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Abstract
In the present paper, we consider star-shapedmean convex hypersurfaces of the real, complex
and quaternionic hyperbolic space evolving by a class of nonhomogeneous expanding flows.
For any choice of the ambient manifold, the initial conditions are preserved and the long-time
existence of the flow is proved. The geometry of the ambient space influences the asymptotic
behaviour of the flow: after a suitable rescaling, the induced metric converges to a conformal
multiple of the standard Riemannian round metric of the sphere if the ambient manifold is
the real hyperbolic space; otherwise, it converges to a conformal multiple of the standard
sub-Riemannian metric on the odd-dimensional sphere. Finally, in every case, we are able to
construct infinitelymany examples such that the limit does not have constant scalar curvature.

Keywords Curvature flows · Hyperbolic space · Star-shaped hypersurfaces ·
Sub-Riemannian geometry

Mathematics Subject Classification 53C17 · 53E10

1 Introduction

In recent years, many results about nonhomogeneous curvature flows in the Euclidean space
appear. Different types of speed have been studied and many different problems addressed.
Just to mention some of the most recent results, Sinestrari produced convexity estimates
with Alessandroni [1] and considered volume and area preserving flows with Bertini [2] and
ancient solutions for a very general class of expanding flowswith Risa [3].McCoy considered
contracting nonhomogeneous flows [4] and their self-similar solutions [5]. Moreover, Li
Chen, Xi Guo and Qiang Tu [6] extended to class of nonhomogeneous expanding speeds the
classical result of Gerhardt [7] and Urbas [8].

Despite a growing interest in nonhomogeneous flows, the literature about their evolution
in Riemannianmanifolds is still at the beginning. To the best of our knowledge, the first paper
about nonhomogeneous flows in a curved space is that one of Bertini with the author of the
present paper [9], where we consider volume and area preserving flow in the real hyperbolic
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space. The ambient manifold is always a space form in all the recent papers on the subject:
[10, 11].

The goal of this paper is to study nonhomogeneous expanding flows in the real, complex
and quaternionic hyperbolic spaces exploring the role of the geometry of the ambient space.

Let K be either the real field R, or the complex field C, or the algebra of quaternions
H. Let KH

n be the K-hyperbolic space endowed with its standard Riemannian metric. Let
F : M × [0, T ) → KH

n be a one-parameter family of smooth embeddings such that
F0(·) = F(·, 0) is a given hypersurface and F evolves by

∂F

∂t
= 1

ψ(H)
ν, (1.1)

where ν is the unit outward normal vector of F , H is its mean curvature andψ : [0,∞) → R

is a continuous function C2 differentiable in (0,∞) which satisfies the following structural
conditions:

(i) ψ(x) > 0, ψ ′(x) > 0, ∀x > 0;
(ii)

xψ ′(x)
ψ(x)

≤ 1, ∀x > 0;
(iii) ψ ′′(x)ψ(x) − 2(ψ ′(x))2 ≤ 0, ∀x > 0. (1.2)

These conditions are part of the properties of the speed considered in [6], but our class is
more general. In fact, as a consequence of a richer geometry in the ambient space, we will
prove that H cannot converge to zero; hence, we do not need to prescribe the behaviour of ψ

and ψ ′ when x is tends to 0. Clearly the classical inverse mean curvature flow is included in
the class of flows that we are considering, but there are many other speeds satisfying (1.2):
for example ln(1 + x), or

∑k
i=1 ci x

pi with ci > 0 and 0 < pi ≤ 1.
Before giving the precise statement of our main result, we need to introduce some useful

notations in order to consider the three cases at once. For any K, we define:

a := dimRK − 1 =
⎧
⎨

⎩

0 if K = R,

1 if K = C,

3 if K = H;
(1.3)

m := dimRKH
n − 1 = (a + 1)n − 1. (1.4)

Clearly m is the dimension of any real hypersurface in KH
n . Let σ be the round metric

on the sphere, and if K �= R, let σK be the standard sub-Riemannian metric on S
m . See

Notation 2.1 for more details. The main result of this paper is the following.

Theorem 1.1 LetM0 be a closed star-shaped, mean convex hypersurface ofKH
n. IfK = R

suppose that n ≥ 3, otherwise suppose that n ≥ 2 and M0 is Sa-invariant. Let Mt be the
evolution of M0 along the nonhomogeneous flow (1.1) , where ψ satisfies Conditions (1.2).
Let gt be the induced metric on Mt and consider the rescaled metric

g̃t = |Mt |− 2
m+a gt .

Then:

(1) Mt is star-shaped, mean convex and Sa-invariant for any time the flow is defined;
(2) the flow is defined for any positive time;
(3a) if K = R, there is a smooth function f : Sn−1 → R such that g̃t converges to the

Riemannian metric g̃∞ = e2 f σ ; moreover, there are infinitely many M0 such that g̃∞
does not have constant scalar curvature;
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(3b) ifK = C, there is a smooth S1-invariant function f : S2n−1 → R such that g̃t converges
to the sub-Riemannian metric g̃∞ = e2 f σC; moreover, there are infinitely many M0

such that g̃∞ does not have constant Webster scalar curvature;
(3c) ifK = H, there is a smoothS3-invariant function f : S4n−1 → R such that g̃t converges

to the sub-Riemannian metric g̃∞ = e2 f σH; moreover, there are infinitely many M0

such that g̃∞ does not have constant quaternionic contact scalar curvature.

Our main Theorem 1.1 extends to a bigger class of speeds of a series of results about
the inverse mean curvature flow. The case of the real hyperbolic space has been studied by
Gerhardt [12], Ding [13], Hung and Wang [14]. In this last paper, the authors showed a
fundamental difference with the Euclidean space: in the hyperbolic space, there are infinitely
many initial data such that the limit is not round. More recently, the author of the present
paper has studied the inverse mean curvature flow in the complex hyperbolic space [15]
and in the quaternionic hyperbolic space [16] observing for the first time the presence of a
sub-Riemannian limit. A survey about the inverse mean curvature flow in the Euclidean and
hyperbolic spaces can be read in [17].

The presence of the nonhomogeneous speed introduces some technical difficulties. Con-
ditions (1.2) are crucial for proving especially part (1) and (2). In fact, (i) guarantees the
short-time existence of the flow, (ii) is used for proving that the star-shapeness is preserved
and (iii) helps for the mean convexity and the long-time existence of the flow.

It is well known that there are deep interactions between geometric flows and general
relativity. In fact, the tools for proving the final parts of Theorem 1.1 come from the general
relativity. When K = R, we adopt the strategy developed in [14] showing that the modified
Hawking mass (5.22) is an excellent tool for any speed in the class (1.2): we have that the
rescaled induced metric is round if and only if its mass converges to zero; finally, we are able
to prove that there are infinitely many examples with a mass that does not converges to zero.
If K �= R, the modified Hawking mass cannot be used; therefore, in [15, 16] we introduced
a weaker notion of mass (5.24) that has the disadvantage that it does not fully classify the
initial data with round limit, but it is enough to construct the desired counterexamples. In the
final section, we will prove that this mass works very well with the flow (1.1) too, completing
the proof of Theorem 1.1 (3b) and (3c).

