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Abstract: In collaborative robotics, to improve human–robot interaction (HRI), it is necessary to
avoid accidental impacts. In this direction, several works reported how to modify the trajectories of
collaborative robots (cobots), monitoring the operator’s position in the cobot workspace by industrial
safety devices, cameras, or wearable tracking devices. The detection of the emotional state of the
operator could further prevent possible dangerous situations. This work aimed to increase the
predictability of anomalous behavior on the part of human operators by the implementation of
emotional intelligence (EI) that allows a cobot to detect the operator’s Level of Attention (LoA),
implicitly associated with the emotional state, and to decide the safest trajectory to complete a task.
Consequently, the operator is induced to pay due attention, the safety rate of the HRI is improved, and
the cobot downtime is reduced. The approach was based on a vision transformer (ViT) architecture
trained and validated by the Level of Attention Dataset (LoAD), the ad hoc dataset created and
developed on facial expressions and hand gestures. ViT was integrated into a digital twin of the
Omron TM5-700 cobot, suitably developed within this project, and the effectiveness of the EI was
tested on a pick-and-place task. Then, the proposed approach was experimentally validated with the
physical cobot. The results of the simulation and experimentation showed that the goal of the work
was achieved and the decision-making process can be successfully integrated into existing robot
control strategies.

Keywords: emotional intelligence; vision transformer; collaborative robotics; digital twin; human–
robot interaction

1. Introduction

Collaborative robotics belongs to advanced robotics, one of the enabling technologies
of Industry 4.0 [1], which aims to improve smart production. Collaboration expects the
cobot and man to share the same workspace and exchange forces [2]. This paradigm could
extend the application of cobots to domestic, healthcare [3], and medical applications [4].
The hybrid man–cobot system can exploit the high dexterity and versatility of the man
and the robot’s precision, rapidity, and capability to perform repetitive and often alienat-
ing tasks [5]. Therefore, this system allows greater productivity, better ergonomics, and
significantly reduced process errors [6,7].

However, the resulting human–robot interaction (HRI) introduces a new class of risks
due to accidental man–cobot contact. The Standard ISO/TS 15066 [8] defines the safety
requirements of collaborative working modes regarding cobots and workstation design and
control software development. Several researchers are involved in this field: a cobot was
covered by a sensitized skin [9] or air chambers [10] to promptly detect accidental collisions;
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other solutions exploit the intrinsic compliance of the adopted materials [11,12], combined
with the pneumatics [13,14]. Collision avoidance is a most interesting topic [15–17]. Sev-
eral works are aimed at visual-based or wearable-device-based commands of a cobot’s
trajectories or its speed: vision systems were proposed in [18,19]; a hybrid visual-and-
wearable-based solution was proposed for identifying object positions and the operator’s
body parts [20]; wearable devices were adopted in [21,22]. The common aspect of these
approaches is the ability to take advantage of signals based on human motions in a closed
loop as feedback to command the robot. However, during a work shift, an operator does not
always manage to maintain the due attention. The changes in the human operator’s Level
of Attention (LoA) could reduce efficiency and safety, in total disagreement with Industry
5.0, the new industry paradigm aimed at the human-centric environment to increase human
operators’ efficiency [23]. Emotions were demonstrated to influence a person’s judgment,
decision-making process, and attitude [24] or induce the avoidance or performance of some
actions [25], creating a sort of ranking of the stimulus and influencing the behavior towards
doing or not doing [26]. Some works demonstrate that emotional states induced by images
or video [27,28] cause changes in reaction times and cardiac responses. In the industrial
workplace, the alteration of the emotional state can lead to a change in reaction times,
with an increase in the probability of sudden movements or the exit from the perimeter
of the working safety area; in the HRI, these behaviors could stop the cobot, reducing the
efficiency, and be dangerous, reducing the safety. For this reason, the operator’s emotional
state should be monitored. To improve efficiency and safety, like a man, a cobot should
be equipped with Emotional Intelligence (EI): men with a high level of EI pay attention
to emotions and use, understand, and manage them, bringing benefit to themselves and
others [29]; a cobot should capture the operators’ emotions, evaluating them and finally
performing tasks in which the actions are regulated by the computed emotional states [30].

The implementation of EI typically requires the implementation of algorithms to detect
emotional states from facial expressions, gaze, body language, voice, and physiological
cues [31]. In the scientific literature, the approaches refer to Artificial Intelligence (AI)
methodologies, ranging from classic machine learning to deep learning techniques, using
single or multiple input types. In different areas, such as autism therapy [32,33], educa-
tion [34], and automotive [35,36], EI based on vision systems has been applied. Several AI
architectures have been developed for emotion recognition by facial expressions [37–40].
Heredia et al. [41] adopted multimodal approaches to support the recognition of facial ex-
pressions and voice by convolutional neural networks (CNNs) and text by the transformer
architecture. A method based on the latter was adopted to elaborate the electrocardiogram
(ECG) [42]. Chaudhari et al. [43] explained how to implement EI, in terms of recognition of
facial expressions, by the ViT architecture. Transformer-based multiple-input systems are
widespread and take input from video signals of facial expressions, audio signals of voice,
or text signals [44]. Systems combining CNNs and transformers are also used to classify
emotions using facial and body features [45].

