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Introduction

We use the following notations: N ={ne€ Z |n >0}, Z, ={ne€Z|n>0}.

Let X,sk) be an affine Kac-Moody algebra (see Chapter 2) and I/ its universal enveloping algebra.
The aim of this work is to give a basis over Z of the Z-subalgebra of I/ generated by the divided
powers of the Drinfeld generators (see Definition 2.4), thus proving that this Z-subalgebra is
an integral form of Y. The integral forms for finite dimensional simple Lie algebras were first
introduced by Chevalley in [2] for the study of the Chevalley groups and of their representation
theory. The construction of the “divided power”-Z-form for the simple finite dimensional Lie
algebras is due to Kostant (see [9]); it has been generalized to the untwisted affine Kac-Moody
algebras by Garland in [6] (see Section 2.3), as we shall quickly recall. Given a simple Lie algebra
go and the corresponding untwisted affine Kac-Moody algebra g = gg @ C[t,t~!] @ Cc provided
with an (ordered) Chevalley basis, the Z-subalgebra Uz of U = U(g) generated by the divided
powers of the real root vectors is an integral form of I{; a Z-basis of this integral form (hence its
Z-module structure) can be described by decomposing Uz as tensor product of its Z-subalgebras
relative respectively to the real root vectors (Ul and U ™), to the imaginary root vectors (Usy" "
and U, im =) and to the Cartan subalgebra (Ll%) U™ has a basis B consisting of the (finite)

ordered products of divided powers of the distinct positive real root vectors and (U, B"")
can be described in the same way:

k
Bt = { i xigz) | N >0, By > ... > Bn > Oreal roots, kg; > 0 Vj}.

Here a real root B of g is said to be positive if there exists a positive root a of gg such that either
p = aor f — aisimaginary; xp is the Chevalley generator corresponding to the real root f. A basis

BY of M;, which is commutative, consists of the products of the “binomials” of the (Chevalley)
generators h; (i € I) of the Cartan subalgebra of g:

BY — {]‘[(ZZ) | k; zow};

it is worth remarking that Ll% is not an algebra of polynomials. L[%m "+ (and its symmetric Ll%m'f)

is commutative, too; as a Z-module it is isomorphic to the tensor product of the Lll?"%'+’s (each

factor corresponding to the i*" copy of U (s, ) inside U), so that it is enough to describe it in the

rank 1 case: the basis B+ of ;""" (sl, ) provided by Garland can be described as a set of finite
products of the elements Ax(&(m)) (k € N, m > 0), where the Ai(&(m))’s (k > —1,m > 0) are
the elements of U™ = C[h,(= h ®t") | r > 0] defined recursively (for all m # 0) by

A—l(‘:(m)) =1, kAk—l((:(m)) = Z N (g(m))hms :

r>0,s>0
r+s=k

Bim,+:{HAkrn—1 ) | km > 0Vm, #{m>0|km#0}<oo}

m>0

7



8 CONTENTS

It is not clear from this description that U%m’+ and Z/lg”’_ are algebras of polynomials.
Thanks to the isomorphism of Z-modules

Uz 2 U™ @7 UT™ @z UY @z UST 07 UK
a Z-basis B of Uz is produced as multiplication of Z-bases of these subalgebras:
B = BVE,—Bim,—Bh Bim,+ BT’E,"F.

The same result has been proved for all the twisted affine Kac-Moody algebras by Mitzman in
[11], where the author provides a deeper comprehension and a compact description of the com-
mutation formulas by means of a drastic simplification of both the relations and their proofs.
This goal is achieved remarking that the generating series of the elements involved in the basis
can be expressed as suitable exponentials, observation that allows to apply very general tools of
calculus, such as the well known properties

xexp(y) = exp(y) exp([- ) (x)
if exp(y) and exp(]-, y])(x) are well defined, and

D(exp(f)) = D(f) exp(f)
if D is a derivation such that [D(f), f] = 0.

Here, too, it is not yet clear that L{lzm'i are algebras of polynomials.
However this property, namely In Fisher-Vasta’s PhD thesis ([5] and see Section 2.3) is stated

that ngl”r = Z[Ar—1 = Ne1(8(1,1)) = pra | k> 0], (where the author describes the results
2)

of Garland for the untwisted case and of Mitzman for A,” aiming at a better understanding of
the commutation formulas. Yet the proof is missing: the theorem describing the integral form
is based on observations which seem to forget some necessary commutations, those between
(x;7)®) and (x; ) when |r +s| > 1;in [5] only the cases r +s = 0 and 7 4+ s = =1 are considered,
the former producing the binomials appearing in BY, the latter producing the elements p,, 1 (and
their corresponding negative elements in 15" ).

Comparing the Kac-Moody presentation of the affine Kac-Moody algebras with its “Drinfeld”
presentation as current algebra, one can notice a difference between the untwisted and twisted
case, which is at the origin of our work. As in the simple finite dimensional case, also in the affine
cases the generators of {7z described above are redundant: the Z-subalgebra of U/ generated by

{e§k), fi(k) | i € I, k € N}, obviously contained in Uy, is actually equal to Uy.
On the other hand, the situation changes when we move to the Drinfeld presentation and study
the Z-subalgebra *Uz of U generated by the divided powers of the Drinfeld generators (x:-)®):

ir

indeed, while in the untwisted case it is still true that Uiz = *Uz and (also in the twisted case) it
is always true that *Uz C Uz, in general we get two different Z-subalgebras of I/; more precisely
*Uz C Uz in case Aéi), that is when there exists a vertex i whose corresponding rank 1 subalgebra
is not a copy of U (sl,) but is a copy of U (si;").
Thus in order to complete the description of *Udz we need to study the case of qu)'
In the present work we prove that the Z-subalgebra generated by

{(x)W, (x,)® | r € Z,k e N}
is an integral form of the enveloping algebra also in the case of A(i), we exhibit a basis general-
izing the one provided in [6] and in [11] and determine the commutation relations in a compact
yet explicit formulation (see Theorems 5.44, 8.39 and Appendix 9.A). We use the same approach
as Mitzman'’s, with a further simplification consisting in the remark that an element of the form
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G(u,v) = exp(xu) exp(yv) is characterized by two properties: G(0,v) = exp(yv) and ‘Zl—f = xG.

Mloreover, studying the rank 1 cases we prove that, both in the untwisted and in the twisted case,
Uyt and *U,"" are algebras of polynomials: as stated in [5], the generators of U,"" are the
elements Ay introduced in [6] and [11] (see Proposition 1.13 and Remark 4.12); the generators of

*UZ”"F in the case Agz) are elements defined formally as the Ay’s after a deformation of the i,’s
(see Definition 5.12 and Remark 5.13): describing *Ulzm'+(5f3X ) (denoted by Z;I%+) has been the

hard part of this work. In the higher rank the situation changes: it is no longer true that U%m'+ is

an algebra of polynomial in the Aéi) case if n > 1 (see Remark 1.39).

We work over Q and dedicate a preliminary particular care to the description of some integral
forms of Q[x; | i € I] and of their properties and relations when they appear in some non com-
mutative situations, properties that will be repeatedly used for the computations in g: fixing the
notations helps to understand the construction in the correct setting. With analogous care we
discuss the symmetries arising in s{, and s{;". We chose to recall also the case of sl, and to give
in a few lines the proof of the theorem describing its divided power integral form in order to
present in this easy context the tools that will be used in the more complicated affine cases.

The thesis is organized as follows.

Chapter 1 is devoted to review the description of some integral forms of the algebra of polyno-
mials, polynomials over Z, divided powers ,”binomials” are described in Section 1.1, symmetric
functions (see [10]) are described in Section 1.2: they are introduced together with their gener-
ating series as exponentials of suitable series with null constant term, and their properties are
rigorously stated, thus preparing to their use in the Lie algebra setting. We have inserted here,
in Proposition 1.13, a result about the stability of the symmetric functions with integral coeffi-
cients under the homomorphism A;; mapping x; to x}* (m > 0 fixed), which is almost trivial
in the symmetric function context; it is a straightforward consequence of this observation that
Z/llzm'+ is an algebra of polynomials and so is *Z/IZZ’"’+ in the rank-1 twisted case. We also provide
a direct, elementary proof of this proposition (see Proposition 1.14). Section 1.3 is devoted to the
description of a Z-basis of Z(*¥™) [, | r > 0] alternative to that introduced in the Example 1.2.
ZY"™ [, | r > 0] is the algebra of polynomials Z[fi | k > 0], and as such it has a Z-basis consist-
ing of the monomials in the /1;’s, which is the one considered in our work. In Section 1.4 we study
a very special case of generalized (sym)-functor that depends on certain sequences d : Z — Q,
that is Z(fzg | ke Z,) = Z)[hd, | r > 0] . In particular we deal with two special case, that

isd(r) = H(ZJ and d(r) = 2" 1, these two sequences will play a crucial role in the study of the

Integral form of Aéz), when Ag) is seen has copy of the first node of the Dynkin Diagram of Aéi)

(see Chapter 7). In Section 1.5 we collect some computations in non commutative situations that
we shall systematically refer to in the following chapters.

In Chapter 2 we recall the information that frames this work. More precisely in Section 2.1 we
recall general definition about Kac Moody algebras, in Section 2.2 we recall the loop presentation
of the affine Kac-Moody algebras and in Section 2.3 we recall the results of Kostant, Garland and
Mitzman about integral forms.

Chapter 3 deals with the case of sl,: the one-page formulation and proof that we present (see
Theorem 3.2) inspire the way we study si, and si;", and offer an easy introduction to the strat-
egy followed also in the harder affine cases: decomposing our Z-algebra as a tensor product of
commutative subalgebras; describing these commutative structures thanks to the examples in-
troduced in Chapter 1; and gluing the pieces together applying the results of Section 1.5.

Even if the results of this section imply the commutation rules between (x;")*) and (x*,)()
(r € Z, k,1 € N) in the enveloping algebra of si, (see Remark 4.13), it is worth remarking
that Chapter 4 does not depend on Chapter 3, and can be read independently (see Remark 4.20).
In Chapter 4 we discuss the case of si,. The first part of the Chapter is devoted to the choice
of the notations in 4 = U (5@) ; to the definition of its (commutative) subalgebras u* (corre-
sponding to the real component of {), %% (corresponding to the imaginary component), 2/°°
(corresponding to the Cartan), of their integral forms U3, Z/A{%i, LA{%'O, and of the Z-subalgebra
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Uz of U; and to a detailed reminder about the useful symmetries (automorphisms, antiauto-
morphisms, homomorphisms and triangular decomposition) thanks to which we can get rid of
redundant computations. In the second part of the chapter the apparently tough computations
involved in the commutation relations are reduced to four formulas whose proofs are contained
in a few lines: Proposition 4.14, Proposition 4.15, Lemma 4.21, and Proposition 4.22, (together
with Proposition 1.13) are all what is needed to show that Uz is an integral form of I, to rec-

ognize that the imaginary (positive and negative) components Z]%i of Uy are the algebras of

polynomials Z[A(&(%1)) | k > 0] = Z[hsy | k > 0], and to exhibit a Z-basis of Uz (see Theo-
rem 4.25).
(2)

In Chapter 5 we present the case of A;~. As for si,, we first highlight some general structures of

U(si,") (that we denote here If in order to distinguish it from I = U(sf,)): notations, subalge-
bras and symmetries. In order to study the Z-subalgebra of U generated by the divide powers of
the Drinfeld generators that we denote by Uz, here we introduce the elements /;, through the an-
nounced deformation of the formulas defining the elements hy’s (see Definition 5.12 and Remark

5.13). We also describe a Q[w]-module structure on a Lie subalgebra L of s{;* (see Definitions
5.8 and 5.10), thanks to which we can further simplify the notations. In addition, in Remark 5.27
we recall the embeddings of I/ inside I thanks to which a big part of the work can be translated
from Chapter 4. The heart of the problem is thus reduced to the commutation of exp (xj u) with

exp(x7 v) (which is technically more complicated than for Agl) since it is a product involving a
higher number of factors) and to deducing from this formula the description of the imaginary
part of the integral form as the algebra of the polynomials in the f;’s. To the solution of this prob-
lem, which represents the central contribution of this work, we dedicate Subsection 5.2, where
we concentrate, perform and explain the necessary computations.

In Chapter 6 we compare the Mitzman’s integral form of the enveloping algebra of type Agz) with
the one studied here, proving the inclusion stated above. We also show that our commutation
relations imply Mitzman’s Theorem, too.

In Chapter 7 we present two other integral forms of Agz) that we denote by Uz and Uz in order

to distinguish to Uz. Uz is generated by the divided powers of the Drinfeld generators x;- and
by the divide powers of the elements %X; 41, adapting certain straightening relations already
studied in the case of Uz (see for example Lemma 7.10, Remarks 7.4, 7.5 and Proposition 7.6)
we automatically deduce the structure of Uz NU=. The heart of the problem is thus reduced

to describe Z/_{%’+ = Uz NUY* and its symmetric (L_l%*). Here we introduce new elements that
is: hy, (see Definition 1.31), then thanks to Section 1.4 (Theorems 1.42 and 1.46), we can prove
that is an integral form but not longer an algebra of polynomials. For this reason we decided to
study Uz, that is obtained by Uz adding extra elements h, (see Definition 1.31) in order to have a
polynomial structure in the imaginary components.

In Chapter 8 we present the case of Aéi). In Section 8.1 we introduce general definitions (see

Definition 8.1), in particular we devote care to the description of the root system and the related
group of automorphisms Wr generated by the 7; (see Notation 8.4), also we highlight the pres-

ence of certain embeddings, namely a copy of Aéi)_z and Aflljl (see Definition 8.9). Section 8.2

is devoted to the case of Aiz). In the first part we devote ourselves to the study of positive real
roots from which we see that the restriction of the integral form at the first node of the diagram
turns out to be a copy of Uz while the restriction at the second turns out to be a copy of Uz, at
this point we reattach the various pieces of the decomposition and using the general relations
from Chapter 1 it is possible to easily describe the structure of the integral form. In Section 8.3
we show inductively that the study of AA(IZ) leads immediately to the case of Agi) with n > 2.

At the end of the work some appendices are added for the sake of completeness.

In Appendix 9.A we collect all the straightening formulas: since not all of them are necessary to
our proofs and in the previous sections we only computed those which were essential for our
argument, we give here a complete explicit picture of the commutation relations.
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Appendix 9.B As mentioned above, this algebra, that we are naturally interested in because it is
isomorphic to the imaginary positive part of the integral form of the rank 1 Kac-Moody algebras,
was not recognized by Garland and Mitzman as an algebra of polynomials: in this appendix the
Z-basis they introduce is studied from the point of view of the symmetric functions and thanks
to this interpretation it is easily proved to generate freely the same Z-submodule of Q[h;, | r > 0]
as the monomials in the /1;’s.

Finally, in order to help the reader to orientate in the notations and to find easily their definitions,
we conclude the work with an index of symbols, collected in Appendix 9.C.
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Chapter 1

Integral Forms

In this chapter we give the definition of integral form, fixing the notations used throughout the
thesis. We first expose some simple commutative examples (polynomials, binomials, etc.), then
we recall some well-known examples related to symmetric polynomials (deeply studied and sys-
tematically exposed in [10]), and finally we show some integral forms that emerge in a completely
new way in the case of some affine algebras of twisted type. All these integral forms will play a
central role in understanding in more detail the structure of a specific integral form in the case of
enveloping algebras of finite and affine Kac-Moody algebras.

1.1 Generalities

Notation 1.1. Let us define V = Q @z M where M a free Z-module. We will denote by SV the symmetric
algebra of V.

Definition 1.2. Let U be a Q-algebra. An integral form of U is a Z-algebra Uz such that

1. Uz is a free Z-module;
2. U=Q®zUz

In particular an integral form of U can be identified to a Z-subalgebra of U and consequently a Z-basis of
an integral form of U is a Q-basis of U.

Example 1.3. Clearly Z[x; | i € I| is an integral form of Q[x; | i € I]. If {x; | i € I} is a Z-basis of M
then SzM := Z|[x; | i € I is an integral form of SV = Q[x; | i € I| and SzM NV = M.

By definition, every integral form of SV containing M contains Sz M, that is Sz M is the least
integral form of SV containing M.

Remark 1.4. Let U be a unitary Z-algebra and f(u) € U[[u]].

1. If f(u) € 14 ul([[u]] then:
i. f(u)is invertible in U[[u]];

ii. the coefficients of f(u), those of f(—u) and those of f(u)~' generate the same Z-subalgebra
of U;

2. If f(u) € ull[[u]] then exp(f(u)) is a well defined element of 1 + ul|[[u]];
3. If f(u) € 14 ul[[u]] then In(f(u)) is a well defined element of ull[[u]];

13
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4. exp o In |1+ull[[u]]: IdandIno exp |”UH”H: Id,'

5. If f(u) € U[[u]] then there exists a unique continuous algebra homomorphism Z[[u]] — U[[u]]
such that u — uf(u).

Definition 1.5. Let a be an element of a unitary Q-algebra U and n € IN. The n-th divided powers of a
is the element

Notice that the generating series of the a(")’s is exp(au), that is

Y a™u" = exp(au).

n>0

Definition 1.6. Let {x;} ;| bea Z-basis of M. The Z-subalgebra S\#°) M C SV generated by {x)} e ren
containing M is called the algebra of the divided powers of M.

It is well known that S(#%) M satisfies the following properties

i) SHIMNV = M;
ii) {xfk) }Yierken is a set of algebra-generators over Z of S (div) pf;
iii) the set {x®) = [T, xl-(ki) | k : I — N is finitely supported} is a Z-basis of S(#?) M;
iv) S M is an integral form of SV.

Notation 1.7. S M is also denoted Z\¥) [x; | i € I].

Setting m(u) = Y, myu” € M[[u]], notice that if my = 0 then
m(u)®) e s M([u]] Vk € N

or equivalently
exp(m(u)) € S M][u]].

The vice versa is obviously also true:
m(u) € uV[[u]] and exp(m(u)) € S M|[u]] < m(u) € uM|[u]]. (1.7.1)

Definition 1.8. Let a be an element of a unitary Q-algebra U. The binomials of a are the elements

(Itz):a(u—l) ----- (a—k+1) (keN).

Remark that the generating series of the (§)’s is Y=¢ ({)uf = exp(aln(1+ u)).

Since aln(1 + u) € ull[[u]], exp(aln(1 + u)) is a well defined element of U[[u]] and it can and
will be denoted as (1 + u)?; more explicitly

)y (Z) ub = (1+u)" = exp ( Z(—l)"lgu’).

keIN r>0
It is clear from the definition of (1 + u)? that if 2 and b are commuting elements of U then

(1T+u)™ = (1+u)"(1+u)’
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It is also clear that the Z-submodule of U generated by the coefficients of (1 + u)**™ (a € U,
m € Z) depends only on a and not on m; it is actually a Z-subalgebra of U: indeed for all k,/ € IN

a\ (a—k\ [(k+I a
k l S\ k k+1)
More precisely for each m € Z and n € IN the Z-submodule of U generated by the (
fork =0,..,n (a € U) depends only on a and n and not on m.

Finally notice that in U[[u]] we have § (1 +u)* = a(1 +u)*.

aJIrCm)/S

Definition 1.9. Let {x;} ;| be a Z-basis of M. The Z-subalgebra S M C SV generated by {() YreMken
containing M is called the algebra of binomials of M. Then it is well known that:

) {(Y) }ierken is a set of algebra-generators (over Z) of S (bin) M
ii) the set { (i) = [Ties ()} | k : I — N finitely supported} is a Z-basis of S0 M;

iii) SMMAV = M;
iv) S M is an integral form of SV (called the algebra of binomials of M).

Notation 1.10. S\*™) M is also denoted Z"™[x; | i € I].

1.2 Review of the symmetric functions

In this section we briefly recall the definition of the Symmetric Functions and some of their prop-
erties, for more details see [10] .

Let n € IN. Consider the ring Z[x3, ..., x,| on n independent variables over Z, then the sym-
metric group S, acts on the variables permuting them and we set A, = Z[xy, ..., xn]S". It is

well known that A, is an integral form of Q[xy, ..., xn}sn and that Z[xq, ..., xn]sn = Z[e&n], e eLn]],
1]

where the (algebraically independent for k = 1,...,n) elementary symmetric polynomials ¢, *’s
are defined by

n

[1(T-x)= ¥ (-)fe T

i=1 kelN

and are homogeneous of degree k, that is e,[("] € Zlxy, ..., xn]fn C Q[xy, ... xn]f"-
It is also well known and trivial that for n; > n, the natural projection
7-[1’11,1’12 : Q[xl/ eeey xnl] — Q[Xl, ceey xnz]

defined by
7Tn1,n2 (xl) - {0 otherwise

is such that 71, n, (el[:”]) = el[(m] for all k € N. Then

@I'&nZ[xl,..., xn]ds” =Zley, ..., e, ...] (e inverselimitofthee,[(n})

a>0

is an integral form of ©;>¢ l&\ Q[xq, ..., xn]g", which is called the algebra of the symmetric func-
tions.
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Moreover the elements

n
P = Y xl € Z[x1, 0] (r>0,n € N)
i=1

and their inverse limits p, € Zley, ..., e, ...] (nnl,nz(py'l]) = pL"Z] for all r > 0 and all ny > ny) give

another set of generators of the Q-algebra of the symmetric functions: the p;’s are algebraically
independent and

D ImQ[xy, .., xn}g” = Q[p1, s Pr, -

d>0

Finally Zley, ..., ¢, ...] is an integral form of Q[p;, ..., pr, ...] containing p, for all ¥ > 0 (more pre-
cisely a linear combination of the p,’s liesin Z[ey, ..., e, ...| if and only if it has integral coefficients),
the relation between the ¢;’s and the p,’s being given by:

Yo (—1)feut = exp( - %u’).

keIN r>0

In this context, to stress the dependence of the ¢;’s on the p;’s, we set ¢y = py, that is we fix
the following notations:

plu) =Y pu = exP( Z(—l)’*lﬁur)

keIN r>0 r

and
Z(sym)[pr |r>0]=Z[px | k>0] CQ[pr|r>0].

Remark 1.11. With the notations above, let ¢ : Q[p1, ..., pr,...] — U be an algebra-homomorphism and
a = ¢(p1):

i)if p(p;) = 0 for r > 1 then ¢(py) = a'® forall k € N;

ii) if p(pr) = aforall v > 0 then ¢(py) = (}) forallk € N.

Hence Z5Y™) is a generalization of both Z.\#) and 70,
Remark 1.12. Let {p, | r > 0} be a Z-basis of M. Then:
i) as for the functors Sz, S\ and S we have ZY™ [p, | r > 0| NV = M;
ii) unlike the functors Sz, S) and S®M), Z(Ym)[p, | ¥ > 0] depends on {p, | r > 0} and not only on
M, for instance

2 =i, pr | v > 1] # 2 [py [ 7> 0]

(it is easy to check that these integral forms are different for example in degree 3);
iii) not all the sign changes of the p,’s produce different Z.5Y"™)-forms of Q[p, | r > 0]:

21 pr | v > 0] = ZV [—p, | 1> 0] = Z[p, | 7> 0]

since

r>0 r

exp <Z(1)r—1 (1r)rprur> = exp (Z(l)r—lpr(u)r>
and

-1
exp (Z()(—l)’_lfrur> = exp <Z(—1)r_1zrur>

r>0
(see Remark 1.8,1),ii)).
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In general it is not trivial to understand whether an element of Q[p, | r > 0] belongs or not
to Z(ym) [pr | ¥ > 0]; Proposition 1.13 gives an answer to this question, which is generalized in
Proposition 1.18 (the examples in Remark 1.12, ii) and iii) can be obtained also as applications of
Proposition 1.18).

Proposition 1.13. Let us fix m > 0 and let Ay, = Q[p, | ¥ > 0] — Q[p, | ¥ > 0] be the algebra
homomorphism defined by Ay (py) = pmr for all ¥ > 0.

Then Z5Y™ [p, | r > 0] (= Z[py | k > 0]) is Ay-stable.

Proof. For n € N let )\LZ] : Q[xq, ..., Xn] = QJx1, ..., x4] be the algebra homomorphism defined by
[n] N\ M f
A’ (x;) = x" foralli =1,..,n.
We obviously have that

Z[x1, ..., Xn] is )\L’ﬂ—stable,
Qlxq, ..., xn]q is mapped to Q[x1, ..., Xp| ;g ¥d >0,

A,[,':]oazao)»,[g] VneN, o €Sy,

[n2]

ny
Ty ,my © /\1[11 ] = Ay~ o USRI Vng > ny,

A,[ﬁ](;aln]) = p,[ﬁl VneN, r>0,

hence there exist the limits of the AL’} sp’s: their direct sum over d > 0 stabilizes
d

J
Q)
Bg>0 im Z[x, ..., xn]g” =Z[px | k> 0] and is Ay,.
In particular A, (pg) € Z[p; | 1 > 0] Vk € N.
O

We also propose a second, direct, proof of Proposition 1.13, which provides in addition an
explicit expression of the A, (Px)’s in terms of the p’s.