The paper is organized as follows. In Section 2, we collect some basic notions about the
geometry of KH

n and its hypersurfaces and we list some general properties of our flows,
including the evolution equations of the most significant geometric quantities. In Section 3,
we start the proof of Theorem 1.1 showing that the star-shapeness and the mean convexity
are preserved. The main results of Section 4 is the long-time existence of the flow. The
convergence of the rescaled induced metric and the construction of the examples which
develops a limit with not constant scalar curvature is the topic of Section 5.

2 Preliminaries

2.1 Riemannian and sub-Riemannianmetric on the sphere

Every hypersurface considered in this paper is closed and star-shaped and so it is an embed-
ding of Sm , the sphere of dimension m into R

m+1 ≡ K
n . On that sphere, we will consider

different “standard” metrics. In particular, we will use the following notations.WhenK = R,
they are redundant, but they are useful for giving an unique proof for any value of K.

123



Annals of Global Analysis and Geometry

Notation 2.1 (i) We denote by σ the round Riemannian metric on the sphere with constant
sectional curvature 1.

(ii) WhenK �= R, we denote by σK the sub-Riemannian metric on Sm which coincides with
σ on the horizontal distribution H of the Hopf fibration π : Sm → KP

n−1. They are
sub-Riemannian because in both cases H + [H,H] = TSm.

(iii) We define σR := σ .
(iv) When K �= R, fix λ > 0, we denote with eλ the Berger metric of parameter λ on S

m

obtained deforming σ with a factor λ in the vertical distribution V of the Hopf fibration.
Note that we used the same symbol for both the value of K, but it is important to keep
in mind that we defined two different family of metrics. In fact, for example, dim V = a.

(v) When K = R, for any λ > 0 we define eλ := σ .

Note that when λ → ∞ we have that eλ → σK. Moreover, we introduce the following
notation in order to distinguish between derivatives of a function on the sphere with respect
to different metrics.

Notation 2.2 For any given function f : Sm → R, let fi j (resp. f̂i j ) be the components of
the Hessian of f with respect to σ (resp. eλ). The value of λ and K will be clear from the
context. The indices go up and down with the associated metric: for instance f̂ ki = f̂i j e

jk
λ ,

while f ki = fi jσ jk . Analogous notations will be used for higher-order derivatives.Moreover,
here and in the following, unless explicitly stated otherwise, we will always use the Einstein
convention about the repeated indices.

For any given function, it will be useful to compare its second derivatives computed with
respect to the Berger metric and those determined by σ . This comparison is simpler if we
assume the S

a-invariance. In the following result, we summarize Lemma 2.3 of [15] and
Lemma 2.3 of [16].

Lemma 2.3 FixK �= R, λ > 0 and let ϕ : Sm → R be a smooth function. If ϕ is Sa-invariant,
we have:

	eϕ := ϕ̂i
i = 	σ ϕ := ϕi

i ;
|∇2

e ϕ|2e := ϕ̂
j
i ϕ̂i

j = |∇2
σ ϕ|2σ + 2a(λ − 1)|∇σ ϕ|2σ = ϕ

j
i ϕi

j + 2a(λ − 1)ϕiϕ
i .

Each one of the metrics discussed above carries with it a notion of curvature. When the
metric is Riemannian it is obvious what we mean by curvature. On the other hand, it can be
computed that, if K �= R, as λ → ∞, the sectional curvature of eλ diverges. This happens
every time we approximate a sub-Riemannian metric with a family of Riemannian metrics.
Therefore, when we talk about the curvature of σK (and their conformal multiples) we need
to clarify what we mean.

When K = C, Sm has a in a natural way a CR-structure given by the 1-form θ(·) =
σ(Jν, ·), where ν is unit normal to S

m embedded in the standard way in R
2n ≡ C

n , and
J is the complex structure of Cn . The sub-Riemannian metric e2 f σC can be thought as
the restriction to H × H of the Webster metric of the CR-structure definite by e2 f θ . In
this context, a fundamental notion is the Tanaka–Webster connection which is the unique
connection which satisfies some compatibility conditions with the CR-structure. With this
connection, we can define in the usual formal way a curvature, called Webster curvature. It
is well known that θ has constant Webster curvature (equal to 1), while in general e2 f θ may
not. More details and results about CR-geometry can be found in the monograph [18]. In
the same spirit, when K = H, Sm inherits from R

4n ≡ H
n a quaternionic contact-structure
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(qc-structure for short). The role of the Tanaka–Webster connection is played by the Biquard
connection. It can be used to define a qc-Ricci tensor and a qc-scalar curvature. Once again,
the standard qc-structure has constant qc-curvature, but its conformal multiples may not. A
good introduction to qc-geometry is [19].

A central and classical subject in Geometric Analysis is the Yamabe problem: find, if
they exist, the metrics with constant scalar curvature in a fixed conformal class. It has been
solved in great generality for all the three concept of curvature mentioned above. The detailed
explanation of its solution goes beyond the purposes of the present work. In the next result,
we focus only on the cases of our interest.

Lemma 2.4 Let f : Sm → R be a smooth function. IfK �= R, suppose that f is Sa-invariant.
The following characterizations of the solution of the Yamabe problem hold.

(1) e2 f σ has constant scalar curvature if and only if e− f is a linear combination of constants
and first eigenfunctions on the sphere;

(2) e2 f σC has constant Webster scalar curvature if and only if f is constant;
(3) e2 f σH has constant qc-scalar curvature if and only if f is constant.

Part (1) is the content of Lemma 4 of [14], part (2) is Lemma 2.5 of [15] and part (3) is
Lemma 2.4 of [16].

2.2 Geometry of hyperbolic spaces

The ambient manifolds that we are considering can be characterized in many ways and they
can be described with many different isometric models. Since we wish to work with star-
shaped hypersurfaces, the best thing to do is to introduce polar coordinates. The underlying
manifold of KH

n is R(a+1)n ≡ K
n , where a has been defined in (1.3), equipped with the

metric

ḡ = dρ2 + sinh2(ρ)ecosh2(ρ),

where ρ is the radial distance from the centre of the polar coordinates and ecosh2(ρ) is the

Berger metric of parameter cosh2(ρ) as defined in Notation 2.1. Its curvature tensor has the
following explicit expression

R̄(X , Y , Z ,W ) = −ḡ(X , Z)ḡ(Y ,W ) + ḡ(X ,W )ḡ(Y , Z)

+
a∑

i=1

[−ḡ(X , Ji Z)ḡ(Y , JiW ) + ḡ(X , JiW )ḡ(Y , Ji Z)]

−2
a∑

i=1

ḡ(X , JiY )ḡ(Z , JiW ), (2.5)

where J1, . . . , Ja are the complex structure of KH
n . Note that if K = R, and hence, a = 0,

the sums in the second and third line of (2.5) are empty. From (2.5), it follows that the our
ambient manifolds are symmetric, the curvature is constant equal to −1 ifK = R, otherwise
is bounded between −4 and −1. Moreover, KH

n is Einstein with Ricci tensor given by

R̄ic = −(m + 3a)ḡ. (2.6)
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2.3 Geometry of hypersurfaces in hyperbolic spaces

Let M be a real closed star-shaped hypersurface of KH
n , then it is an embedding of the

sphere of dimension m in KH
n . Up to an isometry of the ambient manifold, we can always

suppose that it is star-shaped with respect to the centre of the polar coordinates. Hence,
M is determined by a positive function ρ : Sm → R such that in polar coordinate M =
{(x, ρ(x)) ∈ KH

n | x ∈ S
m }. For any givenM, we call such ρ the radial function associated

with M. If K �= R, we know that Sa acts by isometries on S
m . In this case, we say that M

is Sa-invariant if its radial function is Sa-invariant. For reasons of synthesis, sometimes will
talk about, with an abuse of notation, Sa-invariance even when K = R: in this case, it has
to be considered as an empty condition. With the same proof of Lemma 3.1 of [20], we can
prove the following result.

