
The Journal of Systems and Software 207 (2024) 111833

A
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Architectural support for software performance in continuous software
engineering: A systematic mapping study✩

Romina Eramo a,∗, Michele Tucci b, Daniele Di Pompeo b, Vittorio Cortellessa b, Antinisca Di
Marco b, Davide Taibi c,d

a University of Teramo, Teramo, Italy
b University of L’Aquila, L’Aquila, Italy
c University of Oulu, Oulu, Finland
d Tampere University, Tampere, Finland

A R T I C L E I N F O

Keywords:
Software architecture
Software performance
Continuous software engineering
DevOps

A B S T R A C T

The continuous software engineering paradigm is gaining popularity in modern development practices, where
the interleaving of design and runtime activities is induced by the continuous evolution of software systems.
In this context, performance assessment is not easy, but recent studies have shown that architectural models
evolving with the software can support this goal. In this paper, we present a mapping study aimed at classifying
existing scientific contributions that deal with the architectural support for performance-targeted continuous
software engineering. We have applied the systematic mapping methodology to an initial set of 215 potentially
relevant papers and selected 66 primary studies that we have analyzed to characterize and classify the current
state of research. This classification helps to focus on the main aspects that are being considered in this domain
and, mostly, on the emerging findings and implications for future research.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
(see [https://www.sciencedirect.com/science/article/pii/S0164121221002168] for an example for where to place
the statement and how to format it).
1. Introduction

Continuous software engineering (CSE) is a promising software pro-
cess that interleaves business strategy (i.e., requirement engineering),
development, and operations on a continuum. It aims to produce a bet-
ter software product and create more successful implementations that
satisfy the relevant requirements and constraints. Similarly, the recent
emphasis on DevOps recognizes that the integration between soft-
ware development and its operational distribution must be continuous.
DevOps improves end-to-end collaboration between the stakeholders,
development, and operations teams. In addition, they have been suc-
cessfully employed in disciplines such as security and testing. Software
performance (SP) is an essential quality aspect for the adoption and
success of a software system. Researchers and industry practitioners
have identified the importance of integrating performance engineer-
ing practices in continuous development processes in a timely and
efficient way (Ferme and Pautasso, 2017). However, current software
performance engineering methods are not tailored for environments

✩ Editor: Uwe Zdun.
∗ Corresponding author.

E-mail addresses: reramo@unite.it (R. Eramo), michele.tucci@univaq.it (M. Tucci), daniele.dipompeo@univaq.it (D. Di Pompeo),
vittorio.cortellessa@univaq.it (V. Cortellessa), antinisca.dimarco@univaq.it (A. Di Marco), davide.taibi@oulu.fi (D. Taibi).

using CSE processes and practices are lagging (Bezemer et al., 2018;
Kudrjavets et al., 2022).

Although SP is a non-functional property related to the platform on
which the software is deployed, performance assessment, in the last
two decades, has been mainly estimated at the design level through
methods, such as software architecture (SA) (Brosig et al., 2011; Cortel-
lessa et al., 2011; Martens et al., 2010). SAs can be transformed into
performance models, whose indices can be exploited to compare SA
alternatives. Such a design-time performance assessment does not ex-
tensively consider several aspects of the target platform characteristics.
However, these early-stage comparative analyses that show differences
evident in the alternative results certainly support architects to make
decisions with an enhanced view of their performance effects.

The rise of the continuous engineering paradigm has substantially
changed in the last decade of the software process. More often, it is
nowadays required that software engineering follows a continuous loop
between the running code and design models such that these two sides
vailable online 29 September 2023
164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.jss.2023.111833
Received 14 April 2022; Received in revised form 7 April 2023; Accepted 2 Septem
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ber 2023

https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
https://www.sciencedirect.com/science/article/pii/S0164121221002168
mailto:reramo@unite.it
mailto:michele.tucci@univaq.it
mailto:daniele.dipompeo@univaq.it
mailto:vittorio.cortellessa@univaq.it
mailto:antinisca.dimarco@univaq.it
mailto:davide.taibi@oulu.fi
https://doi.org/10.1016/j.jss.2023.111833
https://doi.org/10.1016/j.jss.2023.111833
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111833&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.
of the process can reciprocally feed each other (Fitzgerald and Stol,
2017). For example, runtime data can be collected from execution
traces to feed software models. Software models are then aimed at
checking either functional or non-functional properties. The analysis
of software models in the context of incoming execution scenarios
can suggest just-in-time refactoring/adaptation actions that keep the
software behavior acceptable when these scenarios occur (Mazkatli
et al., 2020; Spinner et al., 2016, 2019). In the context of CSE processes,
architectural models appear to have gained relevance, among oth-
ers, for supporting performance-related decisions (Arcelli et al., 2019;
Cortellessa et al., 2022).

Despite rising interest in embracing the continuous architecting
approaches and performance engineering practices, there has been a
little consensus in the literature on the appropriateness of different
performance engineering techniques that can be used in a continuous
engineering process. A limited number of studies that consider con-
tinuous engineering in some specific aspects of self-adaptive systems
and microservices have been published (Koziolek, 2010; Becker et al.,
2012; Pahl and Jamshidi, 2016; Taibi et al., 2019; Jabbari et al., 2016).

However, current CSE and DevOps practices focus on rapid delivery,
minimizing time to release for new features, mitigating risks, driving
new efficiencies, and establishing a continuous delivery pipeline. Ef-
ficient and automated performance engineering tools are critical and
pose relevant challenges in accomplishing this mission. Thus, there is
still a need for a study that systematically investigates all the key pub-
lications on this topic and identifies possible performance engineering
techniques applicable to continuous engineering processes.

In this study, we conduct a mapping study of the existing liter-
ature (Petersen et al., 2015) to investigate the contributions of the
scientific community to architectural support for SP within CSE. Fur-
thermore, the study aims to characterize and classify the current re-
search scenario to better structure our understanding of the topic and
identify research directions worth investigating in this domain soon.

The main contributions of this study include:

• A reusable framework for classifying, comparing, and evaluat-
ing solutions, methods, and techniques specific to architectural
support for software performance in continuous software engi-
neering;

• A systematic map of the state of research in the domain of
architectural support for SP in CSE in terms of the performance
areas, domains, addressed problems, and adopted instruments;

• A discussion of the emerging trends, gaps in the literature, and
their implications for future research.

The remainder of this paper is organized as follows: In Section 2,
we provide a background review and compare the existing literature.
In Section 3, we define our target question and illustrate the process
that we have adopted to conduct the mapping study; In Sections 4 and
8, we describe and analyze the results obtained to answer our target
questions. In Section 9, we discuss the threats to validity of our study,
and finally, Section 10 presents the concluding remarks.

2. Background and related work

This section provides some background information and presents
the synergies among the main concepts involved; other studies on
related topics are also presented in this section.

2.1. Main concepts

Continuous Software Engineering (CSE). This refers to the capability
to develop, release, and learn from software in rapid parallel cycles.
This includes determining new functionality to build, evolve and refac-
2

tor the architecture, develop the functionality, validate it, release it
to customers and collect experimental feedback from the customers to
inform the next cycle of development (Tichy et al., 2017).

The definition of CSE is prone to interpretations and is often used
in conjunction with other continuous activities that emerge during the
entire software (engineering) lifecycle (Fitzgerald and Stol, 2017). In
particular, the activities considered in the development phase are: con-
tinuous integration, continuous deployment/release, continuous deliv-
ery, and continuous verification/testing. Whereas, the operation phase
concerns the end of the process, where handover of the release is
initiated; in this phase, particular attention is devoted to the continuous
use of these systems, after the initial adoption, as well as continuous
monitoring, to observe and detect compliance issues and risks. The
most recent stand out of the DevOps (Ebert et al., 2016) practices, which
promote the integration between development and operations, confirms
that these areas are closely interact to achieve CSE. Finally, a closer
and continuous linkage between business management and software
development functions is also necessary to benefit activities such as
business planning; the BizDev (Fitzgerald and Stol, 2017) phenomenon
complements DevOps, integrating business management with software
development and operations functions.

Software Performance (SP). This represents the entire collection of
software engineering activities and related analyses used throughout
the software development cycle, which are directed at meeting per-
formance requirements (Woodside et al., 2007). This field focuses on
the quantitative evaluation of modern software systems (e.g., data-
intensive, autonomous, distributed, adaptive, and embedded systems)
and trade-offs between performance and other quality of service (QoS)
attributes (e.g., security, reliability, and availability). In the last few
decades, numerous performance engineering methods, methodologies,
and techniques have been developed for system evaluation (Merseguer
et al., 2017).

SP assessment is a crucial task in software engineering to ensure that
a new software release does not impair the user-perceived performance.
Performance degradation can occur in various forms, such as high re-
sponse time latency, low throughput, and excessive resource utilization.
Although these arguments would suggest that performance should be
assessed on every change, recent studies on continuous engineering
shows that it is not standard practice yet (Laaber, 2019).

Software Architecture (SA). The SA of a software system is the
structure or structures of the system, which comprise software com-
ponents, the externally visible properties of those components, and the
relationships among them (Bass et al., 2003). SA is often the first design
artifact to represent decisions on how the requirements of all types are
to be achieved. It shows the correspondence between the requirements
and the constructed system, thereby providing a rationale for the
design decisions (Hasselbring, 2018). The design of the overall system
structure, particularly in large and complex systems, is an essential
factor. For instance, performance depends largely upon the complexity
of the required communication, coordination, or cooperation among
the different components, particularly in complex distributed systems.

The need for SA evaluation is based on the realization that software
development, similar to all engineering disciplines, is a process of
continuous modeling and refinement. Detecting architectural problems
before the bulk of the development work is completed allows re-
architecting activities to take place in due time. At the same time,
tuning activities enhance and maintain the SP during the software
lifetime (Del Rosso, 2006).

Synergies between CSE, SP, and SA. CSE involves several challenges
in terms of SA evolution and the detection/resolution of problems
related to software quality attributes, such as performance (Fitzger-
ald and Stol, 2017). Software development, in practice, concerns the
continuous evolution of software, primarily owing to new incoming re-
quirements. It is possible that SA is not adequate to embed new required

functionalities, thus imposing a heavy and complex software evolution.



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.
Fig. 1. Overview of the considered context.

This is compounded by situations in which the original developers are
no longer available. In such cases, the system maintainability is strongly
related to its architecture (Daneva and Bolscher, 2020).

With continuous engineering practices, developers have greater
control and visibility of defects as well as early access to the state
of quality attributes, enabling them to remedy any potential issues
during the system development. Interactions between design-time and
run-time in software engineering allow for dynamic adaptation and
ensure non-functional properties and end-user expectations (Brunelière
et al., 2018). Notably, continuous monitoring is considered an en-
abler for the early detection of QoS problems, such as performance
degradation (Hasselbring and van Hoorn, 2020).