Proposition 1.14. Let m and Ay, be as in Proposition 1.13 and w € C a primitive m'™ root of 1. Then
m—1 )
Au(p(—u")) = [T p(=wu) € Z[py | k > 0][[u]].
j=0

Proof. The equality in the statement is an immediate consequence of

”‘Z_:lw]-r_ m ifm|r
~\o

=0 otherwise,

so that

m—1 )
_Z Zr:w]rur:_zprmrumr:)\m(_pr(um)r>’

j=0 >0 r>0 r>0 r

whose exponential is the claim.
Then for all k > 0

Am(Px) € Q[pr |1 >0]NZ[w][py |1 > 0] =2Z[p; |1 > 0]

since QN Z[w] = Z. O
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In order to characterize the functions a : Z1 — Q such that
Z(sym)[arpr |r>0] C zvm [pr | 7> 0]

we introduce the Notation 1.15, where we rename the p,’s into /i, since in the affine Kac-Moody
case the Z(%¥")-construction describes the imaginary component of the integral form. Moreover
from now on p; will denote a positive prime number.

Notation 1.15. Givena : Z — Q set

Y- ik = i () = exp (Z(—l)f-l”””uf) ;

k>0 >0 r

1 denotes the function defined by
I, =1forallr € Z;

forallm >0, (") denotes the function defined by

Ilﬁm)—{m ifm|r

0 otherwise.

Thus B ™ (u) = i(u) (see the notation in Example 1.2) and ﬁ{n(m)}(—u) = A (R(—u™)).
Remark 1.16. Remark that ita+0} (u) = e} (u) A%} (u) and that the function
14+ uQ[[u]] = Qlhy | r > O[[u]]
Fu) = 2 (u),

where a is defined by In(f (1)) = Y,~o(—1)""12%u’, preserves the multiplication. Of course 1+ u
h(u) and 14 u™ — Ay (h(u™)).

Recall 1.17. The convolution product * in the ring of the Q-valued arithmetic functions
Ar={f:Z, — Q}

is defined by
(f*)(n) = ) f(r)g(s)-

rs=n

The Mobius function y : Zy — Q defined by

oy (=D ifr=1Vi
" (E Pii | = 0 otherwise

is the inverse of Lin the ring of the arithmetic functions, where n € IN, the p;’s are distinct positive prime
integers and r; > 1 for all i.

Proposition 1.18. Lef a : Z — Q be any function; then, with the notations fixed in 1.15,
WY ezlhy |1>0] Vk>0on| (ura)(n) € Z ¥n > 0.

Proof. Remark that a =1« y * a, that is

Vn>0a, = Z‘(‘u*a)(m) = an)(m)m: Z Mﬂ&m)l
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which means
y (@) (11) 3 m)

m

a =
m>0

Let k;,, = W for all m > 0, choose my > 0 such that k,, € Z Vm < mg and set a0 =
Lim<my k™), a" = a — a(®), so that (see Remark 1.16)

W () = R )t ),
and, by Proposition 1.13 (see also Notation 1.15),

1} (u) € Z[ly | k > 0][[u]).

It follows that
i) ) () € Zlf | K > O)[[u]] & F) (u) € Z[ie | & > 0][[u].
i) Vi < mo i = 0, s0 that 1™ = ™Y € Z[y | k> 0);
in particular i11% (1) € Z[fy | k > 0][[u]] if kyy € Z ¥m > 0.

iii) a;, = (p * a)(mo) = mokm, so that fz,{nﬂ(j} = kmgyhm,, which belongs to Z [ | k > 0] if and
only if k;;, € Z (see Remark 1.12,i));

in particular it} (u) ¢ Z[hy | k > 0][[u]] if Fmy € Z such that k,, & Z. O
Proposition 1.19. Let a : Z — Z be a function satisfying the condition
Pl (ampr — ayypr1) Vp,m,r € Zy with p primeand (m,p) = 1.
Thenn | (u*xa)(n)Vn € Z.

Proof. The condition 1 | (y *a)(1) is equivalent to the condition a; € Z.
For n > 1 remark that

n|(pxa)(n) < p" | (uxa)(n) Vpprime, r > 0 such that p" | n.

Recall that if P is the set of the prime factors of n and p € P then

(pxa)(n) = ) (-1)%a_» =

SCP

= Z (—1)#'5/(5[ n —a n .
'SPV p) Hoes' @ Pllges'

The claim follows from the remark that p” | n if and only if p” | m ”5/ 7 O
qe

Remark 1.20. The vice versa of Proposition 1.19 is trivially true, too, and is immediately proved applying

1.19 to the minimal n > 0 such that there exists p | nand r > 0 (p" | n, n = mp") not satisfying the

hypothesis of the statement.

Proposition 1.13 will play an important role in the study of the commutation relations in
the enveloping algebra of si, (see Remarks 4.11,vi) and 4.19) and of s{;" (see Remark 5.16 and
Proposition 5.19,iv)).

Proposition 1.18 is based on and generalizes Proposition 1.13; it is a key tool in the study of

2)

the integral form in the case of A,”, see Corollary 5.41.
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1.3 Garland’s basis

Here we discuss the precise connection between the integral form Z ") [k, | r > 0] of Q[h, | r >
0] and the homomorphisms A,,’s, namely we give another Z-basis of Z(¥")[h, | r > 0] (basis
defined in terms of the elements A, (/;)’s and arising from Garland’s and Mitzman'’s description
of the integral form of the affine Kac-Moody algebras, discussed in Appendix 9.B).

Definition 1.21. With the notations of Example 1.2 and Proposition 1.13 let us define the following
elements and subsets in Q[h, | r > 0]

i. b = [Tpso Am(fix,, ) where k : Zy — N is finitely supported;
i.
By = {bx | k: Z; — N is finitely supported } ;
iii. Zylhy | v > 0] = Yu Zby is the Z-submodule of Q[h, | r > 0] generated by B,
We want to prove the following;:

Theorem 1.22. ZY"™)[h, | r > 0] is a free Z module with basis B,. Equivalently:

i. ZYM [, | r> 0] = Zxh | r > 0],
ii. By is linearly independent.

Remark 1.23. Proposition 1.14 implies that ZY™) [h, | r > 0] C Z[hy | r > 0], so0 we are left to prove
the reverse inclusion and the linear independence of By, that we shall prove by comparing B, with a well
known Z-basis of this algebra.

Remark 1.24. Recall that Z[hy | k > 0] is the algebra of the symmetric functions and that ¥n € N the
projection 1, : Z[ly | k > 0] — Z[x1, ..., x,)5" induces an isomorphism Z[hy, ..., hn] = Z[x1, ..., x4]5"
through which hy. corresponds to the k™ elementary symmetric polynomial e,[cn], and h, corresponds to the
sum of the r'-powers Y1, xi Vr > 0 (see Example 1.2).

Then it is well known and obvious that:

i) Vk : Z, — N finitely supported 3!(cx) € Z[ly | k > 0] such that

n
T ((ox)y) = Y Hx?i € Zlx1, .. x))5" Vn eN;
#{i\ai:l:‘r}}:":”lizl Ym>0 =

i) {(ox)1c | k : Z1 — N finitely supported} is a Z-basis of Z[hy. | k > 0].
(It is the basis that in [10] is called {symmetric monomial functions} and is denoted by {m) | A =
(A > A > .. >0)}:my = (ox) where Vim > 0 ky, = #{i | A; = m}).

Notation 1.25. As in Remark 1.24, for all k : Zy — N finitely supported let us denote by (ox)y the

limit of the elements
n

ai
x;" (n € N).
a,.-.An =1
#{ila;=m}=km Ym>0

By abuse of notation, when n >y~ o km we shall write
n
a
(k= ), JIx
aq,..,.an i=
#{ilaj=m}=km Ym>0

which is justified because, under the hypothesis that n > Y, o ki, k is determined by the set {(ay, ..., an) |
#Hi=1,.,n|a;=m}=kyVm>0}
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Definition 1.26. Vn € IN define Bg\n], B, ZKI], z!" ¢ Q[h, | ¥ > 0] = Q[ | k > 0] as follows:

m>0 m>0

m>0

Bl — {(ax)k | Y ke < n},

Zkﬂ is the Z-module generated by B/[\"], ZJ[C"] is the Z-module generated by B,[C"].

Remark 1.27. By the very definition of B,[C"} we have that:
i) B s a basis onEcn] CZhy | k>0]=Yyen chn/], see Remark 1.24, ii);

i) h € ZLn] means that for all N > n each monomial in the x;’s appearing in 7ty (h) with nonzero
coefficient involves no more than n indeterminates x;; hence in particular

hezl wezl" = ' e 7z,

Lemma 1.28. Let n,n',n"” € Nand K',k" : Z, — N be such that n' +n" =n, ¥ ,,~0k,, = 1/,
Yo ki, = n". Then:
D) (o) (00 € Z(ox)r 2,
i1) ka;nk;;z =0Vm > 0 then (O'X)k/(U’X)ku — (Ux)k’+k” e Zg(n_l].

Proof. That (0x)y - (0x)y lies in ZL"} follows from Remark 1.27,ii), so we just need to:

i) prove that if [T/, x{' with a; # 0Vi = 1,..,n is the product of two monomials M" and M"
appearing with nonzero coefficient respectively in (0x),s and in (0x)yr then #{i | a; = m} =
k!, + ki, for all m > 0;

ii) compute the coefficient of (0x);/ 1 in the expression of (0x)ys - (0x)j as a linear combi-
nation of the (0x)i’s when Vm > 0k}, and k), are not simultaneously non zero, and find that it is
1.

i) is obvious because the condition a; # 0Vi = 1, ..., n implies that the indeterminates involved
in M and those involved in M" are disjoint sets.

For ii) it is enough to show that, under the further condition on kJ, and k,, the monomial
[T}, x{" chosen in i) uniquely determines M’ and M" such that [T/, x{’ = M'M": indeed

! a; 1 __ a;
M = H X; and M" = H x;'
itkp #0 itky. #0

Lemma 1.29. Letk : Z, — IN, n € N be such that }_,,~o kyy = n. Then:
i) if Im > 0 such that k,,, = 0 for all m" # m (equivalently k,, = n) we have

(0%)ic = Am(hn) = by € 20" n 2l

i) in general by — (ox)y € z .

Proof. i) VN > n we have

N
(0x)x = ) X x = Ay ( ) Xij * e x,-n> = Am(elM)
1<i)<...<iy<N 1<ii<..<ip<N
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so that (o) = A ().

ii) b = [Tyuso Am(fy,) = [Tn>0(0X)ym Where k;[ZZ] = Oy mkm Ym,m’" > 0; thanks to Lemma
1.28,ii) we have that [T,,~0(0%)m — ((Tx)Z Km € Z,[Cnfu; but ¥,,-0 k" = k and the claim
follows. -

Theorem 1.30. B, is a Z-basis of Z[fy. | k > 0] (thus Z[ly | k > 0] = Z,[hy | r > 0]).

Proof. We prove by induction on 7 that Bg\n] is a Z-basis of ZLH] = ZE\H] Vn € N, thecasen = 0
being obvious.

Letn > 0: by the inductive hypothesis BE\n*” and Bj[cnfl] are both Z-bases of Z[” - ZRF]];
by definition B \ B -1 represents a Z-basis of Zg"] / ngn U while BR"] \ Bk’ represents a set
of generators of the Z-module Z[" /7, In=1]

Now Lemma 1.29,ii) 1mp11es that 1f Y n>0km = n then by and (0x)y represent the same ele-
menth[hk | k> o]/z" U= Qliy | k> o]/z” U,

Hence B!" A \ BE\" represents a Z-basis of Z I Zy Ecn] / Zkkl], that is B[A"] is a Z-basis
of chn] ; but B/[\"] generates ZE\ ] and the claim follows. O

[n—1]

1.4 A "mixed symmetric” integral form

Given a : Z, — Q we have seen when %} (1) € Z[f | k > 0][[u]]. But what happens if

e (u) ¢ Z[hy | k > 0][[u]] and we consider the Z-algebra generated by {ﬁk,fzia}}? Is it still
an integral form of Q[h, | r > 0]? Is it still an algebra of polynomials? Here we study a very
particular case of this problem, that will play a crucial role in certain integral forms in the case of

Agz) (see Chapter 7).

Definition 1.31. Using the notations introduced in Notation 1.15, let us define the sequences %11(2), %]1 :
Z — Q, more precisely

2 1 if r is even.

1]1(2) (r) = {0 if v is odd,

and

1
EMT) = Efor all r.

Let us set hi(u) = Lo xuk = = j? (u) and h(u) = Yo gk = hal(u).
Remark 1.32. ii(u) € Qlhy, | r > 0] and hy, 1 = 0 Vr > 0. More precisely

th

Zlhy | k> 0] = Z(Sym)[T | 7> 0]

and

R2) = Aa(h2 (1)) = Aa(h(?)) = h()h(—u).
In particular h(u) & Z[hy, | r > 0] (see Proposition 1.14).

Remark 1.33. 7i(u) & Z[h, | r > 0]. Indeed the sequence %11(2) does not satisfy condition of Proposition
1.19 (see Proposition 1.18).
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Remark 1.34. fi(u),h(u) € Z[ly | k > 0] = Z2¥ % | > 0].

Definition 1.35. Define Z"¥)[h, | r > 0] to be the Z-subalgebra of Q[h, | r > 0] generated by
{h, b, | ¥ > 0}.

Remark 1.36. Of course Z"¥)[h, | r > 0] C Z[ly | r > 0].
Remark 1.37. Let V be the Q-vector subspace of Q|[h, | r > 0] with basis {h, | ¥ > 0}. Then

‘ h
2", [ > 0]NV = Z{hy 1, % |7 > 0).

Corollary 1.38. Z"®) [, | r > 0] C Z[h, | r > 0]. Indeed Z[hy | r > 0NV = Z{"% | r > 0).
Remark 1.39. Z"¥)[h, | r > 0] is a graded algebra with deg(h,) = r for all r > 0, that is

2" [hy | r> 0= @Z2™[h [ r> 0]
a>0

and we have Z"X) [h, | r > 0); = Zhy and

‘ R 1 - 1,1
7 (mix) [hy | 7> 0], = Z<h%, hy = E(h% +hy), hp) = Z<§h%, §h2>

which implies that h3 does not belongs to any Z-basis of Z"¥) [, | r > 0]p. Then Z"¥) [k, | r > 0]
is not a polynomial algebra in homogeneous variables. In particular there does not exist a sequence a :

Z — Qsuch that Z") [k, | r > 0] = Z[I}IE”} | k>0].

We want tor prove that Z("¥)[h, | r > 0] is though an integral form of Q[ | r > 0], by
exhibiting a A-Garland type Z-basis of Z("¥)[h, | r > 0]. We shall also exhibit a polynomial-like
basis of this Z-algebra. In the following k : Z; — IN will denote a finitely support function.
Recall that

(b = T Am(P,)}

m>0
is a basis of Z [l | k > 0].

Definition 1.40. Let us fix the following notation:

b= 1 Awlw,) TI Awl,)

m>0,m odd m>0,m even
B = {b, | k: Z+ — N is finitely supported},
Z)\[hy | r > 0] = Z-linear span of B,.

Remark 1.41. i b, € Z"™[h, | r > 0],
ii. hy, hy € Z\[hy | v > 0] Yk > 0: indeed by = A (hy) and again Ay (hy) = hy.

Theorem 1.42. Z"¥)[h, | r > 0] = Z/[hy | r > 0] is and integral form of Q[h, | r > 0] and B} is
Z-basis of Z") [, | v > 0].

Proof. Thanks to previous remark, in order to prove that Z("*) [, | r > 0] = Z\[hy | r > 0]itis
enough to show that Z/\ [, | r > 0] is closed by multiplication. Notice that Vm > 0 Ay, (i(u)) €
Z[ho, | r > 0][[u]] since fi(u) € Z[ly | k > 0] and Ay (f) = hy. Then the fact that {by} is a Z-basis
of Z[hy | k > 0] implies the following facts, which imply the claim:
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i {TTwsomis even tAm (M) | k : Z — N is a Z-basis of Z[hy | k > 0];
ii. b = TTps0.mis oadAm (i) - bgver with bg¥e" € Z[hy | k > 0].

iii. by, bp = Tlusomis odd Am (g YAm(fyy ) - 00" with B,0" € Z[hy | k > 0] is a Z-linear

combination of elements of the form [T~ is odd Am (i, )b with b € Z[hoy | k > 0].

Finally it is obvious that the Q-span of Z/, [k, | r > 0] is Q[h, | r > 0] and the linear independence
of B}, now follows by dimension considerations:

#{b | deg(by) =d} =#{k:Zy >N | Y mky =d} =
m>0

#{by | deg(by) =d} = dimQlh, | r > 0],.

Corollary 1.43. Z"¥) [, | r > 0] is a Z[hy | k > 0]-free module with basis

{IT rom-1(,,) | k: Z — N is finitely supported.}

m>0

We now give also a polynomial-like Z-basis of Z("™*)[l, | r > 0], before let us recall the
following classical result:

Theorem 1.44 (Euler[4]). The number of partitions of a positive integer n into distinct parts is equal to
the number of partitions of n into odd parts.

Proof. Let us denote by D(n) and by O(n) respectively the number of partitions of # into distinct
parts and the number of partitions of # into odd parts, then it is immediate to see that:

Y. D(n)x" =1+,

n>0 i>1
1
O(Tl)xn - P AR I
ng;() g 1— x21 1
The claim follows observing that
[T+ =[TA=5 - .
i>1 s1 1-x -t
O
Lemma 1.45. The following identities hold in Q[h, | r > 0][[u]]:
A (h(u?)) = h(u)h(—u) = h(u?)?, (1.45.1)
2r r
Z thfshs(*l)s = Z hay—ashos. (1.45.2)
s=0 s=0

Proof. Equation (1.45.1) follows directly from Definition 1.31 and Notation 1.15, Equation (1.45.2)
follows from Equation (1.45.1) and Proposition 1.14. O
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Theorem 1.46. Z"*)[h, | r > 0] is a Z[lo, | r > O]-free module with basis

{T1h | e: 2+ — {0,1} is finitely supported}.
k>0

Equivalently

Bopor ={] ] ETT sz" |e:Zy — {0,1} and d : Z — NN are finitely supported }
k>0 k>0

is a Z-basis of Z") [, | r > 0].

Proof. We prove that the Z[hy, | r > 0]-span of {[ ;o ﬁi" | € € {0,1}} is stable by multiplication

by the /1;’s by induction on N = Y_key. If N = 0 the claim is obvious, let us assume that N > 0
and the claim holds for all N < N. If [ > k or [ # k for all k such that €, = 1 the claim is obvious.
So suppose there exist a k such that ¢, = 1 and | = k. Let us consider the monomial 47 with

p=T1lu fi* and deg(p) = N — I. Using relation (1.45.2) we have that

—

hajhai—sj),
=0

1 . .
pht = p(2 Y (1) iy + (—1)
j=1 j

since the right summand is in the Z-span of B ,,, let us focus on monomials of the form ﬁfz I— ]fl I+
for some j > 1. Since deg(p) < N, ﬁl_jﬁ is in the Z[hy, | r > 0]-span of {ﬁ;" | Y ke, < N -1+
I —j = N —j} so that by the induction hypothesis fll+]le_]-r3 lies in the Z[hy, | r > 0]-span of
{i¥ | ex € {0,1}} We are left to prove that B; por is linearly independent. Let us observe that
the elements of B, ,, of degree d are clearly indexed by the pairs of partitions (1A', ") such that
A" 1’ consist only of not repeating integers, A" - n” consist of even integers and n’ + n’/ = d on
the other hand the elements of B, of degree d are clearly indexed by the pairs of partitions (A, A”")
such that A’ - n’ consist only of odd integers, A" I n” consist of even integers and n’ + n'" = d.

It follows from Euler’s theorem (see Theorem 1.44) on partitions that these sets have the same
cardinality. O

In this last part we still focus on Z (") [, | r > 0].
Definition 1.47. Let us consider the sequence ¢ : Z.y — Q defined by c(r) = 2"~ and set

et () = Y fzic}uk.
k>0

More precisely: Z[flic} | r >0 =2z 2 —1h, | r>0).

Remark 1.48. We want to prove that Z[fzic} | 7 > 0] C Z[hy, hy, | r > 0], from Proposition 1.19 that
the claim follows if we show that there exist two sequences a,b : Z — Q such that Vm,p,s > 0 such
that

p is prime, (1.48.1)
ged(m,p) =1,

we have

S
p \amps = Ay,

ps|bmp5 — bmps—l,
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and

2=Lifris odd,
a, =
" 2 — by if s even
2

In this case we have that: ey (w) € zlhy | r > 0][[u]], fz{i’}(u) e Zlhy | r > 0][[u]], i) =
I 788} (u) where b = {0,b1,0,bs,... }.

Let now on m, p,s € Z be such that they satisfy the conditions (1.48.1).
Lemma 1.49. p°[2""" — omp*! if and only if mp® # 2, in particular

Z[h | r >0 ¢ Z[hy |7 > 0] (1.49.1)

Proof. Let mp® = 2 then the claim holds in this case since 2 /2271 — 21~1, from which follows
Relation (1.49.1). If mp® # 2, let us observe that 277" — 2mp"™" —= omp" "' (gmp* " (p=1) _ 1) The
claim hold remarking that 25|27 ' ~1ifm > 1ors > 1and 2" (?~1) = 1 (mod p*) if s > 1
and p # 2. O

Lemma 1.50. Leta : 27 —1 — Z, let mp® be odd and be such that p®|a,s — 51, then is possible
to extend a : Z. — Z so that you have p®|ayps — a,,,5-1 for all m,p,s > 0.

Proof. We will prove that is possible to construct such succession on induction on N elements:
a,a4,...,a02N, recalling that by hypothesis the claim holds if mp® is odd. If N = 1 then of course
ay = a1( mod 2) admits solutions. Let N > 1 and let be H;:1 p°r its decomposition on prime

factors, hence the following system of congruences is solvable by Chinese remainder theorem:

N = aN( mod 252+1),
apN = ayn ( mod p*r ) if p|N.
P

O

Corollary 1.51. From Remark 1.48 and Lemma 1.50 follows that exists a = (ay),~q such that a, = 2" =1
if v is odd and such that p°|a;,ps — Byyps—1-

Proposition 1.52. Forall s € N we have that hih e zmix) [hy | ¥ > 0].

Proof. Letbe a as in Corollary 1.51 and let us define b, = 22r=1 _ 5. Then Vm, p,s > 0 we have

s s—1
bmpS - b’nps—l — zmp — 27!1]7 — (ﬂzmps — a2mps—1).

Let us observe that by hypothesis p*| (a2ps — a5,,5-1) and gmp* _ gmp*™t — gmp*l=1(omp T (p-1) _

1), since 2 < 2mp*~! — 1 and mP" T (=1 = 1( mod p®), then for all m we have that p®|by,ps —

by ps-—1- The claim follows from Remark 1.48. O

1.5 Some non commutative cases

We start this section with a basic remark.
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Ifemark 1.53. i) Let Uy, Uy be two Q-algebras, with integral forms respectively Uy and U,. Then I @7
Uy is an integral form of the Q-algebra U; ®¢ L.

ii) Let U be an associative unitary Q-algebra (not necessarily~ corymutative} and Uy, Uy C U be two
Q—subalgebms such that U = Uy ®q Uy as Q—vegtor spaces. ~If Uy, Uy are integral forms of Uy, Uy, then
Uy @z Uy is an integral form of U if and only if UpU; C Uy Us.

Remark 1.53,ii) suggests that if we have a (linear) decomposition of an algebra U as an ordered
tensor product of polynomial algebras U; (i = 1, ..., N), that is we have a linear isomorphism

U=l ®q..0qUnN,

then one can tackle the problem of finding an integral form of U by studying the commutation
relations among the elements of some suitable integral forms of the U;’s.

Gluing together in a non commutative way the different integral forms of the algebras of
polynomials discussed in Section 1 is the aim of this section, which collects the preliminary work
of the work: the main results of the following sections are applications of the formulas found
here.

Notation 1.54. Let U be an associative Q-algebra and a € U.

We denote by L, and R, respectively the left and right multiplication by a; of course L, — R, = [a, -] =
— [., El] .
Lemma 1.55. Let U be an associative unitary Q-algebra.

