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We introduce a numerical method for solving second-order stochastic differential equations of the 
form 𝑥̈ = −𝜔2(𝑡)𝑥 + 𝑓 (𝑡, 𝑥) + 𝜎(𝑡)𝜉(𝑡), describing a class of nonlinear oscillators with non-constant 
frequency, perturbed by white noise 𝜉(𝑡). The proposed scheme takes advantages of the Magnus 
approach to construct an integrator for this stochastic oscillator. Its convergence properties are 
rigorously analyzed and selected numerical experiments on relevant stochastic oscillators are 
carried out, confirming the effectiveness and the competitive behavior of the proposed method, 
in comparison with standard integrators in the literature.

1. Introduction

Oscillating phenomena, their modeling and simulation, have a dominant role in applied mathematics. This interest is evident 
when we look at the vast literature. In recent years, we can also appreciate an increasing attention to numerical issues on stochastic 
differential equations modeling oscillatory systems. In [27], and reference therein, several models of stochastic oscillators are pre-

sented being apparent that many interesting examples of stochastic oscillator are obtained when, in the equation of a deterministic 
oscillator, a noisy component is introduced: this can be, for instance, an additive and/or a multiplicative noise, a random frequency, a 
random damping, and so on. The aim of the present work is to provide a specific time integrator for Brownian parametric semi-linear 
oscillators, whose dynamics is described by the following scalar second order equation

𝑥̈ = −𝜔2(𝑡)𝑥+ 𝑓 (𝑡, 𝑥) + 𝜎(𝑡)𝜉(𝑡), (1)

where 𝑓 ∶ [𝑡0, 𝑇 ] × ℝ ⟶ ℝ and 𝜉(𝑡) is a white noise process satisfying 𝔼[𝜉(𝑡)𝜉(𝑡′)] = 𝛿(𝑡 − 𝑡′). In a more general setting, equation 
(1) may be seen as a stochastic perturbation of several types of deterministic oscillators, see [30,32] and references therein. In the 
deterministic context, harmonic oscillators with time varying frequencies are deeply studied from several points of view. As pointed 
out in the work [24], equations of the form (1), with 𝑓 = 0 and 𝜎 = 0 describes the motion of a charged particle in certain types 
of magnetic fields. Again, in a semiclassical theory of radiation and mechanical problems of oscillating systems, the notion of an 
oscillator with a variable frequency is used. Moreover, the small oscillations of a pendulum whose length is changing at a uniform 
rate is one of such problems. For more details, see [24] and reference therein. The need to add white noise to this kind of parametric 
ODEs, in particular when they vary periodically in time, has been expressed in the works [44,45].
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The prototype of such kind of oscillators is the stochastic Mathieu equation, which has the general form

𝑥̈ = −(1 + 𝑏 cos(𝑡))𝑥+ 𝑓 (𝑡, 𝑥) + 𝜎𝜉(𝑡),

with 𝑏 < 1, see [27,41] and references therein. In particular, the effect of adding noise to Mathieu equation has been studied in [26], 
where the authors show that the rich qualitative behavior predicted by Floquet theory is reflected in statistical properties of the noisy 
system.

From a discrete point of view, in the deterministic scenario, the literature concerning these oscillators is very rich, see [28–34].

On the other hand, in the stochastic setting, several works are devoted to investigate different aspects of stochastic oscillatory 
problems and the preservation of features of these problems under time discretizations. Specifically, the investigation of long-term 
properties of the problem, under a numerical point of view is object, for instance, of [5–9,11–21] and references therein.

It is important to note that in the stochastic scenario several numerical methods have been introduced for oscillators with constant 
frequency. In [43], the authors provide an analysis of long-term features of the linear oscillator

𝑥̈ = −𝑥+ 𝜎𝜉(𝑡),

i.e., Equation (1) with 𝜔 = 1 and 𝑔 ≡ 0. The authors of [11,12] focus on nonlinear equations of the form

𝑥̈ = −𝜔2𝑥+ 𝑔(𝑥) + 𝜎𝜉(𝑡),

where, the deterministic forcing 𝑔 is related to a potential function 𝑉 (𝑥) via 𝑔(𝑥) = −∇𝑉 (𝑥), and present a family of stochastic 
trigonometric numerical methods based on a variation of constant formula, which is a fundamental tool to design many stochastic 
exponential integrators, see [22,23,25,35,36,42], and reference therein. The aim of works [18,20], is to join two ingredients, a 
variation of constant formula and specific quadrature rules, to define numerical schemes for classes of stochastic oscillators.

In spite of the above mentioned literature concerning system (1) with constant frequency, up to our knowledge, there are no specific 
methods in the literature for the case of time-dependent frequency. Following the principles shared by most of the above-mentioned 
works, and taking into account that devising numerical methods based on Magnus series expansion is crucial for dealing with 
deterministic oscillatory systems in order to reproduce meaningful features of the system, see [28,33] and reference therein, we 
propose here an exponential-type stochastic integrator for (1) by using the Magnus approach in this stochastic context. For previous 
applications of the Magnus expansions to stochastic problems, see [4].

The paper is organized as follows: in Section 2, we recall the essential aspects of Magnus expansion and the construction of the 
related approximations to time dependent linear matrix differential equations; in Section 3, we propose our stochastic Magnus-

based integrator and provide a convergence analysis. In Section 4, some numerical experiments are carried on in order to show the 
advantages of the proposed integrator in comparison with other standard methods in the literature.

2. Basics of numerical approximation based on the Magnus series expansion

In this section we summarize some basic results concerning the construction of approximate solution to time-dependent linear 
matrix differential equations by means of the so-called Magnus expansion, see [37]. Consider the equation

d𝑋(𝑡) =𝐴(𝑡)𝑋(𝑡)d𝑡, 𝑡 ∈
[
𝑡𝑛 𝑡𝑛 + ℎ

]
, (2)

𝑋(𝑡𝑛) = 𝐼.

