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Foreword

My academic experience has been really puzzling. I have always ended up
doing stuff which was rather too difficult for me, or which I would have
gladly avoided to do. At first, I wanted to study computer engineering, be-
cause I was not very skilled in maths, whereas I was able to code decently;
nonetheless, I have ended up earning a Bachelor’s degree in control systems
engineering. During my Master’s degree, I have got really passionate about
robotics and filtering theory, but I was held back by the lack of sound proba-
bility theory knowledge, which led me to avoid any topics involving statistics.
Somehow, the fate has led me to start a Ph.D. during which I have been able
to study systems identification, statistics, probability theory and optimiza-
tion, which represented, basically, the antithesis of my original study plans.
Nonetheless, during the past four years, concepts which would have appeared
absurd to me in the beginning, started to get more clear over time, until, at
some point, I have started to grasp the whole picture. Target tracking and
unsupervised learning became my core topics after attending an enlightening
course held by Prof. Lennart Svensson from the Chalmers university; there,
I have encountered for the first time the so called Mixture Reduction prob-
lem. Battling with such a problem pushed me towards interesting topics as
Optimal Transport theory which, jointly with probability, statistics and in-
formation theory, represented the foundations for the results reported in this
dissertation. In the end, the Ph.D. has been my most rewarding educational
experience, both in terms of personal growth and acquired knowledge. Right
before the ”finish line”, during the 25th International Conference on Informa-
tion Fusion, held in Linköping, Sweden, I have received the ”Tammy L. Blair
Best Student Paper Award” for the paper ”A model selection criterion for
the mixture reduction problem based on the Kullback-Leibler divergence”,
written in collaboration with my supervisor Costanzo Manes, and the dis-
tinguished Professor Umut Orguner. Such an award has meant a lot to me,

19



since it has proven, in a small part, that my efforts have led to something
useful for the related scientific community. This thesis is the result of a work
carried out at the University of L’Aquila (L’Aquila, Italy) during the years
2018-2022.
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Abstract

Many real world problems deal with data generated from sources of which
laws are usually unknown. In order to make predictions or to infer the cor-
responding behavior, suitable probabilistic models are often sought to char-
acterize such systems. Nonetheless, when the underlying nature is complex,
simple models might result to be unsatisfactory, and it is necessary to resort
to more descriptive forms; an efficient, yet powerful, alternative is to consider
mixture models which, by combining simpler elements, allow to character-
ize particularly complex behaviors. However, when the number of mixture
parameters becomes significantly large, such models can become computa-
tionally intractable and approximations have to be introduced. The goal of
this dissertation is to address the mixture reduction problem in an Occam’s
razor perspective, that is by finding good trade-offs between representation
complexity and accuracy. The proposed methodology is general, but, for the
goals of this work, the focus will be posed on target tracking in clutter prob-
lems, where the optimal Bayesian recursion leads to an unbounded increase
in the number of mixture components, making corresponding algorithms in-
tractable, and on clustering problems, especially in high dimensional settings,
where finding a suitable number of representatives is a non-trivial task. Given
a mixture model with many components, the corresponding reduction prob-
lem consists in finding another mixture, possessing a significantly less com-
ponents, which is similar, in some sense, to the original one. The first step
to address this problem is to have a measure of how dissimilar two mixtures
are; in the literature many dissimilarity measures have been proposed, each
of which possessing its own features, but a discussion regarding the corre-
sponding peculiarities has been rarely addressed. Moreover, many of those
dissimilarities are analytically intractable when applied to mixtures, leading
to the reasonable approach of resorting either to tractable approximations,
or to employ an ensemble of measures in the same reduction pipeline in or-
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der to ease the computations. In this work, a mixture reduction scheme is
defined consistent when the same dissimilarity measure is employed for each
of the steps involved in the process; in this regard, by exploiting the Optimal
Transport theory, it is possible to formulate a consistent reduction frame-
work which is also capable, in a specific case, to deal with the corresponding
model selection problem, that is to provide automatically a suitable number
of components for the reduced order model; choosing the order of the reduced
model can be an impactful choice, since overly simple approximations can
lead to a large bias of the representations, and overly complex alternatives
can be computationally burdensome. In this dissertation, the optimal trans-
port theory will serve as a systematic approach to solve all-round the mixture
reduction problem, by providing all the tools necessary to reduce and refine
a given mixture model.
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Chapter 1

Introduction

When dealing with real world problems, it is common to exploit mathemat-
ical models in order to make predictions or to characterize an underlying,
potentially unknown, behavior. Many physical phenomena, though, can not
be described deterministically exhaustively, since they can exhibit random
dynamics; in that case, probabilistic models can be considered. Nowadays,
fields like robotics [2], machine learning [3] or target tracking [4] rely mas-
sively on characterizing statistically the processes underlying the data or the
system dynamics, given that such representations can be a good trade-off
between complexity and versatility. A key concept for random phenomena is
that of uncertainty which, among several interpretations, can be seen as the
information one lacks when describing a system.

Probability theory [5] provides a solid framework to quantify and manip-
ulate the uncertainty, since it offers tools and models to characterize and un-
derstand random events. Complementary, statistics [6] allow to extrapolate
useful information from such models and to make inference or predictions re-
garding a given system. Among the mathematical tools offered by statistics,
the Bayesian framework has gained a lot of attention during the past decades,
since many estimation or decision problems can be posed as a recursive or
batch application of the Bayes’ rule [3]. In contexts like target tracking or
robotics, for instance, the state of a dynamical system is often modelled as
Gaussian, i.e. one does not know the position of the object exactly, but it is
possible to provide a guess, in terms of probability, about its average value
and potential deviations from it; in such settings, the dynamical state can
be estimated by means of Bayes filters (e.g. Kalman filter [7]). Nonetheless,
the Gaussian assumption can be limiting, in the sense that, often, the state
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of a system can not be accurately described by a single Gaussian compo-
nent: the real (unknown) distribution can either be multimodal or possess a
particularly complex geometry.

A common approach to describe multimodal or complex distributions is
to consider a convex (weighted) sum of parametric distributions in the same
class, e.g., belonging to the exponential family, of which the Gaussian distri-
bution is part of. Such a representation is denoted as mixture of densities,
and it provides an efficient and versatile tool to deal with uncertainty in a
broad range of problems. Mixture models are probability density function
(pdf) themselves, hence it is required for the weights to add up to one; if
such a constraint is removed, then the resulting representation is called in-
tensity, that is an unnormalized sum of pdfs. Intensities are gaining a lot
of attention in the context of target tracking, since state-of-the-art filters,
based on Randon Finite Sets (RFSs) [8], exploit such uncertainty description
to characterize both the number of objects and their dynamical state.

A commonly used mixture model in fields like machine learning and/or
statistical analysis [3, 9, 10], target tracking [11–13] or image retrieval and
registration [14,15], is that of Gaussian Mixture Model (GMM), also known
as Mixture of Gaussians (MoGs) or GM, given that it results to be a partic-
ularly efficient, yet accurate, uncertainty description tool for many practical
scenarios. For instance, if one considers tasks like localizing a robot in a map
or tracking several targets in the presence of clutter1, and where an optimal
Bayesian estimation approach is considered together with the Gaussian as-
sumption for the system state, then GMs arise naturally due to the presence
of phenomena like data association uncertainty2, multiple models3, multi-
modality of the state or the measurement noise and so on. In such settings,
though, the number of components in a GM is subject to an exponential
growth, leading the representation complexity to increase unbounded over
time: the uncertainty description becomes intractable after few steps.

1In target tracking, we denote by clutter the unwanted information observed by the
sensors due, for instance, to the presence of cross-talking, interference, reflections and so
on.

2When several measurements are received at a given time step, and no information
about which target (if any) is responsible for their generation is available, then it is nec-
essary to consider all the combinatorics between the present objects and such set of ob-
servations when performing a filter update.

3When modelling the dynamics of maneuvering targets, a common approach is to
consider multiple dynamical models which should catch all the possible maneuvers of an
object of interest.
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In this regard, keeping the uncertainty description tractable is a crucial
point, especially in real-time contexts where computational resources are lim-
ited and decisions have to be taken in a finite time. If the random dynamical
state of a system is represented by a mixture of densities, it would be useful
to approximate the potentially intractable pdf with a corresponding reduced
or simpler form, which is similar, in some sense, to the original representa-
tion. Such a problem falls under the name of the Mixture Reduction Problem
(MRP).

During the past three decades, the MRP has been tackled by exploiting
different approaches, but it can still be considered an open problem from
several points of view. The vast majority of the existing solutions address
the MRP by trying to minimize one, or multiple, loss functions between an
original and a reduced model through a set of subsequent steps: a general
structure is to consider a Greedy reduction of the components followed by a
refinement phase. Nonetheless, many of those algorithms are often based on
heuristics which are not backed by theoretically sound concepts and which,
as mentioned, tend to minimize several different loss functions in the same
MRP, causing inconsistency of the reduction pipeline. With consistent (al-
ternatively coherent or congruent) is denoted a mixture reduction routine
where all the steps are aimed at minimizing a single loss function, or dis-
similarity measure (D-measure for short), of interest. Nevertheless, each
D-measure has its own peculiarities, and the corresponding choice can be
impactful from several points of view, like availability of closed forms, pre-
served features and so on. Another open issue in the MRP is the choice of the
reduced model order, that is the number of components the approximated
mixture should have in order to provide a good trade-off between accuracy
and complexity (Occam’s razor); in this regard, an order selection method
will be discussed for a particular case of the MRP.

Given the constantly growing employment of mixture models in practical
problems, and given the absence of a general method of approaching the
MRP, it would be of interest to have a reference framework to address such
a problem; in this regard, the goal of this dissertation is to provide some
preliminary, yet theoretically sound, contributions in order to tackle the MRP
more rigorously and from a general perspective. As result, by exploiting the
Optimal Transport Theory (OTT) a general framework is presented which
is able to deal systematically with both mixture and intensity models. As it
will be discussed further in this work, its key features are:
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• consistency of the reduction pipeline: all the steps are performed ac-
cording to a single dissimilarity measure, hence aiming to minimize
only a given loss function between mixtures, with the goal of obtaining
superior approximations accordingly.

• efficiency : for a broad range of dissimilarity measures, the resulting
algorithms are suitable for real time applications.

• versatility : the framework here presented is not restricted to a specific
class of distributions (e.g. Gaussians), but it can be employed for
mixtures composed by any kind of distributions and, moreover, it is
not restricted to mixtures, since it can be applied directly even to
intensities. The only requirement is that the pairwise dissimilarity
between components can be evaluated.

• For a specific choice of dissimilarity measure, such a framework provides
an embedded model selection criterion capable of halting the reduction
during the greedy descent.

The remainder of this dissertation will be organized as follows: in Chapter
2 theoretical fundamentals for the subsequent discussions will be provided,
in Chapter 3 the MRP is formulated, a review of the literature is reported
and some aspects regarding its solutions are discussed. In Chapter 4 the
OTT is introduced and a corresponding reduction framework is proposed.
In Chapter 5 some numerical tests are performed to validate the proposed
concepts. Conclusions will follow.
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Chapter 2

Fundamental Concepts

In this chapter, the fundamentals concepts will be introduced to provide a
self-contained argumentation of the topics which will follow.

2.1 Probability Fundamentals

Let us start with the following sentence:

A fair coin will land heads with 50% of probability.

What does that mean? There exist two main different interpretations of
probability, one is the frequentist perspective, while the other is the bayesian
approach. In the former, probabilities represent the frequencies of events
in the long run, e.g., if a coin is flipped many times, it is expected to land
head half of those times. In the latter, the probability is viewed as a way to
quantify the uncertainty or ignorance about something, and it is related to
the concept of available knowledge rather than repeated experiments.

In a Bayesian perspective, the sentence opening this section implies that
one is confident that a coin is equally likely to land heads or tails in the
next toss [16]. One among the main advantages of the Bayesian framework
is that it can be used to model uncertainty related to events which do not
repeat often (or maybe repeating just one), or which do not have long term
frequencies. In this perspective, based on how probable an event is, one can
take the optimal action accordingly. The Bayesian framework, which will be
briefly discussed in this chapter, lays beneath many of the modern sciences
and applications, like machine learning, robotics, sensor fusion and so on.
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Types of uncertainty

The uncertainty about a process can arise for two different reasons. The first
is due to the fact that one can be ignorant about the underlying hidden causes
or mechanisms generating the observed data. This kind of uncertainty is
called epistemic (epistemology : philosophical term used to describe the study
of the knowledge). Another synonym for this kind of uncertainty is model
uncertainty. The second kind of uncertainty arises from intrinsic variability,
which can not be reduced even if more data is collected; this kind is referred
to as aleatoric or data uncertainty. An example of the difference between
the two is the following: consider tossing a fair coin. One might know for
sure that it is fair, that is head lands with 50% of probability, so there is no
epistemic uncertainty, but one can still not perfectly predict the outcome of
a toss.

Probability space

A probability space is a triplet (Ω,F ,Pr(·)), where:

• Ω is a set called event space,

• F is a σ-algebra over Ω, that is a family of subsets of Ω, called events,
such that:

1. ∅,Ω ∈ F ,

2. A ∈ F =⇒ Ac ∈ F , that is, for any event in the σ-algebra, also
its complementary belongs to the σ-algebra,

3. given {Ai}∞i=1, Ai ∈ F , then
⋃∞

i=1Ai ∈ F .

• Pr(·) : F → [0, 1] is a probability measure, that is a function over sets
which provides the probability of an event to take place, such that:

◦ Pr(∅) = 0 and Pr(Ω) = 1

◦ given {Ai}∞i=1, Ai ∈ F , such that Ai ∩ Aj = ∅ if j ̸= j, then

Pr
( ∞⋃

i=1

Ai

)
=

∞∑
i=1

Pr(Ai).
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Probability of an event

An event A ∈ F can be thought as some state of the world that either holds or
does not hold. Few examples can be ”it will rain today”, ”it rained yesterday”
or ”the parameter θ is between 1.5 and 2.0”. The expression Pr(A) denotes
the probability of A being true. It is required that 0 ≤ Pr(A) ≤ 1, with
Pr(A) = 0 meaning that the event does not happen, while Pr(A) = 1 denotes
that the event is certain. With Pr(Ac) is denoted the probability of the
complement of A, namely Ac, that is the probability of A not happening;
this is defined as Pr(Ac) = 1− Pr(A).

Probability of a conjunction of two events

Given two events A and B, the intersection A∩B is the joint event, and the
corresponding joint probability of both happening is Pr(A∩B). A and B are
said to be independent events if

Pr(A ∩B) = Pr(A) Pr(B). (2.1)

Probability of a union of two events

Given two events A and B, the probability of either one of those happening
is:

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B). (2.2)

If A and B are mutually exclusive, that is they can not happen at the same
time, then it holds that:

Pr(A ∪B) = Pr(A) + Pr(B). (2.3)

Conditional probability of one event given another

Given that an event A has occurred, the conditional probability of B hap-
pening is defined:

Pr(B|A) = Pr(A ∩B)

Pr(A)
. (2.4)

Conditional independence of events

Two events A and B are conditionally independent given an event C if:

Pr(A ∩B|C) = Pr(A|C) Pr(B|C). (2.5)
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Random variables

Consider some unknown quantity of interest denoted by X, e.g., the outcome
of a dice roll or the temperature of a room. If the value of X is unknown
and/or could change, then it is possible to call it a random variable (rv).
The set of possible values, denoted X , is called sample space or state space.
An event is a set of outcomes from a given event space.

Discrete random variables

If X is finite or countably finite, then X is a discrete random variable. It is
possible to denote the probability that X takes value x by Pr(X = x).

A probability mass function (pmf), denoted as p(x) ≜ Pr(X = x), is a
function which computes the probability of events corresponding to a given
discrete rv X and which satisfies 0 ≤ p(x) ≤ 1 and

∑
x∈X p(x) = 1.

Continuous random variables

If X is a real-valued quantity, then it is called continuous random variable,
that is the set of possible values it can take is no longer finite or countable.
Nonetheless, there are a countable number of intervals which partition the
real line. If the events are mapped to such intervals, then the discussions
made for the discrete case still hold. If the size of the intervals can shrink to
zero, then it is possible to represent the probability of X of taking on a spe-
cific real value; however, in the continuous case, the probability of observing
exactly a given real number is zero.