Consider elements a,b,c € U[[u]]. Then:

i)ifa, b € ul[[u]] and [a,b] = 0 we have

exp(a +b) = exp(a)exp(b)*;
ii) [La/ Ra] =0
iii) if f is an algebra-homomorphism and f(a) = a we have

[era] = [era] =0;
iv) ifa € ull[[u]] then Ly, R, € End(U)[[u]] and we have

exp(La) = Lexp(a), €XP(Ra) = Rexp(a), €XP(Ra) = Lexp(a) exp([-,al);
o) ifa,c € ull][u]] we have
ab = be < exp(a)b = bexp(c);
0i) if b € ull[[u]] and [b, ¢] = 0 we have
la,b] = ¢ & aexp(b) = exp(b)(a +¢);
vii) if a,b, ¢ € ull[[u]] and [a,c] = [b,c] = O then
[a,b] = ¢ < exp(a)exp(b) = exp(b) exp(a) exp(c)
viii) if a,b, ¢ € ull[[u]] and [a, ] = [b,c] = O then
[,5] = c = exp(a+b) = exp(a) exp(b) exp(—c/2);

ix) if [a, £ (a)] = 0 we have

S (expla) = o (a) exp(a) = exp(a) o (a).
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x)ifa(u) =Y ,enartt’ (a, € UYr € N) and a € U we have

%a(u) =a(u)a < a(u) = agexp(au)

and
d

aa(u) =wa(u) < a(u) = exp(au)ap.
Proof. Statements v) and vi) are immediate consequence respectively of the fact that for all n € IN:
v) a"b = bc" (that is also (exp(a) —1)"b = b(exp(c) — 1)");
vi) ab™ = b(M g + b("=V¢ (that is also a(exp(b) — 1)" = (exp(b) — 1)"a + n(exp(b) —1)"c).
vii) follows from i), v) and vi).

viii) follows from vii):

(n) _ D' 6y
(a+b)"W =Y a\"pls) ),

t
r,5,t: 2
r+s+2t=n

The other points are obvious. O

Proposition 1.56. Let us fix m € Z and consider the Q-algebra structure on U = Q[x] ®q Ql[h] given
by xh = (h — m)x. Then Z4%)[x] @z Z\*"™ [h] and Z"™ [h] @7z Z\4%)[x] are integral forms of U:
their images in U are closed under multiplication, and coincide. Indeed

NG (f;) _ (h —lmk) +® vk 1 e N (1.56.1)

or equivalently, with a notation that will be useful in the following,

exp(xa)(1-+0)" = (1-+ 0)fexp (3 ).

Proof. The relation between x and / can be written as
xP(h) = P(h —m)x

and
x©p(n) = P(h— mk)x(k)

for all P € Q[h] and for all k > 0. In particular it holds for P(h) = (?), that is

x(1+0)" = (1+0)""x = (1 +v)hﬁ (1.56.2)
and
(k) h h X ®
The conclusion follows multiplying by u* and summing over k. O

Proposition 1.57. Let us fix m € Z and consider the Q-algebra structure on

U = Q[x] ®q Q[z] ®q Qly]

defined by [x,z] = [y,z] =0, [x,y] = mz.
Then Z\97) [x] @7 Z\%%) 2] @7 Z\%°)[y] is an integral form of U.
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Proof. Since z commutes with x and y we just have to straighten y(")x(5). Thus the claim is a
straightforward consequence of Lemma 1.55,vii):

exp(yu) exp(xv) = exp(xv) exp(zuv) " exp(yu).

Proposition 1.58. Let us fix m,1 € Z and consider the Q-algebra structure on U = Qlh, | r <
0] ®q Q[ho, c] ®q Q[hy | r > 0] given by

[c,hy] =0, [hy, hs] = bppsor(m+ (=1)"1)c Vr,s € Z.
Then setting (hy), = hy and (h_), = h_, ¥r > 0, recalling the notation Z[hyy | k > 0] =

ZY" [hy, | v > 0] (see Example 1.2 and Formula 1.2 ) and defining Uz to be the Z-subalgebra of U
generated by U = ZY [hyy | v > 0] and u = Zbi) [y, c], we have that

by (Wh_(v) = h_(0)(1 = uo) "™ (1 + uv) "hy (u) (1.58.1)
and Uz = U, U%U>, so that
Uz 2 Z[h_, | r> 0] @z ZY™[hy, c] @7 ZV™ [k, | r > 0]
is an integral form of U.

Proof. Relation (1.58.1) follows from Lemma 1.55, vii) remarking that

[ Z(_l)rflgur, Z(_l)sfl%vs}

r>0 s>0 r>0

0

_1\r
e M Ly

= —mcIn(1 — uv) — lein(1 + uv).
Of course U%Ui = U, U% is a Z-subalgebra of U, U, Ll% LI% C Ugz, Uz is generated by
U, U% LI% as Z-algebra and U, U% U% = U, ®z7 U% Rz Ug as Z-modules.
Hence we need to prove that U, U U7 is a Z-subalgebra of U, or equivalently that it is

closed under left multiplication by U, (because it is obviously closed under left multiplication
by U, UY), which is a straightforward consequence of relation (1.58.1). O

Lemma 1.59. Let U be a Q-algebra, T : U — U an automorphism,
feY ZTW C End(U)[[u]] € End(U[[u]]),

r>0
h € ull[[u]] and x € U such that T(h) = hand [x,h] = f(x). Then

xexp(h) = exp(h) - exp(f)(x).

Proof. By Lemma 1.55,iv)

xexp(h) = exp(h) exp([-, h])(x),
so we have to prove that exp([-, h])(x) = exp(f)(x), or equivalently that [-, h]" (x) = f"(x) for all
n € IN.

If n = 0,1 the claim is obvious; if n > 1, f*~1(x) = ¥, a,T"u"(x) with a, € Z for all ¥ > 0,
f commutes with T, and by the inductive hypothesis and Lemma 1.55,iii)

[ h]" () = [f" (x) lZaT” ]—

r>0

=Y a'T'([x,h]) =Y a' T f(x) = fY_a' T'(x) = f(f* (x)) = f"(x).

r>0
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Proposition 1.60. Let us fix integers my’s (d > 0) and consider elements {h,, xs | r > 0,s € Z} ina
Q-algebra U such that
(hr,xs) = Y _dmgx,ys Vr>0,s € Z.
dlr

Let T be an algebra automorphism of U such that

T(hy) = hy and T(x5) = x5_1 Vr > 0,5 € Z.

Then, recalling the notation Z[hy. | k > 0] = Z¥™) [k, | ¥ > 0], we have that

xoh () = o (1) (Hm - (—T-luﬂ)-md) (xr):

d>0

If moreover the subalgebras of U generated by {h, | ¥ > 0} and {x, | r € Z} are isomorphic respectively
toQ[h, | r > 0] and Q[x, | r € Z] and there is a Q-linear isomorphism U = Q[h, | r > 0] ®q Q[x/ |
r € Z] then

2, | 1> 0] @z 2% [x, | r € Z]

is an integral form of U.

Proof. This is an application of Lemma 1.59: let h = ¥, o(—1)""! %ur; then

[xo,h] =) ﬂuerm,,gT_r(xo) =

>0 T dlr

__1\ds
_ Z Z %de*dsuds(xo) = f(xo)

d>0s>0

where

f=- Z my ln(l — (—1)dT*dud).

da>0
Then

~ ~

xohy (1) = hii- () - exp(f) (x0) = Iy (u) - (H(l - (—Tlu)’j)m”’> (x0),

a>0
and the analogous statement for x, follows applying T~".

Remark that [Ty~o(1 — (=T 'u)?) ™™ = ¥,ga,T"u" with a, € Z Vr € N; the hypothesis
on the commutativity of the subalgebra generated by the x,’s implies that (3, ayx,u’ )0 lies
in the subalgebra of U generated by the divided powers {xgk) | r € Z,k > 0}, which allows to
conclude the proof thanks to the last hypotheses on the structure of U. O

Remark 1.61. Proposition 1.60 implies Proposition 1.56: indeed when my = m, my = 0Vd > 1 we have
a projection h, v h, x, +— x, which maps exp(xou) to exp(xu), i(u) to (1 +u)" and T to the identity.

Remark 1.62. Proposition 1.60 implies Proposition 1.56: indeed when my = m, my = 0Vd > 1 we have
a projection h, v~ h, x, +— x, which maps exp(xou) to exp(xu), ii(u) to (1 +u)" and T to the identity.



Chapter 2

Kac-Moody algebras

In this part we will recall general notions about Kac-Moody algebras, in particular those of finite
and affine type. We systematically refer to [7] and [8]. As announced in the Introduction , Section
2.1 is devoted recall definition of affine and finite Kac-Mooody algebras and Section 2.2 recall
the loop construction of affine algebras and Section 2.3 is devoted to recall the results of Kostant,
Garland and Mitzman on the integral forms.

2.1 Definition of finite and affine Kac-Moody Algebras

Fixn € Nygandset ={1,...,n}

Definition 2.1. A generalized Cartan Matrix isan X n matrix A = (ﬂz‘,j)i,je 1 with integral entries such
that

ai; =2
a;; <0ifi#j
ai,j:O<:)a]-,i=0

A is said to be decomposable if there exists a nonempty proper subset I C I such that a;j = 0 whenever
i€landj ¢ I, Aisindecomposable if it is not decomposable. From now on we shall assume that A is
indecomposable. We say that A is of finite type if all the principal minors of A are positive, of affine type if
the proper principal minors of A are positive and A has determinant 0, and of indefinite type otherwise.

Finite and affine Cartan matrices are symmetrizable, that is, there exist a Diagonal matrix
D = diag(dy, ..., dn) such that DA is symmetric, moreover the diagonal entries d;’s can be chosen
to be coprime positive integers, this condition determines them uniquely. It is a classical result
that finite Cartan matrices classify simple Lie algebras of finite dimension.

Given a generalized Cartan Matrix A one can construct the associated Kac Moody algebra
g(A) as following.

Definition 2.2. The Kac-Moody Algebra g(A) associated to A is the Lie Algebra generated by the
{ej,fi,hi | i€ I}

31
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with relations:

[ei/fj] = 51,]111/

[hi, e]] = ajjej,

hi, fi] = —aijfj,
(ade;)'~"i(e;) = 0if i # j,
(adf;)' =i (f;) = 0if i # .

Definition 2.3. To A is associated its Dynkin diagram I, that is an oriented graph with vertices labeled
by I and i-th vertex is connected to j-th vertex with max{ } edges with an arrow pointing from
itojif |a;;| < |aj;l.

An automorphism x of I is a permutation of its nodes such that a;; = a, ;) (j)
order of x. It is immediate to see that, if T is of finite type, then k € {1,2,3}.

ai,j Ll]‘,l'

7

, let us denote by k the

2.2 Loop construction

Consider a finite dimensional simple Lie algebra g, with Cartan Matrix Ay = (ﬂi,j)i,je 1, Dynkin
Diagram I'. And let x be an automorphism of I, then x induces an automorphism on g defined

on the generators by x -e; = e,(;),X - fi = fy() and its eigenvalues are et forr =0,...k
Consider the decomposition of g into eigenspaces

k—1
=Py
r=0

where g is the eigenspace relative to the eigenvalue e¥, of course it is a Z/kZ-grading that
is [g7,¢°] C ¢'*° Vr,s € Z/kZ, in particular g” is a Lie subalgebra of g (and gy is itself a finite
dimensional simple Lie algebra) and g’ is a g’-module. The Z/kZ-grading induced by x allows
to construct the x-Loop algebra of g, that is

LX(g) = P @C[t'].
reZ

The affine Kac-Moody algebras is a non trivial central extension of £X(g) via the Killing form,
that is

6% = LX(g) & Ce.

It was proven by Kac (see [8]) that the Affine Cartan matrices classify the affine Kac-Moody
algebras, in particular they are said to be untwisted if k = 1, otherwise are said to be twisted.
LetI, A = (a;)ic; and [ be respectively the set of indices, the generalized Cartan matrix and the
Dynkin diagram of §* and let Iy, Ag and Iy be respectively the set of indices, the Cartan Matrix
and the Dynkin Diagram of g0 Ttis possible to identify I with {0,1,...,n} and [y with {1,...,n},
so that I = Iy U {0}. It is possible to identify Ay with (ai,]-)i,]-e 1,» and I' can be construct by adding
a vertex, labeled by 0, to I'y.

The affine Kac-Moody algebras are of type

k 1 1 k k 1 1 1 1 3
A9, B80,, €0, D8, £, 0, {0, B, 60, DY

fork=1,2andn > 1.

§* admits a presentation by generators and relations, that is:
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Definition 2.4. §X is the Lie algebra generated by {xl X hig i€ Dy, d;|r € Z} with relations
[c,:]=0

a;;.
[hi,rr hj,s} = 7’51'—',-5,0 ;],r Dc
j
_ Dc
[x;/ xj,r} = ‘Si,j(hi,rJrs + 75r+s,0?)}
]

[hi 17 x]i | = iaz,],rx] st

[x is]_()lf(gxd)#( gz)/l)orr—i—siseven;
[xi zis] +[xf, iri X zis 1) =0if (8%, d;) = (A gﬁ),l)andranisodd;
[xli,r 1s/ H

[x3;
(adx)' “”( jE) =0ifi#j.

where D = max{d; | i € Iy},

2n’

ajjy =224 (=1)") ifi = j,d; = 1and §* = A@)
Aj iy = Ajj otherwise.
and

i Jrifk=10rgr = Af)
! d; otherwise,

Remark 2.5. Remark that this presentation implies that

x |—>x”,

h?’ — hl,r/

c— —c;
dj

defines an embedding

gi: AV < g if (a7, d;) £ (A2, 1),
i AP < g% if (8%, d;) = (A2, 1).

2n ’
Remark 2.6. The isomorphism between the two presentations §X identifies
e < xfo ’

fi & xpp,

hi < hi,O/

(i € Ip).

Definition 2.7. Let us denote by Q and Qg the root lattice of respectively g and g0, that is Q = DBici Zu;
and Qo = @y, Zw;. A is symmetrizable, then DA induces a symmetric bilinear form on Q, that is (, ).
Since A is affine then DA has kernel of dimension one generated by an element 6 € Q, moreover § =
0 —ag € Qo hence Q = Qo & Zd and (, )|(q,,0,) > 0- Moreover A induces Q — b* : aj(h;) = aj;.
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Definition 2.8. The Weyl group W of g is the subgroup of Aut(Q) generated by the elements o;(«;) =
aj — ajje; for all i € I, let us denote by Wy the subgroup of W generated by o; for i € Iy. Remark that
(Ti(§) =94,Vie .

Remark 2.9. W preserves (-, -), that is (w(«), w(B)) = («, B) forall a, p € Q.

Remark 2.10. gis Q-graded: deg(e;) = a; = —deg(f;) and deg(h;) = 0, hence g = b & (Daco\ {0} a),
equivalently: deg(xz‘r) = *a; + 16, deg(h;,) = rd and deg(c) = 0.

Definition 2.11. Let us define the set of roots @ of g by
® = {xcQ\{0} | ga # O}

The positive and negative roots are respectively @, = ® N Y ;e Na; and &_ = D, moreover & =
d_ U D, Let us denote by &g = Wy - {a; | i € Ip}.

Remark 2.12. Let us remark that ade; and adf;) are nilpotent endomorphisms Vi € I, adxl.ir are nilpotent
endomorphisms Vi € .

Definition 2.13. For all i € I, let us define the following automorphisms of g:

T; = exp(ade;) exp(—adf;) exp(ade;),

and for all i € Iy, let us define the following automorphisms of g:

T, = exp (adx;) exp (—adx;r) exp (adxi‘;) :

Of course if i € Iy we have that T; = T;. Denote by Wr the group generated by {7; | i € I}, obviously
T, =T, "1}, foralli € Iy and for all r € Z.

1

Remark 2.14. It is well known that T;(gx) = @o,(x), for all i € I and Yo € Q. In particular  is
W-stable.

Remark 2.15. We have that dimg, < oo for all & € ®. There exist a unique element 0 of ®q such that
0 —a € ) Na; Va € D, 0 is called the highest root of ®g. There exist a unique element 85 of ®g such
that 6s — o« € Y jc; Na; Voo € O such that (v, a) = 2, 6 is called the highest short root of P;.

The root system @ of g decompose into two parts, thatis ® = & U @™, where @ = W - {u; |
i€ l}and @™ = {mé | m € Z}, whose elements are called respectively real and imaginary roots.
It is possible to describe ' in terms of P, that is

{a+mé|aecdy,meZ}ifk=1
= {a+md|ae Py, meZ}U{2u+ (2m+1)8 | dy =1, m € Z} if g% = A
{a +mdyd | w € @y, m € Z} otherwise.

where d, = @‘2—“)

The weight lattice P C R® ZQy is P = Dic1y ZA; where A} € R ® ZQp is defined by
(A;, n j) = ¢;j forall i,j € Ip, Qo naturally embeds in P. It is worth introducing another im-
portant sublattice P of PasP = Dic1, ZAi, where A; = dNi/\g foralli € I; obviously P C b. As
subgroups of Aut(Q) we have W < P x Wy = W, in particular the equality holds if g = Ag). W
is called the extended Weyl group of g and we have also W = W x 7, where T = Aut(T) N W.

P has a realisation as a group of transformations of Q as follows: define ¢t : P — Hom(Q, Q) by
setting ty(a) = & — (x,)J, for all x € P.
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2.3 Kostant, Garland and Mitzman integral form

Let g be a finite or affine algebra with set of indices I.Let us denote by I/ its universal enveloping

algebra and by Uz the Z-subalgebra of U/ generated by {elm, fl.(r) | i € I, r € N}. The study
of Uz was begun by Kostant in the 1950s in the case where g is finite and later extended to the
related case by Garland in the 1970s and Mitzman in the 1980s. The investigation of Uz passes
in all cases by the introduction of a Chevalley basis for the algebra g. If g is finite we have the
following result due to Kostant.

Notation 2.16. In the following theorems where we speak about "the algebra of divided powers in the

positive and negative roots vectors” we mean the Z-subalgebra generated by {elgr)liEI'reN} which is a free
Z-module with basis the ordered monomials in the x,’s.

Theorem 2.17. Uz is an integral form of U, more precisely:
Uz 2 UL Uy DU

where U, and U, are the algebras of divided powers respectively in the positive and negative root vectors,
Z/lg = 70 [ | i € 1) is the algebras of binomials in the h;.

Let now on g be affine.

Definition 2.18. The Garland A-imaginary root vectors are the elements of UM™E: Ay (E(i,m)) are the
elements of defined recursively for k > —1,d;|m,£m > 0,i € I by

Afl(é(i/ m)) =1, kAk*l(é(lrm)) = Z Ar71(€<i'm))ei,ms~

r>0,5>0
r+s=k

then Z/l%m’i is the Z-algebra whose basis consisting in the following sets:

BimE = {1‘[ A1 (E(,m)) | kpy > 0m, #{stm > 0 | ky # 0} < o0, € 1}.

m>0

Theorem 2.19. Uz is an integral form of U, more precisely:
Uz 2 U UL @UY oUL" o U,

where U, and U, are the algebras of divided powers respectively in the e, with x € @ " and a € O,
Ll% is an algebras of binomials in the h; for i € Ij. Z/{’Zm’jE is described in definition 2.18.

Even though it was stated in the literature (see [3] for example), it is not clear from this de-

scription that Z/{g“r and Z/{%m’f are algebras of polynomials, hence we decide to fill this gap giving
the proof of this fact (see 9.B and Proposition 1.14).

The question that arises naturally at this point is what is the relationship between the studied
integral form generated the divided powers of the Chevalley generators (i.e., the one studied by
Mitzman and Garland) and the analogous Z-algebra generated by the divided powers of the x;',

(2)

and the x; . As we shall see these coincide outside the case A,,’, instead in the latter case the
integral form results smaller, we will prove it in Chapter 6.



36

CHAPTER 2. KAC-MOODY ALGEBRAS



Chapter 3

Integral form of A,

Let g be a finite dimensional semisimple Lie algebra. The results about g and the Z-basis of
the integral form Uz (g) of its enveloping algebra U(g) are well known (see [9] and [12]). Here
we recall the description of Uz(g) in terms of the non-commutative generalizations described in
Section 1.5, with the notations of the commutative examples given in Chapter 1.

The proof expressed in this language has the advantage to be easily generalized to the affine
case.

3.1 The integral form of sl, (A,)

Definition 3.1. sl, (respectively U(sl,)) is the Lie algebra (respectively the associative algebra) over Q
generated by {e, f, h} with relations

hel = 2¢, [, f] = ~2f, [e, f] = h.

Uy (s1,) is the Z-subalgebra of U (s1,) generated by {e®), &) | k € N}.

Theorem 3.2. Let U™, U~, U° denote the Q-subalgebras of U(sl, ) generated respectively by e, by f, by
h.

Then U+ = Qle], U~ 2 Q[f], U° =2 Q[h] and U(sl,) = U~ @ U @ UT; moreover
Uz(st) = Z\)[f] €2 20" 1] @z Z1)[c]
is an integral form of U (s, ).

Proof. Thanks to Proposition 1.56, we just have to study the commutation between e¥) and f(!)
for k,I € IN.

Let us recall the commutation relation

eexp(fu) = exp(fu)(e+hu — fu®) (3.2.1)
which is a direct application of Lemma 1.55,iv) and of the relations [e, f| = h, [h, f] = —2f and
[f, f1=0.

We want to prove that in ¢ (s(, ) [[u, v]]
v eu
exp(eu)exp(fv) = exp(1 _{_ uv) (1+ uv)hexp(l n uv)' (3.2.2)

Let F(u) = exp(%) (1+ uv)hexp<1f{w).
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It is obvious that F(0) = exp(fv); hence by Lemma 1.55,x) our claim is equivalent to

S F(u) = eF(u).

To obtain this result we derive remarking Lemma 1.55,ix) and then apply the relations (1.56.2)
and (3.2.1):

%F(u) =
- exp(l f]uv) 1+ )" (1 +euv)2eXp(1 iuuv) +
+exp( ) (1 w0 f)uv) )(1 + uv)hexp<1 j_uuv) -
- exp( )( 1 +uo (1 —{—qu)z)(l—'—uv)hexp(liuuv) -
= eF(u).
Remarking that
Yu xu

e Z[x[lw,v]], hence (124)" € 2 ] [u, ] vE € N,

14 uv 14+ uv

it follows that the right hand side of 3.2 is an integral form of U/ (s[, ) (containing Uz (s!,)).

Finally remark that inverting the exponentials on the right hand side, the relation (3.2.2) gives
an expression of (1 + uv)" in terms of the divided powers of e and f, so that Z("")[1] C Uz (sl,),
which completes the proof.

O



Chapter 4

The integral form of s, (Agl))

The results about s, and the integral form Uz of its enveloping algebra { are due to Garland (see
[6]). Here we simplify the description of the imaginary positive component of Uiz proving that it
is an algebra of polynomials over Z and give a compact and complete proof of the assertion that
the set given in Theorem 4.25 is actually a Z-basis of Uz. This proof has the advantage, following
[11], to reduce the long and complicated commutation formulas to compact, simply readable and
easily proved ones. It is evident from this approach that the results for si, are generalizations of
those for sl,, so that the commutation formulas arise naturally recalling the homomorphism

ev:sl, =50, ® Q[til] ®Qc — s, ® Q[tﬂ] — sl, (4.0.1)

induced by the evaluation of ¢ at 1.

On the other hand these results and the strategy for their proof will be shown to be in turn
generalizable to sf;".

As announced in the Introduction, the proof of Theorem 4.25 is based on a few results: Propo-
sition 4.14, Proposition 4.15, Lemma 4.21, and Proposition 4.22.

1
41 From A; to Ag )
Definition 4.1. si, (respectively U) is the Lie algebra (respectively the associative algebra) over Q gener-
ated by {x;*, x; , hy,c | r € Z} with relations
¢ is central,

[y, hs) = 216, 450¢, [he, x5 = £2x;5

[ ] =0= [ ,
(x5, x5 ] = hyts + 16,450

Notice that {x;,x; | r € Z} generates U.

U+, U=, U° are the subalgebras of U generated respectively by {x;" | r € Z}, {x; | r € Z},
{c,hy |r € Z}.

U+, 4%, U, are the subalgebras of U (of U°) generated respectively by {h, | r > 0}, {h, | r < 0},
{C/ ho}

Remark 4.2. U+, U~ are (commutative) algebras of polynomials:

Ut=Qxf |rez], U =Q[x; |reZ
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U0 is not commutative: [y, h_y] = 2rc;
U+, U0, Ud, are (commutative) algebras of polynomials:

A+ =Qlhy [r>0], 4 = Qlhy | r < 0], U°= Qe hol;

Moreover we have the following “triangular” decompositions:

A

U= ouU'eut,
U= o out.

Remark that the images in Uoftl= @U° and UU° ® U™ are subalgebras of U and the images of U~ @ UY
and UY @ U are commutative subalgebras of U°.

Definition 4.3. U is endowed with the following anti/auto/homo/morphisms:
o is the antiautomorphism defined on the generators by:

xS, x = x,, (= hy— —hy, ¢+ —c);
Q) is the antiautomorphism defined on the generators by:
xFexD, xe—axt, (h—hy,, c—o);

T is the automorphism defined on the generators by:

r+1/

xFext, o ex (= hy = hy —6,0c,  cr0);
forallm € Z, Ay, is the homomorphism defined on the generators by:

xS xth,  xo = x,, (= he hyy, o me).

Remark 4.4. 02 = idy;, 0?2 = idy, Tis invertible of infinite order; A2 1 = A = idy; Ay is not
invertible if m # £1; Ag = ev (through the identification < x§,xy,ho >=< e, f,h >).
Remark 4.5. 0Q) = Qo, 0T = To, oAy = Ayo forallm € Z; QT = TQ, OAy = Ay Q) for all
me Z; Ay TH = Tim)tmfor allm € Z; AmAy = A, forallm,n € Z.
Remark 4.6. ol =idy., o(U%F) =U%, oY) =U".

