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Abstract
Let G be a Beauville p-group. If G exhibits a ‘good behaviour’ with respect to taking
powers, then every lift of a Beauville structure of G/�(G) is a Beauville structure of
G. We say that G is a Beauville p-group of wild type if this lifting property fails to
hold. Our goal in this paper is twofold: firstly, we fully determine the Beauville groups
within two large families of p-groups of maximal class, namely metabelian groups
and groups with a maximal subgroup of class at most 2; secondly, as a consequence
of the previous result, we obtain infinitely many Beauville p-groups of wild type.
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1 Introduction

Beauville groups are finite groups that arise in the construction of an interesting class
of complex surfaces, the so-called Beauville surfaces, introduced by Catanese in [5]
following an example of Beauville [2, page 159]. The question as to which finite
groups are Beauville groups has received considerable attention in the past years. The
determination of Beauville groups is based on the following purely group-theoretical
characterization. Given a group G and S = {x, y} ⊆ G, we write T for the triple
{x, y, xy} and we define

�(S) =
⋃

t∈T
g∈G

〈t〉g. (1)

Then G is a Beauville group if and only if it is a 2-generator group and

�(S1) ∩ �(S2) = 1 for some 2-element sets of generators S1 and S2 of G. (2)

We say that S1 and S2 form a Beauville structure for G.
Research activity aroundBeauville groups has been very intense since the beginning

of this century; see, for example, the survey papers [4, 7, 8, 16]. Catanese [5] showed
that a finite abelian group is a Beauville group if and only if it is isomorphic to
Cn × Cn , with n > 1 and gcd(n, 6) = 1. A remarkable result, proved independently
by Guralnick and Malle [13] and by Fairbairn, Magaard and Parker [9], is that every
non-abelian finite simple group other than A5 is a Beauville group.

After abelian groups the most natural class of finite groups to consider are nilpotent
groups. The study of nilpotent Beauville groups is reduced to that of Beauville p-
groups. The smallest non-abelian Beauville p-groups were determined by Barker,
Boston and Fairbairn [1]. Also in [1], it was shown that there are non-abelian Beauville
p-groups of order pn for every p ≥ 5 and every n ≥ 3. In [22], Stix and Vdovina
constructed infinite series of Beauville p-groups, for every prime p, by considering
quotients of ordinary triangle groups. Another infinite family of Beauville p-groups,
for p an odd prime, was given by Gül and Uria-Albizuri [14]. Later on, Di Domenico,
Gül andThillaisundaram [6] providedmore infinite families of Beauville p-groups, for
every prime p. It is also worth mentioning that Fernández-Alcober, Gül and Vannacci
[12] showed that the numbers of Beauville and non-Beauville p-groups of fixed order
behave asymptotically the same as the number of 2-generator groups of the same order.

On the other hand, in the specific case of p-groups, Fernández-Alcober and Gül
[11, Theorem 2.5] extended Catanese’s criterion from abelian groups to a much wider
family, including all p-groups of exponent pe having the property that

x pe−1 = y p
e−1

if and only if (xy−1)p
e−1 = 1

for every x, y in the group, and in particular all groups of order at most p p.
More precisely, if G is such a 2-generator group of exponent pe, then

G is a Beauville group if and only if p ≥ 5 and |Gpe−1 | ≥ p2. (3)
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This criterion is not valid for all finite p-groups, and in [11, Corollary 2.12] there are
infinitely many examples (among which infinitely many p-groups of maximal class
with an abelian maximal subgroup) for which (3) fails to hold.

Note that different Beauville structures in the same group can give rise to non-
isomorphic Beauville surfaces. However, determining all Beauville structures in the
group is a difficult task in general, due to the effect of conjugacy in (1). In any case,
it is interesting to obtain as many Beauville structures as possible in a Beauville
group. The finite p-groups considered in [11, Theorem 2.5] have a good behaviour
in this respect, since they have the property that every lift of a Beauville structure of
G/�(G) ∼= Cp × Cp is a Beauville structure of G. We say that a Beauville p-group
G is of tame type if this property holds in G; otherwise, we say that G is of wild type.
Thus, all p-groups with good power structure are of tame type. However, as a careful
analysis shows, all counterexamples to (3) given in [11, Corollary 2.12] are also of
tame type.

