r > 0]-free module with basis

{∏
k>0

ĥϵi
k | ϵ : Z+ → {0, 1} is finitely supported}.

Equivalently

Bq.pol = {∏
k>0

ĥϵk
k ∏

k>0
h̄dk

k | ϵ : Z+ → {0, 1} and d : Z+ →N are finitely supported}

is a Z-basis of Z(mix)[hr | r > 0].

Proof. We prove that the Z[h̄2r | r > 0]-span of {∏k>0 ĥϵk
k | ϵ ∈ {0, 1}} is stable by multiplication

by the ĥl’s by induction on N = ∑ kϵk. If N = 0 the claim is obvious, let us assume that N > 0
and the claim holds for all Ñ < N. If l > k or l ̸= k for all k such that ϵk = 1 the claim is obvious.
So suppose there exist a k such that ϵk = 1 and l = k. Let us consider the monomial ĥ2

l p̂ with
p̂ = ∏k ̸=l ĥϵk

k and deg( p̂) = N − l. Using relation (1.45.2) we have that

p̂ĥ2
l = p̂(2

l

∑
j=1

(−1)j+1ĥl+j ĥl−j + (−1)l
l

∑
j=0

h̄2j h̄2l−2j),

since the right summand is in the Z-span of Bq.pol , let us focus on monomials of the form p̂ĥl−j ĥl+j

for some j ≥ 1. Since deg( p̂) < N, ĥl−j p̂ is in the Z[h̄2r | r > 0]-span of {ĥϵk
k | ∑ kϵl ≤ N − l +

l − j = N − j} so that by the induction hypothesis ĥl+j ĥl−j p̂ lies in the Z[h̄2r | r > 0]-span of
{ĥϵk

k | ϵk ∈ {0, 1}} We are left to prove that Bq.pol is linearly independent. Let us observe that
the elements of Bq.pol of degree d are clearly indexed by the pairs of partitions (λ′, λ′′) such that
λ′ ⊢ n′ consist only of not repeating integers, λ′′ ⊢ n′′ consist of even integers and n′ + n′′ = d on
the other hand the elements of B′λ of degree d are clearly indexed by the pairs of partitions (λ̃′, λ′′)
such that λ̃′ ⊢ n′ consist only of odd integers, λ′′ ⊢ n′′ consist of even integers and n′ + n′′ = d.
It follows from Euler’s theorem (see Theorem 1.44) on partitions that these sets have the same
cardinality.

In this last part we still focus on Z(mix)[hr | r > 0].

Definition 1.47. Let us consider the sequence c : Z+ → Q defined by c(r) = 2r−1 and set

ĥ{c}(u) = ∑
k≥0

ĥ{c}k uk.

More precisely: Z[ĥ{c}r | r > 0] = Z(sym)[2r−1hr | r > 0].

Remark 1.48. We want to prove that Z[ĥ{c}r | r > 0] ⊆ Z[ĥr, h̄2r | r > 0], from Proposition 1.19 that
the claim follows if we show that there exist two sequences a, b : Z+ → Q such that ∀m, p, s > 0 such
that

p is prime, (1.48.1)
gcd(m, p) = 1,

we have

ps|amps − amps−1 ,

ps|bmps − bmps−1 ,
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and

ar =

{
2r−1 if r is odd,
2r−1 − b r

2
if r is even

In this case we have that: ĥ{a}(u) ∈ Z[ĥr | r > 0][[u]], ĥ{b̃}(u) ∈ Z[ĥr | r > 0][[u]], ĥ{c}(u) =

ĥ{a} ĥ{b̃}(u) where b̃ = {0, b1, 0, b2, . . . }.

Let now on m, p, s ∈ Z+ be such that they satisfy the conditions (1.48.1).

Lemma 1.49. ps|2mps − 2mps−1
if and only if mps ̸= 2, in particular

Z[ĥ{c}r | r > 0] ⊈ Z[ĥr | r > 0] (1.49.1)

.

Proof. Let mps = 2 then the claim holds in this case since 2 ̸ |22−1 − 21−1, from which follows
Relation (1.49.1). If mps ̸= 2, let us observe that 2mps − 2mps−1

= 2mps−1
(2mps−1(p−1) − 1). The

claim hold remarking that 2s|2mps−1−1 if m > 1 or s > 1 and 2mps−1(p−1) ≡ 1 ( mod ps) if s > 1
and p ̸= 2.

Lemma 1.50. Let a : 2Z+ − 1 → Z, let mps be odd and be such that ps|amps − amps−1 , then is possible
to extend a : Z+ → Z so that you have ps|amps − amps−1 for all m, p, s > 0.

Proof. We will prove that is possible to construct such succession on induction on N elements:
a2, a4, . . . , a2N , recalling that by hypothesis the claim holds if mps is odd. If N = 1 then of course
a2 ≡ a1( mod 2) admits solutions. Let N > 1 and let be ∏r

p=1 psp its decomposition on prime
factors, hence the following system of congruences is solvable by Chinese remainder theorem:{

a2N ≡ aN( mod 2s2+1),
a2N ≡ a2 N

p
( mod psp) if p|N.

Corollary 1.51. From Remark 1.48 and Lemma 1.50 follows that exists a = (ar)r>0 such that ar = 2r−1

if r is odd and such that ps|amps − amps−1 .

Proposition 1.52. For all s ∈N we have that ĥ{c}s ∈ Z(mix)[hr | r > 0].

Proof. Let be a as in Corollary 1.51 and let us define br = 22r−1 − a2r. Then ∀m, p, s > 0 we have

bmps − bmps−1 = 2mps − 2mps−1 − (a2mps − a2mps−1).

Let us observe that by hypothesis ps|(a2mps − a2mps−1) and 2mps − 2mps−1
= 2mps−1−1(2mps−1(p−1)−

1), since 2 ≤ 2mps−1 − 1 and mps−1(p−1) ≡ 1( mod ps), then for all m we have that ps|bmps −
bmps−1 . The claim follows from Remark 1.48.

1.5 Some non commutative cases

We start this section with a basic remark.
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Remark 1.53. i) Let U1, U2 be two Q-algebras, with integral forms respectively Ũ1 and Ũ2. Then Ũ1⊗Z

Ũ2 is an integral form of the Q-algebra U1 ⊗Q U2.
ii) Let U be an associative unitary Q-algebra (not necessarily commutative) and U1, U2 ⊆ U be two

Q-subalgebras such that U ∼= U1 ⊗Q U2 as Q-vector spaces. If Ũ1, Ũ2 are integral forms of U1, U2, then
Ũ1 ⊗Z Ũ2 is an integral form of U if and only if Ũ2Ũ1 ⊆ Ũ1Ũ2.

Remark 1.53,ii) suggests that if we have a (linear) decomposition of an algebra U as an ordered
tensor product of polynomial algebras Ui (i = 1, ..., N), that is we have a linear isomorphism

U ∼= U1 ⊗Q ...⊗Q UN ,

then one can tackle the problem of finding an integral form of U by studying the commutation
relations among the elements of some suitable integral forms of the Ui’s.

Gluing together in a non commutative way the different integral forms of the algebras of
polynomials discussed in Section 1 is the aim of this section, which collects the preliminary work
of the work: the main results of the following sections are applications of the formulas found
here.

Notation 1.54. Let U be an associative Q-algebra and a ∈ U.
We denote by La and Ra respectively the left and right multiplication by a; of course La−Ra = [a, ·] =

−[·, a].

Lemma 1.55. Let U be an associative unitary Q-algebra.
Consider elements a, b, c ∈ U[[u]]. Then:
i) if a, b ∈ uU[[u]] and [a, b] = 0 we have

exp(a± b) = exp(a)exp(b)±1;

ii) [La, Ra] = 0;
iii) if f is an algebra-homomorphism and f (a) = a we have

[ f , La] = [ f , Ra] = 0;

iv) if a ∈ uU[[u]] then La, Ra ∈ End(U)[[u]] and we have

exp(La) = Lexp(a), exp(Ra) = Rexp(a), exp(Ra) = Lexp(a) exp([·, a]);

v) if a, c ∈ uU[[u]] we have

ab = bc⇔ exp(a)b = b exp(c);

vi) if b ∈ uU[[u]] and [b, c] = 0 we have

[a, b] = c⇔ a exp(b) = exp(b)(a + c);

vii) if a, b, c ∈ uU[[u]] and [a, c] = [b, c] = 0 then

[a, b] = c⇔ exp(a)exp(b) = exp(b) exp(a) exp(c)

viii) if a, b, c ∈ uU[[u]] and [a, c] = [b, c] = 0 then

[a, b] = c⇒ exp(a + b) = exp(a) exp(b) exp(−c/2);

ix) if [a, d
du (a)] = 0 we have

d
du

(exp(a)) =
d

du
(a) exp(a) = exp(a)

d
du

(a).
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x) if a(u) = ∑r∈N arur (ar ∈ U ∀r ∈N) and α ∈ U we have

d
du

a(u) = a(u)α⇔ a(u) = a0 exp(αu)

and
d

du
a(u) = αa(u)⇔ a(u) = exp(αu)a0.

Proof. Statements v) and vi) are immediate consequence respectively of the fact that for all n ∈N:
v) anb = bcn (that is also (exp(a)− 1)nb = b(exp(c)− 1)n);

vi) ab(n) = b(n)a + b(n−1)c (that is also a(exp(b)− 1)n = (exp(b)− 1)na + n(exp(b)− 1)nc) .
vii) follows from i), v) and vi).
viii) follows from vii):

(a + b)(n) = ∑
r,s,t:

r+s+2t=n

(−1)t

2t a(r)b(s)c(t).

The other points are obvious.

Proposition 1.56. Let us fix m ∈ Z and consider the Q-algebra structure on U = Q[x]⊗Q Q[h] given
by xh = (h − m)x. Then Z(div)[x] ⊗Z Z(bin)[h] and Z(bin)[h] ⊗Z Z(div)[x] are integral forms of U:
their images in U are closed under multiplication, and coincide. Indeed

x(k)
(

h
l

)
=

(
h−mk

l

)
x(k) ∀k, l ∈N (1.56.1)

or equivalently, with a notation that will be useful in the following,

exp(xu)(1 + v)h = (1 + v)hexp
(

xu
(1 + v)m

)
.

Proof. The relation between x and h can be written as

xP(h) = P(h−m)x

and
x(k)P(h) = P(h−mk)x(k)

for all P ∈ Q[h] and for all k > 0. In particular it holds for P(h) = (h
l), that is

x(1 + v)h = (1 + v)h−mx = (1 + v)h x
(1 + v)m (1.56.2)

and

x(k)(1 + v)h = (1 + v)h
(

x
(1 + v)m

)(k)
. (1.56.3)

The conclusion follows multiplying by uk and summing over k.

Proposition 1.57. Let us fix m ∈ Z and consider the Q-algebra structure on

U = Q[x]⊗Q Q[z]⊗Q Q[y]

defined by [x, z] = [y, z] = 0, [x, y] = mz.

Then Z(div)[x]⊗Z Z(div)[z]⊗Z Z(div)[y] is an integral form of U.
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Proof. Since z commutes with x and y we just have to straighten y(r)x(s). Thus the claim is a
straightforward consequence of Lemma 1.55,vii):

exp(yu) exp(xv) = exp(xv) exp(zuv)−m exp(yu).

Proposition 1.58. Let us fix m, l ∈ Z and consider the Q-algebra structure on U = Q[hr | r <
0]⊗Q Q[h0, c]⊗Q Q[hr | r > 0] given by

[c, hr] = 0, [hr, hs] = δr+s,0r(m + (−1)rl)c ∀r, s ∈ Z.

Then setting (h+)r = hr and (h−)r = h−r ∀r > 0, recalling the notation Z[ĥ±k | k > 0] =

Z(sym)[h±r | r > 0] (see Example 1.2 and Formula 1.2 ) and defining UZ to be the Z-subalgebra of U
generated by U±Z = Z(sym)[h±r | r > 0] and U0

Z = Z(bin)[h0, c], we have that

ĥ+(u)ĥ−(v) = ĥ−(v)(1− uv)−mc(1 + uv)−lc ĥ+(u) (1.58.1)

and UZ = U−ZU0
ZU+

Z , so that

UZ
∼= Z(sym)[h−r | r > 0]⊗Z Z(bin)[h0, c]⊗Z Z(sym)[hr | r > 0]

is an integral form of U.

Proof. Relation (1.58.1) follows from Lemma 1.55, vii) remarking that[
∑
r>0

(−1)r−1 hr

r
ur, ∑

s>0
(−1)s−1 h−s

s
vs
]
= c ∑

r>0

m + (−1)r |
r

urvr =

= −mcln(1− uv)− lcln(1 + uv).

Of course U0
ZU−Z = U−ZU0

Z is a Z-subalgebra of U, U−ZU0
ZU+

Z ⊆ UZ, UZ is generated by
U−ZU0

ZU+
Z as Z-algebra and U−ZU0

ZU+
Z
∼= U−Z ⊗Z U0

Z ⊗Z U+
Z as Z-modules.

Hence we need to prove that U−ZU0
ZU+

Z is a Z-subalgebra of U, or equivalently that it is
closed under left multiplication by U+

Z (because it is obviously closed under left multiplication
by U−ZU0

Z), which is a straightforward consequence of relation (1.58.1).

Lemma 1.59. Let U be a Q-algebra, T : U → U an automorphism,

f ∈ ∑
r>0

ZTrur ⊆ End(U)[[u]] ⊆ End(U[[u]]),

h ∈ uU[[u]] and x ∈ U such that T(h) = h and [x, h] = f (x). Then

xexp(h) = exp(h) · exp( f )(x).

Proof. By Lemma 1.55,iv)
x exp(h) = exp(h) exp([·, h])(x),

so we have to prove that exp([·, h])(x) = exp( f )(x), or equivalently that [·, h]n(x) = f n(x) for all
n ∈N.

If n = 0, 1 the claim is obvious; if n > 1, f n−1(x) = ∑r>0 arTrur(x) with ar ∈ Z for all r > 0,
f commutes with T, and by the inductive hypothesis and Lemma 1.55,iii)

[·, h]n(x) = [ f n−1(x), h] =

[
∑
r>0

arTrur(x), h

]
=

= ∑
r>0

arurTr([x, h]) = ∑ arurTr f (x) = f ∑ arurTr(x) = f ( f n−1(x)) = f n(x).
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Proposition 1.60. Let us fix integers md’s (d > 0) and consider elements {hr, xs | r > 0, s ∈ Z} in a
Q-algebra U such that

[hr, xs] = ∑
d|r

dmdxr+s ∀r > 0, s ∈ Z.

Let T be an algebra automorphism of U such that

T(hr) = hr and T(xs) = xs−1 ∀r > 0, s ∈ Z.

Then, recalling the notation Z[ĥk | k > 0] = Z(sym)[hr | r > 0], we have that

xr ĥ+(u) = ĥ+(u) ·
(

∏
d>0

(1− (−T−1u)d)−md

)
(xr).

If moreover the subalgebras of U generated by {hr | r > 0} and {xr | r ∈ Z} are isomorphic respectively
to Q[hr | r > 0] and Q[xr | r ∈ Z] and there is a Q-linear isomorphism U ∼= Q[hr | r > 0]⊗Q Q[xr |
r ∈ Z] then

Z(sym)[hr | r > 0]⊗Z Z(div)[xr | r ∈ Z]

is an integral form of U.

Proof. This is an application of Lemma 1.59: let h = ∑r>0(−1)r−1 hr
r ur; then

[x0, h] = ∑
r>0

(−1)r

r
ur ∑

d|r
dmdT−r(x0) =

= ∑
d>0

∑
s>0

(−1)ds

s
mdT−dsuds(x0) = f (x0)

where
f = − ∑

d>0
md ln

(
1− (−1)dT−dud

)
.

Then

x0ĥ+(u) = ĥ+(u) · exp( f )(x0) = ĥ+(u) ·
(

∏
d>0

(1− (−T−1u)d)−md

)
(x0),

and the analogous statement for xr follows applying T−r.
Remark that ∏d>0(1− (−T−1u)d)−md = ∑r≥0 arT−rur with ar ∈ Z ∀r ∈ N; the hypothesis

on the commutativity of the subalgebra generated by the xr’s implies that (∑r≥0 arxrur)(k) lies

in the subalgebra of U generated by the divided powers {x(k)r | r ∈ Z, k ≥ 0}, which allows to
conclude the proof thanks to the last hypotheses on the structure of U.

Remark 1.61. Proposition 1.60 implies Proposition 1.56: indeed when m1 = m, md = 0 ∀d > 1 we have
a projection hr 7→ h, xr 7→ x, which maps exp(x0u) to exp(xu), ĥ(u) to (1 + u)h and T to the identity.

Remark 1.62. Proposition 1.60 implies Proposition 1.56: indeed when m1 = m, md = 0 ∀d > 1 we have
a projection hr 7→ h, xr 7→ x, which maps exp(x0u) to exp(xu), ĥ(u) to (1 + u)h and T to the identity.



Chapter 2

Kac-Moody algebras

In this part we will recall general notions about Kac-Moody algebras, in particular those of finite
and affine type. We systematically refer to [7] and [8]. As announced in the Introduction , Section
2.1 is devoted recall definition of affine and finite Kac-Mooody algebras and Section 2.2 recall
the loop construction of affine algebras and Section 2.3 is devoted to recall the results of Kostant,
Garland and Mitzman on the integral forms.

2.1 Definition of finite and affine Kac-Moody Algebras

Fix n ∈N>0 and set I = {1, . . . , n}

Definition 2.1. A generalized Cartan Matrix is a n× n matrix A = (ai,j)i,j∈I with integral entries such
that

ai,i = 2
ai,j ≤ 0 if i ̸= j

ai,j = 0⇔ aj,i = 0

A is said to be decomposable if there exists a nonempty proper subset Ĩ ⊆ I such that ai,j = 0 whenever
i ∈ Ĩ and j ̸∈ Ĩ, A is indecomposable if it is not decomposable. From now on we shall assume that A is
indecomposable. We say that A is of finite type if all the principal minors of A are positive, of affine type if
the proper principal minors of A are positive and A has determinant 0, and of indefinite type otherwise.

Finite and affine Cartan matrices are symmetrizable, that is, there exist a Diagonal matrix
D = diag(d1, . . . , dn) such that DA is symmetric, moreover the diagonal entries di’s can be chosen
to be coprime positive integers, this condition determines them uniquely. It is a classical result
that finite Cartan matrices classify simple Lie algebras of finite dimension.

Given a generalized Cartan Matrix A one can construct the associated Kac Moody algebra
g(A) as following.

Definition 2.2. The Kac-Moody Algebra g(A) associated to A is the Lie Algebra generated by the

{ei, fi, hi | i ∈ I}
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with relations:

[ei, f j] = δi,jhi,

[hi, ej] = ai,jej,

[hi, f j] = −ai,j f j,

( adei)
1−ai,j(ej) = 0 if i ̸= j,

( ad fi)
1−ai,j( f j) = 0 if i ̸= j.

Definition 2.3. To A is associated its Dynkin diagram Γ, that is an oriented graph with vertices labeled
by I and i-th vertex is connected to j-th vertex with max{|ai,j|, |aj,i|} edges with an arrow pointing from
i to j if |ai,j| < |aj,i|.
An automorphism χ of Γ is a permutation of its nodes such that ai,j = aχ(i),χ(j), let us denote by k the
order of χ. It is immediate to see that, if Γ is of finite type, then k ∈ {1, 2, 3}.

2.2 Loop construction

Consider a finite dimensional simple Lie algebra g, with Cartan Matrix A0 = (ai,j)i,j∈I , Dynkin
Diagram Γ. And let χ be an automorphism of Γ, then χ induces an automorphism on g defined
on the generators by χ · ei = eχ(i) , χ · fi = fχ(i) and its eigenvalues are e

2πir
k for r = 0, . . . , k.

Consider the decomposition of g into eigenspaces

g =
k−1⊕
r=0

gr

where gr is the eigenspace relative to the eigenvalue e
2πir

k , of course it is a Z/kZ-grading that
is [gr, gs] ⊆ gr+s ∀r, s ∈ Z/kZ, in particular g0 is a Lie subalgebra of g (and g0 is itself a finite
dimensional simple Lie algebra) and gr is a g0-module. The Z/kZ-grading induced by χ allows
to construct the χ-Loop algebra of g, that is

Lχ(g) =
⊕
r∈Z

gr ⊗C[tr].

The affine Kac-Moody algebras is a non trivial central extension of Lχ(g) via the Killing form,
that is

ĝχ = Lχ(g)⊕Cc.

It was proven by Kac (see [8]) that the Affine Cartan matrices classify the affine Kac-Moody
algebras, in particular they are said to be untwisted if k = 1, otherwise are said to be twisted.
Let I, A = (ai,j)i∈I and Γ̂ be respectively the set of indices, the generalized Cartan matrix and the
Dynkin diagram of ĝχ and let I0, A0 and Γ0 be respectively the set of indices, the Cartan Matrix
and the Dynkin Diagram of g0. It is possible to identify I with {0, 1, . . . , n} and I0 with {1, . . . , n},
so that I = I0 ∪ {0}. It is possible to identify A0 with (ai,j)i,j∈I0 , and Γ̂ can be construct by adding
a vertex, labeled by 0, to Γ0.
The affine Kac-Moody algebras are of type

A(k)
n , B(1)

n+2, C(1)
n+1, D(k)

n+3, E(k)
6 , E(1)

7 , E(1)
8 , F(1)

4 , G(1)
2 , D(3)

4

for k = 1, 2 and n ≥ 1.
ĝχ admits a presentation by generators and relations, that is:
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Definition 2.4. ĝχ is the Lie algebra generated by {x+i,r, x−i,r, hi,r, c | i ∈ I0, d̃i|r ∈ Z} with relations

[c, ·] = 0

[hi,r, hj,s] = rδr+s,0
ai,j;r

dj
Dc

[x+i,r, x−j,r] = δi,j(hi,r+s + rδr+s,0
Dc
dj

);

[hi,r, x±j,s] = ±ai,j;rx±j,r+s;

[x±i,r, x±i,s] = 0 if (ĝχ, di) ̸= (A(2)
2n , 1) or r + s is even;

[x±i,r, x±i,s] + [x±i,r+1, x±i,s−1] = 0 if (ĝχ, di) = (A(2)
2n , 1) and r + s is odd;

[x±1,r, [x±1,s, x±1,t]] = 0

(adx±i,r)
1−ai,j(x±j,s) = 0 if i ̸= j.

where D = max{di | i ∈ I0},

ai,j;r = 2(2 + (−1)r) if i = j, di = 1 and ĝχ = A(2)
2n ,

ai,j;r = ai,j otherwise.

and

d̃i =

{
1 if k = 1 or ĝχ = A(2)

2n
di otherwise,

Remark 2.5. Remark that this presentation implies that

x±r 7→ x±i,r,

hr 7→ hi,r,

c 7→ d
dj

c;

defines an embedding

φi : A(1)
1 ↪→ ĝχ if (ĝχ, di) ̸= (A(2)

2n , 1),

φi : A(2)
2 ↪→ ĝχ if (ĝχ, di) = (A(2)

2n , 1).

Remark 2.6. The isomorphism between the two presentations ĝχ identifies

ei ↔ x+i,0,

fi ↔ x−i,0,

hi ↔ hi,0,

(i ∈ I0).

Definition 2.7. Let us denote by Q and Q0 the root lattice of respectively g and g0, that is Q =
⊕

i∈I Zαi
and Q0 =

⊕
i∈I0

Zαi. A is symmetrizable, then DA induces a symmetric bilinear form on Q, that is ( , ).
Since A is affine then DA has kernel of dimension one generated by an element δ ∈ Q, moreover θ =
δ− α0 ∈ Q0 hence Q = Q0 ⊕Zδ and ( , )|(Q0,Q0)

> 0. Moreover A induces Q→ h∗ : αj(hi) = aj,i.
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Definition 2.8. The Weyl group W of g is the subgroup of Aut(Q) generated by the elements σi(αj) =
αj − ai,jαi for all i ∈ I, let us denote by W0 the subgroup of W generated by σi for i ∈ I0. Remark that
σi(δ) = δ, ∀i ∈ I0.

Remark 2.9. W preserves (·, ·), that is (w(α), w(β)) = (α, β) for all α, β ∈ Q.

Remark 2.10. g is Q-graded: deg(ei) = αi = −deg( fi) and deg(hi) = 0, hence g = h⊕ (
⊕

α∈Q\{0} gα),
equivalently: deg(x±i,r) = ±αi + rδ, deg(hi,r) = rδ and deg(c) = 0.

Definition 2.11. Let us define the set of roots Φ of g by

Φ = {α ∈ Q \ {0} | gα ̸= 0}.

The positive and negative roots are respectively Φ+ = Φ ∩ ∑i∈I Nαi and Φ− = Φ+, moreover Φ =
Φ− ∪Φ+. Let us denote by Φ0 = W0 · {αi | i ∈ I0}.

Remark 2.12. Let us remark that adei and ad fi) are nilpotent endomorphisms ∀i ∈ I, adx±i,r are nilpotent
endomorphisms ∀i ∈ I0.

Definition 2.13. For all i ∈ I, let us define the following automorphisms of g:

τi = exp(adei) exp(−ad fi) exp(adei),

and for all i ∈ I0, let us define the following automorphisms of g:

τi,r = exp
(

adx+i,r
)

exp
(
−adx−i,r

)
exp

(
adx+i,r

)
.

Of course if i ∈ I0 we have that τi = τi,0. Denote by WT the group generated by {τi | i ∈ I}, obviously
τi,r = T−r

i τiTr
i , for all i ∈ I0 and for all r ∈ Z.

Remark 2.14. It is well known that τi(gα) = gσi(α)
, for all i ∈ I and ∀α ∈ Q. In particular Φ is

W-stable.

Remark 2.15. We have that dimgα < ∞ for all α ∈ Φ. There exist a unique element θ of Φ0 such that
θ − α ∈ ∑i∈I Nαi ∀α ∈ Φ0, θ is called the highest root of Φ0. There exist a unique element θs of Φ0 such
that θs − α ∈ ∑i∈I Nαi ∀α ∈ Φ such that (α, α) = 2, θs is called the highest short root of Φ0.