QU*) =U7, Q) =U"F, Qly, = idy,.

T(U*) =U*, Tlgpe =idgo., TUY) =UO.

Forallm € Z A (UF) C U, AU CU°, AuUb) C U,

U0E  ifm >0

A (A%F) CUOF  ifm <0
ud  ifm=0.
Definition 4.7. Here we define some Z-subalgebras of U:

Uy is the Z-subalgebra of U generated by {(x;)®), (x,)®) | r € Z,k € N};
Z]% = ZU0) [xE | r € Z);
Uy =z [y, c);
Uy =2z hyy | r>0);
UY, is the Z-subalgebra of U generated by Zfl%_, LAIQ and L?%+.
The notations are those of Section 1.
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We want to prove the following;:

Theorem 4.8. Z/AI% = 1/7%71/725{%# it is an integral form of U°; Uz = Z/A{Z_ LA{%LA{% : it is an integral form
of U.

As in the case of sl,, working in Z/[[u]] (see the notation below) simplifies enormously the
proofs and gives a deeper insight to the question.

Notation 4.9. We shall consider the following elements in U |[u]]:

) =Y xtu" =Y T (xg),

r>0 r>0
x(u) =) xqu =) T (xy),
r>0 r>0

he(u) = Yo (—1y

r>1 r

ﬁi(u) = exp(hi(u)) = Z flirur.

r>0

Remark 4.10. Notice that evo T = ev and

1 e
EU(x+(—u)) = €0 <1—|—T_11,[x3> = 1 +u,

T
ev(x” (—u)) =ev (1—|—Tux0> =T
ev(hy(u)) = hin(1 + u),
ev(he(u)) = (14 u)".
Remark 4.11. Here we list some obvious remarks.
i) Z:l% C Uz NU™T and Uy is the Z-subalgebra of U generated by Zfl% U Zflz_;
i) Uz, LA{% Zfl%i and Z]%ilflg = Zf(%lfl%i are integral forms respectively of U*, U, U"* and
QO+ = 00+,
iii) Z]Z and Z/A{% are stable under o, Q, T1, A, forallm € Z;
iv) Z/A{%t is stable under o, T*1, A,,, forallm € Z and Q(Zf{%) = Zfl;;
v) L?%i is stable under o, T*' and Q(Zf{%i) = A,l(LA{%’i) = Zf{%x: more precisely

(e () =h () ™, Qe () = A (e () =h (), T (e (1)) = (u);
vi) form € Z
0%+
7 ifm>0
An(UY) CLUST ifm <0
uy  ifm =0,
thanks to v), to Proposition 1.13 and Remark 4.10.

Remark 4.12. The elements fy’s with k > 0 generate the same Z-subalgebra of U as the elements Ay's
(k > 0) defined in [6].
Indeed let X
Y puu” =P(u) = h(—u)™%;

n>0
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then Remarks 1.8,1,ii) and 1.12,iii) imply that Z[hy | k > 0] = Z[p, | n > 0]; but

d
—P(u) =P(u) ¥ hu' 1,
e L
that is
1 n
po=1, pp= P Zhrpnfr Vn >0,
r=1

hence py = N,—1 Vn > 0.
On the other hand applying Ay, we get

1 n
/\m(PO) =1, AW(PH) = ; Z hrmAm(Pnfr),
r=1
so that Ay (pn) = Am(Ap—1) = Ay—1(E(m)) (see [6]).
Remark 4.13. Remark that for all r € Z. the subalgebra of si, generated by

{x;,x=,, ho +rc}

maps isomorphically onto s, through the evaluation homomorphism ev (see (4.0.1)). On the other hand
for each r € Z there is an injection U(sl,) — U:

e— x5, frx",, hw ho+rc

rs

In particular Theorem 3.2, implies that the elements (hOZrC) belong to Uz for all ¥ € Z,k € N (thus,
remarking that the elements (;)’s are central and the Example 1.9, we get that Z]% C Uz) and Proposition
1.56 implies that Zfl%?f[g and Zfli UL, are integral forms respectively of U"U+ and U~U".

Proposition 4.14. The following identity holds in U|[u, v]]:

~

hy (u)h—(v) = h-(0) (1 — wv) >y (u).
S = Uy ubiy ™" it is an integral form of U1°.
Proof. Since [hy, hs] = 2rd,4oc, the claim is Proposition 1.58 with m =2, 1 =0. O

Proposition 4.15. The following identity holds in U|[u]]:

xghy(u) = by (u) (14 T ) 72 (xg). (4.15.1)

Hence forall k € N
(x) O (u) = Ay (u) (1 4+ T ) "2 () € A5+ 0 [[u]). (4.15.2)
Proof. The claim follows from Proposition 1.60 with m; = 2, m; = 0 Vd > 1 and from 1.1. O

Remark 4.16. The relation (4.15.1) can be written as

~

o (0) = b () ().

Indeed
A+ T 20) = Y (1) (r 4 Dt = - (ux* (—u).
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Remark 4.17. Remark that the relation (4.15.2) is the affine version of

(k)
e®(1+u)" = (1+u)" <(1+eu)2> (4.17.1)

(see (1.56.3)); indeed ev maps (4.15.2) to (4.17.1).

Corollary 4.18. fo% uy* - Z/Z%il/?% and UZUY, = USU . Then USU and U, UY are integral forms
respectively of U'U™ and U~ UC.

Proof. Applying T~" to (4.15.2), we find that (x;)®Ohy (u) C by (u)l)([u]] Vr € Z,k € N,
hence Uy h (1) C he(u)lf([u]] and UFUY" C UYTUS. From this, applying A_; we get
u; 1]%7 c Zfl%flflz+ ,hence U3 UY C UYL, thanks to Remark 4.13. Finally applying Q we obtain
that L?%I/?Z_ C L?Z_ 1Y and applying o we get the reverse inclusions. O

We are now left to prove that Zf[i1r L?Z_ C LA{Z_ LA{%Z/A{%' and that 1/7% C Z/AIZ.

To this aim we study the commutation relations between (x;") k) and (x;)® or equivalently
between exp(x; 1) and exp(x; v).

A A~

Remark 4.19. Theorem 3.2 and Remark 4.13 imply that exp(x; u)exp(x=,0) € U, USU [[u,v]] for
allr € Z.

In order to prove a similar result for exp(x;"u)exp(x; v) when r + s # 0 remark that in general
exp(x; u)exp(x; v) = T~ "Apps(exp(xg u)exp(x; 0)),

so that Remark 4.11,iv),0),vi) allows us to reduce to the caser =0, s = 1.
This case will turn out to be enough also to prove that Zf{% CUz.

Remark 4.20. In the study of the commutation relations in Uz remark that
eo(exp (x5 1) exp(x7 0)) = explen) exp(fo)

and that straightening exp (x u) exp (x; v) through the triangular decomposition t = U~ @ U’ @ UT
we get an element of U[[u,v]] whose coefficients involve x
through ev is

fo

1+uv

r+1,hr+1, x;" with r > 0 and whose image

)+ e (70)

exp (

(see Remark 4.10).

Vice versa once we have such an expression for exp (xg u) exp (x7 v) applying T~ A, we can deduce
from it the relation (3.2.2) and the expression for exp(x;"u) exp(x; v) for all r,s € Z (also in the case
r+s=0).

Remark that .
exp(vx™ (—uv))hy (uv)exp(uxt (—uv))

is an element of U [[u, v]] which has the required properties (see Remark 4.10) and belongs to U, USU} [[u, v]].

Our aim is to prove that

~

exp(xg 1) exp(x; v) = exp(vx~ (—uv))hy (uv) exp (ux™ (—uv)).
Lemma 4.21. In U[[u,v]] we have

x3 exp(0x™ (—uv)) = exp(ox~ (—u)) (x7 + dhzliuv) + dyx:i(u—uv))
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Proof. The claim follows from Lemma 1.55,iv) remarking that

_ d h dhy (uv)
+ - _ h o r_ 9 r+1 _1) r+1 _ +
5,06 (a0 = T esa (o) = o T 2 (1) Gy = S,

[7dh+(uv),vx_(—uv)} =-20" Y x . ,(—uo)t =
du r,s€IN

_ dox~ (—uv)
_ 92 _ r_
=—2v reE]N(r +1)x, . ,(—uv) 2

and dor-
[%_uv)mx*(—uv)} =0.

Proposition 4.22. In U [[u, v]] we have
exp(xg u)exp(x; v) = exp(vx ™ (—uv))hy (uo)exp(ux™ (—uv)).
Proof. Let F(u) = exp(vx~ (—uv))hy (uv)exp(ux*(—uv)). It is clear that F(0) = exp(x; v), so
that thanks to Lemma 1.55,x) it is enough to prove that
d
—F
du
Remark that, thanks to the derivation rules (Lemma 1.55,ix)), to Proposition 4.15, and to Lemma
4.21, we have:

(u) = xg F(u).

%F(u) = exp(ox~ (—uv))hy (uv) % (ux™ (—uv)) exp (ux* (—uv))+

Texp(ox(—u0)) (<o (uw0) + %(vx‘(—uv)))h+(uv)exp(ux+(—uv)) -

du
— exp(ox~(~uv)) (x5 + d(h (uo) Z;’x_(*””)) )i (wo)exp(ux* (~uv)) =

= xg exp(vx~ (—uv))hy (uv)exp(uxt (—uv)) = x§ F(u).

Corollary 4.23. Uy C Uz.

Proof. That %" - Z]Z is a consequence of Proposition 4.22 inverting the exponentials (see the
Z q P g P

proof Theorem 3.2), which implies also (applying ) that Z]%_ C Uyz; the claim then follows
thanks to Remark 4.13. O

Proposition 4.24. U, U, is a Z-subalgebra of U (hence Uz = U, USU).

Proof. We want to prove that Z/Ali LA{%Z/A{%r (which is obviously a Z]i -module and, by Corollary 4.18,
allY-module) is also a Z:lg -module, or equivalently that Zfl% Z/AIZ_ C LA{Z_ LA{%LA{%’ .

By Proposition 4.22 together with Remark 4.19, relation (3.2.2) and Remark 4.13 we have that
y+y— € U, UYU in the particular case when y = ()% and y_ = (x;)®, thus we just need
to perform the correct induction to deal with the general y+ € I/A{%.

Remark that setting
deg(xF) = +1, deg(hy) = deg(c) =0
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induces a Z-gradation on I (since the relations defining I/ are homogeneous) and on Uz (since
its generators are homogeneous), which is preserved by ¢, T*! and A,, Vm € Z; in particular it

induces IN-gradations
_ e vt 7+
= DU 2= DUz
keN keN

with the properties that
Q(u%,:tk) =Ug 10

Upp= L 2O (@)™ = L 2O+ ) U Uz,

nelN reZ k1,kp>0
ki +...tkn=k ki+ko=k

Z:leZ:{% = Z:l%lf(ik (because U1° = L' and L}%z]% — zf[%z]%)
and thanks to Definition 4.1 and Remark 4.2

ata-)c Yy a,,, A%, vkileN.

m>0

We want to prove that
N " ~0
oz S Y Uy L UzUs ., YkIEN, (4.24.1)
m>0
the claim being obvious for k = 0 or [ = 0.

Suppose k # 0, # 0 and the claim true for all (k,I) # (k,I) with k < kand [ < I. Then:
a) Proposition 4.22 together with Remark 4.19, relation (3.2.2) and Remark 4.13 imply that

GOV e Yty AU, Vs € Z;

m>0
b) if k1,ky > 0 are such that k; + k, = kor [, > 0 are such that /1 + I, = [, then

A iy A 70 77+
uZ,kluZ,kzuZ,fl g ZOqu Z/{Z l+m uZuZ,kz*ﬂ’lz
my>

y— 40 77+ _
g Z uZ,*l“rTl’lz‘le uZuZ,kl UZZ/[Z k2 i) -
ml,mZZO

— - — 0 +
- 2 u —l+m2+m1uZuZ k1 —mq Zkz my = Z Z/l —l+m Zk—m
mq,mp >0

and symmetrically applying ()
Uy Uy Uy 1, =QUg Uy Uy ) C
N ~0 B o ~0
(Y Uy 2z ) = L Uz 1 nll2Uzy
m=>0 m>0
(4.24.1) follows from a) and b). 0

We have thus proved Theorem 4.8, summarized in the following:

Theorem 4.25. The Z-subalgebra Uz of U generated by
(x50 | rez,ke N}

is an integral form of U.
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More precisely

Uz =U; o5 0l = U, o Uy~ oUy Uy @ U

N

and a Z-basis of Uz is given by the product

where B*, BY* and BY are the Z-bases respectively of U, Z]%i and Zfl% given as follows:

Bt = {(xi)(k) = H(x;t)(kr) | k:Z— N isfinitelysupported}
rezZ

BO* = {ﬁlj[ = 11;[ ﬁil | k:Z, - Nis finitelysupported}
€L+

A h c z
b = 0 ~
B {(k)<k) |k,ke]N}.
Remark that B+ = B and that exhibiting the basis B%* proves that Z/A{%m/i = Z:(%i is an algebra of
polynomials (see the Introduction).



Chapter 5

The integral form of 5T3X(A§2))

In this chapter we describe the integral form {7 of the enveloping algebra I of the Kac-Moody

algebra of type Agz) generated by the divided powers of the Drinfeld generators x;; unlike the
untwisted case, this integral form is strictly smaller than the one (studied in [11] by Mitzman)
generated by the divided powers of the Chevalley generators ey, 1, fo, f1 (see Chapter 6).

However, the construction of a Z-basis of U{z follows the idea of the analogous construction
in the case Agm, seen in the previous section; this method allows us to overcome the technical

)

difficulties arising in case A, - difficulties which seem otherwise overwhelming.

(1)

The commutation relations needed to our aim can be partially deduced from the case A; ’:
indeed, underlining some embeddings of sf, into s, (see Remark 5.27), the commutation rela-

tions in I/ can be directly translated into a class of commutation relations in I/ (see Corollary 5.28,
Proposition 5.29 and the Appendix 9.A for more details).

Yet, there are some differences between Agl) and Aéz).

First of all, the real (positive and negative) components of I/ are no more commutative (this
is well known: it happens in all the affine cases different from Agl), as well as in all the finite
cases different from A7), hence the study of their integral form requires some - easy - additional

observations (see Lemma 5.22).

The non commutativity of the real components of ¢/ makes the general commutation for-
mula between the exponentials of positive and negative Drinfeld generators technically more
complicated to compute and express than in the case of si,; nevertheless, general and explicit
compact formulas can be given in this case, too, always thanks to the exponential notation. As
already seen, the simplification provided by the exponential approach lies essentially on Lemma
1.55,iv), which allows to perform the computations in Z/ reducing to much simpler computations
in 5f3x , and even, thanks to the symmetries highlighted in Definition 5.4, in the Lie subalgebra
L =si," N (sls ® Q[t]) C sl;" (see Definition 5.8). Recognizing a Q[w]-module structure on each
direct summand of L = L~ & L @ L* and unifying them in a Q[w]-module structure on L (see
Definition 5.10) provides a further simplification in the notations: one could have done the same
construction for si,, but we have the feeling that in the case of sl, it would be unnecessary and
that on the other hand it is useful to present both formulations. All this is dealt with in Section
5.1.

The most remarkable difference with respect to A%l) on one hand and to Mitzman's integral
form on the other hand lies in the description of the generators of the imaginary (positive and

negative) components; it can be surprising that they are not what one could expect: Z;{%Jr e
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ZY™[h, | r > 0]. More precisely (see Remark 5.13 and Theorem 5.44)

as we shall show, we need to somehow “deform” the /,’s (by changing some of their signs) to get
a basis of I;I%Jr by the (sym)-construction (see Definition 5.12, Example 1.2 and Remark 1.12). To

ayt ¢ 2y | r > 0] and Z[h | > 0] ¢ UY"

this we dedicate Section 5.2.

Notice that in order to prove that Iz is an integral form of I/ and that B is a Z-basis of Uz
(Theorem 5.44) it is not necessary to find explicitly all the commutation formulas between the
basis elements. In any case, for completeness, we shall collect them in the Appendix 9.A.

51 From Agl) to A§2>

Definition 5.1. s1," (respectively U) is the Lie algebra (respectively the associative algebra) over Q gen-
erated by {c, hy, x;7, X3

(s odd)

(s odd)

(r,s odd)

i1 | T € Z} with relations

¢ is central

[hr, hs] = 6,1502r(2 4 (=1)" 1)

[h,xE] = £2(2+

0

by, XE] = {ﬂxﬁs 2] r
7 g

(v, x2] = {0

(=1 )i

if21r

if2|r+s

+(-1)°XE, if2fr+s

[, XS] = (X7, X3 =0

[xj,x;] = Nyys

+ Orys0rC

67, XT] = £(=1)"4x

[X;F, X5] = 8hyys + 46,15 0rC

Notice that {x;5, x; | r € Z} generates U.

Moreover {c, I, x,i, X;tr “ | » € Z} is a basis of sf3x ; hence the ordered monomials in these

elements (with respect to any total ordering of the basis) is a PBW-basis of U/.

UT, U, U are the subalgebras of U generated respectively b
g g 1% y by

{xf|rez}, {x; |rez}, {c,h|reZ}.

UFP, U*! and U** are the subalgebras of {* generated respectively by

{xF|r=0(mod2)}, {xF|r=1(

mod 2)} and { X5

r

alrezy.

U, U=, 1Y, are the subalgebras of U (of ") generated respectively by

{hy |r >0}, {h|r

<0}, {c ho}.
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Remark 5.2. Recalling that the root system of si;" is
(Fa+Z0) U (20 + (14+2Z)5) U (Z\ {0})
notice that {hy, c} is a basis of the Cartan subalgebra and

xri € Orstar Xzir_H € 9(2r+1)5+2ar hy € grs
(see [8]).

The following remark is a consequence of trivial applications of the PBW-Theorem to different
subalgebras of s{;*.

Remark 5.3. U™ and U~ are not commutative: [x§,x;] = =X and [xy, x| = X .
UFP, UF and U** are (commutative) algebras of polynomials:

UL =Qlx, [rez], U =Qlxy, ,|rez], U =QX,,|rez]
U =Qlxy, |reZ], U'=Qlx,  |reZ], U =Q[X,,, |reZ]
We have the following “triangular” decompositions of U~
0* =~ 740 @ 7 o G = 03! @ (44 @ 4*°

Remark that U*< is central in U*, so that the images in U= of U0 @ U and U @ US* are com-
mutative subalgebras of U.

U° is not commutative: [hy, h—,] # 0ifr # 0;
U, U=, UY, are (commutative) algebras of polynomials:
Ut =Qlh | r>0], U =Qlh | r<0], U" =Q]c,h);
Moreover we have the following triangular decomposition of U°:
=0 " U 20" U U .

Remark that U is central in U°, so that the images in U° of U~ @ U and U® @ U are commutative
subalgebras of U.

Finally remark the triangular decomposition of U:
A= oUW «U =20 U’ U",
and observe that the images of U~ @ U° and U° @ U™ are subalgebras of U.

Definition 5.4. s%x and U are endowed with the following anti/auto/homo/morphisms:
o is the antiautomorphism defined on the generators by:
xS xt, x = x, (= XE e =XE, b —hy, o —C);
Q) is the antiautomorphism defined on the generators by:
=t (= XPeXE, e ho, co);

X xT,

T is the automorphism defined on the generators by:

Xy xq, (2 XE e —XE,, by = hy —d,0c, ¢ c);

+ +
Xy =X r+17 127

r—1’
for all odd integer m € Z, Ay, is the homomorphism defined on the generators by:
xfexth, x e x,, (=2 X5 e X5, by by, ¢ ome).

Remark that if m is even Ay, is not defined on U, but it is still defined on U%+ = Q[h, | r > 0].
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Remark 5.5. ¢2 = idy, 02 = idy, T is invertible of infinite order;
/\271 = Ay = idy; A is not invertible if m # £1.

Remark 5.6. cQ) = Qo, 0T = To, QT = TQ. Moreover for all m,n odd we have oAy, = Ay0,
Oy = A Q) Ay T = TE A, AAy = Apn.

Remark 5.7. 0;:0 = idje0, 0lgen = idjgen, o(USC) =UF, o(U%F) = U, o(U) = UD.
QU = U0, QU*t) = UF, Q) = UF<, QU%F) = UOF, Q|g=idys.
TU*P) =U*!, TU*) = UHP, T(UHC) = U<, Tl = idgos, TUY) =UD.
For all odd m € Z:
A (TE0) CUED, A (@) CUEL, A (@EF) € U<, A(U10) € U,

- U=+ ifm >0
A (%) C {7
m(U7) {Z/{O? ifm < 0.

Definition 5.8. L, L+, L°, L*0, L¥1, L*< are the Lie-subalgebras of si;" generated by:
L:{x},x |r>0},
LY :{x}|r>0}, L™ :{x, |r>0}, LO:{h |r>0},
L™ {xf [r>0}, LT {xf  |r>0}, LV {X]  |r>0}
L0 {xy [r>0}, L {x5 4 |r>0}, L7 :{X; ,|r>0}

Remark 5.9. L9, L*0, L+ and L+ are commutative Lie-algebras; for these subalgebras of L the Lie-
generators given in Definition 5.8 are bases over Q.
Moreover we have Q-vector space decompositions

L=L"aol’sLt, LT=LPaLtlaLt, L =L %L 1oL~

Finally remark that L is T~ '-stable and that L~ is T-stable; more in detail TT!(L*0) = L1, TF(L*1) C
LEO (s0 that L0 and LFY are TT2-stable); LT is T -stable.

Definition 5.10. L is endowed with the Q[w]-module structure defined by w|;- = T|;-, w|;+ =
T+, why = hyyq Vr € N. Explicitly w acts on L* as follows: w.xj" = x;'il, w.XiErJrl = —XZjEr+3

Vr > 0.
Lemma 5.11. Let & (w), & (w) € Q[w][[u, v]]. Then:

i) [21(w?).xg, S2(w?) x| = F(E182) (—w). X{

if) [&1(w).xg, G2(w)-xg | = (6162) (w)-ho;

i) (&1 (w).xg, G2 (w). Xy ] = 461 (—w) & (—w?) a7y ;

i) [&1(w)ho, Ea(w) x5 ] = (481 (w) — 261 (—w)) o (w) x5

Proof. The assertions are just a translation of the defining relations of {:

+ .+ — — +
[xzrr x25+1]r [xj_fxs ]r [xj_/X25+1]r [l/lr, Xg ]

For iv), remark that
22+ (-1)" Hw" = 40" —2(—w)".
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Definition 5.12. Here we define some Z-subalgebras of U:
Uy is the Z-subalgebra of U generated by {(x;7)), (x;,)¥) | r € Z,k € N},
U3 and U, are the Z-subalgebras of U (and of Uz) generated respectively by {(xH® |reZke
N}, and {(x;)® | r € Z,k € N},
L?Zi’o =7k | rezZ);
Z;{Zi’1 = zdiv) [xzirﬂ | r € Z);
Uy =2 (X5, |1 € 2Z);
uy =z [y, c);
1 if4tr
—1 ifd|r
UY, is the Z-subalgebra of U generated by Z;{%_, 2;{2 and L?%+.
The notations are those of Section 1.

Uy = 2y e hy, | v > 0] with ¢, = {

In particular remark the definition of Z;{%i (where the e;’s represent the necessary “deformation” an-
nounced in the Introduction of this section, and discussed in details in Proposition 1.18) and introduce the
notation

Z[iy | £k > 0] = 2V [g,hsy | 7> 0]

where

= Y hogut =exp ( Y (- 1€rhir ur)

keIN r>0

Remark 5.13. It is worth underlining that iy (u) # hy (u), where
Zlhy | k> 0] = Z[h, | r> 0],

that is

- . h
hi(u) = Iyl = exp (=) 1w,
Y (S 5w)
More precisely the Z-subalgebras generated respectively by {hk | k> 0} and {hy | k > 0} are different
and not included in each other: indeed iy = Iy, hy = hy, by = h3 but hy & Z[hy | k > 0] and
hy ¢ Z[hy | k > 0] (see Propositions 1.18 and 1.19 and Remark 1.20).
Notice that we are considering the algebra involution of Q[h, | ¥ > 0] defined by h, — e h, ¥r > 0

through which (using Notation 1.15) 1%} (1) is mapped to h{e%} (u); in particular h(u) = ket (u) so that
e} (u) € Z[hy | k > 0][[u]] if and only if A&} (u) C Z[hy | k > 0][[u]] .

Remark 5.14. Let ¢(w) € Q[w][[u]]; the elements
exp (C(wz).xaE), exp (é(wz).xit) and exp(&(w).X;)

lie respectively in Uy ° [[u]), Uz [[u)] and Uz [[u]] if and only if &(w) has integral coefficients, that is if
and only if {(w) € Z[w][[u]] (see Definitions 1.6 and 5.10).