In [46], the electroencephalography (EEG) signal of a worker busy in an industrial
environment was acquired by a wearable device, processed, and used to modify the position
of a cobot to help the operator in an assembly operation. Other studies adopted bio-signal
monitoring, as reported in [47]. However, monitoring an operator with non-wearable
sensors in such an environment would be more appropriate. Aside from the fact that
the operator’s movements can change the position of the sensors, this solution can create
apprehension in the operator and convey to him the unsettling feeling of being controlled.
To overcome this issue, some researchers proposed assessing an operator’s stress state
and mental effort with a stereo camera [47] in a HRI with a cobot. In [48], the operator
emotions were identified by a CNN in addition to a recurrent neural network (RNN)
architecture. Based on the detected emotion, a light color is adjusted to create a comfortable
working environment.

The present work is focused on the implementation of EI in a cobot to be used mainly
in the industrial field but potentially also in the domestic and healthcare fields. The work
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reports the development and experimental validation of an EI system for the decision-
making process of the trajectories of a cobot based on the real-time estimation of the LoA of
an operator by a vision transformer (ViT). Such an architecture, developed in the Pytorch
environment, is trained and validated by the ad hoc created dataset, the Level of Attention
Dataset (LoAD), based on images of facial expressions or hand gestures to be referred to
as three LoAs: “normal”, “medium”, and “low”. During an in-execution pick-and-place
task of a cobot, the decision-making process computes a specific trajectory and velocity
profile for each of the three estimated LoAs. The higher the deviation from the “normal”
LoA, the farther the trajectories will be from the operator and the lower the execution
speeds. Since the adopted cobot (Omron TM5-700) does not have a simulator, a novel
Digital Twin (DT) of the cobot was designed and developed in the MATLAB environment
to validate the proposed system. Based on the ViT recognition, the DT calculates, generates,
and numerically simulates the specific trajectory and speed profile. Hence, the numerical
validation of the ViT-DT system allowed the experimental implementation of the proposed
system: in the MATLAB environment, ViT outputs are sent to a National Instrument (NI)
USB6001 board, which generates corresponding analog input signals for the control unit of
the cobot, whose parametric programming software calculates the associated trajectories.
Experimental validation with ten subjects demonstrates that EI can improve HRIs and
operator safety and induces the operator to pay due attention. Indeed, the modified
trajectory and speed induced the subjects to pay the proper attention, avoiding accidental
collisions, in compliance with a high safety rate. The last aspect should reasonably improve
the acceptance of collaboration and the success of the robotic teammate as it occurs between
human colleagues. Conversely, the stop of the task or acoustic or light alert signals could
create discomfort for the operator and the acceptance of the cobot.

This work does not intend to develop a new mathematical theory or new algorithms
for AI. It aims to create and experimentally validate a more collaborative, safe, efficient,
and comfortable HRI by increasing the predictability of anomalous behavior of human
operators and guiding the latter to have the proper attitude during a work shift.

The following items represent the originality of the work:

• A novel dataset, coming from existing ones but ad hoc manipulated, for a typical HRI
in the industrial environment was created;

• The ViT architecture was trained and validated for the specific application in which
hands and facial expressions are monitored. It was demonstrated that this kind of
architecture, requiring millions of images, can be adopted in scenarios like the one
reported in the manuscript;

• Since the outcome of the proposed system was a trajectory generated by emotional
intelligence, whose value is predictable in the described application but for more
complex situations could generate more complex trajectories, it was necessary that the
trajectory was not harmful to the cobot. In the case of the adopted cobot, a simulator
and a software integrator of the simulator with an external ViT architecture did not
exist. For this reason, a DT of the adopted cobot for communication with the ViT
architecture, simulation of the cobot behavior, and communication with the control
unit of the real cobot was created;

• The aim of the work was not to create a comfortable working environment or monitor
the operator’s emotions due to the HRI; on the contrary, it aimed to create a more
collaborative, safe, efficient, and comfortable HRI when the cobot guides the operator
to pay the due attention, as occurs among human colleagues.

The paper is organized as follows: the new dataset and the adopted ViT architectures
are described in Section 2; in Section 3, the HRI application in which the EI is implemented
for the decision-making process of trajectories is described; the DT and its validation are
detailed in Section 4; Section 5 reports the experimental activity and the discussion of the
achieved results.
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2. The LoA Estimation
2.1. The Dataset

The LoAD was built with images of facial expressions and hand gestures, organized
into two different sections. Each of them is made of three classes: Normal Level of Atten-
tion (NLoA), Medium Level of Attention (MLoA), and Low Level of Attention (LLoA).
The LoAD arises from the union and manipulation of the Facial Expression Recognition
2013 (FER-2013) dataset [49] for facial expressions, HANDS [50] and the HAnd Gesture
Recognition Image Dataset (HaGRID) [51] for hand gestures.

Of the original FER-2013 dataset (made of 35,888 grayscale images, 48 × 48 pixel sized,
and organized into seven different classes), only the neutral, happy, and angry classes were
taken into consideration, associated with the classes NLoA, MLoA, and LLoA, respectively.
The choice fell on these types of expressions because they represent the opposites of the
emotional sphere, including a neutral expression, that most influences the operator’s
LoA. The expressions were associated with the LoAs according to the behavior that an
operator could assume with the cobot, as typically occurs among human colleagues: a
neutral expression was considered proper for the work shift when an operator should not
be emotionally involved but focused only on the task; a happy one suggests that positive
influences could distract the operator but do not compromise the teamwork; an angry one
suggests that negative influences could compromise the teamwork. Images of FER-2013
were not manipulated.