The root system Φ of g decompose into two parts, that is Φ = Φre ∪Φim, where Φre = W · {αi |
i ∈ I} and Φim = {mδ | m ∈ Z}, whose elements are called respectively real and imaginary roots.
It is possible to describe Φre in terms of Φ0, that is

Φre =


{α + mδ | α ∈ Φ0, m ∈ Z} if k = 1

{α + mδ | α ∈ Φ0, m ∈ Z} ∪ {2α + (2m + 1)δ | dα = 1, m ∈ Z} if ĝχ = A(2)
2n

{α + mdαδ | α ∈ Φ0, m ∈ Z} otherwise.

where dα = (α,α)
2 .

The weight lattice P̂ ⊆ R ⊗ ZQ0 is P̂ =
⊕

i∈I0
Zλ′i where λ′i ∈ R ⊗ ZQ0 is defined by

(λ′i, αj) = δi,j for all i, j ∈ I0, Q0 naturally embeds in P̂. It is worth introducing another im-
portant sublattice P of P̂ as P =

⊕
i∈I0

Zλi, where λi = d̃iλ
′
i for all i ∈ I; obviously P ⊆ P̂. As

subgroups of Aut(Q) we have W ≤ P̂ ⋊W0 = Ŵ, in particular the equality holds if g = A(2)
2n . Ŵ

is called the extended Weyl group of g and we have also Ŵ = W ⋊ τ , where τ = Aut(Γ) ∩ Ŵ.
P̂ has a realisation as a group of transformations of Q as follows: define t : P̂ → Hom(Q, Q) by
setting tx(α) = α− (x, α)δ, for all x ∈ P̂.
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2.3 Kostant, Garland and Mitzman integral form

Let g be a finite or affine algebra with set of indices I.Let us denote by U its universal enveloping
algebra and by UZ the Z-subalgebra of U generated by {e(r)i , f (r)i | i ∈ I, r ∈ N}. The study
of UZ was begun by Kostant in the 1950s in the case where g is finite and later extended to the
related case by Garland in the 1970s and Mitzman in the 1980s. The investigation of UZ passes
in all cases by the introduction of a Chevalley basis for the algebra g. If g is finite we have the
following result due to Kostant.

Notation 2.16. In the following theorems where we speak about ”the algebra of divided powers in the
positive and negative roots vectors” we mean the Z-subalgebra generated by {e(r)|i∈I,r∈N

i } which is a free
Z-module with basis the ordered monomials in the xα’s.

Theorem 2.17. UZ is an integral form of U , more precisely:

UZ
∼= U+

Z ⊗U
h
Z ⊗U

−
Z

where U+
Z and U−Z are the algebras of divided powers respectively in the positive and negative root vectors,

Uh
Z = Z(bin)[hi | i ∈ I] is the algebras of binomials in the hi.

Let now on g be affine.

Definition 2.18. The Garland Λ-imaginary root vectors are the elements of U im,±: Λk(ξ(i, m)) are the
elements of defined recursively for k ≥ −1, d̃i|m,±m > 0, i ∈ I by

Λ−1(ξ(i, m)) = 1, kΛk−1(ξ(i, m)) = ∑
r≥0,s>0
r+s=k

Λr−1(ξ(i, m))ei,ms.

then U im,±
Z is the Z-algebra whose basis consisting in the following sets:

Bim,± =

{
∏
m>0

Λkm−1(ξ(i, m)) | km ≥ 0 ∀m, #{±m > 0 | km ̸= 0} < ∞, i ∈ I

}
.

Theorem 2.19. UZ is an integral form of U , more precisely:

UZ
∼= U+

Z ⊗U
im,+
Z ⊗Uh

Z ⊗U
im,+
Z ⊗U−Z

where U+
Z and U−Z are the algebras of divided powers respectively in the eα with α ∈ Φre,+ and α ∈ Φre,−,

Uh
Z is an algebras of binomials in the hi for i ∈ I0. U im,±

Z is described in definition 2.18.

Even though it was stated in the literature (see [3] for example), it is not clear from this de-
scription that U im,+

Z and U im,−
Z are algebras of polynomials, hence we decide to fill this gap giving

the proof of this fact (see 9.B and Proposition 1.14).
The question that arises naturally at this point is what is the relationship between the studied

integral form generated the divided powers of the Chevalley generators (i.e., the one studied by
Mitzman and Garland) and the analogous Z-algebra generated by the divided powers of the x+i,r
and the x−i,r. As we shall see these coincide outside the case A(2)

2n , instead in the latter case the
integral form results smaller, we will prove it in Chapter 6.
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Chapter 3

Integral form of A1

Let g be a finite dimensional semisimple Lie algebra. The results about g and the Z-basis of
the integral form UZ(g) of its enveloping algebra U (g) are well known (see [9] and [12]). Here
we recall the description of UZ(g) in terms of the non-commutative generalizations described in
Section 1.5, with the notations of the commutative examples given in Chapter 1.

The proof expressed in this language has the advantage to be easily generalized to the affine
case.

3.1 The integral form of sl2 (A1)

Definition 3.1. sl2 (respectively U (sl2)) is the Lie algebra (respectively the associative algebra) over Q

generated by {e, f , h} with relations

[h, e] = 2e, [h, f ] = −2 f , [e, f ] = h.

UZ(sl2) is the Z-subalgebra of U (sl2) generated by {e(k), f (k) | k ∈N}.

Theorem 3.2. Let U+, U−, U 0 denote the Q-subalgebras of U (sl2) generated respectively by e, by f , by
h.

Then U+ ∼= Q[e], U− ∼= Q[ f ], U 0 ∼= Q[h] and U (sl2) ∼= U− ⊗U 0 ⊗U+; moreover

UZ(sl2) ∼= Z(div)[ f ]⊗Z Z(bin)[h]⊗Z Z(div)[e]

is an integral form of U (sl2).

Proof. Thanks to Proposition 1.56, we just have to study the commutation between e(k) and f (l)

for k, l ∈N.
Let us recall the commutation relation

e exp( f u) = exp( f u)(e + hu− f u2) (3.2.1)

which is a direct application of Lemma 1.55,iv) and of the relations [e, f ] = h, [h, f ] = −2 f and
[ f , f ] = 0.

We want to prove that in U (sl2)[[u, v]]

exp(eu)exp( f v) = exp
( f v

1 + uv

)
(1 + uv)hexp

( eu
1 + uv

)
. (3.2.2)

Let F(u) = exp
(

f v
1+uv

)
(1 + uv)hexp

(
eu

1+uv

)
.

37
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It is obvious that F(0) = exp( f v); hence by Lemma 1.55,x) our claim is equivalent to

d
du

F(u) = eF(u).

To obtain this result we derive remarking Lemma 1.55,ix) and then apply the relations (1.56.2)
and (3.2.1):

d
du

F(u) =

= exp
( f v

1 + uv

)
(1 + uv)h e

(1 + uv)2 exp
( eu

1 + uv

)
+

+exp
( f v

1 + uv

)( hv
1 + uv

− f v2

(1 + uv)2

)
(1 + uv)hexp

( eu
1 + uv

)
=

= exp
( f v

1 + uv

)(
e +

hv
1 + uv

− f v2

(1 + uv)2

)
(1 + uv)hexp

( eu
1 + uv

)
=

= eF(u).

Remarking that

xu
1 + uv

∈ Z[x][[u, v]], hence
( xu

1 + uv

)(k)
∈ Z(div)[x][[u, v]] ∀k ∈N,

it follows that the right hand side of 3.2 is an integral form of U (sl2) (containing UZ(sl2)).
Finally remark that inverting the exponentials on the right hand side, the relation (3.2.2) gives

an expression of (1 + uv)h in terms of the divided powers of e and f , so that Z(bin)[h] ⊆ UZ(sl2),
which completes the proof.



Chapter 4

The integral form of ˆsl2 (A(1)
1 )

The results about ˆsl2 and the integral form ÛZ of its enveloping algebra Û are due to Garland (see
[6]). Here we simplify the description of the imaginary positive component of ÛZ proving that it
is an algebra of polynomials over Z and give a compact and complete proof of the assertion that
the set given in Theorem 4.25 is actually a Z-basis of ÛZ. This proof has the advantage, following
[11], to reduce the long and complicated commutation formulas to compact, simply readable and
easily proved ones. It is evident from this approach that the results for ˆsl2 are generalizations of
those for sl2, so that the commutation formulas arise naturally recalling the homomorphism

ev : ˆsl2 = sl2 ⊗Q[t±1]⊕Qc→ sl2 ⊗Q[t±1]→ sl2 (4.0.1)

induced by the evaluation of t at 1.
On the other hand these results and the strategy for their proof will be shown to be in turn

generalizable to ˆsl3
χ.

As announced in the Introduction, the proof of Theorem 4.25 is based on a few results: Propo-
sition 4.14, Proposition 4.15, Lemma 4.21, and Proposition 4.22.

4.1 From A1 to A(1)
1

Definition 4.1. ˆsl2 (respectively Û ) is the Lie algebra (respectively the associative algebra) over Q gener-
ated by {x+r , x−r , hr, c | r ∈ Z} with relations

c is central,

[hr, hs] = 2rδr+s,0c, [hr, x±s ] = ±2x±r+s

[x+r , x+s ] = 0 = [x−r , x−s ],

[x+r , x−s ] = hr+s + rδr+s,0c.

Notice that {x+r , x−r | r ∈ Z} generates Û .
Û+, Û−, Û 0 are the subalgebras of Û generated respectively by {x+r | r ∈ Z}, {x−r | r ∈ Z},

{c, hr | r ∈ Z}.
Û 0,+, Û 0,−, Ûh, are the subalgebras of Û (of Û 0) generated respectively by {hr | r > 0}, {hr | r < 0},

{c, h0}.

Remark 4.2. Û+, Û− are (commutative) algebras of polynomials:

Û+ ∼= Q[x+r | r ∈ Z], Û− ∼= Q[x−r | r ∈ Z];

39
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Û 0 is not commutative: [hr, h−r] = 2rc;
Û 0,+, Û 0,−, Ûh, are (commutative) algebras of polynomials:

Û 0,+ ∼= Q[hr | r > 0], Û 0,− ∼= Q[hr | r < 0], Ûh ∼= Q[c, h0];

Moreover we have the following “triangular” decompositions:

Û ∼= Û− ⊗ Û 0 ⊗ Û+,

Û 0 ∼= Û 0,− ⊗ Ûh ⊗ Û 0,+.

Remark that the images in Û of Û− ⊗ Û 0 and Û 0⊗ Û+ are subalgebras of Û and the images of Û 0,− ⊗ Ûh

and Ûh ⊗ Û 0,+ are commutative subalgebras of Û 0.

Definition 4.3. Û is endowed with the following anti/auto/homo/morphisms:
σ is the antiautomorphism defined on the generators by:

x+r 7→ x+r , x−r 7→ x−r , (⇒ hr 7→ −hr, c 7→ −c);

Ω is the antiautomorphism defined on the generators by:

x+r 7→ x−−r, x−r 7→ x+−r, (⇒ hr 7→ h−r, c 7→ c);

T is the automorphism defined on the generators by:

x+r 7→ x+r−1, x−r 7→ x−r+1, (⇒ hr 7→ hr − δr,0c, c 7→ c);

for all m ∈ Z, λm is the homomorphism defined on the generators by:

x+r 7→ x+mr, x−r 7→ x−mr, (⇒ hr 7→ hmr, c 7→ mc).

Remark 4.4. σ2 = idÛ , Ω2 = idÛ , T is invertible of infinite order; λ2
−1 = λ1 = idÛ ; λm is not

invertible if m ̸= ±1; λ0 = ev (through the identification < x+0 , x−0 , h0 >∼=< e, f , h >).

Remark 4.5. σΩ = Ωσ, σT = Tσ, σλm = λmσ for all m ∈ Z; ΩT = TΩ, Ωλm = λmΩ for all
m ∈ Z; λmT±1 = T±mλm for all m ∈ Z; λmλn = λmn, for all m, n ∈ Z.

Remark 4.6. σ|Û± = idÛ± , σ(Û 0,±) = Û 0,±, σ(Ûh) = Ûh.

Ω(Û±) = Û∓, Ω(Û 0,±) = Û 0,∓, Ω|Ûh = idÛh .

T(Û±) = Û±, T|Û0,± = idÛ0,± , T(Ûh) = Ûh.

For all m ∈ Z λm(Û±) ⊆ Û±, λm(Û 0) ⊆ Û 0, λm(Ûh) ⊆ Ûh,

λm(Û 0,±) ⊆


Û 0,± if m > 0
Û 0,∓ if m < 0
Ûh if m = 0.

Definition 4.7. Here we define some Z-subalgebras of Û :

ÛZ is the Z-subalgebra of Û generated by {(x+r )(k), (x−r )(k) | r ∈ Z, k ∈N};
Û±Z = Z(div)[x±r | r ∈ Z];

Ûh
Z = Z(bin)[h0, c];

Û 0,±
Z = Z(sym)[h±r | r > 0];

Û 0
Z is the Z-subalgebra of Û generated by Û 0,−

Z , Ûh
Z and Û 0,+

Z .
The notations are those of Section 1.
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We want to prove the following:

Theorem 4.8. Û 0
Z = Û 0,−

Z Ûh
ZÛ

0,+
Z : it is an integral form of Û 0; ÛZ = Û−Z Û 0

ZÛ
+
Z : it is an integral form

of Û .

As in the case of sl2, working in Û [[u]] (see the notation below) simplifies enormously the
proofs and gives a deeper insight to the question.

Notation 4.9. We shall consider the following elements in Û [[u]]:

x+(u) = ∑
r≥0

x+r ur = ∑
r≥0

T−rur(x+0 ),

x−(u) = ∑
r≥0

x−r+1ur = ∑
r≥0

Trur(x−1 ),

h±(u) = ∑
r≥1

(−1)r−1 h±r

r
ur,

ĥ±(u) = exp(h±(u)) = ∑
r≥0

ĥ±rur.

Remark 4.10. Notice that ev ◦ T = ev and

ev(x+(−u)) = ev
(

1
1 + T−1u

x+0

)
=

e
1 + u

,

ev(x−(−u)) = ev
(

T
1 + Tu

x−0

)
=

f
1 + u

,

ev(h±(u)) = hln(1 + u),

ev(ĥ±(u)) = (1 + u)h.

Remark 4.11. Here we list some obvious remarks.
i) Û±Z ⊆ ÛZ ∩ Û± and ÛZ is the Z-subalgebra of Û generated by Û+

Z ∪ Û
−
Z ;

ii) Û±Z , Ûh
Z, Û 0,±

Z and Û 0,±
Z Ûh

Z = Ûh
ZÛ

0,±
Z are integral forms respectively of Û±, Ûh, Û 0,± and

Û 0,±Ûh = ÛhÛ 0,±;
iii) ÛZ and Ûh

Z are stable under σ, Ω, T±1, λm for all m ∈ Z;

iv) Û±Z is stable under σ, T±1, λm for all m ∈ Z and Ω(Û±Z ) = Û∓Z ;

v) Û 0,±
Z is stable under σ, T±1 and Ω(Û 0,±

Z ) = λ−1(Û 0,±
Z ) = Û 0,∓

Z : more precisely

σ(ĥ±(u))= ĥ±(u)−1, Ω(ĥ±(u))=λ−1(ĥ±(u))= ĥ∓(u), T±1(ĥ±(u))= ĥ±(u);

vi) for m ∈ Z

λm(Û 0,±
Z ) ⊆


Û 0,±

Z if m > 0
Û 0,∓

Z if m < 0
Ûh

Z if m = 0,

thanks to v), to Proposition 1.13 and Remark 4.10.

Remark 4.12. The elements ĥk’s with k > 0 generate the same Z-subalgebra of Û as the elements Λk’s
(k ≥ 0) defined in [6].

Indeed let
∑
n≥0

pnun = P(u) = ĥ(−u)−1;
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then Remarks 1.8,1,ii) and 1.12,iii) imply that Z[ĥk | k > 0] = Z[pn | n > 0]; but

d
du

P(u) = P(u) ∑
r>0

hrur−1,

that is

p0 = 1, pn =
1
n

n

∑
r=1

hr pn−r ∀n > 0,

hence pn = Λn−1 ∀n ≥ 0.
On the other hand applying λm we get

λm(p0) = 1, λm(pn) =
1
n

n

∑
r=1

hrmλm(pn−r),

so that λm(pn) = λm(Λn−1) = Λn−1(ξ(m)) (see [6]).

Remark 4.13. Remark that for all r ∈ Z the subalgebra of ˆsl2 generated by

{x+r , x−−r, h0 + rc}

maps isomorphically onto sl2 through the evaluation homomorphism ev (see (4.0.1)). On the other hand
for each r ∈ Z there is an injection U (sl2)→ Û :

e 7→ x+r , f 7→ x−−r, h 7→ h0 + rc.

In particular Theorem 3.2, implies that the elements (h0+rc
k ) belong to ÛZ for all r ∈ Z, k ∈ N (thus,

remarking that the elements (c
k)’s are central and the Example 1.9, we get that Û h

Z ⊆ ÛZ) and Proposition
1.56 implies that Û h

ZÛ
+
Z and Û−Z Û h

Z are integral forms respectively of Û hÛ+ and Û−Û h.

Proposition 4.14. The following identity holds in Û [[u, v]]:

ĥ+(u)ĥ−(v) = ĥ−(v)(1− uv)−2c ĥ+(u).

Û 0
Z = Û 0,−

Z Û h
ZÛ

0,+
Z : it is an integral form of Û 0.

Proof. Since [hr, hs] = 2rδr+s,0c, the claim is Proposition 1.58 with m=2, l=0.

Proposition 4.15. The following identity holds in Û [[u]]:

x+0 ĥ+(u) = ĥ+(u)(1 + T−1u)−2(x+0 ). (4.15.1)

Hence for all k ∈N

(x+0 )(k) ĥ+(u) = ĥ+(u)((1 + T−1u)−2(x+0 ))(k) ∈ Û 0,+
Z Û+

Z [[u]]. (4.15.2)

Proof. The claim follows from Proposition 1.60 with m1 = 2, md = 0 ∀d > 1 and from 1.1.

Remark 4.16. The relation (4.15.1) can be written as

x+0 ĥ+(u) = ĥ+(u)
d

du
(ux+(−u)).

Indeed
(1 + T−1u)−2(x+0 ) = ∑

r∈N

(−1)r(r + 1)x+r ur =
d

du
(ux+(−u)).
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Remark 4.17. Remark that the relation (4.15.2) is the affine version of

e(k)(1 + u)h = (1 + u)h
(

e
(1 + u)2

)(k)
(4.17.1)

(see (1.56.3)); indeed ev maps (4.15.2) to (4.17.1).

Corollary 4.18. Û+
Z Û

0,±
Z ⊆ Û 0,±

Z Û+
Z and Û±Z Û 0

Z = Û 0
ZÛ
±
Z . Then Û 0

ZÛ
+
Z and Û−Z Û 0

Z are integral forms
respectively of Û 0Û+ and Û−Û 0.

Proof. Applying T−r to (4.15.2), we find that (x+r )(k) ĥ+(u) ⊆ ĥ+(u)Û+
Z [[u]] ∀r ∈ Z, k ∈ N,

hence Û+
Z ĥ+(u) ⊆ ĥ+(u)Û+

Z [[u]] and Û+
Z Û

0,+
Z ⊆ Û 0,+

Z Û+
Z . From this, applying λ−1 we get

Û+
Z Û

0,−
Z ⊆ Û 0,−

Z Û+
Z , hence Û+

Z Û 0
Z ⊆ Û 0

ZÛ
+
Z thanks to Remark 4.13. Finally applying Ω we obtain

that Û 0
ZÛ
−
Z ⊆ Û

−
Z Û 0

Z and applying σ we get the reverse inclusions.

We are now left to prove that Û+
Z Û
−
Z ⊆ Û

−
Z Û 0

ZÛ
+
Z and that Û 0

Z ⊆ ÛZ.

To this aim we study the commutation relations between (x+r )(k) and (x−s )(l) or equivalently
between exp(x+r u) and exp(x−s v).

Remark 4.19. Theorem 3.2 and Remark 4.13 imply that exp(x+r u)exp(x−−rv) ∈ Û−Z Û 0
ZÛ

+
Z [[u, v]] for

all r ∈ Z.
In order to prove a similar result for exp(x+r u)exp(x−s v) when r + s ̸= 0 remark that in general

exp(x+r u)exp(x−s v) = T−rλr+s(exp(x+0 u)exp(x−1 v)),

so that Remark 4.11,iv),v),vi) allows us to reduce to the case r = 0, s = 1.
This case will turn out to be enough also to prove that Û 0

Z ⊆ ÛZ.

Remark 4.20. In the study of the commutation relations in ÛZ remark that

ev(exp
(

x+0 u
)

exp
(

x−1 v
)
) = exp(eu) exp( f v)

and that straightening exp
(

x+0 u
)

exp
(

x−1 v
)

through the triangular decomposition Û ∼= Û− ⊗ Û 0 ⊗ Û+

we get an element of Û [[u, v]] whose coefficients involve x−r+1, hr+1, x+r with r ≥ 0 and whose image
through ev is

exp
( f v

1 + uv

)
(1 + uv)h exp

( eu
1 + uv

)
(see Remark 4.10).

Vice versa once we have such an expression for exp
(
x+0 u

)
exp

(
x−1 v

)
applying T−rλr+s we can deduce

from it the relation (3.2.2) and the expression for exp(x+r u) exp(x−s v) for all r, s ∈ Z (also in the case
r + s = 0).

Remark that
exp(vx−(−uv))ĥ+(uv)exp(ux+(−uv))

is an element of Û [[u, v]] which has the required properties (see Remark 4.10) and belongs to Û−Z Û 0
ZÛ

+
Z [[u, v]].

Our aim is to prove that

exp
(

x+0 u
)

exp
(

x−1 v
)
= exp

(
vx−(−uv)

)
ĥ+(uv) exp

(
ux+(−uv)

)
.

Lemma 4.21. In Û [[u, v]] we have

x+0 exp
(
vx−(−uv)

)
= exp

(
vx−(−uv)

)(
x+0 +

dh+(uv)
du

+
dvx−(−uv)

du

)
.
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Proof. The claim follows from Lemma 1.55,iv) remarking that

[x+0 , vx−(−uv)] = v ∑
r∈N

hr+1(−uv)r =
d

du ∑
r∈N

hr+1

r + 1
(−1)r(uv)r+1 =

dh+(uv)
du

,

[dh+(uv)
du

, vx−(−uv)
]
= −2v2 ∑

r,s∈N

x+r+s+2(−uv)r+s =

= −2v2 ∑
r∈N

(r + 1)x−r+2(−uv)r = 2
dvx−(−uv)

du

and [dvx−(−uv)
du

, vx−(−uv)
]
= 0.

Proposition 4.22. In Û [[u, v]] we have

exp(x+0 u)exp(x−1 v) = exp(vx−(−uv))ĥ+(uv)exp(ux+(−uv)).

Proof. Let F(u) = exp(vx−(−uv))ĥ+(uv)exp(ux+(−uv)). It is clear that F(0) = exp(x−1 v), so
that thanks to Lemma 1.55,x) it is enough to prove that

d
du

F(u) = x+0 F(u).

Remark that, thanks to the derivation rules (Lemma 1.55,ix)), to Proposition 4.15, and to Lemma
4.21, we have:

d
du

F(u) = exp(vx−(−uv))ĥ+(uv)
d

du
(ux+(−uv)) exp

(
ux+(−uv)

)
+

+exp(vx−(−uv))
( d

du
h+(uv) +

d
du

(vx−(−uv))
)

ĥ+(uv)exp(ux+(−uv)) =

= exp(vx−(−uv))
(

x+0 +
d(h+(uv) + vx−(−uv))

du

)
ĥ+(uv)exp(ux+(−uv)) =

= x+0 exp(vx−(−uv))ĥ+(uv)exp(ux+(−uv)) = x+0 F(u).

Corollary 4.23. Û 0
Z ⊆ ÛZ.

Proof. That Û 0,+
Z ⊆ ÛZ is a consequence of Proposition 4.22 inverting the exponentials (see the

proof Theorem 3.2), which implies also (applying Ω) that Û 0,−
Z ⊆ ÛZ; the claim then follows

thanks to Remark 4.13.

Proposition 4.24. Û−Z Û 0
ZÛ

+
Z is a Z-subalgebra of Û (hence ÛZ = Û−Z Û 0

ZÛ
+
Z ).

Proof. We want to prove that Û−Z Û 0
ZÛ

+
Z (which is obviously a Û−Z -module and, by Corollary 4.18,

a Û 0
Z-module) is also a Û+

Z -module, or equivalently that Û+
Z Û
−
Z ⊆ Û

−
Z Û 0

ZÛ
+
Z .

By Proposition 4.22 together with Remark 4.19, relation (3.2.2) and Remark 4.13 we have that
y+y− ∈ Û−Z Û 0

ZÛ
+
Z in the particular case when y+ = (x+r )(k) and y− = (x−s )(l), thus we just need

to perform the correct induction to deal with the general y± ∈ Û±Z .
Remark that setting

deg(x±r ) = ±1, deg(hr) = deg(c) = 0
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induces a Z-gradation on Û (since the relations defining Û are homogeneous) and on ÛZ (since
its generators are homogeneous), which is preserved by σ, T±1 and λm ∀m ∈ Z; in particular it
induces N-gradations

Û± =
⊕
k∈N

Û±±k, Û±Z =
⊕
k∈N

Û±
Z,±k

with the properties that
Ω(Û±

Z,±k) = Û
∓
Z,∓k,

Û+
Z,k = ∑

n∈N
k1+...+kn=k

Z(x+r1
)(k1) · ... · (x+rn)

(kn) = ∑
r∈Z

Z(x+r )(k) + ∑
k1,k2>0

k1+k2=k

Û+
Z,k1
Û+

Z,k2
,

Û+
Z,kÛ

0
Z = Û 0

ZÛ+
Z,k (because ÛkÛ 0 = Û 0Ûk and Û+

Z Û
0
Z = Û 0

ZÛ+
Z )

and thanks to Definition 4.1 and Remark 4.2

[Û+
k , Û−−l ] ⊆ ∑

m>0
Û−−l+mÛ

0Û+
k−m ∀k, l ∈N.