Remark also that (see Remark 1.16)

~

hy(u) = exp(In(1 + wu).hy),

while

hy(u) =exp ((ln(l + uw) — %ln(l — u4w4>).h0> :

Before entering the study of the integral forms just introduced, we still dwell on the compari-
son between /1, (1) and /14 (1), proving Lemma 5.16, that will be useful later.
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Lemma 5.15. Forallm € Z \ {0} we have
1+ mzu)% € 1+ muZl[ul].

Proof. (1+ Y,~a-u")" =1+ m?u implies

1+m uzl—i—mZaru —i—Z( ) Z”V

r>0 k>1 r>0

Let us prove by induction on s that a; € mZ:
if s = 1 we have that ma; = m?;
if s > 1 the coefficient ¢ of u° in -1 () (L0 arur)k is a combination with integral coeffi-

cients of products of the a;’s with t < s, which are all multiple of m. Then, since k > 2, m? | cs.
But mas + ¢s = 0, thus m | as. O

Lemma 5.16. Let us consider the integral forms Z[hy | k > 0] and Z[hy | k > 0] of Q[h, | 7 > 0]
(see Example 1.2, notation 1.2, Definiton 5.12 and Remark 5.13); for all m > 0O recall the Q-algebra
homomorphism Ay of Q[hy | ¥ > 0] (see Proposition 1.13) and define the analogous homomorphism Ay,
mapping each €.hy t0 €yyhmy (of course Z[hy | k > 0] is Ay-stable Ym > 0).

We have that:

i) if m is odd then Ay, = Ay, in particular Z[hy | k > 0] is Ay-stable;
it) Ay (hy) € Z[hy | 1 > 0] forall k > 0;

iii) hy (4u)2 € Z[Ry | k> 0][[u]];

Proof. i) If m is odd then 4 | mr < 4 | r, hence ¢,y = & Vr > 0 and the claim follows from
Proposition 1.13

ii) By Proposition 1.13 we know that Z[fz | k > 0] is A,-stable; but

- h h A
Ap(hi(u?)) = exp ) (— 1527 2 —exp ) %qu = A (s (—u?)7h

r>0 r>0

equivalently

which implies the claim.
iii) Remark that

i ()l (u) 7! (wa4ﬂ=M@Aﬁ%%;
then
o (4)2 = Ry (4u) 22 (s (—44ut)) 5

Since i1 (4u) € 1+ 4uZ[hy | k > 0][[u]] and Ay(fy (4*u*)) € 14 4*uZ[hy | k > 0][[u]] we deduce
from Lemma 5.15 and Remark 1.8,5) that

By (4u)2, Ra(hy ()t € Zle | k> 0][[u]]
which implies the claim. O

Remark 5.17. It is obvious that 5{%’0, Z;l%’l, ZJ{%’C, Z;{%i and Z;{Q are integral forms respectively of U7,
A=, 0, 00+ and U0,
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Hence by the commutativity properties we also have that Uy Uz and Uy " Us " are integral forms
respectively of UOU< and UH<U.

Analogously 1;{22:{%+ and Z;{%fl;l% are integral forms respectively of U U+ and U~ UO.

We want to prove the following
Theorem 5.18. 1) ) = Z;{%*Z:{%Z;[%ﬁ so that U, is an integral form of UY;

2)Us = Z;{%'lfl;’ca%’o, so that U} and U, are integral forms respectively of U™ and U~;

3) Uy = U, UYU,, so that Uz is an integral form of U.

It is useful to evidentiate the behaviour of the Z-subalgebras introduced above under the symmetries of

Uu.

Proposition 5.19. The following stability properties under the action of o, Q, T*' and A,y (m € Z odd)
hold:

i) Uy, Z:l% and L?i are o-stable, T*-stable, A,,-stable.
Uz is also Q-stable, while Q(U) = UF.
i) UL, Z;lg 1 and Z;{% * are o-stable, T*2-stable, \,-stable.
U is also T+ -stable, while T+ (U°) = 3.
QU =00, QL") = U, and QUZ°) = U, "
iii) D, 2/7%+ and Z;I%_ are o-stable and T*-stable.
) 2;12 is also Q-stable and A,-stable; Q(Z;[%i) = Z;{%¢ ; Z;{%i is Ay-stable if m > 0, while A, (Z;{%i) C
Z/l%¥ ifm < 0.
iv) Z:{% is o-stable, Q-stable, T=1-stable, A,,-stable.

Proof. The only non-trivial assertion is the claim that Z;{%Jr is A;-stable when m > 0, which was
proved in Lemma 5.16,i).

The assertion about A, (Z;{%i) in the general case follows using that
QUYS) =UyT = A 1(Uy5), AnQ = Oy and Ay = A 1Ay
Remark that

o (e (u)) =he ()7, Qs () = A (e (u)) =hg (), T (B (u)) =hs (u).

Remark 5.20. The stability properties described in Proposition 5.19 imply that:
i) (7(1/7%7;{%?]%+) = Z]%*Z;I%Z:{%*; in particular
70 _ 270,770 7704 o 770 _ 7704770770~
Uy = Uy UUy" = Uy =Uy UyUy .

i) T (U0 U5 °) = U005 Uy and U U U is T+2-stable and Ay-stable (m € Z
odd); in particular:

Tt — et o gt — 0t et
Up = Uy Uty = U =ty "t i

iii) UY U, is T+ -stable and A _;-stable, and QUYUS ) = U, UY; in particular it is enough to prove
that (x ) Oy (u) € hy (u)US [[u]] Yk > 0 in order to show that

(") Wi (u) € b ()l [[1]], b () (7)) € U [[))hs(u) Vr € Z, k€N,
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or equivalently that U3 US C USUS and USU, C U, UY.
iv) U, USU is T*'-stable and A,,-stable (m € Z odd); in particular if one shows that (xaL)(k) (x;)(l) €
U, USU, it follows that V'r,s € Z such that 2.1 (r + s)
()0 ()Y = T 245 P ()W) € Uzt
Proposition 5.21. The following identities hold in U:

~

by (w)h-_(v) = h_(v)(1 — uo) "4 (14 uv)*h, (u)
and

Iy (u)h_(0) = h_(0)(1 — uv) % (1 4 uv)*hy (u).
In particular U9, = Z;I%7]£Z]%+ and UY, is an integral form of U°.

Proof. Since [h;, hs] = [erhy, eshs] = 0pi502r(2 + (—=1)""1)c, the claim is Proposition 1.58 with
m=4,1= -2, O

Lemma 5.22. The following identity holds in U for all r,s € Z:

exp (x5,1) exp (x;’sHv) = exp (x;;Hv) exp(—X;JrzSHuv) exp (x5,u).

Proof. The claim is an immediate consequence of Lemma 1.55,vii), thanks to the relation [x3,, x3; 1l =

_y+
X2r+25+1 : O

Corollary 5.23. U = U U3 U "°; then U3 is an integral form of U+
More in detail Uy = U3 Uz Uz = U U5 UL .

Proof. From Lemma 5.22 we deduce that:
i) ( 2,H) ) € Ut} Yk € N,r € Z; this implies that

yax el as Tt ot
¢ CUF and U5 U5 UL C U3

ii) Z]Z’Ol;lg’l C 2:12’11;(%’51/72’0, hence Z:l%"ll]g’clflg’o is stable by left multiplication by uz°,
hence by U/ (which is generated by Z;IZ+ 0 and U, 1.

Since 1 € U, ’11;12 “Uy 0 we deduce uy i, '12/72 “Uy Y and the claim follows applying )
and T (see Proposition 5.19,i) and ii)).

O
Proposition 5.24. % 2 more precisely
( ) = (ho _2k> (xH® vrez, kleN.
Proof. The claim follows by immediate application of (1.56.1). O

Proposition 5.25. In U the following holds:
i) xq By (u ) fp () (1= uT™H0(1 = u?T72) (1 + u?T72) (xg);
ii) (xg ) Ol (u )6f1+( Uz [[u]] Vk € N;

i) Uy Uy C Uy ™
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Proof. i) We have that [e,h,, xj ] = €,2(24 (=1)""!)x;" and

6 if24r
22+ (-1)"H)={2=6—-4 if2|rand4fr
—2=6-4-4 if4fr,

hence Proposition 1.60 applies, with m; = 6, my = —2, my = —1 and implies that
xd i () = b (u)(1+ uT ) 61— 12T 2)2(1 AT 4) (x] ) =
=hy(u)(1—uT 1)1 —u®T72) 3 (1 + 1T ) (x).

ii) Let us underline that (1 — u?)~3(1 + u?) € Z[[u?]], hence from the coefficients of (1 — u)®
it can be deduced that

(1—uw)(1—u?)3(1 +u?) € Z[[u?]] + 2uZ[[u?]]

and
xghy(u) =hy(u) ) arxfu" with a, € ZVr > 0and 2| a, Vr odd.
r>0

2r+1

If we define yo = },>¢ a2rx;rru2’, v = %Zrzo a27+1x2+r U we have that, thanks to Lemma

1.55,v) and viii)

exp (xg ) hy (1) = hy(u) exp((yo + 2y1)v) =

i () exp (2y10) exp([vo, 11107 ) explyov) € h () [, 0],

thanks to Remark 5.14, from which the claim follows.
iii) From the T*!-stability of I/, and the fact that T*! |ZZ%* = id we deduce that for all r €
Z,keN
(x7) Oy () € Ry ()0 [[1])-

The claim follows recalling that the (x;7)%)’s generate U and the fi;’s generate Z]%’Jr. O

Corollary 5.26. ULUS = USUZE. In particular USUE and U5, UY are subalgebras of Uy,
ry z ALy ARLY zY7 zY7 8

Proof. Uy, 2;12 C % 17 (see Proposition 5.24) and Z;lg L?%+ C Z;{%J”Z:lg (see Proposition 5.25,iii));
moreover

GE0% = Ay (0% C A (U ) = U UT
Hence U4 UY C UL
Applying o we get the reverse inclusion and applying Q we obtain the claim for I/, . O

Now that we have described (1), Z/NIZi and the Z-subalgebras generated by {49 and U, (respec-
tively by U9 and U,), in order to show that Uz = U, USU., it remains to prove that

49, C Uy and U300, C U5 U000

Before attaching this problem in its generality it is worth evidentiating the existence of some

copies of sl, inside 5f3x , hence of embeddings U < U, that induce some useful commutation
relations in U.
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Remark 5.27. The Q-linear maps f,F : si, — si;" defined by

f xF e xi, by by, e 2
Xi h c c
2rF1 2r
F: xEF s Z2FL gy 5 0=, o =
r 4 r ) r,04 2

are Lie-algebra homomorphisms, obviously injective, inducing embeddings f,F : U — U.
Corollary 5.28. f(Z]%) - ?;{2 C Uyp.
Proof. Since f (LA{%) C L?Zi’o C Uz we have that f maps Uz (which is generated by Z]% and ZZZ_ )
into Uz; in particular f (Z:l%) C Uyz. But (recalling Example 1.9)
W) = fZ 0 ho,c]) = 2" o, 2]

thus 7" [hy,2¢] C Uz. Since Uy is T-stable and T(hg) = hy — ¢ we also have Z(™)[hy — ¢] C
Uy, so that . ‘ ' ‘
ftay) =z hg,2c) € Z0 [hg, c] = 20" [ho, ho — ] € Uy

which is the claim because Q = ZM) [k, c]. O
Proposition 5.29. 17 U1, C
Pm?{; Z{%’OAZ?;{Z*’O = {(Z:(%ZZZ_) C f(U;USU5) = U, f(49) U °: we want to prove that f(113) =
flyUgtly™) € Uy,
By Corollary 5.28 f( A%) C
On the other hand
fUg") = F@¥hy | 7> 0]) = Z& [hy | 1> 0] = Aa(Z[hy | k> 0]),
hence f(Uy ") C Z[hy | k > 0] = Uy " thanks to Lemma 5.16,i).

Finally remark that fQ = Qf, thus f(Uy ") = fQUY") € QUy* C Uy~ (see Proposition
5.19,iii)).
It follows that f(U13) C U9 and Hg'oai’o CU,UUS.

The assertion for Z;I%’l follows applying T, see Proposition 5.19,i),ii) and iv). O

5.2 exp(x]u)exp(x;v)and Uy ": here comes the hard work

We shall deal with the commutation between Z;{Z+ 0 and U, A following the strategy already pro-
posed for Uz and recalling Remark 5.20,iv): finding an explicit expression involving suitable
exponentials for

exp(xgu) exp(x;0) € U U U UTUT U U [u, )]
and proving that all its coefficients lie in
Uy Uy Uy Uy Uy Uy Uy C U Uyl

Since here there are more factors involved, the computation is more complicated than in the
case of sl, and the simplification provided by this approach is even more evident. On the other
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hand it is not immediately clear from the commutation formula that our element belongs to
U, UYL, or better: the factors relative to the (negative, resp. positive) real root vectors will be
evidently elements of U/, resp. U, while proving that the null part lies indeed in {3 is not
evident at all and will require a deeper inspection (see Remark 5.39, Lemma 5.40 and Corollary
5.41).

As we shall see, in order to complete the proof that Z;{%Jr C Uz (see Proposition 5.43), it is use-
ful to compute also exp (x§ u) exp(X; v). The two computations (exp (x; 1) exp(yv) withy = x|
or y = X, ) are essentially the same and will be performed together (see the considerations from
Remark 5.30 to Lemma 5.34, of which the Propositions 5.35 and 5.36 are straightforward appli-
cations); even though exp (xj 1) exp (x; v) presents more symmetries than exp (xj u) exp(X; v)
(see Remark 5.32,iii)), its interpretation will require more work, since it is not evident the connec-

tion with Z;I%+, as just mentioned.

Remark 5.30. Let G = G(u,v) € U|[[u,v]] and y € L™ (see Definition 5.8); then

G(u,v) = exp(xg u) exp(yo)
if and only if the following two conditions hold (see Lemma 1.55,x)):
a) G(0,v) = exp(yv);
b) LG (u,v) = xj G(u,v).
Notation 5.31. In the following (recalling Definition 5.10) G, G%, G will denote elements of U[[u, v]]

of the form
G~ = exp(a-) exp(B_) exp(7-),
G" = exp(7+) exp(B+) exp(ay),
G® = exp(y)
with
a_ € vQw?][[u, v]].xy, p- € vQ[w][[u,v]]. X7, - € vQw?][[u, v]].xy,
ar € uQlw?][[u,v]].xg, B+ € uQlw][[u,9]]. X\, 7+ € uQw?][[u, v]].x7,
n € uvwQ|w][[u, v]].ho.
G(u,v) will denote the element G(u,v) = G = G~ G°G™.

Remark 5.32. Let G = G~ G°G" € U[[u, v]] be as in Notation 5.31. Then:
i) Of course

% - %GOG+ + GJ%)G* - G‘GO%
where, considering the commutativity properties, we have that
0 expa)exp(p) M) oy,
% = e><10(7+)d(“+ +5M+ ) exp(By) exp(as),

ii) If moreover G = exp (x{ u) exp(yv) withy € L™, the property b) of Remark 5.30 translates into

¥5G = expla) exp(p) =TT oy 606
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+G_Z—ZGOG+ +GG° exp(’)f+)d(0é+ +5J +7+) exp(B+) exp(as).

iii) If in addition to condition ii) we also have y = x, then TA_1Q(G(u,v)) = G(v,u); hence

G (u,0) = TA_1Q(GT)(v,u),
a_(u,v) = TA_1Q(as)(v,u),
B—(u,0) = TA1Q(B+)(0,u),
- (u,0) = TA1Q(7+) (v, u),
n(u,0) =n(v,u)

Observe that TA_1Q(X5, ) = —X5,,5 Vr € Z.

The following lemma is based on Lemma 1.55,iv) and on the defining relations of & (Defini-
tion 5.1).

Lemma 5.33. With the notations fixed in 5.31 we have that:

i) Xy exp(a-) =

= exploc) (] + o n )+ 30 nLa + gl a-La) o)
i) f exple_) exp(B_) = expla) exp(B_).

(s + ]+ g aha)+ L]+ 36

iii) (xg + [xg a-])exp(r-) =

iv) xg exp(1) = exp(11) (yo + y1) with

vo € QP [[u,oll.xy, 1 € wQlw[[u,0]].x7

v) (Yo +y1) exp(r+) = exp(7+) (Yo +y1 + [yo, 7+])-
vi) In conclusion
xg G = Z—i
if and only if the following relations hold:
T = b B+ [l o]
du
B = 2l a e e - ol e Ly lr)
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%— _ %[[xaL,tx_],(x_] + %[[xo*,v—],v—]
ZZ g v-] + [xg o]
df—; = [yo, 7+]
% =
Remark that dﬁ = yo and 7+ = 1 is equivalent to w =Yo+ -

Proof. i)-v) are straightforward repeated applications of Lemma 1.55,iv) remarking that:

i) and ii): [[[xj,a—],a—],a_] € U*[[u,v]], hence it commutes with both a_ and B_ (which
are in U~ [[u,v]));

ii): B~ € U *“[[u,v]], hence it commutes also with [[xJ,a_],a_] and [xj, B—] (which belong
to U~ [[u,v]]) and with [x{,a_] (because [hy,+1,U ] = 0Vr € Z);

iii): [[xg,v—],7—] and [[[x], a—], 7—], 7—] belong respectively to & ~°[[u,v]] and U ~*[[u, v]],
so that they commute with y_ € I/ ~°[[u, v]]; the claim follows from the identities

(xg + [ -] explr-) = exp(y-) - (xf + [ e ]+

) g e v+ gl L] + il e v-r-])
and
exp(y-)[lxg, a-],v-] = ([lxg, ] v-] = [llxg &), v-Lv-1) exp(r-);
iv): Lemma 1.59 implies that exp(;y)flxo+ exp(17) € Qw][[u,v]].x];
v): v+ € U [[u, v]] commutes with both y; € U+ [[u,v]] and [yo, v+] € UT*[[u,v]].
Point vi) is a consequence of points i)-v) and Remark 5.32,i).
O

Lemma 5.34. By abuse of notation let ., B+, v+ and 1 (see Notation 5.31 and Lemma 5.33,iv)) denote
also the elements of Q[w][[u, v]] such that

ap = ay(w?)xf, Br =B+ (w).X{, v4 =74 (w?)x],

a=a(w)xy, po=p-(w).Xy, v =7-(w)xg,
1 = 1(w).ho
Then the relations of Lemma 5.33,vi) can be written as:
da_ (w?
W) 4p (—0?) — b (@R)y-(w?),

B0 _ () (n () - 392 (),
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d(ay (w?) + wys (w?))

I = exp(—4n(w) +2n(-w)),
dB(w) _ dai(—w)
du - du ’)/+( ZU)
Proof. The claim is obtained using Lemma 5.11. Indeed
do_ da_(w?) _—
= and [ B+ ([ e -] =

— [ B (@)X ]+ (I (0257 ], 7 (w2).xg ] = (by (i)
=4 (—w?).xy + [[xg, wa— (w?).xg ], v-(w?).x5 ] = (by (if))
= 4‘[5,(—w2).x1_ + [wa,(wz).ho,'y,(wZ).xO_} = (by (iv))
=4B_(—w?).x] — (dwa_ (w?) + 2wa_ (w?))y_(w?).x, =

= (4B (—w?) — 6a_(w?)y— (w?)).xy;

B = B X7 and §lIxg e ] o] = 3l el -] -] =
= 2lllxg e (@) ] o (w2).xg ] & (02) a7 )+
Sl we @) a5 ] - (@) - (wP).xg] = (by (i)
= Hlwa (@).hg, wa—(w?) 25 ]2 (@) 7]+
— Sllwa (@) o, (@P).x5 ], - (@) 5] = (by ()
= [Pl ()3, 0 (wP) ] 4 Bloow @Ry (wP).xg 7 (wP) ] =
= (wed (~w) ~ Ba_(~w)7? (~w)).X;
G = D o7 and 3l o] ] + 3l v-) -] =
= b wn (@) a5 wa—(@P)xg ]+ 5[5, - (@2)xh, 7 (@P).xg] = (by ()
= Slwa (@), wa (@).x5]+ 3 [ (@) o, v (@) 5] = (by (i0))
_ —%[6w0c_(w2)woc_(w2).x0_ - %27% (@?) x5 =
= 302 (@) — 7 ()5
@ = M8 g and [, 7]+ [, a-] =
7 (07) g+ g o () 5] = (by
(7- (@) + wa (@) ho;
d(a%w) _ d(m(wz);uww(wz))'xg and yo +y1 =

= exp(—1)xy exp(y) =

= exp(—1(w).ho)xg exp(n(w).hg) = (by (iv) and Lemma 1.59)
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— exp(—47(w) + 27(—w)).x;;

d d
% = ﬁg£W)Xf_ and [yOr '7+] = {%/ ,Y+:| =

14 ZUZ
_ [d;y_xg,%(wz).xﬂ — (by (1)

_ _dai(-w) v(—w). X

Proposition 5.35.
exp(xqgu) exp(X; v) =

= exp(a—) exp(B-) exp(r-) exp(i7) exp(7+) exp(f+) exp(a+)

where, with the notations of Lemma 5.34,

4uv u

a(w) = 1 — Lwusev?’ wy(w) = 1 — 42wute?’

(1+3-42wu*v?®)v

(1 — Lwutv?)uto

B-() = APty P+ W) = gy

—42q130? —4u3y

1-(0) = T i ) = T

n(w) = %ln(l + 4wuzv).

In particular:

i) (x)O (X)W e U, USU forall k,1 € N;
i) h (4u)2 € Uz |[u]).

Proof. We use the notation fixed in 5.31.
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It is obvious that G(0,v) = exp (Xl_ v) , so that the condition a) of Remark 5.30 is fulfilled, and

we need to verify condition b), following Lemmas 5.33,vi) and 5.34.
Remark that

di (w) dwuv dwuo(1 — dwu’v) ) )
du - 1 + dwuv = 1 — 422 y402 = ZU(X,(ZU ) + - (w )
and ,
1 — 4dwu“v
exp(—4(w) + 2y(=w)) (14 4wuv)?’
2 2N M(l —4wuzv) . u
ar (@) + oy (') = 1— 2w2y402 1+ dwuo’
so that

d(ag (w?) +wys (w?) 1+ 4wu®v — 8wuv
du (1 +4wu?o)?

Now let us recall that Vi, m € IN and Va not depending on u

d o™ (4m — n)au" T3
du (1 —aut)m (1 — au#)m+1 ’

= exp(—4n(w) + 21 (-w)).
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hence, fixing a = 42w?v?, we get

da_(w?)  4o(1+ 3au?)

du (1 —aut)2’
dB_(—w?)  —4audv(1+ 3au?)
du N (1—au*)® 7
dy—(w?)  —a(3u®+ au®)
du  (1—aut)2
day(w?) 1+ 3au?
du  (1—au*)?’
dB+(—w?)  4oud(1+ 3aut)
du (T —aut)’

remark that w — —w? induces an injective algebra endomorphism of Q[w][[u]] commuting with
4 which allowed us to use the same a = a(w, u) in the computations involving B .
The relations to prove are then equivalent to the following;:

40(1 4 3au*) = 4(1 — 3au*)v + 6 - 4uv - au®,
—4auPv(1 4 3au*) = 4uv(—w?4*u’v® — 3a°u®),
—a(3u® + au®) = —3w? - 42u*0? — a®u®,
4130(1 + 3au) = (14 3au*)4u’y,

which are easily verified.

Then, since a+, B+, v+ have integral coefficients, i) follows from Remark 5.14 and Lemma
5.16,iii).

ii) follows at once from the above considerations, inverting the exponentials: indeed, recalling
Remark 5.13 and Notation 5.31 we have

exp(y) = exp(n(w).ho) = hy (4u?0)V/? = (G7)! exp (xgu) exp(X;0)(GT) ™!

which belongs to Uz [[u, v]] because so do all the factors.

Proposition 5.36.
exp(xf 1) exp (x7v) =
= exp(a—) exp(B-) exp(71-) exp(1) exp(71+) exp(B+) exp(a+)
where, with the notations of Lemma 5.34,

(1 + wu?v?)u (1 + wu?v?)o

w(w) = 1 — 6wu?0? + w2utvt’ #-(w) = 1 — 6wu?v? + w?utvt’
B (w) = (1 — 4wu?v? — w?u*o*)udv B (w) = (1 — 4wu’v? — w?u*o*)wuovd
T T 0w + wtifot)2 T TN T (14 6wi2e? + wludor)?
(w) = (=3 + wuv?)u?v (w) = (=3 + wuv?)wuv?
T = T T swize? 1 w2t TN T T T ewouo? 1+ wtidod
1

n(w) = 3 In (1 + 2wuv — wzuzvz).
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Proof. We use the notations fixed in 5.31.

It is obvious that G(0,v) = exp (xf v), so that the condition a) of Remark 5.30 is fulfilled, and
we need to verify condition b), following Lemma 5.34.

First of all remark that
1—6t2 +t1 = (1+2t—12)(1 -2t — )
and that
T+ 4+ (3+2)t=1-3t++=(1-t)(1-2t—1?);
thus, replacing t by wuv, we get

(1—wuv)u
ae (%) + Wy (@) = 1+ 2wuv — w?u?v?

and

(1 — wuv)wo
wa— (?) + - () = 14 2wuv — w2u?v?’