Of the original HANDS dataset (made of 24,000 RGB images, 960 × 540 pixel sized,
and organized into 29 static hand-gesture classes), only the Horiz (HBL, HFL, HBR, HFR)
and Punch (VFR, VFL) classes, associated with the MLoA and LLoA, respectively, were
considered. The gestures were associated with the LoAs according to the behavior that an
operator could assume when the cobot moved: Horiz, the open hands, suggests that the
operator is not moving objects or could gesture so that the level of attention should not
compromise the teamwork; Punch suggests that the operator could move an object or the
operator could be affected by negative influences that could compromise the teamwork.
The number of class images remained the same.

Of the original HaGRID dataset (made of 552,992 RGB images, 1920 × 1080 pixel sized,
and organized into 18 static hand-gesture classes and a no-gesture class), only the no-gesture
class, associated with the NLoA class, was considered. According to the same criteria
mentioned above, no gesture suggests that the operator has their hands out of the cobot
workspace, focused on waiting for the end of the cobot motion. The number of images was
reduced to balance the number of ones in the modified HANDS dataset.

The original images of the hand-gesture datasets were cropped of insignificant informa-
tion (background, clothes, faces); resized to 48 × 48 pixels, satisfactory for the application;
and converted to grayscale in the range of 0–255 for each pixel, as shown in Figure 1. The
manipulation of the images did not change their quality.
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The chosen hand gestures must not be intended as a definition of new hand gestures for
cobot control, which could contradict some of the ones adopted in the literature [19,20,50];
however, they are the relevant ones at the basis of the differentiation of the proper gestures
for the specific application and the wrong ones.

Some images of the LoAD are reported in Figure 2. The amount of images in each
class of the LoAD is reported in Table 1.
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Table 1. The structure of the LoAD.

Section Class Number of Images

Facial expressions
NLoA 6000
MloA 6000
LloA 4440

Hand gestures
NloA 2640
MloA 3564
LloA 1800

2.2. The ViT Architectures

ViT was chosen for the implementation of EI because the image analysis carried out
by ViT performs better than that carried out by the most adopted CNNs [52], as required in
an industrial application. ViT architecture processes 2D images subdivided into a sequence
of patches of fixed pixel dimensions. As pointed out in [52], the training process of ViTs
requires millions of images. Since such a large set of images is not available, to demonstrate
the feasibility of the present study, three architectures of pre-trained ViTs were considered:
the Vision Transformer Base (ViT-B) [52], the ViT-B-based architectures Data-efficient Image
Transformers Base (DeiT-B), and the Data-efficient Image Transformers Tiny (DeiT-Tiny),
very effective when focused on a single task [53], as in the case of the present work, hence
the choice of them. The architectures are available in the hugginface/transformer library by
Pytorch [54].
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For each image section, the training and validation of the ViT architectures were
carried out with 80% and 20%, respectively, of the number of available images. Each archi-
tecture was trained on six, nine, and twelve epochs, i.e., how many times each architecture
passed through the entire training dataset. The results achieved by each architecture were
compared. The learning rate was set to 10−6 and the AdamW optimizer [55] was applied in
each phase. The choice of the best ViT architecture depended on the validation accuracy.
Better results were achieved for the twelve epochs, reported in Table 2 and plotted in
Figures 3–5.

Table 2. Results of 12-epoch training and validation of the ViT architectures.

Model Face Training Loss Validation Loss Validation Accuracy

ViT-B 0.40 0.46 0.83
DeiT-B 0.37 0.50 0.81

DeiT-Tiny 0.54 0.57 0.76

Model Hand Training Loss Validation Loss Validation Accuracy

ViT-B 0.07 0.09 0.99
DeiT-B 0.05 0.05 0.97

DeiT-Tiny 0.02 0.01 0.98

Results reveal that the size of the LoAD is appropriate for the present work. Regarding
the accuracy of facial expressions, the ViT-B is the best architecture; the accuracy of the
hand gestures is substantially similar for all architectures. Furthermore, the training and
validation loss of the ViT-B are the lowest for facial expressions; for the hand gestures, on
the contrary, they are the highest but reach values lower than 0.1 in correspondence with
the twelfth epoch.

The best validation accuracy of the ViT-B architecture was compared to the validation
accuracies of several models based on the FER-2013, HANDS, and HaGRID datasets found
in the literature. As shown in Table 3, the results demonstrate that the ViT-B architecture
based on the proposed dataset is more beneficial. The ViT-B (hereinafter called, simply, ViT)
was chosen as the most appropriate.

Table 3. Comparison among model training results.