We want to prove that

Û+
Z,kÛ

−
Z,−l ⊆ ∑

m≥0
Û−

Z,−l+mÛ
0
ZÛ+

Z,k−m ∀k, l ∈N, (4.24.1)

the claim being obvious for k = 0 or l = 0.
Suppose k ̸= 0, l ̸= 0 and the claim true for all (k̃, l̃) ̸= (k, l) with k̃ ≤ k and l̃ ≤ l. Then:
a) Proposition 4.22 together with Remark 4.19, relation (3.2.2) and Remark 4.13 imply that

(x+r )(k)(x−s )
(l) ∈ ∑

m≥0
Û−

Z,−l+mÛ
0
ZÛ+

Z,k−m ∀r, s ∈ Z;

b) if k1, k2 > 0 are such that k1 + k2 = k or l1, l2 > 0 are such that l1 + l2 = l, then

Û+
Z,k1
Û+

Z,k2
Û−

Z,−l ⊆ ∑
m2≥0

Û+
Z,k1
Û−

Z,−l+m2
Û 0

ZÛ+
Z,k2−m2

⊆

⊆ ∑
m1,m2≥0

Û−
Z,−l+m2+m1

Û 0
ZÛ+

Z,k1−m1
Û 0

ZÛ+
Z,k2−m2

=

= ∑
m1,m2≥0

Û−
Z,−l+m2+m1

Û 0
ZÛ+

Z,k1−m1
Û+

Z,k2−m2
⊆ ∑

m≥0
Û−

Z,−l+mÛ
0
ZÛ+

Z,k−m

and symmetrically applying Ω

Û+
Z,kÛ

−
Z,−l1

Û−
Z,−l2

= Ω(Û+
Z,l2
Û+

Z,l1
Û−

Z,−k) ⊆

⊆ Ω( ∑
m≥0
Û−

Z,−k+mÛ
0
ZÛ+

Z,l−m) = ∑
m≥0
Û−

Z,−l+mÛ
0
ZÛ+

Z,k−m.

(4.24.1) follows from a) and b).

We have thus proved Theorem 4.8, summarized in the following:

Theorem 4.25. The Z-subalgebra ÛZ of Û generated by

{(x±r )(k) | r ∈ Z, k ∈N}

is an integral form of Û .
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More precisely

ÛZ
∼= Û−Z ⊗ Û

0
Z ⊗ Û+

Z
∼= Û−Z ⊗ Û

0,−
Z ⊗ Ûh

Z ⊗ Û
0,+
Z ⊗ Û+

Z

and a Z-basis of ÛZ is given by the product

B̂−B̂0,−B̂hB̂0,+B̂+

where B̂±, B̂0,± and B̂h are the Z-bases respectively of Û±Z , Û 0,±
Z and Ûh

Z given as follows:

B̂± =
{
(x±)(k) = ∏

r∈Z

(x±r )(kr) | k : Z→N is finitely supported
}

B̂0,± =
{

ĥk
± = ∏

l∈Z+

ĥkl
±l | k : Z+ →N is finitely supported

}
B̂h =

{(h0

k

)(
c
k̃

)
| k, k̃ ∈N

}
.

Remark that B̂± = Bre,± and that exhibiting the basis B̂0,± proves that Û im,±
Z = Û 0,±

Z is an algebra of
polynomials (see the Introduction).



Chapter 5

The integral form of ˆsl3
χ
(A(2)

2 )

In this chapter we describe the integral form ŨZ of the enveloping algebra Ũ of the Kac-Moody
algebra of type A(2)

2 generated by the divided powers of the Drinfeld generators x±r ; unlike the
untwisted case, this integral form is strictly smaller than the one (studied in [11] by Mitzman)
generated by the divided powers of the Chevalley generators e0, e1, f0, f1 (see Chapter 6).

However, the construction of a Z-basis of ŨZ follows the idea of the analogous construction
in the case A(1)

1 , seen in the previous section; this method allows us to overcome the technical

difficulties arising in case A(2)
2 - difficulties which seem otherwise overwhelming.

The commutation relations needed to our aim can be partially deduced from the case A(1)
1 :

indeed, underlining some embeddings of ˆsl2 into ˆsl3
χ (see Remark 5.27), the commutation rela-

tions in Û can be directly translated into a class of commutation relations in Ũ (see Corollary 5.28,
Proposition 5.29 and the Appendix 9.A for more details).

Yet, there are some differences between A(1)
1 and A(2)

2 .

First of all, the real (positive and negative) components of Ũ are no more commutative (this
is well known: it happens in all the affine cases different from A(1)

1 , as well as in all the finite
cases different from A1), hence the study of their integral form requires some - easy - additional
observations (see Lemma 5.22).

The non commutativity of the real components of Ũ makes the general commutation for-
mula between the exponentials of positive and negative Drinfeld generators technically more
complicated to compute and express than in the case of ˆsl2; nevertheless, general and explicit
compact formulas can be given in this case, too, always thanks to the exponential notation. As
already seen, the simplification provided by the exponential approach lies essentially on Lemma
1.55,iv), which allows to perform the computations in Ũ reducing to much simpler computations
in ˆsl3

χ, and even, thanks to the symmetries highlighted in Definition 5.4, in the Lie subalgebra
L = ˆsl3

χ ∩ (sl3 ⊗Q[t]) ⊆ ˆsl3
χ (see Definition 5.8). Recognizing a Q[w]-module structure on each

direct summand of L = L− ⊕ L0 ⊕ L+ and unifying them in a Q[w]-module structure on L (see
Definition 5.10) provides a further simplification in the notations: one could have done the same
construction for ˆsl2, but we have the feeling that in the case of ˆsl2 it would be unnecessary and
that on the other hand it is useful to present both formulations. All this is dealt with in Section
5.1.

The most remarkable difference with respect to A(1)
1 on one hand and to Mitzman’s integral

form on the other hand lies in the description of the generators of the imaginary (positive and
negative) components; it can be surprising that they are not what one could expect: Ũ 0,+

Z ̸=

47
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Z(sym)[hr | r > 0]. More precisely (see Remark 5.13 and Theorem 5.44)

Ũ 0,+
Z ̸⊆ Z(sym)[hr | r > 0] and Z(sym)[hr | r > 0] ̸⊆ Ũ 0,+

Z ;

as we shall show, we need to somehow “deform” the hr’s (by changing some of their signs) to get
a basis of Ũ 0,+

Z by the (sym)-construction (see Definition 5.12, Example 1.2 and Remark 1.12). To
this we dedicate Section 5.2.

Notice that in order to prove that ŨZ is an integral form of Ũ and that B is a Z-basis of ŨZ

(Theorem 5.44) it is not necessary to find explicitly all the commutation formulas between the
basis elements. In any case, for completeness, we shall collect them in the Appendix 9.A.

5.1 From A(1)
1 to A(2)

2

Definition 5.1. ˆsl3
χ (respectively Ũ ) is the Lie algebra (respectively the associative algebra) over Q gen-

erated by {c, hr, x±r , X±2r+1 | r ∈ Z} with relations

c is central

[hr, hs] = δr+s,02r(2 + (−1)r−1)c

[hr, x±s ] = ±2(2 + (−1)r−1)x±r+s

(s odd) [hr, X±s ] =

{
±4X±r+s if 2 | r
0 if 2 ∤ r

[x±r , x±s ] =

{
0 if 2 | r + s
±(−1)sX±r+s if 2 ∤ r + s

[x±r , X±s ] = [X±r , X±s ] = 0

[x+r , x−s ] = hr+s + δr+s,0rc

(s odd) [x±r , X∓s ] = ±(−1)r4x∓r+s

(r, s odd) [X+
r , X−s ] = 8hr+s + 4δr+s,0rc

Notice that {x+r , x−r | r ∈ Z} generates Ũ .

Moreover {c, hr, x±r , X±2r+1 | r ∈ Z} is a basis of ˆsl3
χ; hence the ordered monomials in these

elements (with respect to any total ordering of the basis) is a PBW-basis of Ũ .
Ũ+, Ũ−, Ũ 0 are the subalgebras of Ũ generated respectively by

{x+r | r ∈ Z}, {x−r | r ∈ Z}, {c, hr | r ∈ Z}.

Ũ±,0, Ũ±,1 and Ũ±,c are the subalgebras of Ũ± generated respectively by

{x±r | r ≡ 0 (mod 2)}, {x±r | r ≡ 1 (mod 2)} and {X±2r+1 | r ∈ Z}.

Ũ 0,+, Ũ 0,−, Ũh, are the subalgebras of Ũ (of Ũ 0) generated respectively by

{hr | r > 0}, {hr | r < 0}, {c, h0}.
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Remark 5.2. Recalling that the root system of ˆsl3
χ is

(±α + Zδ) ∪ (±2α + (1 + 2Z)δ) ∪ (Z \ {0})δ

notice that {h0, c} is a basis of the Cartan subalgebra and

x±r ∈ grδ±α, X±2r+1 ∈ g(2r+1)δ±2α, hr ∈ grδ

(see [8]).

The following remark is a consequence of trivial applications of the PBW-Theorem to different
subalgebras of ˆsl3

χ.

Remark 5.3. Ũ+ and Ũ− are not commutative: [x+0 , x+1 ] = −X+
1 and [x−0 , x−1 ] = X−1 .

Ũ±,0, Ũ±,1 and Ũ±,c are (commutative) algebras of polynomials:

Ũ+,0 ∼= Q[x+2r | r ∈ Z], Ũ+,1 ∼= Q[x+2r+1 | r ∈ Z], Ũ+,c ∼= Q[X+
2r+1 | r ∈ Z],

Ũ−,0 ∼= Q[x−2r | r ∈ Z], Ũ−,1 ∼= Q[x−2r+1 | r ∈ Z], Ũ−,c ∼= Q[X−2r+1 | r ∈ Z].

We have the following “triangular” decompositions of Ũ±:

Ũ± ∼= Ũ±,0 ⊗ Ũ±,c ⊗ Ũ±,1 ∼= Ũ±,1 ⊗ Ũ±,c ⊗ Ũ±,0

Remark that Ũ±,c is central in Ũ±, so that the images in Ũ± of Ũ±,0 ⊗ Ũ±,c and Ũ±,1 ⊗ Ũ±,c are com-
mutative subalgebras of Ũ .
Ũ 0 is not commutative: [hr, h−r] ̸= 0 if r ̸= 0;
Ũ 0,+, Ũ 0,−, Ũh, are (commutative) algebras of polynomials:

Ũ 0,+ ∼= Q[hr | r > 0], Ũ 0,− ∼= Q[hr | r < 0], Ũh ∼= Q[c, h0];

Moreover we have the following triangular decomposition of Ũ 0:

Ũ 0 ∼= Ũ 0,− ⊗ Ũh ⊗ Ũ 0,+ ∼= Ũ 0,+ ⊗ Ũh ⊗ Ũ 0,−.

Remark that Ũh is central in Ũ 0, so that the images in Ũ 0 of Ũ 0,− ⊗ Ũh and Ũh ⊗ Ũ 0,+ are commutative
subalgebras of Ũ .

Finally remark the triangular decomposition of Ũ :

Ũ ∼= Ũ− ⊗ Ũ 0 ⊗ Ũ+ ∼= Ũ+ ⊗ Ũ 0 ⊗ Ũ−,

and observe that the images of Ũ− ⊗ Ũ 0 and Ũ 0 ⊗ Ũ+ are subalgebras of Ũ .

Definition 5.4. ˆsl3
χ and Ũ are endowed with the following anti/auto/homo/morphisms:

σ is the antiautomorphism defined on the generators by:

x+r 7→ x+r , x−r 7→ x−r , (⇒ X±r 7→ −X±r , hr 7→ −hr, c 7→ −c);

Ω is the antiautomorphism defined on the generators by:

x+r 7→ x−−r, x−r 7→ x+−r, (⇒ X±r 7→ X∓−r, hr 7→ h−r, c 7→ c);

T is the automorphism defined on the generators by:

x+r 7→ x+r−1, x−r 7→ x−r+1, (⇒ X±r 7→ −X±r∓2, hr 7→ hr − δr,0c, c 7→ c);

for all odd integer m ∈ Z, λm is the homomorphism defined on the generators by:

x+r 7→ x+mr, x−r 7→ x−mr, (⇒ X±r 7→ X±mr, hr 7→ hmr, c 7→ mc).

Remark that if m is even λm is not defined on Ũ , but it is still defined on Ũ 0,+ = Q[hr | r > 0].
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Remark 5.5. σ2 = idŨ , Ω2 = idŨ , T is invertible of infinite order;

λ2
−1 = λ1 = idŨ ; λm is not invertible if m ̸= ±1.

Remark 5.6. σΩ = Ωσ, σT = Tσ, ΩT = TΩ. Moreover for all m, n odd we have σλm = λmσ,
Ωλm = λmΩ, λmT±1 = T±mλm, λmλn = λmn.

Remark 5.7. σ|Ũ±,0 = idŨ±,0 , σ|Ũ±,1 = idŨ±,1 , σ(Ũ±,c) = Ũ±,c, σ(Ũ 0,±) = Ũ 0,±, σ(Ũh) = Ũh.

Ω(Ũ±,0)= Ũ∓,0, Ω(Ũ±,1)= Ũ∓,1, Ω(Ũ±,c)= Ũ∓,c, Ω(Ũ 0,±)= Ũ 0,∓, Ω|Ũh= idŨh .

T(Ũ±,0) = Ũ±,1, T(Ũ±,1) = Ũ±,0, T(Ũ±,c) = Ũ±,c, T|Ũ0,± = idŨ0,± , T(Ũh) = Ũh.
For all odd m ∈ Z:
λm(Ũ±,0) ⊆ Ũ±,0, λm(Ũ±,1) ⊆ Ũ±,1, λm(Ũ±,c) ⊆ Ũ±,c, λm(Ũh) ⊆ Ũh,

λm(Ũ 0,±) ⊆
{
Ũ 0,± if m > 0
Ũ 0,∓ if m < 0.

Definition 5.8. L, L±, L0, L±,0, L±,1, L±,c are the Lie-subalgebras of ˆsl3
χ generated by:

L : {x+r , x−r | r ≥ 0},

L+ : {x+r | r ≥ 0}, L− : {x−r | r ≥ 0}, L0 : {hr | r ≥ 0},
L+,0 : {x+2r | r ≥ 0}, L+,1 : {x+2r+1 | r ≥ 0}, L+,c : {X+

2r+1 | r ≥ 0}.

L−,0 : {x−2r | r ≥ 0}, L−,1 : {x−2r+1 | r ≥ 0}, L−,c : {X−2r+1 | r ≥ 0}.

Remark 5.9. L0, L±,0, L±,1 and L±,c are commutative Lie-algebras; for these subalgebras of L the Lie-
generators given in Definition 5.8 are bases over Q.
Moreover we have Q-vector space decompositions

L = L− ⊕ L0 ⊕ L+, L+ = L+,0 ⊕ L+,1 ⊕ L+,c, L− = L−,0 ⊕ L−,1 ⊕ L−,c.

Finally remark that L+ is T−1-stable and that L− is T-stable; more in detail T∓1(L±,0) = L±,1, T∓1(L±,1) ⊆
L±,0 (so that L±,0 and L±,1 are T∓2-stable); L±,c is T∓1-stable.

Definition 5.10. L is endowed with the Q[w]-module structure defined by w|L− = T|L− , w|L+ =
T−1|L+ , w.hr = hr+1 ∀r ∈ N. Explicitly w acts on L± as follows: w.x±r = x±r+1, w.X±2r+1 = −X±2r+3
∀r ≥ 0.

Lemma 5.11. Let ξ1(w), ξ2(w) ∈ Q[w][[u, v]]. Then:

i) [ξ1(w2).x±0 , ξ2(w2).x±1 ] = ∓(ξ1ξ2)(−w).X±1 ;

ii) [ξ1(w).x+0 , ξ2(w).x−0 ] = (ξ1ξ2)(w).h0;

iii) [ξ1(w).x+0 , ξ2(w).X−1 ] = 4ξ1(−w)ξ2(−w2).x−1 ;

iv) [ξ1(w).h0, ξ2(w).x±0 ] = ±(4ξ1(w)− 2ξ1(−w))ξ2(w).x±0 .

Proof. The assertions are just a translation of the defining relations of Ũ :

[x±2r, x±2s+1], [x+r , x−s ], [x+r , X−2s+1], [hr, x±s ].

For iv), remark that
2(2 + (−1)r−1)wr = 4wr − 2(−w)r.
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Definition 5.12. Here we define some Z-subalgebras of Ũ :

ŨZ is the Z-subalgebra of Ũ generated by {(x+r )(k), (x−r )(k) | r ∈ Z, k ∈N};
Ũ+

Z and Ũ−Z are the Z-subalgebras of Ũ (and of ŨZ) generated respectively by {(x+r )(k) | r ∈ Z, k ∈
N}, and {(x−r )(k) | r ∈ Z, k ∈N};
Ũ±,0

Z = Z(div)[x±2r | r ∈ Z];

Ũ±,1
Z = Z(div)[x±2r+1 | r ∈ Z];

Ũ±,c
Z = Z(div)[X±2r+1 | r ∈ Z];

Ũh
Z = Z(bin)[h0, c];

Ũ 0,±
Z = Z(sym)[εrh±r | r > 0] with εr =

{
1 if 4 ∤ r
−1 if 4 | r

;

Ũ 0
Z is the Z-subalgebra of Ũ generated by Ũ 0,−

Z , Ũh
Z and Ũ 0,+

Z .
The notations are those of Section 1.

In particular remark the definition of Ũ 0,±
Z (where the εr’s represent the necessary “deformation” an-

nounced in the Introduction of this section, and discussed in details in Proposition 1.18) and introduce the
notation

Z[h̃k | ±k > 0] = Z(sym)[εrh±r | r > 0]

where
h̃±(u) = ∑

k∈N

h̃±kuk = exp
(

∑
r>0

(−1)r−1 εrh±r

r
ur
)

.

Remark 5.13. It is worth underlining that h̃+(u) ̸= ĥ+(u), where

Z[ĥk | k > 0] = Z(sym)[hr | r > 0],

that is
ĥ+(u) = ∑

k∈N

ĥkuk = exp
(

∑
r>0

(−1)r−1 hr

r
ur
)

.

More precisely the Z-subalgebras generated respectively by {ĥk | k > 0} and {h̃k | k > 0} are different
and not included in each other: indeed h̃1 = ĥ1, h̃2 = ĥ2, h̃3 = ĥ3 but ĥ4 ̸∈ Z[h̃k | k > 0] and
h̃4 ̸∈ Z[ĥk | k > 0] (see Propositions 1.18 and 1.19 and Remark 1.20).

Notice that we are considering the algebra involution of Q[hr | r > 0] defined by hr 7→ εrhr ∀r > 0
through which (using Notation 1.15) ĥ{a}(u) is mapped to ĥ{εa}(u); in particular h̃(u) = ĥ{ε}(u) so that
ĥ{a}(u) ⊆ Z[ĥk | k > 0][[u]] if and only if ĥ{εa}(u) ⊆ Z[h̃k | k > 0][[u]] .

Remark 5.14. Let ξ(w) ∈ Q[w][[u]]; the elements

exp
(

ξ(w2).x±0
)

, exp
(

ξ(w2).x±1
)

and exp
(
ξ(w).X±1

)
lie respectively in Ũ±,0

Z [[u]], Ũ±,1
Z [[u]] and Ũ±,c

Z [[u]] if and only if ξ(w) has integral coefficients, that is if
and only if ξ(w) ∈ Z[w][[u]] (see Definitions 1.6 and 5.10).

Remark also that (see Remark 1.16)

ĥ+(u) = exp(ln(1 + wu).h0),

while

h̃+(u) = exp
((

ln(1 + uw)− 1
2

ln
(

1− u4w4
))

.h0

)
.

Before entering the study of the integral forms just introduced, we still dwell on the compari-
son between h̃+(u) and ĥ+(u), proving Lemma 5.16, that will be useful later.
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Lemma 5.15. For all m ∈ Z \ {0} we have

(1 + m2u)
1
m ∈ 1 + muZ[[u]].

Proof. (1 + ∑r>0 arur)m = 1 + m2u implies

1 + m2u = 1 + m ∑
r>0

arur + ∑
k>1

(
m
k

)(
∑
r>0

arur)k.

Let us prove by induction on s that as ∈ mZ:
if s = 1 we have that ma1 = m2;

if s > 1 the coefficient cs of us in ∑k>1 (
m
k )
(

∑r>0 arur)k is a combination with integral coeffi-
cients of products of the at’s with t < s, which are all multiple of m. Then, since k ≥ 2, m2 | cs.
But mas + cs = 0, thus m | as.

Lemma 5.16. Let us consider the integral forms Z[ĥk | k > 0] and Z[h̃k | k > 0] of Q[hr | r > 0]
(see Example 1.2, notation 1.2, Definiton 5.12 and Remark 5.13); for all m > 0 recall the Q-algebra
homomorphism λm of Q[hr | r > 0] (see Proposition 1.13) and define the analogous homomorphism λ̃m
mapping each εrhr to εmrhmr (of course Z[h̃k | k > 0] is λ̃m-stable ∀m > 0).

We have that:
i) if m is odd then λ̃m = λm; in particular Z[h̃k | k > 0] is λm-stable;

ii) λ2(ĥk) ∈ Z[h̃l | l > 0] for all k > 0;

iii) ĥ+(4u)
1
2 ∈ Z[h̃k | k > 0][[u]];

Proof. i) If m is odd then 4 | mr ⇔ 4 | r, hence εmr = εr ∀r > 0 and the claim follows from
Proposition 1.13

ii) By Proposition 1.13 we know that Z[h̃k | k > 0] is λ̃2-stable; but

λ̃2(h̃+(u2)) = exp ∑
r>0

(−1)r−1 ε2rh2r

r
u2r = exp ∑

r>0

h2r

r
u2r = λ2(ĥ+(−u2))−1;

equivalently
λ2(ĥ+(u2)) = λ̃2(h̃+(−u2))−1

which implies the claim.
iii) Remark that

ĥ+(u)h̃+(u)−1 = exp

(
−∑

r>0

2h4r
4r

u4r

)
= λ̃4(h̃+(−u4))−

1
2 ;

then
ĥ+(4u)

1
2 = h̃+(4u)

1
2 λ̃4(h̃+(−44u4))−

1
4 .

Since h̃+(4u) ∈ 1 + 4uZ[h̃k | k > 0][[u]] and λ̃4(h̃+(44u4)) ∈ 1 + 44uZ[h̃k | k > 0][[u]] we deduce
from Lemma 5.15 and Remark 1.8,5) that

h̃+(4u)
1
2 , λ̃4(h̃+(44u4))

1
4 ∈ Z[h̃k | k > 0][[u]],

which implies the claim.

Remark 5.17. It is obvious that Ũ±,0
Z , Ũ±,1

Z , Ũ±,c
Z , Ũ 0,±

Z and Ũh
Z are integral forms respectively of Ũ±,0,

Ũ±,1, Ũ±,c, Ũ 0,± and Ũh.
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Hence by the commutativity properties we also have that Ũ±,0
Z Ũ±,c

Z and Ũ±,1
Z Ũ±,c

Z are integral forms
respectively of Ũ±,0Ũ±,c and Ũ±,cŨ±,1.

Analogously Ũh
ZŨ

0,+
Z and Ũ 0,−

Z Ũh
Z are integral forms respectively of ŨhŨ 0,+ and Ũ 0,−Ũh.

We want to prove the following

Theorem 5.18. 1) Ũ 0
Z = Ũ 0,−

Z Ũh
ZŨ

0,+
Z , so that Ũ 0

Z is an integral form of Ũ 0;

2) Ũ±Z = Ũ±,1
Z Ũ±,c

Z Ũ
±,0
Z , so that Ũ+

Z and Ũ−Z are integral forms respectively of Ũ+ and Ũ−;

3) ŨZ = Ũ−Z Ũ 0
ZŨ

+
Z , so that ŨZ is an integral form of Ũ .

It is useful to evidentiate the behaviour of the Z-subalgebras introduced above under the symmetries of
Ũ .

Proposition 5.19. The following stability properties under the action of σ, Ω, T±1 and λm (m ∈ Z odd)
hold:

i) ŨZ, Ũ+
Z and Ũ−Z are σ-stable, T±1-stable, λm-stable.

ŨZ is also Ω-stable, while Ω(Ũ±Z ) = Ũ∓Z .

ii) Ũ+,0
Z , Ũ+,1

Z and Ũ+,c
Z are σ-stable, T±2-stable, λm-stable.

Ũ+,c
Z is also T±1-stable, while T±1(Ũ+,0

Z ) = Ũ+,1
Z .

Ω(Ũ+,0
Z ) = Ũ−,0

Z , Ω(Ũ+,1
Z ) = Ũ−,1

Z and Ω(Ũ+,c
Z ) = Ũ−,c

Z .

iii) Ũh
Z, Ũ 0,+

Z and Ũ 0,−
Z are σ-stable and T±1-stable.

Ũh
Z is also Ω-stable and λm-stable; Ω(Ũ 0,±

Z ) = Ũ 0,∓
Z ; Ũ 0,±

Z is λm-stable if m > 0, while λm(Ũ 0,±
Z ) ⊆

Ũ 0,∓
Z if m < 0.

iv) Ũ 0
Z is σ-stable, Ω-stable, T±1-stable, λm-stable.

Proof. The only non-trivial assertion is the claim that Ũ 0,+
Z is λm-stable when m > 0, which was

proved in Lemma 5.16,i).

The assertion about λm(Ũ 0,±
Z ) in the general case follows using that

Ω(Ũ 0,±
Z ) = Ũ 0,∓

Z = λ−1(Ũ 0,±
Z ), λmΩ = Ωλm and λ−m = λ−1λm.

Remark that

σ(h̃±(u))= h̃±(u)−1, Ω(h̃±(u))=λ−1(h̃±(u))= h̃∓(u), T±1(h̃±(u))= h̃±(u).