Hence the relations of Lemma 5.34 involving # are easily proved:

dn(w) (1 — wuv)wo 5 5
du 1+ 2wuo — whiZo? wa (@) + - (")

and

1 — 2wuv — w?u?v?

1+ 2wuv — w2u?v?)2

exp(—4n(w) +27(-w)) = (

while, on the other hand,

d =2 1-2t-1F
dt1+2t—2 (142t —12)2
so that .
d 5 5 1 —2wuv — w uv
%(oq(w ) Ty (@) = (14 2wuv — w?u?v?)?
and

d
exp(—41(w) + 29 (—w)) = (a4 (0?) + i (@?)).
In order to prove the remaining relations remark that for all n,m € IN

d ¢" ot 6(2m — )" 4 (n — dm)t 3

dt (1 —6t2 4 thym (1 — 612 + t4)m+1 ’

which helps to compute the derivative of a1 (w?), B+(—w?) (which is equivalent to computing
that of B4 (w), see the proof of Proposition 5.35) and y_ (w?), fixing t = wuv and recalling that

u = wvﬁl
da_(w?)  wo?(14t — 483 — 2°)
du  (1—6t2 442 7
dB_(—w?)  w?v3(—1— 302 — 12¢* 4 14¢6 — 3¢8)
du N (1—6t2+14)3 ’
dy—(w?)  w?v?(—3 — 15t> + 3t* — %)
du (1—6t2+14)? ’

day(w?) 1492 — 9t — 6
du (1 —612+t4)2 7
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du (1—6t2414)3
The relations to prove are then equivalent to the following;:

dBy(—w?) w2 1312 +26t* — 36t° + 68 + 1)

14t — 43 —26° = —4(1 + 4% — )t —6(1 + 2) (=3 + )¢,
13082 —12¢* + 1415 — 318 = (1 + 2)(— (1 + 1?)* = 3(—3 + £2)%1?),
—3—15¢2 + 3t — 16 = —3(1 4 12)% — (=3 + £2)%?,
312 426t — 3610 4+ 618 + 110 = — (14912 — 9t* — 19) (=3 4+ )12,

which are easily verified.
O

Remark 5.37. Since (1 + 6t2 + t*)~1 € Z[[t]] Proposition 5.36 implies that (G*)*! € Uz [[u,v]] (see
Notation 5.31). As in Proposition 5.35,ii), it also implies that exp () € Uz. Then, in order to prove that
(x) W ()W € TGS,

we just need to show that exp(17) € UY[[u, v]]. This will imply that U, USU is closed under multipli-
cation, hence it is an integral form of U, obviously containing Uz.

In order to prove that Uy = Z;{Z_Z:I%Z:{g we need to show in addition that Z;l% C Uz.
The last part of this Chapter is devoted to prove that

exp (; 1n(1 +2u— u2).ho> e U9 [[u]]

(see Corollary 5.41) and that UY, C Uy (see Proposition 5.43).
Notation 5.38. In the following d : Z — Q denotes the function defined by
y (—1)"*1‘%"»:” - % In(1+2u - u?)
n>0
and d = ed (that is d,, = e,d,, forall n > 0, where €, has been defined in Definition 5.12).

Remark that with this notation we have exp(n) = flf}(uv) (n as in Lemma 5.34 and Proposition
5.36, ﬁid} (1) as in Notation 1.15, where we replace I (u) by fzid} (u) in order to distinguish it from its
symmetric fzid}(u) = Q(fz{f}(u))).

Remark 5.39. From 1+ 2u —u? = (1+ (14 v2)u)(1+ (1 — v/2)u), we get that:
i)foralln € Zy dy = (14 V2)" + (1 — V2)"); equivalently 36, € Z such that

VneZy (14+V2)" =dy+6,V2.

ii) dy, is odd for all n € Z.1; 6, is odd if and only if n is odd.

iii)) ZIW | k > 0] € Z[fy | k > 0] (indeed (4  d)(4) = dy — dy = 17 — 3 = 14, which is not a
multiple of 4, see Propositions 1.18 and 1.19).

iv) Z[fl,id} | k > 0] C Z[h | k > 0] if and only ifZ[fzij} | k > 0] C Z[hy | k > 0] (see Remark
5.13).

Lemma 5.40. Let p,m,r € Z. be such that p is prime and (m, p) = 1. Then

ifpr =4 pr =4 | (d4m +d2m),
£ | — i)
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Proof. The claim is obvious for p” = 2 since the d,’s are all odd.
In general if # is any positive integer it follows from Remark 5.39 that

dnp + 5np\/§ == (dn + 571\/5);7.
If p = 2 this means that
doy = d? + 252,
Oon = 2dy 0y,

hence by induction on
2" | 6oryy and 21 4 Gy, (recall that 6y, is odd since m is odd)

dzrm = dz (mod 22771),

2r=1m

from which it follows that
domy = —1 (mod 4),

dyry =1 (mod 27FY) ifr>1:
indeed, since d,;, and §,, are odd,
dZm 5(8) 142 5(4) —1,
while if r > 2 then 2r — 1 > r 4 1 and by induction on r we get

dyr = d2_1 = (£1+2k)?> =1 (mod 2" 1),

2r=1y

These last relations immediately imply the claim for p = 2.
Now let p # 2. Then

—2h
= 1 (4, )27,
h>0

p h gp—2h—12h41
5pn = Z ( )2 dn 1) .
=0 2h+1 "
Suppose thatd, = d + pr’lk, on =0+ p”lk’ withk =k’ =0if r = 1. Then

dpn = ;DZ:O (51) 2hgp=2152" (mod p")

(5pn = Z <2hr—)~_1>2hdp—2h—152h+1 (mod pr)

The above relations allow us to prove by induction on r > 0 that if {, is defined by the properties
0y € {+1},p =(,) 2'T then

dprm = dpyra,, (mod p') and Sy = Cpd, (mod p") :

r—1iy

indeedifr =1
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remark that (d + p"~1k)? = d¥ (mod p") and if 0 < h < p, p | (V) and (d + p"~1k)" = d" (mod p"1);
then if r > 1, using relations 5.2 and 5.2 with d = d and 6 = 0,,-2,,, we get then

prfzm
— P \ohgp=2h son
dprm :(Pr) h;() <2h> d r Zmépr 2m dprflm/

_ p h gp—2h—1 2p41
Sprm = (o) < >2d o2l — s
p'm p r— pr 14

(r") };) 2h+1 2m 2m prm

Corollary 5.41. W e Zhy | k> 0] foralln > 0.
In particular (x)®) (x7) V) € U, USUL Vk,1 € N.

Proof. The claim follows from Propositions 1.18 and 1.19, Remark 5.39 and Lemma 5.40, remark-
ing that if m is odd then 5 B
d4m + dZm = _(d4m - dZm)
while if (m, p) = 1 and p" # 4 then
dyrm = dyr1yy = F(dprm — diyry,)-

pr—lm
Thus foralln > 04" € Z[iy | k > 0] and i\ € Z [y | k > 0]. O
Corollary 5.42. USU, C U, UL ; equivalently U, U is an integral form of U.

Proof. The proof is identical to that of Proposition 4.24 replacing I with I, having care to remark
that in this case, too,

(O e Yy, 05U, VrseZ, k1 eN:

m>0

if  + s is even this follows at once comparing Proposition 5.29 with the properties of the grada-
tion, while if r 4- s is odd it is true by Proposition 5.36 and Remark 5.20,iv). O

Proposition 5.43. Z/N{% C Uz and Uy = Z;IZ_LNI%Z;I%

Proof. Let Z be the Z-subalgebra of Q[h, | r > 0] generated by the coefficients of ﬁ:{f} (u) and of
fiy (4u)'/2. Remark that, by Propositions 5.35 and 5.36, Z C Uy.

We have already proved that Z C Z[h | k > 0] (see Lemma 5.16,iii) and Corollary 5.41). Let
us prove, by induction on j, that h; € Z forall j > 0.

If j = 1 the claim depends on the equality h=h = fzid} (since ey =dqi = 1).
Let j > 1 and suppose that /11, ...,Ej_l S

We notice thatifa : Z, — Z is such that fl]{a} € Z then ajfzj € Z:indeed it is always true that

hi+ (—1YLL e Qlmy, .., hj1]

and

L e Qlh, ..., hj_i]

from which we get that
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but the condition fl]{a} € Z C Z[h | k > 0] and the inductive hypothesis Z[hy, .., hj_1] C Z
imply that

ilj{a} — EJlZ]fl] S Q[hl,..., h]',l] ﬂZ[flk | k> 0] = Z[flh...,hj,l] CcZ
hence a]ﬁj cZ.
This in particular holds for a4 = d and for fta} (u) = hy (4u) %, hence
dJE] € Z and 22j—1flj € Z.

But (d;, 22/=1) = 1 because d; is odd, hence flj € Z.
Then Uy" = Z[ly | k > 0] = Z C Uz and, applying Q, Uy~ C Uz. The claim follows
recalling Corollary 5.28. O

We can now collect all the results obtained till now in the main theorem of this work (see
Theorem 5.18).

Theorem 5.44. The Z-subalgebra Uz of U generated by
{H®, ()W | rezkeN}
is an integral form of U.
More precisely
1z 20" @Uy ol  oly Uy oUy" Uy @l @Uy"
and a Z-basis of Uz is given by the product
B*,l B*,CBf,OBO,f BhBO,+ B+,l B+,CB+,0

where BV, B B BOE gnd BY are the Z-bases respectively of U i’o, Z:{;’l, Z;{%’C, I;{%i and Z;[% given
as follows:
BV = {(xi’o)(k) = H(xzir)(k’) | k : Z — N isfinitely supported}
reZ

B! = {(xi’l)(k) = H(xitﬂrl)(k’) | k: Z — N isfinitely supported}
rezZ

B¢ = {(Xi)(k) = H(Xzirﬂ)(kr) | k:Z — N is finitely supported}
reZ

BY* = {flljt = 11—]1[\1 lell | k : N — NN is finitely supported}
€

BY = {(ﬁ{O) (Ii) | kkeN}.
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Chapter 6

Comparison with the Mitzman
integral form

In the present chapter we compare the integral form Uz = *Uz (si;") of U (described in Chapter
5) with the integral form Uz (s{;") of the same algebra f introduced and studied by Mitzman in
[11], that we denote here by Uz ) and that is easily defined as the Z-subalgebra of I/ generated
by the divided powers of the Kac-Moody generators ¢;, f; (i = 0,1): see also Remark 6.11.

More precisely:
Definition 6.1. { is the enveloping algebra of the Kac-Moody algebra whose generalized Cartan matrix

is Aéz) = (ai;)ijefo1)y = (_24 _21) (see [8]): it has generators {e;, fi, h; | i = 0,1} and relations

[hi,hi) =0, [hi,ej] = aijej, [hi, fi] = —aijfj, lei fi] = 6ihi (i,5 € {0,1})
(ade;)' i (e) = 0 = (adf;)' "I (f;) (i #j € {0,1}).

Definition 6.2. The Mitzman integral form Uz p of U is the Z-subalgebra of U generated by {efk), fi(k) |
i=0,1, k€ N}.

Remark 6.3. The Kac-Moody presentation of U (Definition 6.1) and its presentation given in Definition
5.1 are identified through the following isomorphism:

1 1 11
1= xg, i xy, = hy e <X, forr X, ho = g€ = Sho.

Notation 6.4. In order to avoid in the following any confusion and heavy notations, we set:
1 1 1
+ _ + N .
y27+1 - ZX27+1/ k, = Ehr, c = Zc

where the Xzir 115, the hy's and c are those introduced in Definition 5.1: thus eg =y, fo = v, while

the Kac-Moody ho and hy appearing in Definition 6.1 are respectively ¢ — ko and 2kg; moreover Uz, p1 is
the Z-subalgebra of U generated by {(x)"), (yil)(k) | k € N}.

Remark 6.5. Uz 1 is Q-stable, exp(+ade;)-stable and exp(Fadf;)-stable. In particular Uz p; is stable
under the action of

T = exp(adey) exp(—adfy) exp(adey) = exp(ady; ) exp(—ady™,) exp(ady; ),

of
7 = exp(ade;) exp(—adf;) exp(ade;) = exp(adxy ) exp(—adx, ) exp(adxy)

and of their inverses (cfr. [7]).
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Proof. The claim for () follows at once from the definitions; the remaining claims are an immedi-
ate consequence of the identity (ada)™ (b) = ¥, s, (—1)*abal®). O

Remark 6.6. Recalling the embedding F : U — U defined in Remark 5.27, Theorem 4.25 implies that the
Z-subalgebra of U generated by the divided powers of the yfr 1 S is the tensor product of the Z-subalgebras

ZWyE | r € Z), 2V ks | 7> 0], 20 kg — 28],

Mitzman completely described the integral form generated by the divided powers of the Kac-
(2)

Moody generators in all the twisted cases; in case A, his result can be stated as follows, using
our notations (see Examples 1.9 and 1.2, Definitions 1.6 1.21 and Notation 6.4):

Theorem 6.7. Uz,m = Uy )y @z U%,M Qz Mg,M where
Z/{%,M >~ 7 i) [xzir |+ € Z) @4 Z) [yitr+1 | r € Z) @4 Z17) [xzir+1 |reZ] =

=725 | € Z) @z Z "y | 1 € Z) 0z 297 x5, | v € Z,
UG 1 = Zy[k—r | 7> 0] @7 2™ 2k, & — ko] ®7 Z) [y | 7> 0].

The isomorphisms are all induced by the product in U.

Remark that Z™)[2kg, & — ko] = ZM kg — ¢,2¢] (see Example 1.9) and Z[k, | r > 0] =
Z5YM [k, | r > 0] (see Theorem 1.30).
Remark 6.8. As in the case of sl, (see Remark 4.12) we can evidentiate the relation between the elements
ky's with k > 0 and the elements p,,1’s (n > 0) defined in [5] following Garland’s Ay’s.

Setting

Y puu” =P(u) = k(—u)?

n>0

we have on one hand Z[ky | k > 0] = Z[py | n > 0] and on the other hand

po=1, pn= kKepu—r Vi >0,

S|
iyt

hence pn = py1 Vn > 0 (see [5]) and Z[ky | k > 0] = Z[pn1 | n > 0].

Corollary 6.9. Uz C Uz m.
More precisely:
ZW (Xt rez)cz"yE e z),

r
so that Uy C Uy \and Uy C Uy \p
Z My, c] = ZM) 2k, 4¢) C 71 2k, & — ko)
and (see Definition 5.12)
2 ey | 1> 0] € 2V [k, | > 0]
(and similarly for the negative part of Z/{%/ ) 50 that UY C L{%/ M-

Proof. For Z(@) and Z (") the claim is obvious. For Z(¥") the inequality follows at once from

the fact that k; = %1 does not belong to Z¥™ (e, | r > 0] while the inclusion follows from
Propositions 1.18 and 1.19 remarking that for all ¥ > 0 e,h, = 2¢,k,.

Then the assertion for {7 and Uz, follows from Theorems 5.44 and 6.7. O
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Remark 6.10. Theorem 6.7 can be deduced from the commutation formulas discussed in this work and
collected in Appendix 9.A, thanks to the triangular decompositions (see Remark 5.3) and to the following
observations:

i) U \y is a Z-subalgebra of U:

indeed, since the map hy +— k,, ¢ — ¢ defines an automorphism of U°, Proposition 5.21 implies that
k(u)k_(v) =%k (0)(1 — uv) 41+ uv)®%k, (u).

ii) Z/{+M and Uy \q are Z-subalgebras of U:

indeed the [(x3,)®), (x5, 1) D]'s (the only non trivial commutators in Uy \p) lie inUty C Uy, on
the other hand Uz, = Q(Uz \)-

iii) exp (Lyso X u") € Uy y,[[u]] if ar € Z forall v > 0:

see Lemma 1.55,viii), condition (1.7.1) and the relation [x;r, x;rs +1] =

iv) Uy \Uy \ and Uy U \, are Z-subalgebras of U:

that (yztﬂ)( )L{% M C L{O L{%,Mfollowsfrom Remark 6.6; moreover by Propositions 1.56 and 1.60
we get
kg —¢C kg—C—k
GO = (7 T e,

_ (k)
() Wk () = £ () ((1‘T1+) ,

A = xt, Ay(Re () = & ().
On the other hand Uy, MZ/{%/ M= Q(Z/{%MZ/{%’ M)
0) Uy \Uy \iU oy B a Z-subalgebra of U:

At
4310541

(W) ety = Uy uytly < Ui,MU%,Muir,M

(see Theorem 5.44 and Corollary 6.9),

(yztm(") (Y2511) O e Uy Uy Uz
(see Remark 6.6), and
exp (xg u) exp(y; v) =

= exp(a—) exp(B-) exp(v- k4 (1?0) exp(7+ ) exp(B+) exp(a+) (6.10.1)

where
Uuv u

_ _ +
R R by o R S [ I P B

g = (143 - wutv®)o _ 8 (1 — wu*o?)uv
T Qw1 PR T T Az Y
 —whte? _ —ud 4
L e v S Qe B e R

(see Proposition 5.35 recalling Definition 5.10 and Remark 5.14), so that (x, )(k)( ) Ties in Uy Aty MZ/{%,M
for all k,1 > 0; from this it follows that (x; )k )(y2s+1)(l) and (3/25+1) D(x;,)®) lie in Uz U 1lz
forallv,s € Z,k,1 > 0 because Ui MZ/{% Mug, M 18 stable under T, Ay (m € Z 0dd) and Q, and

=T " A2rg2541(50)s Yagpn = (=1)'T " Agryasia (y7 ),
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Yasr1 = QY g 1), X = Q)
vi) Uz,m € Uz, Uz pUz,
it follows from v) since (xF)*) € Z\¥) [xE | r€ Z] and (yil)(k) € zdv) [ygcrJrl | rez).

vii) Uz 3, C Uz m:

this follows from Remark 6.5, observing that
TO(x;i—) = (_1)r—1xr—+1, Tl(xr_) = X;’_, Tl(yzf-}-]) = y;-ﬂf TO(]/;—H-l) = _y2_r+3'

viii) Z/{%M C Uz m:

it follows from vii), relation (6.10.1) and the stability under Q).
ix) Uy Uy \Uz v C Uz,

this is just vii) and viii) together.

Then Uzm = Uy, MZ/{%/ Mbli s Which is the claim.

Remark 6.11. As one can see from Remark 6.10,vii),

{xri,yfrﬂ,ks,Zko,E— ko |r,s€Z,s#0}

is, up to signs, a Chevalley basis of s{;" (see [11]).

_ Itis actually through these basis elements that Mitzman introduces, following [6], the integral form of
U, as the Z-subalgebra of U generated by

{(H®, (3, ® | r € 2,k e N}

but this Z-subalgebra is precisely the algebra Uz, )y introduced in Definition 6.2: indeed it turns out to be

generated over Z just by {ei(k),fl.(k) |i=0,1, k > 0}, that is by { (i), (y%)(k) | k > 0}, thanks to
Remarks 6.5 and 6.10,vi7).



Chapter 7

Other integral forms of Aéz)

In this chapter we describe two other integral forms /7 and Uz of the enveloping algebra U =
U(sl;") of the Kac-Moody algebra of type A( ) (see Definitions 7.1 and 7.2), Uz is generated
by the divided powers of the Drinfeld generators x;- and by the divide powers of the elements
1X Uy is generated by adding extra elements /i, to Uz (see Definition 1.31). As we shall

27417
see later (see Chapter 8), if we consider the Z-algebra generated by the divided powers of the

positive Drinfeld generators x; (i € I, r € Z) in the case of Agz) for n > 1 then this algebra
also contains the divided powers of the elements %Xf 241, for this reason we are interested in the

study of Uz. There are two remarkable differences between Uz and Z/NIZ the first, as previously
announced, is the presence of the divided powers of the elements er +1- The second difference
concerns the structure of the (positive and negative) imaginary component. In fact, in this case
Uz NUYT # Z¥™[h, | r > 0] is no longer an algebra of polynomials (see Remark 1.39 and
Theorem 7.14), but we exhibit fora Garland-type Z basis (see the description if ZMN) [, | r > 0]
in Definition 1.35). We shall also show that Z/[Z can be enlarged to another integral form Uz of
U with the same positive part (that is Uz NUT = Uz NUT = U ) is the Z-subalgebra of U
generated by {(x;7)®), (X o +.1)® | r € Z,k € N}) and such that Uz N U+ = Uyt 2 Uy" isan
algebra of polynomials. iz and Uz will be introduced and studied together and the description
of Uz will also avoid unnecessary computation in Iz.

The notations are those of Chapter 5.

Definition 7.1. Let us define Uz, to be the Z-subalgebra of U generated by
_ 1 1,
(@)Y, )0, X500, (5%, )W | r e Z,keNY,
Uz and U, be respectively the Z-subalgebras of U and U~ generated respectively by

()0, (X,

)P rez keNy,

and ,
{(x)®, (= X;,H) ®) | r ez, ke N},

and let UY™ = Uz NUY*, UY = Uz NU° and Z/IQ = 71" [k, €.

Definition 7.2. Let us define Uz by the Z-algebra of U generated by

{(1X§+l)( ) (1x;,+1)< ), (xH)®, (x )0 h | r e Zk e Ns € Z*Y,

73
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Uy =z m(n, | +r > 0] = Z[hy | £r > 0], Uy = 21" [hy, $] and U is the Z-subalgebra of U°
generated by Ll%*, U% and Z/l%f (see Definition 1.31).

Remark 7.3. U, and U, are integral form of U and U~ respectively, a basis of U, that is BE, is given

by the ordered monomials in the divided powers of the elements {x;, %Xzir 41 | v € Z}, it follows from

Definition 5.12 and Corollary 5.23 observing that %Xzirﬂ are central in Z/_{%.

Remark 7.4. Of course Uy ™ and Uy~ are integral form of %+ and U%~.

Lemma 7.5. The following identity holds in U°[[u, v]]:
()b~ (u) = h~ (1) (1 — uv) (14 uo) " 2h* (1), (7.5.1)
in particular Z/V{%’fl;{%+ c LV{% and Z/Vl% is an integral form of U°.

Proof. Since [Lhy, $hs] = 6,150r(2 4+ (—1)"1)1c, Equation (7.5.1) follows from Proposition 1.58
withm =1,1 = % by substituting 5 in place of c.

O

Proposition 7.6. The following relations hold in U[[u]]
xgh T (u) =T () (1= T ') N1 = T72u) 3 (x]) (7.6.1)
Xt (u) = bt (u)(1— T h?) (X)) (7.6.2)

hence for all k > 0
) it @) =) (=T w1 -T2 30 Y e dS g [u]) 7.63)
0

() Wit () = R (u) (1~ T*uz)*%(xﬁ)“‘) e Uy U [[u]). (7.6.4)

in particular
7+770+ — 770477+
U Uy CUZ U,

Proof. Equations (7.6.1) and (7.6.2) follow from Proposition 1.60 respectively withm; =1, my =3
and my = 0ifd > 2and my = 1and my; = 0if d > 2. Equations (7.6.3) and (7.6.4) follow
respectively by equation (7.6.1) and (7.6.2). From the T stability of i/, and the fact that T3, =
id|;70 we deduce that for all k > 0 (x;))®h*(u) C It (u)ly[[u]] and (3X5,. )00 (1) C
h* (u)U [[u]], the claim following recalling that the /1, generate Z/V{%Jr and the (x;7)®) and the

(3%;5)) generate U} . O
Proposition 7.7. The following identity holds in U:

1 h ho — 4K\ 1
(2X2+r+l)(k)<lo> = ( " )(ZXJM)(") (7.7.1)

7+77b b7+
hence Uy U, C U,U .

Proof. Equation (7.7.1) follows from (9.2.2) by multiplying both side by (})¥. The claim follows
by Proposition 5.24 and Equation (7.7.1). O
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Corollary 7.8. UUS = USUE. In particular USUS and U, US, are inteqral form of UU T and U~ UC.
ry Z U7 - np 747 zY7 8

Proof. From Propositions 7.6 and 7.7 follow that U Z/Vl% C LV{%Z/_IE , then the proof is the same as

Corollary 5.26. O
Remark 7.9. It is worth underling that
F Uy, (7.9.1)
1 U, (7.9.2)
i C Uy, (7.9.3)

since by the very definition

and
Pt () = I () A (B (—u)~2) = B ()2 g (—ut) D),

hence Relation (7.9.1) holds (see Remark 5.14), Relation (7.9.2) follows from Lemma 7.5, Relation (7.9.3)
follows from Relations (7.9.1) and (7.9.2).