The main idea of the Magnus approach consists in writing the solution of (2) in the form 𝑋(𝑡) = 𝑒Ω(𝑡,𝑡𝑛) with Ω(𝑡, 𝑡𝑛) a time-dependent 
matrix and then, after substituting in (2), to derive a differential equation to determine Ω(𝑡, 𝑡𝑛). In this way, under some appropriate 
conditions on 𝐴(𝑡) (see e.g., [3], [40]), the matrix Ω(𝑡, 𝑡𝑛) can be expressed as a convergent infinite sum whose terms are given by 
integrals involving 𝐴(𝑡) and its commutators. More precisely,

Ω(𝑡, 𝑡𝑛) =
∞∑
𝑘=1

Ω𝑘(𝑡, 𝑡𝑛), (3)

with the first three terms given by

Ω1(𝑡, 𝑡𝑛) =

𝑡

∫
𝑡𝑛

𝐴(𝑠)d𝑠,

Ω2(𝑡, 𝑡𝑛) =
1
2

𝑡

∫
𝑡𝑛

𝑠1

∫
𝑡𝑛

[
𝐴(𝑠1),𝐴(𝑠2)

]
d𝑠2d𝑠1,

Ω3(𝑡, 𝑡𝑛) =
1
6

𝑡

∫
𝑠1

∫
𝑠2

∫
([
𝐴(𝑠1),

[
𝐴(𝑠2),𝐴(𝑠3)

]]
+
[
𝐴(𝑠3),

[
𝐴(𝑠2),𝐴(𝑠1)

]])
d𝑠3d𝑠2d𝑠1,
2

𝑡𝑛 𝑡𝑛 𝑡𝑛
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and, in general, Ω𝑘 being a 𝑘-fold multiple integral of combinations of nested commutators of 𝐴(𝑡) at 𝑘 different times, see [1]. Here, 
[𝐴, 𝐵] =𝐴𝐵 −𝐵𝐴 is the matrix commutator of 𝐴 and 𝐵. Series (3) is the so-called Magnus expansion for the solution of (2).

Only in very particular cases it is possible to obtain Ω(𝑡, 𝑡𝑛) in closed-form. However, precise approximations to the solution of 
(2) can be constructed from (3) by truncating the Magnus series at some order 𝑝:

Ω[𝑝](𝑡, 𝑡𝑛) =
𝑝∑
𝑘=1

Ω𝑘(𝑡, 𝑡𝑛),

and then approximating the integrals that appear in this truncated sum by evaluating 𝐴(𝑡) at the nodes of any desired univariate 
quadrature rule, which is actually sufficient to also approximate all multivariate integrals involved in Ω[𝑝]. In fact, it holds that [2]

Ω[2𝑠−2](𝑡, 𝑡𝑛) = Ω(𝑡, 𝑡𝑛) +(ℎ2𝑠+1) and Ω[2𝑠−1](𝑡, 𝑡𝑛) = Ω(𝑡, 𝑡𝑛) +(ℎ2𝑠+1),
from which it follows that

Ω[𝑝](𝑡, 𝑡𝑛) = Ω(𝑡, 𝑡𝑛) +(ℎ𝑝+2).
If we evaluate 𝐴(𝑡) at the corresponding nodes of any quadrature formula of order 𝑝 + 1, the resulting approximation Ω̂(𝑡, 𝑡𝑛) to 
Ω(𝑡, 𝑡𝑛) satisfies

𝑒Ω(𝑡,𝑡𝑛) − 𝑒Ω̂(𝑡,𝑡𝑛) =(ℎ𝑝+2).
As a consequence of these results,

𝑒Ω(𝑡,𝑡𝑛) − 𝑒Ω̂[𝑝](𝑡,𝑡𝑛) =(ℎ𝑝+2). (4)

The advantage of this approach to construct approximations to the solution of (2) is that, although the Magnus series is truncated, the 
approximation 𝑒Ω̂[𝑝](𝑡,𝑡𝑛) still preserves important geometrical properties of the exact solution. For more details see [2] and references 
therein.

In particular, using the midpoint rule to approximate the integral appearing in Ω[1](𝑡, 𝑡𝑛) it is obtained

Ω̂[1](𝑡, 𝑡𝑛) =
(
𝑡− 𝑡𝑛

)
𝐴

(
𝑡𝑛 +

ℎ

2

)
.

Hence, from (4) we have that

𝑒Ω(𝑡,𝑡𝑛) − 𝑒
(
𝑡−𝑡𝑛

)
𝐴(𝑡𝑛+

ℎ

2 ) =(ℎ3). (5)

We will use this approximation Ω̂[1] to construct the proposed numerical integrator in the next section.

3. Derivation of the method and convergence analysis

In this section we develop a new exponential-type integrator for the numerical approximation of the equation (1). Setting 𝑋1 ∶ =
𝑥 and 𝑋2 ∶ = 𝑥̇, (1) is recast as

d
(
𝑋1

𝑋2

)
=
((

0 1
−𝜔2(𝑡) 0

)(
𝑋1

𝑋2

)
+
(

0
𝑓 (𝑡,𝑋1)

))
d𝑡+

(
0
𝜎(𝑡)

)
d𝑊 (𝑡), 𝑡0 ≤ 𝑡 ≤ 𝑇 , (6)

where 𝑓 ∶ [𝑡0, 𝑇 ] ×ℝ →ℝ, 𝜎(𝑡) ∈ℝ and 𝑊 (𝑡) is a scalar Wiener process defined on the complete probability space (Ω, ,ℙ) with a 
filtration {𝑡}𝑡≥0.