Lemma 2.5 The evolution of an Sa-invariant hypersurface ofKH
n stays Sa-invariant during

the whole duration of the flow.

Now we want to describe the main geometric quantities associated with a star-shaped
hypersurface in term of its radial function. For more details and explicit computations we
refer to Section 3 of [16] and Section 3 of [15]. We introduce an auxiliary function ϕ = ϕ(ρ)

such that dϕ
dρ

= 1
sinh(ρ)

. Fix (Y1, . . . , Ym) a tangent basis of Sm and denote with ρi := Yi (ρ)

and with ϕi := Yi (ϕ) = ρi
sinh(ρ)

. WhenK �= R, since the ambient metric is no more isotropic,
it is convenient to choose a tangent basis on S

m adapted to the contact structure: from now
on we always suppose that for any i = 1, . . . , a Yi = Jiν, where ν is the unit normal of the
standard immersion of Sm inRm+1 ≡ K

n . The use of this base simplifies some computations
because, for example, ρi = ϕi = 0 for every i = 1, . . . , a. Let Vi := F∗Yi = Yi + ρi∂ρ,
then (V1, . . . , Vm) is a basis of the tangent space of M. Let g = F∗ḡ be the induced metric
on M. In coordinates it can be expressed as

gi j = sinh2(ρ)
(
ϕiϕ j + ei j

)
. (2.7)

The outward unit normal vector field of M is

ν = 1

v

(

∂ρ − ∇ϕ

sinh(ρ)

)

, (2.8)

where

v = ḡ(ν, ∂ρ)−1 =
√
1 + |∇ϕ|2,

and the gradient ∇ϕ is with respect to σ for anyK because of the Sa-invariance. The inverse
of the induced metric is

gi j = 1

sinh2(ρ)

(

ei j − ϕiϕ j

v2

)

,

where we are using Notation 2.1 when K = R. The second fundamental form of M is

h j
i = − ϕ̂ik ẽk j

v sinh(ρ)
+ cosh(ρ)

v sinh(ρ)
δ
j
i + sinh(ρ)

v cosh(ρ)

a∑

k=1

δki δ
j
k , (2.9)

where ẽi j = sinh2(ρ)gi j = ei j − ϕiϕ j

v2
and we used Notation 2.2 for the second derivative

of ϕ. Taking the trace of (2.9) and using Lemma 2.3, we can compute the mean curvature of
M:
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H = − ϕi j σ̃
i j

v sinh(ρ)
+ Ĥ

v
, (2.10)

where σ̃ i j = σ i j − ϕiϕ j

v2
and

Ĥ(ρ) = m
cosh(ρ)

sinh(ρ)
+ a

sinh(ρ)

cosh(ρ)
. (2.11)

2.4 Evolution equations

Since by Condition (1.2) we have that ψ ′ > 0, the short-time existence and uniqueness of
the solution for the flow (1.1) are guaranteed by standard arguments. Moreover, well-known
computations (see for example [21]) can be repeated to compute the evolution equation of
the main geometric quantities.

Lemma 2.6 Since the ambient space is symmetric the following evolution equations hold:

(1)
∂gi j
∂t

= 2

ψ
hi j ,

∂gi j

∂t
= − 2

ψ
hi j ,

(2)
∂H

∂t
= ψ ′

ψ2 	H + ψ ′′ψ − 2(ψ ′)2

ψ3
|∇H |2 − 1

ψ

(|A|2 + R̄ic(ν, ν)
)
,

(3)
∂ψ

∂t
= ψ ′

ψ2 	ψ − 2
(ψ ′)3

ψ3
|∇H |2 − ψ ′

ψ

(|A|2 + R̄ic(ν, ν)
)
,

(4)

∂h j
i

∂t
= −∇i∇ j 1

ψ
+ 1

ψ

(
R̄ j
0i0 − hki h

j
k

)
,

= ψ ′

ψ2 	h j
i + ψ ′′ψ − 2(ψ ′)2

ψ3 ∇i H∇ j H −
(
1

ψ
+ Hψ ′

ψ2

) (
hki h

j
k + R̄ j

0i0

)

+ ψ ′

ψ2

((|A|2 + R̄ic(ν, ν)
)
h j
i + 2R̄k j

is hsk − R̄k s
si h

j
k − R̄s j

ks h
k
i

)

,

(5)
∂dμ

∂t
= H

ψ
dμ.

Here and in the following, if there is no risk of confusion, we are using for brevity only
ψ for saying ψ(H), and analogously for its derivatives. Note that integrating the evolution
equation of the volume form dμ we get

d |Mt |
dt

=
∫

Mt

H

ψ
dμ, (2.12)

in particular it follows that (1.1) is an expanding flow, at least as far the evolving hypersurface
is mean convex.

Example 2.7 A geodesic sphere is a star-shaped hypersurface with constant radial function.
Therefore, by (2.10) its mean curvature is given by Ĥ(ρ). In particular, it is constant. The
evolution of a geodesic sphere is a family of geodesic spheres such that the radius evolves in
the following way

dρ

dt
= 1

ψ(Ĥ(ρ))
.

For a general ψ , we cannot find the explicit solution of this ODE, but ∂ Ĥ
∂ρ

< 0 by direct
computations, ψ ′ > 0 by Conditions (1.2); therefore, ρ is increasing and it blows up in
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infinite time. Since limρ→+∞ Ĥ(ρ) = m + a, then

ρ ≈ t

ψ(m + a)
, as t → +∞.

3 First-order estimates

The main goal of this section is to prove that the initial conditions are preserved, i.e. part (1)
of Theorem 1.1. The most important technical result is the following.

Proposition 3.1 There is a positive constant c such that ifψ satisfies Conditions (1.2) (i) and
(ii), then

(1) |∇ϕ|2 ≤ ce− 2
ψ(m+a)

t ;

(2) |H − m − a| ≤ ce− 2
ψ(m+a)

t
, |ψ(H) − ψ(m + a)| ≤ ce− 2

ψ(m+a)
t
.

Part (1) of this proposition has a direct important consequences.

Corollary 3.2 The evolution of any star-shaped Sa-invariant hypersurface stays star-shaped
for any time the flow is defined.

Proof By Proposition 3.1, there exists a positive constant c such that

v = ḡ

(
∂

∂ρ
, ν

)−1

=
√
1 + |∇ϕ|2 ≤ c.

It follows that ∂
∂ρ

and ν are never orthogonal inKH
n . This means thatMt is star-shaped for

any time t . ��
The proof of Proposition 3.1 proceeds by steps: first we prove that ∇ϕ is just bounded

(which is already enough for havingCorollary 3.2), thenwe prove that it decays exponentially
fast, and finally, we find the optimal exponent. In the meanwhile, we are able to show that
H stays strictly positive and bounded, and converges exponentially fast to m + a, i.e. to the
mean curvature of a horosphere inKH

n ; finally, we can find the optimal exponent for H too.
The first crucial step is the following lemma.