Remark 5.20. The stability properties described in Proposition 5.19 imply that:

i) σ(Ũ 0,−
Z Ũh

ZŨ
0,+
Z ) = Ũ 0,+

Z Ũh
ZŨ

0,−
Z ; in particular

Ũ 0
Z = Ũ 0,−

Z Ũh
ZŨ

0,+
Z ⇔ Ũ 0

Z = Ũ 0,+
Z Ũh

ZŨ
0,−
Z .

ii) T±1(Ũ+,1
Z Ũ+,c

Z Ũ
+,0
Z ) = Ũ+,0

Z Ũ+,c
Z Ũ

+,1
Z and Ũ+,1

Z Ũ+,c
Z Ũ

+,0
Z is T±2-stable and λm-stable (m ∈ Z

odd); in particular:

Ũ+
Z = Ũ+,1

Z Ũ+,c
Z Ũ

+,0
Z ⇔ Ũ+

Z = Ũ+,0
Z Ũ+,c

Z Ũ
+,1
Z .

iii) Ũ 0
ZŨ

+
Z is T±1-stable and λ−1-stable, and Ω(Ũ 0

ZŨ
+
Z ) = Ũ−Z Ũ 0

Z; in particular it is enough to prove
that (x+0 )(k) h̃+(u) ∈ h̃+(u)Ũ+

Z [[u]] ∀k ≥ 0 in order to show that

(x+r )(k) h̃±(u) ∈ h̃±(u)Ũ+
Z [[u]], h̃±(u)(x−r )(k) ∈ Ũ−Z [[u]]h̃±(u) ∀r ∈ Z, k ∈N,
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or equivalently that Ũ+
Z Ũ 0

Z ⊆ Ũ 0
ZŨ

+
Z and Ũ 0

ZŨ
−
Z ⊆ Ũ

−
Z Ũ 0

Z.

iv) Ũ−Z Ũ 0
ZŨ

+
Z is T±1-stable and λm-stable (m ∈ Z odd); in particular if one shows that (x+0 )(k)(x−1 )(l) ∈

Ũ−Z Ũ 0
ZŨ

+
Z it follows that ∀r, s ∈ Z such that 2 ∤ (r + s)

(x+r )(k)(x−s )
(l) = T−rλr+s((x+0 )(k)(x−1 )(l)) ∈ Ũ−Z Ũ

0
ZŨ+

Z .

Proposition 5.21. The following identities hold in Ũ :

ĥ+(u)ĥ−(v) = ĥ−(v)(1− uv)−4c(1 + uv)2c ĥ+(u)

and
h̃+(u)h̃−(v) = h̃−(v)(1− uv)−4c(1 + uv)2c h̃+(u).

In particular Ũ 0
Z = Ũ 0,−

Z Ũh
ZŨ

0,+
Z and Ũ 0

Z is an integral form of Ũ 0.

Proof. Since [hr, hs] = [εrhr, εshs] = δr+s,02r(2 + (−1)r−1)c, the claim is Proposition 1.58 with
m = 4, l = −2.

Lemma 5.22. The following identity holds in Ũ for all r, s ∈ Z:

exp
(

x+2ru
)

exp
(

x+2s+1v
)
= exp

(
x+2s+1v

)
exp

(
−X+

2r+2s+1uv
)

exp
(
x+2ru

)
.

Proof. The claim is an immediate consequence of Lemma 1.55,vii), thanks to the relation [x+2r, x+2s+1] =

−X+
2r+2s+1.

Corollary 5.23. Ũ+
Z = Ũ+,1

Z Ũ+,c
Z Ũ

+,0
Z ; then Ũ±Z is an integral form of Ũ±.

More in detail Ũ±Z = Ũ±,0
Z Ũ±,c

Z Ũ
±,1
Z = Ũ±,1

Z Ũ±,c
Z Ũ

±,0
Z .

Proof. From Lemma 5.22 we deduce that:

i) (X+
2r+1)

(k) ∈ Ũ+
Z ∀k ∈N, r ∈ Z; this implies that

Ũ+,c
Z ⊆ Ũ+

Z and Ũ+,1
Z Ũ+,c

Z Ũ
+,0
Z ⊆ Ũ+

Z .

ii) Ũ+,0
Z Ũ+,1

Z ⊆ Ũ+,1
Z Ũ+,c

Z Ũ
+,0
Z , hence Ũ+,1

Z Ũ+,c
Z Ũ

+,0
Z is stable by left multiplication by Ũ+,0

Z ,
hence by Ũ+

Z (which is generated by Ũ+,0
Z and Ũ+,1

Z ).

Since 1 ∈ Ũ+,1
Z Ũ+,c

Z Ũ
+,0
Z , we deduce Ũ+

Z ⊆ Ũ
+,1
Z Ũ+,c

Z Ũ
+,0
Z , and the claim follows applying Ω

and T (see Proposition 5.19,i) and ii)).

Proposition 5.24. Ũ+
Z Ũ

h
Z ⊆ Ũ

h
ZŨ

+
Z ; more precisely

(x+r )(k)
(

h0

l

)
=

(
h0 − 2k

l

)
(x+r )(k) ∀r ∈ Z, k, l ∈N.

Proof. The claim follows by immediate application of (1.56.1).

Proposition 5.25. In Ũ the following holds:
i) x+0 h̃+(u) = h̃+(u)(1− uT−1)6(1− u2T−2)−3(1 + u2T−2)(x+0 );

ii) (x+0 )(k) h̃+(u) ∈ h̃+(u)Ũ+
Z [[u]] ∀k ∈N;

iii) Ũ+
Z Ũ

0,+
Z ⊆ Ũ 0,+

Z Ũ+
Z .
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Proof. i) We have that [εrhr, x+0 ] = εr2(2 + (−1)r−1)x+r and

εr2(2 + (−1)r−1) =


6 if 2 ∤ r
2 = 6− 4 if 2 | r and 4 ∤ r
−2 = 6− 4− 4 if 4 ∤ r,

hence Proposition 1.60 applies, with m1 = 6, m2 = −2, m4 = −1 and implies that

x+0 h̃+(u) = h̃+(u)(1 + uT−1)−6(1− u2T−2)2(1− u4T−4)(x+0 ) =

= h̃+(u)(1− uT−1)6(1− u2T−2)−3(1 + u2T−2)(x+0 ).

ii) Let us underline that (1− u2)−3(1 + u2) ∈ Z[[u2]], hence from the coefficients of (1− u)6

it can be deduced that

(1− u)6(1− u2)−3(1 + u2) ∈ Z[[u2]] + 2uZ[[u2]]

and
x+0 h̃+(u) = h̃+(u) ∑

r≥0
arx+r ur with ar ∈ Z ∀r ≥ 0 and 2 | ar ∀r odd.

If we define y0 = ∑r≥0 a2rx+2ru2r, y1 = 1
2 ∑r≥0 a2r+1x+2r+1u2r+1 we have that, thanks to Lemma

1.55,v) and viii)
exp

(
x+0 v

)
h̃+(u) = h̃+(u) exp((y0 + 2y1)v) =

= h̃+(u) exp(2y1v) exp
(
[y0, y1]v2

)
exp(y0v) ∈ h̃+(u)Ũ+

Z [[u, v]] ,

thanks to Remark 5.14, from which the claim follows.
iii) From the T±1-stability of Ũ+

Z and the fact that T±1|Ũ0,+
Z

= id we deduce that for all r ∈
Z, k ∈N

(x+r )(k) h̃+(u) ∈ h̃+(u)Ũ+
Z [[u]].

The claim follows recalling that the (x+r )(k)’s generate Ũ+
Z and the h̃k’s generate Ũ 0,+

Z .

Corollary 5.26. Ũ±Z Ũ 0
Z = Ũ 0

ZŨ
±
Z . In particular Ũ 0

ZŨ
+
Z and Ũ−Z Ũ 0

Z are subalgebras of ŨZ.

Proof. Ũ+
Z Ũ

h
Z ⊆ Ũ

h
ZŨ

+
Z (see Proposition 5.24) and Ũ+

Z Ũ
0,+
Z ⊆ Ũ 0,+

Z Ũ+
Z (see Proposition 5.25,iii));

moreover
Ũ+

Z Ũ
0,−
Z = λ−1(Ũ+

Z Ũ
0,+
Z ) ⊆ λ−1(Ũ 0,+

Z Ũ+
Z ) = Ũ 0,−

Z Ũ+
Z .

Hence Ũ+
Z Ũ 0

Z ⊆ Ũ 0
ZŨ

+
Z .

Applying σ we get the reverse inclusion and applying Ω we obtain the claim for Ũ−Z .

Now that we have described Ũ 0
Z, Ũ±Z and the Z-subalgebras generated by Ũ 0

Z and Ũ+
Z (respec-

tively by Ũ 0
Z and Ũ−Z ), in order to show that ŨZ = Ũ−Z Ũ 0

ZŨ
+
Z it remains to prove that

Ũ 0
Z ⊆ ŨZ and Ũ+

Z Ũ
−
Z ⊆ Ũ

−
Z Ũ

0
ZŨ+

Z .

Before attaching this problem in its generality it is worth evidentiating the existence of some
copies of ˆsl2 inside ˆsl3

χ, hence of embeddings Û ↪→ Ũ , that induce some useful commutation
relations in Ũ .
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Remark 5.27. The Q-linear maps f , F : ˆsl2 → ˆsl3
χ defined by

f : x±r 7→ x±2r, hr 7→ h2r, c 7→ 2c

F : x±r 7→
X±2r∓1

4
, hr 7→

h2r

2
− δr,0

c
4

, c 7→ c
2

are Lie-algebra homomorphisms, obviously injective, inducing embeddings f , F : Û ↪→ Ũ .

Corollary 5.28. f (Ûh
Z) ⊆ Ũ

h
Z ⊆ ŨZ.

Proof. Since f (Û±Z ) ⊆ Ũ±,0
Z ⊆ ŨZ we have that f maps ÛZ (which is generated by Û+

Z and Û−Z )
into ŨZ; in particular f (Ûh

Z) ⊆ ŨZ. But (recalling Example 1.9)

f (Ûh
Z) = f (Z(bin)[h0, c]) = Z(bin)[h0, 2c],

thus Z(bin)[h0, 2c] ⊆ ŨZ. Since ŨZ is T-stable and T(h0) = h0 − c we also have Z(bin)[h0 − c] ⊆
ŨZ, so that

f (Ûh
Z) = Z(bin)[h0, 2c] ⊆ Z(bin)[h0, c] = Z(bin)[h0, h0 − c] ⊆ ŨZ

which is the claim because Ũh
Z = Z(bin)[h0, c].

Proposition 5.29. Ũ+,0
Z Ũ−,0

Z ⊆ Ũ−Z Ũ 0
ZŨ

+
Z and Ũ+,1

Z Ũ−,1
Z ⊆ Ũ−Z Ũ 0

ZŨ
+
Z .

Proof. Ũ+,0
Z Ũ−,0

Z = f (Û+
Z Û
−
Z ) ⊆ f (Û−Z Û 0

ZÛ
+
Z ) = Ũ−,0

Z f (Û 0
Z)Ũ

+,0
Z : we want to prove that f (Û 0

Z) =

f (Û 0,−
Z Ûh

ZÛ
0,+
Z ) ⊆ Ũ 0

Z.

By Corollary 5.28 f (Ûh
Z) ⊆ Ũ

h
Z.

On the other hand

f (Û 0,+
Z ) = f (Z(sym)[hr | r > 0]) = Z(sym)[h2r | r > 0] = λ2(Z[ĥk | k > 0]),

hence f (Û 0,+
Z ) ⊆ Z[h̃k | k > 0] = Ũ 0,+

Z thanks to Lemma 5.16,ii).

Finally remark that f Ω = Ω f , thus f (Û 0,−
Z ) = f Ω(Û 0,+

Z ) ⊆ ΩŨ 0,+
Z ⊆ Ũ 0,−

Z (see Proposition
5.19,iii)).

It follows that f (Û 0
Z) ⊆ Ũ 0

Z and Ũ+,0
Z Ũ−,0

Z ⊆ Ũ−Z Ũ 0
ZŨ

+
Z .

The assertion for Ũ±,1
Z follows applying T, see Proposition 5.19,i),ii) and iv).

5.2 exp(x+
0 u) exp(x−1 v) and Ũ 0,+

Z : here comes the hard work

We shall deal with the commutation between Ũ+,0
Z and Ũ−,1

Z following the strategy already pro-
posed for ÛZ and recalling Remark 5.20,iv): finding an explicit expression involving suitable
exponentials for

exp
(

x+0 u
)

exp
(

x−1 v
)
∈ Ũ−,1Ũ−,cŨ−,0Ũ 0,+Ũ+,1Ũ+,cŨ+,0[[u, v]]

and proving that all its coefficients lie in

Ũ−,1
Z Ũ−,c

Z Ũ
−,0
Z Ũ 0,+

Z Ũ+,1
Z Ũ+,c

Z Ũ
+,0
Z ⊆ Ũ−Z Ũ

0
ZŨ+

Z .

Since here there are more factors involved, the computation is more complicated than in the
case of ˆsl2 and the simplification provided by this approach is even more evident. On the other
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hand it is not immediately clear from the commutation formula that our element belongs to
Ũ−Z Ũ 0

ZŨ
+
Z , or better: the factors relative to the (negative, resp. positive) real root vectors will be

evidently elements of Ũ−Z , resp. Ũ+
Z , while proving that the null part lies indeed in Ũ 0

Z is not
evident at all and will require a deeper inspection (see Remark 5.39, Lemma 5.40 and Corollary
5.41).

As we shall see, in order to complete the proof that Ũ 0,+
Z ⊆ ŨZ (see Proposition 5.43), it is use-

ful to compute also exp
(

x+0 u
)

exp
(
X−1 v

)
. The two computations (exp

(
x+0 u

)
exp(yv) with y = x−1

or y = X−1 ) are essentially the same and will be performed together (see the considerations from
Remark 5.30 to Lemma 5.34, of which the Propositions 5.35 and 5.36 are straightforward appli-
cations); even though exp

(
x+0 u

)
exp

(
x−1 v

)
presents more symmetries than exp

(
x+0 u

)
exp

(
X−1 v

)
(see Remark 5.32,iii)), its interpretation will require more work, since it is not evident the connec-
tion with Ũ 0,+

Z , as just mentioned.

Remark 5.30. Let G = G(u, v) ∈ Ũ [[u, v]] and y ∈ L− (see Definition 5.8); then

G(u, v) = exp
(
x+0 u

)
exp(yv)

if and only if the following two conditions hold (see Lemma 1.55,x)):
a) G(0, v) = exp(yv);

b) d
du G(u, v) = x+0 G(u, v).

Notation 5.31. In the following (recalling Definition 5.10) G−, G0, G+ will denote elements of Ũ [[u, v]]
of the form

G− = exp(α−) exp(β−) exp(γ−),

G+ = exp(γ+) exp(β+) exp(α+),

G0 = exp(η)

with
α− ∈ vQ[w2][[u, v]].x−1 , β− ∈ vQ[w][[u, v]].X−1 , γ− ∈ vQ[w2][[u, v]].x−0 ,

α+ ∈ uQ[w2][[u, v]].x+0 , β+ ∈ uQ[w][[u, v]].X+
1 , γ+ ∈ uQ[w2][[u, v]].x+1 ,

η ∈ uvwQ[w][[u, v]].h0.

G(u, v) will denote the element G(u, v) = G = G−G0G+.

Remark 5.32. Let G = G−G0G+ ∈ Ũ [[u, v]] be as in Notation 5.31. Then:
i) Of course

dG
du

=
dG−

du
G0G+ + G−

dG0

du
G+ + G−G0 dG+

du
where, considering the commutativity properties, we have that

dG−

du
= exp(α−) exp(β−)

d(α− + β− + γ−)

du
exp(γ−),

dG+

du
= exp(γ+)

d(α+ + β+ + γ+)

du
exp(β+) exp(α+),

dG0

du
=

dη

du
G0.

ii) If moreover G = exp
(

x+0 u
)

exp(yv) with y ∈ L−, the property b) of Remark 5.30 translates into

x+0 G = exp(α−) exp(β−)
d(α− + β− + γ−)

du
exp(γ−)G0G++
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+G−
dη

du
G0G+ + G−G0 exp(γ+)

d(α+ + β+ + γ+)

du
exp(β+) exp(α+).

iii) If in addition to condition ii) we also have y = x−1 , then Tλ−1Ω(G(u, v)) = G(v, u); hence

G−(u, v) = Tλ−1Ω(G+)(v, u),

α−(u, v) = Tλ−1Ω(α+)(v, u),

β−(u, v) = Tλ−1Ω(β+)(v, u),

γ−(u, v) = Tλ−1Ω(γ+)(v, u),

η(u, v) = η(v, u).

Observe that Tλ−1Ω(X+
2r+1) = −X−2r+3 ∀r ∈ Z.

The following lemma is based on Lemma 1.55,iv) and on the defining relations of Ũ (Defini-
tion 5.1).

Lemma 5.33. With the notations fixed in 5.31 we have that:

i) x+0 exp(α−) =

= exp(α−)
(

x+0 + [x+0 , α−] +
1
2
[[x+0 , α−], α−] +

1
6
[[[x+0 , α−], α−], α−]

)
;

ii) x+0 exp(α−) exp(β−) = exp(α−) exp(β−)·

·
(

x+0 + [x+0 , α−] +
1
2
[[x+0 , α−], α−] +

1
6
[[[x+0 , α−], α−], α−] + [x+0 , β−]

)
;

iii) (x+0 + [x+0 , α−]) exp(γ−) =

= exp(γ−)
(
x+0 + [x+0 , α−] + [x+0 , γ−]

)
+

+

(
[[x+0 , α−], γ−] +

1
2
[[x+0 , γ−], γ−]−

1
2
[[[x+0 , α−], γ−], γ−]

)
exp(γ−);

iv) x+0 exp(η) = exp(η)(y0 + y1) with

y0 ∈ Q[w2][[u, v]].x+0 , y1 ∈ wQ[w2][[u, v]].x+0 ;

v) (y0 + y1) exp(γ+) = exp(γ+)(y0 + y1 + [y0, γ+]).

vi) In conclusion

x+0 G =
dG
du

if and only if the following relations hold:

dα−
du

= [x+0 , β−] + [[x+0 , α−], γ−]

dβ−
du

=
1
6
[[[x+0 , α−], α−], α−]−

1
2
[[[x+0 , α−], γ−], γ−]
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dγ−
du

=
1
2
[[x+0 , α−], α−] +

1
2
[[x+0 , γ−], γ−]

dη

du
= [x+0 , γ−] + [x+0 , α−]

dα+
du

= y0

dβ+

du
= [y0, γ+]

dγ+

du
= y1.

Remark that dα+
du = y0 and dγ+

du = y1 is equivalent to d(α++γ+)
du = y0 + y1.

Proof. i)-v) are straightforward repeated applications of Lemma 1.55,iv) remarking that:
i) and ii): [[[x+0 , α−], α−], α−] ∈ Ũ−,c[[u, v]], hence it commutes with both α− and β− (which

are in Ũ−[[u, v]]);
ii): β− ∈ Ũ−,c[[u, v]], hence it commutes also with [[x+0 , α−], α−] and [x+0 , β−] (which belong

to Ũ−[[u, v]]) and with [x+0 , α−] (because [h2r+1, Ũ−,c] = 0 ∀r ∈ Z);

iii): [[x+0 , γ−], γ−] and [[[x+0 , α−], γ−], γ−] belong respectively to Ũ−,0[[u, v]] and Ũ−,c[[u, v]],
so that they commute with γ− ∈ Ũ−,0[[u, v]]; the claim follows from the identities

(x+0 + [x+0 , α−]) exp(γ−) = exp(γ−) ·
(

x+0 + [x+0 , α−]+

+[x+0 , γ−] + [[x+0 , α−], γ−] +
1
2
[[x+0 , γ−], γ−] +

1
2
[[[x+0 , α−], γ−], γ−]

)
and

exp(γ−)[[x+0 , α−], γ−] = ([[x+0 , α−], γ−]− [[[x+0 , α−], γ−], γ−]) exp(γ−);

iv): Lemma 1.59 implies that exp(η)−1x+0 exp(η) ∈ Q[w][[u, v]].x+0 ;

v): γ+ ∈ Ũ+,1[[u, v]] commutes with both y1 ∈ Ũ+,1[[u, v]] and [y0, γ+] ∈ Ũ+,c[[u, v]].
Point vi) is a consequence of points i)-v) and Remark 5.32,i).

Lemma 5.34. By abuse of notation let α±, β±, γ± and η (see Notation 5.31 and Lemma 5.33,iv)) denote
also the elements of Q[w][[u, v]] such that

α+ = α+(w2).x+0 , β+ = β+(w).X+
1 , γ+ = γ+(w2).x+1 ,

α− = α−(w2).x−1 , β− = β−(w).X−1 , γ− = γ−(w2).x−0 ,

η = η(w).h0.

Then the relations of Lemma 5.33,vi) can be written as:

dα−(w2)

du
= 4β−(−w2)− 6α−(w2)γ−(w2),

dβ−(w)

du
= α−(−w)(wα2

−(−w)− 3γ2
−(−w)),

dγ−(w2)

du
= −3w2α2

−(w
2)− γ2

−(w
2),

dη(w)

du
= wα−(w2) + γ−(w2),
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d(α+(w2) + wγ+(w2))

du
= exp(−4η(w) + 2η(−w)),

dβ+(w)

du
= −dα+(−w)

du
γ+(−w).

Proof. The claim is obtained using Lemma 5.11. Indeed
dα−
du = dα−(w2)

du .x−1 and [x+0 , β−] + [[x+0 , α−], γ−] =

= [x+0 , β−(w).X−1 ] + [[x+0 , α−(w2).x−1 ], γ−(w2).x−0 ] = (by (iii))

= 4β−(−w2).x−1 + [[x+0 , wα−(w2).x−0 ], γ−(w2).x−0 ] = (by (ii))

= 4β−(−w2).x−1 + [wα−(w2).h0, γ−(w2).x−0 ] = (by (iv))

= 4β−(−w2).x−1 − (4wα−(w2) + 2wα−(w2))γ−(w2).x−0 =

= (4β−(−w2)− 6α−(w2)γ−(w2)).x−1 ;

dβ−
du = dβ−(w)

du .X−1 and 1
6 [[[x

+
0 , α−], α−], α−]− 1

2 [[[x
+
0 , α−], γ−], γ−] =

=
1
6
[[[x+0 , wα−(w2).x−0 ], wα−(w2).x−0 ], α−(w2).x−1 ]+

−1
2
[[[x+0 , wα−(w2).x−0 ], γ−(w2).x−0 ], γ−(w2).x−0 ] = (by (ii))

=
1
6
[[wα−(w2).h0, wα−(w2).x−0 ], α−(w2).x−1 ]+

−1
2
[[wα−(w2).h0, γ−(w2).x−0 ], γ−(w2).x−0 ] = (by (iv))

= −[w2α2
−(w

2).x−0 , α−(w2).x−1 ] + 3[wα−(w2)γ−(w2).x−0 , γ−(w2).x−0 ] =

= (wα3
−(−w)− 3α−(−w)γ2

−(−w)).X−1 ;

dγ−
du = dγ−(w2)

du .x−0 and 1
2 [[x

+
0 , α−], α−] +

1
2 [[x

+
0 , γ−], γ−] =

=
1
2
[[x+0 , wα−(w2).x−0 ], wα−(w2).x−0 ] +

1
2
[[x+0 , γ−(w2).x]0, γ−(w2).x−0 ] = (by (ii))

=
1
2
[wα−(w2).h0, wα−(w2).x−0 ] +

1
2
[γ−(w2).h0, γ−(w2).x−0 ] = (by (iv))

= −1
2
[6wα−(w2)wα−(w2).x−0 −

1
2

2γ2
−(w

2).x−0 =

= −3w2α2
−(w

2)− γ2
−(w

2)).x−0 ;

dη
du = dη(w)

du .h0 and [x+0 , γ−] + [x+0 , α−] =

[x+0 , γ−(w2).x−0 ] + [x+0 , wα−(w2).x−0 ] = (by

(γ−(w2) + wα−(w2)).h0;

d(α++γ+)
du = d(α+(w2)+wγ+(w2))

du .x+0 and y0 + y1 =

= exp(−η)x+0 exp(η) =

= exp(−η(w).h0)x+0 exp(η(w).h0) = (by (iv) and Lemma 1.59)
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= exp(−4η(w) + 2η(−w)).x+0 ;

dβ+
du = dβ+(w)

du .X+
1 and [y0, γ+] =

[
dα+
du , γ+

]
=

=

[
dα+(w2)

du
.x+0 , γ+(w2).x+1

]
= (by (i))

= −dα+(−w)

du
γ+(−w).X+

1 .

Proposition 5.35.
exp

(
x+0 u

)
exp

(
X−1 v

)
=

= exp(α−) exp(β−) exp(γ−) exp(η) exp(γ+) exp(β+) exp(α+)

where, with the notations of Lemma 5.34,

α−(w) =
4uv

1− 42wu4v2 , α+(w) =
u

1− 42wu4v2 ,

β−(w) =
(1 + 3 · 42wu4v2)v
(1 + 42wu4v2)2 , β+(w) =

(1− 42wu4v2)u4v
(1 + 42wu4v2)2 ,

γ−(w) =
−42wu3v2

1− 42wu4v2 , γ+(w) =
−4u3v

1− 42wu4v2 ,

η(w) =
1
2

ln
(

1 + 4wu2v
)

.

In particular:

i) (x+0 )(k)(X−1 )(l) ∈ Ũ−Z Ũ 0
ZŨ

+
Z for all k, l ∈N;

ii) ĥ+(4u)
1
2 ∈ ŨZ[[u]].

Proof. We use the notation fixed in 5.31.
It is obvious that G(0, v) = exp

(
X−1 v

)
, so that the condition a) of Remark 5.30 is fulfilled, and

we need to verify condition b), following Lemmas 5.33,vi) and 5.34.
Remark that

dη(w)

du
=

4wuv
1 + 4wu2v

=
4wuv(1− 4wu2v)

1− 42w2u4v2 = wα−(w2) + γ−(w2)

and

exp(−4η(w) + 2η(−w)) =
1− 4wu2v

(1 + 4wu2v)2 ,

α+(w2) + wγ+(w2) =
u(1− 4wu2v)
1− 42w2u4v2 =

u
1 + 4wu2v

,

so that

d(α+(w2) + wγ+(w2))

du
=

1 + 4wu2v− 8wu2v
(1 + 4wu2v)2 = exp(−4η(w) + 2η(−w)).

Now let us recall that ∀n, m ∈N and ∀a not depending on u

d
du

un

(1− au4)m =
nun−1 + (4m− n)aun+3

(1− au4)m+1 ,
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hence, fixing a = 42w2v2, we get

dα−(w2)

du
=

4v(1 + 3au4)

(1− au4)2 ,

dβ−(−w2)

du
=
−4au3v(1 + 3au4)

(1− au4)3 ,

dγ−(w2)

du
=
−a(3u2 + au6)

(1− au4)2 ,

dα+(w2)

du
=

1 + 3au4

(1− au4)2 ,

dβ+(−w2)

du
=

4vu3(1 + 3au4)

(1− au4)3 ;

remark that w 7→ −w2 induces an injective algebra endomorphism of Q[w][[u]] commuting with
d

du , which allowed us to use the same a = a(w, u) in the computations involving β±.
The relations to prove are then equivalent to the following:

4v(1 + 3au4) = 4(1− 3au4)v + 6 · 4uv · au3,

−4au3v(1 + 3au4) = 4uv(−w242u2v2 − 3a2u6),

−a(3u2 + au6) = −3w2 · 42u2v2 − a2u6,

4u3v(1 + 3au4) = (1 + 3au4)4u3v,

which are easily verified.
Then, since α±, β±, γ± have integral coefficients, i) follows from Remark 5.14 and Lemma

5.16,iii).
ii) follows at once from the above considerations, inverting the exponentials: indeed, recalling

Remark 5.13 and Notation 5.31 we have

exp(η) = exp(η(w).h0) = ĥ+(4u2v)1/2 = (G−)−1 exp
(
x+0 u

)
exp

(
X−1 v

)
(G+)−1

which belongs to ŨZ[[u, v]] because so do all the factors.