Let us consider a partition of the time interval 
[
𝑡0 𝑇

]
, 𝑡0 < 𝑡1 <⋯ < 𝑡𝑁 = 𝑇 with constant stepsize ℎ = 𝑡𝑖+1 − 𝑡𝑖. The solution of 

equation (6) in 
[
𝑡𝑛 𝑡𝑛+1

]
satisfies

(
𝑋1(𝑡)
𝑋2(𝑡)

)
= 𝑒Ω(𝑡,𝑡𝑛)

⎡⎢⎢⎣
(
𝑋1(𝑡𝑛)
𝑋2(𝑡𝑛)

)
+

𝑡

∫
𝑡𝑛

𝑒−Ω(𝑠,𝑡𝑛)
(

0
𝑓 (𝑠,𝑋1(𝑠))

)
d𝑠+

𝑡

∫
𝑡𝑛

𝑒−Ω(𝑠,𝑡𝑛)
(

0
𝜎(𝑠)

)
d𝑊 (𝑠)

⎤⎥⎥⎦
= 𝑒Ω(𝑡,𝑡𝑛)

(
𝑋1(𝑡𝑛)
𝑋2(𝑡𝑛)

)
+

𝑡

∫
𝑡𝑛

𝑒Ω(𝑡,𝑠)
(

0
𝑓 (𝑠,𝑋1(𝑠))

)
d𝑠+

𝑡

∫
𝑡𝑛

𝑒Ω(𝑡,𝑠)
(

0
𝜎(𝑠)

)
d𝑊 (𝑠),

(7)

where the matrix Ω(𝑡, 𝑡𝑛) is such that 𝑒Ω(𝑡,𝑡𝑛) is the solution in 
[
𝑡𝑛 𝑡𝑛+1

]
of

d𝑌 =
(

0 1
−𝜔2(𝑡) 0

)
𝑌 d𝑡, (8)
3

𝑌 (𝑡𝑛) = 𝐼.
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Based on the results on Magnus expansions theory and approximation of section 2 we know, see (5), that the solution of (8) can 
be well approximated by the solution, 𝑒𝐴𝑛(𝑡−𝑡𝑛), of

d𝑌 =𝐴𝑛𝑌 d𝑡,

𝑌 (𝑡𝑛) = 𝐼,

where 𝐴𝑛 =
(

0 1
−𝜔2

𝑛
0

)
, with 𝜔𝑛 ∶= 𝜔(𝑡𝑛 +

ℎ

2 ).

Thus, from (7), it is reasonable to approximate the solution of equation (6) in 𝑡 = 𝑡𝑛+1 thought the solution of

d
(
𝑋̄1

𝑋̄2

)
=
(
𝐴𝑛

(
𝑋̄1

𝑋̄2

)
+
(

0
𝑓 (𝑡, 𝑋̄1)

))
d𝑡+

(
0
𝜎(𝑡)

)
d𝑊 (𝑡),

that is,

(
𝑋1(𝑡𝑛+1)
𝑋2(𝑡𝑛+1)

)
≈
(
𝑋̄1(𝑡𝑛+1)
𝑋̄2(𝑡𝑛+1)

)
=𝑒ℎ𝐴𝑛

(
𝑋1(𝑡𝑛)
𝑋2(𝑡𝑛)

)
+

𝑡𝑛+1

∫
𝑡𝑛

𝑒(𝑡𝑛+1−𝑠)𝐴𝑛
(

0
𝑓 (𝑠,𝑋1(𝑠))

)
d𝑠

+

𝑡𝑛+1

∫
𝑡𝑛

𝑒(𝑡𝑛+1−𝑠)𝐴𝑛
(

0
𝜎(𝑠)

)
d𝑊 (𝑠).

Then, by taking a left-rectangular discretization to both integrals and using that

𝑒ℎ𝐴𝑛 =
⎛⎜⎜⎝

cos(ℎ𝜔𝑛)
sin(ℎ𝜔𝑛)
𝜔𝑛

−𝜔𝑛 sin(ℎ𝜔𝑛) cos(ℎ𝜔𝑛)

⎞⎟⎟⎠ ,
it is obtained the numerical method(

𝑋1
𝑛+1

𝑋2
𝑛+1

)
=
⎛⎜⎜⎝

cos(ℎ𝜔𝑛)
sin(ℎ𝜔𝑛)
𝜔𝑛

−𝜔𝑛 sin(ℎ𝜔𝑛) cos(ℎ𝜔𝑛)

⎞⎟⎟⎠
(
𝑋1
𝑛

𝑋2
𝑛

)
+ ℎ

⎛⎜⎜⎝
sin(ℎ𝜔𝑛)
𝜔𝑛

cos(ℎ𝜔𝑛)

⎞⎟⎟⎠𝑓 (𝑡𝑛, 𝑋̄1
𝑛
) +

⎛⎜⎜⎝
sin(ℎ𝜔𝑛)
𝜔𝑛

cos(ℎ𝜔𝑛)

⎞⎟⎟⎠𝜎(𝑡𝑛)Δ𝑊𝑛, (9)

with 
(
𝑋1

0
𝑋2

0

)
=
(
𝑋1(𝑡0)
𝑋2(𝑡0)

)
and Δ𝑊𝑛 =𝑊 (𝑡𝑛+1) −𝑊 (𝑡𝑛).

3.1. Convergence results

We now analyze the convergence of the method (9). We will show, assuming standard smoothness conditions on 𝑓 and 𝜎 that 
the method has order 1 of strong convergence. We note that, for the sake of simplicity in the forthcoming exposition, the same letter 
𝐾 will be given for all the constants that will appear in the sequel. Throughout the paper, ‖ ⋅ ‖ is the Euclidean norm or its induced 
matrix norm.

Theorem 3.1. Suppose that the function 𝑓 and 𝜎 are Lipschitz and 𝑓 also fulfill a Lipschitz continuity condition in the first variable:

|𝑓 (𝑡, 𝑥) − 𝑓 (𝑠, 𝑥)| ≤𝐾 (
1 + |𝑥|2) 1

2 |𝑡− 𝑠| . (10)

Then,

max
𝑛

(
𝔼
(‖‖𝑋(𝑡𝑛) −𝑋𝑛‖‖2 |||𝑡0 )) 1

2 ≤𝐾 (
1 + ‖‖𝑋0‖‖2) 1

2
ℎ

Proof. Let 𝑋𝑛 =
(
𝑋1
𝑛

𝑋2
𝑛

)
and let 𝑋𝑡𝑛,𝑋𝑛 (𝑡) denote the solution of Equation (6) at time 𝑡 which starts in 𝑋𝑛 at time 𝑡𝑛. Then, we obtain 

from (7)