Model Face

Dataset Classes ViT-B [43] SSF-ViT-B [56] A-CNN [57] ViT-B (our)

FER-2013
neutral (NLoA) 0.61 0.73 0.80 0.80
happy (MLoA) 0.77 0.89 0.69 0.91
angry (LLoA) 0.63 0.69 0.53 0.78

Model Hand

Dataset Classes R-FCN [50] ViT-B [51] DenseNet201 [58] ViT-B (our)

HaGRID no gesture (NLoA) - 0.98 0.92 1

HANDS
Horiz (MLoA) 0.85 - - 0.99
Punch (LLoA) 1 - - 1
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2.3. The Recognition of Facial Expressions and Hand Gestures

To detect facial expressions and hand gestures, a RGB external webcam Logitech C920
HD Pro, with HD 720 p/30 fps, autofocus, and a Field of View (FoV) of 78◦, is placed in front
of the operator, at face or hand level, and at a distance of 1 m to ensure the image recording
inside the FoV of the webcam and maintain the image in focus (Supplementary Materials).
The webcam is equipped with auto light correction technology (Rightlight 2) since tests
must be carried out with the lighting conditions provided by the lamps of a laboratory,
influenced by any other external light disturbances. Such a condition is similar to a real
industrial environment, where ceiling lamps provide lighting and can be modified by the
sunlight, variable light during the day, and shadows of the operators and moving devices.

A code developed in Python acquires the images from the webcam and sends them to
the ViT architecture, which estimates LoAs and generates graphical and numerical outputs.
Each output is associated with the corresponding trajectory to be generated. The ViT
estimates the LoA at a frequency of 5 Hz. The estimated LoA is the average value of the
LoAs estimated in an (adjustable) time window t, set to 10 s. In this way, the instantaneous
effect of external disturbances (sneezing, changes in lighting, gestures not directly related
to the LoA) should be reduced. Examples of LoA recognition are reported in Figure 6. The
resolution of the images was set to 640 × 480 pixels. For clarity, no blur effects were applied
to the face of the subject, whose consent was obtained.
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3. The Emotional Intelligence Implementation: An Application

Emotional Intelligence aims to estimate the LoA of the operator in a HRI application
and associate the proper trajectory and the speed of the task of a cobot. The greater the
deviation from the NLoA, the farther the trajectories will be from the operator and the
lower the execution speeds.
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A pick-and-place task of a screw from and towards an operator’s hand was considered.
With reference to Figure 7, after the manual unscrewing, the cobot picks up the screw
placed in the operator’s hand in correspondence with point A; then, the cobot moves and
releases the screw in the operator’s hand in correspondence with point B; after the manual
tightening of the screw, the cobot moves back to point A, following the trajectory in reverse,
to start the task again.
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With respect to the robot base reference system XYZ, A and B points are placed by h0
height. The operator is positioned in front of the cobot on the opposite side of the trajectory
to be executed. The standard trajectory is an arc of circumference placed in a vertical plane
(the yellow one of Figure 7b), passing through points A, B, and CV

0 . The latter is placed at
the half point of the AB segment, whose length is 2r, by the height z0.

For the sake of simplicity, the trajectories depending on the LoA, called emotional
trajectories, are in the shape of arcs of circumferences passing through points A, B and
Cα

i placed in an α-slope plane (the transparent blue one of Figure 7b) with respect to the
vertical plane. Additionally, i is the integer number associated with one of the n estimated
LoAs; Cα

i are the rotated CV
i , except CV

0 .
The slope α depends on the r value to maximize the human–cobot distance and x0,

the distance between the base center of the robot and the vertical plane of the standard
trajectory; the zi heights, computed from the horizontal plane, including A and B, are
achieved according to the number n: the greater the rate of negligence (due, for example, to
stress, inattention, indolence, or drowsiness), the higher the zi will be. Additionally, CV

i are
vertically equidistant by a distance h. The maximum value of zi, corresponding to the most
critical LoA, is set to r: in this case, the arc of circumference degenerates in a semicircle.

The choice for planning arc trajectories along the α-slope plane provides for changing
the trajectory from the standard one to summon the operator’s attention and for moving
away the distal part of the cobot from the operator to avoid any accidental collision. If
the LoA is not detected correctly, the cobot performs the distal trajectory. As a first step,
the computation of the emotional trajectories requires the evaluation of the α-slope; then,
the CV

i coordinates, the radius Ri, and the angle at the center θi of the corresponding
arc of circumference; and finally, the length of the latter, Li, and the coordinates of the
set of 100 points, spaced by the angle βi, belonging to the computed trajectory. All the
points are rotated on the α-slope plane and their coordinates are calculated in the XYZ
base-centered system.

The set of equations to be adopted for the abovementioned computing is the following:

α =
[

arctg
( x0

r

)]
(1)
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h =
r − z0

n
= hi (2)

CV
0 and CV

i points have the following coordinates in the robot base reference system:

CV
0 {x0, y0, z0 + h0} (3)

CV
i {x0, y0, zi}, zi = z0 + h0 + i · hi, i = 1, . . . , n − 1 (4)

Ri =
r2 + z2

i
2zi

(5)

θi = 2arcsin
(

r
Ri

)
(6)

βi =
θi

100
(7)

Each s-th point belonging to the i-th arc of circumference, placed in the vertical plane
V, has the following coordinates in the robot base reference system:

PiV
s

{
xiV

s , yiV
s , ziV

s

}
= PiV

s

{
x0, Ri · sin

(
− θi

2
+ (s − 1) · βi

)
, Ri · cos

(
− θi

2
+ (s − 1)βi

)
− Ri · cos

(
θi
2

)
+ h0

}
, s = 1, . . . , 101 (8)