Cumulative distribution function (cdf)

Let us define the events A = (X ≤ a), B = (X ≤ b) and C = (a < X ≤ b),
with a < b. Then it holds B = A ∪ C and, since A and C are mutually
exclusive, it holds that:

Pr(B) = Pr(A) + Pr(C). (2.6)

or, equivalently:
Pr(C) = Pr(B)− Pr(A). (2.7)

In general, it is possible to define the cumulative distribution function (cdf)
of the rv X as:

F (x) ≜ Pr(X ≤ x). (2.8)
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By exploiting the cdf, it is possible to compute the probability of X being in
an interval as:

Pr(a < X ≤ b) = F (b)− F (a). (2.9)

Cumulative distribution functions are monotonically non-decreasing func-
tions.

Probability density function (pdf)

Once the cdf has been defined, it is possible to define its derivative, called
probability density function (pdf), as:

p(x) ≜
d

dx
F (x). (2.10)

This is the equivalent of pmfs for continuous random variables, hence it
holds that

∫
p(x)dx = 1 and p(x) ≥ 0, ∀x ∈ X . Given a pdf, it is possible to

compute the probability of a continuous rv being in a finite interval as:

Pr(a < X ≤ b) =

∫ b

a

p(x)dx = F (b)− F (a). (2.11)

As the interval size tends to zero, one can write:

Pr(x ≤ X ≤ x+ dx) ≈ p(x)dx. (2.12)

Of course, by collapsing the interval onto a single event (specific real number)
the corresponding probability is zero.
Note: in the context of this work, the words distribution or pdf will be used
equivalently.

Given the distribution (pdf) of a continuous random variable, one can
compute the corresponding cdf as:

F (x) =

∫ x

a

p(x)dx, (2.13)

where a depends on the support of the distribution of interest; for instance,
for distributions having the whole real axis as support, one gets a = −∞.
In the discrete case, one obtains:

F (x) =
∑
xi≤x

p(xi). (2.14)
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Marginal distribution

Let us consider two rvs X and Y . One can define the joint distribution as
p(X = x, Y = y) for all possible values of X and Y . If X and Y are both
discrete, then it is possible to represent the joint distribution by means of
a table, otherwise, if continuous, it will result in a continuous function of
two variables. From now on, for a matter of compactness, it will be adopted
the notation p(X = x) = p(x) or p(X = x, Y = y) = p(x, y) and, when
computing integrals for the continuous cases, the integration domain will be
assumed to be the whole event space, so the corresponding subscript will be
omitted.

Given a discrete joint distribution, it is possible to obtain the marginal
distribution of an rv as:

p(x) =
∑
y

p(x, y). (2.15)

In the continuous case one gets:

p(x) =

∫
p(x, y)dy. (2.16)

By applying the conditional probability rule defined in (2.4), it is possible to
write:

p(x) =
∑
y

p(x|y)p(y), (2.17)

which for continuous rvs becomes:

p(x) =

∫
p(x|y)p(y)dy. (2.18)

Equations (2.17) and (2.18) are known as the sum rule or rule of total
probability.

It has been used the fact that the conditional distribution of an rv can be
written as:

p(y|x) = p(x, y)

p(x)
, (2.19)

which, rearranged, becomes:

p(y|x)p(x) = p(x, y) = p(x|y)p(y). (2.20)
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The above equation is called product rule, from which it is possible to
obtain the following relation:

p(x|y) = p(y|x)p(x)
p(y)

, (2.21)

which is known as Bayes’ rule; note that the denominator of (2.21) can be
rewritten, by using the sum rule, as:

p(y) =

∫
p(y|x)p(x)dx. (2.22)

More on this will be discussed in Sec. 2.5.
As done for events, it is possible to define the independence of two rvs X

and Y as:
p(x, y) = p(x)p(y), (2.23)

that is the joint distribution can be factorized as the product of the marginal
distributions. Given a set of rvs X1 = x1, ..., Xn = xn, they are independent
if:

p(x1, ..., xn) =
n∏

i=1

p(xi). (2.24)

It is trivial to generalize the concept of conditional independence; two rvs
X and Y are said to be conditionally independent given Z if and only if the
conditional joint distribution can be factorized as:

p(x, y|z) = p(x|z)p(y|z). (2.25)

Mean of a random variable

Given a continuous rv X ∼ p(x), its mean, or expected value, often denoted
by µ is defined as:

E[X] =

∫
x · p(x)dx. (2.26)

For a discrete rv X, the mean is defined as:

E[X] =
∑
x

x · p(x). (2.27)

The mean is a linear operator that is it holds:

E[aX + b] = aE[X] + b. (2.28)
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Given a set of n rvs, one can show that the following holds:

E
[ n∑

i=1

Xi

]
=

n∑
i=1

E[Xi]. (2.29)

Moreover, if the rvs are independent, then the expectation of their prod-
uct can be written as:

E
[ n∏

i=1

Xi

]
=

n∏
i=1

E[Xi]. (2.30)

Variance of a random variable

The variance of a distribution is a measure of the spread of the distribution
and it is often denoted by σ2, in the scalar case, and by Σ in the multidi-
mensional case. The variance of a continuous random variable X is defined
as follows:

var[X] =E[(X − µ)2] =

∫
(x− µ)2p(x)dx = (2.31)

=

∫
x2p(x)dx+ µ2

∫
p(x)dx− 2µ

∫
x · p(x)dx = E[X2]− µ2,

(2.32)

from which it can be obtained the following relation:

E[X2] = σ2 + µ2. (2.33)

From the variance of a rv, it is possible to define its standard deviation as:

std[X] =
√
var[X] = σ. (2.34)

The variance of a rv has the following property:

var[aX + b] = a2var[X]. (2.35)

Finally, given a set of n independent rvs, the variance of their sum is given
by:

var

[ n∑
i=1

Xi

]
=

n∑
i=1

var[Xi]. (2.36)
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Covariance of random variables

Given two discrete rvs X and Y possessing joint distribution p(x, y), the
corresponding covariance is defined as:

cov[X, Y ] =EX,Y [(X − E[X])(Y − E[Y ])] = (2.37)

=EX,Y [XY ]− E[X]E[Y ] = (2.38)

=
∑
x,y

x · y · p(x, y)−
∑
x

x · p(x)
∑
y

y · p(y), (2.39)

which represents the extent to which X and Y vary together. If X and Y are
independent, then cov[X, Y ] = 0, while if Y = X it holds that cov[X,X] =
var[X]. The continuous equivalent can be obtained easily by swapping sums
with integrals.

Mode of a distribution

Themode of a distribution is the value associated with the highest probability
mass or density:

x∗ = argmax
x

p(x). (2.40)

A distribution is said to be multimodal when it has many local maxima, i.e.
it has many different peaks.

Conditional Moments

When two or more dependent rvs are given it is possible to compute the
moments of one given the knowledge about the others. The law of iterated
expectation, also known as law of total expectation is defined as follows:

E[X] = EY [E[X|Y ]], (2.41)

where the subscript Y in the first expectation refers to weighting the nested
expectation by the distribution of Y . Such equation can be easily proven by
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exploiting the product rule (2.20) as follows:

EY [E[X|Y ]] =EY

[∑
x

x · p(x|y)
]
= (2.42)

=
∑
y

[∑
x

x · p(x|y)
]
p(y) = (2.43)

=
∑
x,y

x · p(x, y) = E[X]. (2.44)

The continuous equivalent is straightforward to obtain.

2.2 The Exponential Family

In the previous section probability fundamentals have been reported and
the concept of probability distribution has been introduced from a general
perspective; in this section the focus will be directed to a particular class of
parametric distributions, namely the Exponential Family (EF) [17], which
represents a broad set of models to describe the uncertainty of a process.

A parametric class of distribution is called an exponential family if it takes
the following form:

p(x|η) = h(x) eη
T t(x)−a(η), x ∈ Rd, (2.45)

where t : Rd → Rnη is the vector of sufficient statistics, and η ∈ Rnη is
the vector of natural (or canonical) parameters, taking value in the natural
parameter space Λ:

Λ =
{
η ∈ Rnη : 0 <

∫
h(x) exp

(
ηT t(x)

)
dx <∞

}
. (2.46)

Note: Λ can be proved to be an open and convex set. The support of p(x|η)
does not depend on η, and is encoded in the term h(x). The function a(η) is
called the log-normalizer, and is such that

a(η) = log(A(η)) = log

(∫
h(x) eη

T t(x)dx

)
. (2.47)

Let b(η) denote the expected value of the sufficient statistics t(x) for a
given value of η ∈ Λ:

b(η) = Eη[t(x)]. (2.48)
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Well-known properties are

b(η) =

(
da(η)

dη

)T

, covη[t(x)] =
d2a(η)

dη2
> 0. (2.49)

From the second of (2.49) it follows that the function a(η) is strictly convex
(note that covη[t(x)] ≥ 0 if the sufficient statistics t(x) is not minimal).

The Bernoulli Distribution

The Bernoulli distribution is the discrete probability distribution of a random
variable which takes the value 1 with probability α and the value 0 with
probability 1− α. Less formally, it can be thought of as a model for the set
of possible outcomes of any single experiment that asks a yes–no question.
Given the form (2.45), it has the following parameterization:

Support: x ∈ {0, 1}
Parameter space: α ∈ [0, 1]

η = η1,

η1 = log
α

1− α
,

a(η) = log(1 + eη1),

h(x) = 1,

t(x) = x,

(2.50)

resulting in the following pdf:

β(x|α) = αx(1− α)1−x. (2.51)

The Poisson Distribution

In probability theory and statistics, the Poisson distribution is a discrete
probability distribution that expresses the probability of a given number of
events occurring in a fixed interval of time or space, if these events occur
with a known constant mean rate and independently of the time since the
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last event. Given the form (2.45), it has the following parameterization:

Support: x ∈ N0

Parameter space: λ ∈ R+

η = η1,

η1 = log λ,

a(η) = eη1 ,

h(x) =
1

x!
,

t(x) = x,

(2.52)

resulting in the following pdf:

π(x|λ) = e−λ

x!
λx. (2.53)

The Multivariate Gaussian Distribution

A core distribution which will be used in this work is the multivariate Gaus-
sian distribution which, given the form (2.45), has the following parameters:

Support: x ∈ Rd

Parameter space: µ ∈ Rd, Σ ∈ Sd
++

η = (η1, η2),

η1 = Σ−1µ,

η2 = −1

2
Σ−1,

a(η) = −1

4
ηT1 η

−1
2 η1 −

1

2
log | − 2η2|,

h(x) = (2π)−d/2,

t(x) = (x, xxT ).

(2.54)

Such parameterization provides the following pdf for the Gaussian case:

ν(x|µ,Σ) = 1

(2π)d/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ), (2.55)

where x ∈ Rd, µ ∈ Rd represents the mean of the Gaussian density, while
Σ ∈ Sd

++ ⊂ Rd×d represents the corresponding covariance matrix. A more
compact form for referring to Gaussian densities in this work will be ν(x).
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The Gamma Distribution

Another distribution of interest for this work is the Gamma distribution,
which has the following parameterization:

Support: χ ∈ (0,+∞)

Parameter space: κ ∈ (0,+∞), ω ∈ (0,+∞)

η = (η1, η2),

η1 = κ− 1,

η2 = − 1

ω
,

a(η) = log Γ(η1 + 1)− (η1 + 1) log(−η2),
h(x) = 1,

t(x) = (log(x), x),

(2.56)

resulting in the following pdf:

γ(χ|κ, ω) = 1

Γ(κ)ωκ
χκ−1e−

χ
ω , (2.57)

where χ ∈ [0,∞), κ ∈ R+ is the shape parameter, ω ∈ R+ is the scale
parameter and Γ(·) represents the Euler Gamma function, defined as:

Γ(z) =

∫ ∞

0

xz−1e−xdx. (2.58)

The variable χ has been used in place of x to distinguish between the Gamma
and the Gaussian density domains. In this work, a compact form for referring
to gamma densities will be γ(χ)

The Inverse Wishart Distribution

The last distribution here reported is the inverse Wishart, that is a probabil-
ity distribution defined on real-valued positive-definite matrices, and which
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has the following parameterization:

Support: Y ∈ Sd
++

Parameter space: v > 2d, V ∈ Sd
++

η = (η1, η2),

η1 = −1

2
v,

η2 = −1

2
V,

a(η) =

(
η1 +

d+ 1

2

)
log | − η2|+ log Γd

(
− η1 −

d+ 1

2

)
,

h(x) = 1,

t(x) = (log |x|, x−1),

(2.59)

resulting in the following pdf:

φ(Y|V, v) = 2−( v−d−1
2

)d|V | v−d−1
2

Γd(
ν−d−1

2
)|Y| v2

e−
1
2
tr(Y−1V ), (2.60)

where Y ∈ Sd
++, v > 2d represents the scalar degrees of freedom (DoF)

parameter, V ∈ Sd
++ is the matrix parameter, and Γd(·) is the multivariate

Euler Gamma function defined as:

Γd(z) = πd(d−1)/4

d∏
j=1

Γ

(
z +

1− j

2

)
. (2.61)

For other parameterization and details about distributions in the exponential
family see [3, 18].

2.3 Maximum Likelihood Estimation

Let us consider a data set of N observations x = {x1, ..., xN}T , where xi ∈
Rd, i = 1, ..., N , drawn independently from a Gaussian distribution whose
parameters are unknown; one can say that those samples are independent
and identically distributed (i.i.d.). Since the data set is i.i.d., by exploiting
(2.24), it is possible to write the probability of the data, given the parameters
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µ and Σ of a Gaussian distribution, as:

p(x|θ) = p(x1, ..., xN |µ,Σ) =
N∏
i=1

ν(xi|µ,Σ), (2.62)

where θ denotes the generic set of distribution parameters which, in the
Gaussian case, are µ and Σ. When viewed as function of the parameters, the
pdf is called likelihood function, since it assesses how likely are the drawn data
points when specific parameters µ and Σ are given. If µ and Σ are assumed
to be unknown, then maximizing (2.62) accordingly is a common criterion for
determining the parameters of the pdf responsible for generating the observed
data; such criterion is known as Maximum Likelihood Estimation (MLE)
which, given a parametric distribution p(x|θ), and a set of i.i.d. observations
x = {x1, ..., xN}, is formally defined as:

θ̂ML = argmax
θ

p(x|θ). (2.63)

Note that this is a totally general criterion and it is not restricted to the
Gaussian case. In the discussion above, it has been assumed that the ob-
served data follows a Gaussian distribution, but in many problems such an
assumption could be far from reality; when the distribution of the data is
assumed, an operation of model selection is being performed, that is one
is deciding which class the distribution underlying the observed data may
belong to.