𝑋𝑡𝑛,𝑋𝑛
(𝑡𝑛+1) =𝑒Ω(𝑡𝑛+1 ,𝑡𝑛)𝑋𝑛 +

𝑡𝑛+1

∫
𝑡𝑛

E⟨2⟩(𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠))d𝑠+

𝑡𝑛+1

∫
𝑡𝑛

E⟨2⟩(𝑡𝑛+1, 𝑠)𝜎(𝑠)d𝑊 (𝑠),
4

where E⟨2⟩(𝑡𝑛+1, 𝑠) is the second column of 𝑒Ω(𝑡𝑛+1 ,𝑠). Let M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛) be the second column of
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M((𝑡𝑛+1 − 𝑠)𝜔𝑛) ∶=
⎛⎜⎜⎝

cos((𝑡𝑛+1 − 𝑠)𝜔𝑛)
sin((𝑡𝑛+1 − 𝑠)𝜔𝑛)

𝜔𝑛

−𝜔𝑛 sin((𝑡𝑛+1 − 𝑠)𝜔𝑛) cos((𝑡𝑛+1 − 𝑠)𝜔𝑛)

⎞⎟⎟⎠ .
Termwise subtracting (9) from the above equation, and taking norm, we obtain

‖𝑋𝑡𝑛,𝑋𝑛 (𝑡𝑛+1) −𝑋𝑛+1‖ =
‖‖‖‖‖‖‖
(
𝑒Ω(𝑡𝑛+1 ,𝑡𝑛) − M(ℎ𝜔𝑛)

)
𝑋𝑛 +

𝑡𝑛+1

∫
𝑡𝑛

(
E⟨2⟩(𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) − M⟨2⟩(ℎ𝜔)𝑓 (𝑡𝑛,𝑋1

𝑛
)
)
d𝑠 (11)

+

𝑡𝑛+1

∫
𝑡𝑛

(
E⟨2⟩(𝑡𝑛+1, 𝑠)𝜎(𝑠) − M⟨2⟩(ℎ𝜔)𝜎(𝑡𝑛))d𝑊 (𝑠)

‖‖‖‖‖‖‖ ≤
‖‖‖(𝑒Ω(𝑡𝑛+1 ,𝑡𝑛) − M(ℎ𝜔𝑛)

)
𝑋𝑛

‖‖‖+
‖‖‖‖‖‖‖
𝑡𝑛+1

∫
𝑡𝑛

(
E⟨2⟩(𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) − M⟨2⟩(ℎ𝜔)𝑓 (𝑡𝑛,𝑋1

𝑛
)
)
d𝑠
‖‖‖‖‖‖‖

+
‖‖‖‖‖‖‖
𝑡𝑛+1

∫
𝑡𝑛

(
E⟨2⟩(𝑡𝑛+1, 𝑠)𝜎(𝑠) −M⟨2⟩(ℎ𝜔)𝜎(𝑡𝑛))d𝑊 (𝑠)

‖‖‖‖‖‖‖ .
Squaring both sides of the last inequality and applying the Cauchy-Schwartz inequality yields‖‖‖𝑋𝑡𝑛,𝑋𝑛 (𝑡𝑛+1) −𝑋𝑛+1‖‖‖2 ≤ 3‖‖‖(𝑒Ω(𝑡𝑛+1 ,𝑡𝑛) −M(ℎ𝜔𝑛)

)
𝑋𝑛

‖‖‖2
+ 3

⎛⎜⎜⎝
𝑡𝑛+1

∫
𝑡𝑛

‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠)) − M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1
𝑛
)‖‖‖d𝑠⎞⎟⎟⎠

2

+ 3
‖‖‖‖‖‖‖
𝑡𝑛+1

∫
𝑡𝑛

(
E⟨2⟩(𝑡𝑛+1, 𝑠)𝜎(𝑠) − M⟨2⟩(ℎ𝜔𝑛)𝜎(𝑡𝑛))d𝑊 (𝑠)

‖‖‖‖‖‖‖
2

≤ 3‖‖‖𝑒Ω(𝑡𝑛+1 ,𝑡𝑛) − M(ℎ𝜔𝑛)
‖‖‖2 ‖‖𝑋𝑛‖‖2

+ 3ℎ

𝑡𝑛+1

∫
𝑡𝑛

‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠)) − M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1
𝑛
)‖‖‖2 d𝑠

+ 3
‖‖‖‖‖‖‖
𝑡𝑛+1

∫
𝑡𝑛

(
E⟨2⟩(𝑡𝑛+1, 𝑠)𝜎(𝑠) − M⟨2⟩(ℎ𝜔𝑛)𝜎(𝑡𝑛))d𝑊 (𝑠)

‖‖‖‖‖‖‖
2

.

Hence,

𝔼
(‖‖‖𝑋𝑡𝑛,𝑋𝑛 (𝑡𝑛+1) −𝑋𝑛+1‖‖‖2 |||𝑡𝑛

)
≤ 3‖‖‖𝑒Ω(𝑡𝑛+1 ,𝑡𝑛) − M(ℎ𝜔𝑛)

‖‖‖2 𝔼(‖‖𝑋𝑛‖‖2 |||𝑡𝑛 )
+ 3ℎ

𝑡𝑛+1

∫
𝑡𝑛

𝔼
(‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) − M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
)‖‖‖2 |||𝑡𝑛

)
d𝑠

+ 3

𝑡𝑛+1

∫
𝑡𝑛

‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠)𝜎(𝑠) −M⟨2⟩(ℎ𝜔𝑛)𝜎(𝑡𝑛)‖‖‖2 d𝑠.
(12)

In view of (5), we obtain‖‖‖𝑒Ω(𝑡𝑛+1 ,𝑡𝑛) − M(ℎ𝜔𝑛)
‖‖‖2 𝔼(‖‖𝑋𝑛‖‖2 |||𝑡𝑛 ) ≤𝐾ℎ6 (1 + ‖‖𝑋𝑛‖‖2) . (13)