Hence, each s-th point belonging to the i-th arc of circumference, placed in the α-slope
plane, has the following coordinates in the robot base reference system:

Piα
s

{
xiα

s , yiα
s , ziα

s

}
= Piα

s

{
x0 − zi · sin(α), Ri · sin

(
− θi

2
+ (s − 1) · βi

)
,
(

Ri · cos
(
− θi

2
+ (s − 1)βi

)
− Ri · cos

(
θi
2

)
+ h0

)
· cos(α)

}
(9)

Moreover,

Li = 2π · Ri ·
θi

360◦
(10)

Considering a symmetrical trapezoidal speed profile imposed on the Tool Center Point
(TCP) of the cobot, the speed corresponding to the constant segment of the speed profile is
defined as vstandard for the standard trajectory. For the other trajectories, the speed, vi, is
imposed as:

vi =
vstandard

i + 1
, i = 0 . . . n − 1 (11)

The acceleration/deceleration ramps are set in the form of the required time to reach
the imposed speed value.

In the current case study, n is set to 3: normal (corresponding to the standard trajectory),
medium, and low LoAs, corresponding to the i values 0, 1, and 2, respectively.

4. The Digital Twin of Cobot Omron TM5-700
4.1. The Aim

Since the EI-based solution, a simulator of the cobot is necessary before testing the
proposed system with a physical cobot in a real application. The novel DT was created
because the Omron TM5-700 lacks software for simulating planned tasks. Moreover, a DT
is able to exchange data with the ViT architecture and the control unit of the real cobot does
not exist. The DT aims to acquire the numerical output generated by the ViT for simulating
the trajectory associated with the estimated LoA and, in the application with the cobot, to
manage an Interface board for creating the communication between the ViT and the Omron
TM5-700 control unit.

4.2. The Structure

The DT is based on forward and inverse kinematics and trajectory generation al-
gorithms available in the MATLAB libraries [59]. Moreover, it is equipped with a code
developed for communication with the ViT by a socket between Pytorch and MATLAB.
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Finally, it is provided with a developed code for the communication between MATLAB and
the interface board. The construction of the DT started with creating the Unified Robotics
Description Format (URDF) model of the cobot, which is not available in commercial
libraries. Data about the cobot’s kinematic, dynamic, and geometric parameters were
assessed in its datasheet [60]. The URDF model includes the cobot support bench and the
gripper for the application, used as an end-effector. Then, the previously mentioned algo-
rithms were applied to the URDF by the MATLAB Robotic System Toolbox and a Graphical
User Interface (GUI), customized for the application, was developed by the MATLAB App
Designer. The Level of Attention Recognition-ViT page (Figure 8a) allows setting points A and
B of the standard trajectory (x0, yA, zA, h0, r) to define the initial configuration of the cobot,
according to the joints coordinates; to set the number of possible LoAs (parameter n); to
visualize the LoA estimated by the ViT (parameters i); and to calculate the corresponding
trajectory. When the ViT is on, the DT calculates the trajectory and the speed by (1–11). The
page shows the simulated cobot motion (Figure 8b) in a pop-up window. It highlights any
robot collisions with itself and the surrounding environment (yellow and red round lines
in Figure 8a). Moreover, the page allows the user to choose two work modes: offline, for
the simulation of the calculated trajectories, and online, for cobot control, by managing the
interface board that generates voltage analog output signals associated with the estimated
LoA and, hence, to the trajectory to be executed.
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4.3. The Validation

It was carried out by verifying the correspondence of known facial expressions and
hand gestures with the estimated LoA; hence, the correspondence of the estimated LoA
with the computed trajectory, as shown in Figure 8b; and, finally, the correspondence of
the estimated LoA with the analog output value generated by the interface board. In the
validation tests, the same test volunteer performed 50 facial expressions, kept constant
within the time window, to be referred to as NLoA, MLoA, and LLoA, respectively, for a
total amount of 150 tests. Similarly, the same number of tests based on hand gestures were
carried out. Each test was conducted by imitating the content of a suitable image selected
from the dataset. Therefore, the subject was not emotionally involved in the application.
Face and hands were placed in front of the webcam.

All tests gave positive results: there was always a correspondence between the es-
timated facial expressions/hand gestures with the simulated trajectory of the cobot and
the value of the analog output signal generated by the interface board. Under uncertain
conditions (two or more faces, two or more hands recorded, or no recognition), the cobot
was adjusted to the safest trajectory.
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5. The Experimental Activity

The experimental activity aims to validate the implementation of EI to the cobot in a
real collaborative working condition.

With reference to Figure 9, the testbench is made of three components: (1) a OMEN
HP Inc. (Palo Alto, CA, USA) PC (i7-11th generation laptop, NVIDIA RTX2060 6Gb GPU,
32 Gb Ram 1Tb SSD HDD) equipped with the external webcam and the ViT-DT system;
(2) a National Instruments (Austin, TX, USA) Data Acquisition Board (NI-DAQ) USB6001
adopted as an interface board for the ViT–cobot communication; (3) the Omron TM5-
700 cobot (OMRON Corp., Taipei, Taiwan) managed by TMflow programming software,
release 1.86.2300.
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Figure 9. The schematic of the experimental testbench: (1) the PC; (2) the NI USB6001 board; (3) the
Omron TM5-700 cobot.