Fig. 1 illustrates the context of this study. We considered the holistic
view of the CSE proposed in Fitzgerald and Stol (2017) and tailored
the figure by focusing only on the continuous activities that are central
to SP (in the white rectangles) and by adding the specific task of
performance assessment (in the light blue rectangle).

This figure also shows the bridge artifacts between CSE and SP.
SA and runtime data are output artifacts of CSE that feed the SP,
whereas refactoring enters the CSE. SA is the abstraction that represents
the best trade-off between model complexity and expressiveness and
allows the assessment of the performance characteristics of a (software)
system. Runtime data represents the running system that provides all
parameters to set the performance model defined by the SA. Refactoring
consists of suggestions on how to change the software system to solve
or mitigate performance degradation.

Based on the above tailoring, we formulate a query to extract the
literature object of our analysis.

2.2. Related work

In this section, we discuss secondary studies that somehow address
the role of SA and SP in the CSE paradigm.

Koziolek (2010) conducted a holistic literature review classifying
the approaches concerning performance prediction and measurement
for component-based software systems based on studies published from
1999 to 2009. These approaches introduce specialized modeling lan-
guages for the performance of software components and aim to un-
derstand the performance of a designed architecture instead of code-
centric performance fixes. The review acknowledges the limited sup-
port for the runtime life-cycle stage of software components and the
lack of consensus on the performance modeling language. In fact, none
of the reviewed approaches was ready to gain widespread use due to
limited tool support, fundamental in the case of CSE. The surveyed
methods support modeling the runtime life-cycle stage of software
components only in a limited way (i.e., they only included the workload
3

and the usage profile modeling of the component-based system at
runtime). For continuous performance improvement, dynamic software
refactoring is of paramount importance. However, the reviewed pri-
mary studies in (Koziolek, 2010) partially supported dynamic and
automated mechanisms for CSE for performance aspects. Furthermore,
online performance monitoring at runtime was not fully combined
with modeling techniques to react on changing usage profiles and
deployment environments. As an extension of the review published by
Koziolek (2010), we present an updated analysis of the literature in
our study including papers published until February 2022. Differently
from (Koziolek, 2010), our work focuses on publications investigating
performance engineering methods that can be applied in the context
of CSE and considering approaches applicable to all kind of systems
without limiting our study to component-based software systems.

In a subsequent holistic literature review, Becker et al. (2012)
specifically investigated model-driven performance engineering ap-
proaches for self-adaptive systems based on studies published from
2004 to 2011. The authors provided a thorough classification scheme,
presented as a feature diagram. They distinguished between the reac-
tive and proactive adaptation strategies, and they derived two main
categories of adaptation: design-time and run-time.

Self-adaptation is the ability of the system to decide autonomously
(i.e., without or with minimal human intervention) how to adapt to ac-
commodate changes in its context and environment, and to manage the
uncertainty in the environment in which the software is deployed, and
during the execution (Weyns, 2020). Self-adaption is enabled because
self-adaptive systems use an explicit representation of their own struc-
ture, behavior, and goals (de Lemos et al., 2013). Recent efforts have
been devoted to investigating motivation and the application of self-
adaptation in practice (Weyn et al., 2022). In this context, CSE defines
a continuous engineering process needed to quickly respond to market
and new customer requirements, i.e., to build solutions that much
more accurately align with dynamic customer needs (Bosch, 2014).
A number of continuous activities (such as continuous monitoring,
continuous integration, and so on) are part of an overall CSE (Fitzgerald
and Stol, 2017). CSE and (self-)adaptation are two different run-time
mechanisms in the sense that self-adaptation is the ability of a system
to manage changes and uncertainty, while CSE is a dynamic process
that continuously engineers the system allowing to add new features,
functionalities, and abilities, or new smarter implementations of them.

While the aforementioned study (i.e., Becker et al. (2012)) con-
sistently outlines performance engineering in self-adaptation targeting
model-driven performance approaches, we seek to extend the area
of interest to a more general interleaving of runtime knowledge and
architectural models in CSE, without limiting the study to model-driven
performance approaches.

Recently, different studies have covered the different aspects of
CSE (Pahl and Jamshidi, 2016; Taibi et al., 2019; Jabbari et al., 2016)
in several contexts. However, differently from our work, they did not
specifically consider SP engineering. Pahl and Jamshidi (2016) have
presented a systematic mapping study of 21 papers published from
2014 to 2015 to identify, taxonomically classify, and systematically
compare the existing research body on microservices and their applica-
tion in the cloud, by positioning them within the context of continuous
development. Taibi et al. (2019) have presented a systematic mapping
study of continuous architecture with microservices and DevOps, and
included 23 studies published from 2014 to 2017 in their investigation.
They provided an overview of the architectural styles of microservices
applications, highlighting the advantages and disadvantages of each
style. However, no consideration was given to non-functional proper-
ties, such as performance. Jabbari et al. (2016) presented a systematic
mapping study on the classification of DevOps and included 49 papers
published from 2011 to 2016. They investigated how DevOps was
exploited during software development processes. They found that few
primary studies exploited model-driven engineering techniques and

focused on quality assurance.



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.
Fig. 2. Mapping process.
Finally, Bezemer et al. (2019) conducted an industrial survey to gain
insights into how performance is addressed in industrial DevOps set-
tings. In particular, they have investigated the frequency of executing
performance evaluations, the tools being used, the granularity of the
performance data obtained, and the use of model-based techniques.

In contrast to the aforementioned papers, in this paper, we execute
a systematic mapping study that investigates how performance is as-
sessed in the context of CSE by providing a classification schema able
to classify primary studies concerning research areas, addressed target
problems, provided contributions, devised methodologies, studied per-
formance indices, and type of used data. Unlike other related work, the
focus of this study is the combination of SA and SP within CSE.

3. Research method

To gain insights into the current research practices on the architec-
tural support for SP within CSE, we conducted a systematic mapping
study of the literature based on the guidelines proposed by Petersen
et al. (2015), and the ‘‘snowballing’’ process defined by Wohlin (2014).

The process adopted in this study consists of five steps, as shown in
Fig. 2. In the first step, we define the research questions and identify the
scope of the review to be incorporated in the next steps. Subsequently,
we conduct a literature search to retrieve a list of relevant publications
that are then selected by applying the inclusion and exclusion criteria
in the papers selection step. The selected publications are the input for
the data extraction, where we categorize the relevant publications by
considering their full text. As output, we obtain a classification schema
that is used as input for mapping the data retrieved from the papers to the
questions.

In the following section, we describe the five aforementioned steps
of the mapping process. In Sections 4–8, we present the results of
the analysis and mapping of the papers. Moreover, to simplify the
replicability of this study, a complete replication package is made
publicly available (Eramo et al., 2021).

3.1. Defining research questions

To investigate the contributions of the scientific community on the
architectural support for SP within CSE, we formulated the following
research questions:

RQ1: What research areas and target systems have been investigated?
The aim of this research question is two-fold: (i) to highlight the
research areas that are focused on providing solutions in this field;
and (ii) to extract the subject systems on which the application or
technique is intended to apply (we refer to this by the term ‘‘target
system’’ (Bjørner, 2006; Bryant et al., 2010)).

The rationale for this RQ is strongly related to the goal of this study
and it aims to define how and what degree of performance engineering
is exploited in CSE. It also determines which application domains have
been considered in the selected studies. This helps us to understand the
maturity of continuous performance assessment and to determine the
applications for which performance is considered a key constraint.
4

RQ2: What and how performance problems have been addressed? This
research question focuses on the identification of the SP engineering
problems targeted in a CSE process and the solutions proposed to
address them.

Several issues can be addressed in SP engineering, including require-
ment specification, modeling, analysis, prediction, and suggestions to
improve the software system performance. The rationale behind this
RQ is strictly related to the identification of the SP target problems
considered by the researchers and the related contributions proposed
in the context of CSE.

RQ3: What instruments have been adopted? Several instruments can be
used to address the performance issues. We partitioned these into three
categories of keywords: input data, methodologies/techniques, and per-
formance output measures/indices. The first category includes the types
of data that are used to conduct the performance analysis, and spans
from runtime data through requirements to software/performance
models. Examples of the second category are patterns/anti-patterns
recognition, performance prediction or testing. The third category aims
to identify the target metrics, such as response time, throughput and
network bandwidth. This research question aims to identify which, and
with what degree instruments have been applied in the context of CSE.

The rationale behind this question is strictly related to determining
the characteristics and limits of the proposed solutions in the SP and
CSE domains.

RQ4: What are the gaps in current research gaps and the implications for
future research? This research question combines the different view-
points highlighted in the previous three RQs, and aims to identify
contexts that have been hitherto most or least investigated. For exam-
ple, how intensively has performance assessment (as a problem) been
investigated in the context of continuous monitoring (as a research area)
on distributed systems (as a target)?

We are particularly interested in highlighting combinations that ex-
hibit low intensities. We expect that some of these combinations to raise
negligible interest and others to represent research gaps. Moreover, we
are focused on identifying areas worth investigating in the near future.

3.2. Conducting search

The search process involves the identification of search strings, the
outline of the most relevant bibliographic sources and search terms,
the definition of the inclusion and exclusion criteria, and the query
execution.

Search strings. We defined the search keywords based on the PICO1

terms (Kitchenham and Charters, 2007) in our questions structure. As
suggested by Kitchenham and Charters (2007), the comparison and
outcome terms cannot always be considered in software engineering if
the research focuses on general investigation. hence, we extracted the
keywords from the population and intervention terms.

We refined the search terms and the related search strings to ensure
that relevant studies were returned by combining the keywords and
reviewing the titles and abstracts of the search results. The final set of
keywords is listed in Table 1. The resulting query was then adapted

1 PICO elements include: problem/patient/population,
intervention/indicator, comparison, outcome (Huang et al., 2006).



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.

s
a
s
i
S

e
t

a
t
t
t
1

e
e
[

Table 1
Definition of keywords.

Population P terms

Software performance Software performance

Intervention I terms

Software architecture Software architecture

Continuous Software
Engineering

DevOps, continuous integration, continuous
deployment, continuous development, continuous
improvement, DevOps, continuous evolution,
continuous monitoring

Table 2
Inclusion and exclusion criteria.