Our goal in this paper is to determine all Beauville groups within two very large
families of p-groups of maximal class, namely those which are either metabelian or
have a maximal subgroup of class at most 2. These families have been studied in great
detail by Miech [20] and by Leedham-Green and McKay [17, 18], respectively; in
particular, constructions are given in these papers showing that there is a large number
of such groups. Thus we provide a huge extension of Corollary 2.12 of [11], which
only covers one p-group of maximal class of every order. An important consequence
of our results is that they provide an infinite family of Beauville p-groups of wild type.

Next we state our main theorem in this paper. The Beauville p-groups of maximal
class of order at most p p were already determined in [11, Corollary 2.10]: they are
exactly the groups of exponent p, with p ≥ 5. Thus we restrict to groups of order at
least p p+1. In the theory of groups of maximal class, a significant role is played by
the maximal subgroup G1 = CG(G ′/γ4(G)), and this is also the case in our result. In
the remainder, we use the term maximal branch in a 2-generator finite p-group G to
mean a difference of the form B(M) = M � �(G), where M is a maximal subgroup
of G.

Main Theorem Let G be a p-group of maximal class of order pn, with n ≥ p + 1,
and assume that either G is metabelian or G contains a maximal subgroup of class at
most 2. Then G is a Beauville group if and only if p ≥ 5 and one of the following two
cases holds, where X is the set of all elements of G � �(G) of order p:

(i) X = G � G1.
(ii) X is the union of exactly two maximal branches of G, and either n 
≡ 2 (mod p−

1), or n = p + 1 and one of those maximal branches is B(G1).

Also, all groups in (i) are Beauville groups of tame type, all groups in (ii) are of wild
type, and there exist infinitely many groups in each of the cases.

Notation. If G is a finitely generated group, d(G) denotes the minimum number
of generators of G. On the other hand, if G is a finite p-group, we write �i (G) for
the subgroup generated by all elements of G of order at most pi . Also, Gpi is the
subgroup generated by all powers gpi , as g runs over G. The exponent of G is the
maximum of the orders of all elements of G.
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728 G. A. Fernández-Alcober et al.

2 Proof of themain theorem

In this section G will always denote a group of order pn and class n−1, where n ≥ 2.
These groups are called p-groups of maximal class. The Beauville groups of order p2

and p3 can be easily determined, so we assume that n ≥ 4 in the remainder. Then we
set Gi = γi (G) for all i ≥ 2, and G1 = CG(G2/G4). We have |Gi : Gi+1| = p for
all i = 1, . . . , n− 1, and the degree of commutativity of G is defined as the maximum
(non-negative) integer � ≤ n − 3 such that [Gi ,G j ] ≤ Gi+ j+� for all i, j ≥ 1. Also,
the only normal subgroups ofG areG itself, its maximal subgroups, and the subgroups
Gi for i ≥ 2. Observe that Z(G) = Gn−1, �(G) = G2, and d(G) = 2.

In his seminal paper [3], Blackburn established many of the cornerstones of the
theory of groups of maximal class. More precisely, he showed that � > 0 if and
only if G1 = CG(Gn−2), and that this is the case whenever n ≥ p + 2. An element
s ∈ G is called uniform if s /∈ G1 ∪ CG(Gn−2). Then s p ∈ Z(G) and the order
of s is at most p2. Also, |CG(s)| = p2 and the conjugates of s are exactly the
elements in the coset s�(G). If we choose an element s1 ∈ G1 � G2 and we define
si = [s1, s, i−1. . ., s], then si ∈ Gi �Gi+1 for all i = 1, . . . , n−1. Thus Z(G) = 〈sn−1〉.
Finally, we recall a couple of facts about the power structure of G. If |G| ≤ p p+1 then
expG/Z(G) = exp�(G) = p, while for |G| ≥ p p+2 we have

x p ∈ Gi+p−1 � Gi+p, for all x ∈ Gi � Gi+1 and all i = 1, . . . , n − p. (4)

These properties of p-groups of maximal class can be found in [10], [15, Chapter 4,
Section 14], or [19, Chapter 3].

Lemma 2.1 Let G be a p-group of maximal class, and let M be a maximal subgroup
of G. Then all elements in B(M) have the same order, and if M 
= G1, this order is
either p or p2.

Proof Assume first that M 
= G1, CG(Gn−2). If s ∈ B(M) then we have B(M) =
∪p−1
i=1 si�(G). All powers si are uniform elements ofG for i = 1, . . . , p−1, and they

have the same order p or p2. Since all elements in the coset si�(G) are conjugate to
si , the result follows in this case.