Except for the default emergency stop button connected to the control unit of the cobot,
no external safety laser scanners, curtains, or gate systems were adopted. The end-effector
is a cylindrical electro-magnet without sharp edges. Cobot was set in the collaborative
function mode. No redundancy occurs between the proposed solution and the safety
controller of the robot: if an accidental human–cobot collision occurs during the motion,
the cobot immediately stops.

With reference to Figure 10, tests were carried out as described in Section 3: manual
removal of a screw from a plate mounted on the cobot support bench takes place; the
cobot picks the screw placed in the human hand at Point A and moves to Point B, where it
releases the screw in the human hand; manual placement of the screw into the plate takes
place; then, the cobot moves to Point A, following the previous trajectory in reverse. To
reduce the risks of accidental collisions, human–cobot contact occurs when the cobot is
stopped during the phase of the screw exchange. This task is a typical occurrence of HRIs
where the human operator must pay attention and be actively involved in the experimental
validation described below.

For the trajectory planning, according to the 90◦ clockwise rotated cobot reference
system, the following values were set: x0 equal to −647 mm, h0 equal to 145 mm, z0 equal
to 145 mm, and r equal to 170 mm; moreover, yA was equal to −170 mm.

A symmetrical trapezoidal speed profile was set on the TCP: the acceleration and
deceleration ramps were defined in terms of ms to reach the set or the zero speed values,
respectively (according to the requirements of the cobot software). For each trajectory, the
value of the speed, corresponding to the constant value of the speed profile, was set equal
to 0.2 m/s, 0.1 m/s, and 0.07 m/s associated with the NLoA, MLoA, and LLoA trajectories,
respectively. The highest value of the speed (0.2 m/s) was lower than the highest value of
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the speed of the cobot working in collaborative mode (0.243 m/s), as imposed by ISO/TS
15066 in the case of accidental contacts between the cobot and the upper arm, forearm,
and wrist of the operator. On a page of the cobot software, it was possible to set the body
area subjected to accidental contacts and obtain the kinematic and dynamic constraints
according to the standard. The other speed values were set based on Equation (11).
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Figure 10. The experimental activity: (a) overview of the testbench; (b) manual removal of the screw;
(c) picking task at Point A; (d) release task at Point B; (e) manual placement of the screw.

In all the trajectories, the ramp-time duration was set equal to 150 ms, corresponding
to the acceleration/deceleration equal to 1.33 m/s2, 0.67 m/s2, and 0.47 m/s2 associated
with the NLoA, MLoA, and LLoA trajectories, respectively. Due to these values, the time
length of each task (from A to B) equaled about 2, 5, and 8 s for the NLoA, MLoA, and
LLoA trajectories, respectively. The picking and the release of the screw required 2 s. The
task sequence is shown in Figure 11 in the case of no collisions.
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Acquisitions of the cartesian poses of the TCP, joint positions, and velocities of the
TCP of the cobot over time are shown in Figure 12, Figure 13, and Figure 14, respectively.

Moreover, as imposed by the cobot software according to ISO/TS 15066, the following
constraints were applied: the maximum joint speed was set equal to 190, 190, 190, 235, 235,
and 235◦/s for the joints J1, J2, J3, J4, J5, and J6, respectively; the maximum joint torque was
set equal to 25, 25, 25, 12, 12, and 12 Nm for the joints J1, J2, J3, J4, J5, and J6, respectively.

Finally, for the task execution, the perpendicularity constraint of the TCP, with respect
to the robot base, was set. In detail, the rotation angles Rx, Ry, and Rz of the TCP were set
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at 180◦, 0◦, and 90◦, respectively. Joints J5 and J6 were fixed at 90◦ and 86◦, respectively. A
point-to-point control was applied by the TMflow programming software. The relevant
points of the trajectory were imposed and calculated according to the parameters described
in Section 3. The “Circle Node” command of the mentioned software was applied for the
trajectory execution, passing through the relevant points. Other control parameters cannot
be adjusted in the cobot software.

As for the test, before its execution, the test manager, hereinafter called the tester,
instructed the test volunteer, hereinafter called the subject, about the operations to be
performed. The subject carried out preliminary training for 10 min. Neither the purpose
of the test nor the change of trajectory nor the change of speed was communicated to the
subject. Ten subjects (seven men and three women; average age 26.6 ± 4.7) were submitted
to the test. Each signed a consent form about the test modality and possible risks before
executing the test.
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The test began when the ViT and DT started to run and the ViT-DT communication
was opened. Therefore, the webcam started to record the subject, which began the task.
The ViT returned the average LoA every second, computed on the images acquired in the
previous floating time window t, set to 10 s. Moreover, the duration allowed the tester
to distract the subject from the in-execution operation and verify the cobot’s real-time
behavior. The LoA and the webcam images were displayed in the ViT and DT with the
related text string. Each LoA was associated with a numerical value: 0 to NLoA, 1 to MLoA,
and 2 to LLoA, respectively. Each number was related to a voltage value generated by the
NI-DAQ board: 0.5 Vdc, 1.5 Vdc, and 2.5 Vdc with 1, 2, and 3, respectively. Depending on
the analog value acquired by the cobot control unit, the TMflow software calculated the
trajectory and speed variables according to Equations (1)–(11). The coordinates of points A
and B and x0, h0, z0, and r were constant parameters defined in TMflow.