Criteria Assessment criteria Step

Inclusion

The paper covers software performance engineering
issues

All

The paper proposes model-based or architectural
approaches for CSE/DevOps or contributes to (self-)
adaptation/refactoring targeted to software
performance

All

Exclusion

The paper is not fully written in English T/A
The paper is not peer-reviewed (i.e., blog, forum, etc.) T/A

The paper is a duplicate (only consider the most
recent version)

T/A

The paper is a position papers, book chapter or work
plan (i.e., the paper does not report results)

T/A

The paper does not fully or partly focus on software
performance

All

The paper does not fully or partly focus on software
architecture or software engineering

All

to the syntax of each bibliographic source. All the queries applied
to the different bibliographic sources are reported in the replication
package (Eramo et al., 2021).

(“continuous software engineering” OR “continuous integration” OR
“continuous deployment” OR “continuous development” OR “con-
tinuous improvement” OR DevOps OR “continuous evolution” OR
“continuous monitoring”) AND “software architecture” AND “software
performance”

Query 1: Baseline search string.

Bibliographic sources. We selected a list of relevant bibliographic
ources following the suggestions of Kitchenham and Charters (2007),
s these sources were recognized as the most representative in the
oftware engineering domain and were used in many reviews. The list
ncludes: ACM Digital Library, IEEEXplore Digital Library, Scopus, and
pringerLink.
Inclusion and exclusion criteria. We defined the inclusion and

xclusion criteria to be applied to the title and abstract (T/A) or to
he full text (All), as reported in Table 2.
Search. Finally, the search was conducted on March 1st, 2022, and

ll the publications hitherto available were included. The application of
he search terms returned 215 papers, which was the result of merging
he papers from the bibliographic sources considered, as depicted on
he left side of Fig. 3. Upon removing the duplicate papers, we obtained
95 papers.

We validated the search string with a ‘‘golden set’’ of papers that
nsured that we did not leave out relevant works. The papers consid-
red in the golden list were: [SP2], [SP9], [SP10], [SP12], [SP31], and
5

SP49].
Fig. 3. Overview and numbers of search and selection process.

3.3. Papers selection

After obtaining the initial set of papers, we applied the selection
process described in this section. An overview and numbers of this
process is depicted in Fig. 3.

Testing the applicability of the inclusion and exclusion criteria.
Before applying the inclusion and exclusion criteria, all the authors
tested their applicability iteratively, on a subset of 20 randomly se-
lected papers. Based on the disagreements, and on a shared discussions,
we clarified the inclusion and exclusion criteria.

Applying the inclusion and exclusion criteria to the title and
abstract. The refined criteria were applied to the remaining 195 papers
(Table 2). We have included papers that meet all the inclusion crite-
ria and excluded those that meet any of the exclusion criteria. Each
paper was read by two authors; in the case of disagreement, a third
author helped to resolve the disagreements. For 32 papers, the authors
discussed and cleared possible disagreements. Out of the 195 initial
papers, we included 74 papers based on the title and abstract. The
inter-rater agreement before the third author was involved was 0.75,
obtained using Cohen’s kappa coefficient, which indicated a substantial
agreement between the authors (Emam, 1999).

Snowballing. We performed the snowballing process
(Wohlin, 2014), by considering all the references presented in the
retrieved papers and evaluating all the papers referencing the retrieved
papers, which resulted in one additional relevant paper. We applied the
same process to papers retrieved from the initial search. A snowballing
search was conducted in March 2022. We identified 86 potential
papers, but only 11 were included (after applying the inclusion and
exclusion criteria to the title and abstract) in order to compose the
final set of publications that were subjected to full reading and data
extraction.

Full reading. The screening of the remaining 85 papers was per-
formed independently by two authors. We ensured that the papers
were randomly assigned such that each author had a similar number
of papers assigned. Moreover, we permuted the assignments to enable
a good balance between each pair.

We read the 85 papers in full and applied the criteria defined in
Table 2. To improve the reliability of our study (Wohlin et al., 2013),
we sought the services of a third author in two papers to reach a final
decision. In this case, the inter-rater agreement before the third author
was involved was strong (Cohen’s kappa coefficient = 0.94; almost
perfect agreement). Based on this process, we selected a total of 66
papers for the review.

3.4. Data extraction and analysis

To ensure a rigorous data extraction process and to ease the manage-
ment of the extracted data, a well-structured classification framework

was rigorously designed, as explained in this section.



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.

i
e
o
m

To answer our RQs, we extracted a set of information from the
66 selected papers. Notably, we defined the main concepts and cor-
responding data in our study by following a systematic process called
keywording. The goal of this process is to effectively develop a classi-
fication scheme so that it fits the selected papers and considers their
research focus into account (Petersen et al., 2008). In particular, we
identified the codes for our coding schema using a semi-automated
process in the following two steps:

1. Automatic identification of the most recurrent keywords in the pa-
pers. We used natural language processing (NLP) techniques to
automatically identify the keywords that were most frequently
mentioned in the abstracts of the selected papers. We started
by collecting the abstracts from a single dataset that constituted
the text corpus for the processing. The corpus was pre-processed
in two phases: noise removal and normalization. In the noise
removal phase, we performed an initial clean-up by converting
the text to lowercase and by removing punctuations, tags, special
characters, and digits. We then applied two normalization tech-
niques: stemming to remove suffixes and lemmatization to group
together words having the same root. As a final pre-processing
step, we removed the prepositions, pronouns, and conjunctions.
Thus, we created a vector of words counts by deriving a bag-
of-words model for the text. In this model, words order and
grammar information are not considered because the entire text
is represented by the multiset of its words from which one can
derive their multiplicity. The vector of words counts was then
used to obtain the 50 most frequent single words and two words
(bi-grams) and three words (tri-gram) combinations.

2. Manual refinement of the keywords. We refined our collection of
keywords and concepts by reading the abstract of each paper. We
combined together keywords from different papers to develop a
high level understanding of the nature and contribution of the
research. This helped us to define a set of categories of keywords
that is representative of the research questions. However, the pa-
per abstracts were too limited to define all meaningful keywords.
Therefore, we thoroughly examined all the sections of the papers
to consolidate our classification schema. We performed a double
round of reviews by shuffling reviewers (among the authors
of the paper) after the first round. Finally, upon obtaining a
consolidated set of keywords, we have re-organized the original
categories to obtain the final classification used hereafter.

We assigned each author a set of 10 randomly selected papers, to
validate the coding schema and keywords, and to ensure a common
understanding among the researchers. Subsequently, we discussed on
the results of the coding and possible inconsistencies, and we finalized
the schema.

The resulting classification framework is presented in Table 3. It
comprises seven categories, with groupings of pertinent extracted key-
words. A detailed description of each keyword is provided in Appendix
C. Each category addresses the corresponding research questions by
using the metrics described in details below.

For RQ1, we extracted the information on the research area and
target system. Both research areas and targets may be either fully or
partially investigated. The primary goals of a paper are included in the
fully-investigated research areas and targets.

In a partially-investigated research area, either the primary goals
of the paper are considered, or it is a secondary area that supports
the primary goals (while a partially-investigated target implies that
the study can support that targeted system, even if it is not described
as central in the paper). As an example, we considered papers, such
as [SP40], where continuous software engineering has been partially
nvestigated because the paper mainly focuses on software performance
ngineering. It is important to note that papers might fully investigate
ne area and partially investigate another one, and therefore there
ight be more than one research area assigned to each paper.
6

Fig. 4. Selected paper types.

Regarding the problems addressed in the selected papers for RQ2,
we extracted information on the primary and secondary problems
and contributions reported by the selected papers. As an example,
we considered performance requirement as the primary problem and
quality of service as the secondary problem for paper [SP58], while
we considered performance analysis approach as main contribution and
performance modeling approach and performance prediction approach as
the secondary contributions for the paper [SP45]. The same approach
was applied also for RQ3.

After extracting all the information from the selected papers, we
analyzed the data by counting the number of papers obtained for each
data group and metrics (see Table 3). Therefore, for (RQ1), we counted
the number of papers that fully investigated a topic, partially investi-
gated it or considered the topic (either fully or partially investigated
it). Similarly, for (RQ2), we counted the papers that considered each
research problem (primary, secondary, or both). Following the previous
approach, (RQ3) was analyzed by counting the number of fully- and
partially-evaluated indices, used data, and methods.

For the first three RQs, we considered the individual keyword
results. RQ4 has been introduced to observe the results across different
keywords, with the goal of identifying contexts that have scarcely been
investigated. To achieve this goal, we introduced bubble plots, which
allowed for a straightforward comparison of how intensively a certain
context was investigated in comparison to other contexts. In the plots,
the size of the bubbles represents the number of papers that investigate
a specific keyword at the intersection of a research area (x-axis) and
domain (y-axis). The exact number of papers is annotated for each
bubble. In this way, one can visually identify areas of the plot where
no bubbles or only small bubbles are observed, thereby establishing
combinations of research areas and target systems where a certain
keyword appears to be seldom investigated in the considered literature.
Moreover, we analyzed the combination of the previous results and
future improvements and direction described in the selected papers to
identify a set of implications for future research.

A complete list of the keywords and metrics used for the analysis is
presented in Table 3.

4. Results overview

We selected 66 peer-reviewed publications, including 21 (32.3%)
articles, 30 conference papers (46.2%) and 15 workshop (or others
satellite events) papers (21.5%), as shown in Fig. 4. The selected papers
were presented at 33 different venues. Fig. 5 depicts the list of venues
considered by at least two of the selected papers.

The selected papers show a continuously growing interest on
performance-targeted CSE between 2016 and 2022, while a very small
number of publications have been published until 2015, which is in line
with the fact that continuous development and DevOps have emerged
only recently (Fitzgerald and Stol, 2017). Thus, we can gather that the
intuition of supporting SP through continuous engineering solutions has



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.

b
t

(
i
c
h
h
t
g

c
b
i

Table 3
Classification framework: Data Extraction, Keywords, and Metrics adopted for the analysis. Keywords in blue have been obtained in the manual keyword refinement step.

RQ Categories Keywords Metrics

RQ1

Research area
Software performance engineering, Software architecture,
Continuous Software Engineering, DevOps,
Continuous Monitoring, Agile software development. #Fully investigated topics (F)

#Partially investigated topics (P)
#Investigated topics (F, P)

Target system
Embedded/CPS, Cloud, Real-time,
Distributed, Data intensive
Software intensive,
Component-based software/Microservices/SOA.

RQ2

Research problems
Performance evaluation/assessment,
Performance requirement, Quality of service,
Resource allocation/deployment, Uncertainty. #Main target problem/contributions (M)

#Secondary target problem/contributions (S)
#Main or Secondary target problem/contributions (M, S)

Contributions
Performance analysis approach, Domain specific languages,
Continuous engineering framework,
Performance modeling approach, Tool support,
Performance prediction approach, Self-adaptation.