Now suppose that M = G1 or CG(Gn−2). If n ≥ p + 2 then M = G1 and by
(4), every element in B(M) has order pk , where k = � n−1

p−1�. If n ≤ p + 1 then
M is a regular p-group in which �(G) is a maximal subgroup of exponent p. Thus
�1(M) = �(G) or M , and all elements of B(M) have order p or p2, respectively. ��

If G is a p-group of maximal class, we denote by μ(G) the number of maximal
subgroups M 
= G1 for which all elements in B(M) have order p. The next result
shows that the value of μ(G) is quite restricted if either G is metabelian or G1 is
of class at most 2. Its proof relies on two technical results of Miech regarding the
calculation of pth powers in groups of maximal class that can be found in [20] and
[21].

Theorem 2.2 Let G be a p-group of maximal class. If either G is metabelian or G1
is of class at most 2, then μ(G) = 0, 1, 2 or p. Furthermore, if G has an abelian
maximal subgroup then μ(G) = 0, 1 or p.
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Proof If p = 2 then G has only 2 maximal subgroups different from G1 and the result
is obviously true. Thus we consider p to be an odd prime in the remainder of the proof.

Let us assume that μ(G) ≥ 2 and prove that μ(G) = 2 or p. Since �(G) = G2,
we can choose a uniform element s and an element s1 ∈ G1 � G2 so that s and ss1
belong to two maximal branches with all elements of order p.

IfG is metabelian, then by [20, Lemma 8] and since s p = 1, we can write (ssi1)
p =

aibi
2
for all i = 1, . . . , p − 1, where

a = s p1 s
(p2)
2 . . . s

(pp)
p

and b is a power of sn−1 independent of i . Since (ss1)p = 1, we have a = b−1 and
consequently

(ssi1)
p = bi

2−i = bi(i−1).

Since the order of b is a power of p and gcd(i(i − 1), p) = 1 for i = 2, . . . , p − 1
(observe that p is odd), bi(i−1) is 1 if and only if b = 1. It then follows that μ(G) is
either 2 or p.

Now assume that G1 is of class at most 2. By applying [21, Theorem 4], we get

(ssi1)
p = sip1 σ

(p2)
i,1 . . . σ

(pp)
i,p−1xi,p, (5)

where σi,k = [si1, s, k. . ., s] and

xi,p =
p−1∏

k=1

k−1∏

�=0

[σi,k, σi,�]B(p,k,�), (6)

for some integer B(p, k, �) depending on p, k and �, but not on i .
Let us show, by induction on k, that

σi,k = sik+1t
(i2)
k+1, for some tk+1 ∈ [G1,G1] ≤ Z(G1). (7)

First of all, observe that the basis of the induction is given by

σi,1 = [si1, s] = s−i
1 (ss1)

i = s−i
1 (s1s2)

i = si2[s2, s1](
i
2), (8)

where the last equality follows from the condition that the class of G1 is at most 2.
Now if k ≥ 2, as in (8), we have

[sik, s] = sik+1[sk+1, sk](i2),
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and then by the induction hypothesis we have

σi,k = [sik, s][t(
i
2)

k , s] = [sik, s][tk, s](
i
2) = sik+1[sk+1, sk](i2)[tk, s](i2)

= sik+1

([sk+1, sk][tk, s]
)(i2),

and the induction is complete.
Now from (7) we get

[σi,k, σi,�] = [sik+1, s
i
l+1] = [sk+1, sl+1]i2 ,

and this implies that xi,p = xi
2

1,p for all i = 1, . . . , p − 1. Hence (5) yields

(ssi1)
p = (

s p1 s
(p2)
2 . . . sp

)i
⎛

⎝t
(p2)
2 . . . t

(pp)
p

p−1∏

j=1

p∏

k= j+1

[s j , sk](
p
j)(

p
k)

⎞

⎠
(i2)

xi
2

1,p.

Since p is odd, we can write again (ssi1)
p = aibi

2
for all i = 1, . . . , p−1, with a and

b not depending on i . As above, we conclude that μ(G) = 2 or p also in this case.
Finally, if G has an abelian maximal subgroup then obviously that subgroup must

be G1. Observe that in the above discussion we have b ∈ [G1,G1]. Hence b = 1 in
the present case and (ssi1)

p = 1 for all i = 1, . . . , p − 1. In other words, if μ(G) ≥ 2
then necessarily μ(G) = p. This completes the proof. ��

We also need the following lemma about maximal subgroups of class ≤ 2 in a
group of maximal class.