Proposition 5.36.
exp

(
x+0 u

)
exp

(
x−1 v

)
=

= exp(α−) exp(β−) exp(γ−) exp(η) exp(γ+) exp(β+) exp(α+)

where, with the notations of Lemma 5.34,

α+(w) =
(1 + wu2v2)u

1− 6wu2v2 + w2u4v4 , α−(w) =
(1 + wu2v2)v

1− 6wu2v2 + w2u4v4 ,

β+(w) =
(1− 4wu2v2 − w2u4v4)u3v
(1 + 6wu2v2 + w2u4v4)2 , β−(w) =

(1− 4wu2v2 − w2u4v4)wuv3

(1 + 6wu2v2 + w2u4v4)2 ,

γ+(w) =
(−3 + wu2v2)u2v

1− 6wu2v2 + w2u4v4 , γ−(w) =
(−3 + wu2v2)wuv2

1− 6wu2v2 + w2u4v4 ,

η(w) =
1
2

ln
(

1 + 2wuv− w2u2v2
)

.
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Proof. We use the notations fixed in 5.31.
It is obvious that G(0, v) = exp

(
x−1 v

)
, so that the condition a) of Remark 5.30 is fulfilled, and

we need to verify condition b), following Lemma 5.34.
First of all remark that

1− 6t2 + t4 = (1 + 2t− t2)(1− 2t− t2)

and that
1 + t2 + (−3 + t2)t = 1− 3t + t2 + t3 = (1− t)(1− 2t− t2);

thus, replacing t by wuv, we get

α+(w2) + wγ+(w2) =
(1− wuv)u

1 + 2wuv− w2u2v2

and

wα−(w2) + γ−(w2) =
(1− wuv)wv

1 + 2wuv− w2u2v2 .

Hence the relations of Lemma 5.34 involving η are easily proved:

dη(w)

du
=

(1− wuv)wv
1 + 2wuv− w2u2v2 = wα−(w2) + γ−(w2)

and

exp(−4η(w) + 2η(−w)) =
1− 2wuv− w2u2v2

(1 + 2wuv− w2u2v2)2

while, on the other hand,
d
dt

t− t2

1 + 2t− t2 =
1− 2t− t2

(1 + 2t− t2)2

so that
d

du
(α+(w2) + wγ+(w2)) =

1− 2wuv− w2u2v2

(1 + 2wuv− w2u2v2)2

and

exp(−4η(w) + 2η(−w)) =
d

du
(α+(w2) + wγ+(w2)).

In order to prove the remaining relations remark that for all n, m ∈N

d
dt

tn

(1− 6t2 + t4)m =
ntn−1 + 6(2m− n)tn+1 + (n− 4m)tn+3

(1− 6t2 + t4)m+1 ,

which helps to compute the derivative of α±(w2), β±(−w2) (which is equivalent to computing
that of β±(w), see the proof of Proposition 5.35) and γ−(w2), fixing t = wuv and recalling that
d

du = wv d
dt :

dα−(w2)

du
=

wv2(14t− 4t3 − 2t5)

(1− 6t2 + t4)2 ,

dβ−(−w2)

du
=

w2v3(−1− 30t2 − 12t4 + 14t6 − 3t8)

(1− 6t2 + t4)3 ,

dγ−(w2)

du
=

w2v2(−3− 15t2 + 3t4 − t6)

(1− 6t2 + t4)2 ,

dα+(w2)

du
=

1 + 9t2 − 9t4 − t6

(1− 6t2 + t4)2 ,
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dβ+(−w2)

du
=

w−2v−1(3t2 + 26t4 − 36t6 + 6t8 + t10)

(1− 6t2 + t4)3 .

The relations to prove are then equivalent to the following:

14t− 4t3 − 2t5 = −4(1 + 4t2 − t4)t− 6(1 + t2)(−3 + t2)t,

−1− 30t2 − 12t4 + 14t6 − 3t8 = (1 + t2)(−(1 + t2)2 − 3(−3 + t2)2t2),

−3− 15t2 + 3t4 − t6 = −3(1 + t2)2 − (−3 + t2)2t2,

3t2 + 26t4 − 36t6 + 6t8 + t10 = −(1 + 9t2 − 9t4 − t6)(−3 + t2)t2,

which are easily verified.

Remark 5.37. Since (1± 6t2 + t4)−1 ∈ Z[[t]] Proposition 5.36 implies that (G±)±1 ∈ Ũ±Z [[u, v]] (see
Notation 5.31). As in Proposition 5.35,ii), it also implies that exp(η) ∈ ŨZ. Then, in order to prove that

(x+0 )(k)(x−1 )(l) ∈ Ũ−Z Ũ
0
ZŨ+

Z ,

we just need to show that exp(η) ∈ Ũ 0
Z[[u, v]]. This will imply that Ũ−Z Ũ 0

ZŨ
+
Z is closed under multipli-

cation, hence it is an integral form of Ũ , obviously containing ŨZ.
In order to prove that ŨZ = Ũ−Z Ũ 0

ZŨ
+
Z we need to show in addition that Ũ 0

Z ⊆ ŨZ.
The last part of this Chapter is devoted to prove that

exp
(

1
2

ln
(

1 + 2u− u2
)

.h0

)
∈ Ũ 0

Z[[u]]

(see Corollary 5.41) and that Ũ 0
Z ⊆ ŨZ (see Proposition 5.43).

Notation 5.38. In the following d : Z+ → Q denotes the function defined by

∑
n>0

(−1)n−1 dn

n
un =

1
2

ln
(

1 + 2u− u2
)

and d̃ = εd (that is d̃n = εndn for all n > 0, where εn has been defined in Definition 5.12).

Remark that with this notation we have exp(η) = ĥ{d}+ (uv) (η as in Lemma 5.34 and Proposition

5.36, ĥ{d}+ (u) as in Notation 1.15, where we replace ĥ{d}(u) by ĥ{d}+ (u) in order to distinguish it from its

symmetric ĥ{d}− (u) = Ω(ĥ{d}+ (u))).

Remark 5.39. From 1 + 2u− u2 = (1 + (1 +
√

2)u)(1 + (1−
√

2)u), we get that:

i) for all n ∈ Z+ dn = 1
2 ((1 +

√
2)n + (1−

√
2)n); equivalently ∃δn ∈ Z such that

∀n ∈ Z+ (1 +
√

2)n = dn + δn
√

2.

ii) dn is odd for all n ∈ Z+; δn is odd if and only if n is odd.

iii) Z[ĥ{d}k | k > 0] ̸⊆ Z[ĥk | k > 0] (indeed (µ ∗ d)(4) = d4 − d2 = 17− 3 = 14, which is not a
multiple of 4, see Propositions 1.18 and 1.19).

iv) Z[ĥ{d}k | k > 0] ⊆ Z[h̃k | k > 0] if and only if Z[ĥ{d̃}k | k > 0] ⊆ Z[ĥk | k > 0] (see Remark
5.13).

Lemma 5.40. Let p, m, r ∈ Z+ be such that p is prime and (m, p) = 1. Then

if pr = 4 pr = 4 | (d4m + d2m),

if pr ̸= 4 pr | (dprm − dpr−1m).
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Proof. The claim is obvious for pr = 2 since the dn’s are all odd.
In general if n is any positive integer it follows from Remark 5.39 that

dnp + δnp
√

2 = (dn + δn
√

2)p.

If p = 2 this means that
d2n = d2

n + 2δ2
n,

δ2n = 2dnδn,

hence by induction on r

2r | δ2rm and 2r+1 ∤ δ2rm (recall that δm is odd since m is odd)

d2rm ≡ d2
2r−1m (mod 22r−1),

from which it follows that
d2m ≡ −1 (mod 4),

d2rm ≡ 1 (mod 2r+1) if r > 1 :

indeed, since dm and δm are odd,

d2m ≡(8) 1 + 2 ≡(4) −1,

while if r ≥ 2 then 2r− 1 ≥ r + 1 and by induction on r we get

d2rm ≡ d2
2r−1m = (±1 + 2rk)2 ≡ 1 (mod 2r+1).

These last relations immediately imply the claim for p = 2.
Now let p ̸= 2. Then

dpn = ∑
h≥0

(
p

2h

)
2hdp−2h

n δ2h
n ,

δpn = ∑
h≥0

(
p

2h + 1

)
2hdp−2h−1

n δ2h+1
n .

Suppose that dn = d + pr−1k, δn = δ + pr−1k′ with k = k′ = 0 if r = 1. Then

dpn ≡ ∑
h≥0

(
p

2h

)
2hdp−2hδ2h (mod pr)

δpn ≡ ∑
h≥0

(
p

2h + 1

)
2hdp−2h−1δ2h+1 (mod pr)

The above relations allow us to prove by induction on r > 0 that if ζp is defined by the properties

ζp ∈ {±1}, ζp ≡(p) 2
p−1

2 then

dprm ≡ dpr−1m (mod pr) and δprm ≡ ζpδpr−1m (mod pr) :

indeed if r = 1
dpm ≡ dp

m ≡ dm (mod p),

δpm ≡ 2
p−1

2 δ
p
m ≡ ζpδm (mod p);
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remark that (d+ pr−1k)p ≡ dp(mod pr) and if 0 < h < p, p | (p
h) and (d+ pr−1k)h ≡ dh(mod pr−1);

then if r > 1, using relations 5.2 and 5.2 with d = dpr−2m and δ = δpr−2m, we get then

dprm ≡(pr) ∑
h≥0

(
p

2h

)
2hdp−2h

pr−2mδ2h
pr−2m = dpr−1m,

δprm ≡(pr) ζp ∑
h≥0

(
p

2h + 1

)
2hdp−2h−1

pr−2m δ2h+1
pr−2m = ζpδpr−1m.

Corollary 5.41. ĥ{d}n ∈ Z[h̃k | k > 0] for all n > 0.

In particular (x+0 )(k)(x−1 )(l) ∈ Ũ−Z Ũ 0
ZŨ

+
Z ∀k, l ∈N.

Proof. The claim follows from Propositions 1.18 and 1.19, Remark 5.39 and Lemma 5.40, remark-
ing that if m is odd then

d4m + d2m = −(d̃4m − d̃2m)

while if (m, p) = 1 and pr ̸= 4 then

dprm − dpr−1m = ±(d̃prm − d̃pr−1m).

Thus for all n > 0 ĥ{d̃}n ∈ Z[ĥk | k > 0] and ĥ{d}n ∈ Z[h̃k | k > 0].

Corollary 5.42. Ũ+
Z Ũ
−
Z ⊆ Ũ

−
Z Ũ 0

ZŨ
+
Z ; equivalently Ũ−Z Ũ 0

ZŨ
+
Z is an integral form of Ũ .

Proof. The proof is identical to that of Proposition 4.24 replacing Û with Ũ , having care to remark
that in this case, too,

(x+r )(k)(x−s )
(l) ∈ ∑

m≥0
Ũ−

Z,−l+mŨ
0
ZŨ+

Z,k−m ∀r, s ∈ Z, ∀k, l ∈N :

if r + s is even this follows at once comparing Proposition 5.29 with the properties of the grada-
tion, while if r + s is odd it is true by Proposition 5.36 and Remark 5.20,iv).

Proposition 5.43. Ũ 0
Z ⊆ ŨZ and ŨZ = Ũ−Z Ũ 0

ZŨ
+
Z .

Proof. Let Z be the Z-subalgebra of Q[hr | r > 0] generated by the coefficients of ĥ{d}+ (u) and of
ĥ+(4u)1/2. Remark that, by Propositions 5.35 and 5.36, Z ⊆ ŨZ.

We have already proved that Z ⊆ Z[h̃k | k > 0] (see Lemma 5.16,iii) and Corollary 5.41). Let
us prove, by induction on j, that h̃j ∈ Z for all j > 0.

If j = 1 the claim depends on the equality h̃1 = h1 = ĥ{d}1 (since ε1 = d1 = 1).

Let j > 1 and suppose that h̃1, ..., h̃j−1 ∈ Z .

We notice that if a : Z+ → Z is such that ĥ{a}j ∈ Z then aj h̃j ∈ Z : indeed it is always true that

h̃j + (−1)j ε jhj

j
∈ Q[h1, ..., hj−1]

and

ĥ{a}j + (−1)j ajhj

j
∈ Q[h1, ..., hj−1]

from which we get that
ĥ{a}j − ε jaj h̃j ∈ Q[h1, ..., hj−1];
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but the condition ĥ{a}j ∈ Z ⊆ Z[h̃k | k > 0] and the inductive hypothesis Z[h̃1, ..., h̃j−1] ⊆ Z
imply that

ĥ{a}j − ε jaj h̃j ∈ Q[h1, ..., hj−1] ∩Z[h̃k | k > 0] = Z[h̃1, ..., h̃j−1] ⊆ Z

hence aj h̃j ∈ Z .

This in particular holds for a = d and for ĥ{a}(u) = ĥ+(4u)
1
2 , hence

dj h̃j ∈ Z and 22j−1h̃j ∈ Z .

But (dj, 22j−1) = 1 because dj is odd, hence h̃j ∈ Z .

Then Ũ 0,+
Z = Z[h̃k | k > 0] = Z ⊆ ŨZ and, applying Ω, Ũ 0,−

Z ⊆ ŨZ. The claim follows
recalling Corollary 5.28.

We can now collect all the results obtained till now in the main theorem of this work (see
Theorem 5.18).

Theorem 5.44. The Z-subalgebra ŨZ of Ũ generated by

{(x+r )(k), (x−r )(k) | r ∈ Z, k ∈N}

is an integral form of Ũ .
More precisely

ŨZ
∼= Ũ−,1

Z ⊗ Ũ−,c
Z ⊗ Ũ−,0

Z ⊗ Ũ 0,−
Z ⊗ Ũh

Z ⊗ Ũ
0,+
Z ⊗ Ũ+,1

Z ⊗ Ũ+,c
Z ⊗ Ũ+,0

Z

and a Z-basis of ŨZ is given by the product

B−,1B−,cB−,0B0,−BhB0,+B+,1B+,cB+,0

where B±,0, B±,1, B±,c, B0,± and Bh are the Z-bases respectively of Ũ±,0
Z , Ũ±,1

Z , Ũ±,c
Z , Ũ 0,±

Z and Ũh
Z given

as follows:

B±,0 =
{
(x±,0)(k) = ∏

r∈Z

(x±2r)
(kr) | k : Z→N is finitely supported

}
B±,1 =

{
(x±,1)(k) = ∏

r∈Z

(x±2r+1)
(kr) | k : Z→N is finitely supported

}
B±,c =

{
(X±)(k) = ∏

r∈Z

(X±2r+1)
(kr) | k : Z→N is finitely supported

}
B0,± =

{
h̃k
± = ∏

l∈N

h̃kl
±l | k : N→N is finitely supported

}
Bh =

{(h0

k

)(
c
k̃

)
| k, k̃ ∈N

}
.
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Chapter 6

Comparison with the Mitzman
integral form

In the present chapter we compare the integral form ŨZ = ∗UZ( ˆsl3
χ
) of Ũ (described in Chapter

5) with the integral form UZ( ˆsl3
χ
) of the same algebra Ũ introduced and studied by Mitzman in

[11], that we denote here by UZ,M and that is easily defined as the Z-subalgebra of Ũ generated
by the divided powers of the Kac-Moody generators ei, fi (i = 0, 1): see also Remark 6.11.

More precisely:

Definition 6.1. Ũ is the enveloping algebra of the Kac-Moody algebra whose generalized Cartan matrix

is A(2)
2 = (ai,j)i,j∈{0,1} =

(
2 −1
−4 2

)
(see [8]): it has generators {ei, fi, hi | i = 0, 1} and relations

[hi, hj] = 0, [hi, ej] = ai,jej, [hi, f j] = −ai,j f j, [ei, f j] = δi,jhi (i, j ∈ {0, 1})

(adei)
1−ai,j(ej) = 0 = (ad fi)

1−ai,j( f j) (i ̸= j ∈ {0, 1}).

Definition 6.2. The Mitzman integral form UZ,M of Ũ is the Z-subalgebra of Ũ generated by {e(k)i , f (k)i |
i = 0, 1, k ∈N}.
Remark 6.3. The Kac-Moody presentation of Ũ (Definition 6.1) and its presentation given in Definition
5.1 are identified through the following isomorphism:

e1 7→ x+0 , f1 7→ x−0 , h1 7→ h0, e0 7→
1
4

X−1 , f0 7→
1
4

X+
−1, h0 7→

1
4

c− 1
2

h0.

Notation 6.4. In order to avoid in the following any confusion and heavy notations, we set:

y±2r+1 =
1
4

X±2r+1, kr =
1
2

hr, c̃ =
1
4

c

where the X±2r+1’s, the hr’s and c are those introduced in Definition 5.1: thus e0 = y−1 , f0 = y+−1, while
the Kac-Moody h0 and h1 appearing in Definition 6.1 are respectively c̃− k0 and 2k0; moreover UZ,M is
the Z-subalgebra of Ũ generated by {(x±0 )(k), (y±∓1)

(k) | k ∈N}.
Remark 6.5. UZ,M is Ω-stable, exp(±adei)-stable and exp(±ad fi)-stable. In particular UZ,M is stable
under the action of

τ0 = exp(ade0) exp(−ad f0) exp(ade0) = exp
(
ady−1

)
exp

(
−ady+−1

)
exp

(
ady−1

)
,

of
τ1 = exp(ade1) exp(−ad f1) exp(ade1) = exp

(
adx+0

)
exp

(
−adx−0

)
exp

(
adx+0

)
and of their inverses (cfr. [7]).
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Proof. The claim for Ω follows at once from the definitions; the remaining claims are an immedi-
ate consequence of the identity (ada)(n)(b) = ∑r+s=n(−1)sa(r)ba(s).

Remark 6.6. Recalling the embedding F : Û → Ũ defined in Remark 5.27, Theorem 4.25 implies that the
Z-subalgebra of Ũ generated by the divided powers of the y±2r+1’s is the tensor product of the Z-subalgebras
Z(div)[y±2r+1 | r ∈ Z], Z(sym)[k±r | r > 0], Z(bin)[k0 − c̃, 2c̃].

Mitzman completely described the integral form generated by the divided powers of the Kac-
Moody generators in all the twisted cases; in case A(2)

2 his result can be stated as follows, using
our notations (see Examples 1.9 and 1.2, Definitions 1.6 1.21 and Notation 6.4):

Theorem 6.7. UZ,M ∼= U−Z,M ⊗Z U 0
Z,M ⊗Z U+

Z,M where

U±Z,M
∼= Z(div)[x±2r | r ∈ Z]⊗Z Z(div)[y±2r+1 | r ∈ Z]⊗Z Z(div)[x±2r+1 | r ∈ Z] ∼=

∼= Z(div)[x±2r+1 | r ∈ Z]⊗Z Z(div)[y±2r+1 | r ∈ Z]⊗Z Z(div)[x±2r | r ∈ Z],

U 0
Z,M
∼= Zλ[k−r | r > 0]⊗Z Z(bin)[2k0, c̃− k0]⊗Z Zλ[kr | r > 0].

The isomorphisms are all induced by the product in Ũ .

Remark that Z(bin)[2k0, c̃ − k0] = Z(bin)[k0 − c̃, 2c̃] (see Example 1.9) and Zλ[kr | r > 0] =

Z(sym)[kr | r > 0] (see Theorem 1.30).

Remark 6.8. As in the case of ˆsl2 (see Remark 4.12) we can evidentiate the relation between the elements
k̂k’s with k > 0 and the elements pn,1’s (n > 0) defined in [5] following Garland’s Λk’s.

Setting

∑
n≥0

pnun = P(u) = k̂(−u)−1

we have on one hand Z[k̂k | k > 0] = Z[pn | n > 0] and on the other hand

p0 = 1, pn =
1
n

n

∑
r=1

kr pn−r ∀n > 0,

hence pn = pn,1 ∀n ≥ 0 (see [5]) and Z[k̂k | k > 0] = Z[pn,1 | n > 0].

Corollary 6.9. ŨZ ⊊ UZ,M.
More precisely:

Z(div)[X±2r+1 | r ∈ Z] ⊊ Z(div)[y±2r+1 | r ∈ Z],

so that Ũ+
Z ⊊ U+

Z,M and Ũ−Z ⊊ U−Z,M;

Z(bin)[h0, c] = Z(bin)[2k0, 4c̃] ⊊ Z(bin)[2k0, c̃− k0]

and (see Definition 5.12)
Z(sym)[εrhr | r > 0] ⊊ Z(sym)[kr | r > 0]

(and similarly for the negative part of U 0
Z,M), so that Ũ 0

Z ⊊ U 0
Z,M.

Proof. For Z(div) and Z(bin) the claim is obvious. For Z(sym) the inequality follows at once from
the fact that k1 = h1

2 does not belong to Z(sym)[εrhr | r > 0] while the inclusion follows from
Propositions 1.18 and 1.19 remarking that for all r > 0 εrhr = 2εrkr.

Then the assertion for ŨZ and UZ,M follows from Theorems 5.44 and 6.7.
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Remark 6.10. Theorem 6.7 can be deduced from the commutation formulas discussed in this work and
collected in Appendix 9.A, thanks to the triangular decompositions (see Remark 5.3) and to the following
observations:

i) U 0
Z,M is a Z-subalgebra of Ũ :

indeed, since the map hr 7→ kr, c 7→ c̃ defines an automorphism of Ũ 0, Proposition 5.21 implies that

k̂+(u)k̂−(v) = k̂−(v)(1− uv)−4c̃(1 + uv)2c̃k̂+(u).

ii) U+
Z,M and U−Z,M are Z-subalgebras of Ũ :

indeed the [(x+2r)
(k), (x+2s+1)

(l)]’s (the only non trivial commutators in U+
Z,M) lie in Ũ+

Z ⊆ U
+
Z,M; on

the other hand U−Z,M = Ω(U+
Z,M).

iii) exp (∑r>0 arx+r ur) ∈ U+
Z,M[[u]] if ar ∈ Z for all r > 0:

see Lemma 1.55,viii), condition (1.7.1) and the relation [x+2r, x+2s+1] = −4y+2r+2s+1.

iv) U 0
Z,MU

+
Z,M and U−Z,MU 0

Z,M are Z-subalgebras of Ũ :

that (y+2r+1)
(k)U 0

Z,M ⊆ U 0
Z,MU

+
Z,M follows from Remark 6.6; moreover by Propositions 1.56 and 1.60

we get

(x+r )(k)
(
k0 − c̃

l

)
=

(
k0 − c̃− k

l

)
(x+r )(k),

(x+r )(k)k̂+(u) = k̂+(u)
(

1− uT−1

(1 + uT−1)2 x+r

)(k)

,

λ−1(x+r ) = x+−r, λ−1(k̂+(u)) = k̂−(u).

On the other hand U−Z,MU 0
Z,M = Ω(U 0

Z,MU
+
Z,M).

v) U−Z,MU 0
Z,MU

+
Z,M is a Z-subalgebra of Ũ :

(x+r )(k)(x−s )
(l) ∈ ŨZ = Ũ−Z Ũ

0
ZŨ+

Z ⊆ U
−
Z,MU

0
Z,MU+

Z,M

(see Theorem 5.44 and Corollary 6.9),

(y+2r+1)
(k)(y−2s+1)

(l) ∈ U−Z,MU
0
Z,MU+

Z,M

(see Remark 6.6), and
exp

(
x+0 u

)
exp

(
y−1 v

)
=

= exp(α−) exp(β−) exp(γ−)k̂+(u2v) exp(γ+) exp(β+) exp(α+) (6.10.1)

where
α− =

uv
1− w2u4v2 .x−1 , α+ =

u
1− w2u4v2 .x+0 ,

β− =
(1 + 3 · wu4v2)v
(1 + wu4v2)2 .y−1 , β+ =

(1− wu4v2)u4v
(1 + wu4v2)2 .y+1 ,

γ− =
−w2u3v2

1− w2u4v2 .x−0 , γ+ =
−u3v

1− w2u4v2 .x+1

(see Proposition 5.35 recalling Definition 5.10 and Remark 5.14), so that (x+0 )(k)(y−1 )
(l) lies in U−Z,MU 0

Z,MU
+
Z,M

for all k, l ≥ 0; from this it follows that (x+r )(k)(y−2s+1)
(l) and (y+2s+1)

(l)(x−r )(k) lie in U−Z,MU 0
Z,MU

+
Z,M

for all r, s ∈ Z, k, l ≥ 0 because U−Z,MU 0
Z,MU

+
Z,M is stable under T±1, λm (m ∈ Z odd) and Ω, and

x+r = T−rλ2r+2s+1(x+0 ), y−2s+1 = (−1)rT−rλ2r+2s+1(y−1 ),
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y+2s+1 = Ω(y−−2s−1), x−r = Ω(x+−r);

vi) UZ,M ⊆ U−Z,MU 0
Z,MU

+
Z,M:

it follows from v) since (x±0 )(k) ∈ Z(div)[x±2r | r∈Z] and (y±∓1)
(k) ∈ Z(div)[y±2r+1 | r∈Z].

vii) U±Z,M ⊆ UZ,M:
this follows from Remark 6.5, observing that

τ0(x+r ) = (−1)r−1x−r+1, τ1(x−r ) = x+r , τ1(y−2r+1) = y+2r+1, τ0(y+2r+1) = −y−2r+3.

viii) U 0
Z,M ⊆ UZ,M:

it follows from vii), relation (6.10.1) and the stability under Ω.
ix) U−Z,MU 0

Z,MU
+
Z,M ⊆ UZ,M:

this is just vii) and viii) together.
Then UZ,M = U−Z,MU 0

Z,MU
+
Z,M, which is the claim.

Remark 6.11. As one can see from Remark 6.10,vii),

{x±r , y±2r+1, ks, 2k0, c̃− k0 | r, s ∈ Z, s ̸= 0}

is, up to signs, a Chevalley basis of ˆsl3
χ (see [11]).