RQ3
Methodologies

Performance model, Model based engineering /
Model driven engineering (MBE/MDE), Performance
antipattern/Root cause/Bottleneck detection,
Performance prediction techniques, Performance analysis
techniques, Parametric dependency,
Performance testing/Load Testing/Benchmarking,
Performance model generation/extraction, Simulation,
Machine Learning, (Multi-objective) Optimization.

#Fully evaluated indices/data/methods (F)
#Partially evaluated indices/data/methods (P)
#Fully or Partially evaluated indices/data/methods (F, P)

Indices (output) Response time, Utilization, Throughput, Resource demand,
Network bandwidth, Memory/Memory Leaks.

Used Data (input) Runtime/Monitored, Workload, Requirements,
Performance model, Software model, Data analytics.

RQ4 Research area and Target
system combined with data
from RQ2 and RQ3

All keywords of RQ1 combined with specific keywords of RQ2
and RQ3.

#Fully or Partially addressing a specific combination of
keywords (F, P)
i

Fig. 5. Selected paper per venues.

een strengthened since 2015, although there has been a decrease in
he number of publications in 2020 and 2021.

The cumulative number of citations per year for the primary studies
Fig. 6, blue line, source: Google Scholar) highlights that the growing
nterest concerns not only the publications but also the number of
itations obtained from the studies of the dataset. Moreover, citations
ave grown rapidly since 2016. It is worth noting that the entire dataset
as a total of more than 3000 citations to date (i.e., they have more
han doubled in the last six years). This result indicates an important
rowing interest in the context of this study.

Thus, although the DevOps and CSE domains are relatively young
ompared with performance engineering, significant contributions have
een made in the last ten years and researchers are becoming increas-
ngly active (Fig. 6).
7

2

Fig. 6. Cumulative number of primary studies and citations in each year, and by type
of publication.

In the following sections, we present the results of this study aimed
at answering our research questions (see Section 3.1). For each ex-
tracted piece of information, we report both the quantitative data and
an interpretation of the results obtained.2

5. What research areas and target systems have been investigated
(rq𝟏)

The topic considered combines several aspects, as we discussed in
Section 2, which may attract interest from different disciplines and for
different scopes of research. To provide an overview of this research
topic, we describe the research areas focused on providing solutions
and the target systems for which solutions have been developed.

Fig. 7 depicts the principal research areas that are focus areas of
the selected papers (each study may contribute to more than one area).

2 For sake of readability, some of the results have been summarized; the
nterested reader may consult the extended version at http://arxiv.org/abs/
304.02489.

http://arxiv.org/abs/2304.02489
http://arxiv.org/abs/2304.02489


The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.

f
o
p

c
C
o
o
v
r
p
a
m
b
i
o

w
t
m

Fig. 7. Research areas - results.

Fig. 8. Target systems - results.

The bar chart in the figure compares the identified research areas with
respect to the number of papers3 For each research area, we stacked
two different bars to combine both the fully and partially investigated
areas (as described in Section 3.4).

As expected, the selected papers mainly focus on the areas of
software performance engineering and software architecture, which is in
agreement with the information on publication venues obtained in the
publication trends.

Many studies have contributed to continuous software engineering
that considered at least one of the continuous dimensions introduced
in Section 2.

Significant attention has been paid to the continuous monitoring
of data to realize continuous development, delivery, and integration,
which improves system performance at the level of SA. As the moni-
tored data enable performance analysis, continuous monitoring repre-
sents a fundamental capability to provide CSE. In general, the results
confirm that in the areas of SA and SP, CSE is an emerging topic that
is progressively gaining the interest of researchers and practitioners.
Existing conferences and systematic reviews on DevOps suggest that
software engineering researchers have a strong interest in this topic.
Despite this, only a few papers focus on DevOps, highlighting an
interesting gap to be addressed by the research community. However,
the limited number of articles on agile is an expected result. Even
as a precursor to DevOps, agile development is more code-focused
and produces less documentation (e.g., software/design models), not
supporting SA-based SPE.

Although a large number of selected papers have been fully identi-
fied as contributors to the CSE field, the number of papers that partially
investigate this area has increased. Beyond that, several selected papers
have not been placed within the context of CSE or DevOps, which
can be attributed to the fact that these papers do not explicitly place
themselves in these areas, even if they actually offer solutions that
cover several aspects of an iterative development process, wherein up-
dates are made continuously. However, this confirms that this emerging
theme is gaining ground.

Fig. 8 describes the specific type of target systems (as case studies)
in the selected papers. These keywords are not meant to be mutually
exclusive, in that a system could be, for example, at the same time

3 Although our topic is characterized by the dimensions shown in this
igure, the fact that the selected papers contribute to these specific fields
f research is not obvious. For instance, a paper may just use a specific
erformance evaluation technique without contributing in that area.
8

a distributed and realtime system. We have basically identified, in
each paper, the main characteristics of the systems to which the paper
approach/solutions have been (or can be potentially) applied, where
they have been unambiguously identified.

Component-based software and software intensive systems have been
most investigated. These targets are characterized by the existence of
different components, services, or subsystems. These can be indepen-
dent of each other (e.g., microservices) or have strong dependencies
and relationships amongst themselves and with the environment, as
in many complex systems. However, in both cases, the presence of
heterogeneous components makes it necessary to integrate these ac-
tivities into continuous development and maintenance (e.g., DevOps).
The component-based development paradigm is based on the concept of
reuse within distinct components (e.g., services), enabling integration.
Once integrated and implemented, these components must enter a
continuous dimension, that is, to know and analyze the behavior after
the integration and not only of the single component; therefore, they
are also important in the context of performance.

Next, the results show the targets of cloud and distributed systems,
haracterized by the technology stack and infrastructure complexity.
loud nodes may attain performance orders of magnitude worse than
ther nodes (Armbrust et al., 2009). For instance, if during the hosting
f a mission-critical service or a scientific application, performance
ariability and availability become a concern, cloud monitoring is
equired to continuously measure and assess the infrastructure or ap-
lication behavior (in terms of performance, reliability, power usage,
nd security) to adapt the system to changes or to apply corrective
easures. Generally, we can observe that in open systems characterized

y uncontrolled requests, continuous engineering, which supports their
ntegration and evolution, is fundamental to identifying the occurrence
f further problems not observed before.

Finally, we note that more recent and innovative targets are not yet
idely investigated. For instance, in the case of data intensive systems,

he massive use of big data and machine learning requires efficient
anagement of resources, performance, and security.
Main findings:

• Significant attention is paid to continuous monitoring of data,
which represents a fundamental capability to provide CSE;

• CSE and DevOps are gaining ground: most studies offer solutions
covering several aspects of the iterative development process
where updates are made continuously;

• Software intensive systems, especially when component-based,
are the most investigated ones: their heterogeneous compo-
nents require the integration of their activities in a continuous
development and maintenance;

• More recent and innovative targets, such as cloud and data
intensive systems, have not been widely investigated.

6. What and how performance problems have been addressed
(RQ𝟐)

We classified the 66 selected papers by considering the research
problems addressed by them (we divided the target problems into
five categories), and their research contributions (we identified seven
different types of contributions). In particular, the selected papers were
thematically associated with at least one target problem and at least
one research contribution based on their research directions and scope.
We provide a detailed overview of the performance problems that have
been addressed and illustrate them with exemplary papers.

Fig. 9 presents the problems targeted by the selected papers
(research problems). The results obtained confirm that most of the
selected papers are aimed at solving performance evaluation and assess-
ment problems. This is a relevant goal in the development of modern



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.

a
u
p
t
o

u
p
p
o
s

a
r
p
t
f

Fig. 9. Research problems - results.

Fig. 10. Research contributions - results.

systems, where increasingly agile paradigms require that performance
analyses be in a continuous dimension to be effective.

Part of the selected papers aims to provide QoS, where the target
is to satisfy different requirements/properties for the overall quality of
the system, including guaranteeing a certain level of performance.

Managing the uncertainty of the system behavior is an emergent
topic (papers addressing this issue are recent publications), and it is
cross-cutting to the target problems previously mentioned. Although
having the complete model of the system represents the ideal situa-
tion, in practice, only partial and limited measures are available. Con-
sequently, specialized performance analysis or prediction techniques
must work with uncertain knowledge. The proposed studies and their
discussions on the different types of uncertainty highlight relevant
issues and offer new research ideas.

Fig. 10 describes the principal research contributions. From our
nalysis, we can state that most of the studies contribute to the contin-
ous performance assessment of the system with performance analysis,
erformance modeling, and performance prediction approaches. Most of
he approaches use performance evaluation to achieve the desired QoS
bjectives in software systems.

More than half of the research problems considered were addressed
sing the support of dedicated tools or CSE frameworks and were well
artitioned between performance prediction, performance analysis, and
erformance modeling. This is an interesting result, as in the context
f this study, the quality and performance requirements demand the
upport of continuous engineering frameworks or dedicated tools.

Other research problems were dedicated to self-adaptation
pproaches and, to a lesser extent, domain-specific languages. The latter
esult shows that few studies have exploited abstraction for continuous
erformance control, although they consider large heterogeneous run-
ime data. Raising the level of abstraction of the specification would
avor increased automation and interoperability.

Main findings:

• Performance prediction, performance analysis and performance
modeling have been further explored in order to offer adequate
support in continuous development;

• A relevant number of self-adaptation approaches have been
proposed to ensure the quality of services (including performance);

• Quality and performance requirements demand the support of
continuous engineering frameworks or dedicated tools.
9

Fig. 11. Data, methodologies/techniques, measures/indices - results.

7. What instruments have been adopted (RQ𝟑)

Performance analysis can be conducted by adopting multiple tech-
niques with different output-targeted metrics and with the support of
different types of input data. In this section, we aim to identify the
instruments that are adopted more often in the context of the study.

Fig. 11(a) reports the input data. In regard to CSE, a system
is continuously monitored to feed performance indices back into a
performance model that supports predictive analyses.

A total of 61 and 32 papers (of 66) used runtime/monitored and
performance model as input data, respectively. Lesser number of papers
consider the performance model as the input data because performance
models have only been integrated into software engineering processes
in the last few years. Whereas runtime performance assessment and
fixing have long been considered as common practices. Majority of the
papers that used monitored data also proposed a continuous approach
to monitoring performance features and then used them mainly for
analysis and prediction.

A significant number of papers considered the software model as an
input to the process. This is likely due to the different notations that
are usually adopted for representing software models, preventing an
automated full integration in the performance assessment task.

The results here also provide evidence that data analytics has not
yet been largely considered in this domain. However, interest in data
analytics has grown over time; thus, data analytics is expected to
become a primary source of inputs in the next few years.