Lemma 3.3 If ψ satisfies Conditions (1.2) i) and ii), then for any (x, t)

|∇ϕ(x, t)|2 ≤ max
y∈Sm

|∇ϕ(y, 0)|2 .

Proof Let us define ω = 1
2 |∇ϕ|2 = 1

2ϕkϕ
k . We want to compute the evolution equation

of ω and apply the maximum principle. We have that the radial function satisfies the scalar
evolution equation ∂ρ

∂t = v
ψ(H)

; hence, the evolution of ϕ is given by

∂ϕ

∂t
= G(ϕi j , ϕi , ϕ) := v

sinh(ρ)ψ(H)
. (3.13)

The original geometric flow (1.1) is defined at least as far the scalar flow (3.13) is defined,
and when both are defined, they are equivalent. Therefore, we can work with (3.13).

Let ai j = ∂G
∂ϕi j

= ψ ′
ψ2 g

i j : it is a symmetric and positive definite, at least as far ψ ′
ψ2 is

bounded and strictly positive. Moreover, we denote by bi = ∂G
∂ϕi

. From (3.13), we have:

∂ω

∂t
= ϕk∇k

∂ϕ

∂t
= ϕk

(

ai jϕi jk + biϕik + ∂G

∂ϕ
ϕk

)

.
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Let R be the Riemannian curvature tensor of σ , then the Ricci identity says

ϕi jk = ϕki j + Rm
i jkϕm = ϕki j + ϕ jσik − ϕkσi j . (3.14)

Since ai j is symmetric and positive definite, applying (3.14), after some explicit computations
we get

ai jϕi jkϕ
k = ai jωi j − ai jϕikϕ

k
j + ai jϕiϕ j − 2aiiω ≤ ai jωi j .

As a consequence of the Sa-invariance, we have

∂σ̃

∂ϕ
= 0,

∂v

∂ϕ
= 0;

hence, using the explicit expression of the mean curvature (2.10) we can compute

∂G

∂ϕ
= v cosh(ρ)

sinh(ρ)ψ

(
Hψ ′

ψ
− 1

)

− ψ ′

ψ2

(

m + a + a

cosh2(ρ)

)

(3.15)

≤ − ψ ′

ψ2

(

m + a + a

cosh2(ρ)

)

(3.16)

where in the last line we used Condition (1.2) (ii). Summarizing we have just found that

∂ω

∂t
≤ ai jωi j + biωi .

The result follows by the maximum principle. ��
Now we are able to prove that H is strictly positive and bounded.

Lemma 3.4 If ψ satisfies Conditions (1.2), then there exist two positive constant c1, c2 such
that for any time the flow is defined we have

0 < c1 ≤ H ≤ c2.

Proof We can start from the upper bound. Combining the evolution equation of H given in
Lemma 2.6, with Condition (1.2) iii), the fact that H2 ≤ m|A|2 and (2.6) we have:

∂H

∂t
≤ ψ ′

ψ2 	H − 1

ψ

(
H2

m
− m − 3a

)

.

By the maximum principle, we have that H ≤ c2 for some constant c2 depending only on
m, a and M0. On the other hand, let α = ∂ϕ

∂t = v
sinh(ρ)ψ

, then by (3.16) and (3.13)

∂α

∂t
= ai jαi j + biαi + ∂G

∂ϕ
α ≤ ai jαi j + biαi .

By the maximum principle, α is bounded from above; therefore, there is a positive constant
c such that

ψ ≥ c

sinh(ρ)
.

Since ρ does not blow up in finite time, this means that ψ , and hence H , are strictly positive
for any finite time. Now we can improve what just said showing that H cannot converge

to zero. Let us consider the function α̃ = v
sinh(ρ)ψ

e
t

ψ(m+a) . Recalling that ρ ≈ t
ψ(m+a)

as
t → +∞ ( if we can take arbitrary big times t), Lemma 3.3, and the fact thatψ ′ > 0, then an
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upper bound for α̃ implies a strictly positive lower bound for H . We compute the evolution
equation of α̃:

∂α̃

∂t
= ai j α̃i j + bi α̃i + ∂G

∂ϕ
α̃ + 1

ψ(m + a)
α̃

≤ ai j α̃i j + bi α̃i − α̃(m + a)
ψ ′

ψ2 + 1

ψ(m + a)
α̃

= ai j α̃i j + bi α̃i − α̃2(m + a)
ψ ′ sinh(ρ)

ve
t

ψ(m+a) ψ
+ 1

ψ(m + a)
α̃. (3.17)

We claim that for any ε > 0 there exists a constant cε > 0 such that ψ ′(x)
ψ(x) > cε for any

x ∈ [0, ε]. In fact, by Conditions (1.2) iii) we have
(

ψ ′

ψ

)′
≤

(
ψ ′

ψ

)2

.

Let y be the solution of

y′ = y2, y(ε) = ψ ′(ε)
ψ(ε)

.

Note that y(ε) > 0 by (1.2) i). It follows that for any x ∈ [0, ε]
ψ ′(x)
ψ(x)

≥ y(x) =
(

ε + 1

y(ε)
− x

)−1

≥ cε := y(0) =
(

ε + 1

y(ε)

)−1

;
hence, the claim holds.

Now let ε = c2 where c2 is the constant found above, applying the above claim there
exists a c̃ > 0 such that

∂α̃

∂t
≤ ai j α̃i j + bi α̃i − c̃α̃2 + 1

ψ(m + a)
α̃.

By themaximum principle, we can conclude that α̃ is bounded from above from a constant
that does not depend on time. ��

Now we can improve what said so far showing that |∇ϕ|2 decays exponentially fast and
that H converges (once we will prove long-time existence for the flow) exponentially fast to
m + a.

Lemma 3.5 There exist positive constants β, γ, c such that

(1) |∇ϕ|2 ≤ ce−βt ;
(2) |H − m − a| ≤ ce−γ t ; |ψ(H) − ψ(m + a)| ≤ ce−γ t .

Proof (1) The function ψ ′
ψ2 is continuous and strictly positive in [c1, c2], where c1 and c2 are

determined in Lemma 3.4. Then we can find a strictly positive constant b such that for
any time t

ψ ′

ψ2 ≥ b.

Hence, we can define β = (m + a)b and repeat the proof of Lemma 3.3 improving the
estimates of the reaction term in order to have an exponential decay:

∂G

∂ϕ
≤ −(m + a)

ψ ′

ψ2 ≤ −β.
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(2) When K = R, we have a = 0 and H can be estimate as follows:

∂H

∂t
≤ ψ ′

ψ2 	H − 1

ψ

(|A|2 − m
) ≤ ψ ′

ψ2 	H − 1

mψ

(
H2 − m2) .

Since in Lemma 3.4 we proved that H is bounded and it cannot be too close to 0, we
have that 1

ψ
is bounded too. Therefore, applying the maximum principle we get that there

exists a constant γ > 0 such that

H − m ≤ ce−γ t

WhenK ∈ {C,H}, the proof ismore involved. By theSa-invariance, for any k = 1, . . . , a
(2.9) reduced to hkk = cosh(ρ)

v sinh(ρ)
+ sinh(ρ)

v cosh(ρ)
. By part (1) of this lemma, we have that for

any k = 1, . . . , a

|hkk − 2| ≤ ce−βt .

We can define the tensor l ji := h j
i +δ

j
i −∑a

k=1 δki δ
j
k , and its trace L := lii = H +m−a.