It is actually through these basis elements that Mitzman introduces, following [6], the integral form of
Ũ , as the Z-subalgebra of Ũ generated by

{(x±r )(k), (y±2r+1)
(k) | r ∈ Z, k ∈N};

but this Z-subalgebra is precisely the algebra UZ,M introduced in Definition 6.2: indeed it turns out to be
generated over Z just by {e(k)i , f (k)i | i = 0, 1, k ≥ 0}, that is by {(x±0 )(k), (y±∓1)

(k) | k ≥ 0}, thanks to
Remarks 6.5 and 6.10,vii).



Chapter 7

Other integral forms of A(2)
2

In this chapter we describe two other integral forms ŪZ and ǓZ of the enveloping algebra Ũ =

U ( ˆsl3
χ
) of the Kac-Moody algebra of type A(2)

2 (see Definitions 7.1 and 7.2), ŪZ is generated
by the divided powers of the Drinfeld generators x±r and by the divide powers of the elements
1
2 X±2r+1, ǓZ is generated by adding extra elements ȟr to ŪZ (see Definition 1.31). As we shall
see later (see Chapter 8), if we consider the Z-algebra generated by the divided powers of the
positive Drinfeld generators x+i,r (i ∈ I, r ∈ Z) in the case of A(n)

2n for n > 1 then this algebra
also contains the divided powers of the elements 1

2 X+
1,2r+1, for this reason we are interested in the

study of ŪZ. There are two remarkable differences between ŪZ and ŨZ: the first, as previously
announced, is the presence of the divided powers of the elements 1

2 X±2r+1. The second difference
concerns the structure of the (positive and negative) imaginary component. In fact, in this case
ŪZ ∩ Ũ 0,+ ̸= Zsym[h̃r | r > 0] is no longer an algebra of polynomials (see Remark 1.39 and
Theorem 7.14), but we exhibit fora Garland-type Z basis (see the description if Z(mix)[hr | r > 0]
in Definition 1.35). We shall also show that ŪZ can be enlarged to another integral form ǓZ of
Ũ with the same positive part (that is ǓZ ∩ Ũ+ = ŪZ ∩ Ũ+ = Ū+

Z ) is the Z-subalgebra of Ũ
generated by {(x+r )(k), (X+

2r+1)
(k) | r ∈ Z, k ∈ N}) and such that ǓZ ∩ Ũ 0,+ = Ǔ 0,+

Z ⊋ Ū 0,+
Z is an

algebra of polynomials. ǓZ and ŪZ will be introduced and studied together and the description
of ǓZ will also avoid unnecessary computation in ŪZ.

The notations are those of Chapter 5.

Definition 7.1. Let us define ŪZ to be the Z-subalgebra of Ũ generated by

{(x+r )(k), (x−r )(k), (
1
2

X+
2r+1)

(k), (
1
2

X−2r+1)
(k) | r ∈ Z , k ∈N},

Ū+
Z and Ū−Z be respectively the Z-subalgebras of Ũ+ and Ũ− generated respectively by

{(x+r )(k), (
1
2

X+
2r+1)

(k) | r ∈ Z , k ∈N},

and
{(x−r )(k), (

1
2

X−2r+1)
(k) | r ∈ Z , k ∈N},

and let Ū 0,±
Z = ŪZ ∩ Ũ 0,±, Ū 0

Z = ŪZ ∩ Ũ 0 and Ūh
Z = Z(bin)[h0, c

4 ].

Definition 7.2. Let us define ǓZ by the Z-algebra of Ũ generated by

{(1
2

X+
2r+1)

(k), (
1
2

X−2r+1)
(k), (x+r )(k), (x−r )(k), ȟs | r ∈ Z, k ∈N, s ∈ Z∗},
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Ǔ 0,±
Z = Z(sym)[ 1

2 hr | ±r > 0] = Z[ȟr | ±r > 0], Ǔh
Z = Z(bin)[h0, c

4 ] and Ǔ 0
Z is the Z-subalgebra of Ũ 0

generated by Ǔ 0,+
Z , Ǔh

Z and Ǔ 0,−
Z (see Definition 1.31).

Remark 7.3. Ū+
Z and Ū−Z are integral form of Ũ+ and Ũ− respectively, a basis of Ū±Z , that is B̄±, is given

by the ordered monomials in the divided powers of the elements {x±r , 1
2 X±2r+1 | r ∈ Z}, it follows from

Definition 5.12 and Corollary 5.23 observing that 1
2 X±2r+1 are central in Ū±Z .

Remark 7.4. Of course Ǔ 0,+
Z and Ǔ 0,−

Z are integral form of Ũ 0,+ and Ũ 0,−.

Lemma 7.5. The following identity holds in Ũ 0[[u, v]]:

ȟ+(u)ȟ−(u) = ȟ−(u)(1− uv)c(1 + uv)−
c
2 ȟ+(u), (7.5.1)

in particular Ǔ 0,−
Z Ǔ 0,+

Z ⊆ Ǔ 0
Z and Ǔ 0

Z is an integral form of Ũ 0.

Proof. Since [ 1
2 hr, 1

2 hs] = δr+s,0r(2 + (−1)r−1) 1
2 c, Equation (7.5.1) follows from Proposition 1.58

with m = 1, l = 1
2 by substituting c

2 in place of c.

Proposition 7.6. The following relations hold in Ũ [[u]]

x+0 ȟ+(u) = ȟ+(u)(1− T−1u)−1(1− T−2u2)−3(x+0 ) (7.6.1)

X+
1 ȟ+(u) = ȟ+(u)(1− T−1u2)−1(X+

1 ) (7.6.2)

hence for all k ≥ 0(
x+0
)(k) ȟ+(u) = ȟ+(u)

(
(1− T−1u)−1(1− T−2u2)−3(x+0 )

)(k) ∈ Ǔ 0,+
Z Ū+

Z [[u]] (7.6.3)(1
2

X+
1
)(k) ȟ+(u) = ȟ+(u)

(
(1− T−1u2)−1 1

2
(X+

1 )
)(k) ∈ Ǔ 0,+

Z Ū+
Z [[u]]. (7.6.4)

in particular

Ū+
Z Ǔ

0,+
Z ⊆ Ǔ 0,+

Z Ū+
Z

Proof. Equations (7.6.1) and (7.6.2) follow from Proposition 1.60 respectively with m1 = 1, m2 = 3
and md = 0 if d > 2 and m2 = 1 and md = 0 if d > 2. Equations (7.6.3) and (7.6.4) follow
respectively by equation (7.6.1) and (7.6.2). From the T± stability of Ū+

Z and the fact that T|Ũ0,+ =

id|Ũ0,+ we deduce that for all k ≥ 0 (x+r )(k) ȟ+(u) ⊆ ȟ+(u)Ū+
Z [[u]] and ( 1

2 X+
2r+1)

(k) ȟ+(u) ⊆
ȟ+(u)Ū+

Z [[u]], the claim following recalling that the ȟr generate Ǔ 0,+
Z and the (x+r )(k) and the

( 1
2 X+

r )(k) generate Ū+
Z .

Proposition 7.7. The following identity holds in Ũ :

(
1
2

X+
2r+1)

(k)
(

h0

l

)
=

(
h0 − 4k

l

)
(

1
2

X+
2r+1)

(k) (7.7.1)

hence Ū+
Z Ǔ

h
Z ⊆ Ǔ

h
ZǓ

+
Z .

Proof. Equation (7.7.1) follows from (9.2.2) by multiplying both side by ( 1
2 )

k. The claim follows
by Proposition 5.24 and Equation (7.7.1).
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Corollary 7.8. Ū±Z Ǔ 0
Z = Ǔ 0

ZŪ
±
Z . In particular Ǔ 0

ZŪ
+
Z and Ū−Z Ǔ 0

Z are integral form of Ũ 0Ũ+ and Ũ−Ũ 0.

Proof. From Propositions 7.6 and 7.7 follow that Ū+
Z Ǔ 0

Z ⊆ Ǔ 0
ZŪ

+
Z , then the proof is the same as

Corollary 5.26.

Remark 7.9. It is worth underling that

Ũ 0,±
Z ⊊ Ǔ 0,±

Z , (7.9.1)

Ũh
Z ⊊ Ǔh

Z, (7.9.2)

Ũ 0
Z ⊊ Ǔ 0

Z, (7.9.3)

since by the very definition

ȟ±(u) = ĥ±(u)
1
2

and

h̃±(u) = ĥ±(u)λ4(ĥ±(−u4)−
1
2 ) = ȟ±(u)2λ4(ȟ±(−u4)−1),

hence Relation (7.9.1) holds (see Remark 5.14), Relation (7.9.2) follows from Lemma 7.5, Relation (7.9.3)
follows from Relations (7.9.1) and (7.9.2).

Lemma 7.10. The following identities hold in Ũ [[u, v]]:

exp
(

x+0 u
)

exp
(

1
2

X−1 v
)
= (7.10.1)

exp
(

2
1− 4T2u4v2 x−0 uv

)
exp

(
−4T2

1− 4T2u4v2 x−1 u3v2
)
·

· exp
(

1− 3 · 4Tu4v2

(1− 4T1u4v2)2
1
2

X−1 v
)

ĥ+(2u2v)
1
2 exp

(
1 + 4T−1u4v2

(1− 4T−1u4v2)2
1
2

X+
1 u4v

)
·

· exp
(

−2
1− 4T−2u4v2 x+1 u3v

)
exp

(
1

1− 4T−2u4v2 x+1 u
)

;

exp
(

1
2

X+
2r+1u

)
exp

(
1
2

X−2s−1v
)
= (7.10.2)

exp
(

1
1 + Ts+ruv

1
2

X−2s−1v
)
· λ2(r+s)(ĥ

+((urvs)2)
1
2 ) · exp

(
1

1 + uvT−s−r
1
2

X+
2r+1u

)
, if r + s ̸= 0;

exp
(

1
2

X+
2r+1u

)
exp

(
1
2

X−2s−1v
)
= (7.10.3)

exp
(

1
2

X−2s−1v
)
· (1 + 4uv)(

h0
2 + (2r+1)c

4 ) · exp
(

1
2

X+
2r+1u

)
, if r + s = 0;

Proof. Equations (7.10.1) follows from (9.2.5) substituting 1
2 v to v. Equation (7.10.2) follows from

(9.2.4) substituting respectively 1
2 u to u and 1

2 v to v. Equation (7.10.3) follows by (9.2.3) substitut-
ing 1

2 u and 1
2 v respectively to u and v .

Theorem 7.11. The following relations hold in Ũ

Ū+
Z Ū
−
Z ⊆ ǓZ,

ŪZ ∩ Ū 0 ⊆ Ǔ 0
Z.
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Proof. From relation (7.10.3) it follows that Ū+
Z Ū
−
Z ⊆ Ū

−
Z ⊗Ǔ

h
Z⊗Ū

+
Z since (1+ 4u)

h0
2 ⊆ Z(bin)[h0][[u]]

(see Lemma 5.15). From Lemma 7.10 and Theorem 5.1 follows that

(Ū+
Z Ū
−
Z ) ∩ Ũ 0,+ = Z(λ2s(ȟr), λ2r+1(ĥ{c}), h̃r | r > 0) =

Z(λs(h̄r), λ2r+1(ĥ{c}), h̃r | r > 0) ⊊ Z[ȟr | r > 0]

(see Remarks 7.9 and 1.34), hence from Equations (7.10.1), (7.10.2) and (7.10.3) follow that Ū+
Z Ū
−
Z ⊆

ǓZ.

We can now collect all the results obtained till now in the main theorem of this section:

Theorem 7.12. The Z-subalgebra ǓZ of Ũ generated by

{(1
2

X+
2r+1)

(k), (
1
2

X−2r+1)
(k), (x+r )(k), (x−r )(k), ȟr | r ∈ Z, k ∈N}

is an integral form of Ũ . More precisely

ǓZ
∼= Ū−Z ⊗ Ǔ

0,+
Z ⊗ Ǔh

Z ⊗ Ǔ
0,+
Z ⊗ Ū+

Z

and a Z-basis of ŪZ is given by the product B̄− B̌0B̄+, where Ū±Z and B̄± are described in Remark 7.3,
B0,± and Bh are the Z-bases respectively of Ǔ 0,±

Z and Ǔh
Z given as follows:

B̌0,± =
{

ȟ±k = ∏
l∈N

ȟkl
±l | k : N→N is finitely supported

}

Bh =
{(h0

k

)( c
4

k̃

)
| k, k̃ ∈N

}
.

We can now concentrate on ŪZ

Remark 7.13. It follows directly by Definitions 5.1, 7.2 and 7.1 that:

ŨZ ⊆ ŪZ ⊆ ǓZ.

From Theorems 5.44 and 7.12 it follows that

Ũ±Z ⊊ ŪZ ∩ Ũ± = Ū±Z = ǓZ ∩ Ũ±.

From Theorem 5.44 and 7.11 and Lemma 7.10 that Ū 0,±
Z ⊆ Ǔ 0,±

Z and Ū 0,±
Z is generated by the elements

whose the generating series series are λ2(ȟ+(u2)), ȟ+(2u) and h̃+(u), equivalently is generated by the
elements whose the generating series series are h̄(u2), ĥ{c}(u) and ĥ{ε}(u) (see Notation 1.15, Definitions
1.31, 1.47).

Theorem 7.14. Ū 0,+
Z and Ū 0,−

Z are integral forms of respectively Ũ 0,+ and Ũ 0,−, with basis given by

B0,±
q.pol = {∏

k>0
ĥϵk
±k ∏

k>0
h̄dk
±k | ϵ : Z+ → {0, 1} and d : Z+ →N are finitely supported}

or equivalently

B0,±
q.λ = { ∏

m>0,m odd
λm(ĥkm) ∏

m>0,m even
λm(ȟkm), | k : Z+ →N is finitely supported}.
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Proof. From Remark 7.13 follows that Ū 0,±
Z = Z(h̃r, ĥ{c}r , h̄2r | r > 0). By the very definition

h̃+(u) = ĥ+(u)λ4(h+(u4)−
1
2 ) = ĥ+(u)λ2(h̄+(u2)−1),

hence we can consider the ĥrs instead of h̃rs, hence Ū 0,±
Z = Z(ĥr, ĥ(c)r , h̄2r | r > 0). From Proposi-

tion 1.52 follows that Ū 0,±
Z = Z(ĥr, h̄2r | r > 0). From Theorems 1.46 and 1.42 follows that Ū 0,+

Z

is an integral form of Ũ 0,+ and B0,±
q.pol and B0,±

q.λ are basis of Ū 0,+
Z . The claim for Ū 0,−

Z follows by
applying Ω.

Remark 7.15. From Definition 1.31 and Remark 1.32 we have the following relations:

ĥ+(u) = ȟ+(u)2,

h̄+1 (u
2) = ȟ+(u)ȟ+(−u),

Proposition 7.16. The following identities holds in Ū [[u, v]]:

ĥ+(u)ĥ−(u) = ĥ−(u)(1− uv)2c(1 + uv)−c ĥ+(u); (7.16.1)

h̄+(u2)h̄−(v2) = h̄−(v2)(1− (uv)2)2c(1− (uv)2)−c h̄+(u2); (7.16.2)

ĥ+(u)h̄−(v2) = h̄−(v2)(1− (uv)2)c ĥ+(u). (7.16.3)

Proof. Equations (7.16.1), (7.16.2) and (7.16.3) follow from Equation (7.5.1) and Remark 7.15.

Corollary 7.17. Ūh
Z and Ū 0

Z = Ū 0,−
Z Ūh

ZŪ
0,+
Z is an integral form of Ũ 0.

Corollary 7.18. Ũh
Z = Ūh

Z ⊊ Ǔh
Z and Ũ 0,±

Z ⊊ Ū 0,±
Z ⊊ Ǔ 0,±

Z .

Remark 7.19. Let UZ,M be the Mitzman integral form (see Chapter 6), we want to underline that UZ,M
strictly contains ǓZ, more precisely we have the following relations:

UZ,M ⊋ ǓZ ⊋ ŪZ ⊋ ŨZ,

U±Z,M ⊋ Ǔ±Z = Ū±Z ⊋ Ũ±Z ,

U 0,±
Z,M = Ǔ 0,±

Z ⊋ Ū 0,±
Z ⊋ Ũ 0,±

Z ,

Uh
Z,M ⊋ Ǔh

Z ⊋ Ūh
Z = Ũh

Z.

We can now recollect the results regarding ŪZ in the following:

Theorem 7.20. The Z-subalgebra ŪZ of Ũ generated by

{(x+r )(k), (x−r )(k), (
1
2

X+
2r+1)

(k), (
1
2

X−2r+1)
(k) | r ∈ Z , k ∈N}

is an integral form of Ũ .
More precisely

ŪZ
∼= Ū−Z ⊗ Ū

0
Z ⊗ Ū+

Z

and a Z-basis of ŪZ is given by B̄−B̄0B̄+, Ū±Z and B̄± are described in Theorem 7.12.
Ū 0

Z is an integral form of Ũ 0, more precisely

Ū 0
Z
∼= Ū 0,−

Z ⊗ Ūh
Z ⊗ Ū

0,+
Z .

Ūh
Z = Ũh

Z and Ū 0,±
Z are integral form of respectively and Ũh and Ũ 0,±. A Z-basis Ū 0

Z of is given by the
product B0,−

q.pol B̄
hB0,+

q.pol . Ũ
h
Z and Bh is described in Theorem 5.44, Ū 0,±

Z and B0,±
q.pol are described in Theorem

7.14.
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Chapter 8

Integral form of A(2)
2n

8.1 Generalities

In this section we will use the results of the two previous chapters to describe the integral form
of A(2)

2n (n > 1). As wee shall see, in this case is not more true that the positive part of the
Z-subalgebra by {(x+i,r)

(k), (x−i,r)
(k) | i ∈ I, r ∈ Z, k ∈ N} is the Z-subalgebra generated by Z-

subalgebra by {(x+i,r)
(k) | i ∈ I, r ∈ Z, k ∈ N}, it turn out that we have to add the generators

( 1
2 X+

1,2r+1)
(k).

Definition 8.1. Let I = {1, . . . , n}, then A(2)
2n (respectively Ū ) is the Lie algebra (respectively the asso-

ciative algebra) over Q generated by {c, hi,r, x±i,r, X±1,2r+1|r ∈ Z , i ∈ I} with relations:

[c, ·] = 0;

[hi,r, hj,s] = rδr+s,0ai,j;r
2c
dj

[x+i,r, x−j,r] = δi,j(hi,r+s + rδr+s,0
2c
dj
);

[hi,r, x±j,s] = ±ai,j;rx±j,r+s;

[x±1,r, x±1,s] =

{
±(−1)sX±1,r+s if r + s is odd
0 otherwise;

[x±1,r, X±1,2s+1] = 0;

(adx±i,r)
1−ai,j(x±j,s) = 0 if i ̸= j;

[x±i,r, x±i,s] = 0 if r + s is even or i ̸= 1; (8.1.1)

[x+1,r, [x+1,r, x+2,s]] = −[x
+
1,r+1, [x+1,r+1, x+2,s−2]]; (8.1.2)

where

A = (ai,j)i,j=1,...,n,0 =



2 −2 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0

0
. . . . . . . . .

...
...

. . . −1 2 −2
... . . . 0 −1 2


,
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2n

D = diag(d1, d2, . . . , dn, d0) =



1 0 0 . . . 0
0 2 0 . . . 0

0 0
. . . . . . 0

... 0 0 2 0
. . . 0 0 4


and

ai,j;r =

{
2(2 + (−1)r−1) if (i, j) = (1, 1);
ai,j otherwise .

Notice that {x+i,r, x−i,r|r ∈ Z, i ∈ I} generates Ũ .

Definition 8.2. Let us define the following subalgebra of Ū :
Ū+, Ū−, Ū 0 are the subalgebras of Ū generated respectively by

{x+i,r | i ∈ I, r ∈ Z}, {x−i,r | i ∈ I, r ∈ Z}, {c, hi,r | i ∈ I, r ∈ Z}.

Definition 8.3. A(2)
2n and Ū are endowed with the following anti/auto/homo/morphisms:

σ is the antiautomorphism defined on the generators by:

x±i,r 7→ x±i,r,

X±1,r 7→ −X±1,r,

hi,r 7→ hi,r,
c 7→ −c;

Ω is the antiautomorphism defined on the generators by:

x±i,r 7→ x∓i,−r,

X±1,r 7→ X∓1,−r,

hi,r 7→ hi,−r,
c 7→ c;

T is the automorphism defined on the generators by:

x±i,r 7→ x∓i,r∓1,

X±1,r 7→ −X∓1,r∓2,

hi,r 7→ hi,−r − rδr,0c,
c 7→ c.

Notation 8.4. Let us define the following sets

Φ+
0,s = {αi + · · ·+ αj | 1 ≤ i ≤ j ≤ n},

Φ+
0,m = {2α1 + · · ·+ 2αi + αi+1 + · · ·+ αj | 1 ≤ i < j ≤ n},

Φ+
0 = Φ+

0,s ∪Φ+
0,m.

Recalling that the root system of A(2)
2n is Φ = Φre ∪Φim where Φre = Φre,+ ∪Φre,−, Φre,+ = −Φre,−,

Φre,+ = Φre,+
s ∪Φre,+

m ∪Φre,+
l ,

Φre,+
s = {α + rδ | α ∈ Φ+

0,s, r ∈ Z},
Φre,+

m = {α + rδ | α ∈ Φ+
0,m, r ∈ Z}

Φre,+
l = {2α + (2r + 1)δ | α ∈ Φ+

0,s, r ∈ Z},
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in particular we have that:

Φre
s = Φre,+

s ∪Φre,−
s = W · α1,

Φre
m = Φre,+

m ∪Φre,−
m = W · α2,

Φre
l = Φre,+

l ∪Φre,−
l = W · α0,

Φre = W · α1 ∪W · α2 ∪W · α0.

Φim = Φim,+ ∪Φim,−, Φim,+ = −Φim,− where

Φim,± = {±mδ | m ∈ Z>0}.

Definition 8.5. For all α ∈ W0 · {αi | i ∈ I ∪ {0}}, that is α = w(αi) for some w ∈ W0, let us define
xα,r = τi1 . . . τiN (x+i,0) if w = σi1 . . . σiN .

Remark 8.6. xα,r is defined up to sign. In particular the Z-subalgebra generated by {x(k)α,r | α ∈W · {αi |
i ∈ I, r ∈ Z, k ∈N}} is uniquely determined.

Remark 8.7. {xα | α ∈ Φre} is the set of Chevalley generators used by Mitzman. In particular the
Z-subalgebra of Ũ generated by {(ei)

(k) | i ∈ I ∪ {0}, r ∈ N} is a free Z-module with basis the ordered
monomials in the divided powers of the xα’s.

Definition 8.8. For all i ∈ I \ {1}, let us define the following elements:

X±i,2r+1 = τi(X±i−1,2r+1).

Definition 8.9. The following maps are Lie-algebra homomorphisms, obviously injective, inducing em-
beddings:

ϕ1 : A(2)
2 → A(2)

2n

x±r 7→ x±1,r

hr 7→ h1,r

c 7→ 2c.

ϕi : A(1)
1 → A(2)

2n if i ̸= 1

x±r 7→ x±i,r
hr 7→ hi,r

c 7→ c

ψ̄ :A(2)
2(n−1) → A(2)

2n (8.9.1)

x±i,r 7→ x±i,r
hr 7→ hi,r

c 7→ c

ψ̃ : A(1)
n−1 → A(2)

2n (8.9.2)

x±i,r 7→ x±i+1,r

hi,r 7→ hi+1,r

c 7→ c
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Definition 8.10. Here we define some Z-subalgebras of Ū :
ŪZ is the Z-subalgebras of Ū generated by

{(x+i,r)
(k), (x−i,r)

(k) | r ∈ Z, k ∈N, i ∈ I};

U+
Z and U−Z are the Z-subalgebras of Ū respectively generated by

{(x+i,r)
(k) | r ∈ Z, k ∈N, i ∈ I},

{(x−i,r)
(k) | r ∈ Z, k ∈N, i ∈ I};

Ū+
Z and Ū−Z are the Z-subalgebras of Ū respectively generated by

{(x+i,r)
(k), (

1
2

X+
1,2r+1)

(k) | r ∈ Z, k ∈N, i ∈ I},

{(x−i,r)
(k), (

1
2

X−1,2r+1)
(k) | r ∈ Z, k ∈N, i ∈ I};

Ū 0,+
Z and Ū 0,−

Z are the Z-subalgebras of Ū respectively generated by

{ĥi,r, h̄1,r, | r > 0, i ∈ I},
{ĥi,r, h̄1,r, | r < 0, i ∈ I};

Ūh
Z = Zbin[hi,0, c | i ∈ I],

The notations are those of Chapter 1.

Remark 8.11. Of course we have that Ū 0,±
Z ⊆ Z[ȟ1,r, ĥ1,r | i ∈ I \ {1},±r > 0]. Ū 0,±

Z and Ūh
Z are

integral form of respectively Ū 0,± and Ūh.

8.2 A(2)
4

Let us fix in this section n = 2. In this part we want to study the algebra Ū+
Z (A(2)

4 ), to do this we
first want to study the straightening formulas within the algebra and express them in terms of
the Lie bracket.

Lemma 8.12.

[x−1,0, [x+1,0, x+2,r]] = 2x+2,r; (8.12.1)

[x−1,0, [x+1,0, [x+1,0, x+2,r]]] = 2[x+1,0, x+2,r]; (8.12.2)

[x−1,0, [x−1,0, [x+1,0, [x+1,0, x+2,r]]]] = 4x+2,r; (8.12.3)

[x−2,0, [x+2,0, x+1,r]] = x+1,r; (8.12.4)

[h2,0, X+
1,r] = −2X+

1,r (8.12.5)

[x−2,0, [x+2,0, X+
1,r]] = 2X+

1,r. (8.12.6)

[x−2,0, [x+2,0, [x+2,0, X+
1,r]]] = 2[x+2,0, X+

1,r] (8.12.7)

[x−2,0, [x−2,0, [x+2,0, [x+2,0, X+
1,r]]]] = 4X+

1,r. (8.12.8)
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Proof. Prove of equations (8.12.1),(8.12.2),(8.12.3) and (8.12.4)

[x−1,0, [x+1,0, x+2,r]] = −[x
+
2,r, [x−1,0, x+1,0]] = [x+2,r, h1,0] = −[h1,0, x+2,r] = 2x+2,r.