Fig. 11(b) presents the methodologies/techniques used in the
selected papers. As expected, the majority of papers are focused on
performance modeling and performance analysis. It is necessary to build
and analyze models to address the performance issues early in the
lifecycle. Model based software engineering and model driven engineering
techniques were also widely considered, as they did not restrict the
adoption of models in the performance domain. A considerable number
of papers deal with performance model extraction and performance testing



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.

m
c

e
a
a
c
c

t
t
A
o

v
a
s

t

i
p
(

p
d
o
n
o
d
d
i
n

t
a
T
y
l
e
c

8

techniques which were typically adopted when studying performance
issues on existing running software systems. Finally, it is observed that
although in the last few years the adoption of machine learning and

ulti-objective optimization techniques has spread in diverse fields in the
ontext of CSE, they are still marginally considered.

It is observed that this occurs despite the fact that performance mod-
ling is fully investigated. In certain contexts, extensive performance
nalysis can be difficult owing to the lack of system measurements
nd parameter values. Hence, in such cases, performance modeling
an be fully investigated, but the analysis remains marginal among the
ontributions of the papers.

Fig. 11(c) shows the targeted output measures/indices. The three
ypical performance indices, namely, response time, utilization, and
hroughput, are the most widely targeted ones in the considered papers.
lthough, on one hand, this can be seen as an expected outcome,
n the other hand it is somehow surprising that memory and network

bandwidth have been significantly less studied in this context. These
two measures may play crucial roles in the performance assessment of
modern heterogeneous distributed software systems. Hence this result
evidences a lack of investigation in this direction.
Main findings:

• Approaches of performance modeling and analysis techniques that
take as input monitored data and produce response time and utiliza-
tion indices as output are widely used methodologies. Requirements
and data analytics rarely enter the process to target memory and
network bandwidth;

• Even if machine learning and multi-objective optimization tech-
niques are being increasingly studied, they are still marginally
considered in the context of CSE;

• Model-based and model-driven techniques are widely considered,
as they do not restrict the adoption of models to the performance
domain, but in several cases, software models are also considered.

8. Current research gaps and future directions (RQ𝟒)

In this section, we aim at detecting potential research gaps by
isualizing the number of papers that lie at the intersection of research
reas and target systems for each keyword of interest. In the following
ection, we discuss our findings in the categories of keywords: target

problems, research contributions, used methodologies and techniques, used
performance measures and indices, and input data. To represent our
results, we developed bubble plots, as described in Section 3. Moreover,
we discuss the implications for future research based on the research
gaps analyzed and future directions described in the selected papers.

8.1. Research problems and contributions

Figs. 12 and 13 show the bubble plots for the Performance evaluation
and Uncertainty research problems, respectively. The plots present a
very different situation. Many studies have targeted the problem of
performance evaluation, especially in certain areas, and few papers
have considered uncertainty in general. A reason for this may be
attributed to the fact that uncertainty has emerged only recently as a
distinct concern in software engineering and its inclusion in continuous
engineering practices is still very limited.

In contrast, because the general problem of performance evaluation
is specifically targeted by our study, a greater number of papers are
expected to consider it. From Fig. 12, it is evident that certain research
areas (continuous monitoring, DevOps, and agile) never intersect with
certain target systems (real-time, embedded and CPS) when pursu-
ing performance evaluation. This could simply be due to the scarce
adoption of DevOps and agile practices in these systems.

A further gap appears in the area of the development of software
intensive systems, even if it is continuously evolving owing to the adop-
10

tion of new technologies, such as cloud computing, IoT, and artificial a
Fig. 12. Number of papers investigating the keyword performance evaluation (target
problem) at the intersection of research areas and target systems..

Fig. 13. Number of papers investigating the keyword uncertainty (target problem) at
he intersection of research areas and target systems..

ntelligence. Continuous engineering and DevOps can benefit from new
erformance engineering solutions to achieve more pervasive software
for example in smart cities, smart manufacturing, and smart mobility).

Among several research contributions identified, we reported the
lots for continuous engineering framework (Fig. 14) and performance pre-
iction (Fig. 15) as we considered them to be relevant for the purposes
f our study. In Fig. 14, we observe that most of the papers proposing a
ovel continuous engineering framework are gathered in the lower half
f the plot. The target systems for which most of these frameworks are
esigned are CBS/SOA/Microservices, software intensive systems, and
istributed systems. Predictably, CSE is the most targeted research area
n this field. However, continuous engineering frameworks are rarely or
ever proposed in real-time and embedded systems.

Fig. 15 shows that only a few papers proposed performance predic-
ion approaches in embedded, real-time, and data-intensive systems. In
ddition, only three papers appear to focus on both DevOps and agile.
his may represent a research gap about to be filled in the next few
ears because approaches based on artificial intelligence and machine
earning, such as those in the AIOps (Dang et al., 2019) field, are rapidly
merging as a new way of modeling and predicting performance that
an be more easily integrated with current DevOps practices.

.2. Data, methodologies/techniques, and measures/indices

The types of data that are used as input to the approaches play
significant role in establishing the situations in which an approach



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.

(

c

c
p

Fig. 14. Number of papers investigating the keyword continuous engineering framework
research contribution) at the intersection of research areas and target systems.

Fig. 15. Number of papers investigating the keyword performance prediction (research
ontribution) at the intersection of research areas and target systems.

an be applied and the type of information required to initiate the
rocess. Workload (Fig. 16) and requirements (Fig. 17) are the types

of data, consideration of which appears to be related to the specific
target system. For instance, while the workload is often considered in
the cloud, distributed, and CBS/SOA/microservices systems, it is rarely
considered in embedded, real-time, and data intensive systems. The lack
of consideration of workload in embedded and real-time systems is
expected, whereas in data intensive systems it presents a research
opportunity. When considering the use of requirements, we are pre-
sented with a different situation. From the number of papers in the
bubble plot, it appears that DevOps and agile do not put much em-
phasis on the requirements when assessing the performance; this is
unexpected because they consider the specification of requirements in
their processes.

In addition, the software intensive and CBS/SOA/micorservices sys-
tems often consider the requirements as the starting point for the
development of performance engineering approaches.

The methodologies and techniques that are employed in the ap-
proaches of our study represent a compelling source of information for
discovering the current research interests and gaps. For instance, when
examining the use of performance models (Fig. 18), it is clear that the
DevOps and agile research areas lag behind the other areas in terms of
the number of papers.

A different picture is presented using performance testing, as shown
in Fig. 19. In this case, while all the research areas are almost equally
11

represented, a lack of focus on the adoption of performance testing,
Fig. 16. Input data - Workload.

Fig. 17. Input data - Requirements.

Fig. 18. Methodologies/techniques - Performance model.

load testing, and benchmarking is evident in real-time and embedded
systems, as the number of papers contributing to above-mentioned
aspects in the real-time embedded systems are 0 and 3, respectively.
Generation or extraction of a performance model (Fig. 20) is a special
use case in the adoption of performance models. Therefore, unsurpris-
ingly, we can still count a few papers in the DevOps and agile research
areas, whereas distributed and microservice systems seem to rely the
most on the automated generation of performance models. Finally,
in regards to the use of simulation (shown in Fig. 21), we observed



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.

t
i
D
a

t
c
k

Fig. 19. Methodologies/techniques - Performance testing/Load Testing/Benchmarking.

Fig. 20. Methodologies/techniques - Performance model generation/extraction.

Fig. 21. Methodologies/techniques - Simulation.

hat, in contrast to other methodologies, simulation has been employed
n several papers for real-time and embedded systems. In addition,
evOps and agile appear to be less represented than in other research
reas.

When investigating the performance measures and indices that were
argeted as outputs in the selected papers, we observed two radi-
ally different situations in the number of papers that considered the
eywords response time (Fig. 22) and memory/memory leaks (Fig. 23).

In software performance engineering, response time and memory are
12
Fig. 22. Output measures/indices - Response time.

Fig. 23. Output measures/indices - Memory/Memory Leaks.

among the primary measures of interest as they are usually employed to
assess the quality of service and operating costs, respectively. Nonethe-
less, memory is rarely considered in the papers selected for this study.
Even more interesting is the fact that DevOps and agile seem to not
consider memory at all in any target system. We expect memory use to
become critical as ML and data-intensive systems continue to increase.
In contrast, response time is considered more often in general and
in particular in the domains of distributed systems, software intensive
systems, and CBS/SOA/imcroservices. This paints a picture in which per-
formance measures that impact the quality of service are the foremost
concern in research related to CSE, thus resulting in a substantial gap
in the investigation of issues related to memory usage and how these
can affect the cost of providing a service.

Main findings:

• Although performance evaluation is a very well-established re-
search topic, the conjunction with the latest trends in the software
industry, such as agile and DevOps, is overdue.

• Researchers have started to study software performance under
uncertainty. The research area has not yet been sufficiently
investigated but may possess great growing potential.

• There is no evidence of the experience of companies in conducting
performance analytics on cloud systems.



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.
8.3. Implications for future research

In this section we discuss the implications of this study and chal-
lenges for future research.

8.3.1. Towards a culture of quality in CSE
The results obtained suggest an interest in a culture of quality,

indicating that analysis and verification occur early in the CSE pipeline
(as for testing in DevOps), making it easier to discover and fix de-
fects with a collaborative approach to product improvement. In order
to bring up the quality characteristics of software (architecture) and
its continuous improvement (and re-architecting), QoS analysis must
become an integrated activity in the entire software development life
cycle, which requires continuous exposure of quality characteristics
exposed to analysis.

As discussed earlier, most of the selected studies focused on a few
of the performance properties. However, there is a need to strengthen
the support for various properties in both performance and, in general,
software quality during the continuous engineering of the system. Some
challenging quality aspects to consider are: verification of correct-
ness properties, such as architectural mismatches, evaluation of the
architectural runtime models with respect to fidelity and usefulness
for human inspection, extending scalability by considering influenc-
ing factors such as variation in the complexity of user behavior in
experiments, supporting state management and resource provisioning
mechanisms, and introducing time consumption for memory allocation
and release operations to increase the prediction quality of the model.
Similarly, other QoS properties, such as reliability, consistency, safety
and security, and availability can be modeled and analyzed in a CSE
framework.

8.3.2. Performance engineering benefits in DevOps
DevOps is gaining widespread adoption in industry. However, its

principles of rapid changes, development automation, and fast feedback
loop (often relying on dynamic cloud environments) conflict with the
complexity of the current performance engineering approaches. Thus,
performance engineering frameworks should be improved for adoption
in rapidly changing systems. The structures and behaviors of the mod-
ern systems change frequently and require continuous relearning of the
failure models in order to retain the prediction quality.

Moreover, these systems are characterized by a continuous stream
of available data. Performance models should be built periodically,
incrementally, or even continuously, and be triggered by changes to
components in the monitored environment. Models can be quickly
rebuilt once a potential problem is detected using only the most recent
data only, and then used to compare with previous model results.