In practice, maximizing (2.62) can be difficult, and it is more common
to consider the logarithm of the likelihood function. This is due to the fact
that the log is a monotonically increasing function of its argument, hence
the corresponding maximization is equivalent to maximize the function it-
self. Moreover, considering the logarithm not only simplifies the computa-
tions, but it even allows to deal with numerically small probabilities, so to
avoid underflow events. Given that many optimization algorithms are de-
signed to minimize instead of maximize, it will be considered the Negative
Log-Likelihood (NLL), denoted with ℓ̄(x|θ), so, by exploiting the logarithm
properties, the problem becomes:

θ̂ML = argmin
θ

ℓ̄(x|θ), (2.64)

where:

ℓ̄(x|θ) = −
N∑
i=1

log p(xi|θ). (2.65)
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MLE for Gaussian densities

In the Gaussian case, the corresponding formulation becomes:

ℓ̄(x|µ,Σ) = N

2
log |Σ|+ 1

2

N∑
i=1

(xi − µ)TΣ−1(xi − µ) +
N

2
d · log 2π. (2.66)

In this case, the log-likelihood is strictly linked to the so called Square Ma-
halanobis’ Distance (MD2); given a probability distribution p(x) ∈ Rd, with
mean µ and covariance matrix S, the MD2 of a point x from the distribution
p is defined as:

DM2(p∥x) = (x− µ)TS−1(x− µ). (2.67)

Such distance can be seen as a multi-dimensional generalization of the idea
of measuring how many standard deviations away x is from the mean of p.
Given the NLL (2.66), one can write:

ℓ̄(x|µ,Σ) = 1

2

N∑
i=1

DM2(ν∥xi) + c(Σ), (2.68)

where c(Σ) = N
2
log |2πΣ|, that is the NLL can be seen as the sum of the

MD2s of all the samples from the Gaussian distribution ν(x|µ,Σ). In order
to minimize (2.66) w.r.t. µ and Σ, one can consider the following system:

∂ℓ̄(x|µ,Σ)
∂µ

=
N∑
i=1

Σ−1(xi − µ)
!
= 0, (2.69)

∂ℓ̄(x|µ,Σ)
∂Σ−1

=− N

2
Σ +

1

2

N∑
i=1

(xi − µ)(xi − µ)T
!
= 0, (2.70)

which has solution:

µ̂ML =
1

N

N∑
i=1

xi, (2.71)

Σ̂ML =
1

N

N∑
i=1

(xi − µ̂ML)(xi − µ̂ML)
T . (2.72)

µ̂ML is called sample mean, that is it corresponds to the arithmetic mean of
the observed values, while Σ̂ML is the sample covariance calculated w.r.t. the
sample mean.
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Nonetheless, it is known that such criterion suffers of several issues, among
which the underestimation of the true, yet unknown, distribution covariance
due to a phenomena called bias, caused by the overfitting of the model to the
observed data. A brief example of overfitting is the following: consider the
scenario where one wants to predict the probability of heads when tossing
a coin; after three experiments, three heads have been observed. The corre-
sponding Maximum Likelihood (ML) estimate will be that the probability of
a head is 1 while the chance of getting a tail is 0, which is rather unlikely.
The equation for the unbiased covariance estimate is the following:

Σ̃ =
1

N − 1

N∑
i=1

(xi − µ̂ML)(xi − µ̂ML)
T . (2.73)

However, neither in this case the overfitting problem can be avoided. The
effect of the bias becomes less impactful as the number of observed data
points increases and, for N → ∞, the ML covariance estimate is equal to the
true distribution covariance. In Fig.2.1 is reported a plot where a set of i.i.d.
samples generated according to ν(x|2, 2) is fit by means of the ML principle
(unbiased estimator):

MLE for gamma distributions

By proceeding as done for the Gaussian case, one can write the NLL for a
set of N observations χ = {χ1, ..., χn} in the gamma case as follows:

ℓ̄(χ|κ, ω) = (1− κ)
N∑
i=1

logχi +N log Γ(κ) +Nκ logω +
1

ω

N∑
i=1

χi . (2.74)

By taking the derivative of the NLL w.r.t. ω, and by equating it to zero, one
obtains the following equation:

ω =
1

κ
· 1

N

N∑
i=1

χi . (2.75)

By doing the same for κ, and by substituting the result (2.75), one obtains:

ψ0(κ)− log κ =
1

N

N∑
i=1

logχi − log
1

N

N∑
i=1

χi︸ ︷︷ ︸
≜g

. (2.76)
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Figure 2.1: Set of N = 10000 observations frequencies regrouped in bins
(blue), estimated Gaussian pdf (solid black). The estimated parameters are
µ̂ML = 2.0000, Σ̃ML = 2.0264.
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where ψ0(κ) is the digamma function (a.k.a. polygamma of order zero) which
corresponds to the first order derivative of the logarithm of the Euler gamma
function Γ(·). The equation (2.76) does not admit an analytic solution; in
this regard, one can resort to the Newton-Rhapson (NR) algorithm as follows:

f(κ) ≜ ψ0(κ)− log κ− g, (2.77)

f ′(κ) = ψ1(κ)−
1

κ
, (2.78)

where g has been defined in (2.76), ψ1(κ) is the trigamma function (a.k.a.
polygamma function of order one) and f ′(κ) is the derivative of f(κ) w.r.t.
κ.

By choosing now an initial (positive) value for κ, say κ− > 0, one can
write the following recursion:

κ+ = κ− − f(κ−)

f ′(κ−)
. (2.79)

The iterations can stop after either a maximum allowed number or when the
variation in the update falls below a given threshold. The final value will be
κ̂ML. Once κ̂ML is available, one can substitute it back to (2.75) to obtain

ω̂ML; an accurate starting point for the NR algorithm is κ0 = −1+
√

1−4g/3

4g
,

which can be obtained by exploiting the generalized Puisex series to approx-
imate the left-hand side of (2.76).

In Fig.2.2 is reported a plot where a set of i.i.d. samples generated ac-
cording to γ(χ|7, 1) is fit by means of the ML principle:

MLE for inverse-Wishart distributions

The inverse-Wishart inherits the same argumentation proposed for the gamma
case. The corresponding NLL for a set of i.i.d samplesY = {Y1, ...,YN} (SPD
matrices) is as follows:

ℓ̄(Y |V, v) =N
(
v − d− 1

2

)
d log 2 +N

(
v − d− 1

2

)
log |V |+

−N log Γd

(
v − d− 1

2

)
− v

2

N∑
i=1

log |Yi| −
1

2
tr(

N∑
i=1

Y−1
i · V ).

(2.80)
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Figure 2.2: Set of N = 10000 observations frequencies regrouped in bins
(blue), estimated gamma pdf (solid black). The estimated parameters are
κ̂ML = 7.0090, ω̂ML = 0.9947.
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By deriving w.r.t. V and equating to zero, one gets the following equation:

V = (v − d− 1)

[
1

N

N∑
i=1

Y−1
i

]−1

︸ ︷︷ ︸
≜H1

. (2.81)

The term H1 is equivalent to the geometric mean of the samples. The NLL
derivative w.r.t. v yields instead:

d∑
j=1

ψ0

(
v − d− j

2

)
− d log

(
v − d− 1

2

)
= log |G1| −

1

N

N∑
i=1

log |Yi|︸ ︷︷ ︸
≜h2

, (2.82)

where the first term in the left-hand side corresponds to the derivative of the
multivariate Euler gamma function. Resorting again to the NR algorithm,
one considers:

f(v) ≜
d∑

j=1

ψ0

(
v − d− j

2

)
− d log

(
v − d− 1

2

)
− log |H1|+ h2, (2.83)

f ′(v) =
1

2

d∑
j=1

ψ1

(
v − d− j

2

)
− d

v − d− 1
, (2.84)

and v̂ML can again be estimated by means of the recursion:

v+ = v− − f(v−)

f ′(v−)
. (2.85)

Once v̂ML is available, one can substitute it back in (2.81) to obtain V̂ML.
As discussed for the gamma case, even for the inverse-Wishart parameter
v it is necessary to pick a suitable initial value to start the NR recursion;
given the parameterization considered in this work, there is a lower bound
in such choice, that is one has to pick v0 > 2d. As discussed in [19] for
the barycenter case, a suitable value can be v0 = 2d + ϵ, where ϵ is a small
enough value, e.g., 10−5, which in general avoids the NR algorithm to explore
solutions v+ < 2d. Both for the gamma and inverse-Wishart case, the ML
estimate exists unique, hence the NR initialization should just guarantee
the mentioned requirements. Regarding the sampling of an inverse-Wishart
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distribution, one can use the MATLAB command iwishrnd. Nonetheless, in
order to generate samples Y from which it is possible to estimate the exact
chosen parameters V and v by using the equations here provided, one should
generate samples by considering iwishrnd(V, v−d−1). In Fig .2.3 is reported
a plot where a set of i.i.d. samples generated according to φ(Y|5, 20) is fit
by means of the ML principle.
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Figure 2.3: Set of N = 10000 observations frequencies regrouped in bins
(blue), estimated inverse Wishart pdf (solid black). The estimated parame-
ters are V̂ML = 5.0275, v̂ML = 20.2014.

Additional notes

In the section 2.5 the Bayesian approach will be discussed as opposite of
the frequentist statistics, where no prior information is considered in the
estimation process. Maximum likelihood is a frequentist approach, since the
corresponding estimates do not rely on prior information but only on the
observed data, hence small sample sets can lead to a high bias, as mentioned.
Nonetheless, it can at the same time be motivated in a Bayesian perspective
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by considering a non-informative or uniform prior distribution. More on this
will be discussed in the following sections.

2.4 Maximum A Posteriori Estimation

As mentioned, the MLE suffers from the phenomenon of overfitting. The
core problem is that the chosen model has enough parameters to fit perfectly
the observed data, hence it can perfectly match the empirical distribution
(built solely on the data). Nonetheless, the empirical distribution is not the
same as the true one, so fitting tightly the observed set of samples will not
leave over any probability for novel data. In other terms, the model may not
be able to generalize. If an a priori knowledge p(θ) is available about the
parameter(s) of interest θ, by exploiting the Bayes’ rule (2.21), it is possible
to treat it as a random variable, hence to compute its posterior distribution
as:

p(θ|x) = p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

. (2.86)

First of all, the denominator in (2.86) does not depend on θ, but it serves as
a normalization constant to guarantee that the resulting posterior will be a
pdf, hence integrating to one. If the most probable value for the parameter(s)
is sought, then one can solve the following problem:

θ̂MAP = argmax
θ

p(x|θ)p(θ). (2.87)

Such problem falls under the name of Maximum a Posteriori (MAP) estima-
tion. By doing the same considerations as for the MLE case, one can consider
the negative logarithm of the problem in order to obtain:

θ̂MAP = argmin
θ

[
ℓ̄(x|θ)− log p(θ)

]
. (2.88)

The second term in (2.88) can be seen as a regularization term which controls
the complexity of the resulting model. In general, regularization is a practice
employed in many estimation problems in order to alleviate the effect of
overfitting. By recalling now the problem of estimating the probability of
landing, for instance, a tail while tossing a coin, it is clear that the formulation
(2.88) is more robust; if the a priori distribution assumes that the coin is fair,
i.e. the probabilities of landing either a tail or a head are equal to 0.5, then
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even by observing three tails straight would not provide the unlikely estimate
assigning all the probability to the event of observing a tail, as happened for
the MLE case. At the opposite, one is more likely to deviate from the ”fair
coin” case, but still leaving a chance to obtain a head in the fourth tossing.
Although the MAP can be seen as a limit case of the Bayesian estimation, it
is not very representative of such methods in general, since the corresponding
estimates are point estimates, whereas Bayesian estimates provide the whole
distribution of the parameter(s) of interest. Moreover, in the Bayesian case
it is more common to report the posterior mean or median as point estimate,
together with confidence intervals, instead of the most probable value (in
some cases it coincides with the distribution mean, e.g., the Gaussian case).

2.5 Bayesian Estimation

Until now, several ways to estimate parameters have been discussed. Nonethe-
less, all of them provide point estimates and ignore the corresponding un-
certainty, which in general represents a high source of information in many
applications. In statistics, using a probability distribution to model the un-
certainty about a parameter is known as inference. More in detail, in the
Bayesian framework, the distribution modelling the uncertainty correspond-
ing to a quantity of interest is the posterior distribution, which is the combi-
nation between the prior distribution, that is the available knowledge before
observing new data, and the likelihood function, that is the data which is
expected to be observed for each possible value of the parameter of inter-
est. By recalling the Bayes formula (2.21), given a set of observations x, the
posterior distribution of the parameter(s) θ can be computed as:

p(θ|x) = p(x|θ)p(θ)
p(x)

=
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

, (2.89)

where the term p(x) is the marginal likelihood (or evidence) since it is ob-
tained by marginalizing over the unknown parameter θ. In general, the de-
nominator of (2.89) is constant and independent of θ, and it serves as a nor-
malization constant to guarantee the constraint of pdfs that

∫
p(θ|x)dθ = 1.

If compared to the ML or MAP estimates, the Bayesian inference yields,
as mentioned, a distribution rather than a point estimate, hence the uncer-
tainty about the true value of the parameter plays a role in the estimation
process. If one has to extract a point estimate of the parameter θ, a common
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approach is to evaluate either the mean of the posterior distribution or the
corresponding median.

Conjugate priors

A prior distribution p(θ) belonging to a family Q (e.g., Gaussian, Gamma,
inverse-Wishart etc.) is said to be a conjugate prior for a likelihood function
p(x|θ), if the posterior distribution is in the same class of the prior, that is
p(θ|x) ∈ Q. If the class Q falls inside the exponential family (see 2.2), then
the posterior distribution can be computed in closed form. The Gaussian
distribution (2.55) is the conjugate prior of itself, in the sense that given a
Gaussian prior, and a Gaussian likelihood function, then the posterior will
be itself Gaussian. The inverse-Wishart (2.60) represents a conjugate prior
for the covariance matrix of a multivariate Gaussian distribution, while the
Gamma distribution (2.57) represents a conjugate prior for the rate of a
Poisson distribution [20]. Further details on conjugacy are outside the goals
of this work, but the three mentioned distributions will be discussed more in
detail when the topic of GGIW (gamma Gaussian inverse Wishart) reduction
will be addressed in Chapter 5.

2.6 Fundamentals of Information Theory

Let us consider a discrete random variable X distributed according the prob-
ability distribution p(x). How much information is received when a specific
realization of this variable is observed? The amount of information can be
viewed as the degree of surprise when an observation of the values X can take
is done. If a highly improbable event has just occurred, it would be reason-
able to assume that the received information is higher if compared to the case
where an almost certain event has happened. The information content will
therefore depend on the probability distribution p(x); in order to evaluate the
information content, it can be convenient to consider a monotonic function
h(·) of p(x). Which form should h(·) take? If one considers two unrelated
events x and y, then it would be reasonable to say that the information gain
from observing both should be the sum of the information gained from ob-
serving those separately, that is it should be h(x, y) = h(x) + h(y). Two
unrelated events are statistically independent, that is p(x, y) = p(x)p(y).
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One suitable candidate for h(x) is the base-2 logarithm function, that is:

h(x) = − log2 p(x), (2.90)

where the negative sign guarantees that information is either positive or zero.
The choice of basis for the logarithm is arbitrary, but for now the base 2 is
considered, which corresponds to the units of binary digits (bits). Suppose
now that a sender wishes to transmit the value of a random variable to a
receiver. Then, the average amount of transmitted information in the process
is obtained by taking the average of (2.90) w.r.t. p(x), that is:

H[x] = −
∑
x

p(x) log2 p(x). (2.91)

where H[x] is a compact form to denote either H[p(x)] or H[X]. The above
quantity is called entropy of the random variable X. Although a heuristic
motivation for the quantities above has been provided, it results that it finds
important uses in many of the modern applications. For instance, in 1948
Shannon [21] stated in the noiseless coding theorem that the entropy repre-
sents a lower bound on the number of bits needed to transmit the state of a
random variable.

If the natural logarithm, which will be denoted simply as log(·), is instead
considered in (2.90), the unit of information is nats instead of bits. Note that
distributions p(x) that are sharply peaked around few values will have a rel-
atively low entropy, whereas those that are spread more evenly across many
values will have higher entropy. Until now, the discrete case for probability
distributions has been considered, for which the entropy is guaranteed to
be non-negative. Many applications though, have to deal with continuous
random variables; in this regard, it is possible to extend the concept of en-
tropy to continuous distributions [3], which provides the so called differential
entropy, defined as follows:

H[x] = −
∫
p(x) log p(x)dx. (2.92)

Interchangeably, one can write H[p] to refer to the entropy of a random
variable distributed according to p(x). The main difference of the differential
entropy (2.92) defined for continuous rv from the entropy defined in (2.91) for
discrete rv is that the differential entropy can also take negative values. It can
be proved that, given a continuous rv x with given mean µ and covariance Σ,
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the distribution that has the maximum differential entropy is the Gaussian
distribution. The entropy of a Gaussian of mean µ and covariance Σ has the
following closed form:

H[ν] =
1

2
(log |Σ|+ d log 2π + d), (2.93)

which, therefore, is the largest entropy that can have a rv with mean µ and
covariance Σ. For the gamma case, the entropy is:

H[γ] = κ+ log Γ(κ) + logω + (1− κ)ψ0(κ), (2.94)

where ψ0(κ) is the digamma function (a.k.a. polygamma function of order
zero).
For the inverse-Wishart case, the entropy takes the following form:

H[φ] = log Γd

(
v − d− 1

2

)
+
v − d− 1

2
d+

d+ 1

2
log

∣∣∣∣12V
∣∣∣∣−v2

d∑
j=1

ψ0

(
v − d− j

2

)
.

(2.95)
Suppose now that a joint distribution p(x, y) is available from which pairs
of values of x and y are drawn. If a value of x is already known, then the
additional information needed to specify the corresponding value of y is given
by − log p(y|x). Hence, the average additional information needed to specify
y can be written as:

H[y|x] = −
∫∫

p(x, y) log p(y|x)dxdy. (2.96)

Such a quantity is called the conditional entropy of y given x. By using the
product rule, that is p(y|x) = p(x, y)/p(x), one obtains:

H[x, y] = H[y|x] +H[x], (2.97)

where H[x, y] is the differential entropy of p(x, y) and H[x] is the differential
entropy of the marginal distribution p(x). Thus, the information needed to
describe x and y is given by the sum of the information needed to describe
x alone plus the additional information required to specify y given x.