The test was divided into two phases: the first, for estimating only facial expressions
and, the second, for only hand gestures. The duration of the single test was 5 min. Each
test was repeated 5 times for an overall amount of 25 min. During the test, the subject was
distracted and prompted by the tester to talk about various topics. Talking in a friendly and
jovial manner was considered a disruptive phase for transitioning from NLoA to MLoA;
speaking with pride and irreverence was considered a phase for the transition from NLoA
to LLoA. The change of LoA was considered correct if the average value estimated by the
ViT remained constant for at least 10 s. Results are shown in Table 4: the circles indicate a
correctly estimated change in LoA, on the contrary to the crosses.

Table 4. Results of the experimental activity.

Subject Facial Expressions (Phase 1) Hand Gestures (Phase 2)

No. Age Gender NLoA MLoA LLoA Inference [%] NLoA MLoA LLoA Inference [%]

1 26 M o o o 100 o o o 100
2 31 M o o o 100 X o o 66.6
3 27 M o o o 100 X X X 0
4 22 M o o o 100 o o o 100
5 28 M o o X 66.6 o o o 100
6 27 M o o X 66.6 o o o 100
7 25 F o o o 100 o o X 66.6
8 26 F o o X 66.6 o o o 100
9 26 M o o o 100 o o o 100
10 28 F o o X 66.6 o o o 100

Average Inference 86.6 Average Inference 73.3
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The ViT-based EI accurately estimated the transition from NLoA to MLoA for facial
expressions and hand gestures. The estimation of the transition from NLoA to LLoA was
only sometimes successful. The inference was calculated as the overall success rate for
each subject in each phase. The average inferences in Phase 1 and Phase 2 were 86.6% and
73.3%, respectively.

Regardless of the test phase, NLoA, MLoA, and LLoA were properly estimated in 90%,
95%, and 70% of the tests, respectively; in 65% of the tests, the system properly estimated
all the LoAs; in 30%, it failed the estimation of one LoA; in 10%, it failed the estimation of
all LoAs. As for the facial expressions (Phase 1), in 60% of subjects, LoAs were estimated
at 100%; in the remaining 40%, only the LLoA was not properly estimated. As for the
hand gestures (Phase 2), in 70% of subjects, LoAs were estimated at 100%; in the remaining
30%, NLoA was not estimated at 10%; and in 10%, all LoAs were not estimated for the
same subject.

In detail, in Phase 1, for Subjects 5, 6, and 10, the system did not identify a correct
transition from NLoA to LLoA since the generated facial expressions were very close to
the neutral ones. For Subject 8, large glasses did not allow an accurate analysis of the eye
and eyebrow expression, significant elements for the discrimination of the transition from
NLoA to LLoA. However, some tests were repeated without glasses and the transition
from NLoA to LLoA was properly detected. In Phase 1, NLoA and MLoA were always
correctly estimated for all subjects. This is probably because the dataset is biased towards
these two LoAs: the number of images used is significantly higher than in the other class.

Then, in Phase 2, for Subject 2, the estimation of NLoA was invalidated by the presence
of a checkered shirt: ViT confused the horizontal lines of the squares with the outline of
the fingers. For Subject 3, a change in LoA was never detected due to the color of the shirt
being the same as that of the hands. To demonstrate this assumption, a green sheet of paper
was placed between the shirt and the hands: some tests were carried out where the change
in LoA was detected. For Subject 7, the transition from NLoA to LLoA failed due to the
large number of finger rings. This assumption was confirmed since some tests without
rings were repeated, providing proper identification.

In all tests, the transition to NLoA was verified: the change of trajectory and speed
created doubts in the subjects regarding the malfunctioning of the cobot. From here, they
returned to the NLoA. From these tests, it was seen that the average experimental inference
for Phase 1 was in line with the results obtained from the validation of the architecture while,
in Phase 2, they were 25.4% lower than the validation for the reasons explained above.

The aim of increasing HRIs through EI has been achieved. Indeed, during the execu-
tion of the task, no collisions were recorded even when the subject’s LoA under examination
was low, thus avoiding the robot’s downtime and maintaining a high safety rate. Further-
more, from experimental tests, using colored visual protective devices, light-colored work
uniforms, or accessories could compromise the system’s functionality. To guarantee the
maximization of the ViT-based system performance, we suggest limiting the variability
of the garments and the presence of accessories. For example, the same uniform could
be adopted in a manufacturing environment, avoiding some kinds of accessories, such
as rings.

The work showed that EI can be another valuable tool for improving HRIs. In ad-
dition, the choice of a camera with a self-balancing light proved correct. Effectively, the
instantaneous effect of external disturbances did not affect the LoA recognition. Indeed,
environmental conditions related to lighting variability in the laboratory where the tests
were conducted did not affect the recognition of the LoA. This was also helped by the
dataset constructed from images taken under different lighting conditions rather than
under strict conditions, as is typically required in machine vision systems.