8.3.3. Data-driven methods and machine learning
Performance and load tests produce a large amount of data that

can be difficult to analyze. Data-driven methods provide powerful
insights into optimizing performance, building new features, and pre-
venting problems with services, especially in distributed (enterprise)
applications, in-memory databases, and big data systems.

Despite developments in modern software engineering technology,
there is no established methodology for systematically employing per-
formance engineering and data-driven engineering in continuous devel-
opment.

In addition, performance evaluation based on machine learning can
become an integral part of the continuous engineering process. The
performance model must learn autonomously and improve itself during
system operation in a production environment.
13
8.3.4. Continuous controlling system uncertainty
As discussed in Sections 6 and 8, uncertainty has been addressed

marginally in the papers selected in this study. However, both in
academia and industry, significant attention is paid to the contexts
characterized by a high degree of uncertainty. To reduce uncertainty
and obtain feedback on products/software as soon as possible, it is
important to test assumptions and hypotheses in short cycles (Fitzgerald
and Stol, 2017).

Continuous monitoring and frequent re-assessment and
re-architecting are necessary to reduce the uncertainty in CSE and
DevOps. An efficient analysis method can be used to propagate the
effect of uncertain parameters in software systems and calculate the
robustness of the performance indices, thereby enhancing the flexibility
in addressing uncertainty.

8.3.5. Integration and abstraction
A recurring issue is the need to integrate methods and tools into the

continuous and DevOps pipelines. Hence, it is necessary to design and
develop performance engineering approaches that can be integrated
with other tools and methods used in the context of this study.

Continuous monitoring is a fundamental process in CSE. In the
context of implications for future research, further investigation on
adaptive monitoring and analysis infrastructure that can automatically
update the system and performance/quality models is needed.

External capabilities can be integrated using approaches to repre-
sent systems as black-box components by integrating black-box mon-
itoring techniques, or creating resource profiles describing specific
enterprise applications (using standard measurement solutions), instead
of relying on a custom solution to collect the required data. This can
be improved by supporting the collection of arbitrary information on
the status of the monitored application, which requires the system
integration of the corresponding type on a dynamic basis.

Using a higher abstraction level can help reduce the integration
efforts. Future research can target the development of a model-based
framework that considers the definition of (domain-specific) languages
and automation mechanisms to ensure, by design, the potential for
the monitoring, analysis, testing, and simulation in CSE. As discussed
above, machine learning-supported and data-driven approaches can be
used to (continuously) learn and tune the models.

8.3.6. Implications for practitioners and researchers
Practitioners can benefit from the presented results to understand

how software performance engineering and software architecture can
support practices in CSE and DevOps. Moreover, they can benefit from
the classification of methodologies applicable to architectural support
for performance engineering in the context of continuous software
development.

Researchers can benefit from our results to understand research
trends and research gaps, and to better focus their future work. In par-
ticular, the software performance community can leverage this work to
understand whether their approaches are applicable in a CSE/DevOps
context. Moreover, this study helps them define the requirements that
drive the development of their tools to increase the chances of in-
dustrial adoption. In contrast, researchers in the field of CSE/DevOps
can identify which methodologies and techniques can help improve
software performance at some stage in the development cycle.



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.
Main findings:

• There is a growing interest in a culture of quality, where quality
properties are continuously exposed to analysis and verification
during the software development life-cycle;

• The complexity of the current performance engineering approaches
should improve their suitability for the DevOps principles of rapid
changes, development automation, and fast feedback loop;

• There is a need for an established methodology for the sys-
tematic employment of performance engineering and machine
learning/data-driven engineering in continuous development;

• Continuous monitoring and frequent re-assessment and re-
architecting are necessary to reduce uncertainty in CSE and
DevOps;

• Using higher abstraction levels (i.e. by means of a model-based
framework or domain-specific languages and automation mecha-
nisms) can help in reducing the effort of integrating heterogeneous
methods and components in systems.

9. Threats to validity

Systematic Literature Review results might be affected by some
threats mainly related to the correctness and completeness of the
survey. In this section, we determined these threats according to the
guidelines proposed by Wohlin et al. (2012): construct, internal, exter-
nal, and conclusion validity threats. Moreover, we identified the actions
required to mitigate them.

9.1. Construct validity

Construct validity is related to the generalization of the result to the
concept or theory behind the execution of the study execution (Wohlin
et al., 2012). We identified the threats related to the potentially subjec-
tive analysis of the selected studies. As recommended by the guidelines
of Kitchenham and Charters (2007), data extraction was performed
independently by two or more researchers and, in case of discrepancies,
a third author was involved in the discussion to resolve any disagree-
ment. The quality of each selected paper was checked according to the
protocol proposed by Dybå and Dingsøyr (2008).

9.2. Internal validity

Internal validity threats are related to possible incorrect conclusions
about the causal relationships between the treatment and outcome
(Wohlin et al., 2012). In the case of secondary studies, internal validity
represents how well the findings represent those reported in literature.

To address these threats, we rigorously defined the study protocol,
including the data-extraction form. The data extraction form was first
validated by all authors by extracting information from 10 randomly
selected papers. Considering the data analysis process, threats are
minimal, as we only adopted descriptive statistical techniques when
dealing with quantitative data.

When considering qualitative data, keywords were defined using
a semi-automated approach to transform them into quantitative data.
In regards to keyword definition, we first applied natural language
techniques to reduce the subjectivity of the terms selected and then
manually refined the keywords collaboratively.

Finally, 10 studies were randomly selected by all the researchers
to verify whether the results were consistent, independent of the re-
searcher performing the extraction. Disagreements were discussed and
resolved collaboratively when needed.
14
9.3. External validity

External validity threats are related to the ability to generalize the
result (Wohlin et al., 2012). In secondary studies, the external validity
depends on the representativeness of the selected studies. If the selected
studies are not externally valid, the synthesis of their content may not
be valid. In our study, we were not able to evaluate the external validity
of all the included studies.

To address this threat, we applied our search string to multiple
bibliographic sources, including the SpringerLink, Scopus, ACM Digital
Library, and IEEEXplore Digital Library. The usage of different bibli-
ographic sources enabled us to guarantee to obtain the vast majority
of papers. Moreover, we also complemented our search by performing
a snowballing activity. The inclusion of papers written only in English
may have biased our results. Studies in other languages may be rele-
vant. However, we have adopted English only as it is the language most
widely used for scientific papers, and we can consider the bias related
to this threat as minimal. We only included peer-reviewed papers, with-
out considering grey literature (e.g., technical reports, master theses,
and web forums, etc.). Because we aimed to identify only high-quality
scientific studies, we believed that this threat was minimal.

9.4. Conclusion validity

Conclusion validity is related to the reliability of the conclusions
drawn from the results (Wohlin et al., 2012).

One of these is related to the potential non-inclusion of some
studies. To mitigate this threat, we carefully applied the search strategy
and performed the search in eight digital libraries in conjunction with
the snowballing process considering all the references presented in
the retrieved papers and evaluating all the papers that reference the
retrieved ones, which resulted in one additional relevant paper. We
applied a broad search string, leading to a large set of articles and
enabled us to include more possible results. We defined the inclusion
and exclusion criteria and first applied them to the title and abstract.
However, we did not rely exclusively on titles and abstracts; before
accepting a paper based on the title and abstract, we browsed the full
text and applied our inclusion and exclusion criteria again.

Another possible conclusion validity threat is related to the incor-
rect interpretation of the results. To mitigate this threat, all authors
carefully reviewed the results. However, other researchers may provide
different interpretations.

10. Conclusion

This paper presented a mapping study on the architectural support
for SP within CSE. Of 215 relevant studies, we selected 66 primary
studies, which were analyzed to answer our research questions. Thus,
we have taken a deeper look at the research context, and therefore
we provided ideas to researchers and developers to address the chal-
lenges related to this topic, including the fact that knowledge gaps and
future topics of research have not yet been thoroughly investigated
in this context. In particular, we analyzed the publication trends, the
research areas and target systems, target problems and contributions,
and specific characteristics of the selected primary studies through a
classification framework.

This study shows that SP and SA are aspects well considered in CSE,
where the most affected dimensions are continuous monitoring and
continuous improvement. The results of this study also show that SPE
approaches and methodologies are sufficiently mature (owing to the
support of specific frameworks and tools) to be applied in continuous
practices, with a prevalence in the use of data monitored at runtime.
In general, SA is considered to offer specific support; in many cases, SA
models are used as input for the analysis and prediction of performance
as well as architectural parameters and configurations. More support

has been provided to distributed systems, component-based systems,



The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.
SOA, micro services, and software intensive systems in general. Other
contexts, such as data-intensive or embedded systems, have fewer
applications. The most interesting gaps are identified in cloud systems
and systems where uncertainty needs to be investigated.

CRediT authorship contribution statement

Romina Eramo: Conceptualization, Methodology, Data analysis,
Writing – original draft, Supervision, Reviewing. Michele Tucci: Data
analysis, Machine learning expertise, Data curation, Editing. Daniele
Di Pompeo: Dataset generation, Data analysis, Data curation, Editing.
Vittorio Cortellessa: Data analysis, Editing. Antinisca Di Marco: Data
analysis, Editing. Davide Taibi: Methodology, Supervision, Reviewing,
Editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was partially supported by the Adoms grant from the
Ulla Tuominen Foundation, Finland and the MuFAno grant from the
Academy of Finland (grant n. 349488), the AIDOaRt project grant
from the ECSEL Joint Undertaking (JU) (grant n. 101007350). Daniele
Di Pompeo and Michele Tucci are supported by the European Union
- NextGenerationEU - National Recovery and Resilience Plan (Piano
Nazionale di Ripresa e Resilienza, PNRR) - Project: SoBigData.it -
Strengthening the Italian RI for Social Mining and Big Data Analytics -
Prot. IR0000013 - Avviso n. 3264 del 28/12/2021.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jss.2023.111833.

References

Arcelli, D., Cortellessa, V., Di Pompeo, D., Eramo, R., Tucci, M., 2019. Exploiting
architecture/runtime model-driven traceability for performance improvement. In:
IEEE International Conference on Software Architecture, ICSA 2019, Hamburg,
Germany, March 25-29, 2019. IEEE, pp. 81–90. http://dx.doi.org/10.1109/ICSA.
2019.00017.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M., 2009. Above the Clouds: A
Berkeley View of Cloud Computing. Tech. Rep., University of California at Berkeley,
URL http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice. In: SEI
series in software engineering, Addison-Wesley, URL http://books.google.fi/books?
id=mdiIu8Kk1WMC.

Becker, M., Luckey, M., Becker, S., 2012. Model-driven performance engineering of
self-adaptive systems: a survey. In: Proc. of the 8th Int. ACM SIGSOFT Conf. on
Quality of Sw Arch. (QoSA ’12). pp. 117–122.