Applying the Cauchy-Schwartz inequality and taking expectation yields

𝔼
(‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) − M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
)‖‖‖2 |||𝑡𝑛

)
(‖ ⟨2⟩ 1 ⟨2⟩ 1 ‖2 | )
5

≤ 3𝔼 ‖‖E (𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋𝑡𝑛,𝑋𝑛 (𝑠)) −M ((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑠,𝑋𝑡𝑛,𝑋𝑛 (𝑠))‖‖ ||𝑡𝑛
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+ 3𝔼
(‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑠,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) −M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑠,𝑋1

𝑛
)‖‖‖2 |||𝑡𝑛

)
+ 3𝔼

(‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑠,𝑋1
𝑛
) −M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
)‖‖‖2 |||𝑡𝑛

)
≤ 3‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠) − M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)‖‖‖2 𝔼

(|||𝑓 (𝑠,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠))|||2 |||𝑡𝑛
)

+ 3‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)‖‖‖2 𝔼
(|||𝑓 (𝑠,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) − 𝑓 (𝑠,𝑋1

𝑛
)|||2 |||𝑡𝑛

)
+ 6𝔼

(‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑠,𝑋1
𝑛
) −M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
)‖‖‖2 |||𝑡𝑛

)
+ 6𝔼

(‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑡𝑛,𝑋1
𝑛
) −M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
)‖‖‖2 |||𝑡𝑛

)
.

Now, we estimate the four terms in the right-side of the inequality above as follows. Since 𝑓 is Lipschitz, it fulfills a linear growth 
condition that, together with (5) and the 𝐿2-estimates of 𝑋1

𝑡𝑛,𝑋𝑛
(𝑠) (see Theorem 4.1 in [38]), implies

‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠) −M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)‖‖‖2 𝔼
(|||𝑓 (𝑠,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠))|||2 |||𝑡𝑛

)
≤𝐾ℎ6 (1 + ‖‖𝑋𝑛‖‖2) .

Moreover, from Theorem 4.3 in [38] and since 𝑓 is Lipschitz, we obtain

‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)‖‖‖2 𝔼
(|||𝑓 (𝑠,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) − 𝑓 (𝑠,𝑋1

𝑛
)|||2 |||𝑡𝑛

)
≤𝐾𝔼

(‖‖‖𝑋𝑡𝑛,𝑋𝑛 (𝑠) −𝑋𝑛‖‖‖2 |||𝑡𝑛
)

≤𝐾 (
1 + ‖‖𝑋𝑛‖‖2)(𝑠− 𝑡𝑛) .

Applying (10) yields

𝔼
(‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑠,𝑋1

𝑛
) −M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
)‖‖‖2 |||𝑡𝑛

)
≤ ‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)‖‖‖2 𝔼

(|||𝑓 (𝑠,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠)) − 𝑓 (𝑡𝑛,𝑋1
𝑛
)|||2 |||𝑡𝑛

)
≤𝐾 (

1 + ‖‖𝑋𝑛‖‖2)(𝑠− 𝑡𝑛)2 .
In addition, mean-value theorem and Theorem 4.3 in [38] imply that

𝔼
(‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
) −M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
)‖‖‖2 |||𝑡𝑛

)
≤ ‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛) − M⟨2⟩(ℎ𝜔𝑛)‖‖‖2 𝔼

(|||𝑓 (𝑡𝑛,𝑋1
𝑛
)|||2 |||𝑡𝑛

)
≤𝐾ℎ2 (1 + ‖‖𝑋𝑛‖‖2) .

Then, from the estimates above we conclude that

𝑡𝑛+1

∫
𝑡𝑛

𝔼
(‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) − M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
)‖‖‖2 |||𝑡𝑛

)
d𝑠 ≤𝐾 (

1 + ‖‖𝑋𝑛‖‖2)ℎ2. (14)

Finally, to estimate the second integral in (12) we use Cauchy-Schwarz inequality and the Lipschitz continuity of 𝜎 to obtain‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠)𝜎(𝑠) − M⟨2⟩(ℎ𝜔𝑛)𝜎(𝑡𝑛)‖‖‖2 ≤ 3‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠)𝜎(𝑠) −M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝜎(𝑠)‖‖‖2
+ 3‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝜎(𝑠) −M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝜎(𝑡𝑛)‖‖‖2
+ 3‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝜎(𝑡𝑛) −M⟨2⟩(ℎ𝜔𝑛)𝜎(𝑡𝑛)‖‖‖2

i.e., ‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠)𝜎(𝑠) − M⟨2⟩(ℎ𝜔𝑛)𝜎(𝑡𝑛)‖‖‖2 ≤ 3‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠) − M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)‖‖‖2 ‖𝜎(𝑠)‖2
+ 3‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)‖‖‖2 ‖‖𝜎(𝑠) − 𝜎(𝑡𝑛)‖‖2

2

6

+ 3‖‖‖M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛) − M⟨2⟩(ℎ𝜔𝑛)‖‖‖ ‖‖𝜎(𝑡𝑛)‖‖2
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≤𝐾ℎ4 +𝐾(𝑠− 𝑡𝑛)2 +𝐾ℎ2 ≤𝐾
(
1 + ‖‖𝑋𝑛‖‖2)ℎ2.

Consequently,

𝑡𝑛+1

∫
𝑡𝑛

‖‖‖E⟨2⟩(𝑡𝑛+1, 𝑠)𝜎(𝑠) −M⟨2⟩(ℎ𝜔𝑛)𝜎(𝑡𝑛)‖‖‖2 d𝑠 ≤𝐾 (
1 + ‖‖𝑋𝑛‖‖2)ℎ3. (15)

Substituting (13), (14) and (15) in (12) it follows that the mean-square local error satisfies

𝔼
(‖‖‖𝑋𝑡𝑛,𝑋𝑛 (𝑡𝑛+1) −𝑋𝑛+1‖‖‖2 |||𝑡𝑛

) 1
2 ≤𝐾 (

1 + ‖‖𝑋𝑛‖‖2) 1
2
ℎ

3
2 . (16)

Now, let us analyze the mean deviation of one-step of (9): taking expectation in (11) leads to‖‖‖‖𝔼(
𝑋𝑡𝑛,𝑋𝑛

(𝑡𝑛+1) −𝑋𝑛+1
|||𝑡𝑛 )‖‖‖‖ ≤ ‖‖‖𝑒Ω(𝑡𝑛+1 ,𝑡𝑛) −M(ℎ𝜔𝑛)

‖‖‖‖‖𝑋𝑛‖‖ (17)

+

𝑡𝑛+1

∫
𝑡𝑛

‖‖‖‖𝔼(
E⟨2⟩(𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) − M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
) |||𝑡𝑛 )‖‖‖‖d𝑠.