[x−1,0, [x+1,0, [x+1,0, x+2,r]]] = −([[x
+
1,0, x+2,r], [x

−
1,0, x+1,0]] + [x+1,0, [[x+1,0, x+2,r], x−1,0]]) =

[[x+1,0, x+2,r], h1,0] + [x+1,0, [x−1,0, [x+1,0, x+2,r]]] = −[h1,0, [x+1,0, x+2,r]] + 2[x+1,0, x+2,r] =

[x+2,r, [h1,0, x+1,0]] + [x+1,0, [x+2,r, h1,0]] + 2[x+1,0, x+2,r] =

2[x+2,r, x+1,0] + 2[x+1,0, x+2,r] + 2[x+1,0, x+2,r] = 2[x+1,0, x+2,r].

[x−1,0, [x−1,0, [x+1,0, [x+1,0, x+2,r]]]] = 2[x−1,0, [x+1,0, x+2,r]] = 4x+2,r;

[x−2,0, [x+2,0, x+1,r]] = −[x
+
1,r, [x−2,0, x+2,0] = [x+1,r, h2,0] = x+1,r.

Proof of equation (8.12.5), (8.12.6), (8.12.7) and (8.12.8)

[h2,0, X+
1,r] = [h2,0, [x+1,r, x+1,0]] =

− [x+1,0, [h2,0, x+1,r]]− [x+1,r, [x+1,0, h2,0]] = −[x+1,0, x+1,r] + [x+1,r, x+1,0] = −2X+
1,r

[x−2,0, [x+2,0, X+
1,r]] = −[X

+
1,r, [x−2,0, x+2,0]] = [X+

1,r, h2,0] = 2X+
1,r.

[x−2,0, [x+2,0, [x+2,0, X+
1,r]]] = −[[x

+
2,0, X+

1,r], [x
−
2,0, x+2,0]]− [x+2,0, [[x+2,0, X+

1,r], x−2,0]] =

[[x+2,0, X+
1,r], h2,0]] + [x+2,0, [x−2,0, [x+2,0, X+

1,r]]] = −[h2,0, [x+2,0, X+
1,r]] + 2[x+2,0, X+

1,r] =

[X+
1,r, [h2,0, x+2,0]] + [x+2,0, [X+

1,r, h2,0]] + 2[x+2,0, X+
1,r] =

2[X+
1,r, x+2,0] + 2[x+2,0, X+

1,r] + 2[x+2,0, X+
1,r] = 2[x+2,0, X+

1,r]

[x−2,0, [x−2,0, [x+2,0, [x+2,0, X+
1,r]]]] = 2[x−2,0, [x+2,0, X+

1,r]] = 4X+
1,r

Lemma 8.13. The following identities hold in Ũ :

τ1(x+2,r) =
1
2
[x+1,0, [x+1,0, x+2,r]]. (8.13.1)

τ2(x+1,r) = [x+2,0, x+1,r]; (8.13.2)

τ2(X+
1,r) =

1
2
[x+2,0, [x+2,0, X+

1,r]]. (8.13.3)

Proof. We use relations of Lemma 8.12.
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Proof of Equation (8.13.1):

τ1(x+2,r) = exp
(

adx+1,0

)
exp

(
−adx−1,0

)
exp

(
adx+1,0

)(
x+2,r
)
=

exp
(

adx+1,0

)
exp

(
−adx−1,0

)(
x+2,r + [x+1,0, x+2,r] +

1
2
[x+1,0, [x+1,0, x+2,r]]

)
=

exp
(

adx+1,0

)(
x+2,r + [x+1,0, x+2,r]− [x−1,0, [x+1,0, x+2,r]]+

1
2
[x+1,0, [x+1,0, x+2,r]]−

1
2
[x−1,0, [x+1,0, [x+1,0, x+2,r]]] +

1
4
[x−1,0, [x−1,0, [x+1,0, [x+1,0, x+2,r]]]

)
=

exp
(

adx+1,0

)(
x+2,r + [x+1,0, x+2,r]− 2x+2,r +

1
2
[x+1,0, [x+1,0, x+2,r]]− [x+1,0, x+2,r] + x+2,r

)
=

exp
(

adx+1,0

)
(

1
2
[x+1,0, [x+1,0, x+2,r]]) =

1
2
[x+1,0, [x+1,0, x+2,r]]

Proof of Equation (8.13.2):

τ2(x+1,r) = exp
(

adx+2,0

)
exp

(
−adx−2,0

)
exp

(
adx+2,0

)(
x+1,r
)
=

exp
(

adx+2,0

)
exp

(
−adx−2,0

)(
x+1,r + [x+2,0, x+1,r]

)
=

exp
(

adx+2,0

)(
x+1,r + [x+2,0, x+1,r]− [x−2,0, [x+2,0, x+1,r]]

)
=

exp
(

adx+2,0

)(
x+1,r + [x+2,0, x+1,r]− x+1,r

)
=

exp
(

adx+2,0

)
([x+2,0, x+1,r]) = [x+2,0, x+1,r]

Proof of Equation (8.13.3):

τ2(X+
1,r) = exp

(
adx+2,0

)
exp

(
−adx−2,0

)
exp

(
adx+2,0

)(
X+

1,r
)
=

exp
(

adx+2,0

)
(X+

1,r + [x+2,0, X+
1,r]− [x−2,0, [x+2,0, X+

1,r]]+

1
2
[x+2,0, [x+2,0, X+

1,r]]−
1
2
[x−2,0, [x+2,0, [x+2,0, X+

1,r]]] +
1
4
[x−2,0, [x−2,0, [x+2,0, [x+2,0, X+

1,r]]]]) =

exp
(

adx+2,0

)
(

1
2
[x+2,0, [x+2,0, X+

1,r]]) =

1
2
[x+2,0, [x+2,0, X+

1,r]].

We will now use the τis to prove straightening formulas of the positive real root vectors.
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Lemma 8.14. The following identities hold in Ũ+[[u, v]]

i) exp
(

x+1,ru
)

exp
(

x+2,sv
)
= exp

(
x+2,sv

)
exp

(
x+1,ru

)
exp

(
x+α1+α2,r+suv

)
exp

(
(−1)r+1x+2α1+α2,2r+su2v

)
,

(8.14.1)

ii) exp
(

x+1,ru
)

exp
(

x+α1+α2,rv
)
= exp

(
x+α1+α2,rv

)
exp

(
2(−1)rx+2α1+α2,r+suv

)
exp

(
x+1,ru

)
, (8.14.2)

iii) exp
(

1
2

X+
1,ru
)

exp
(

x+2,rv
)
= exp

(
x+2,sv

)
exp

(
1
2

X+
1,ru
)

exp
(

2x+2α1+α2,r+suv
)

, (8.14.3)

iv) exp
(

x+2,ru
)

exp
(

x+2α1+α2,sv
)
= exp

(
x+2α1+α2,rv

)
exp

(
−1

2
X+

2,r+suv
)

exp
(

x+2,su
)

, if r + s is odd

(8.14.4)

Proof. Proof of Equation (8.14.1):
From Lemma 1.55,vi) follows that

exp
(

x+1,ru
)

exp
(

x+2,sv
)
= exp

(
x+2,sv

)
exp

(
x+1,ru + [x+1,r, x+2,s]uv

)
=

= exp
(

x+2,sv
)

exp
(

x+1,ru
)

exp
(
[x+1,r, x+2,s]uv

)
exp

(
−1

2
[x+1,r, [x+1,r, x+2,s]]u

2v
)
)

where the last equality follows from lemma 1.55,viii).
Using Relations (8.1.1) and (8.1.2) follows that

[x+1,r, x+2,s] = −[x
+
2,0, x+1,r+s] = −x+α1+α2,s+r

and

−1
2
[x+1,r, [x+1,r, x+2,s]] = (−1)r+1([x+1,0, [x+1,0, x+2,s+2r]) = (−1)r+1x+2α1+α2,s+2r

Proof of Equation (8.14.2).
From Lemma 1.55,iv) follows that

exp
(

x+1,ru
)

exp
(

x+α1+α2,rv
)

,

= exp
(

x+α1+α2,rv
)

exp
(
[x+1,r, x+α1+α2,s]uv

)
exp

(
x+1,ru

)
Using Relations (8.1.1) and (8.1.2) we have that

[x+1,r, x+α1+α2,s] = [[x+1,r, [x+2,0, x+1,s]] =

− [[x+1,r, [x+1,s, x+2,0]] = −[x
+
1,r, [x+1,r, x+2,s−r]] =

(−1)r[x+1,0, [x+1,0, x+2,s+r]] = 2(−1)rx+2α1+α2,r+s.

Proof of Equation (8.14.3).
From Lemma 1.55,vi) we get:

exp
(

X+
1,ru
)

exp
(

x+2,sv
)
= exp

(
x+2,sv

)
exp

(
X+

1,ru
)

exp
(
[X+

1,r, x+2,s]uv
)
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the claim follows observing that:

[X+
1,r, x+2,s] = [[x+1,r, x+1,0], x+2,s] =

− [x+2,s, [x
+
1,r, x+1,0]] =(

[x+1,0, [x+2,s, x+1,r]] + [x+1,r, [x+1,0, x+2,s]]
)
=

[x+1,0, [x+1,0, x+2,s+r]]− [x+1,r, [x+1,r, x+2,s−r]]
)
=

2x+2α1+α2,s+r + (−1)r+1[x+1,0, [x+1,0, x+2,s+r]]
)
=

4x+2α1+α2,s+r.

Proof of Equation (8.14.4).
From Lemma 1.55,iv) follows that

exp
(

x+2,ru
)

exp
(

x+2α1+α2,sv
)
= exp

(
x+2α1+α2,rv

)
exp

(
[x+2α1+α2,r, x+2,r]uv

)
exp

(
x+2,su

)
hence the claim follows observing that:

[x+2α1+α2,r, x+2,s] =
1
2
[[x+1,0, [x+1,0, x+2,r]], x+2,s] =

− 1
2
[[x+2,s, x+1,0], [x

+
1,0, x+2,r]] = −

1
2

X+
2,r+s.

Corollary 8.15. Ū 0,±
Z ⊆ ŪZ, more precisely :

1. (x+α1+α2,r)
(k), (x+2α1+α2,r)

(k) and ( 1
2 X+

2,2r+1)
(k) belong to the Z-subalgebra of Ū generated by (x+i,r)

(k),
in particular they belong to ŪZ ∩ Ū+.

2. ( 1
2 X+

1,2r+1)
(k) ∈ ŪZ ∩ Ū+ even if it does not belong to the Z-subalgebra generated by (x+i,r)

(k).

Proof. 1. From Lemma 8.14,i) it follows that

exp
(

x+α1+α2,ruv
)

exp
(

x+2α1+α2,ru2v
)
∈ Z((x+i,r)

(k) | i ∈ I, r ∈ Z, k ∈N)[[u, v]],

then considering the coefficients of ukvk and of u2kvk we get that

x+α1+α2,r, x+2α1+α2,ru2v ∈ Z((x+i,r)
(k) | i ∈ I, r ∈ Z, k ∈N),

then Lemma 8.14,iv) implies that

(
1
2

X+
2,2r+1)

(k) ∈ Z((x+i,r)
(k) | i ∈ I, r ∈ Z, k ∈N);

2. ŪZ is τ2-invariant, hence

U+ ∋ (
1
2

X+
1,2r+1)

(k) = τ2(
1
2

X+
2,2r+1)

(k) ∈ ŪZ,

but ( 1
2 X+

1,2r+1)
(k) ∈ Z((x+i,r)

(k) | i ∈ I, r ∈ Z, k ∈N) (see Chapter 7).

Theorem 8.16. Ū+
Z ⊆ ŪZ ∩ Ū+ and Ū−Z ⊆ ŪZ ∩ Ū− are integral form of Ū+ and Ū−, a Z-basis of Ū±Z

is given by the ordered monomials of the set:

{(x±α,r)
(k), (

1
2

X±i,2r+1)
(k) | α ∈ Φ+

0 , i ∈ I, r ∈ Z, k ∈N}.
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Proof. From Lemma 8.14 follows that the Z-subalgebra of ŪZ generated by {(x+i,r)
(k) | i ∈ I, r ∈

Z, k ∈N} has basis consisting in the ordered monomials in the set

{(x+α,r)
(k), (

1
2

X+
2,2r+1)

(k), (X+
1,2r+1)

(k) | α ∈ Φ+
0 , r ∈ Z, k ∈N},

moreover,

WT · {(x+α,r)
(k), (

1
2

X+
2,2r+1)

(k), (X+
1,2r+1)

(k) | α ∈ Φ+
0 , r ∈ Z, k ∈N} =

{(x±α,r)
(k), (

1
2

X±i,2r+1)
(k) | α ∈ Φ+

0 , i ∈ I, r ∈ Z, k ∈N},

then the claim follows observing that

Ũ+ ∩ {(x±α,r)
(k), (

1
2

X±i,2r+1)
(k) | α ∈ Φ+

0 , i ∈ I, r ∈ Z, k ∈N} =

{(x+α,r)
(k), (

1
2

X+
i,2r+1)

(k) | α ∈ Φ+
0 , i ∈ I, r ∈ Z, k ∈N}.

Proposition 8.17. The following identities hold in Ū [[u, v]]:

ȟ+1 (u)ĥ
−
2 (v) = ĥ−2 (v)(1− uv)c ȟ+1 (u). (8.17.1)

In particular Ū 0
Z = Ū 0,−

Z Ūh
ZŪ

0,+
Z and Ū 0

Z is an integral form of Ũ 0. Ǔ 0
Z = Ǔ 0,−

Z Ǔh
ZǓ

0,+
Z and Ǔ 0

Z is an
integral form of Ũ 0.

Proof. Equation (8.17.1) follows from Propositions 1.58 with m = 1 and l = 0, hence Ǔ 0
Z =

Ǔ 0,−
Z Ǔh

ZǓ
0,+
Z .

Corollary 8.18. Ūh
Z = Ūh ∩ ŪZ

Proof. The claim follows by Corollary 7.17, Proposition 8.17 and Definition 8.9.

Corollary 8.19. Ū±Z Ū
h
Z = Ūh

ZŪ
±
Z

Proof. From Proposition 1.56 with m = ai,j we have that

(x+i,r)
(k)
(

h0,j

l

)
=

(
h0,j − ai,j

l

)
(x+i,r)

(k),

from Proposition 1.56 with m = a2
2,1 = 4 by multiplying both side for ( 1

2 )
k we have that:

(
1
2

X+
1,2r+1)

(k)
(

h0,2

l

)
=

(
h0,2 − 4k

l

)
(

1
2

X+
1,2r+1)

(k).

Hence we have that

Ū+
Z Ū

h
Z = Ūh

ZŪ
+
Z , (8.19.1)

remarking that the ( 1
2 X+

1,2r+1)
(k)’s and (x+i,r)

(k)s generate ŪZ, then by applying Ω to Relation
(8.19.1) we get

Ū−Z Ū
h
Z = Ūh

ZŪ
−
Z .
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Proposition 8.20. The following identities hold in Ū [[u]]

x+1,0ĥ+2 (u) = ĥ+2 (u)(1 + uT−1)(x+1,0), (8.20.1)

x+2,0ȟ+1 (u) = ȟ+1 (u)(1 + uT−1)(x+2,0) (8.20.2)

1
2

X+
1,1ĥ+2 (u) = ĥ+2 (u)(1 + Tu2)(

1
2

X+
1,1). (8.20.3)

hence for all k ∈N

(x+1,0)
(k) ĥ+2 (u) = ĥ+2 (u)

(
(1 + uT−1)(x+1,0)

)(k) ∈ Ū 0,+
Z Ū+

Z , (8.20.4)

(x+2,0)
(k) ȟ+1 (u) = ȟ+1 (u)((1 + uT−1)(x+2,0))

(k) ∈ Ǔ 0,+
Z Ū+

Z (8.20.5)

(
1
2

X+
1,1)

(k) ĥ+2 (u) = ĥ+2 (u)((1 + Tu2)(
1
2

X+
1,1))

(k) ∈ Ū 0,+
Z Ū+

Z . (8.20.6)

In particular Ū 0,+
Z Ū±Z = Ū±Z Ū

0,+
Z , Ū 0,−

Z Ū±Z = Ū±Z Ū
0,−
Z , Ǔ 0,+

Z Ū±Z = Ū±Z Ǔ
0,+
Z and Ǔ 0,−

Z Ū±Z = Ū±Z Ǔ
0,−
Z ,

moreover are integral form of respectively Ũ±Ū 0,+ and Ũ±Ū 0,−. Ǔ 0
ZŪ
±
Z = Ū±Z Ǔ 0

Z and Ū 0
ZŪ
±
Z = Ū±Z Ū 0

Z

are integral form of Ũ±Ū 0.

Proof. Equations (8.20.1) and (8.20.2) and follow from Proposition 1.60 with m1 = −1 and md = 0
if d > 1, Equation (8.20.3) follows (8.20.1) and (8.20.2). Equations (8.20.4), (8.20.5) and (8.20.6)
follow from (8.20.1) and (8.20.2) since Ū+

Z is T-stable and T|Ū0,+
Z

= id. Ū+
Z Ū

0,+
Z = Ū 0,+

Z Ū+
Z and

Ū+
Z Ǔ

0,+
Z = Ǔ 0,+

Z Ū+
Z follow directly, the others follow by applying Ω ◦ σ and λ−1. The last Relation

follows from previous relation and Corollary 8.19.

Remark 8.21. We know from Chapter 7 that ĥ+1 (u), h̄+1 (u) ∈ ŪZ, hence Ū 0
Z ⊆ ŪZ.

Theorem 8.22. Ū+
Z Ū
−
Z ⊆ Ū

−
Z Ū 0

ZŪ
+
Z is a Z-subalgebra of Ū : it is an integral form of U (A(2)

4 ).
Then:

• Ū+
Z Ū 0

ZŪ
−
Z = ŪZ (hence ŪZ is an integral form of Ū ),

• Ū±Z = ŪZ ∩ Ū±;

• Ū 0
Z = ŪZ ∩ Ū 0;

• Ūh
Z = ŪZ ∩ Ūh;

• Ū 0,±
Z = ŪZ ∩ Ū 0,±;

Theorem 8.23. Ū+
Z Ǔ 0

ZŪ
−
Z ⊋ ŪZ is an integral form of U (A(2)

4 ).

8.3 A(2)
2n

We want now prove that ŪZ is an integral form of Ū . We will prove it by induction on n, we
will systematically refer to the identifications defined in Definition 8.9. The claim for n = 2 is the
Section 8.2.

Remark 8.24. Recall that:
The results for A(2)

4 and A(1)
1 shows that

Ū±Z , Ū 0,±
Z , Ūh

Z ⊆ Ū ,
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in particular the results for A(2)
4 and A(1)

n−1 imply that

Ū+
Z Ū

0,+
Z Ūh

ZŪ
0,−
Z Ū−Z

is a Z subalgebra of ŪZ.

It follows from previous remark that to our aim we just need to study Ū+
Z and to prove that it

is the Z linear span of the monomials in

{(x+α,r)
(k), (

1
2

X+
i,2r+1)

(k) | r ∈ Z, α ∈ Φ+
0 , i ∈ I}.

Notation 8.25. Let Z < B+
n > be the Z linear span of the monomials in

{(x+α,r)
(k), (

1
2

X+
i,2r+1)

(k) | r ∈ Z, α ∈ Φ+
0 , i ∈ I},

We want to prove that

Ū+
Z = Z < B+

n >,

we shall proceed by induction on n, the case of n = 2 is the previous section.

Remark 8.26. Ū+
Z (A(2)

2(n−1)),U
+
Z (A(1)

n−1) ⊆ Z < B+
n >

Remark 8.27.

τn(B1
n−1) ⊆ B+

n .

Notation 8.28. Let us set denote by Φ̄+
0 and Φ̃+

0 denotes the sub-root system Φ+
0 of respectively A(2)

2n−2

and A(1)
2n−1 via the Identifications (8.9.1) and (8.9.2).

Remark 8.29. Let us observe that from Theorem 8.16 follows that

Ū+
Z ⊆ Z((x+i,r)

(k), (
1
2

X+
1,2r+1)

(k) | i ∈ I, r ∈ Z, k ∈N).

We want to prove that Ū+
Z is an algebra of divided powers, whose basis is given by the ordered divided

powers monomials in the elements:

{x+α,r,
1
2

X+
i,2r+1 | i ∈ I, r ∈ Z, α ∈ Φ+

0 }. (8.29.1)

By Identification (8.9.2) and by induction hypothesis it follows that

Z(Div)[x+α,r,
1
2

X+
i,2r+1 | i ∈ I \ {n}, r ∈ Z, α ∈ Φ̄+

0 ) ⊆ Ū
+
Z .

By Identification (8.9.2) we have that

Z(Div)[x+α,r | r ∈ Z, α ∈ Φ̃+
0 ] ⊆ Ū

+
Z .

If we prove that (x+α,r)
(k), ( 1

2 X+
n,2r+1)

(k) ∀α ∈ Φ+
0 \ (Φ̄

+
0 ∪ Φ̃+

0 ), then follows that

Z((x+α,r)
(k), (

1
2

X+
i,2r+1)

(k) | i ∈ I, r ∈ Z, α ∈ Φ+
0 , k ∈N) ⊆ Ū+

Z ,

then Relation (8.29.1) turns out to be equivalent to show that
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• (x+α,r)
(k)(x+β,s)

(j) ∀α ∈ Φ+
0 \ (Φ̄

+
0 ∪ Φ̃+

0 ),∀β ∈ Φ+
0 , ∀r, s ∈ Z and ∀k, j ∈N,

• (x+α,r)
(k)(x+β,s)

(j) ∀α ∈ Φ̃+
0 \ (Φ̄

+
0 ) , ∀β ∈ Φ̄+

0 \ (Φ̃
+
0 ), ∀r, s ∈ Z and ∀k, j ∈N,

• ( 1
2 X+

i,2r+1)
(k)(x+β,s)

(j), ∀i ∈ I, ∀β ∈ Φ+
0 \ Φ̄+

0 , ∀r, s ∈ Z and for all k, j ∈N,

Proposition 8.30. (x+α,r)
(j), ( 1

2 X±n,2r+1)
(k) ∈ Ū+

Z for all α ∈ Φ̄+
0 ∪ Φ̃+

0 and j, k ∈N.

Proof. By induction hypothesis ( 1
2 X±i,2r+1)

(k) ∈ Ū+
Z if i ̸= n, let us observe that

τn((
1
2

X±n−1,2r+1)
(k)) = (

1
2

X±n,2r+1)
(k) ∈ Ū+

Z .

By Notation 8.28 follows that

Φ̃+
0 ∪ Φ̄+

0 = {α1 + · · ·+ αn, 2α1 + · · ·+ 2αj + · · ·+ αj+1 + · · ·+ αn}

(x+α,r)
(j) ∈ Ū+

Z

τn(x+α1+···+αn−1,r) = x+α1+···+αn ,r,

τn(x+2α1+···+2αj+···+αj+1+···+αn−1,r) = x+2α1+···+2αj+···+αj+1+···+αn ,r if j ̸= n− 1,

τn−1τn(x+2α1+···+2αn−2+αn−1,r) = x+2α1+···+2αn−1+αn ,r.

Lemma 8.31. ( 1
2 X+

i,2r+1)
(k)(x+β,s)

(j), ∀i ∈ I, ∀β ∈ Φ+
0 \ Φ̄+

0 , ∀r, s ∈ Z and for all k, j ∈N

Proof. Let us observe that [( 1
2 X+

i,2r+1)
(k), (x+β,s)

(j)] ̸= 0 only if β = αi+1 + · · ·+ αn. If i ̸= n− 1 the

claim follows by applying τn since in this case τn((
1
2 X+

i,2r+1)
(k)) = ( 1

2 X+
i,2r+1)

(k) and σn(αi+1 +

· · · + αn) = αi+1 + · · · + αn−1. If i = n − 1 let us observe that τnτn−1((
1
2 X+

n−1,2r+1)
(k)) =

τn(
1
2 X+

n−2,2r+1)
(k) and σnσn−1(αn) = αn−1, hence the claim follows by Remark 8.29.

Lemma 8.32. (x+α,r)
(k)(x+β,s)

(j) ∀α ∈ Φ+
0 \ (Φ̄

+
0 ∪ Φ̃+

0 ),∀β ∈ Φ+
0 , ∀r, s ∈ Z and ∀k, j ∈N,

Proof. Let us observe that

Φ+
0 \ (Φ̄

+
0 ∪ Φ̃+

0 ) = {α1 + · · ·+ αn, 2α1 + · · ·+ 2αj + αj+1 + · · ·+ αn}.

If α = α1 + · · ·+ αn then α + β ∈ Φ0,+ only if β = α1 + · · ·+ αk

• if k = n then σn(α) = σn(β) = α1 + · · ·+ αn−1 ∈ Φ̄+
0 ,

• if k < n− 1 then σn(α) = α1 + · · ·+ αn−1, σn(β) = β ∈ Φ̄+
0 ,

• if k = n− 1 then σn−1(α) = (α), σn−1(β) = α1 + · · ·+ αn−2 hence we can lead back to case
k < n− 1.

If α = 2α1 + · · ·+ 2αj + αj+1 + · · ·+ αn then α + β ∈ Φ0,+ only if β = αj+1 + · · ·+ αk, let us first
observe that if j ̸= 1 then

σj−1(α) = 2α1 + · · ·+ 2αj−1 + αj + · · ·+ αn

and

σj−1(β) = αj−1 + · · ·+ αk,

hence we can assume that j < n− 1.
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• if k = n then σnσn−1(α) = 2α1 + · · ·+ 2αn−2 + αn−1, σnσn−1(β) = αn−1 ∈ Φ̄+
0 ,

• if k < n then σn(α) = 2α1 + · · ·+ 2αj + αj+1 + · · ·+ αn−1, σn(β) = αj+1 + · · ·+ αn−1 ∈ Φ̄+
0 .

Lemma 8.33. (x+α,r)
(k)(x+β,s)

(j) ∀α ∈ Φ̃+
0 \ (Φ̄

+
0 ) , ∀β ∈ Φ̄+

0 \ (Φ̃
+
0 ), ∀r, s ∈ Z and ∀k, j ∈N.