We get:

∂H

∂t
≤ ψ ′

ψ2 	H − 1

ψ

(|A|2 + R̄ic(ν, ν)
)

= ψ ′

ψ2 	H − 1

ψ

(

|l|2 − 2(H − m − a) + 2
a∑

k=1

(hkk − 2) − 4m

)

≤ ψ ′

ψ2 	H − 1

ψ

(
L2

m
− 2(H − m − a) − 4m

)

+ ce−βt

= ψ ′

ψ2 	H − 1

mψ
(H − m − a) (H + m − a) + ce−βt .

Since H+m−a
mψ

is strictly positive and, by Lemma 3.4, bounded, by themaximumprinciple
there is a constant 0 < γ ≤ β such that

H − m − a ≤ ce−γ t . (3.18)

On the other hand, like in the proof of Lemma 3.4, we are able to estimate H from below

only considering first ψ with the help of the function α̃ = ve
t

ψ(m+a)

ψ sinh(ρ)
. We restart from

(3.17), but this time we need to use a finer estimate on the reaction term: from (3.15),
part (1) of this lemma and (3.18) we get

∂α̃

∂t
≤ ai j α̃i j + bi α̃i + α̃

ψ(m + a)
+

(
ψ ′

ψ2

(
v cosh(ρ)

sinh(ρ)
H − m − a

)

− v cosh(ρ)

ψ sinh(ρ)

)

α̃

≤ ai j α̃i j + bi α̃i +
(

1

ψ(m + a)
+ ce−γ t − α̃

2

)

α̃.

Therefore, by the maximum principle α̃ ≤ 2
ψ(m+a)

+ ce−γ t , hence, by definition of α̃

we have

ψ(H) − ψ(m + a) ≥ −ce−γ t . (3.19)

We can combine (3.18) and (3.19) to get the result using the mean value theorem.
��

Finally we can look for the optimal exponent.
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Proof of Proposition 3.1 (1) As in Lemma 3.3, we consider again the evolution of w. Using
Lemma 3.5 and estimating the reaction terms of the evolution equation of ω with (3.15),
we get

∂w

∂t
≤ ai jwi j + biwi +

(

ce−γ t − 2

ψ(m + a)

)

w.

The result follows from the maximum principle.
(2) The proofs of Lemma 3.5, part (2) can be repeated using β = 2

ψ(m+a)
and noting that

H+m−a
mψ

converges exponentially fast to 2m−a
mψ(m+a)

which is smaller than 2
ψ(m+a)

; therefore,

we can take λ = 2
ψ(m+a)

.
��

4 Higher-order estimate and long-time existence

The main goal of this section is to prove part (2) of Theorem 1.1, i.e. the long-time existence
of the flow. Moreover, we will show some other important auxiliary results, such as the
convergence of the second fundamental form to that of a horosphere of KH

n .

Proposition 4.1 Theprincipal curvatures of the evolving hypersurface are uniformly bounded
for any time.

Proof Since by the results of the previous section H is bounded from below, it is sufficient
to prove that the principal curvatures are bounded from above. We define the tensor M j

i =
ψ(H)h j

i . By Lemma 2.6 and after some standard computations, we have that the evolution

equation of M j
i is

∂M j
i

∂t
= ψ ′

ψ2 	M j
i − 2

ψ ′

ψ3

〈
∇M j

i ,∇ψ
〉
+ ψ ′′ψ − 2(ψ ′)2

ψ2 ∇i H∇ j H

− 1

ψ2

(

1 + Hψ ′

ψ

)

Mk
i M

j
k −

(

1 + Hψ ′

ψ

)

R̄ j
0i0

+ ψ ′

ψ2

(
2R̄k j

is Ms
k − R̄k s

si M
j
k − R̄s j

ks M
k
i

)
.

Let μ1 ≤ μ2 ≤ · · · ≤ μm be the eigenvalues of M j
i . Since

∑m
i=1 μi = Hψ(H) > 0, then

μm > 0 everywhere. The goal is to prove that μm is bounded from above. Fix any time T ∗
strictly smaller than the maximal time T . We can find a point (x0, t0) where μm reaches its
maximum in Sm ×[0, T ∗]. At this point, we can fix an orthonormal basis which diagonalizes
M j

i ; then, in this system of coordinates we have μm = MM
M at this point; hence, μm satisfies

the same evolution equation of Mm
m . By Condition (1.2), the term ψ ′′ψ−2(ψ ′)2

ψ2 ∇mH∇mH is

negative and it can be ignored. Moreover, the curvature of KH
n is bounded; hence, all the

coefficients involving R̄ are bounded. Furthermore, H , ψ and ψ ′ are uniformly bounded
too; therefore, there are positive constants C0, C1, C2 independent on the choice of T ∗ such
that in (x0, t0) the following holds

∂μm

∂t
≤ ψ ′

ψ2 	μm − 2
ψ ′

ψ3
〈∇μm,∇ψ〉 − C2μ

2
m + C1μm + C0.
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Since μm is positive, it follows by Hamilton’s maximum principle [22] that μm is bounded
by a constant depending on M0, but not on the choice of T ∗. ��

Corollary 4.2 The flow exists for any positive time. Moreover, the flow is expanding, and as
t diverges, the volume goes like

|Mt | ≈ e
m+a

ψ(m+a)
t
.

Proof From Proposition 4.1, it follows the uniform parabolicity of Equation (3.13) and a
uniform C2-estimate for the function ϕ. Arguing as in Chapter 2.6 of [23], we can apply
the C2,α estimates of [24] and higher-order estimates as Theorem 2.5.9 of [23]; hence, the
solution is smooth up to the maximal time. Moreover, this maximal time cannot be finite in
order to not have contradiction with the short-time existence of the flow.

For the growth of the volume, consider the quantity V = |Mt |e− m+a
ψ(m+a)

t . By Lemma 2.6
and Proposition 3.1, we have

∣
∣
∣
∣
dV

dt

∣
∣
∣
∣ = e− m+a

ψ(m+a)
t
∣
∣
∣
∣

∫

Mt

(
H

ψ
− m + a

ψ(m + a)

)

dμt

∣
∣
∣
∣ ≤ ce− 2

ψ(m+a)
t V .

Hence, 0 < |M0|e− cψ(m+a)
2 ≤ V ≤ |M0|e cψ(m+a)

2 . ��

Lemma 4.3 For every N ∈ N, there is a positive constant c such that the Nth derivative of
ϕ satisfies

|∇Nϕ|2 ≤ ce− 2
ψ(m+a)

t
.