Consider now an unknown distribution p(x) from which is possible to
draw samples, and suppose that a model q(x) is used to construct an efficient
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coding scheme for the purpose of transmitting values of x to a receiver. It is
then possible to define the following quantity:

H×[p, q] = −
∫
p(x) log q(x)dx. (2.98)

The equation above defines the so called differential cross-entropy, which
can be showed to be the average amount of information which is required to
encode the observation relative to p(x) using a coding scheme based on q(x)
[16]. More in general, the cross-entropy is used as a loss function to determine
how well a chosen model q(x) is fitting data samples drawn from the unknown
p(x). In the Gaussian case, the cross-entropy between νi = ν(x|µi,Σi) and
νj = ν(x|µj,Σj) takes the following form:

H×[νi, νj] =
1

2

[
d log 2π+tr(Σ−1

j Σi)+(µi−µj)
TΣ−1

j (µi−µj)+log |Σj|
]
. (2.99)

In the gamma case, the cross-entropy between γi(χ) = γ(χ|κi, ωi) and γj(χ) =
γ(χ|κj, ωj) takes the following form:

H×[γi, γj] = (1− κj)[logωi + ψ0(κi)] + log Γ(κj) + κj logωj + κi
ωi

ωj

. (2.100)

In the inverse-Wishart case, the cross-entropy between φi(Y) = φ(Y|Vi, vi)
and φj(Y) = φ(Y|Vj, vj) takes the following form:

H×[φi, φj] =
d+ 1

2
log

∣∣∣∣12V
∣∣∣∣+ log Γd

(
vj − d− 1

2

)
+
vi − d− 1

2
tr
(
V −1
i · Vj

)
+

− vj − d− 1

2
log
∣∣V −1

i · Vj
∣∣− vj

2

d∑
m=1

ψ0

(
vi − d−m

2

)
.

(2.101)

2.7 Model Selection

As mentioned in the previous sections, when trying to model the uncertainty
of a process of interest one can select a parametric statistical model and
try to estimate the corresponding parameters which better fit the observed
data. The choice of such a representation, though, can be really impactful
if one wants to employ it in tasks like making predictions or computing
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specific statistics about the observed process; performing a model selection is
in general a really difficult task, since the true behavior of a system could be
far from the guessed model, or it could be complex enough that no available
standard model can describe it accurately. Given some data, in order to
maximize the likelihood on a model of such data, one can increase the number
of parameters used, but by doing so the phenomenon of overfitting may arise.
In this regard, it would be useful to have some criteria which can identify a
suitable trade-off between the likelihood of a model over the data and the
corresponding amount of parameters. In this section, some fundamentals
about model selection criteria will be reported.

Given a set of observations x = {x1, ..., xN}, there exists several crite-
ria which allow to evaluate how well a given model represents such data. To
make the following argumentation more clear, let us consider a d-dimensional
Gaussian density; such a model will have in total m̃ = d+ d(d+1)

2
independent

parameters, with m̃ order of the model, since the mean vector will possess d
components, while the d-dimensional covariance matrix can be described by
considering only the upper triangular part, since symmetric, hence having in
total d(d+1)

2
independent parameters. Let us now consider a generic paramet-

ric model p(x|θ) having m̃ independent parameters (θ = θ(m̃)); the Akaike
Information Criterion (AIC) is defined as follows:

AIC = −2 log p(x|θ) + 2m̃ = 2ℓ̄(x|θ) + 2m̃. (2.102)

Such a criterion quantifies how the m̃-parameter model fits over the observed
N samples; the smallest the value, the better the trade-off between the num-
ber of parameters and the corresponding likelihood over the data. Hence, if
one wants to evaluate how well a model fits the observed data, should always
select, according to this criterion, the model yielding the smallest AIC value.
Nonetheless, such a criterion is known to penalize insufficiently the model
complexity, hence yielding, in general, more complex models if compared to
the Bayesian Information Criterion (BIC), defined as follows:

BIC = −2 log p(x|θ) + m̃ logN = 2ℓ̄(x|θ) + m̃ logN. (2.103)

As for the AIC, the model order associated with the smallest value of the
BIC will represent the best trade-off between the number of parameters and
the fitting of the model over the data. For a more detailed discussion about
the criteria discussed above, see [22].

56



Although those criteria appear to be simple, their utilization might be
hindered by several factors; for instance, assume that given a set of observa-
tions, one estimates the parameter of a model with order m̃ over such data.
For a given order, the way the parameters are estimated can in general influ-
ence the resulting value of the information criterion: to the same order can
be associated different models which may differ significantly. In addition, if
more complex models are used, e.g., mixture of densities (discussed in the
next section), even by considering the same parameter estimation method,
for the same model order, there can exist different realizations. Thus said,
when modelling phenomena which may exhibit complex behaviors, the task
of model selection becomes even more difficult. Another hindrance of the
information criteria as above, is the fact that one should evaluate several
model orders over the same data to obtain a potentially suitable representa-
tion; this might be computationally prohibitive for many applications where
a large amount of high-dimensional data has to be processed.

2.8 Mixtures of densities

The material following in this section is totally general, but often Gaussian-
ity will be used for the sake of discussion; nonetheless, all the presented
methodology can be applied for, at least, the whole exponential family. As
mentioned, many real world problems can exhibit complex behaviors (e.g.,
multimodality) which simple models can not approximate accurately. In
those cases, a possible approach can be to consider combinations of simpler
models, in order to provide more accurate representations, as follows:

p(x|Θ) = wTq(x|θ) =
n∑

i=1

wiq(x|θi) =
n∑

i=1

wiqi, (2.104)

where q1 is a vector of generic parametric pdfs q(x|θi) ∈ Q, e.g., q =
[q1, ..., qn]

T , belonging to the same family Q (e.g., Gaussians, gammas, etc.),
w = [w1, ..., wn]

T is a vector of weights with wi ∈ [0, 1],wT1n = 1. p(x|Θ) ∈
1With a slight abuse of notation, throughout this work q will be sometimes interpreted

as a vector, sometimes as a set, whose components are the n distributions qi, i ∈ [1 : n],
in a family of distributions Q. As a set, q = {qi}ni=1 ⊂ Q, as a vector q ∈ (Q)n. The
interpretation of q as a vector allows us to write a mixture in the compact form wTq
instead of

∑n
1=1 wiqi. Also the vector w of weights will be often interpreted as a set

{wi}ni=1 ⊂ [0, 1].
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Qmix is a Mixture of Densities (MoDs) of size n obtained as the convex sum
of the qi components, where Qmix denotes the space of all mixture of den-
sities with components in Q; sometimes it will be used the symbol Q(n)

mix,
which denotes the space of all the mixtures belonging to the family Q of
exactly size n. Convexity in the sum is required in order to preserve the
pdf constraint

∫
p(x|Θ)dx = 1, that is a mixture of densities is a density

itself. Θ = {w,θ} ∈ Hn = ∆n−1 ×Hθ
n is the collection of all the parameters

of the mixture which depends on the family considered, with θ = {θi}ni=1,
where Hθ

n is the space over which all the parameters, but the weights, of the
mixture components are defined, and ∆n−1 = {w ∈ Rn

+ : wT1n = 1} ⊂ Rn
+

is the standard simplex of dimension n−1; for instance, in the Gaussian case
Θ = {w,θ} = {w,µ,Σ}, where w ∈ Rn is the weight vector, µ ∈ (Rd)n is
the collection of all the means, while Σ ∈ (Sd

++)
n is the collection of all the

covariance matrices. If the convexity of the sum is removed, then the un-
normalized weighted sum of densities is called intensity ; to distinguish from
mixtures, the space of the intensities will be denoted as Qint. For the remain-
der of this work, though, unless specifically said, all the argumentation will
be done in terms of mixtures rather than intensities. For a matter of sim-
plicity, when dealing with mixtures, the model order will often be considered
to be m = n; nonetheless, in the perspective presented in sec. 2.7, the real
model order would be m = n · m̃, where m̃ is the amount of free parameters
per component.

Definition 2.8.1. (Sub-mixtures) Consider a mixture p(x|Θ) of size n, with
parameter set Θ = {w,θ}, and consider a set of indexes, I ⊂ [1:n] of size
n̄ < n, used to select a subset of Θ, denoted ΘI = {wI ,θI} ⊂ Θ. Then,
p(x|ΘI) is a un-normalized sub-mixture of p(x|Θ) (wT

I1n̄ < 1 and wI ̸∈
∆n̄−1). The set of parameters ΘI = {w̄I ,θI}, where w̄I = wI/(w

T
I1n̄),

defines a normalized sub-mixture of p(x|Θ) (i.e., w̄I ∈ ∆n̄−1).

Definition 2.8.2 (Degenerate mixture models). A mixture model p(x|Θ) of
size n is said to be degenerate if n̄ < n of its components are equal; in that
case, the mixture components associated with the corresponding set of indices
I ⊂ [1 :n], of size n̄ < n, can be replaced by a single density having weight
wI =

∑
I wi and parameters equal to one of the components in the considered

partition.

Definition 2.8.3 (Singular mixture models). Given a mixture model p(x|Θ)
of size n, it is said to be singular if all of its components are equal; in that
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case, the mixture model can be replaced by a single density having weight
w = 1 and parameterized as one of the mixture components.

Why mixtures of densities?

Problems like localizing a robot in a room [2], tracking targets under the
presence of clutter [12], filtering of nonlinear/switching stochastic systems
[4], unsupervised learning of statistical models [9] and so on, have to deal
often with multimodal uncertainties. In those cases, estimating the true
distribution analytically may result to be very difficult, if not impossible;
moreover, if the computational capabilities are limited, the corresponding
approximation should be efficient in terms of employed resources. In this
regard, mixtures of parametric densities may be able to both preserve the
representation accuracy and save computational resources via an efficient
mathematical description. As discussed in [12, 23], Gaussian mixtures can
approximate with arbitrary accuracy any kind of density; in those works, the
problem of bayesian filtering is addressed for nonlinear stochastic systems,
but such considerations are way more general. In addition, in many recent
approaches to target tracking [20,24–27], intensities are used to estimate the
kinematic state, the extent or other features of point/extended objects in the
presence of clutter.

Mixture densities are, then, a widely used tool given that they repre-
sent an efficient, versatile, yet powerful, tool to describe complex behaviors
or features. Nonetheless, especially in Bayesian estimation contexts, when
the distribution of interest is approximated by a mixture, the corresponding
number of components can become very large, leading to a computationally
intractable representation after few iterations.

Additional notes on mixture representations

The following discussion holds for any of the distributions in the exponen-
tial family; nonetheless, the Gaussian case will be addressed for the sake of
argumentation.

Let us introduce a n-dimensional binary random variable Y = [y1, ..., yn]
T

having a 1-of-n representation, that is if yi = 1 all the other elements are zero,
hence there are n possible states for Y ; moreover, it holds that yi ∈ {0, 1}
and

∑n
i=1 yi = 1. In addition, let us write the distribution p(Y ) in terms of
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mixing coefficients wi, such that:

p(yi = 1) = wi, (2.105)

where
∑

iwi = 1, wi ∈ [0, 1]. Given that Y has a 1-of-n representation, one
can write its overall distribution (pdf) as:

p(Y ) =
n∏

i=1

wyi
i . (2.106)

Let us now assume that the data of interest has been generated according to
a Gaussian random variable X. The corresponding conditional distribution,
assuming a specific realization of the latent2 variable Y , can then be written
as:

p(X = x|yi = 1) = ν(x|µi,Σi), (2.107)

with the overall conditional distribution defined as:

p(x|Y ) =
n∏

i=1

ν(x|µi,Σi)
yi . (2.108)

By exploiting the product rule (2.20), it is then possible to write the joint
distribution of the data and the latent variable as:

p(x, Y ) = p(x|Y )p(Y ). (2.109)

Marginalizing now over all the possible realizations of Y , one can obtain the
distribution of the observed data as:

p(x) =
∑
yi

p(x|Y = yi)p(Y = yi) =
∑
yi

p(x, Y = yi) =
n∑

i=1

wiν(x|µi,Σi).

(2.110)
Thus, the marginal distribution p(x) is a Gaussian mixture. Moreover, for
each observation xj, j = 1, ..., N , one can suppose that there is a correspond-
ing latent variable yi which is responsible for its generation. In this regard,

2Latent, or hidden, variables are variables that are not directly observed, but instead
can be inferred through a mathematical model describing the potential relations with other
observable variables.
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let us consider the following quantity:

ρ(yi) ≜ p(yi = 1|X = x)
Bayes
=

p(X = x|yi = 1)p(yi = 1)∑n
k=1 p(X = x|yk = 1)p(yk = 1)

=
wiν(x|νi,Σi)∑n

k=1wkν(x|µk,Σk)
.

(2.111)

The quantity ρ(yi) is called responsibility, and it represents the probabil-
ity that one of the n possible Gaussian distributions is responsible for the
observed data sample; the weights wi should be seen as the probability of
yi = 1.

Ancestral sampling: generating data from mixture models

In order to generate a set of observations x = {x1, ..., xN} from a mixture
model, one can proceed as follows:

1. At first, one the model is given, hence the distribution of the latent
variable Y is known, that is one can obtain a realization of one of the
n possible corresponding configurations. This step will select which
component in the mixture is ”active”, by excluding all the others.

2. Given a realization Y = yi, it is then possible to sample from the drawn
density corresponding to the distribution p(x|Y = yi).

3. Repeat (1) and (2) until the desired amount of samples has been drawn.

How to draw samples from p(Y )? As mentioned, the weights wi represent
the probability of realizing one out of the n schemes of the latent variable;
in this regard, one can at first compute the discrete cumulative distribution
function P (Y ) of such weights, that is, starting from the weight associated
to y1, the cdf is obtained by cumulatively summing up all the weights up
to the one of yn. The weights add up to one, hence the cdf will be a curve
starting from zero and ending in one. By drawing now a value from the Uni-
form distribution in [0, 1], denoted U[0,1], one has to invert the cdf previously
computed to associate the uniformly drawn number to a specific realization
yi; this method falls under the name of Inverse Transform Sampling, and it
is a standard approach in probability theory. In Algorithm 1 is reported the
ancestral sampling for Gaussian mixtures, but the discussion above holds for
any mixture model in the exponential family.
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Algorithm 1: Ancestral sampling of Gaussian mixtures

Data: Gaussian mixture p of size n, desired number of samples N .
Result: Set of samples x.

1 j := 0, x := {∅};
2 Compute P (Y ) : Rd → [0, 1] as (2.14);
3 while j < N do
4 u ∼ U[0,1] ;
5 yi := P−1(u) ;
6 xj ∼ p(x|yi) = ν(x|µi,Σi);
7 x := x ∪ xj;
8 j := j+1;

9 end

Maximum Likelihood for Mixtures: the Expectation-Maximization
algorithm

Suppose now to address the opposite problem of sampling, that is, given a
set of observations try to estimate the parameters of the corresponding mix-
ture model. As discussed for case of single Gaussians, gammas or inverse-
Wisharts, a possible approach one could think of can be the maximum like-
lihood estimation. Suppose a d-dimensional data set x = {x1, ..., xN} of
independently drawn samples according to a Gaussian mixture distribution
p(x|Θ) of size n is available. The corresponding likelihood function evaluated
at x is:

l(x|Θ) ≜ log p(x|Θ) = log p(x|w,µ,Σ) =
N∑
j=1

log
n∑

i=1

wiν(xj|µi,Σi).

(2.112)
The first observation one can do is that now the parameters to be found
involve n weighted components, hence potentially many more if compared to
the single Gaussian case; moreover, the ML principle is not directly appli-
cable, since a logsum term is present, hence the solution to the estimation
problem is analytically intractable. Another issue arising from applying the
maximum likelihood principle to Gaussian mixture models is due to the fact
that it is subject to singularities and other additional problems of identifia-
bility ; a good corresponding discussion is provided in Chap. 9 of [3].

A solution to find maximum likelihood estimates of mixture models is the
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so called EM algorithm, proposed by Dempster et al. [9] in 1977, which is
here reported for the Gaussian case:

1. Initialize the parameters of a mixture of size n and evaluate the corre-
sponding log-likelihood over the data x = {x1, ..., xN}.

2. Expectation: compute the matrix R ∈ Rn×N , containing the respon-
sibilities for the i-th component to have generated the j-th sample,
which elements are:

Ri,j =
wiν(xj|µi,Σi)∑n
l=1wlν(xj|µl,Σl)

. (2.113)

3. Maximization: Compute the effective number of points Ni assigned
to the cluster3 i as:

Ni =
N∑
j=1

Ri,j. (2.114)

Update the current mixture parameters as a weighted Maximum Like-
lihood estimation:

w+
i =

Ni

N
, (2.115)

µ+
i =

1

Ni

N∑
j=1

Ri,jxj, (2.116)

Σ+
i =

1

Ni

N∑
j=1

Ri,j(xj − µ+
i )(xj − µ+

i )
T . (2.117)

4. Evaluate the log-likelihood (2.112) for the updated parameters and
check if either convergence or the maximum number of allowed itera-
tions has been reached; if not, return to step 2.