Proof. If α ∈ Φ̄+
0 \ (Φ̃

+
0 ) and β ∈ Φ̃+

0 \ (Φ̄
+
0 ) this implies that α = α1 + · · ·+ αk or α = 2α1 + · · ·+

2αj + αj+1 + · · ·+ αn−1 and β = αk + · · ·+ αn.
If α = 2α1 + · · ·+ 2αj + αj+1 + · · ·+ αn−1 and β = αj+1 + · · ·+ αn, let us observe if j ̸= 1 then

σj−1(α) = 2α1 + · · ·+ 2αj−1 + αj + · · ·+ αn

and

σj−1(β) = αj−1 + · · ·+ αk,

then we can assume that j < n− 1, if k ̸= n, then σ(α) ∈ Φ̄+
0 and σ(β) =∈ Φ̄+

0 if k ̸= n− 1. If
α = α1 + · · · + αk and α = αj + · · · + αn then k = j + 1, if j ̸= n the claim follows directly by
applying σn, if j ̸= n we can lead back to Lemma 8.32.

Theorem 8.34. Ū+
Z and Ū−Z are integral form of Ũ+ and Ũ−, more precisely

Ū±Z = Z(div)[x±α,r,
1
2

X±i,2r+1 | α ∈ Φ+
0 , i ∈ I, r ∈ Z],

a Z-basis B± of Ū±Z a base is given by the divided powers of the elements of the set {x±α,r, 1
2 X±i,2r+1, α ∈

Φ+
0 , i ∈ I, r ∈ Z}.

Proof. The claim follows from Remark 8.29, Proposition 8.30 and Lemmas 8.31, 8.32 and 8.33.

Lemma 8.35.

Ū 0,−
Z Ū 0,+

Z = Ū 0,+
Z ⊗Z(bin)[c]⊗ Ū 0,−

Z

Proof. The claim follows from Theorems 4.25 and 7.14 and Definition 8.9

Lemma 8.36. Ūh
Z = ŪZ ∩ Ũh = Z(bin)[hi, c | i ∈ I]

Proof. The claim follows observing that ŪZ ∩ Ũh ∩ Ũi = Z(bin)[hi, c].

Remark 8.37. Ū 0,±
Z is an integral form of Ũ 0,±, more precisely:

Ū 0,±
Z
∼= Z(mix)[h1,r | ±r > 0]⊗Z[ĥi,r | i ∈ I, i ̸= 1,±r > 0],

a basis is given by the product B0,± = B0,±
1,q.pol ∏n

i=2 B̂0,±
i , where B0,±

1,q.pol = ϕ1(B0,±
q.pol) and B̂0,±

i =

ϕi(B̂0,±) if i > 1 (see Theorems 4.25 and 7.14 and Definition 8.9).

Proposition 8.38.

Ū±Z Ū
0
Z = Ū 0

ZŪ±Z

Proof. Let us prove first that Ū+
Z Ū 0

Z ⊆ Ū 0
ZŪ
±
Z , the claim is equivalent to show that for all i, j ∈ I

then (x+i,r)
(k)(Ū 0

Z ∩ Ūj) ⊆ Ū 0
ZŪ

+
Z , if |i − j| > 1 the claim is obvious, if i, j < n follows from

Identification (8.9.1), if i = n or j = n follows from Identification (8.9.2).
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Theorem 8.39. The Z-subalgebra ŪZ of Ũ generated by

{(x+i,r)
(k), (x−i,s)

(k) | r ∈ Z, k ∈N, i ∈ I}

is an integral form of Ũ . More precisely

ŪZ
∼= Ū−Z ⊗ Ū

0
Z ⊗ Ū+

Z ,

a Z-basis of ŪZ is given by the product B−B0B+ where B± and Ū±Z are described in Theorem 8.34 and

Ū 0
Z
∼= Ū 0,−

Z ⊗ Ūh
Z ⊗ Ū

0,+
Z .

a Z-basis of Ū 0
Z is given by the product B0 = B−B0B+ where B± and B0 are basis of respectively Ū 0,±

Z

and Ūh
Z are described respectively in Remark 8.37 in Lemma 8.36.

8.4 Conclusions

The study of the integral form of the affine Kac-Moody algebras from the point of view of the
Drinfeld presentation, which differs from the one defined through the Kac-Moody presentation
([6] and [11]) in the case A(2)

2n as outlined above, is motivated by the interest in the representation
theory over Z, since for the affine Kac-Moody algebras the notion of highest weight vector with
respect to the ei’s has been usefully replaced with that defined through the action of the x+i,r’s (see
the works of Chari and Pressley [1] and [13]): in order to study what happens over the integers it
is useful to work with an integral form defined in terms of the same x+i,r’s.
This work is also intended to be the preliminary classical step in the project of constructing and
describing the quantum integral form for the twisted affine quantum algebras (with respect to
the Drinfeld presentation). The commutation relations involved are extremely complicated and
appear to be unworkable by hands without a deeper insight; we hope that a simplified approach
can open a viable way to work in the quantum setting, this is the reason why (in the case of A(2)

4 )
it has been shown that ǓZ is also an integral form.



Chapter 9

Appendices

9.A Straightening formulas of A(2)
2

For the sake of completeness we collect here the commutation formulas of A(2)
2 , inserting also the

formulas that we didn’t need for the proof of Theorem 5.44.
Notation 9.1 and Remark 9.2 will help writing some of the following straightening relations

and to understand the origin of some apparently mysterious terms.

Notation 9.1. Given p(t) ∈ Q[[t]] let us define p+(t), p−(t) ∈ Q[[t2]] and p0(t) ∈ Q[[t]] by

p(t) = p+(t) + tp−(t), p0(t2) =
1
2

p+(t)p−(t).

Remark that the maps p(t) 7→ p+(t) and p(t) 7→ p−(t) are homomorphisms of Q[[t2]]-modules while
q(t) ∈ Q[[t2]], q̃(t2) = q(t)⇒ (qp)0(t) = q̃(t)2 p0(t).

Remark 9.2. Given p(t) ∈ Q[[t]], Lemma 1.55, viii) implies that

exp
(

p(uw).x+0
)
=

= exp
(

p+(uw).x+0
)

exp
(

up0(−u2w).X+
1

)
exp

(
up−(uw).x+1

)
=

= exp
(
up−(uw).x+1

)
exp

(
−up0(−u2w).X+

1

)
exp

(
p+(uw).x+0

)
.

We shall now list a complete set of straightening formulas in ŨZ.

I) Zero commutations regarding Ũh
Z:(

c
k

)
is central in ŨZ;

(
h0

k

)
is central in Ũ 0

Z :
[(

h0

k

)
, h̃l

]
= 0 ∀k ≥ 0, l ̸= 0.

II) Relations in Ũ 0,+
Z (from which those in Ũ 0,−

Z follow as well):

Ũ 0,+
Z is commutative : [h̃k, h̃l ] = 0 ∀k, l > 0;

λ̃m(h̃+(−um)) =
m

∏
j=1

h̃+(−ω ju) ∀m ∈ Z+

93
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where ω is a primitive mth root of 1 (see Proposition 1.14 and Remark 5.13), that is

λ̃m(h̃k) = (−1)(m−1)k ∑
(k1,...,km):

k1+...+km=mk

ω∑m
j=1 jkj h̃k1 . . . h̃km ;

if m is odd
λm(h̃k) = λ̃m(h̃k) ∀k ≥ 0;

if m is even
λm(ĥ+(u)) = λ̃m(h̃+((−1)

m
2 u)−1).

In order to describe the dependence of ĥ{d}(u) on the λ̃m(h̃k)’s (where d is as defined in Remark
5.39) remark first that

ĥ+(u) = h̃+(u)λ̃4(h̃+(−u4)−
1
2 ) = h̃+(u)

1
2 h̃+(−u)−

1
2 h̃+(iu)−

1
2 h̃+(−iu)−

1
2 ,

so that
ĥ{d}+ (u) = ĥ+((1 +

√
2)u)

1
2 ĥ+((1−

√
2)u)

1
2 =

= h̃+((1 +
√

2)u)
1
4 h̃+((1−

√
2)u)

1
4 h̃+(−(1 +

√
2)u)−

1
4 h̃+(−(1−

√
2)u)−

1
4 ·

·(h̃+((1 +
√

2)iu)−
1
4 h̃+((1−

√
2)iu)−

1
4 h̃+(−(1 +

√
2)iu)−

1
4 h̃+(−(1−

√
2)iu)−

1
4 .

Now recall that through the involution hr 7→ εrhr ∀r > 0 (see Remark 5.13) ĥ(u) corresponds to
h̃(u) and λm corresponds to λ̃m, so that our problem is equivalent to describing

ĥ+((1 +
√

2)u)ĥ+((1−
√

2)u)ĥ+(−(1 +
√

2)u)−1ĥ+(−(1−
√

2)u)−1·

·
(
ĥ+((1 +

√
2)iu)ĥ+((1−

√
2)iu)ĥ+(−(1 +

√
2)iu)ĥ+(−(1−

√
2)iu)

)−1 (9.2.1)

in terms of the (λm(ĥk))
4’s; since Remark 1.16 implies that (9.2.1) corresponds to

(1 + 2u− u2)

(1− 2u− u2)(1 + 6u2 + u4)
;

then we get
ĥ{d}(u) = ∏

m>0
λ̃m(h̃+(um))km

where the km’s are the integers defined by the identity

1 + 2u− u2 = (1− 2u− u2)(1 + 6u2 + u4) ∏
m>0

(1 + um)4km .

The corresponding relations in Ũ 0,−
Z are obtained applying Ω, that is just replacing h̃k, h̃+(u)

and ĥ+(u) with h̃−k, h̃−(u) and ĥ−(u).
III) Other straightening relations in Ũ 0

Z (see Proposition 5.21):

h̃+(u)h̃−(v) = h̃−(v)(1− uv)−4c(1 + uv)2c h̃+(u).

IV) Commuting elements and straightening relations in Ũ+
Z (and in Ũ−Z ):

(X+
2r+1)

(k) is central in Ũ+
Z :

[(X+
2r+1)

(k), (x+s )
(l)] = 0 = [(X+

2r+1)
(k), (X+

2s+1)
(l)] ∀r, s ∈ Z, k, l ∈N;

if r + s is even [(x+r )(k), (x+s )
(l)] = 0 ∀k, l ∈N;
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if r + s is odd exp
(

x+r u
)

exp
(
x+s v

)
= exp

(
x+s v

)
exp

(
(−1)sX+

r+suv
)

exp
(
x+r u

)
(see Lemma 5.22).

All the relations in Ũ−Z are obtained from those in Ũ+
Z applying the antiautomorphism Ω; in

particular if r + s is odd

exp
(

x−r u
)

exp
(

x−s v
)
= exp

(
x−s v

)
exp

(
(−1)rX−r+suv

)
exp

(
x−r u

)
.

V) Straightening relations for Ũ+
Z Ũ

h
Z (and for Ũh

ZŨ
−
Z ): ∀r ∈ Z, k, l ∈N

(x+r )(k)
(

h0

l

)
=

(
h0 − 2k

l

)
(x+r )(k),

(X+
2r+1)

(k)
(

h0

l

)
=

(
h0 − 4k

l

)
(X+

2r+1)
(k), (9.2.2)

and (
h0

l

)
(x−r )(k) = (x−r )(k)

(
h0 − 2k

l

)
,(

h0

l

)
(X−2r+1)

(k) = (X−2r+1)
(k)
(

h0 − 4k
l

)
.

VI) Straightening relations for Ũ+
Z Ũ

0,+
Z (and for Ũ+

Z Ũ
0,−
Z , Ũ 0,±

Z Ũ−Z ):

(X+
2r+1)

(k) h̃+(u) = h̃+(u)
(
(1− u2T−1)2X+

2r+1

)(k)
(see Lemma 1.59) and

(x+r )(k) h̃+(u) = h̃+(u)
(
(1− uT−1)6(1 + u2T−2)

(1− u2T−2)3 x+r

)(k)

(see Proposition 5.25);

the expression for
(
(1−uT−1)6(1+u2T−2)

(1−u2T−2)3 x+r
)(k)

can be straightened more explicitly: setting p(t) =

(1− t)6 we have
p+(t) = 1 + 15t2 + 15t4 + t6,

p−(t) = −6− 20t2 − 6t4,

p0(t) = −(1 + 15t + 15t2 + t3)(3 + 10t + 3t2),

so that (see Notation 9.1 and Remark 9.2)

exp
(

x+r v
)
h̃+(u) = h̃+(u) exp

(
(1− uT−1)6(1 + u2T−2)

(1− u2T−2)3 x+r v
)
=

= h̃+(u) exp
(

p−(uT−1)(1 + u2T−2)

(1− u2T−2)3 x+r+1uv
)
·

· exp
(
(−1)r−1 p0(−u2T−1)(1− u2T−1)2

(1 + u2T−1)6 X+
2r+1uv2

)
·

· exp
(

p+(uT−1)(1 + u2T−2)

(1− u2T−2)3 x+r v
)

.

Applying the homomorphism λ−1 (that is x+s 7→ x+−s, X+
s 7→ X+

−s, h̃+ 7→ h̃−, T−1 7→ T) one
immediately gets the expression for (X+

2r+1)
(k) h̃−(u) and for exp(x+r v)h̃−(u).
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Applying the antiautomorphism Ω (x+s 7→ x−−s, X+
s 7→ X−−s, h̃+ ↔ h̃−) one gets analogously

the expression for h̃±(u)(X−2r+1)
(k) and for h̃±(u) exp(x−r v) (see relation (3.2.2)).

VII) Straightening relations for Ũ+
Z Ũ
−
Z :

VII,a) sl2-like relations (see relation (3.2.2)): ∀r ∈ Z

exp(x+r u) exp
(

x−−rv
)
= exp

( x−−rv
1 + uv

)
(1 + uv)h0+rcexp

( x+r u
1 + uv

)
,

exp(X+
2r+1u)exp(X−−2r−1v) = exp

(X−−2r−1v
1 + 42uv

)
(1 + 42uv)

h0
2 + (2r+1)c

4 exp
( X+

2r+1u
1 + 42uv

)
. (9.2.3)

VII,b) ˆsl2-like relations (see Proposition 4.22 and Remark 5.27, eventually applying λm and
powers of T):

if r + s ̸= 0 is even
exp

(
x+r u

)
exp

(
x−s v

)
=

= exp
(

1
1 + uvTr+s x−s v

)
λr+s(ĥ+(uv)) exp

(
1

1 + uvT−r−s x+r v
)

,

while ∀r + s ̸= 0

exp
(
X+

2r+1u
)

exp
(
X−2s−1v

)
= (9.2.4)

exp
(

1
1 + 4Ts+ruv

X−2s−1v
)
· λ2(r+s)(ĥ+(4

2uv)
1
2 )· exp

(
1

1 + 4uvT−s−r X+
2r+1u

)
.

VII,c) Straightening relations for Ũ+,0
Z Ũ−,c

Z (and Ũ+,1
Z Ũ−,c

Z , Ũ+,c
Z Ũ

−, 0
1

Z ):

exp
(

x+0 u
)

exp
(
X−1 v

)
= (9.2.5)

exp
(

4
1− 42w2u4v2 x−1 uv

)
exp

(
−42w2

1− 42w2u4v2 x−0 u3v2
)
·

· exp
(

1 + 3 · 42wu4v2

(1 + 42wu4v2)2 X−1 v
)

ĥ+(4u2v)
1
2 exp

(
1− 42wu4v2

(1 + 42wu4v2)2 X+
1 u4v

)
·

· exp
(

−4
1− 42w2u4v2 x+1 u3v

)
exp

(
1

1− 42w2u4v2 x+0 u
)

which can be written in a more compact way (thanks to Remark 9.2) observing that

1
1− 42t2 =

(
1

1 + 4t

)
+

,
−4

1− 42t2 =

(
1

1 + 4t

)
−

,
(

1
1 + 4t

)
0
=

−2
(1− 42t)2 ,

1− 42t
(1 + 42t)2 −

2
(1 + 42t)2 = − 1

1 + 42t

(these for the component in Ũ+; for the component in Ũ− the computations are similar):

exp
(
x+0 u

)
exp

(
X−1 v

)
=

= exp
(

4
1 + 4wu2v

x−1 uv
)

exp
(

1
1 + 42wu4v2 X−1 v

)
·

·ĥ+(4u2v)
1
2 exp

(
1

1 + 4wu2v
x+0 u

)
exp

(
− 1

1 + 42wu4v2 X+
1 u4v

)
;
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that is more symmetric but less explicit in terms of the given basis of ŨZ.
Applying the homomorphism T−rλ2r+2s+1 (that is x±l 7→ x±l(2r+2s+1)±r, X±1 7→ (−1)rX±2r+2s+1±2r,

ĥk 7→ λ2r+2s+1(ĥk), w|L± 7→ T∓(2r+2s+1)) one deduces the expression for exp(x+r u) exp
(
X−2s+1v

)
.

Applying Ω one analogously gets the expression for exp
(
X+

2r+1u
)

exp(x−s v).
VII,d) The remaining relations (see Notation 5.38):

exp
(
x+0 u

)
exp

(
x−1 v

)
=

= exp
(

1 + w2u2v2

1− 6w2u2v2 + w4u4v4 x−1 v
)

exp
(

−3 + w2u2v2

1− 6w2u2v2 + w4u4v4 x−2 uv2
)
·

· exp
(
− 1− 4wu2v2 − w2u4v4

(1 + 6wu2v2 + w2u4v4)2 X−3 uv3
)

ĥ{d}+ (uv)·

· exp
(

1− 4wu2v2 − w2u4v4

(1 + 6wu2v2 + w2u4v4)2 X+
1 u3v

)
·

· exp
(

−3 + w2u2v2

1− 6w2u2v2 + w4u4v4 x+1 u2v
)

exp
(

1 + w2u2v2

1− 6w2u2v2 + w4u4v4 x+0 u
)

or, as well (using Remark 9.2),
exp

(
x+0 u

)
exp

(
x−1 v

)
=

= exp
(

1− wuv
1 + 2wuv− w2u2v2 x−1 v

)
exp

(
1

2(1 + 6wu2v2 + w2u4v4)
X−3 uv3

)
·

·ĥ{d}+ (uv)·

· exp
(

1− wuv
1 + 2wuv− w2u2v2 x+0 u

)(
−1

2(1 + 6wu2v2 + w2u4v4)
X+

1 u3v
)

.

It can be helpful in the computations observing that if p(t) = 1−t
1+2t−t2 then :

p+(t) =
1 + t2

1− 6t2 + t4 , p−(t) =
−3 + t2

1− 6t2 + t4 , p0(t) =
(1 + t)(−3 + t)
(1− 6t + t2)2 ,

(1− 4t− t2)

(1 + 6t + t2)2 +
(1− t)(−3− t)
2(1 + 6t + t2)2 = − 1

2(1 + 6t + t2)
.

The general straightening formula for exp(x+r u) exp(x−s v) when r + s is odd is obtained from
the case r = 0, s = 1 applying T−rλr+s, remarking that w|L± 7→ T∓(r+s).

9.B Garland description of U im,+

In this appendix we discuss Garland’s description of the imaginary positive part U im,+
Z of UZ =

UZ(g) (see the Introduction ) when g is an affine Kac-Moody algebra it is enough to understand
the rank 1 case, that is g = ˆsl2 or g = ˆsl3

χ and some interpretation appearing in successive works.

Then, with the notation introduced in 1.21, Garland’s description of U im,+
Z can be stated as

follows:

Theorem 9.3 (Garland). U im,+
Z is a free Z-module with basis Bλ (see Definition ii.).

Equivalently:
i) U im,+

Z = Zλ[hr | r > 0];
ii) Bλ is linearly independent.
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Remark 9.4. Once proved that U im,+
Z is the Z-subalgebra of U generated by {λm(ĥk) | m > 0, k ≥ 0}

(hence by Bλ or equivalently by Zλ[hr | r > 0]), proceeding in two different directions leads to the two
descriptions of U im,+

Z that turned out to be the same:
⋆) Zλ[hr | r > 0] is a Z-subalgebra of Q[hr | r > 0] (that is Zλ[hr | r > 0] is closed under

multiplication): this implies that
U im,+

Z = Zλ[hr | r > 0];

it also implies that Z[ĥk | k > 0] ⊆ Zλ[hr | r > 0];

⋆⋆) Z[ĥk | k > 0] is λm-stable for all m > 0 this implies that

U im,+
Z = Z[ĥk | k > 0];

it also implies that Zλ[hr | r > 0] ⊆ Z[ĥk | k > 0].

Hence ⋆) and ⋆⋆) imply that U im,+
Z = Zλ[hr | r > 0] = Z[ĥk | k > 0]: that is what we proved in

Proposition 1.13 and Theorem ⋆). In [6] Garland proved only by induction on a suitably defined degree.
The first step of the induction is the second assertion of [6]-Lemma 5.11(b), proved in [6]-Section 9: for
all k, l ∈ N ĥk ĥl − (k+l

k )ĥk+l is a linear combination with integral coefficients of elements of Bλ of degree
lower than the degree of ĥk+l .
In the proof the author uses that Bλ is a Q-basis of Q[hr | r > 0] and concentrates on the integrality
of the coefficients: he studies the action of h on ˆsl3

⊗N
where h is the commutative Lie-algebra with basis

{hr | r > 0} and N ∈ N is large enough (N is the maximum among the degrees of the elements of Bλ

appearing in ĥk ĥl with non-integral coefficient, assuming that such an element exists): h is a subalgebra
of ˆsl2 and there is an embedding of ˆsl2 in ˆsl3 for every vertex of the Dynkin diagram of sl3, so that fixing
a vertex of the Dynkin diagram of sl3 induces an embedding h ⊆ ˆsl2 ↪→ ˆsl3, hence an action of h on ˆsl3.
But the integral form of ˆsl3 defined as the Z-span of a Chevalley basis is UZ( ˆsl3)-stable; since the stability
under UZ( ˆsl3) is preserved by tensor products ([6]-Section 6), the author can finally deduce the desired
integrality property of ĥk ĥl from the study of the h-action on ˆsl3

⊗N
.

Garland’s argument has been sometimes misunderstood: it is the case for instance of [3] where the
authors affirm (in Lemma 1.6) that [6]-Lemma 5.11(b) implies that U im,+

Z = Z[ĥk | k > 0], while, as
discussed above, it just implies the inclusion Z[ĥk | k > 0] ⊆ U im,+

Z = Zλ[hr | r > 0].
On the other hand Garland’s argument strongly involves many results of the (integral) representation

theory of the Kac-Moody algebras, while ⋆) is a property of the algebra Q[hr | r > 0] and of its integral
forms that can be stated in a way completely independent of the Kac-Moody algebra setting:

Z(sym)[hr | r > 0] ⊆ Zλ[hr | r > 0].

The above considerations motivate the present care that this thesis dedicates to provide a complete proof of
the description of U im,+

Z and also to propose a self-contained proof of ⋆), independent of the Kac-Moody
algebra context: on one hand we think that a direct proof can help highlight the essential structure of the
integral form of Q[hr | r > 0] arising from our study; on the other hand the idea of isolating the single
pieces and gluing them together after studying them separately is much in the spirit of this work, so that it
is natural for us to explain also Garland’s basis of U im,+

Z through this approach; and finally we hope that
presenting a different proof can also help to clarify the steps which appear more difficult in Garland’s proof.

9.C List of Symbols

Lie Algebras and Commutative Algebras:

S(div) Definition 1.6
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S(bin) Example 1.9

S(sym) Example 1.2

sl2 Definition 3.1

ˆsl2 Definition 4.1

ˆsl3
χ Definition 5.1

ˆsl3
χ Definition 8.1

Enveloping Algebras:

U re,±
Z , U im,±

Z , Uh
Z, ∗UZ, ∗U im,±

Z Chapter Introduction

U (sl2), UZ(sl2) Definiton 3.1

U+, U−, U 0 Theorem 3.2

Û , Û+, Û−, Û 0, Û 0,±, Ûh Definition 4.1

ÛZ, Û±Z , Û 0,±
Z , Ûh

Z Definition 4.7

Ũ , Ũ±, Ũ 0, Ũ±,0, Ũ±,1, Ũ±,c, Ũ 0,±, Ũh Definition 5.1

ŨZ, Ũ±Z , Ũ 0
Z, Ũ±,0

Z , Ũ±,1
Z , Ũ±,c

Z , Ũ 0,±
Z , Ũh

Z Definition 5.12

ŪZ, Ū±Z , Ū 0
Z, Ū±,0

Z , Ū±,1
Z , Ū±,c

Z , Ū 0,±
Z , Ūh

Z Definition 8.10

ŪZ,1, Ū±
Z,1, Ū 0

Z,1, Ū±,0
Z,1 , Ū±,1

Z,1 , Ū±,c
Z,1 , Ū 0,±

Z,1 , Ūh
Z,1 Definition 8.10

Ǔ 0
Z,1, Ǔ 0,±

Z,1 , Ǔh
Z,1 Definition 8.10

UZ,M Definition 6.2

U−Z,M, U 0
Z,M, U+

Z,M Theorem 6.7

Bases:

Bre,±, Bim,±, Bh Chapter Introduction

B̂±, B̂0,±, B̂h Theorem 4.25

B±,0, B±,1, B±,c, B0,±, Bh Theorem 5.44

Bλ, B[n]
λ , Bx, B[n]

x Definitions 1.21 and 1.26

Elements and their generating series:
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Λr(ξ(k)) Chapter Introduction

a(k), exp(au) Notation 1.7

(a
k), (1 + u)a Notation 1.10

p̂(u), p̂r Example 1.2

ĥ{a}r , ĥ{a}(u) Notation 1.15

h̄±(u), ȟ±(u), h̄r(u), ȟr Definition 1.31

g(A) Definition 2.2

Γ, χ Definition 2.3

Φs, Φl , Φim, Φre, Φim,±, Φre,±, D, di Section 2.4

τi Section 2.3

ĝχ, d̃i Definition 2.2

x±r , hr, c Definition 4.1 and Definition 5.1

X±2r+1 Definition 5.1

x±(u), h±(u), ĥ±(u), ĥr Notation 4.9

h̃±(u), h̃±r Definition 5.12

ei, fi, hi Remark 6.1

y±2r+1, kr, c̃ Notation 6.4

k±(u) Remark 6.10

Anti/auto/homomorphisms:

λm, λ
[n]
m Proposition 1.13

ev Notation (4.0.1)

σ, Ω, T, λm Definition 4.3 and Definition 5.4

λ̃m Lemma 5.16
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Other symbols:

11, 11(m), 11r, 11(m)
r Notation 1.15

La, Ra Notation 1.54

εr Definition 5.12

L, L±, L0, L±,0, L±,1, L±,c Definition 5.8

w. Definition 5.10

d, d̃, dn, d̃n Notation 5.38

δn Remark 5.39
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