Lemma 7.10. The following identities hold in U[[u, v]]:

exp (x] )exp(lX v) _ (7.10.1)

2 —4T2 4,
exp 14724 2x0 uv | exp 7174T2u402x1u (2l
—3-4Tu*o? 1 m 21 1+4T Nt 1,
( 4T1u402 22X v> I (2u”v)2 exp ((1 S P EXl u v> -

1
+.,3 + .
( T T T2 v) exp<1—4T2u4712x1 u),

1
2r+1 )exp( e 12)) = (7.10.2)

74 2\ 1 1 1
P 1+Ts+ruvz Xo51 )'/\Z(erS)(h ((u'0°)7)2) - exp <W2 241 >, ifr+s#0;

e 2
(77

exp(2X2r L >exp<1 e 10) = (7.10.3)
(

(110 .
Xyt ), ifr+s=0;

1
exp EXZS 11)) (1+4uv)'2

Proof. Equations (7.10.1) follows from (9.2.5) substituting %v to v. Equation (7.10.2) follows from
(9.2.4) substituting respectively %u to u and %v to v. Equation (7.10.3) follows by (9.2.3) substitut-
ing %u and %v respectively to v and v . O

Theorem 7.11. The following relations hold in U
Z/_{%—Z/_{Z_ - Z/?Z/
Z/_[Z N 0 - Z/?%
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Proof. From relation (7.10.3) it follows that U U, C U, ®@ I/{h @ U since (1+4u) P C M) (o] [[u]]
(see Lemma 5.15). From Lemma 7.10 and Theorem 5.1 follows that

(UgUy) NUYT = Z(Ags(hr), Agra (R, By | 7> 0) =
Z(As(hr), Agyyr (R, 1y | 7> 0) € Z[hy | ¥ > 0]
(see Remarks 7.9 and 1.34), hence from Equations (7.10.1), (7.10.2) and (7.10.3) follow that _2 _i -
Uy. O
We can now collect all the results obtained till now in the main theorem of this section:
Theorem 7.12. The Z-subalgebra Uz of U generated by

(GX5 )W, (53X )Y, W, (5B, | re 2,k € N)

is an integral form of U. More precisely
Uz 2 U; Uy Uy @ UST @ U
and a Z-basis of Uz is given by the product B~B°B*, where U and B* are described in Remark 7.3,

B and BY are the Z-bases respectively of Uy™ and U} given as follows:

50,4 +k : e
BY {h lle—]II\I Y|k IN = N is finitely supported}

BY = {(';{0> (;E) |k ke N}.

We can now concentrate on L_{Z

Remark 7.13. It follows directly by Definitions 5.1, 7.2 and 7.1 that:

From Theorem 5.44 and 7.11 and Lemma 7.10 that L_{%i c Lvl%i and L_{%i is generated by the elements
whose the generating series series are Ay(h* (u2)), i (2u) and b (u), equivalently is generated by the

elements whose the generating series series are i(u?), it} (u) and 1€} (u) (see Notation 1.15, Definitions
1.31,1.47).

Theorem 7.14. Z/_I%Jr and L_l%f are integral forms of respectively U* and U%~, with basis given by

BOi

apol = (I Hh |e:Z4+ — {0,1} and d : Z — N are finitely supported }

k>0 k>0

or equivalently

ngf ={ I Aw(u,) TJI Awl,) |k:Zs— Nisfinitely supported}.

m>0,m odd m>0,m even
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Proof. From Remark 7.13 follows that Uy~ = Z (i, Wy, | ¥ > 0). By the very definition
() = B A () 72) = B AR () ),

hence we can consider the f1,s instead of /s, hence L_{%i = Z(fzr, fzﬁc) ,ho, | ¥ > 0). From Proposi-
tion 1.52 follows that Uy™ = Z(y, iy, | r > 0). From Theorems 1.46 and 1.42 follows that {5
is an integral form of LIO * and B0 pol and Bof are basis of L{O *. The claim for UO follows by
applying Q). O

Remark 7.15. From Definition 1.31 and Remark 1.32 we have the following relations:
It (u) =t (u)?,

Y4

i () = I (u)h* (~u),

Proposition 7.16. The following identities holds in U [u, v]]:

W (u)h=(u) = h™ (1) (1 — uv)?(1 + uv) A" (u); (7.16.1)
R (PR (0%) = h™ (0?)(1 = (u0)?)* (1 = (u0)?)~h* (u?); (7.16.2)
B ()i () = = (02) (1 = (u0)2) R (u). (7.163)

Proof. Equations (7.16.1), (7.16.2) and (7.16.3) follow from Equation (7.5.1) and Remark 7.15. O
Corollary 7.17. Uy and Uy = Uy~ USUY ™ is an integral form of U°.
Corollary 7.18. Uy = Uy C UY and US* C UY* < UY*.

Remark 7.19. Let Uz, p be the Mitzman integral form (see Chapter 6), we want to underline that Uz pp
strictly contains Uz, more precisely we have the following relations:

Uy Uy =Uy 2 Uy,
Uy =iy 2y 21
UQ,M QZ/V{% =) _2 = %'
We can now recollect the results regarding Uz in the following:

Theorem 7.20. The Z-subalgebra Uz of U generated by
_ 1 1,
{(xf)(k),(x, )( ) (5 X2+r+1)( ),( X2r+1) (k) |reZ,k € N}
is an integral form of U.
More precisely
Uy 2 Uy Uy U
and a Z-basis of Uz is given by B~B°B*, U3, and B* are described in Theorem 7.12.
Uy, is an integral form of U°, more precisely

Uy =uy Uy uy’.
2;12 =Uy, b and Z/_{%jE are integral form of respectively and U and U%*. A Z-basis UY, of is given by the

BhBY* L{ b and BY is described in Theorem 5. 44, L{O * and BY il are described in Theorem

product Bq pot B By ot

7.14.
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Chapter 8
(2)

Integral form of A,

8.1 Generalities

In this section we will use the results of the two previous chapters to describe the integral form
of Aéi) (n > 1). As wee shall see, in this case is not more true that the positive part of the
Z-subalgebra by {( +) ), (x *) k) |'i € I,r € Z,k € N} is the Z-subalgebra generated by Z-
subalgebra by {(x; ) (k) | i € I,r € Z,k € N}, it turn out that we have to add the generators

( X1+27+1 ) (k)

Definition 8.1. Let I = {1,...,n}, then qu) (respectively U) is the Lie algebra (respectively the asso-
ciative algebra) over Q genemted by {c, hiy, x3,, Xfm“ |r € Z,i € I} with relations:

[, ] =0;

2c
[hi,r/ hj,s] = 7’(sr+s,0ai,j;rz
]

_ 2c
[ x,) = 61 (hips + "Or4s0 1)
j

[hi,rr xj,s] :IZQZJ rx] st

[, xt ] = +£(=1)°X{,  if r+ s is odd
L7 "ls 0 otherwise;

[1r’ 125+1] 0;

(adx )1 =% (x5) = 0if i # j;

[xlir, i] —Oy‘r+szsevenorz7él (8.1.1)
[xf_r [xl r’ x2 s]] = - [xf:r+1’ [xl,r+l’ x;,s—zﬂ? (8'1-2)
where
2 -2 0 0
-1 2 -1 0
0o -1 2 0
A=(aij)ij=1,.m0=10 . . . |,
-1 2 =2
o -1 2

79
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1 0 O 0

0 2 0 0

D =diag(dy,dy,...,dn,do) = |0 O 0
0 0 2 0

0 0 4

and

s = {2(2+ (=) if i) = (1,0)

a;j otherwise .

. + — . ~7
Notice that {x;, x; [r € Z,i € I} generates U.

1,1’/
Definition 8.2. Let us define the following subalgebra of U:
UT, U™, U are the subalgebras of U generated respectively by

{x;; lieLreZ}, {x;, |i€LreZ}, {chy,|i€lreZ}
Definition 8.3. Ag? and U are endowed with the following anti/auto/homo/morphisms:
o is the antiautomorphism defined on the generators by:

+ +
xi,r = xi,r’

+ +
Xl,r = 7X1,r’
hiy = hiy,
cr— —c;
Q) is the antiautomorphism defined on the generators by:
+
xXp, xl.:f_r,
+
Xy, = X,
hiy = hi—y,
c—c
T is the automorphism defined on the generators by:
+ T
xi,r = xi,r:Fl’
+
Xl,r = _XIVZFZ’
hi,r — hi,—r - rfsr,OC/
crHc.
Notation 8.4. Let us define the following sets
Py, =f{ai+--+aj|1<i<j<n},
Dy, = {20+ 20 F a1 <i<j<n},
+ _ ot +
Dy =Dy, Uy,
Recalling that the root system of Aéi) is @ = O U D™ where P = Pt YD, Ut =~
Pret = cpfs’ff,+ U q);sﬂr U cp;’ferl
Ot ={a+rd|acdf,rez},
Ot ={at+rdlac®f, reZ}

P = {204 (2r+1)5 | a € D, 7 € Z},
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in particular we have that:

P = DT UDET =W -ay,
D =PIt UDTT =W -ay,
=0T URT =W ay,
O =W -0 UW-ap UW - .

dIMm = it Y oim— it = _dim— yhere
OME = {£md | m € Z-o}.

Definition 8.5. Forallw € Wy - {a; | i € IU{0}}, that is « = w(«;) for some w € Wy, let us define

X = Ty -+ Ty (x::o) ifw =0y ...0G.

Remark 8.6. x,, is defined up to sign. In particular the Z-subalgebra generated by {x,gk,) lae W-{a; |
i€lreZkeN}}is uniquely determined.

Remark 8.7. {x, | a € @'} is the set of Chevalley generators used by Mitzman. In particular the
Z-subalgebra of U generated by {(e;)%) | i € TU{0},r € N} is a free Z-module with basis the ordered
monomials in the divided powers of the x,’s.

Definition 8.8. Foralli € I\ {1}, let us define the following elements:

Xt

o (yE
i2r+1 = Tl(X

12r41)-

Definition 8.9. The following maps are Lie-algebra homomorphisms, obviously injective, inducing em-
beddings:

2 2

$1: Ag ) - Aén)
Xy oy,

hr — hl,r

c+— 2c.

g A 5 AP ifi £1
Xy g,
by v— by,
c—C

5 A® (8.9.1)

- 2
IIJ :A( ) 2n

2(n-1)

+ +
xi,r = xi,r
hr —> ]’l,‘,,
c—C

§:AD Al (8.9.2)

n—1
+
i+1,r

hi,r = hi+1,r
c—C

+
X, X
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Definition 8.10. Here we define some Z-subalgebras of U:
Uz is the Z-subalgebras of U generated by

{0, (x) W |rezkeN,iel};

ir

Uz, and U, are the Z-subalgebras of U respectively generated by

{(x})W |rezkeN,icl},
{(x;) W |rezkeN,icl}

Uz, and U, are the Z-subalgebras of U respectively generated by

{(x

{6, X)W I r€ZkeN i€ I};

1

DB GXi) W IreZkeN e,

ir

2
1

2

Z/_l%Jr and L_{%_ are the Z-subalgebras of U respectively generated by

uy = 7" hg,cliel,

{ip i1, |7 >0,i €1},
{fli,rr ljll,r/| r < 0,1 S I},

The notations are those of Chapter 1.

Remark 8.11. Of course we have that Uy* C Z[hy,, hn, | i € I\ {1},4r > 0. UY* and U are
integral form of respectively U** and U".

82 AP

Let us fix in this section 7 = 2. In this part we want to study the algebra I/ (Af) ), to do this we
first want to study the straightening formulas within the algebra and express them in terms of

the Lie bracket.

Lemma 8.12.

X1 [xfo, xzr}] =2x5;

X1 [xfo, [xfo, x;r]]] = Z[xfo, er]?

1o [0, [0, [0, 43,011 = 455
[XZO’ xirﬂ - xfr’

x2_,0’ [x;:()’ Xir]] = ZXf_r
X500 [XZO' [xzo, X;rr]]] = 2[3(;:0, Xfr}
X500 (%50, [xzo, [xzo, Xfrr]]]] = 4Xfr.

(8.12.1)
(8.12.2)
(8.12.3)
(8.12.4)
(8.12.5)
(8.12.6)
(8.12.7)
(8.12.8)
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Proof. Prove of equations (8.12.1),(8.12.2),(8.12.3) and (8.12.4)

[Xio, [x{r,or x;:r]] =

X1 or [xl % [XTO' X3, 2ol =

[x1
[[XILO x3,) o] + [x7)
[x

- [xsz [xf,or x;r,oﬂ =

X100 (X100 [xfor x;:r”] =

(x5, h10] =

- [hl,Or xzr] = Zer.

— ([ o x5, (230, x5 ol 4 [0 [ o, %3, ], X7 ]]) =

3o e, 3 o]+ [ o, (63, hol] +2[xf o, x5, ] =

Z[XZ,, xl,O} + 2[9(?:0, x;:}’] + Z[Xii:or x;:r] - 2[3(-1’:0/ X;:r].

[xf,o/ [xf,or [x1+,0/ [xfr,o/ xz+r]]]] = 2[x£0, [x1+,o/ x;’rH = 4x2+,r;

(%50, [x;:o, xir]] =

- [xfr, (x50, x{o} =

Proof of equation (8.12.5), (8.12.6), (8.12.7) and (8.12.8)

[hzlo, Xii:r] = [hz,()/ [xii:r/
=[xy (20,27, )] = [x

[xz 07 [x2 0’ X+ =

(x50, [x2 0 [xz 0 X+ Al =

[[xzof 1, r] ha0l] +

[Xfrr/ [xz 0 X2, 0]]

[x2 o X200 [xz 0 X+ All =

xfo” =
1 [l g hapl] = = [x7g, %7,

[Xl r’ h2 O]

[[x;'o, X+] [xio,xi':o]] -

[ 1,7 [hzo/xzo” + [x20,[ 1rrh20” +2[x20,X+ =

2[xy

L0l +2[x50, X1 4+ 2005, XT,] =

[xi":r, hZ,O} = Xi':r.

|+ [x1, x70] = —2X7,

=2X{.

[xz 0’ X+ ]

[0/ [0/ [xZOI [x2+,0' Xf,r”” =2[xp, [x2+0/ Xy = 4X+

Lemma 8.13. The following identities hold in U:

1
at [x1+,0' [xfo, Xy

Tz(xii:r) = [xzo, xfr];

! (er)

2

Proof. We use relations of Lemma 8.12.

21l

1
530 [0, X111

[x20 (20, X, ) 250]] =
—[h20, (x50, X7 )] + 2050, X7

83

(8.13.1)
(8.13.2)

(8.13.3)
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Proof of Equation (8.13.1):

1(x2 ) =exp (adx1 0) exp( adxio) exp (adx;f()) (xzr) =

1
exp (adx1 0) exp( adx], 0) (x5, + [x x5, + 5 o [ 23,11) =
exp (adx1 0) x2 , [xf/o, xzr} — [xio, [xf/o, xzr]]—l-

+[+ +”

+ ot +
z[xlO’ X1,07 X2,r

1 1, _ _

5 5 1o [xl o X1, %3, 1] + Z[xl,()’ [x10/ [xfOf [XIO’XZ,;'”]) =
1

exp(ad ) Xy, + [xg,x5,] — 225, + §[x1+,0’ (10 23,0 = [, x5, ) +57,) =

xp (adx ) [x], o [xfo, xz*r]]) =

10 X1 23, ]]

]

NI~

Proof of Equation (8.13.2):

exp (adxzo) exp(—adx{lo) (xfr,r + [xZO' x1+,r]) =
exp (adxf, ) (57, + (x50, 57,] — [x30, (¥ 2, 1]) =
exp (adxy ) (+7, + [0, ¥, = 7,) =

exp (adxfo) ({xz 0 x1+r]) = [x2+,0' xl+,r]

Proof of Equation (8.13.3):

n(X{,) = exp (adx;,o) exp (—adxio) exp (adx;,o) (X7,) =

exp (adagy ) (X3, + [0, X7,] — [x30, [0, X7, )1+

1 1. _ 1,

E[x%r [xj/o, X1+,r” - E[XZ,O' [x2+,01 [x2+,or XlJtr]” + Zl[xz,O' [xz,O/ [x2+,01 [x2+,or XlJtrH”) =

exp (adeO) (; [x;o, [xz 0 X+ A =

1
2l [ X511

We will now use the T;s to prove straightening formulas of the positive real root vectors.
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Lemma 8.14. The following identities hold in U™ [[u, v]]

i) exp (xfru) exp (xzsv) = exp (xzsv) exp (xfru) exp (x:[lﬂzlrﬂuv) exp((—1)’+1x§;1+a22r+5u2v>,
(8.14.1)

ii) exp (xfru) exp (leﬂzlrv) = exp (leﬂzlrv) exp (2(—1)’96;1 ﬂz’rﬂuv) exp (xiru), (8.14.2)

iii) exp <;X1+’ru) exp (x;frv) =exp (xzsv) exp (;Xfru) exp <2x$1+a2,r+suv), (8.14.3)

iv) exp (x;/ru> exp (xzfxlﬂzlsv) =exp (xzfxlﬂzlrv) exp <—;X2+,,+Suv) exp (xzsu>, if r + s is odd
(8.14.4)

Proof. Proof of Equation (8.14.1):
From Lemma 1.55,vi) follows that

exp (xfru) exp (x;fsv) =exp (xzfsv) exp (xf,ru + [T, xzs]uv) =
= exp (xzsv) exp (xf/ru> exp([xf,r, xzs]uv> exp (—;[ T lx xzs]]u20>)

where the last equality follows from lemma 1.55,viii).
Using Relations (8.1.1) and (8.1.2) follows that

[xfr' x;:s] = _[x;:O’ xii:rjts] = _x;—l+a2,s+r
and
1
—5 1 [ g ]l = (S0 (I, o o)) = (1) 5,y cir

Proof of Equation (8.14.2).
From Lemma 1.55,iv) follows that

+ +
eXp <x1,ru) exp (xvq-‘rzxz,rv) 4

— + + .t +
=exp (xa1+“2,,v> exp([xl,r, xpc1+ac2,s]uv) exp (xl,ru)

Using Relations (8.1.1) and (8.1.2) we have that

[xfr’ on(rl-&-ocz,s] = [[xitr’ [xIO/ xits” =
- [[xir’ [xii:s’ xzo]] = _[xi‘:r/ [xfr’ x;:sfr” =

(_1)r[x1+,0' [xir,O’ xZSH” = 2(_1>rx$é1+062/7+5'

Proof of Equation (8.14.3).
From Lemma 1.55,vi) we get:

op(5,8) p(5.0) = (1.2) ep(K0) exp (5 2.0
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the claim follows observing that:

(X7 x25] = (6 xip) %] =

= [y [ xil] =

([xfO’ [x;,s’ xir” + [xftr’ [x;r,O’ st”) =
[xfo’ [x1+,0’ XZSJrr” - [x1+r’ [x;rr’ xzrsfr]]) =

1
zxZqulxz,err +(=1) ] 0 [xfo, x2+s+r”) =
4x;;xl+a2,s+r'

Proof of Equation (8.14.4).
From Lemma 1.55,iv) follows that

+ + — + + + +
exp (xz,r”) exp (x2a1+rx2,sv) = exp (lexﬁaz,rv) exp([xmlﬂzrr, ler]uv) exp (lesu)

hence the claim follows observing that:

1
[xle+vcz,r’ x;:s] E[[xf_of [XTO,J{;}H x;s] =
1 i 1.,
ZHXZFS’xILO] [ ;FO erH = _7X2r+s

Corollary 8.15. Z/_l%jE C Uy, more precisely :

1. (xF . )W, (xF )0 and (%X;,%H)(k) belong to the Z-subalgebra of U generated by (x;rr)(k),

a1+, 4 x21x1 +ao,r ~ -
in particular they belong to Uz NU™T.

2. (%thﬂ)(k) € Uz NUT even if it does not belong to the Z-subalgebra generated by (xifr)(k).
Proof. 1. From Lemma 8.14,i) it follows that
exp(x:[lﬂzrruv) exp(x;;ﬁazr ) € Z((x; )(k |iel,reZkeN)[[un01]],

then considering the coefficients of u*v* and of u%vk we get that

x; iy u*v € Z((x; ) |iel,re Z,keN),

a1+, r’ x24x1 “+ao,r

then Lemma 8.14,iv) implies that

1oy

(5 i)W ezZ((xf )P lieLre ZkeN);

2. Uy is 1-invariant, hence

1 1 _
u+s (5 Xl+2r+l)(k) =7(;5 er2r+1)( ) € Uy,

but (3 12r+1)( L ez((x )(k |i€l,r € Z,k € N) (see Chapter 7).
O

Theorem 8.16. U C Uz NU" and U, C Uz NU~ are integral form of U+ and U, a Z-basis of U
is given by the ordered monomials of the set:

{(xw)“),(zxirﬂ) ©) |wedf,ielreZkeN}.
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Proof. From Lemma 8.14 follows that the Z-subalgebra of Uz generated by {(xlt)(k) |ielre

Z,k € N} has basis consisting in the ordered monomials in the set

(i)™, (Ax5

2 2,2r+1)(k)’ (X+

o)W e € @f,r € Z,k € N},
moreover,

1
Wr - {(xi )™, (5X22r+1)(k)' (Xf2r+1)(k) la e @f,rcZke N} =

() ®, (X, )Y [ac @ ic LreZkeN),
then the claim follows observing that

1

atn {(x,,%,)@(ixfhﬂ)(k) lae®},icl,reZkeN}=
1 .
{(x)®, (§x5r+1)<k> la € ®f,iclreZkeN}.

Proposition 8.17. The following identities hold in U[[u, v]]:

i ()hy (0) = iy (0)(1 — wo)°Ty (u).

(8.17.1)

In particular Uy, = Uy~ UYUY ™ and UY is an integral form of U°. UY = U USUY™ and U is an

integral form of U°.

Proof. Equation (8.17.1) follows from Propositions 1.58 with m = 1 and I = 0, hence Uy =

Y Ui

Corollary 8.18. U) = U Nz

Proof. The claim follows by Corollary 7.17, Proposition 8.17 and Definition 8.9.
Corollary 8.19. Z/_l%?/_l% = Z/_I%Z/_l%

Proof. From Proposition 1.56 with m = a; ; we have that

(x)® (h?,f) _ (hOJ . “w'> (x)®),

from Proposition 1.56 with m = a%,l = 4 by multiplying both side for (})* we have that:

1 k ho,z h0/2 — 4k 1 k
(EXlJCer)( )( 1)~ i (§Xi27+1)( ).
Hence we have that

sl = ubin,

O

(8.19.1)

remarking that the (31X, .,)®’s and (x;")¥)s generate Uz, then by applying Q) to Relation

1,2r+1 ir
(8.19.1) we get



88 CHAPTER 8. INTEGRAL FORM OF A{?)

Proposition 8.20. The following identities hold in U|[u]]

xiohy (u) = i (w)(1+uT~1)(x]y), (8.20.1)
x5 ok (u) = ki (w)(1+uT ™) (x5,) (8.20.2)
1o, . . 1
S X (w) = hy (u)(1+ Tu?) (5X73). (8.20.3)
hence for all k € IN
~ ~ _ k . _
(o) Ot () = if () (1 4+ uT M) ()Y e a2, (8.20.4)
(x30) W () = I (u) (14 uT 1) (xg) W € Uity (8.20.5)
1 . R 1 -
(Ex;)(’f)h;(u) = Iif (u)((1+ TuZ)(EXfl))(k) c Uy . (8.20.6)

In particular Z/_{%J’Z/_ljE = Z]%Zfl%*’, ZZ%’_Z/_{%‘ = Z/_{Zib_{%_, LV{%*'Z/_{% = Z/_IZjEZ/V{%Jr and LV{%_Z/_{% = Zflzil/v{%_,
moreover are integral form of respectively UFU and UFUO~. USU; = UZUY and USUS = UZUY
are integral form of UUC.

Proof. Equations (8.20.1) and (8.20.2) and follow from Proposition 1.60 with m; = —1and m; = 0

if d > 1, Equation (8.20.3) follows (8.20.1) and (8.20.2). Equations (8.20.4), (8.20.5) and (8.20.6)

follow from (8.20.1) and (8.20.2) since U is T-stable and T| 0+ = id. U Uy = Uyt and
Z

u; ?/VI%Jr = LV[%JFL_{% follow directly, the others follow by applying (2 o o and A_1. The last Relation
follows from previous relation and Corollary 8.19. O

Remark 8.21. We know from Chapter 7 that hij (u), i (u) € Uz, hence Uy C Us.

Theorem 8.22. U U, C U,UYU is a Z-subalgebra of U: it is an integral form of U (Aff) ).
Then:

A USU, = Uy (hence Uy is an integral form of U),

=Uy ﬁZ]i;

7z NU%;

{1z NUY;

9% = Uy U0+

+
z
+
z
. Uy
b
z
0,
z
Theorem 8.23. U, USU, D Uz is an integral form ofL[(Af)).

83 AP

We want now prove that Uz is an integral form of ¢{. We will prove it by induction on 1, we
will systematically refer to the identifications defined in Definition 8.9. The claim for n = 2 is the
Section 8.2.

Remark 8.24. Recall that:
The results for AA(LZ) and Agl) shows that

7+ 2704 77 y
77 7 qul
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in particular the results for Aflz) and AV

n—1

imply that

is a Z subalgebra of Uyz.

It follows from previous remark that to our aim we just need to study ¢/ and to prove that it
is the Z linear span of the monomials in

1
{(x;:r)(k)/(ixi—;r_,'_l)(k) lreZ,aecdf,icl}.