As listed above, one has to provide an initial mixture which will be refined
by the EM algorithm. Nonetheless, this is a really difficult task, since a
wrong initialization could push the algorithm towards singularities or inferior
solutions; moreover, one has to select a model order, which, as discussed in

3With the term cluster is denoted a group of elements; in the EM case, it is used to
refer to the Gaussian component which encodes a partition of the data.
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2.7, can be an impactful choice. Later in this work, a possible approach to
select the number of components will be discussed.

Once an initialization for the algorithm is available, the first step is to
compute the responsibility matrix R, which will provide the probability of
a given component to have generated a sample. Being a probability matrix,
the sum by columns has to return 1. This step is known as Expectation and
it amounts to do a soft-clustering4 of the data.

After the data has been assigned ”softly” to the mixture components, an
update phase where the mixture parameters are re-estimated follows. This is
the step where the likelihood of the current model over the data is maximized,
hence the name Maximization.

The EM algorithm provides, hence, a sequence of refined mixture models,
which will be denoted p(k) = p(x|Θ(k)), and it continues until a maximum
number of iterations has been reached or the variation in the likelihood of
the current model falls below a desired threshold.

In Algorithm 2 is reported a concise scheme of the EM algorithm.

Some additional notes

The EM is a special case of the so called Majorization-Minimization (MM)
algorithm, which represents a principle more than a real algorithm. The
details are omitted since a corresponding discussion is outside the scope of
this work, but the MM principle is an approach to maximize or, equivalently,
minimize potentially intractable cost functions by maximizing, or minimiz-
ing, a sequence of tractable local approximations; in the EM algorithm, as
discussed, the complete log-likelihood can not be maximized directly, but a
local tractable approximation can be exploited in each iteration. A good
discussion on MM algorithms is given in [28]; regarding the EM, the corre-
sponding detailed discussion is provide in Chap. 9 of [3].

As mentioned, the EM algorithm is not restricted to the GM case, but it
can be applied to every model having latent variables. By considering gamma
and inverse-Wishart mixtures, it is possible to exploit the equations reported
in Sec. 2.3 to perform the equivalent maximization step. Nonetheless, the
weights are now provided by the responsibilities computed in the expectation
step, hence the samples are not equiprobable (weighted 1

n
) anymore.

4With the term soft-clustering the process of assigning data to clusters (represented
by mixture components in this case) is done by evaluating the responsibilities, hence not
providing exclusivity of the assignments.
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Algorithm 2: Expectation-Maximization Algorithm for GMs

Data: Initial GM p(0) of size n, set of samples x, maximum number
of iterations K, accuracy tolerance tol.

Result: Refined GM of size n.
1 k := 0, p(k) := p(0);

2 Compute l(x|Θ(0));
3 while k < K do
4 Compute Ri,j, for i = 1, ..., n, j = 1, ..., N as in (2.111);
5 Evaluate the effective number of points as in (2.114);
6 Compute w+

i , µ
+
i , Σ

+
i as in (2.115);

7 Evaluate l(x|Θ+), the likelihood of the updated parameters;

8 if ∥l(x|Θ+)− l(x|Θ(k))∥ < tol then
9 break;

10 end
11 k := k + 1;

12 l(x|Θ(k)) := l(x|Θ+);

13 end

To conclude this section, one last observation the author would like to
stress out is the fact that finding a suitable number of mixture components
when fitting the data is a particularly difficult problem. Selecting a very
large number of components would be unjustifiable from a computational
resources point of view, especially if the data can be described accurately
with a much simpler model. On the other hand, providing a very simple
description could be unsatisfactory from the representation accuracy point
of view. As it will be discussed later in this work, if the mixture model
becomes too complex (overfitting) due to the nature of the problem, it is
possible to perform a mixture reduction in order to simplify it while preserv-
ing the accuracy. Moreover, by exploiting the optimal transport theory it is
possible to obtain ”visual” information about the potential number of mix-
ture components required to approximate the data faithfully while keeping
its description lightweight.
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2.9 Clustering

As mentioned in Sec. 2.8, the EM algorithm represents a soft-clustering
algorithm which partitions of the sample data in clusters. Hence, as well
as providing a mathematical tool for describing more complex uncertainties,
mixture models can also be used to cluster data. In this section, a brief
discussion about clustering is reported.

K-means algorithm

Let us consider the problem of identifying groups or clusters in a set of sample
data. This task can be addressed both in a probabilistic way, as done for the
EM, or in a non-probabilistic way, though the so called K-means algorithm
[29]. Suppose a set of d-dimensional samples x = {x1, ..., xN} is available;
the goal is to partition such data in n clusters, with n given. In order to
approach this problem, it might be convenient to define n representatives ri,
i = 1, ..., n, that is d-dimensional vectors which will serve to identify the n
clusters. For the j-th sample, j = 1, ..., N , a corresponding binary indicator
variable Mi,j ∈ {0, 1}, also called membership, can be defined; Mi,j will be
equal to 1 if the j-th point is associated to i-th cluster, and 0 if viceversa.
The associations are mutually exclusive, that is a point can be associated to
a cluster only, but a cluster can contain many points.

The clustering takes place in the Euclidean space; in this regard, one
can define an objective function to minimize, which amounts to the error
provided by the current clustering, as follows:

J =
n∑

i=1

N∑
j=1

Mi,j∥xj − ri∥2. (2.118)

J is sometimes also known as distortion measure and it represents the sum
of the squares of the distances of each sample to its representative. Once the
problem has been cast in this form, the goal is to minimize (2.118) in order
to obtain the smallest clustering error.

As done for the EM, or more in general from an MM perspective, such a
problem can be addressed through two alternating phases, that is a phase of
assignment and a phase of update. By recalling the EM scheme, the K-means
algorithm can be seen as a simpler case of the said algorithm; moreover,
it represents a hard-clustering method, since the assignments are done in
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an exclusive way, and not like the EM where the responsibilities take into
account the assignment of a sample to several clusters. Moreover, in the EM
algorithm the likelihood is being maximized, but as it will be discussed in
3.1.1, maximizing such quantity amounts to minimize the cross-entropy of
the model from the data. In the K-means, there are no probabilities involved,
and the sum of square distances represents the loss function to be minimized
in the phase following the assignment. In this regard, it is here reported the
K-means procedure:

1. Generate randomly the set r = {ri}ni=1 of representatives over the d-
dimensional Euclidean space.

2. Perform the assignment by computing the memberships matrix M ∈
{0, 1}n×N which elements are:

Mi,j =

{
1 if i = argmink∥xj − rk∥2

0 otherwise.
(2.119)

3. Once the assignment has been completed, it is possible to update the
representatives by at first computing the number of points associated
to the i-th cluster as:

Ni =
N∑
j=1

Mi,j, (2.120)

and then by updating the representatives, or cluster centers, as:

ri =
1

Ni

N∑
j=1

Mi,jxj, (2.121)

that is as the arithmetic mean of the assigned samples.

4. The algorithm continues until a maximum number of iterations has
been reached, or the variation in (2.118) falls below a given tolerance.

By comparing the scheme above with the one discussed for the EM algorithm,
it is possible to spot strong similarities. As for the EM, even the K-means
suffers from all the discussed problems, that is it is not trivial to figure out
which could be a suitable number of representatives, especially in high dimen-
sional problems, and the resulting clustering is sensitive to the initialization.
In Algorithm 3 is reported a summary of the K-means algorithm.
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Algorithm 3: K-means algorithm

Data: Initial set of representatives r = {ri}ni=1, set of samples x,
maximum number of iterations K, accuracy tolerance tol.

Result: Refined representatives, membership matrix M .
1 k := 0, r(k) := r(0);

2 Compute J (0) as in(2.118);
3 while k < K do
4 Compute the memberships Mi,j as in (2.119);
5 Compute Ni as in (2.120);
6 Compute the updated representatives r+ as in (2.121);
7 Evaluate J +;

8 if ∥J + − J (k)∥ < tol then
9 break;

10 end
11 k := k + 1;

12 J (k) := J +;

13 end

Note that the square euclidean distance is just one of the possible metrics
which can be used to evaluate the inter-point distances. A more general
version of the K-means algorithm is the K-medoids [3], which minimizes the
following objective function:

J̃ =
n∑

i=1

N∑
j=1

Mi,jV(xj, ri). (2.122)

where V(·, ·) is a generic distance measure between points in the euclidean
space. Moreover, the K-medoids can be further generalized if one considers
a different space, e.g., the space of probability distributions. In this regard,
in the next chapter, such a generalization will be discussed in the context of
mixture refinement.

2.10 Bayesian Filtering

In order to further stress the importance of the problem that will be addressed
in this work, namely the Mixture Reduction problem, the author decided to
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report a discussion about the target tracking in presence of clutter, another
application where mixture models are broadly used and, moreover, where the
exponential growth in the number of components appears, hence requiring
approximations. Nonetheless, target tracking is a very broad topic, and
providing an exhaustive discussion would be cumbersome, hence only the
main aspects will be treated; in this regard, good textbooks one can use as
reference are [4, 11].

2.10.1 The Filtering Problem

The filtering problem is concerned with establishing the best estimate for
the true value of some quantity from an incomplete, potentially noisy set
of observations done on that quantity. The Bayesian inference framework
represents an optimal solution to this kind of problems (see 2.5).

Bayesian inference for dynamical systems

In the Bayesian framework, the optimal filtering problem is considered to be a
statistical inversion problem, where the unknown quantity is a vector valued
time series {s0, s1, ...} which is observed through a set of noisy measurements
{z1, z2, ...} as reported in Fig. 2.4

Figure 2.4: Representation of a time series observed through a set of noisy
measurements [1].

For the sake of discussion, only the discrete time case will be addressed.
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The purpose of statistical inversion is to estimate the hidden states s0:T =
{s0, s1, ..., sT} from the observations z1:T = {z1, z2, ..., zT}, which is equivalent
to compute the joint posterior distribution by applying the Bayes’ rule (2.21)
as:

p(s0:T |z1:T ) =
p(z1:T |s0:T )p(s0:T )

p(z1:T )
. (2.123)

Such a formulation, though, has clear disadvantages, that is for any new mea-
surement, the full posterior distribution has to be recomputed; moreover, the
posterior dimensionality increases at each step, hence the statistical inversion
becomes computationally intractable quickly. Nonetheless, in many filtering
problems one is interested only in the state estimate at the current time,
hence the full posterior is not necessary.

This hindrance can be solved by assuming that the considered dynamical
systems are Markov sequences, which implies that given the state sk, only
the observation zk depends on such state (conditional independence), hence
(2.123) can be rewritten as:

p(sk|z1:k) =
p(zk|sk)p(sk|z1:k−1)

p(zk|z1:k−1)
=

p(zk|sk)p(sk|z1:k−1)∫
p(zk|sk)p(sk|z1:k−1)dsk

. (2.124)

Moreover, the Markov assumption allows to break the full posterior distribu-
tion estimation in a recursive computation, hence by propagating over time
the knowledge one has about the dynamical system state and by incorporat-
ing at each recursion step the information deriving from a new observation.
By recalling the argumentation done in 2.5, it is straightforward to recognize
the involved quantities in the above recursion. p(zk|sk) is the likelihood func-
tion, p(sk|z1:k−1) is the prior distribution, while p(zk|z1:k−1) is the evidence,
or marginal likelihood function. In the context of dynamical systems those
quantities can be further specialized: p(sk|z1:k−1) is called state prediction
density, p(zk|z1:k−1) can be also termed as predicted likelihood, while p(zk|sk)
is generally called measurement model, since it describes how a noisy sensor
observes the true state of the system.

By exploiting (2.18), let us expand the prior distribution in (2.124) as
follows:

p(sk|z1:k−1) =

∫
p(sk|sk−1)p(sk−1|z1:k−1)dsk−1. (2.125)

The one above is known as the Chapman-Kolmogorov equation, which allows
to predict the posterior distribution from the previous step to the current one.
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p(sk|sk−1) is called motion model and describes how the dynamical system
evolves over time. Hence, given an initial distribution p(s0|z0) = p(s0) (since
the first measurement is obtained at time step 1), it is possible to implement
a prediction-correction scheme by at first predicting p(s1|z0) by means of
(2.125), and then by obtaining the updated posterior distribution p(s1|z1)
by means of the Bayes’ formula (2.124). From a practical point of view, one
does not have any information coming from observations at time 0; hence,
it would be more correct to assume to have an initial guess p(s1) which is a
totally subjective guess of the system state, and by updating it as the first
observation arrives instead of performing a prediction. Thus said, a practical
recursion could be something like:

• Initial guess p(s1).

• Given z1, perform the update (2.124) to obtain p(s1|z1).

• Perform the prediction (2.125) to obtain p(s2|z1).

• Given z2, perform the update (2.124) to obtain p(s2|z2),

• ... and so on.

Motion and Measurement models

As mentioned, the motion model describes how the system evolves over time.
From a probabilistic point of view, it is the state transition density. There
exist many commonly used motion models in the literature, and they can
be linear or nonlinear. For instance, in the class of linear motion models
one finds the Constant Velocity (CV) model, which assumes a first order
motion of an object, the Constant Acceleration (CA) model, which assumes
a second order motion, while for the nonlinear case an example can be the
Coordinated Turn (CT) model. Further details are omitted, but, again, good
references on these topics can be [4, 11].

The measurement model describes instead the relation between the state
of the dynamical system and the corresponding observation; such a model is
sensor-dependent, since even several sensors in the same class (e.g., lidars,
radars, IMUs etc.) can have different technical features, hence different ways
to observe a quantity of interest. Moreover, given a sensor, different mea-
surement models may be required to observe different targets (e.g., a radar
observing both a racecar and a bicycle).

71



Bayesian inference solution for dynamical systems

The Bayesian recursion (2.124) does not have in general a closed form so-
lution. Nonetheless, for the linear-Gaussian dynamical systems the Kalman
Filter (KF) [7] provides the optimal corresponding solution in closed-form.
For nonlinear-non-Gaussian dynamical systems there are no optimal closed
form solutions, but many approximations such as the Extended Kalman Fil-
ter (EKF) [1], Unscented Kalman Filter (UKF) [30], Cubature Kalman Filter
(CKF) [31], Particle Filter (PF) [32] and many more have been provided.

The Kalman Filter

For Additive White Gaussian Noise (AWGN) linear models, it has been said
that the KF is a solution to the Bayesian inference. Let us consider the
following model: {

sk = Fk−1sk−1 + ξk−1,

zk = Hksk + rk,
(2.126)

where:

• sk ∈ Rd is the state vector,

• Fk−1 ∈ Rd×d is the state transition matrix at one step,

• ξk−1 ∈ Rd is the process noise vector, with ξk−1 ∼ ν(·|0, Qk−1),

• zk ∈ Rm is the observation on the system,

• Hk ∈ Rm×d represents the relationship between the state and the mea-
surement at time k,

• rk ∈ Rm is the measurement noise vector, with rk ∼ ν(·|0, Rk).

In the case of the previous system, one has:

• Initial prior: p(s0) = ν(s0|ŝ0, P0),

• Posterior density: p(sk|z1:k) = ν(sk|ŝk|k, Pk|k),

• Motion model: p(sk|sk−1) = ν(sk|Fk−1sk−1, Qk−1),

• Measurement model: p(zk|sk) = ν(zk|Hksk, Rk)
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where:

• ŝk|k is the expected value of the posterior density,

• Pk|k is the covariance matrix (representing uncertainty) of the posterior
density,

• the subscript k|k, or k|k − 1, denotes respectively the distribution in-
corporating the measurements up to the current step k, and the dis-
tribution (predicted) incorporating the information up to the previous
time step k − 1. Such notation will help to unclutter the notation in
the equations which will follow.