Proof Fix N ∈ N and consider the quantity ω = 1
2 |∇Nϕ|2 = 1

2ϕ
k1...kN ϕk1...kN . With the

notations of the proof of Lemma 3.3, its evolution equation is

∂ω

∂t
= ϕk1...kN ∇k1 . . . ∇kN

∂ϕ

∂t

= ϕk1...kN
(
ai jϕi jk1...kN + biϕik1...kN

)
+ 2

∂G

∂ϕ
ω

By (3.15) and Proposition 3.1, we have that ∂G
∂ϕ

≤ C1e
− 2

ψ(m+a)
t − 1

ψ(m+a)
for some constant

C1 > 0 . Applying a finite number of times the Ricci identity (3.14), we have

∂ω

∂t
≤ ai jωi j + biωi +

(

2C1e
− 2

ψ(m+a)
t − 2

ψ(m + a)

)

ω

+a ∗ ∇Nϕ ∗ ∇Nϕ + b ∗ ∇N−1ϕ ∗ ∇Nϕ,

where given two tensors S and T , S ∗T denotes any linear combination obtained contracting
S and T by σ . We have that

ai j = ψ ′

ψ2 g
i j = ψ ′

sinh2(ρ)ψ2
σ̃ i j ≤ C2e

− 2
ψ(m+a)

t
σ i j . (4.20)

Moreover, by direct computations we have that

bi = 1

sinh(ρ)
∇ϕ ∗ ∇2ϕ. (4.21)
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The case N = 1 has been already proved in Proposition 3.1. Suppose by induction that the
result holds for N − 1, then by (4.20) and (4.21) we have that there is a positive constant C3

such that

a ∗ ∇Nϕ ∗ ∇Nϕ + b ∗ ∇N−1ϕ ∗ ∇Nϕ ≤ C3e
− 2

ψ(m+a)
t
ω.

Therefore, there is a C4 > 0 such that

∂ω

∂t
≤ ai jωi j + biωi +

(

C4e
− 2

ψ(m+a)
t − 2

ψ(m + a)

)

ω.

The desired estimates follow by the maximum principle. ��
A consequence of this lemma is the convergence of the second fundamental form to that

of a horosphere.

Corollary 4.4 There is a positive constant c such that

(1) if K = R, we have
∣
∣
∣h

j
i − δ

j
i

∣
∣
∣
2 ≤ ce− 4

ψ(m)
t
, | Å|2 ≤ ce− 4

ψ(m)
t ;

(2) if K �= R, we have
∣
∣
∣
∣
∣
h j
i − δ

j
i −

a∑

k=1

δki δ
j
k

∣
∣
∣
∣
∣

2

≤ ce− 2
ψ(m+a)

t
,

while on the horizontal distribution we have a faster convergence

m∑

i, j=a+1

(h j
i − δ

j
i )(h

i
j − δij ) ≤ ce− 4

ψ(m+a)
t
.

Proof (1) From (2.9), Proposition 3.1 and Lemma 4.3, we get

∣
∣
∣h

j
i − δ

j
i

∣
∣
∣
2 = 1

v2 sinh2(ρ)

∣
∣
∣ϕik σ̃

k j
∣
∣
∣
2 + m

(
cosh(ρ)

v sinh(ρ)
− 1

)2

+2

(
cosh(ρ)

v sinh(ρ)
− 1

) (

H − Ĥ

v

)

≤ ce− 4
ψ(m)

t
.

Therefore,

| Å|2 =
∣
∣
∣
∣h

j
i − H

m
δ
j
i

∣
∣
∣
∣

2

≤
∣
∣
∣h

j
i − δ

j
i

∣
∣
∣
2 + m

(
H

m
− 1

)2

≤ ce− 4
ψ(m)

t
.

(2) By (2.9), Lemma 2.3, Proposition 3.1, Proposition 3.1 and Lemma 4.3, we have
∣
∣
∣
∣
∣
h j
i − δ

j
i −

a∑

k=1

δki δ
j
k

∣
∣
∣
∣
∣

2

= 1

v2 sinh2(ρ)

∣
∣
∣ϕik σ̃

k j
∣
∣
∣
2

+2a

v2
|∇ϕ|2 + 2

(
cosh(ρ)

v sinh(ρ)
− 1

) (

H − Ĥ

v

)

+m

(
cosh(ρ)

v sinh(ρ)
− 1

)2

+ a

(
sinh(ρ)

v cosh(ρ)
− 1

)2
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+2a

(
cosh(ρ)

v sinh(ρ)
− 1

)(
sinh(ρ)

v cosh(ρ)
− 1

)

≤ ce− 2
ψ(m+a)

t
.

On the horizontal distribution, the computations are similar to those of part (1) of this
corollary; hence, we have a faster convergence.

��

5 Convergence and curvature of the inducedmetric

We finish this paper with the proof of statements (3a), (3b) and (3c) of Theorem 1.1. This
is the part where the geometries of the ambient manifolds influence mostly the result. Each
geometry produces its own typical behaviour, and all of them are very different from what
found in the Euclidean case in [6]. We recall that in the Euclidean case the limit is always
σ . We will show in a while that in the hyperbolic spaces the limit is not necessarily round
and even not necessarily Riemannian. We start from the convergence of the rescaled induced
metric.

Theorem 5.1 For any given K, there is a smooth S
a-invariant function f : Sm → R such

that the rescaled induced metric g̃t = |Mt |− 2
m+a gt converges, as t goes to infinity, to the

metric e2 f σK.

Proof For any time t , let ρ̃(t) be the radius of a geodesic sphere Bt such that |Mt | = |Bt |.
The mean curvature of Bt is H̃ = Ĥ(ρ̃); hence,

dρ̃

dt
= 1

ψ(H̃)
,

then ρ̃ = t
ψ(m+a)

+ o(1) as t → ∞. Consider the function f̃ (x, t) = ρ(x, t) − ρ̃(t). We

claim that f̃ converges to a smooth function f̃∞. In fact, as a consequence of Lemma 4.3 we
know that for any N ∈ N ∇N f̃ = ∇Nρ is uniformly bounded. Moreover, by Proposition 3.1
we have

∣
∣
∣
∣
∣

∂ f̃

∂t

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

v

ψ(H)
− 1

ψ(H̃)

∣
∣
∣
∣

≤ 1

ψ(H)
|v − 1| + 1

ψ(H)ψ(H̃)

(
|ψ(H) − ψ(m + a)| +

∣
∣
∣ψ(H̃) − ψ(m + a)

∣
∣
∣
)

≤ ce− 2
ψ(m+a)

t
.

When K = R e = σR by Notation 2.1. When K �= R e converges to σK. Moreover, by
definition of ρ̃ we have that |Mt | = ωm sinhm(ρ̃) cosha(ρ̃) for some constantωm . Therefore,
there is a constant c > 0 such that when t → ∞ we have

sinh(ρ)|Mt |− 1
m+a ≈ ceρ−ρ̃ = ce f̃ .

Recalling that in Proposition 3.1 we proved that |∇ϕ| decays to 0, it follows by (2.7) that
there exists a positive constant c such that

lim
t→∞ g̃t = ce2 f̃∞σK.
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The function f that we are looking for is the solution of e2 f = ce2 f∞ . ��
We want to describe the construction of examples such that the associated limit g̃∞ has

not constant scalar curvature. The proof is an adaptation to a general ψ of the techniques
developed for the inverse mean curvature flow. As previous literature suggests, we need
different tools for different values of K. When K = R, we use the modified Hawking mass
taken from [14], but it is not useful in the other two ambient manifolds. In the other cases,
we use the Brown–York-like masses introduced in [15, 16].

5.1 The case of the real hyperbolic space

In this subsection, we will focus only on the real hyperbolic space. Following Hung and
Wang [14], for any hypersurface M in RH

n we consider the modified Hawking mass

Q(M) := |M|−1+ 4
m

∫

M
| Å|2dμ, (5.22)

where | Å|2 is the norm of the trace free part of the second fundamental form.
We can compute the evolution of the modified Hawking mass under the flow (1.1).