Notation 8.25. Let Z < B, > be the Z linear span of the monomials in

1 )
()™, GXh )W [reZaeef,icdy,

We want to prove that
s +
U, =Z < B, >,
we shall proceed by induction on 7, the case of n = 2 is the previous section.

Remark 8.26. 11} (A2 ),u3(AY,) cz < B} >

2(n—1)
Remark 8.27.
7.(BL_;) C B.
Notation 8.28. Let us set denote by O and O denotes the sub-root system @ of respectively Ag)ﬁz
and qu)—l via the Identifications (8.9.1) and (8.9.2).

Remark 8.29. Let us observe that from Theorem 8.16 follows that

_ 1
Uy C Z((x;;)(k), (EszrH

Y& lielreZkeN).
We want to prove that Uz is an algebra of divided powers, whose basis is given by the ordered divided
powers monomials in the elements:

Xt lX.Jr

b5 X 1€ LT € Za € OF ). (8.29.1)

By Identification (8.9.2) and by induction hypothesis it follows that

Z(Div) [x+ 1X

arr s e li€I\{n},reZuauec®)) Ciy.

By Identification (8.9.2) we have that
zP0(xt | reZacdf] CUy.
If we prove that (x;,) %), (3X1,. )0 Va € OF \ (B U DY), then follows that

Z((x)®, (Ex

A 4 _
5 ) i€ LreZ,ae®f keN)ClUg,

then Relation (8.29.1) turns out to be equivalent to show that
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* (4B (xf )V Va € @5 \ (b5 UD;), VB € @, Vr,s € Zand Vk,j € N,

. (x;,)<k>(xgs)<>v1x €D\ (D]),VBe D)\ (®)), Vr,s € Zand Vk,j € N,
° ( Xer2r+1

Proposition 8.30. (x;,)"), (3 X,fth)( ) e U foralla € 5 UDJ and j,k € N.

B (xf )W), Vi€ 1, Vp € & \ By, Vr,s € Zand forall k,j € N,

Proof. By induction hypothesis (1X5 | )¥) € 11} if i # n, let us observe that

1,2r+1

1 .
((Zerz[ 12r+1)(k)) = (§X$27+1)(k) S U%.

By Notation 8.28 follows that
SFUD ={ag+ a2+ 20+ a4 ag)
0 0 1 ns <21 ] j+1 n
() e 77+
(xi) V) et
+ _ .t
T (Xdy 4 tagr) = Xy oot e
+ _ ot iy _
Tﬂ(x2a1+~~~+2zxj+~~~+aj+1+-~~+zxn,1,r) = Xy 2 g ifj#n—1,
+ _ ot
T”*1T”<x2a1+---+20cn,2+1xn,1,r) = Xopg 4420

Lemma 8.31. (3X;,

For) W (g )W, Vi € 1, VB € O\ P, Vr,s € Zand forall k,j € N

Proof. Let us observe that [(5 X1+27+1)(k)’ (xgs)(f)] #Oonlyif p=wjpq + - +ay Ifi#n—1the
claim follows by applying T, since in this case T, ((3 X1+2r+1)( ) = (5 X1+2r+l)( ) and oy, (i1 +

‘4 ay) = i1+ +ay1. Ifi = n—1let us observe that Tn'rn,l((%XLl’er)(k)) =

(XJr

ho 27+1)( ) and ¢;,0,,_1 (@) = a1, hence the claim follows by Remark 8.29. O

Lemma 8.32. (x,j,,)(k)(xgls)(j) Va € @f \ (P UDS) VB € @f, Vr,s € Zand Vk,j € N,

Proof. Let us observe that
Of\ (P U] ) = {ag + - +ap, 20+ + 20+ ajq + -+ )
Ifa=wa1+ - +a,thena+p € PV onlyif p=a3+- -+ a;
o ifk=nthenoy(a) =0u(f) =m1 +- +a,_1 € Dy,
e ifk<n—T1thencoy(a) =ay+- +a, 1,04(B) =B €D,

e ifk=n—1theno, 1(a) = (x),04-1(B) = a1 + - - - + a,_» hence we can lead back to case
k<n-1.

Ifa =201+ +2a;+aj1 + -+, thena + p € DT only if f = wjiq + - - + ay, let us first
observe that if j # 1 then

oj—1(a) =201 + -+ + 205 1 +aj+ - +ay
and
0j-1(B) = aj—1+ - +a,

hence we can assume that j < n — 1.
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o if k = nthen 0,0 _1(a) =201 + - + 20055 + ay_1, 040y_1(B) = ay_1 € D,
o ifk < nthenoy(a) =20y + - 420+ aj1 + -+ 0y_1,00(B) = ajy1 + -+ ay_1 € Py
O
Lemma 8.33. (x,j,r)(k)(x:{’s)(f) Vo€ ®f \ (D)), VB e Dy \ (D7), Vr,s € Zand Vk,j € N.

Proof. Ifa € & \ (D) and p € ®J \ (P ) this implies thatw = ag + -+ -+ apora =2a; +- - +
20+t and B = ap + - - - + ay.
fa=2a+ - +2a;+aj 1+ +ag1and p=aj 1+ +ap, let us observe if j # 1 then
(T]‘,l(tx) 22061+"'+21X]‘,1+06]‘+"'+06n
and

0j-1(B) = aj—1+ - +a,

then we can assume that j < n—1,if k # n, then o(a) € @] and ¢(B) =€ D ifk #n—1. If
®«=war+ -+agand a = aj+---+a, thenk = j+1,if j # n the claim follows directly by
applying oy, if j # n we can lead back to Lemma 8.32. O

Theorem 8.34. U, and U, are integral form of U™ and U™, more precisely

- : 1
+ div) .+ + ;
= =z W) [, X lee@ficLrez],
a Z-basis B* of Uz, a base is given by the divided powers of the elements of the set {x£,, %Xii% IRV

of,ielrez}.
Proof. The claim follows from Remark 8.29, Proposition 8.30 and Lemmas 8.31, 8.32 and 8.33. O
Lemma 8.35.
Uy Uyt =uyt ezt ey

Proof. The claim follows from Theorems 4.25 and 7.14 and Definition 8.9 O
Lemma 8.36. Zfl% =Uy; NUY =20 [y, c | i€
Proof. The claim follows observing that Uz NUY NU; = Z ™ (1, c]. O
Remark 8.37. L_l%i is an integral form of U, more precisely:

Uy =z p | +r >0 @2k, |icli#1,+r >0,

a basis is given by the product B+ = B%;pol [T, BY*, where B(l)::;.:pul = <P1(B2_’piol) and B)* =
¢:(BYF) if i > 1 (see Theorems 4.25 and 7.14 and Definition 8.9).
Proposition 8.38.

Uzuy = Uyt

Proof. Let us prove first that U, 11y C UYL, the claim is equivalent to show that for all i,j € I
then (x;,)® (WY NU;) C UYL, if |i — j| > 1 the claim is obvious, if i,j < n follows from
Identification (8.9.1), if i = n or j = n follows from Identification (8.9.2). O



92 CHAPTER 8. INTEGRAL FORM OF A{?)

Theorem 8.39. The Z-subalgebra Uz of U generated by

()W, (x)® |rezkeN,iel}

ir

is an integral form of U. More precisely

— o0
7 ®Uz @Uy,

1

Uz

a Z-basis of Uz is given by the product B~ B°B* where B* and Z/_IZi are described in Theorem 8.34 and
g =uy ouy Uy’

a Z-basis of UY, is given by the product B® = B~BYB™ where B* and B° are basis of respectively L_{%i
and Zfl% are described respectively in Remark 8.37 in Lemma 8.36.

8.4 Conclusions

The study of the integral form of the affine Kac-Moody algebras from the point of view of the
Drinfeld presentation, which differs from the one defined through the Kac-Moody presentation

([6] and [11]) in the case A;i) as outlined above, is motivated by the interest in the representation
theory over Z, since for the affine Kac-Moody algebras the notion of highest weight vector with
respect to the ¢;’s has been usefully replaced with that defined through the action of the x;’s (see
the works of Chari and Pressley [1] and [13]): in order to study what happens over the integers it
is useful to work with an integral form defined in terms of the same x;’s.
This work is also intended to be the preliminary classical step in the project of constructing and
describing the quantum integral form for the twisted affine quantum algebras (with respect to
the Drinfeld presentation). The commutation relations involved are extremely complicated and
appear to be unworkable by hands without a deeper insight; we hope that a simplified approach
(2)
)
4

can open a viable way to work in the quantum setting, this is the reason why (in the case of A
it has been shown that Uz is also an integral form.



Chapter 9

Appendices

9.A Straightening formulas of Aéz)

(2)

For the sake of completeness we collect here the commutation formulas of A,™, inserting also the
formulas that we didn’t need for the proof of Theorem 5.44.

Notation 9.1 and Remark 9.2 will help writing some of the following straightening relations
and to understand the origin of some apparently mysterious terms.

Notation 9.1. Given p(t) € Q[[t]] let us define p.(t), p—(t) € Q[[t?]] and po(t) € Q|[[t]] by

P = P (6) + tp— (1), po() = 3 (Dp—(1).

Remark that the maps p(t) — p4(t) and p(t) — p—(t) are homomorphisms of Q[[t?]]-modules while
q(t) € Q[[#]], 4(t ) q(t) = (ap)o(t) = 4(t)*po(t).
Remark 9.2. Given p(t) € Q[[t]], Lemma 1.55, viii) implies that

exp (p(uw).xj) =
= exp (- (uw).x7") exp (upo(—uw). X{" ) exp (up- (uw).xf ) =
= exp (up—(uw).xy) exp(—upg(—uzw).Xf) exp (p+(uw).xg).

We shall now list a complete set of straightening formulas in {/z.

I) Zero commutations regarding Z:l%:

(;{) is central in Uy;

(T) is central in Z;I% : [(h()) Ijll:| =0Vk>0,1+#0.
II) Relations in 2y " (from which those in {y ~ follow as well):

Z;[%’Jr is commutative : [, 7] = 0 Vk,1 > 0;

m
Am (R =[]h+(—wu)Vm e Z,
=1

93
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where w is a primitive mt" root of 1 (see Proposition 1.14 and Remark 5.13), that is

Am(fy) = (~1)0m=Dk = Bk

m

(kl,.../km):
ki +...tkm=mk
if m is odd 3 o
/\m(hk) = /\m(hk) vk >0;
if m is even

A (e (1)) = A (R (1) 2u) 7).

In order to describe the dependence of /i1?} (1) on the A,, (f1)’s (where d is as defined in Remark
5.39) remark first that

so that

:E+((1+xf) Vi (1= V2)u) iy (—(1+ V2)u) i (—(1 — V2)u) i
(s (14 V2)i) ™ T (1= V2)iu) 1Ry (— (14 V2)iu) " 4hs (— (1 — V2)iu) 4.

Now recall that through the involution &, ~ &4, Vr > 0 (see Remark 5.13) /i(u) corresponds to
h(u) and A, corresponds to A, so that our problem is equivalent to describing

I (L4 V2)u)h (1= V2)u)he (= (14 V2)u) g (= (1= V2)u) -

. . . . B (9.2.1)
(A (1 4+ V2)iu)hy (1= V2)iu)hy (—(1+ V2)iu)hy (—(1 = V2)iu)) ™
in terms of the (A, (/1x))*’s; since Remark 1.16 implies that (9.2.1) corresponds to

(1+2u —u?) _
(1 —2u —u2)(1+ 6u2+u*)’

then we get

h{d} H )\m h+ km

m>0
where the ks are the integers defined by the identity
1 2u—u? = (1-2u—u?)(1+ 60 +ut) TT(1+u)*n.

m>0

The corresponding relations in Z;{% ~ are obtained applying ), that is just replacing i, T4 (1)
and fiy (u) with ii_, i (u) and fi_(u).
III) Other straightening relations in Z;l% (see Proposition 5.21):

Iy () (0) = h(0)(1 — uv) % (1 4 uv)*hy (u).
IV) Commuting elements and straightening relations in ¢/, (and in i/, ):

(X3.1) () is central in u; -

(X5,

2r+1)( ),(x;r)(l)] =0=[(X5,

2r+1
if  +sis even [(x,) %), (xF)D] = 0 vk, I € N;

)() (X5

L0 VrseZ kleN;
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if r + s is odd exp(x; 1) exp (xS 0) = exp (xS v) exp((—1)° X, juv) exp(x; u)
(see Lemma 5.22).

All the relations in U, are obtained from those in ¢/ applying the antiautomorphism (); in
particular if r + s is odd

exp(x; u) exp(x;v) = exp(x;v) exp((—1) X, uv) exp(x, u).
V) Straightening relations for Z;I% 1;{2 (and for L?%Z:IZ_ 2VreZ, k1 eN
o () = (7 e,
ho ho — 4k
) ( I ) N ( z ) (X)W, (9.2.2)

(hlo) (x )0 = (3 )" (ho - Zk),
<th) (X£r+1)(k) = (X;Hl)(k) (ho ; 4k>'

VI) Straightening relations for U/} Z]%*’ (and for U U. 0-, Z;l%ilflz_ ):

and

- - _ (k)
(X)) @ () = () (1= 2T )

(see Lemma 1.59) and

_uT-16 W2T-2 (k)
() O ) = o) (LTS )

(see Proposition 5.25);

(1—uT~H)°(1+u?T2)
(1-u2T-2)3

(k)
the expression for ( x5t ) can be straightened more explicitly: setting p(t) =

(1 —t)® we have
po(t) =1+1582 4 15¢% + £,

p_(t) = —6 — 202 — 6t*,
po(t) = —(1 4 15t 4 1562 + £3)(3 4 10t + 3£2),
so that (see Notation 9.1 and Remark 9.2)

_ 716 272
exp (%, v)hy (u) = hy (u) exp <(1 u(i"_Lz(;J;)L; T )xﬁ;) =

- (T (1 +uT2
= hy(u)exp (P ( a —)14(2T+2)3 )x:rluv) :

_1\r—1 _ 271 _ 27—1\2
Gl STl M

-ex

o)

(1 +u2T-1)5
pr (T~ 1) (14+u2T2)
-exp( A= w2T 27 xo ).

Applying the homomorphism A_; (that is x +— x*,, X} + X, hy v h_, T~! + T) one
immediately gets the expression for (X, , ;) (i (u) and for exp (x;0)h_ (u).
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Applying the antiautomorphism Q (xF + x~,, X — X, I ¢ i_) one gets analogously
the expression for /1. (1) (X5,

2,H)(k) and for 1+ (u) exp(x; v) (see relation (3.2.2)).
VII) Straightening relations for U, :
VIL,a) sl,-like relations (see relation (3.2.2)): Vr € Z
+

exp(x,fu) exp(x_,0) = exp(lxj: 0 )(1 + uv)h0+’cexp(

xfu)
14+uv/’

(@2r+1)c

- X5 10 L Xy, 41t
exp(X5, u)exp(X_,, 1v) = exp(m) (1+4%uv)2 t 1 exp(l_i_rﬁ). (9.2.3)

VILb) si,-like relations (see Proposition 4.22 and Remark 5.27, eventually applying A, and
powers of T):

ifr+s # 0iseven

exp(x; 1) exp(x; v) =

1 1
= exp (W s ) s (hi (uv)) exp <er+v> /
while Vr +s # 0
exp (X3, 1) exp(X5_10) = (9.2.4)

1 _ poog2. N 1
eXp (Mwmszslv) : )\2(7+S) (h+ (4 uv) 2 ) eXp (]W’X;+lu) .
~ ~ . _ B 0
VIL,c) Straightening relations for Z/{ZF ’OZ/IZ_ “ (and le%r ’11/{2_ -, U% ’CUZ'I ):
exp (xa-u) exp (X1_0> _ (9.2.5)
4 _ —42w? - 3.2
P | T 110 ) P \ T i 0 Y

1+ 3 L2wutv? 1—LPwute?
(<1+42W402>X ”>h+<4” 2 ep<<1+4zwmz>le”)‘
+

—4 +,3 1
P\ T T 2wAn o) exp 1 — 42w2y40? Yot

which can be written in a more compact way (thanks to Remark 9.2) observing that

1 (1 -4 (1 1 =2
1—422  \1+44t) . 1-422  \1+4t) " \1+4t), (1—42)%

-4 2 1
(1+42t)2  (1+426)2  1+42

Nl—

(these for the component in I/ *; for the component in I/~ the computations are similar):

exp(xj ) exp (X} 0) =
= exp Lx;uv exp ;va .
1+ 4wu?v 1+ #Pwutv?

o 1 1 1
.h+ (41/{2'0)2 exp (Mwuzvxaru) exp <_H-421()L{ALZ)2XTM4U> ;
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that is more symmetric but less explicit in terms of the given basis of Uz.
Applying the homomorphism T " Ay,19.11 (thatis x;° — xi2r+25+1)ir’ Xy (—1)’X§Er+2s+1ﬁr,

I = Agpyosir (), wl = — TT@+25+1)) one deduces the expression for exp(x; 1) exp (X5, 10)-
Applying Q) one analogously gets the expression for exp (X, Y u) exp(x; 0).

VIIL d) The remaining relations (see Notation 5.38):
exp(x{ 1) exp(x770) =

= ex L+ w'u*s” X, 0| ex —3 + v’ x5 uv?
— P\ 1" ew2uzo? + whidor P\T = 6w2uzo? + whidot 2
ox 1 — dwu?v? — w?utot
P (14 6wu?v? + w?utv)?
2,44

X;uv3) I%id}(uv)-

ox 1 —dwu?v? —w +,5
P+ 6wu2o? + w2utot)2 1

-3 + w?u?v? 2 1+ w?u?v? N
-ex xTu?o ) ex xtu
P\ 1T - 6w2u2e? + whudot Tl P\ 1= 6222 + whiydot ™0

or, as well (using Remark 9.2),

exp (v 1) exp 17 7) =

= ex 1= wuo X; 0 ) ex L X5 uv®
~ PP\ 1+ 20u0 — w22 P 2(1 + 6wu?o? + wudovt) 3

fl:{:l}(uv)-

ex 1= wuo -1 X ulv
P\ T 2000 — w2 o 2(1 + 6wuv? + w2u4v4) 1 '

It can be helpful in the computations observing that if p(t) = — - then:

1+2t 3

1+ =3+ C (14H(-3+1)
e =g A - = ey oW = Tamer e

(1—4t—12)  (1—t)(-3—-1t) 1
(T+6t+12)2 " 2(1+6t+12)2  2(1+6t+12)

The general straightening formula for exp(x; u) exp(x; v) when r + s is odd is obtained from
the case r = 0, s = 1 applying T~"A,, remarking that w|; + +— TTU+3),

9.B Garland description of /"""

In this appendix we discuss Garland’s description of the imaginary positive part U%m* of Uy =
Uz(g) (see the Introduction ) when g is an affine Kac-Moody algebra it is enough to understand
the rank 1 case, thatis g = s, or g = s{;" and some interpretation appearing in successive works.

Then, with the notation introduced in 1.21, Garland’s description of L{%m’+ can be stated as
follows:

Theorem 9.3 (Garland). L{%m'+ is a free Z-module with basis B, (see Definition ii.).
Equivalently:

DUDT = Zy[hy | 1> 0);
ii) B A 1s linearly independent.
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Remark 9.4. Once proved that I/{%”’Jr is the Z-subalgebra of U generated by { Ay (hy) | m > 0,k > 0}
(hence by By or equivalently by Z[hy | r > 0]), proceeding in two different directions leads to the two

descriptions of U"™" that turned out to be the same:
x) Zyhy | v > 0] is a Z-subalgebra of Q[h, | r > 0] (that is Zy[h, | r > 0] is closed under
multiplication): this implies that
Ut =7z, | r>0);

it also implies that Z[hy. | k > 0] C Zy[h, | r > 0];
*k) Z[ly | k > 0] is Ay-stable for all m > 0 this implies that

Ut = Z[iy | k > 0;

it also implies that Z\[h, | ¥ > 0] C Z[ly | k > 0].

Hence %) and %x) imply that Uy = Z,[h, | r > 0] = Z[fy | k > 0]: that is what we proved in

Proposition 1.13 and Theorem ). In [6] Garland proved only by induction on a suitably defined degree.
The first step of the induction is the second assertion of [6]-Lemma 5.11(b), proved in [6]-Section 9: for
all k,1 € N hyhy — (k;:l)i\lk_i_l is a linear combination with integral coefficients of elements of B, of degree
lower than the degree of iy, .
In the proof the author uses that By is a Q-basis of Q[h, | r > 0] and concentrates on the integrality
of the coefficients: he studies the action of by on 573®N where Y is the commutative Lie-algebra with basis
{h; | ¥ > 0} and N € N is large enough (N is the maximum among the degrees of the elements of By
appearing in hihy with non-integral coefficient, assuming that such an element exists): b is a subalgebra
of s, and there is an embedding of st, in sl for every vertex of the Dynkin diagram of sls, so that fixing
a vertex of the Dynkin diagram of sl3 induces an embedding by C s{, < sl3, hence an action of b on sls.
But the integral form of sl3 defined as the Z-span of a Chevalley basis is Uz (sl3)-stable; since the stability
under Uz (sl3) is preserved by tensor products ([6]-Section 6), the author can finally deduce the desired
integrality property of hyhy from the study of the b-action on 573®N.

Garland’s argument has been sometimes misunderstood: it is the case for instance of [3] where the
authors affirm (in Lemma 1.6) that [6]-Lemma 5.11(b) implies that Z/{%’"'+ = Z[I | k > 0], while, as
discussed above, it just implies the inclusion Z[ly | k > 0] C UL = Z,[h, | r > 0],

On the other hand Garland’s arqument strongly involves many results of the (integral) representation

theory of the Kac-Moody algebras, while x) is a property of the algebra Q[h, | r > 0] and of its integral
forms that can be stated in a way completely independent of the Kac-Moody algebra setting:

ZEY" [, | r> 0] C Zplhe | r > 0).

The above considerations motivate the present care that this thesis dedicates to provide a complete proof of
the description of L{ZZ’”'+ and also to propose a self-contained proof of %), independent of the Kac-Moody
algebra context: on one hand we think that a direct proof can help highlight the essential structure of the
integral form of Q[h, | r > 0] arising from our study; on the other hand the idea of isolating the single
pieces and gluing them together after studying them separately is much in the spirit of this work, so that it
is natural for us to explain also Garland’s basis of Z/llzm’+ through this approach; and finally we hope that
presenting a different proof can also help to clarify the steps which appear more difficult in Garland’s proof.

9.C List of Symbols

Lie Algebras and Commutative Algebras:

g(div) Definition 1.6
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g(bin)
glsym)

Enveloping Algebras:

UK, USE, U, Uz, *US
U(sl,), Uz(sl,)

urt, u-,u°

y VEY v+0 97E£1 3£ 170, 47
Uz, Uz, US, U5°, Uz, Uz*, Uy*, U

7 7gE 770 77E0 g7El ggEce 704 57
Uz, Uz, US, U5°, U, Uz*, UY*, U

y 7+ 770 97E0 il e 70+ g7b
Uz, Uz Uz o Uz, Uz Uz Uz Uz,

v

0 70+ 7%b
Uz 1, Uzy, Uz,
Uz,m

- 0 +
Uy mr Uz e Uz

Bases:
Bre,i Bim,i Bh
B*, B, BY

Bj:,O/ B:t,l/ B:l:,c/ BO,:tl Bb

B/\/ B/[\n]/ BX/ B3[Cn]

Elements and their generating series:

99

Example 1.9
Example 1.2
Definition 3.1
Definition 4.1
Definition 5.1
Definition 8.1

Chapter Introduction
Definiton 3.1
Theorem 3.2
Definition 4.1
Definition 4.7
Definition 5.1
Definition 5.12
Definition 8.10
Definition 8.10
Definition 8.10
Definition 6.2

Theorem 6.7

Chapter Introduction
Theorem 4.25

Theorem 5.44

Definitions 1.21 and 1.26
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Ar(E(k))

a®), exp(au)

(6, (1+u)

T, x
P, CI)l, q>im, dre, cpim,i, q)re,i, D, di

Ti

e;, fi, hi
+ ~
Yari1 ke €

ki(u)

Anti/auto/homomorphisms:

/\H’l/ Ai[;’,ll]
(4%

o, O, T, Ay
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Chapter Introduction
Notation 1.7

Notation 1.10
Example 1.2
Notation 1.15
Definition 1.31
Definition 2.2
Definition 2.3
Section 2.4
Section 2.3
Definition 2.2
Definition 4.1 and Definition 5.1
Definition 5.1
Notation 4.9
Definition 5.12
Remark 6.1
Notation 6.4

Remark 6.10

Proposition 1.13
Notation (4.0.1)
Definition 4.3 and Definition 5.4

Lemma 5.16
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Other symbols:

1, 10, 1, 1"

La, Ra

&r

L, L:l:, LO, L:t,O, L:l:,l/ L:I:,C
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Notation 1.15

Notation 1.54

Definition 5.12

Definition 5.8

Definition 5.10

Notation 5.38

Remark 5.39
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