Similarly, the positioning of the camera did not affect the subject’s LoA for either the
facial expression or the hand gestures recorded. This means that applying the proposed
system would not change the operator’s working conditions and would not be invasive for
the operator.
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Although brief training had been performed, it is believed that in normal working
conditions, the proposed system can be directly implemented at the workstation. As for
the algorithm used, it is performant for the type of application considered.

The achievement of an inference very close to 100% is related to the dataset employed
for the ViT training. Indeed, the dataset should consider all of the typical occurrences of
the application.

The choice to modify the task in trajectory and speed proved correct for the present
work’s aim. Safety was ensured as the robot effectively moved away from the subject as
the LoA was lowered. In addition, the subject was effectively induced to be critical of
the robot’s behavior and, therefore, to restore the correct LoA. Again, task planning must
depend on the peculiarities of the application.

The experimental activity revealed the effective reduction of the cobot downtime. For
its estimation, the baseline case refers to the sequence of Figure 12 associated with the
NLoA, according to which the cobot should work and the time length of the task, after the
picking of the screw, should be the shortest (6 s). Hence, the time taken to restore the cobot
if a collision occurs during the baseline case was compared to the time taken to perform
the longest task, which lasts 18 s after the picking of the screw, associated with the LLoA.

The time taken to restore the cobot is the sum of the time to execute the following
items. When a collision occurs, the cobot stops; then, the operator must first realize the
collision, approach and take the robot stick, approach the wrist of the robot to check if
the screw is attached (collision occurred in the trajectory performing from A to B) or not
(collision occurred in the trajectory performing from B to A) at the end-effector, reset the
collision alert by the robot stick, pick the screw (only if it is attached) and provide for its
placement, put back the robot stick, and come back to the workplace. Experimentally, this
procedure lasts over 16 s if the screw was previously released; on the contrary, it takes
over 20 s. Then, the operator must push the start/restore button; the cobot waits for 3 s to
move towards Point A with the same motion law associated with the NLoA trajectory. The
motion takes a time variable of about 0–2 s. This range depends on the position of the TCP
where the collision occurs: if it happens near point A, the cobot requires a very short time
to reach point A; if it is near point B, the cobot requires almost 2 s.

The lowest value of the restore time is equal to about 19 s: it means that the collision
occurred while performing the trajectory from B to A, near point A. The highest value of
the time is equal to about 25 s: it means that the collision occurred while performing the
trajectory from A to B, near point B.

In both cases, restore time was higher than the time taken to perform the task associated
with the LLoA. Moreover, time measurement was carried out in lab tests where the time
to realize the collision is less than 1 s: the subject voluntarily collides with the cobot and
rapidly follows the mentioned procedure. Actually, in a real scenario, the operator should
not be concentrated and the time to realize the collision should be higher.

6. Conclusions

The present work introduced the adoption of a ViT-based EI for the decision-making
process of a cobot in a real application typical of an industrial scenario. To simulate the
behavior of the cobot, a new DT was designed, developed, and validated numerically and,
hence, by an experimental activity, carried out with a real cobot. The proposed approach
demonstrated the capability of the EI to induce the operator to pay due attention in the
collaborative environment. It could allow better acceptability, comfort, and success in
the human–robot colleague interaction. Moreover, it demonstrated that the adoption of
a simple camera, or a set of cameras, allows the creation of a less invasive system for the
operator (no wearable devices are adopted) and can be easily integrated into an existing
robotic cell or in other environments where a cobot can interact with humans. Finally, the
operator is not required to train or learn how to use the system; instead, the operator learns
how to improve the interaction with the robotic colleague.
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However, the proposed system has limitations: it requires the improvement of the
hardware, which is made of a personal computer, a webcam, and a microcontroller board
near the work area. A structure to place several cameras that do not hinder the work
area and simultaneously monitor the operator can be designed. A stereo camera could
improve the set-up. Moreover, integrating the ViT architecture algorithm into TMflow
should simplify the required hardware.

Improvements can certainly be applied: for the LoAD, a campaign of simultaneous
acquisitions of facial expression and hand gestures, truly classified in terms of attention,
must be carried out; the LoAD must be enriched with elements that currently act as a
disturbance (glasses, rings, accessories). The performance of the ViT-B can be improved
by adopting a multimodal architecture that can simultaneously analyze different inputs
(fusion sensors), such as signals from external sensors, as in the present application, and
suitable biometric signals, such as galvanic skin response signals or data about biometric
measurements carried out by a smartwatch. This improvement should allow the use
of cobots not only in industrial fields but also in domestic, assistive, and medical fields
where the ViT-B must consider more variable factors, such as different types of accessories,
garments, and environmental conditions.

The next step of the research will focus on two main aspects: the implementation of
algorithms for the dynamic correction of the movement trajectory to increase the operator’s
safety further and solving the inter- and intra-personal variability of classification, regard-
less of the field of application of the proposed approach. The last topic is well known for the
classification. In the present study, it was not considered because the research focused on
developing and testing the approach’s feasibility using the pre-trained ViT fine-tuned with
a custom dataset. In future works, the inter- and intra-personal variability of classification
will be a fundamental issue to analyze and limit to generalize the methodology and apply
it to more scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/machines12020113/s1, Video S1: Facial expressions recognition during a
task, Video S2: Hand gestures recognition during a task, Video S3: Collisions and recovery time.
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