Following arguments similar to those used in the derivation of (13) we have

‖‖‖𝑒Ω(𝑡𝑛+1 ,𝑡𝑛) − M(ℎ𝜔𝑛)
‖‖‖‖‖𝑋𝑛‖‖ ≤𝐾 (

1 + ‖‖𝑋𝑛‖‖2) 1
2
ℎ3. (18)

Now, to estimate the integral in (17) we note that‖‖‖‖𝔼(
E⟨2⟩(𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) −M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
) |||𝑡𝑛 )‖‖‖‖

≤ ‖‖‖‖𝔼(
M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) − M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1

𝑛
) |||𝑡𝑛 )‖‖‖‖

+
‖‖‖‖𝔼(

E⟨2⟩(𝑡𝑛+1, 𝑠)𝑓 (𝑠,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠)) −M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑠,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠)) |||𝑡𝑛 )‖‖‖‖
+
‖‖‖‖𝔼(

M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑠,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠)) − M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑡𝑛,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠)) |||𝑡𝑛 )‖‖‖‖
+
‖‖‖‖𝔼(

M⟨2⟩((𝑡𝑛+1 − 𝑠)𝜔𝑛)𝑓 (𝑡𝑛,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠)) −M⟨2⟩(ℎ𝜔𝑛)𝑓 (𝑡𝑛,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠)) |||𝑡𝑛 )‖‖‖‖
= 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉 .

(19)

Now we estimate 𝐼 . Assuming that the partial derivative of 𝑓 with respect to the second variable is bounded and Lipschitz, we obtain

𝑓 (𝑡𝑛,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠)) − 𝑓 (𝑡𝑛,𝑋1
𝑛
) ≤ 𝑓 ′

𝑥
(𝑡𝑛,𝑋1

𝑛
)
(
𝑋1
𝑡𝑛,𝑋𝑛

(𝑠) −𝑋1
𝑛

)
+ 𝜌, with |𝜌| ≤𝐾 |||𝑋1

𝑡𝑛,𝑋𝑛
(𝑠) −𝑋𝑛

|||2 .
As a consequence,||||𝔼(

𝑓 (𝑡𝑛,𝑋1
𝑡𝑛,𝑋𝑛

(𝑠)) − 𝑓 (𝑡𝑛,𝑋1
𝑛
) |||𝑡𝑛 )|||| ≤𝐾 ||||𝔼(

𝑋1
𝑡𝑛,𝑋𝑛

(𝑠) −𝑋1
𝑛
) |||𝑡𝑛 )||||+𝐾𝔼

(|||𝑋1
𝑡𝑛,𝑋𝑛

(𝑠) −𝑋1
𝑛

|||2 |||𝑡𝑛
)
.

Since from (6)

||||𝔼(
𝑋1
𝑡𝑛,𝑋𝑛

(𝑠) −𝑋1
𝑛
) |||𝑡𝑛 )|||| =

𝑠

∫
𝑡𝑛

𝔼
(|||𝑋2

𝑡𝑛,𝑋𝑛
(𝑠)||| |||𝑡𝑛 )𝑑𝑠 ≤

𝑠

∫
𝑡𝑛

𝔼
(|||𝑋𝑡𝑛,𝑋𝑛 (𝑠)||| |||𝑡𝑛 )𝑑𝑠 ≤𝐾 (

1 + ‖‖𝑋𝑛‖‖2) 1
2 (
𝑠− 𝑡𝑛

)
,

and, in view of the 𝐿2 estimate in [38],

𝔼
(|||𝑋1

𝑡𝑛,𝑋𝑛
(𝑠) −𝑋1

𝑛

|||2 |||𝑡𝑛
)
≤𝐾 (

1 + ‖‖𝑋𝑛‖‖2)(𝑠− 𝑡𝑛)
we conclude that

𝐼 ≤ ‖‖‖M⟨2⟩(ℎ𝜔𝑛)‖‖‖ ||||𝔼(
𝑓 (𝑡𝑛,𝑋1

𝑡𝑛,𝑋𝑛
(𝑠)) − 𝑓 (𝑡𝑛,𝑋1

𝑛
) |||𝑡𝑛 )|||| ≤𝐾 (

1 + ‖‖𝑋𝑛‖‖2) 1
2 (
𝑠− 𝑡𝑛

)
.

On the other hand, following arguments similar to those used in the derivation of (14) and (15), we obtain( ) 1
7

𝐼𝐼 ≤𝐾 1 + ‖‖𝑋𝑛‖‖2 2
ℎ3,
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Fig. 1. Comparison between method (9) and Trapezoidal method on Mathieu with 𝜎 = 0.5 and 𝑏 = 0.1. The reference solution is computed by the Trapezoidal method 
with stepsize ℎ = 2−12 .

𝐼𝐼𝐼 ≤𝐾 (
1 + ‖‖𝑋𝑛‖‖2) 1

2 (
𝑠− 𝑡𝑛

)
,

𝐼𝑉 ≤𝐾 (
1 + ‖‖𝑋𝑛‖‖2) 1

2
ℎ.