Bezemer, C.-P., Eismann, S., Ferme, V., Grohmann, J., Heinrich, R., Jamshidi, P.,
Shang, W., van Hoorn, A., Villavicencio, M., Walter, J., Willnecker, F., 2019.
How is performance addressed in DevOps? In: Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering. ICPE ’19, Association for
Computing Machinery, New York, NY, USA, pp. 45–50. http://dx.doi.org/10.1145/
3297663.3309672.

Bezemer, C.-P., Eismann, S., Ferme, V., Grohmann, J., Heinrich, R., Jamshidi, P.,
Shang, W., van Hoorn, A., Villaviencio, M., Walter, J., Willnecker, F., 2018.
How is performance addressed in DevOps? A survey on industrial practices. http:
//dx.doi.org/10.48550/ARXIV.1808.06915.
15
Bjørner, D., 2006. The Tryptych of Software Engineering. Software Engineering 3 –
Domains, Requirements, and Software Design. Springer Verlag, URL https://link.
springer.com/book/10.1007/3-540-33653-2.

Bosch, J., 2014. Continuous software engineering: An introduction. In: Continuous
Software Engineering. Springer, pp. 3–13.

Brosig, F., Huber, N., Kounev, S., 2011. Automated extraction of architecture-level
performance models of distributed component-based systems. In: 26th Int. Conf.
on Automated Sw Eng. (ASE ’11). pp. 183–192.

Brunelière, H., Eramo, R., Gómez, A., Besnard, V., Bruel, J., Gogolla, M., Kästner, A.,
Rutle, A., 2018. Model-driven engineering for design-runtime interaction in com-
plex systems: Scientific challenges and roadmap - report on the mde@derun 2018
workshop. In: Mazzara, M., Ober, I., Salaün, G. (Eds.), Software Technologies:
Applications and Foundations - STAF 2018 Collocated Workshops, Toulouse, France,
June 25-29, 2018, Revised Selected Papers. In: Lecture Notes in Computer Science,
vol. 11176, Springer, pp. 536–543. http://dx.doi.org/10.1007/978-3-030-04771-
9_40.

Bryant, B.R., Gray, J., Mernik, M., 2010. Domain-specific software engineering. In:
Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research.
FoSER ’10, pp. 65–68. http://dx.doi.org/10.1145/1882362.1882376.

Cortellessa, V., Di Marco, A., Inverardi, P., 2011. Model-Based Software Performance
Analysis. Springer.

Cortellessa, V., Di Pompeo, D., Eramo, R., Tucci, M., 2022. A model-driven approach
for continuous performance engineering in microservice-based systems. Journal of
Systems and Software 183, 111084. http://dx.doi.org/10.1016/j.jss.2021.111084,
https://doi.org/10.1016/j.jss.2021.111084.

Daneva, M., Bolscher, R., 2020. What we know about software architecture styles in
continuous delivery and DevOps? In: van Sinderen, M., Maciaszek, L.A. (Eds.),
Software Technologies. pp. 26–39.

Dang, Y., Lin, Q., Huang, P., 2019. Aiops: Real-world challenges and research innova-
tions. In: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). pp. 4–5. http://dx.doi.org/10.1109/
ICSE-Companion.2019.00023.

de Lemos, R., Garlan, D., Ghezzi, C., Giese, H., Andersson, J., Litoiu, M., Schmerl, B.R.,
Weyns, D., Baresi, L., Bencomo, N., Brun, Y., Cámara, J., Calinescu, R., Co-
hen, M.B., Gorla, A., Grassi, V., Grunske, L., Inverardi, P., Jézéquel, J., Malek, S.,
Mirandola, R., Mori, M., Müller, H.A., Rouvoy, R., Rubira, C.M.F., Rutten, É.,
Shaw, M., Tamburrelli, G., Tamura, G., Villegas, N.M., Vogel, T., Zambonelli, F.,
2013. Software engineering for self-adaptive systems: Research challenges in the
provision of assurances. In: Software Engineering for Self-Adaptive Systems. In:
Lecture Notes in Computer Science, vol. 9640, Springer, pp. 3–30.

Del Rosso, C., 2006. Continuous evolution through software architecture evaluation: a
case study. J. Softw. Maint. Evol.: Res. Pract. 18 (5), 351–383. http://dx.doi.org/
10.1002/smr.337, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.337.

Dybå, T., Dingsøyr, T., 2008. Empirical studies of agile software development: A
systematic review. Inf. Softw. Technol. 50 (9–10), 833–859. http://dx.doi.org/10.
1016/j.infsof.2008.01.006.

Ebert, C., Gallardo, G., Hernantes, J., Serrano, N., 2016. DevOps. IEEE Softw. 33 (3),
94–100. http://dx.doi.org/10.1109/MS.2016.68.

Emam, K.E., 1999. Benchmarking kappa: Interrater agreement in software Proces-
sAssessments. Empir. Softw. Engg. 4 (2), 113–133. http://dx.doi.org/10.1023/A:
1009820201126.

Eramo, R., Tucci, M., Di Pompeo, D., Cortellessa, V., Di Marco, A., Taibi, D., 2021.
Replication package ‘‘Architectural support for software performancein continu-
ous software engineering: a systematic mapping study’’. URL https://zenodo.org/
record/6298843.

Ferme, V., Pautasso, C., 2017. Towards holistic continuous software performance
assessment. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion, ICPE ’17 Companion. pp. 159–164. http:
//dx.doi.org/10.1145/3053600.3053636.

Fitzgerald, B., Stol, K.-J., 2017. Continuous software engineering: A roadmap and
agenda. J. Syst. Softw. 123, 176–189.

Hasselbring, W., 2018. Software architecture: Past, present, future. In: The Essence
of Software Engineering. Springer International Publishing, Cham, pp. 169–184.
http://dx.doi.org/10.1007/978-3-319-73897-0_10.

Hasselbring, W., van Hoorn, A., 2020. Kieker: A monitoring framework for software
engineering research. Softw. Impacts 5, 100019. http://dx.doi.org/10.1016/j.simpa.
2020.100019.

Huang, X., Lin, J., Demner-Fushman, D., 2006. Evaluation of PICO as a knowledge
representation for clinical questions. In: AMIA Annu Symp Proc. 2006. pp. 359–363.

Jabbari, R., Ali, N.B., Petersen, K., Tanveer, B., 2016. What is DevOps?: A systematic
mapping study on definitions and practices. In: Proceedings of the Scientific
Workshop Proceedings of XP2016, Edinburgh, Scotland, UK, May 24, 2016. ACM,
p. 12. http://dx.doi.org/10.1145/2962695.2962707.

Kitchenham, B., Charters, S., 2007. Guidelines for performing systematic literature
reviews in software engineering.

Koziolek, H., 2010. Performance evaluation of component-based software systems: A
survey. Perform. Eval. 67, 634–658.

Kudrjavets, G., Thomas, J., Nagappan, N., 2022. The evolving landscape of software
performance engineering. In: Proceedings of the International Conference on
Evaluation and Assessment in Software Engineering 2022. EASE ’22, pp. 260–261.
http://dx.doi.org/10.1145/3530019.3534977.

https://doi.org/10.1016/j.jss.2023.111833
http://dx.doi.org/10.1109/ICSA.2019.00017
http://dx.doi.org/10.1109/ICSA.2019.00017
http://dx.doi.org/10.1109/ICSA.2019.00017
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://books.google.fi/books?id=mdiIu8Kk1WMC
http://books.google.fi/books?id=mdiIu8Kk1WMC
http://books.google.fi/books?id=mdiIu8Kk1WMC
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb4
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb4
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb4
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb4
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb4
http://dx.doi.org/10.1145/3297663.3309672
http://dx.doi.org/10.1145/3297663.3309672
http://dx.doi.org/10.1145/3297663.3309672
http://dx.doi.org/10.48550/ARXIV.1808.06915
http://dx.doi.org/10.48550/ARXIV.1808.06915
http://dx.doi.org/10.48550/ARXIV.1808.06915
https://link.springer.com/book/10.1007/3-540-33653-2
https://link.springer.com/book/10.1007/3-540-33653-2
https://link.springer.com/book/10.1007/3-540-33653-2
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb8
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb8
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb8
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb9
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb9
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb9
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb9
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb9
http://dx.doi.org/10.1007/978-3-030-04771-9_40
http://dx.doi.org/10.1007/978-3-030-04771-9_40
http://dx.doi.org/10.1007/978-3-030-04771-9_40
http://dx.doi.org/10.1145/1882362.1882376
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb12
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb12
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb12
http://dx.doi.org/10.1016/j.jss.2021.111084
https://doi.org/10.1016/j.jss.2021.111084
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb14
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb14
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb14
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb14
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb14
http://dx.doi.org/10.1109/ICSE-Companion.2019.00023
http://dx.doi.org/10.1109/ICSE-Companion.2019.00023
http://dx.doi.org/10.1109/ICSE-Companion.2019.00023
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb16
http://dx.doi.org/10.1002/smr.337
http://dx.doi.org/10.1002/smr.337
http://dx.doi.org/10.1002/smr.337
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.337
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1109/MS.2016.68
http://dx.doi.org/10.1023/A:1009820201126
http://dx.doi.org/10.1023/A:1009820201126
http://dx.doi.org/10.1023/A:1009820201126
https://zenodo.org/record/6298843
https://zenodo.org/record/6298843
https://zenodo.org/record/6298843
http://dx.doi.org/10.1145/3053600.3053636
http://dx.doi.org/10.1145/3053600.3053636
http://dx.doi.org/10.1145/3053600.3053636
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb23
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb23
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb23
http://dx.doi.org/10.1007/978-3-319-73897-0_10
http://dx.doi.org/10.1016/j.simpa.2020.100019
http://dx.doi.org/10.1016/j.simpa.2020.100019
http://dx.doi.org/10.1016/j.simpa.2020.100019
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb26
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb26
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb26
http://dx.doi.org/10.1145/2962695.2962707
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb28
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb28
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb28
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb29
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb29
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb29
http://dx.doi.org/10.1145/3530019.3534977


The Journal of Systems & Software 207 (2024) 111833R. Eramo et al.
Laaber, C., 2019. Continuous software performance assessment: Detecting performance
problems of software libraries on every build. In: Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. pp. 410–414.
http://dx.doi.org/10.1145/3293882.3338982.

Martens, A., Koziolek, H., Becker, S., Reussner, R.H., 2010. Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms. In: Proc. of the First Int. Conf. on Perf. Eng. (ICPE ’10). pp. 105–116.