In general, only the state estimate ŝk|k (e.g. the position of the car or the
orientation of an airplane) is used for practical purposes.
The conditional mean ŝk|k = E(sk|z1:k) is a minimizer, that is the best es-
timate one can achieve for the state given the observations. Following are
reported all the necessary equations to implement a KF recursion:

Prediction :

{
ŝk|k−1 = Fk−1ŝk−1|k−1, Use model to predict

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1, Increase uncertainty

Update :



ẑk = Hkŝk|k−1, Predicted measurement

ϵk = zk − ẑk, Innovation

Sk = HkPk|k−1H
T
k +Rk, Innovation covariance

Kk = Pk|k−1H
T
k S

−1
k , Kalman gain

ŝk|k = ŝk|k−1 +Kkϵk, State update, weighted average

Pk|k = Pk|k−1 −KkHkPk|k−1, Decrease uncertainty

(2.127)
Another quantity of interest worth to be reported is the following:

Predicted Likelihood : p(zk|z1:k−1) = ν(zk|ẑk, Sk) (2.128)

Such a quantity can be used to perform statistical tests on the filter perfor-
mances; corresponding details can be found [11].

Single Object Tracking in clutter

In the previous section it has been implicitly assumed that one, and only
one, observation is acquired at each time step; moreover, it was generated
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over the quantity of interest. Is this always true? When sensors like cameras,
lidars or radars are used, the answer to this question is no.

In general, the filtering problem becomes more challenging, since:

• Misdetections can occur, that is the object is present in the sensor field
of view, but it is not detected.

• Clutter can be present, that is several observations at each time step are
acquired, and they do not belong only to the object of interest. Such
observations may be generated from reflections, sensor malfunctioning
or other entities which are not of interest.

• Unknown data association, that is it is not known which measurement
belongs (if any) to the object of interest. In order to obtain an optimal
estimate of the system state, all the possible associations between the
measurements and the previous posterior distribution estimate have to
be taken into account.

Detections and Misdetections

How can one model the chance of misdetection for an object? A common
approach is to say that the object is detected with probability PD(sk) and
it generates a measurement according to the measurement model p(ok|sk),
where ok is the observation associated to the object.
Let us define the set of observations for the object as the following matrix:

Ok =

{
[ ], if the object is undetected,

ok, otherwise.
(2.129)

With n(Ok) will be denoted the cardinality, or number of columns, of Ok.
From the previous definitions, it follows that given sk, n(Ok) is Bernoulli (see
(2.51)) distributed:

n(Ok) =

{
1 with probability PD(sk),

0 with probability 1− PD(sk),
(2.130)

from which follows that:

p(Ok|sk) =

{
1− PD(sk) if Ok =

[ ]
,

PD(sk)p(ok|sk) if Ok = ok.
(2.131)
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This form for the likelihood function captures both the probability of de-
tection and, if detected, the distribution of the detection according to the
measurement model.

Clutter

As mentioned, in the field of view of a sensor can be present other unwanted
entities which may be responsible for the generation of additional observa-
tions in the same time step. Let us define the complete observation matrix
as:

Zk = s(Ok, Ck), (2.132)

where s(·) is an operator which randomly shuffles column vectors; this will
model the unknown origin of the measurements. How can the clutter be
modelled in a probabilistic perspective? In this regard, a stochastic model is
required for both:

• number of clutter detections n(Ck),

• vectors in Ck.

If one considers the volume V of a sensor field of view and λ to be the
expected number of clutter detections per unit volume, then the clutter can
be modelled as a Poisson Point Process (PPP).

Clutter Poisson Point Process

The Poisson point process is the default model for clutter Ck = [c1k, ..., c
mc

k
k ],

with mc
k ∼ π(x|λV ) (see (2.53)) number of clutter-originated measurements.

Moreover, it holds that given mc
k, the vectors c1k, ..., c

mc
k

k are i.i.d. with cik ∼
UV , where V is the sensor field of view, and UV is the uniform distribution
over such volume. In general, the PPPs are parameterized using either:

• an intensity function, λc(c) > 0, or

• a combination of: {
λ̄c =

∫
λc(c)dc rate,

fc(c) =
λc(c)

λ̄c
spatial pdf.
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The PPP distribution is of the form:

p(Ck) =
e−λ̄c

mc
k!

mc
k∏

i=1

λc(c
i
k). (2.133)

Data Association

As discussed, the presence of clutter and misdetections introduces the re-
quirement of considering all the possible associations between the current
prior and the available measurements in order to compute the posterior dis-
tribution in a Bayesian inference context. In this regard, it is necessary to
formalize the concept of Data Association (DA). Let us define the following
quantity:

τ =

{
i > 0, if zi is an object detection,

0, if the object is undetected.
(2.134)

Here follows an example to better understand such notation. Suppose at a
given time the measurement matrix Z = [z1, z2, z3] is obtained; if τ = 2,
then one is saying that z2 is an object detection and z1 and z3 are clutter. If,
instead, τ = 0, then the object has been misdetected and all the observations
are clutter.

Posterior distributions in Single-Object Tracking

Given the previously defined mathematical models for clutter, misdetections
and data associations, it is possible to write the full measurement model as:

p(Zk|sk) =
[
(1− PD(sk)) + PD(sk)

mk∑
τk=1

p(zτkk |sk)
λc(z

τk
k )

]
e−λ̄c

mk!

mk∏
i=1

λc(z
i
k) =

=

mk∑
τk=0

p(Zk,mk, τk|sk),
(2.135)

where mk is the number of measurement vectors in Zk at time k and τk is
the DA variable.
Note: Each τ represents a state hypothesis associated to a given observa-
tion; moreover, the posterior density p(sk|Z1:k) at time k will contain all the
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different hypotheses from all the time steps. In this regard, it is possible to
write posterior distribution, by exploiting (2.17), as:

p(sk|Z1:k) =
∑
τ1:k

p(sk|τ1:k, Z1:k)p(τ1:k|Z1:k), (2.136)

where
∑

τ1:k
=
∑m1

τ1=0

∑m2

τ2=0 · · ·
∑mk

τk=0, while the prior can be rewritten as:

p(sk|Z1:k−1) =
∑
τ1:k−1

p(sk|τ1:k−1, Z1:k−1)p(τ1:k−1|Z1:k−1). (2.137)

From the previous equations it is possible to figure out that:

• At each time step k, there are mk+1 new data association hypotheses.

• The number of possible association sequences at time k is:

k∏
i=1

(mi + 1) = (m1 + 1)× · · · × (mk + 1), (2.138)

that is the number of hypotheses for the system state grows incredibly
fast with k.

By plugging together all the parts, it can be proven that the resulting pos-
terior distribution will have the following form:

p(sk|Z1:k) =
∑
τ1:k

wτ1:kqτ1:kk|k (sk), (2.139)

that is the posterior distribution will be a mixture of densities5 (see 2.8, where
wτ1:k is a pmf describing the probability of a given association sequence, and
qτ1:k will represent the hypotheses at time step k.

Prediction Equations

Let us assume that a posterior density from the previous time step is available
in the form:

p(sk−1|Z1:k−1) =
∑
τ1:k−1

wτ1:k−1q
τ1:k−1

k−1|k−1(sk−1), (2.140)

5some small abuse of notation has been made, but the sum will be over all the existing
hypotheses at time k, which are expontially growing over time.
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then, by applying (2.125), one obtains:

p(sk|Z1:k−1) =

∫
p(sk−1|Z1:k−1)p(sk|sk−1)dsk−1

=
∑
τ1:k−1

wτ1:k−1

∫
q
τ1:k−1

k−1|k−1(sk−1)p(sk|sk−1)dsk−1︸ ︷︷ ︸
≜q

τ1:k−1
k|k−1

(sk)

=
∑
τ1:k−1

wτ1:k−1q
τ1:k−1

k|k−1 (sk).

(2.141)

Note: the weights remain unchanged; the standard prediction is performed
for each hypothesis.

Update Equations

By recalling (2.135), it is possible to write:

p(sk|Z1:k) ∝
∑
τ1:k−1

wτ1:k−1q
τ1:k−1

k|k−1 (sk)(1− PD(sk))

+
∑
τ1:k−1

mk∑
τk=1

1

λc(z
τk
k )
wτ1:k−1q

τ1:k−1

k|k−1 (sk)P
D(sk)p(z

τk
k |sk).

(2.142)

For every pair of hypotheses (τ1:k−1, τk) a new hypothesis is generated, which
is indexed as τ1:k.

Let us denote with w̃τ1:k the unnormalized weight associated to a sequence
of associations τ1:k; after the update step, the posterior distribution will be
p(sk|Z1:k) =

∑
τ1:k

wτ1:kqτ1:kk|k (sk), where w
τ1:k ∝ w̃τ1:k and:

τk = 0 (misdetection) :

{
w̃τ1:k = wτ1:k−1

∫
q
τ1:k−1

k|k−1 (sk)(1− PD(sk))dsk,

qτ1:kk|k (sk) ∝ q
τ1:k−1

k|k−1 (sk)(1− PD(sk)),

τk > 0 (obj. detection) :

{
w̃τ1:k = wτ1:k−1

λc(z
τk
k )

∫
q
τ1:k−1

k|k−1 (sk)P
D(sk)p(z

τk
k |sk)dsk,

qτ1:kk|k (sk) ∝ q
τ1:k−1

k|k−1 (sk)P
D(sk)p(z

τ
k |sk).

(2.143)

To conclude this section, the author wants to remark that, for the problem of
target tracking in clutter, the posterior distribution obtained by the optimal
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Bayesian recursions yields a mixture of densities which grows exponentially
in the number of components over time. If no approximations are introduced,
the uncertainty representation about the system state becomes computation-
ally intractable after few steps. There exists several algorithms as the Nearest
Neighbour (NN) or Probabilistic Data Association (PDA) filters [11], which
collapse all the hypotheses into a single one by means of moment-matching,
discussed in the next chapter. Nonetheless, approximating a multimodal dis-
tribution with a single density can be a rather crude approximation, which
has proven to often lead to filter divergence. Alternatively, as discussed in
[23] for the Gaussian Sum (GS) filter, it is possible to propagate over time
a mixture of densities which has a controlled number of hypotheses; as it
will be discussed in Chapter 3, there have been proposed many approaches
to control the number of hypotheses in a mixture, but given the difficulty
of the problem, heuristics favoring ease of computations have always been
adopted, without investigating the actual nature of many algorithms. The
discussion here reported is only regarding the single-object case; when multi-
ple objects are considered, the number of hypotheses grows even faster [13].
To address the Multi-Object Tracking (MOT) problem, a new and elegant
framework based on RFSs, namely the Finite Sets Statistics framework [8],
has been proposed by R. Mahler, which laid the foundations for many algo-
rithms like the Gaussian Mixture PHD (GMPHD) filter [25], or the Poisson
Multi-Bernoulli Mixture (PMBM) filter [33]. Those algorithms work with
intensities rather than mixtures, but the problem of combinatorial explosion
in the number of components still persists. At this point, it should be clear
why the MRP represents an important problem, since the vast majority of fil-
tering/tracking algorithms today used suffer from the problem of hypotheses
management. Moreover, even in problems of unsupervised learning, as briefly
mentioned in Sec. 2.8, or many others not reported here (Belief-Propagation,
Kernel-Density Estimation, etc.), the mixture reduction problem arises. In
Chapter 3, such a problem will be formalized and existing approaches will be
discussed. In Chapter 4 a new framework will be proposed to address this
problem in a consistent and efficient way.
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Chapter 3

The Mixture Reduction
Problem

3.1 Dissimilarity Measures

An important concept when addressing the Mixture Reduction Problem is
that of dissimilarity. The dissimilarity, also called deviation, distortion or
divergence, between two probability distributions is a measure (D-measure
for short) of how dissimilar they are. In general, for all pairs of distributions
p and q over Rd, a D-measure satisfies the following properties:

D(p∥q) ≥ 0, (nonnegativity); (3.1)

D(p∥q) = 0 ⇐⇒ p = q, (identity of indiscernibles). (3.2)

If, for any triple p, q, h, also the following hold true

D(p∥q) = D(q∥p), (symmetry); (3.3)

D(p∥q) ≤ D(p∥h) +D(h∥q), (triangle inequality), (3.4)

then the dissimilarity D(·∥·) is a distance and defines a metric in the space
of distributions.

In the literature there exists a broad range of D-measures, and they all
exhibit different features, both in terms of analytical properties and peculiar-
ities. In this regard, a preliminary discussion about the features of several
D-measures here presented will be provided in section 3.3, and later special-
ized in section 5.1.
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As already mentioned, all the discussions which will follow are quite
general and can be applied to any distribution in the exponential family.
Nonetheless, reporting formulas for all the classes in such family would be
burdensome and not necessary for the goals of this work; in this regard, the
discussion will restrict to the Gaussian case and, when required, additional
formulas for other classes will be provided.
Note: if the generic Gaussian density ν is considered, then the dissimilarity
between a Gaussian pdf νi and ν will be denoted D(νi∥ν) (or equivalently
D(ν∥νi) if D is not symmetric, and the dissimilarity of νi from ν is sought).

Note that closed formulas are usually available when considering densities
in the exponential family, but, if mixtures built accordingly are considered,
only in very few cases one can evaluate analytically the corresponding dissim-
ilarity. As it will be discussed in Chapter 4, evaluating pairwise dissimilarities
between densities is sufficient to induce dissimilarities between mixtures.

In Appendix A.1 all the D-measure here discussed will be reported to-
gether with some useful formulae and identities; to ease the discussion,
though, all the necessary quantities will be defined in the process.

Some additional notes on D-measures

A D-measure as defined previously should also preserve the ordering in the
space of distributions. Let us consider a parallelism with the euclidean space.
Given a point x in such space, any other point y different from x will have
an euclidean distance d(x, y) > 0. Moreover, given a line starting from x and
ending in y, and by moving along the direction from x to y, all the points
lying on it will be increasingly distant from x and closer to y, that is there
is an ordering in the euclidean space if the euclidean distance is considered.
If one considers the space of distributions and a reference distribution p(x)
over that space, then any other q(x) ̸= p(x) will have a greater than zero
dissimilarity from p(x), that is (3.1) and (3.2) hold. Imagine now that one can
define a ”line” in the space of distributions which starts from p(x) and ends
in q(x); then, a dissimilarity measure as such should preserve the ordering
as discussed for the euclidean case, that is all the distributions falling on
the line joining p(x) to q(x) should have a non-decreasing dissimilarity from
p(x) and a non-increasing dissimilarity from q(x). Thus said, most of the
D-measures considered in this work satisfy such a property, but the author
preferred to remark this argument for completeness.
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3.1.1 Kullback-Leibler Divergence

The gold standard in terms of statistical divergences is the so called Kullback-
Leibler Mean Information (KLI) [34], which, given two distributions p and q
over Rd, is defined as follows:

DKL(p∥q) =
∫
p(x) log

p(x)

q(x)
dx. (3.5)

Such a D-measure satisfies properties (3.1) and (3.2), so it is a directed
divergence, since it does not possess symmetry. In the original work [34],
the term divergence is used for the symmetrized form of the above equation,
which will be presented in Sec. 3.1.2. Nonetheless, in the literature the term
Kullback-Leibler Divergence (KLD) is often used to denote (3.5); for the
remainder of this paper such naming convention will be adopted.

The KLD, also known as differential relative entropy, can be seen as the
amount of information lost if p is approximated by q. More in detail, it can
be seen as the expected log-likelihood ratio of p and q, which can be denoted
as Ep[log

(
p
q

)
]. By exploiting the logarithm properties, one obtains:

DKL(p∥q) =
∫
p(x) log p(x)dx−

∫
p(x) log q(x)dx = −H[p] +H×[p, q].

(3.6)
whereH[p] is the differential entropy (2.92) of p andH×[p, q] is the differential
cross-entropy (2.98) between p and q, as defined in 2.6.

Maximum Likelihood estimation and KLD

Let us consider the parametric distribution q(x|θ) ∈ Q that is as close as
possible to a distribution p in terms of DKL, that is:

q∗ = argmin
θ

DKL(p∥q(·|θ)) = argmin
θ

∫
p(x) log p(x)dx−

∫
p(x) log q(x|θ)dx.

(3.7)
Note that the entropy of p part of the integral does not depend on θ, so it
can be considered as a constant in the above problem.

Suppose now that p is unknown, but it is possible to sample from it; one
can then build the corresponding empirical distribution as:

p̂(x) =
1

N

N∑
i=1

δ(x− xi), (3.8)
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where {xi}Ni=1 are N i.i.d. samples drawn from p and δ is the Dirac’s delta.
Using the properties of the delta one obtains:

DKL(p̂∥q(·|θ)) =−H[p̂]−
∫
p̂(x) log q(x|θ)dx = (3.9)

=−H[p̂]−
∫ [

1

N

N∑
i=1

δ(x− xi)

]
log q(x|θ)dx = (3.10)

=−H[p̂]− 1

N

N∑
i=1

log q(xi|θ). (3.11)

Minimizing the quantity above w.r.t. to θ, that is by minimizing the cross-
entropy term, is equivalent to maximize the average negative log likelihood
of the parameter θ of q on the samples drawn from p; hence, it is possible
to say that minimizing the DKL to the empirical distribution is equivalent to
find the maximum likelihood estimate of the model q [16].