Lemma 2.3 Let G be a p-group of maximal class of order at least p5. If G has a
maximal subgroup M of class at most 2 then M = G1.

Proof Suppose for a contradiction that M 
= G1. By definition, we have G1 =
CG(G2/G4), and consequently the commutator subgroup [M,G2] is not contained
in G4. Since the only normal subgroups of G contained in G2 are of the form Gi , it
follows that [M,G2] = G3. On the other hand, by [10, Theorem 4.6], the degree of
commutativity of G/G5 is positive. As a consequence, we have [G1,G3] ≤ G5 i.e.
G1 = CG(G3/G5). Arguing as above, this implies that [M,G3] = G4. Now since
|M : G2| = p, we have M ′ = [M,G2] and then γ3(M) = [M,G2, M] = G4 
= 1,
taking into account that |G| ≥ p5. This contradicts the assumption that the class of
M is at most 2. ��

Now we can proceed to the proof of our main theorem.

Theorem 2.4 Let G be a p-group of maximal class of order pn, with n ≥ p + 1, and
assume that either G is metabelian or G contains a maximal subgroup of class at most
2. Then G is a Beauville group if and only if p ≥ 5 and one of the following two cases
holds:
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(i) μ(G) = 2, and either n 
≡ 2 (mod p − 1), or n = p + 1 and one of the maximal
branches consisting of elements of order p is B(G1).

(ii) μ(G) = p.

In the first case, all Beauville groups are of wild type, and in the second case, all
Beauville groups are of tame type.

Proof We first prove the ‘only if’ part of the statement. Let us suppose that S1 and
S2 form a Beauville structure for G, with associated triples T1 and T2. We start by
showing that p ≥ 5. By way of contradiction, assume that p = 2 or 3. Then G has
positive degree of commutativity [10, Theorem 4.6], and consequently all elements
in G � G1 are uniform. Now the elements in T1, and similarly those in T2, lie in
different maximal branches of G. Since G has at most 4 maximal subgroups, some
x1 ∈ T1 and x2 ∈ T2 lie in the same maximal branch B(M), where M 
= G1. Now
observe that for every x ∈ B(M), all elements in the coset x�(G) are conjugate to
x . Hence some power of x1 is conjugate to some power of x2. This is contrary to the
condition �(S1) ∩ �(S2) = 1, which holds according to (2). Thus we have p ≥ 5
and, in particular, n ≥ 6. By Lemma 2.3, in the case where G has a maximal subgroup
of class ≤ 2, that subgroup must be G1.

Let us prove that μ(G) ≥ 2. Otherwise there exist x1 ∈ T1 and x2 ∈ T2 which
are uniform elements of order p2. It follows that 〈x p

1 〉 = Z(G) = 〈x p
2 〉, again a

contradiction. By applyingTheorem2.2, we conclude that eitherμ(G) = 2 orμ(G) =
p.

Assume now that μ(G) = 2, and either that n = k(p − 1) + 2 for some k ≥ 2
or that n = p + 1 and the maximal branch B(G1) consists of elements of order p2.
Again, we seek a contradiction. In this case, each of the triples T1 and T2 contains an
elementwhich lies either in B(G1) or in amaximal branch B(M) consisting of uniform
elements of order p2,withM 
= G1. Let x be any element of B(G1). Ifn = k(p−1)+2
for some k ≥ 2 then we have x pk ∈ Z(G)�1, by (4). On the other hand, if n = p+1
and the elements of B(G1) are of order p2, then since expG/Z(G) = p, we have
x p ∈ Z(G)� 1. In any case, we get Z(G) ⊆ �(S1)∩�(S2), which is contrary to our
assumption that S1 and S2 form a Beauville structure. This completes the proof of the
first implication.