Mazkatli, M., Monschein, D., Grohmann, J., Koziolek, A., 2020. Incremental calibration
of architectural performance models with parametric dependencies. In: 2020 IEEE
International Conference on Software Architecture, ICSA 2020, Salvador, Brazil,
March 16-20, 2020. IEEE, pp. 23–34. http://dx.doi.org/10.1109/ICSA47634.2020.
00011.

Merseguer, J., Binder, W., Murphy, J., 2017. Guest editorial: Automation in software
performance engineering. Autom. Softw. Eng. 24 (1), 71–72. http://dx.doi.org/10.
1007/s10515-016-0201-2.

Pahl, C., Jamshidi, P., 2016. Microservices: A systematic mapping study. In: Car-
doso, J.S., Ferguson, D., Muñoz, V.M., Helfert, M. (Eds.), CLOSER 2016 -
Proceedings of the 6th International Conference on Cloud Computing and Services
Science, Volume 1, Rome, Italy, April 23-25, 2016. SciTePress, pp. 137–146.
http://dx.doi.org/10.5220/0005785501370146.

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping studies in
software engineering. In: EASE.

Petersen, K., Vakkalanka, S., Kuzniarz, L., 2015. Guidelines for conducting systematic
mapping studies in software engineering: An update. Inf. Softw. Technol. 64, 1–18.

Spinner, S., Grohmann, J., Eismann, S., Kounev, S., 2019. Online model learning for
self-aware computing infrastructures. J. Syst. Softw. 147, 1–16. http://dx.doi.org/
10.1016/j.jss.2018.09.089.

Spinner, S., Walter, J., Kounev, S., 2016. A reference architecture for online perfor-
mance model extraction in virtualized environments. In: Avritzer, A., Iosup, A.,
Zhu, X., Becker, S. (Eds.), Companion Publication for ACM/SPEC on International
Conference on Performance Engineering, ICPE 2016 Companion, Delft, the Nether-
lands, March 12-16, 2016. ACM, pp. 57–62. http://dx.doi.org/10.1145/2859889.
2859893.

Taibi, D., Lenarduzzi, V., Pahl, C., 2019. Continuous architecting with microservices and
DevOps: A systematic mapping study. CoRR abs/1908.10337. arXiv:1908.10337.

Tichy, M., Bosch, J., Goedicke, M., 2017. Editorial. J. Syst. Softw. 123, 173–175.
http://dx.doi.org/10.1016/j.jss.2016.09.010, URL https://www.sciencedirect.com/
science/article/pii/S0164121216301741.

Weyn, D., Gerostathopoulos, I., Abbas, N., Andersson, J., Biffl, S., Brada, P., Bures, T.,
Salle, A.D., Lago, P., Musil, A., Musil, J., Pelliccione, P., 2022. Preliminary results of
a survey on the use of self-adaptation in industry. In: 2022 International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). pp.
70–76. http://dx.doi.org/10.1145/3524844.3528077.

Weyns, D., 2020. An Introduction to Self-Adaptive Systems: A Contemporary Software
Engineering Perspective. John Wiley & Sons.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering. http://dx.doi.
org/10.1145/2601248.2601268.

Wohlin, C., Runeson, P., da Mota Silveira Neto, P.A., Engström, E., do Carmo
Machado, I., de Almeida, E.S., 2013. On the reliability of mapping stud-
ies in software engineering. J. Syst. Softw. 86 (10), 2594–2610. http://dx.
doi.org/10.1016/j.jss.2013.04.076, URL https://www.sciencedirect.com/science/
article/pii/S0164121213001234.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., 2012. Experimentation
in Software Engineering. Springer.

Woodside, M., Franks, G., Petriu, D.C., 2007. The future of software performance
engineering. In: Future of Software Engineering (FOSE ’07). pp. 171–187. http:
//dx.doi.org/10.1109/FOSE.2007.32.

Romina Eramo is Assistant Professor in Computer Science
at the University of Teramo (Italy). Before moving to the
University of Teramo, she has been Assistant Professor at
the University of L’Aquila (2018–2022). She had received
his Ph.D. in Computer Science at University of L’Aquila in
2011, and she held postdoc positions at the same institution.
Her research interests include model-driven engineering,
software quality, continuous software engineering, DevOps,
and digital twins. She is involved in several program com-
mittees of international conferences, reviewing activities and
conference organization. She published several articles in
journals and proceedings of international events on her
topics. She has been working and leading different European
and Italian research projects.
16
Michele Tucci is an Assistant Professor in the Department
of Information Engineering, Computer Science and Mathe-
matics at the University of L’Aquila, Italy. From 2021 to
early 2023, he was a postdoctoral researcher at the Depart-
ment of Distributed and Dependable Systems of the Faculty
of Mathematics and Physics at Charles University in Prague,
Czech Republic. He received his Ph.D. in computer science
from the University of L’Aquila, Italy, in 2021, where he
was advised by Romina Eramo and Vittorio Cortellessa. His
current research interests include performance regression
testing, software refactoring, and optimization of software
architectures towards quality aspects.

Daniele Di Pompeo is an Assistant Professor (RTD-a) at
the University of L’Aquila, Italy. He received his Ph.D. in
ICT from the University of L’Aquila in 2019. His research
interests include model-based performance analysis, soft-
ware refactoring, and search-based software engineering. He
has been elected as an “Expert of the subject” of Software
Quality Engineering since 2019. He is a member of the
SPENCER research group. His research activity is currently
supported by the European project SoBigData.it.

Vittorio Cortellessa is Full Professor at the Department
of Computer Science and Engineering, and Mathematics
of University of L’Aquila. He had received his Ph.D. in
Computer Science at University of Roma Tor Vergata in
1995. Between 1996 and 1999 he held postdoc positions at
the same institution and at European Space Agency. In 2000
and 2001 he has been Research Assistant Professor at the
Computer Science and Electrical Engineering Department of
West Virginia University. Since 2022 he is at University
of L’Aquila. His main research interests are in the areas
of Software Performance, Software Reliability, and Model-
Driven Engineering. He has served and serves in program
committees and editorial boards of conference and journals
in the Software Engineering domain. He currently is Co-
Chair of the Steering Committee of ACM/SPEC International
Conference on Performance Engineering (ICPE).

Antinisca Di Marco is Associate Professor in Computer
Science at University of L’Aquila. Her main research topics
are Software Quality Engineering, Data Science, Quality
(such as fairness, explainability and privacy) in Learning
Systems and Bioinformatics. She is involved in several
national and international projects on such topics. She is
the responsible of the research infrastructure of Territori
Aperti project, co-PI of the SoBigData.it project and the
director of the INFOLIFE CINI Laboratory node in L’Aquila.
Since 2018, she is involved in several actions and projects
aiming at improving equal opportunities in STEM (Science,
Technology, Engineering and Mathematics). In particular,
she is member of the cost action EUGAIN (https://eugain.
eu/), and co-ideator and co-coordinator of PinKamP (www.
pinkamp.disim.univaq.it).

Davide Taibi is Full Professor at the University of Oulu
(Finland) where he head the M3S Cloud research group.
His research is mainly focused on Empirical Software En-
gineering applied to cloud-native systems, with a special
focus on the migration from monolithic to cloud-native ap-
plications. He is investigating processes and techniques for
developing Cloud Native applications and identifying cloud-
native-specific patterns and anti-patterns. He has been a
member of the International Software Engineering Network
(ISERN) since 2018. Before moving to Finland, he has been
Assistant Professor at the Free University of Bozen/Bolzano
(2015–2017), post-doctoral research fellow at the Technical
University of Kaiserslautern and Fraunhofer Institute for
Experimental Software Engineering - IESE (2013–2014), and
research fellow at the University of Insubria (2007–2011).

http://dx.doi.org/10.1145/3293882.3338982
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb32
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb32
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb32
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb32
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb32
http://dx.doi.org/10.1109/ICSA47634.2020.00011
http://dx.doi.org/10.1109/ICSA47634.2020.00011
http://dx.doi.org/10.1109/ICSA47634.2020.00011
http://dx.doi.org/10.1007/s10515-016-0201-2
http://dx.doi.org/10.1007/s10515-016-0201-2
http://dx.doi.org/10.1007/s10515-016-0201-2
http://dx.doi.org/10.5220/0005785501370146
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb36
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb36
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb36
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb37
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb37
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb37
http://dx.doi.org/10.1016/j.jss.2018.09.089
http://dx.doi.org/10.1016/j.jss.2018.09.089
http://dx.doi.org/10.1016/j.jss.2018.09.089
http://dx.doi.org/10.1145/2859889.2859893
http://dx.doi.org/10.1145/2859889.2859893
http://dx.doi.org/10.1145/2859889.2859893
http://arxiv.org/abs/1908.10337
http://arxiv.org/abs/1908.10337
http://dx.doi.org/10.1016/j.jss.2016.09.010
https://www.sciencedirect.com/science/article/pii/S0164121216301741
https://www.sciencedirect.com/science/article/pii/S0164121216301741
https://www.sciencedirect.com/science/article/pii/S0164121216301741
http://dx.doi.org/10.1145/3524844.3528077
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb43
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb43
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb43
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1016/j.jss.2013.04.076
http://dx.doi.org/10.1016/j.jss.2013.04.076
http://dx.doi.org/10.1016/j.jss.2013.04.076
https://www.sciencedirect.com/science/article/pii/S0164121213001234
https://www.sciencedirect.com/science/article/pii/S0164121213001234
https://www.sciencedirect.com/science/article/pii/S0164121213001234
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb46
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb46
http://refhub.elsevier.com/S0164-1212(23)00228-5/sb46
http://dx.doi.org/10.1109/FOSE.2007.32
http://dx.doi.org/10.1109/FOSE.2007.32
http://dx.doi.org/10.1109/FOSE.2007.32
https://eugain.eu/
https://eugain.eu/
http://www.pinkamp.disim.univaq.it
http://www.pinkamp.disim.univaq.it

	Architectural support for software performance in continuous software engineering: A systematic mapping study
	Introduction
	Background and Related Work
	Main concepts
	Related work

	Research Method
	Defining research questions
	Conducting search
	Papers selection
	Data Extraction and Analysis 

	Results Overview
	What research areas and target systems have been investigated (RQ1)
	What and how performance problems have been addressed (RQ2)
	What instruments have been adopted (RQ3)
	Current research gaps and future directions (RQ4)
	Research problems and contributions
	Data, methodologies/techniques, and measures/indices
	Implications for future research
	Towards a culture of quality in CSE
	Performance engineering benefits in DevOps
	Data-driven methods and Machine Learning
	Continuous controlling system uncertainty
	Integration and abstraction
	Implications for practitioners and researchers


	Threats to Validity
	Construct validity
	Internal validity
	External validity
	Conclusion validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