Lemma 5.2 Let Mt be a closed hypersurface of RHn evolving according to (1.1), then

|Mt |1− 4
m
dQ(Mt )

dt
=

(
4

m
− 1

) [

|Mt |−1
∫

Mt

| Å|2dμt

∫

Mt

(
H

ψ

)

dμt −
∫

Mt

| Å|2 H
ψ
dμt

]

−
∫

Mt

2

ψ
h̊ j
i h̊

k
j h̊

i
kdμt − 2

∫

Mt

ψ ′

ψ2 ∇i H∇ j h̊ij dμt ,

where h̊ denotes trace free part of the shape operator.

Proof By Lemma 2.6 and the explicit expression of the curvature tensor of the ambient space,
we have

∂ h̊ j
i

∂t
= −∇i∇ j 1

ψ
− 1

ψ

(

h̊ki h̊
j
k + 2H

m
h̊ j
i

)

+
(
1

ψ
+ ∂H

∂t

)

δ
j
i .

Therefore,

∂| Å|2
∂t

= 2∇ j
(

ψ ′∇i H

ψ2

)

h̊ij − 4H

mψ
| Å|2 − 2

ψ
h̊ j
i h̊

k
j h̊

i
k .

The result follows easily considering the evolution of the volume form in Lemma 2.6. ��
The goal is to show that if Q is decreasing, then it does so very slowly. Looking at the

evolution of Q, we need to add an estimate to those of the previous sections.

Lemma 5.3 If K = R, there is a positive constant c such that

|∇ Å|2 ≤ ce− 6
ψ(m)

t
.

Proof In this proof, the Ci will be positive constants. By Lemma 2.6, Proposition 3.1 and
Corollary 4.4, we can compute

∂| Å|2
∂t

= ψ ′

ψ2 	| Å|2 − 2
ψ ′

ψ2 |∇ Å|2 + 2
ψ ′′ψ − 2(ψ ′)2

ψ3 ∇i H∇ j H h̊ij
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−2

(
1

ψ
+ Hψ ′

ψ2

)

h̊ j
i h̊

k
j h̊

i
k + 2

(
ψ ′

ψ2

(

|A|2 + m − 2

m
H

)

− 2H

mψ

)

| Å|2

≤ ψ ′

ψ2 	| Å|2 − C1|∇ Å|2 +
(

C2e
− 2

ψ(m)
t − 4

ψ(m)

)

| Å|2 + C3e
− 6

ψ(m)
t
.

Moreover,

∂|∇ Å|2
∂t

= 2∇s h̊ij∇s
∂ h̊ j

i

∂t
+ ∂grs

∂t
∇s h̊

j
i ∇r h̊

i
j

= 2∇s h̊ij∇s

[
ψ ′

ψ2 	h̊ j
i + ψ ′′ψ − 2(ψ ′)2

ψ3 ∇i H∇ j H −
(
1

ψ
+ Hψ ′

ψ2

)

h̊ri h̊
j
r

+
(

ψ ′

ψ2

(

|A|2 + m − 2H2

mψ

)

− 2H

mψ

)

h̊ j
i

]

− 2

ψ
hrs∇s h̊

j
i ∇r h̊

i
j

≤ ψ ′

ψ2 	| Å|2 +
(

C4e
− 2

ψ(m)
t − 6

ψ(m)

)

|∇ Å|2 + C5|∇ Å|4.

Consider the auxiliary function β = log |∇ Å|2 + K | Å|2 for some positive constant K to
be determined later. From the above two evolution equations, we get

∂β

∂t
≤ ψ ′

ψ2 	β + ψ ′

ψ2

∣
∣
∣∇ log |∇ Å|2

∣
∣
∣
2 − 6

ψ(m)
+ C5|∇ Å|2 − KC1|∇ Å|2 + C6e

− 2
ψ(m)

t
.

By Corollary 4.4, there is a constant C7 such that for any time t we have | Å|2 ≤ C7e
− 4

ψ(m)
t .

Fix t∗ big enough such that

16C5C7
ψ ′

ψ2 e
− 4

ψ(m)
t∗ ≤ C2

1 .

Consider β only for times t ≥ t∗. In a point (x0, t0) where β attains its maximum, we have
∣
∣
∣∇ log |∇ Å|2

∣
∣
∣
2 = K 2

∣
∣
∣∇| Å|2

∣
∣
∣
2 ≤ 4K 2| Å|2|∇ Å|2 ≤ 4K 2C7e

− 4
ψ(m)

t∗ |∇ Å|2.
By the choice of t∗, we can find a K > 0 such that

4K 2C7
ψ ′

ψ2 e
− 4

ψ(m)
t∗ − KC1 + C5 ≤ 0.

By themaximum principle, we have β ≤ − 6
ψ(m)

t+C8, and by the definition of β, the desired
result follows. ��
Proposition 5.4 LetMt be the evolution of a star-shaped, mean convex hypersurface ofRHn,
then there is a positive constant c such that

dQ(Mt )

dt
≥ −ce− 2

ψ(m)
t
.

Proof By Corollary 4.4, we know that in the real hyperbolic space | Å|2 ≤ ce− 4
ψ(m)

t . More-
over, by Corollary 3.1 we have

∣
∣
∣
∣|M|−1

∫
H

ψ
dμ − H

ψ

∣
∣
∣
∣ ≤

∣
∣
∣
∣|M|−1

∫
H

ψ
dμ − m

ψ(m)

∣
∣
∣
∣ +

∣
∣
∣
∣

m

ψ(m)
− H

ψ

∣
∣
∣
∣ ≤ ce− 2

ψ(m)
t
.
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Classical inequalities say that there is a positive constant c such that

|∇H |2 ≤ m|∇A|2 ≤ c|∇ Å|2.
The first inequality is trivial, and the second one follows by Lemma 2.2 of [25]. Finally,
we can use the Cauchy–Schwarz inequality and Lemma 5.3 to estimate the last term in the
evolution equation of Q:

∣
∣
∣∇i H∇ j h̊ij

∣
∣
∣ ≤ |∇H | · |∇ Å| ≤ c|∇ Å|2 ≤ ce− 6

ψ(m)
t
.

��
Now we have all the ingredients to repeat the construction of the not round examples

described in [14]. We recall it briefly for completeness. Let f : S
m → R be a smooth

function and τ > 0, let M̃τ be the star-shaped hypersurface of RHn defined by the radial
function ρ̃(z) = τ + f (z) + o(1). Proposition 5 of [14] says that

lim
τ→∞ Q(M̃τ ) =

(∫

Sm
em f dσ

)−1+ 4
m

∫

Sm
e(m−2) f

∣
∣
∣∇̊2e− f

∣
∣
∣
2
dσ, (5.23)

where ∇̊2 is the trace free part of the Hessian.
Pick a constant c0 > 0 and a function f̄ such that

(∫

Sm
em f̄ dσ

)−1+ 4
m

∫

Sm
e(m−2) f̄

∣
∣
∣∇̊2e− f̄

∣
∣
∣
2
dσ > 4c0.

Let M̃τ be the star-shaped hypersurface of RHn defined by the radial function ρ̃(z) =
τ + f̄ (z). By (5.23) we can choose τ big enough such that Q(M̃τ ) > 2c0. Moreover, for
such hypersurface, the first addendum in the right-hand side of (2.10) is negligible for τ big;
therefore, we can choose τ big enough such that M̃τ is mean convex too.