Substituting 𝐼 − 𝐼𝑉 in (19) and using the resulting estimate together with (18) in (17), we obtain that the mean deviation satisfies

‖‖‖‖𝔼(
𝑋𝑡𝑛,𝑋𝑛

(𝑡𝑛+1) −𝑋𝑛+1
|||𝑡𝑛 )‖‖‖‖ ≤𝐾 (

1 + ‖‖𝑋𝑛‖‖2) 1
2
ℎ2. (20)

To conclude, we use the estimates (16) and (20) to apply the fundamental convergence theorem which states the strong order of 
convergence of a numerical method from the mean and mean-square deviation of one-step approximation (see [39]). In this way, we 
finally prove the strong order 1 of the method. □

Remark 3.1. We note that taking more terms in the Magnus expansion of Ω(𝑡, 𝑡𝑛) does not improve the order of convergence of the 
proposed method. In fact, in general, it is not possible to construct methods of higher order using only the information provided by 
increments of the driving Wiener process. See [10] for a discussion on this.

4. Numerical experiments

This section is dedicated to a selection of numerical experiments to show the performance of the introduced integrator (9). We 
select two models of oscillator widely considered in the literature.

4.1. A Mathieu’s oscillator

A particular example of stochastic Mathieu’s oscillator with additive noise is described by the equation

𝑥̈ = −(1 + 𝑏 cos(𝑡))𝑥+ sin(𝑥) + 𝜎𝜉𝑡, (21)

where 𝜉𝑡 is a Gaussian white noise. This kind of model, with all its variants from deterministic to stochastic with different kinds of 
noises and non-linearities, is widespread in the scientific literature. We aim to provide a numerical study of convergence properties 
for the introduced method (9). We start setting the parameter 𝑏 = 0.1. Reference solutions of (21) are computed by the 𝜃-Maruyama 
method with 𝜃 = 0.5 (the Trapezoidal method) with stepsize ℎ = 2−12 over the interval [0 1]. The experiments are conducted over 𝑀 =
103 paths. Setting 𝜎 = 0.5, we show in Fig. 1 a comparison between the mean-square order of convergence for (9) and Trapezoidal 
method.

Since it may be interesting to observe the behavior for different values of the noise amplitude 𝜎, we show in Fig. 2 the estimates of 
the order of convergence for the proposed method, for different values of 𝜎. Also, in Table 2, the estimated order of convergence for 
(9) (𝑝) and for the Trapezoidal rule (𝑞) are displayed. Table 1 and Fig. 3 show the numerical estimation of the order of convergence 
of the proposed integrator (9), for several values of the parameter 𝑏 and 𝜎 = 0.2.

To give more complete results with respect to the accuracy of the integrator (9), we provide the Table 3.
8

To elaborate the results shown in this table, we simulate for each of the values of ℎ (ℎ = 2−5, 2−6, 2−7) 2000 trajectories computed by 
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Fig. 2. Order of method (9) on Mathieu’s oscillator, with reference solution computed by the trapezoidal method, for different values of 𝜎.

Fig. 3. Order of method (9) on Mathieu’s oscillator, with reference solution computed by the trapezoidal method, for different values of 𝑏 and 𝜎 = 0.2.
9

Fig. 4. Order of method (9) on the oscillator (22), with reference solution computed by the trapezoidal method, for different values of 𝜇 and 𝜎 = 0.2.
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Table 1

Numerical estimation of the order of 
convergence of method (9) (𝑝) and of 
Trapezoidal rule (𝑞) for the Mathieu’s 
oscillator (21), with several values of 𝑏
and 𝜎 = 0.2.

𝑏 𝑝 𝑞

0.1 1.0014 1.0572
1 1.0031 1.0570
10 1.0198 1.0550
100 1.0188 1.2879

Table 2

Numerical estimation of the order of 
convergence of method (9) (𝑝) and of 
Trapezoidal rule (𝑞) for the Mathieu’s 
oscillator (21), with 𝑏 = 0.1 and differ-

ent values of 𝜎.

𝜎 𝑝 𝑞

0.1 1.0451 1.0451
0.3 1.0051 1.0416
0.5 1.0058 1.0611
1 1.0038 1.0270

Table 3

Estimated values 𝑒(ℎ) and their respective 95% confidence intervals com-

puted for method (9), considering the Mathieu’s oscillator (21).

𝜎 ⧵ stepsize ℎ = 2−5 ℎ = 2−6 ℎ = 2−7
𝑒±Δ 𝑒±Δ 𝑒±Δ

0.1 0.0583 ± 0.0003 0.0291 ± 0.0002 0.0145 ± 0.0001
0.3 0.0621 ± 0.0010 0.0311 ± 0.0006 0.0155 ± 0.0002
0.7 0.0833 ± 0.0016 0.0415 ± 0.0009 0.0209 ± 0.0005
1 0.1088 ± 0.0030 0.0541 ± 0.0013 0.0268 ± 0.0006

the method (9), and grouped them into 𝑀 = 20 batches with 𝐿 = 100 realization in each. Then, we consider the error 𝑒𝑖,𝑗 (ℎ) between 
the 𝑗-th trajectory and the reference solution in the 𝑖-th batch, and estimate the mean error of the 𝑖-th batch by

𝑒𝑖(ℎ) =
1
𝐿

𝐿∑
𝑗=1
𝑒𝑖,𝑗 (ℎ),

their average by

𝑒(ℎ) = 1
𝑀

𝑀∑
𝑗=1
𝑒𝑗 (ℎ),

and their variance by

𝜎̂2
𝑒
(ℎ) = 1

𝑀 − 1

𝑀∑
𝑖=1

|𝑒𝑖(ℎ) − 𝑒(ℎ)|2.
The 100(1 − 𝛼)% confidence interval for the mean error is then given by

[𝑒(ℎ) − Δ(ℎ), 𝑒(ℎ) + Δ(ℎ)],

where

Δ(ℎ) = 𝑡1−𝛼,𝑀−1

√
𝜎̂2
𝑒
(ℎ)
𝑀

and 𝑡1−𝛼,𝑀−1 denotes the Student’s 𝑡 distribution with 𝑀 −1 degrees of freedom. In accordance with the theoretical analysis, Table 3, 
10

show that the reduction of the stepsize provokes an improvement of the behavior of the error.
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Table 4

Table of mean runtimes at various values of the stepsize ℎ, for the Mathieu’s 
oscillator (21) with 𝜎 = 0.3.