Let us prove the converse. Thus we assume that p ≥ 5 in the remainder. Suppose
first that μ(G) = p. In this case, we have to show that G is a Beauville group of tame
type, i.e. that every lift to G of a Beauville structure of G/�(G) yields a Beauville
structure of G. Let us consider then two minimal sets of generators S1 and S2 of G
that map onto a Beauville structure of G/�(G). Then at most one of the elements in
T1 ∪ T2 lies in B(G1). Hence for every choice of x1 ∈ T1 and x2 ∈ T2, at least one of
the elements, say x1, is of order p. Thus if 〈xg1 〉 and 〈xh2 〉 have non-trivial intersection
for some g, h ∈ G, then 〈xg1 〉 ⊆ 〈xh2 〉 and 〈x1�(G)〉 = 〈x2�(G)〉. This is impossible,
since x1�(G) and x2�(G) participate in different triples of a Beauville structure of
G/�(G). Hence S1 and S2 form a Beauville structure of G.

Now suppose that we are in case (i), and choose a uniform element s and an element
s1 ∈ G1 � G2 such that both s and ss1 are of order p. We claim that S1 = {s, s1}
and S2 = {ss21 , ss41 } is a Beauville structure of G. Let T1 = {s, s1, ss1} and T2 =
{ss21 , ss41 , ss21ss

4
1 }. We need to see that 〈xg1 〉 ∩ 〈xh2 〉 = 1 for all x1 ∈ T1, x2 ∈ T2 and

123



732 G. A. Fernández-Alcober et al.

g, h ∈ G. Observe that, since

ss21ss
4
1 ≡ s2s61 ≡ (ss31)

2 (mod �(G))

and p ≥ 5, xg1 and x
h
2 lie in different maximal subgroups ofG. Thus if x1 = s or ss1, or

if x1 = s1 and B(G1) consists of elements of order p, we can argue as in the previous
paragraph. Hence we assume that x1 = s1 and that |G| = pn with n ≥ p + 2 and
n 
= k(p−1)+2 for all k ≥ 2. By applying repeatedly (4), we have 〈s1〉∩ Z(G) = 1.
Since �1(〈x2〉) = Z(G) for all x2 ∈ T2, the claim follows. Thus G is a Beauville
group.

Let us finally see that G is of wild type in case (i). There are at least two maximal
branches B(M1) and B(M2) which consist of uniform elements of order p2. It is
always possible to construct a Beauville structure in G/�(G) ∼= Cp × Cp in which
the first set of generators contains an element from M1/�(G) and the second set an
element from M2/�(G). However, no lift of this structure can be a Beauville structure
of G, since 〈x p

1 〉 = 〈x p
2 〉 = Z(G) for all x1 ∈ B(M1) and x2 ∈ B(M2). ��

Remark 2.5 Actually, the ‘if part’ of the previous theorem is valid for all p-groups of
maximal class of order at least p p+1, without requiring that G is metabelian or that
G has a maximal subgroup of class at most 2.

The case of groups ofmaximal classwith an abelianmaximal subgroup is especially
easy to describe.

Corollary 2.6 Let G be a p-group of maximal class of order at least p p+1. If G has an
abelian maximal subgroup, then G is a Beauville group if and only if every element
of G � G1 is of order p. All these Beauville groups are of tame type.

Proof This follows immediately by combining Theorems 2.2 and 2.4. ��
We remark that the only infinite pro-p group of maximal class P has an abelian

subgroup A of index p with the property that all elements in P � A are of order p.
Thus by taking finite quotients of P we get infinitely many examples of Beauville
groups of tame type in our main theorem. The existence of infinitely many groups
of wild type follows from the construction of metabelian p-groups of maximal class
given by Miech in [20]. More precisely, if we consider metabelian groups satisfying
the condition [G1,G2] = Gn−p+2, then Lemma 8 of [20] together with our proof of
Theorem 2.2 shows the existence of infinitely many groups with μ(G) = 2. If n 
≡ 2
(mod p − 1) then these groups are Beauville of wild type, according to Theorem 2.4.

Every quotient of order ≥ p2 of a p-group of maximal class is obviously again of
maximal class. We conclude with the following surprising consequence of our main
theorem.

Corollary 2.7 Let G be a p-group of maximal class, where p ≥ 5. Then every proper
quotient of G is a Beauville group, and it is of tame type.

Proof It suffices to show that G/Z(G) is a Beauville group. If |G/Z(G)| ≤ p p then,
since expG/Z(G) = p, we only need to apply Corollary 2.10 of [11]. Assume now
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that |G/Z(G)| ≥ p p+1. Since the pth powers of all uniform elements of G lie in
Z(G), it follows that μ(G/Z(G)) = p. Now the result follows from Theorem 2.4 and
Remark 2.5. ��
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