LetMτ
t be the evolution according to the flow (1.1) with initial data M̃τ . In the previous

sections, we proved that this evolution is defined for any positive time, and as t diverges,
the rescaled induced metric converges to e2 f σ for some function f : Sm → R. By Proposi-
tion 5.4, we have that if c0 is big enough then limt→∞ Q(Mτ

t ) > c0 > 0, and by Proposition
5 of [14], we can conclude that e2 f σ is not round.

5.2 The cases of the complex and quaternionic hyperbolic space

The richer geometry of CHn and HH
n makes the research of a not round limit harder. In

fact, it is well known that in these spaces there are no totally umbilical hypersurfaces (see

Theorem 5.1 of [26] for a proof). Therefore, | Å|2 is always bounded away from zero and the
modified Hawking mass is no more useful in this context. On the other hand, the complexity
of the problem can be reduced using the Sa-invariance. In fact, under this further hypothesis,
Lemma 2.4 suggests that the limits with constant scalar curvature should be very rare. In
order to overcome all these difficulties in [15, 16], we defined the following weaker notion
of mass.

Q(M) = |M|−1+ 2
m+a

∫

M

(
H − Ĥ

)
dμ, (5.24)

where Ĥ is the function defined in (2.11). Note that Q in general does not have a sign, but
it is bounded. Moreover, it is important to keep in mind that, even if we are using an unique
symbol, Q depends on the choice of K. Its evolution is given by the following result.
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Lemma 5.5 Let Mt be the evolution of a star-shaped, mean convex, Sa-invariant hypersur-
face of KH

n, then

|Mt |1− 2
m+a

dQ(Mt )

dt
=

(

−1 + 2

m + a

)

|Mt |−1
∫

Mt

H

ψ
dμ

∫

Mt

(H − Ĥ)dμ

+
∫

Mt

[
H

ψ
(H − Ĥ) − 1

ψ

(|A|2 + R̄ic(ν, ν)
)
]

dμ

+
∫

Mt

v

ψ

(
m

sinh2(ρ)
− a

cosh2(ρ)

)

dμ.

Proof The result follows combining Lemma 2.6 with

∂ Ĥ

∂t
= v

ψ

(
a

cosh2(ρ)
− m

sinh2(ρ)

)

,

and the fact that for any t
∫

Mt

(
ψ ′

ψ2 	H + ψ ′′ψ − 2(ψ ′)2

ψ3 |∇H |2
)

dμ = −
∫

Mt

	

(
1

ψ

)

dμ = 0.

��
With the help of the results of the previous sections, we can estimate the evolution equation

of Q proving that if Q decays, then it does so very slowly.

Proposition 5.6 LetMt be the evolution of a star-shaped, mean convex, Sa-invariant hyper-
surface of KH

n, then there is a positive constant c such that

dQ(Mt )

dt
≥ −ce− 2

ψ(m+a)
t
.

Proof By the explicit expressions of the second fundamental form (2.9), of themean curvature
(2.10) and by Lemma 2.3, we have

|A|2 + R̄ic(ν, ν) = ϕ̂ik ϕ̂ js ẽk j ẽsi

v2 sinh2(ρ)
+ 2 cosh(ρ)

v sinh(ρ)

(

H − Ĥ

v

)

+m

(
cosh2(ρ)

v2 sinh2(ρ)
− 1

)

+ a

(
sinh2(ρ)

v2 cosh2(ρ)
+ 2

v2
− 3

)

= ϕikϕ js σ̃
k j σ̃ si

v2 sinh2(ρ)
+ 2 cosh(ρ)Ĥ

v2(v + 1) sinh(ρ)
|∇ϕ|2 − m + a

v2
|∇ϕ|2

+2 cosh(ρ)

v sinh(ρ)

(
H − Ĥ

)
+ m

v2 sinh2(ρ)
− a

v2 cosh2(ρ)
.

By substituting this formula in the result of Lemma 5.5, we can rearrange the terms of the
evolution equation of Q as follows:

|Mt |1− 2
m+a dQ(Mt )

dt = 2
∫ (

H − Ĥ
) (

1
(m+a)|Mt |

∫ H
ψ
dμ − cosh(ρ)

vψ sinh(ρ)

)
dμ

+ ∫ (
H − Ĥ

) (
H
ψ

− 1
|Mt |

∫ H
ψ
dμ

)
dμ

+ ∫ 1
ψ

(
v − 1

v2

) (
m

sinh2(ρ)
− a

cosh2(ρ)

)
dμ

+ ∫ |∇ϕ|2
v2ψ

(
m + a − 2 cosh(ρ)Ĥ

(v+1) sinh(ρ)

)
dμ − ∫ ϕikϕ js σ̃

i j σ̃ ks

v2ψ sinh2(ρ)
dμ.

(5.25)
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We claim that every term in the right-hand side of (5.25) is smaller than ce− 4
ψ(m+a)

t |Mt |,
for some constant c > 0. In fact, by Proposition 3.1, Lemma 4.3, the facts that ρ grows like

t
ψ(m+a)

, and 1
ψ
is bounded, the various terms of (5.25) can be estimate as follow:

|H − Ĥ | ≤ |H − m − a| + |m + a − Ĥ | ≤ ce− 2
ψ(m+a)

t ;
∣
∣
∣
∣

1

(m + a)|Mt |
∫

H

ψ
dμ − cosh(ρ)

vψ sinh(ρ)

∣
∣
∣
∣ ≤ 1

(m + a)|Mt |
∫ ∣

∣
∣
∣
H

ψ
− m + a

ψ(m + a)

∣
∣
∣
∣ dμ

+ cosh(ρ)

v sinh(ρ)

∣
∣
∣
∣
1

ψ
− 1

ψ(m + a)

∣
∣
∣
∣

+ 1

vψ(m + a)

∣
∣
∣
∣
cosh(ρ)

sinh(ρ)
− 1

∣
∣
∣
∣

≤ ce− 2
ψ(m+a)

t ;
∣
∣
∣
∣
H

ψ
− 1

|Mt |
∫

H

ψ
dμ

∣
∣
∣
∣ ≤

∣
∣
∣
∣
H

ψ
− m + a

ψ(m + a)

∣
∣
∣
∣ + 1

|Mt |
∫ ∣

∣
∣
∣
H

ψ
− m + a

ψ(m + a)

∣
∣
∣
∣ dμ

≤ ce− 2
ψ(m+a)

t ;
v − 1

v2
= |∇ϕ|2

v2(v + 1)
≤ ce− 2

ψ(m+a)
t ;

∣
∣
∣
∣
∣
m + a − 2 cosh(ρ)Ĥ

(v + 1) sinh(ρ)

∣
∣
∣
∣
∣
≤

∣
∣
∣m + a − Ĥ

∣
∣
∣ + Ĥ

∣
∣
∣
∣1 − 2 cosh(ρ)

(1 + v) sinh(ρ)

∣
∣
∣
∣

≤ ce− 2
ψ(m+a)

t ;
∣
∣
∣ϕikϕ js σ̃

i j σ̃ ks
∣
∣
∣ ≤ ce− 2

ψ(m+a)
t
.

��
We can construct many S

a-invariant examples M0 such that limt→∞ Q(Mt ) > 0. By
Proposition 9.4 of [15] and Proposition 7.1 of [16], we get that the sub-Riemannian limit
metric g̃∞ cannot have constant (Webster or qc) scalar curvature. The strategy is analogous
to that of Hung andWang [14] described in the previous subsection and it use the mass (5.24)
instead of the modified Hawking mass (5.22).
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