ℎ 0.0005 0.0010 0.0020 0.0039 0.0078

Trapezoidal time 313,7 308.4 277.5 299.7 304.7
Magnus time (ref) 1 1 1 1 1

Table 5

Table of mean runtimes at various values of the stepsize ℎ, for the Mathieu’s 
oscillator with 𝜎 = 1.

ℎ 0.0005 0.0010 0.0020 0.0039 0.0078

Trapezoidal time 335.8 341.3 345.4 352.8 280
Magnus time (ref) 1 1 1 1 1

Table 6

Estimated values 𝑒(ℎ) and their respective 95% confidence intervals com-

puted for method (9), considering the oscillator (22).

𝜎 ⧵ stepsize ℎ = 2−5 ℎ = 2−6 ℎ = 2−7
𝑒±Δ 𝑒±Δ 𝑒±Δ

0.1 0.0253 ± 0.0002 0.0126 ± 0.0001 0.0062 ± 0.0001
0.3 0.0338 ± 0.0007 0.0168 ± 0.0004 0.0084 ± 0.0002
0.5 0.0462 ± 0.0013 0.0229 ± 0.0006 0.0115 ± 0.0003
1 0.0784 ± 0.0025 0.0400 ± 0.0011 0.0196 ± 0.0005

Table 7

Table of mean runtimes for various values of the stepsize ℎ, for the oscillator 
(22) with 𝜎 = 0.3 and 𝜇 = 1.

ℎ 0.0005 0.0010 0.0020 0.0039 0.0078

Runtime Trapezoidal 159.5 132.7 109.2 110.1 107.1
Runtime for (9) 1 1 1 1 1

Table 8

Table of mean runtimes for various values of the stepsize ℎ, for the oscillator (22)

with 𝜎 = 0.5 and 𝜇 = 10.

ℎ 0.0005 0.0010 0.0020 0.0039 0.0078

Runtime for Trapezoidal 316 324 325.6 122.8 277.3
Runtime for (9) 1 1 1 1 1

Tables 4 and 5 show the running mean-time spent to compute, for different values of parameters 𝜎, one solution path for some 
values of the stepsize for the Mathieu’s oscillator (21). The results are shown assuming the running time of the solution computed by 
method (9) as reference.

4.2. Airy

This section is dedicated to numerical experiments referred to the model

𝑥̈ = −𝜇𝑡𝑥+ cos2(𝑥) + 𝜎𝜉𝑡. (22)

We start presenting Table 6, showing estimated values 𝑒(ℎ) and their respective 95% confidence intervals computed for method (9), 
considering the oscillator (22) (computed in a similar way to Table 3). Also in this case, we consider as stepsizes ℎ = 2−5, 2−6, 2−7
and some values of 𝜎.

Tables 7 and 8 show the running mean-time spent to compute, for different values of parameters 𝜎 and 𝜇, one solution path for 
some values of the stepsize. The results are shown assuming the running time of the solution computed by method (9) as reference.

As expected, the performances of method (9) in terms of computational time, are much better than Trapezoidal method.

Table 9 and Fig. 4 show the numerical estimation of the order of convergence of the proposed integrator (9), for several values 
11

of the parameter 𝜇 and 𝜎 = 0.2 in Equation (22).
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Table 9

Numerical estimation of the order of 
convergence of method (9) (𝑝) and of 
Trapezoidal rule (𝑞) for the oscillator 
(22), with several values of 𝜇 and 𝜎 =
0.2.

𝜇 𝑝 𝑞

0.1 1.0072 1.0352
1 1.0028 1.0311
10 0.9801 1.1390
100 1.0076 2.0560

Fig. 5. Mean reproduction over the interval [0 100], choosing the stepsize ℎ = 2−7 .

Fig. 6. Plot of the mean of 𝑋1 as function of the time for the explicit Euler Maruyama method with ℎ = 2−13 .

4.3. Statistical behavior

The next numerical experiments aim to illustrate the long-term probabilistic behavior of the proposed method. For this, we 
consider the equation

𝑥̈ = −𝜇𝑡𝑥+ 𝜎𝜉𝑡, (𝜇 > 0) (23)
12

which is equivalent to



Applied Mathematics and Computation 472 (2024) 128610R. D’Ambrosio, H. de la Cruz and C. Scalone

Fig. 7. Plot of the mean of 𝑋1 as function of the time for the Magnus method with ℎ = 2−3 .

d𝑋 =
(

0 1
−𝜇𝑡 0

)
𝑋d𝑡+

(
0
𝜎

)
d𝑊 (𝑡). (24)

Let 𝑌 = 𝔼[𝑋], then 𝑌 satisfies the following ODE

𝑌 ′ =
(

0 1
−𝜇𝑡 0

)
𝑌 . (25)

Thus, 𝑌 displays oscillations of progressively increasing frequency [32]. In Fig. 5, we plot the reproduction of the mean of the 
solution for Euler-Maruyama and for method (9), for 𝑡 ∈ [0100], 𝜇 = 1 and for ℎ = 2−7. The instability of Euler-Maruyama appears 
clear for this choice of the stepsize. In fact, we need to reduce up to ℎ = 2−13, to have a correct reproduction of the mean, as shown 
in Fig. 6. It is worth to note that even for bigger stepsizes, like ℎ = 2−3, the proposed integrator shows a stable performance, still 
reproducing the behavior of the exact solution, as displayed in Fig. 7.

5. Conclusions

In this paper, we introduce a numerical integrator based on Magnus’ expansions specifically designed to deal with scalar stochastic 
oscillators of the form (1). A complete analysis of the convergence of the method is provided and several numerical experiments were 
carried out to confirm the good properties of the proposed method in terms of accuracy and computational cost, in comparison with 
standard integrators in the literature. Moreover, the possibility to conserve probabilistic features, like the mean, is shown. Motivated 
by the excellent properties of the Magnus’ integrators in the deterministic setting, the search for similar properties and possible 
extensions to more complicated models can provide key insights for future research.
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