As discussed, the KLD does not possess the symmetry property and the
order in which the distributions are considered can be impactful in terms
of the outcome. In this regard, the Forward Kullback-Leibler Divergence
(FKLD), DFKL(p∥q) for short, is the one defined as in (3.5), while the Re-
verse Kullback-Leibler Divergence (RKLD), DRKL(p∥q) for short, denotes
the divergence obtained by swapping the order of the arguments, that is
DRKL(p∥q) = DFKL(q∥p).
If two Gaussian densities νi(x) and νj(x) are considered, then one obtains:

DFKL(νi∥νj) =
1

2
(tr(Σ−1

j Σi)+ (µi−µj)
TΣ−1

j (µi−µj)− d+ log
|Σj|
|Σi|

). (3.12)

The DRKL(νi∥νj) can be obtained by swapping the means and the covariances
in equation (3.12).
In the gamma case, given two distributions γi(χ) and γj(χ), the correspond-
ing DFKL is:

DFKL(γi∥γj) = κj log
ωj

ωi

+ log
Γ(κj)

Γ(κi)
+ (κi − κj)ψ0(κi) + κi

ωi − ωj

ωj

. (3.13)

In the inverse-Wishart case, given two distributions φi(Y) and φj(Y), one
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obtains:

DFKL(φi∥φj) = log

Γd

(
vj−d−1

2

)
Γd

(
vi−d−1

2

) +

(
vi − d− 1

2

)
tr
(
V −1
i Vj

)
−
(
vi − d− 1

2

)
d+

−
(
vj − d− 1

2

)
log |V −1

i Vj| −
vj − vi

2

d∑
m=1

ψ0

(
vi − d−m

2

)
.

(3.14)
When applied to mixtures, the DKL does not admit a closed form; this may
represent a significant drawback for aD-measure when employed in the MRP,
since one has to resort to tractable approximations in order to evaluate the
dissimilarity between mixtures. In any case, investigating such approxima-
tions could provide useful insights on the kind of usage one can make of them;
more on this will be discussed in Chapter 4.

3.1.2 Skew Jeffreys’ Divergence

The Jeffreys’ Divergence is a symmetrization of the KLD (more properly of
the KLI). Its skew version depends on a parameter α ∈ [0, 1] and, given two
distributions p and q over Rd, is defined as follows:

Dα
J (p∥q) = (1− α)DFKL(p∥q) + αDRKL(p∥q), (3.15)

Symmetrized Kullback-Leibler Divergence

For α = 0.5 is obtained the so called Symmetrized Kullback-Leibler Diver-
gence (SKLD) (or Jeffrey’s divergence), DSKL for short, defined as:

DSKL(p∥q) =
1

2

(
DFKL(p∥q) +DRKL(p∥q)

)
=

1

2

∫
(p(x)− q(x)) log

p(x)

q(x)
dx.

(3.16)
Such D-measure possesses properties (3.1), (3.2) and (3.3). By plugging
(3.12) in (3.15) and (3.16) is obtained the corresponding closed form for the
Gaussian case:

DSKL(νi∥νj) =
1

4

[
tr(Σ−1

j Σi+Σ−1
i Σj)+ (µi−µj)

T (Σ−1
i +Σ−1

j )(µi−µj)− 2d
]
.

(3.17)
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As for the DKL, the DSKL does not admit a closed form when applied to
mixtures.

3.1.3 Squared 2-Wasserstein Distance

The Squared 2-Wasserstein (W2), DW2 for short, between two distributions
p and q over Rd is defined as follows:

DW2(p∥q) = inf
π
E{∥X − Y ∥22} = inf

π

∫∫
∥x− y∥22π(x, y)dxdy, (3.18)

where X ∼ p(x), Y ∼ q(y), E(·) is the expectation, and π(x, y) is any joint
distribution of (X, Y ) that has p(x) and q(y) as marginals. This D-measure
satisfies (3.1), (3.2) and (3.3). The DW2 between two Gaussians νi(x) and
νj(x) is:

DW2(νi∥νj) = ∥µi − µj∥22 + tr
(
Σi + Σj − 2

(
Σ

1
2
i ΣjΣ

1
2
i

) 1
2
)
. (3.19)

If mixtures are considered, the DW2 does not admit a closed form.

3.1.4 Likeness-based Dissimilarity Measures

Rather than a single D-measure, in the following is defined a whole class
under the name of Likeness-Based (LB) family [35]. Among the reported
D-measures, the set here considered possesses closed forms in the mixture
case. Given two distributions p and q over Rd, let us define the following
quantities:

Jp,p =

∫
p(x)2dx, (3.20)

Jp,q =

∫
p(x)q(x)dx, (3.21)

Jq,q =

∫
q(x)2dx. (3.22)

In the literature those terms are known as Cross Information Potentials
(CIPs) [36] or Likenesses [35, 37]. For the remainder of this work the au-
thor will adopt the latter naming convention.
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If two Gaussians νi and νj are considered, one obtains:

J i,i =ν(µi|µi, 2Σi)

∫
ν(x|µ̄i,i, Σ̄i,i)dx︸ ︷︷ ︸

=1

= |4πΣi|−
1
2 , (3.23)

J i,j =ν(µi|µj,Σi + Σj)

∫
ν(x|µ̄i,j, Σ̄i,j)dx︸ ︷︷ ︸

=1

, (3.24)

J j,j =ν(µj|µj, 2Σj)

∫
ν(x|µ̄j,j, Σ̄j,j)dx︸ ︷︷ ︸

=1

= |4πΣj|−
1
2 , (3.25)

where J i,i and J j,j are respectively the self-likenesses of νi and νj, while J
i,j

is the cross-likeness between νi and νj; the indices i and j are a compact
notation for νi and νj, and:

µ̄i,j =
(
Σ−1

i + Σ−1
j

)−1(
Σ−1

i µi + Σ−1
j µj

)
, (3.26)

Σ̄i,j =
(
Σ−1

i + Σ−1
j

)−1
. (3.27)

When a generic Gaussian density ν(x|µ,Σ) is considered, the notation is
changed to J i,ν and Jν,ν , which denote respectively the cross-likeness between
the i-th Gaussian pdf and a generic Gaussian component ν, and the self-
likeness of a generic Gaussian component ν.
If two Gaussian mixtures pa = p(x|Θa) = (wa)Tνa(x|θa) =

∑na

i=1w
a
i ν

a
i and

pb(x|Θb) = (wb)Tνb(x|θb) =
∑nb

j=1w
b
jν

b
j are considered, then one obtains:

Ja,a(Θa) =

∫
(wa)Tνa(x|θa)νa(x|θa)Twadx = (wa)THa,a(θa)wa,

(3.28)

Ja,b(Θa,Θb) =

∫
(wa)Tνa(x|θa)νb(x|θb)Twbdx = (wa)THa,b(θa,θb)wb,

(3.29)

J b,b(Θb) =

∫
(wb)Tνb(x|θb)νb(x|θb)Twbdx = (wb)THb,b(θb)wb, (3.30)

where:
[Ha,a]i,j = ν(µa

i |µa
j ,Σ

a
i + Σa

j ),

[Hb,b]k,l = ν(µb
k|µb

l ,Σ
b
k + Σb

l ),

[Ha,b]i,k = ν(µa
i |µb

k,Σ
a
i + Σb

k),

i, j = 1, . . . , na,

k, l = 1, . . . , nb.
(3.31)
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Once defined the above quantities, it is possible to obtain a set of D-measures
which are functions of such terms. According to [35], a generic LBD-measure
for two Gaussian pdfs νi and νj can always be put in the form:

DLB(νi∥νj) = sLB(J
i,i, J i,j, J j,j). (3.32)

where sLB is a function of the likeness terms. Possessing closed forms in the
mixture case is a rare property for a D-measure; as it will be shown, this
allows to perform optimization by means, for instance, of gradient descent
methods. In this regard, given two Gaussian distributions νi and ν, let us
define the derivative of a given DLB-measure w.r.t. a generic parameter
θ = {µ,Σ−1} of ν:

∂DLB(νi∥ν)
∂θ

= ci,ν1
∂J i,ν

∂θ
+ ci,ν2

∂Jν,ν

∂θ
, (3.33)

where:

ci,ν1 =
∂sLB(J

i,i, J i,ν , Jν,ν)

∂J i,ν
, ci,ν2 =

∂sLB(J
i,i, J i,ν , Jν,ν)

∂Jν,ν
. (3.34)

are coefficients specific for each DLB-measure which may depend on all three
the likeness terms. The derivative of J i,i w.r.t. θ is, of course, zero. The
inverse of the covariance matrix is considered since it can ease the computa-
tions when derivatives of Gaussians, or related quantities, are sought.
For the Gaussian case, one obtains:

∂Ji,ν
∂µ

= Σ−1(µ̄i,ν − µ)Ji,ν ,
∂Jν,ν
∂µ

= 0,

∂Ji,ν
∂Σ−1

=
1

2

(
Σ− (Σ̄i,ν + (µ̄i,ν − µ)(µ̄i,ν − µ)T )

)
Ji,ν ,

∂Jν,ν
∂Σ−1

=
1

2
Jν,νΣ.

(3.35)

The partial derivatives above, as it will be discussed in 3.3, result to be useful
when solving the so called barycenter problem.

Note: the coefficients c1 and c2 are independent of the distribution class;
the computations here proposed can be employed easily, for instance, for the
whole exponential family if one can evaluate the likeness terms.

In the following, a list of DLB-measures are discussed and corresponding
closed formulae in the Gaussian case are reported.
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Integral Squared Error (Square L2 norm)

Given two distributions p and q, the Integral Squared Error (ISE), also known
as Integral Squared Difference (ISD) [37], or Square L2 norm (L2), is defined
as:

DL2(p∥q) =
∫ (

p(x)− q(x)
)2
dx = ∥p− q∥22 = (3.36)

=Jp,p − 2Jp,q + Jq,q. (3.37)

Such D-measure satisfies properties (3.1), (3.2) and (3.3). In the ISE case,
one gets:

cp,q1 = −2, cp,q2 = 1. (3.38)

If two Gaussian pdfs νi and νj are considered, then:

DL2(νi∥νj) = ν(µi|µi, 2Σi)− 2ν(µi|µj,Σi + Σj) + ν(µj|µj, 2Σj), (3.39)

and, if a generic ν(x|µ,Σ) is considered, one obtains:

∂DL2(νi∥ν)
∂µ

= −2︸︷︷︸
c1

Σ−1(µ̄i,ν − µ)J i,ν︸ ︷︷ ︸
∂Ji,ν

∂µ

+0, (3.40)

∂DL2(νi∥ν)
∂Σ−1

= −2︸︷︷︸
c1

1

2

(
Σ− (Σ̄i,ν + (µ̄i,ν − µ)(µ̄i,ν − µ)T )

)
J i,ν︸ ︷︷ ︸

∂Ji,ν

∂Σ−1

+ 1︸︷︷︸
c2

1

2
Jν,νΣ︸ ︷︷ ︸
∂Jν,ν

∂Σ−1

.

(3.41)

where µ̄i,ν and Σ̄i,ν are computed as in (3.26) by considering νj = ν. All the
identities used for the computations are also reported in Appendix A.2.
If two Gaussian mixtures pa and pb are considered, then:

DL2(p
a∥pb) =Ja,a − 2Ja,b + J b,b =

=
na∑
i=1

na∑
j=1

wa
iw

a
j ν(µ

a
i |µa

j ,Σ
a
i + Σa

j )+

− 2
na∑
i=1

nb∑
j=1

wa
iw

b
jν(µ

a
i |µb

j,Σ
a
i + Σb

j)+

+
nb∑
i=1

nb∑
j=1

wb
iw

b
jν(µ

b
i |µb

j,Σ
b
i + Σb

j).

(3.42)
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By considering the generic parameter θb,j = {µb
j, (Σ

b
j)

−1}, j = 1, ..., nb, of the
j-th Gaussian component νj in p

b, and by exploiting (3.40), it is possible to
write closed form partial derivatives for theDL2 between two mixtures (pa and
pb) (see Appendix A.2 for a recap of the required identities); nonetheless, the
resulting equations are cumbersome and will be omitted, but can be easily
obtained by applying the tools here provided. Such a feature is proper of
very few D-measures, and the LB family is one of those.

Normalized Integral Squared Error

In the same work [37], Williams proposed even a normalized version of the
previous D-measure, namely the Normalized Integral Squared Error (NISE),
which, given two distributions p and q, takes the following form:

DNISE(p∥q) =
∫
(p(x)− q(x))2dx∫

p(x)2dx+
∫
q(x)2dx

=

=
Jp,p − 2Jp,q + Jq,q

Jp,p + Jq,q
= 1− 2Jp,q

Jp,p + Jq,q
.

(3.43)

The NISE satisfies properties (3.1), (3.2) and (3.3) and it is confined in the
interval [0, 1] (if the pdf support is finite, otherwise [0, 1)). In the NISE case,
one gets:

cp,q1 =
−2

Jp,p + Jq,q
, cp,q2 =

2Jp,q

(Jp,p + Jq,q)2
. (3.44)

If two Gaussian pdfs νi and νj are considered, one gets:

DNISE(νi∥νj) = 1− ν(µi|µj,Σi + Σj)

ν(µi|µi, 2Σi) + ν(µj|µj, 2Σj)
. (3.45)

As done for the DL2, one can easily write the NISE between two mixtures
pa and pb by substituting the single Gaussian likeness terms with the ones
computed for GMs, as in 3.28. Moreover, by exploiting (3.35), one can write
partial derivatives to obtain gradient for both cases of single Gaussian pdfs
and GMs.

Total Square Loss

Another D-measure similar to the ISE and the NISE is the Total Squared
Loss (TSL) which has been considered in the literature for shape retrieval
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applications [38]. Given two distributions p and q over Rd, the TSL is defined
as follows:

DTSL(p∥q) =
∫
(p(x)− q(x))2dx√
1 + 4

∫
q(x)2dx

=
Jp,p − 2Jp,q + Jq,q

√
1 + 4Jq,q

. (3.46)

This D-measure satisfies properties (3.1) and (3.2). Moreover, for the TSL
we get:

cp,q1 =
−2(1 + 4Jq,q)

1 + 4Jq,q
√
1 + 4Jq,q

, cp,q2 =
1− 2(Jp,p − 2Jp,q − Jq,q)

1 + 4Jq,q
√
1 + 4Jq,q

. (3.47)

As done for the ISE and the NISE, one can write closed forms for both single
Gaussian pdfs and GMs, by substituting the likeness terms as discussed.

Cauchy-Schwarz Divergence

One really interesting D-measure, which will be discussed further in this
work, is the Cauchy-Schwarz Divergence (CSD) [35, 39, 40]. Given two dis-
tributions p and q over Rd, the CSD is defined as follows:

DCS(p∥q) = − log

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

. (3.48)

ThisD-measure satisfies properties (3.1), (3.2) and (3.3); regarding its partial
derivatives, one gets:

cp,q1 = − 1

Jp,q
, cp,q2 =

1

2Jq,q
. (3.49)

In the literature, such D-measure has been used indirectly in [41], where the
Correlation Measure (CM) (in the formulation above corresponding to the
argument of the logarithm) has been used as similarity measure rather than
dissimilarity. As it will be discussed, the CSD bears strong similarities with
the Bhattacharyya Distance (BD), defined in the next section.
Given two Gaussian pdfs νi and νj, the CSD takes the following form:

DCS(νi∥νj) =
1

2
log

|Σi + Σj|
|Σi|

1
2 |Σj|

1
2

− d

2
log 2 +

1

2
(µi − µj)

T (Σi + Σj)
−1(µi − µj).

(3.50)
By substituting the likeness terms for the mixture case, one obtains easily
the CSD between two GMs.
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Jensen-Renyi Quadratic Divergence

One more measure in the LB family is the Jensen-Renyi Quadratic Diver-
gence (JR2D), which is a special case of the Jensen-Renyi divergences [42]
admitting a closed form for mixtures.

Given two distributions p and q over Rd, the Jensen-Renyi-α divergence
is defined as follows:

Dα
JRD(p∥q) = Hα

(
p+ q

2

)
− Hα(p) +Hα(q)

2
, (3.51)

with α ∈ (−∞,+∞) and where:

Hα[p] =
1

1− α
log

∫
p(x)αdx, (3.52)

is the α-Renyi differential entropy [43], which results so be concave in the
interval α ∈ (0, 1), and neither concave or convex in α ∈ (−∞, 0)∪ (1,+∞).
The Renyi entropy is a generalization of the Shannon entropy (2.92), and it
holds that:

lim
α→1

Hα[p] = −
∫
p(x) log p(x)dx. (3.53)

In [44], the case α = 2 (the Renyi entropy for α = 2 takes the name of
collision entropy) of (3.51) has been considered for a point-set registration
problem; in this regard, the JR2D takes the following form:

D2
JRD(p∥q) = − log

Jp,p + 2Jp,q + Jq,q

4
√
Jp,pJq,q

. (3.54)

As for all the previous D-measures, it is possible to provide closed forms
for the Gaussian pdf and GM case; nonetheless, the JR2D is an ill condi-
tioned measure, since it can take negative values if the considered Gaussians
are nearly degenerate in the covariance. For completeness, though, here
are reported the coefficients necessary to evaluate the corresponding partial
derivatives:

cp,q1 = − 4

2Jq,q(Jp,p + 2Jp,q + Jq,q)
, cp,q2 =

Jp,p + 2Jp,q − Jq,q

2Jq,q(Jp,p + 2Jp,q + Jq,q)
.

(3.55)
The optimization of this D-measure, as already mentioned, yields often de-
generate solutions associated to negative values of the dissimilarity itself; for
this reason, it will not be taken into account anymore in the remainder of
this work.
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3.1.5 Chernoff α-Divergences

In this section are reported two classes of divergences which fall under the
name of Chernoff α-divergences.

Chernoff α-Coefficient

Given two distributions p and q over Rd, the Chernoff α-coefficient (CC) is
defined as follows:

cα(p, q) =

∫
pα(x)q1−α(x)dx, (3.56)

where α ∈ (−∞,+∞), and cα(p, q) ∈ [0, 1] ∀α. This coefficient is a simi-
larity measure between two distributions and, more in detail, it corresponds
to the geometric mean between p and q.
For α = 1

2
, one obtains the so called Bhattacharyya Coefficient (BC), defined

as follows:

cB(p, q) =

∫ √
p(x)q(x)dx. (3.57)

Let us consider the Gaussian case; then the following identities hold:

να =
(2π)

d
2
(1−α)|Σ| 1−α

2

α
d
2

ν
(
x|µ, 1

α
Σ
)
,

ν1−α =
(2π)

d
2
α|Σ|α2

(1− α)
d
2

ν
(
x
∣∣µ, 1

1−α
Σ
)
.

(3.58)

Given two Gaussian distributions νi = ν(x|µi,Σi) and νj = ν(x|µj,Σj), the
Chernoff coefficient takes the following form:

cα(νi, νj) =

( |Σ̄α
i,j|

|Σi|α|Σj|1−α

) 1
2

exp

(
− 1

2
(µi − µj)

T (Σ̃α
i,j)

−1(µi − µj)

)
,

(3.59)
where

Σ̄α
i,j =

(
αΣ−1

i + (1− α)Σ−1
j

)−1
,

Σ̃α
i,j =

1
α
Σi +

1
1−α

Σj,

µ̄α
i,j = Σ̄α

i,j

(
αΣ−1

i µi + (1− α)Σ−1
j µj

)
,

(3.60)
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and
ναi (x) · ν1−α

j (x) =cα(νi, νj) · ν(x|µ̄α
i,j, Σ̄

α
i,j),∫

ναi (x) · ν1−α
j (x)dx =cα(νi, νj)

∫
ν(x|µ̄α

i,j, Σ̄
α
i,j)dx︸ ︷︷ ︸

=1

. (3.61)

For α = 1
2
, the Bhattacharyya coefficient takes the following form:

cB(νi, νj) =
|Σi|

1
4 |Σj|

1
4

|Σi+Σj

2
| 12

exp

(
− 1

8
(µi − µj)

T

(
Σi + Σj

2

)−1

(µi − µj)

)
.

(3.62)
When mixtures are considered, such coefficient does not admit a closed form.
Note: in the Gaussian case, the Chernoff coefficient bears some similarities
with the cross-likeness term (eq. (3.24)); the former is derived from the ge-
ometric mean of the parameters of two Gaussian densities, while the latter
can be seen as the resistor parallel equivalent.
Analogous derivatives as the ones in (3.35) can be obtained for the Chernoff
α-coefficient, but are omitted due to their cumbersome forms.

By exploiting the Chernoff coefficient, it is possible to define two kinds
of divergences, which are reported in the following.

I° kind divergences

Given two distributions p and q over Rd, the Chernoff α-Divergence of the
I◦ kind (CD′

α) is defined as:

D′
α(p∥q) =

1

α(1− α)
(1− cα(p, q)). (3.63)
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An interesting fact regarding this class of dissimilarities is that, for several
values of α, some known divergences are obtained:

D′
α(p∥q)

∣∣
α=−1

= DP (p∥q) =
1

2

(∫
q(x)2

p(x)
dx− 1

)
, Pearson χ2

lim
α→0

D′
α(p∥q) = DRKL(p∥q) =

∫
q(x) log

q(x)

p(x)
dx, Reverse KLD

D′
α(p∥q)

∣∣
α=0.5

= 4DH2(p∥q) =4
(
1−

∫ √
p(x)q(x)dx

)
, Square Hellinger

lim
α→1

D′
α(p∥q) = DFKL(p∥q) =

∫
p(x) log

p(x)

q(x)
dx, Forward KLD

D′
α(p∥q)

∣∣
α=2

= DN(p∥q) =
1

2

(∫
p(x)2

q(x)
dx− 1

)
. Neyman χ2

(3.64)
When the Gaussian case is considered, it is convenient to restrict the α
interval to [0, 1], since the Pearson χ2 Divergence (PD) and the Neyman χ2

Divergence (ND) are well defined only for a particular subset of N d, which
we recall to be the space of all the d-dimensional Gaussian densities; in this
regard, the closed forms are provided only for the Square Hellinger Distance
(H2) (the FKLD and RKLD have been already defined in 3.1.1). Given two
Gaussian densities νi and νj, the Square Hellinger Distance is defined as
follows:

DH2(νi∥νj) = 1− cB(νi, νj), (3.65)

where cB(νi, νj) has been defined in (3.62). The H2 satisfies the properties
(3.1), (3.2) and (3.3).

When mixtures are considered, none of the I◦ kind divergences admit a
closed form.
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II° kind divergences

Given two distributions p and q over Rd, the Chernoff α-Divergence of the
II◦ kind (CD′′

α) is defined as:

D′′
α(p∥q) = − log cα(p, q). (3.66)

For α = 1
2
one obtains the Bhattacharyya distance. If two Gaussian densities

νi and νj are considered, the Bhattacharyya distance has the following closed
form:

DB(νi∥νj) =
1

2
log

|Σi + Σj|
|Σi|

1
2 |Σj|

1
2

− d

2
log 2 +

1

4
(µi − µj)

T (Σi + Σj)
−1(µi − µj).

(3.67)
This D-measure satisfies properties (3.1), (3.2) and (3.3). One can notice
the similarity between the Bhattacharyya and the Cauchy-Schwarz (defined
in (3.48)): the quadratic form in the CSD is multiplied by a factor of two if
compared to the BD.

When mixtures are considered, none of the divergences in this class pos-
sesses a closed form.

3.1.6 Other Dissimilarity Measures

All the D-measures above are just a fraction of the ones present in the lit-
erature like, for instance, the Renyi Divergence [43] or the Jensen-Shannon
Divergence [45]. For the goals of this work, though, the author wanted to
list a large pool, with corresponding closed formulas in the Gaussian case, in
order to provide several off-the-shelf alternatives for the framework presented
in Chap. 4. To know more about statistical distances, a reference name is
Frank Nielsen, who has given many contributions to the so called Information
Geometry field, and who has addressed and formalized many related topics.

3.2 Mixture Reduction: Problem Formula-

tion

When the uncertainty of a process is described by a mixture of densities,
it can happen that the corresponding number of components grows signifi-
cantly; in those cases, managing such a representation may be computation-
ally intractable and approximations should be introduced. Formally, given a
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mixture pa with na components, the mixture reduction problem consists in
finding a mixture pb, with nb < na components, which minimizes a desired
dissimilarity D from pa. For a chosen D-measure, the theoretical solution to
this problem is given by:

Θb∗ = argmin
Θb∈H

nb

D(p(x|Θa)∥p(x|Θb)). (3.68)

This is in general a complex, non-convex constrained nonlinear optimization
problem, which does not admit a closed form solution. Moreover, when
dealing with mixtures, only very few D-measures admit a closed form, hence
making the problem defined as above often analytically intractable. In this
regard, all the existing approaches in the literature are based on heuristics
which try to tackle the MRP by minimizing different D-measures in the
same reduction pipeline. Procedures like that lead in general to inconsistency
issues, which basically consist in preferring ease of computation rather than
seeking better solutions w.r.t. a desired D-measure.

3.2.1 Consistency in Mixture Reduction

Amixture reduction procedure is said to be consistent1 if all actions and steps
involved in the process are done according to a single D-measure. As dis-
cussed in [46], consistency is not an obvious feature of reduction algorithms,
and in fact most algorithms proposed in the literature are not consistent.
The problem as defined as in (3.68) requires a dissimilarity measure between
mixtures to be minimized; from an optimization point of view, then, it would
be correct to try to perform any kind of minimization according to such D-
measure. Hence, given the problem (3.68), performing consistent actions is
expected to yield superior solutions w.r.t. the given dissimilarity if com-
pared to the inconsistent case; for this reason, one should try, when possible,
to perform all the greedy reduction/refinement steps accordingly. Nonethe-
less, given the lack of closed forms when addressing the MRP, it might be
necessary to often resort either to analytically tractable approximations of
the involved quantities or to numerical alternatives when particular quan-
tities are sought. Some numerical tests to discuss further the concept of
consistency will be proposed in Chapter 5.

1Interchangeably the terms congruent or coherent will be used.
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3.2.2 A Common Approach

As mentioned, the solution of (3.68) is in general analytically intractable,
hence numerical solutions have to be sought. Due to the presence of many lo-
cal minima, the outcome of the numerical iterative solution of (3.68) strongly
depends on the choice of the starting point. For this reason, most MR al-
gorithms proposed in the literature include a preliminary iterative reduction
phase of the original mixture, where at each step the corresponding size is
reduced by one or more components, according to some greedy criterion, until
the required size nb is reached. The reduced mixture obtained in this Greedy
Reduction phase can possibly serve as a starting point for a Refinement phase,
aimed at minimizing further the dissimilarity while keeping constant the size
of the reduced mixture.

3.2.3 Greedy Reduction

The basic actions in the Greedy Reduction are pruning, i.e. removal from the
mixture of one or more components, or merging of two or more components
into one component.

Many greedy reduction algorithms in the literature employ pruning for
reducing the complexity of mixture representations (e.g. [13, 37] and many
more); nonetheless, pruning is a destructive practice, in the sense that the
information removed by means of it is completely lost. Thus said, in the
literature have been proposed several criteria to perform pruning of mixture
components, for instance:

• pruning by weight importance: select one or more components asso-
ciated to the smallest weights and remove those from the mixture; a
weight renormalization is then performed for the remaining compo-
nents.

• pruning by least dissimilarity introduced: some cost-function based
pruning criteria (e.g. [37]) evaluate the cost of removing a component
from the mixture in terms of dissimilarity introduced. If such a cost
is acceptable, the component is pruned and a weight renormalization
follows. Note that, as it will be further discussed, pruning is something
strictly linked with the peculiarities of a D-measure; there are many
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D-measures more exclusive2 than others, hence more prone to pruning-
like behaviors.

• pruning by statistical importance: consider the statistics of the weights
(e.g., the cdf) and prune components associated to a low percentile (e.g.
[47]).

Alternatively to pruning, one can perform merging; in this work, two kinds
of merging actions will be considered, that is to merge mixture components
by means of barycenter or by means of Best Single Density Approximation
(BSDA). In order to deal intuitively with those two quantities, it is necessary
to recall the concepts of normalized and unnormalized sub-mixtures, defined
in Sec. 2.8.1.
Any MR algorithm that performs merging of components of a given mixture
p(x|Θ) acts as follows:

1) a sub-mixture p(x|ΘI) ⊂ p(x|Θ) is selected according to some criterion;

2) the selected sub-mixture p(x|ΘI) is replaced in p(x|Θ) by a single den-
sity, chosen according to some criterion, with weight wT

I1n̄ (so that the
sum of the weights of the reduced mixture remains one).

The criteria adopted in the two steps above should be consistent with the
same D-measure in order to obtain a reduced mixture not too dissimilar from
the original one, according to the chosen D-measure. A consistent pipeline
of reduction actions in a MR algorithm is achieved when the criteria in the
pruning and merging steps are based on the same D-measure used in the
refinement phase.

3.2.4 Best Single Density Approximation

Let us consider a mixture p = wTq ∈ Qmix of size n which elements are
in a class Q; the Best Single Density Approximation (BSDA) q∗ ∈ Q′ of p,
according to a given D-measure, is defined as:

q∗ = argmin
q∈Q′

D(wTq∥q), (3.69)

2With the term exclusive are denoted D-measures which tend to neglect low-density
regions of a distributions in favor of preserving other features, e.g., the main peaks of a
multimodal density.
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that is the density which is the least dissimilar from the mixture p according
to the dissimilarity D. In general, it is of interest to find the BSDA distri-
bution in the same class, that is Q′ = Q. The BSDA, as the name says,
is a density, hence, for its computation, it is required to work either with
mixtures as a whole or normalized sub-mixtures. If the BSDA is selected as
merging method in a mixture reduction algorithm as previously discussed,
one can evaluate such quantity correctly by at first normalizing the selected
sub-mixture and, after computing the associated BSDA, by assigning to it
the weight obtained as the sum of the involved components weights. For
most of the D-measures presented in Sec. 3.1, the BSDA computation can
not be done in a closed form, mostly because the dissimilarity between a
mixture and a single density is usually analytically intractable. For the goals
of this work, the BSDA will not represent the main approach for merging
components; instead, the concept of barycenter of a set of weighted densities
will result to be a core component in most of the reported algorithms. In
[35], a discussion regarding the BSDA computation for the LB family in the
Gaussian case is reported.

3.3 The Barycenter Problem

Given a vector w ∈ Rn
+ and a set q of n distributions qi, i ∈ [1 : n], in the

class (family) Q of pdfs, the Average Dissimilarity Function (ADF) of the
weighted set (w, q) (also denoted {wiqi}ni=1), from a given (generic) pdf q,
according to a given D-measure, is defined as

mD(q |w, q) =
1

wT1n

n∑
i=1

wiD(qi∥q). (3.70)

If w ∈ ∆n−1, then wT1n = 1, and the weighted set {wiqi}ni=1 can represent
a mixture, which is a pdf, defined as wTq ∈ Qmix (a short notation for∑n

i=1wiqi).
The barycenter q̂ of the weighted set (w, q) = {wiqi}ni=1 is defined as the

distribution q that minimizes the ADF (3.70). Mostly, it is of interest to find
the barycenter in the same class Q of distributions qi in the set q. Thus, the
barycenter, denoted q̂, is defined as

q̂ = argmin
q∈Q

mD(q|w, q) ≜ Φ̄D(w, q). (3.71)

99



For a matter of notation, the function Φ̄D(·)3 has been defined as the oper-
ator returning the D-barycenter(s) of either a set of weighted densities or a
mixture/intensity. It is straightforward to see that the denominator wT1n

in (3.70) does not play any role in the computation of the barycenter.

As a general rule for the Gaussian case, to compute the barycenter ν̂ =
ν(x|µ̂, Σ̂) of a set of weighted Gaussian components (w,ν) one can proceed by
evaluating the partial derivatives of (3.70) w.r.t. the parameters θ = {µ,Σ−1}
of a generic component ν(x|µ,Σ) as:

∂mD(ν|w,ν)
∂µ

=
1

wT1n

n∑
i=1

wi

∂D
(
νi∥ν(·|µ,Σ)

)
∂µ

= 0,

∂mD(ν|w,ν)
∂Σ−1

=
1

wT1n

n∑
i=1

wi

∂D
(
νi∥ν(·|µ,Σ)

)
∂Σ−1

= 0.

(3.72)

Nonetheless, as it will be discussed, only for very few D-measures such sys-
tem of partial derivatives admits a closed form solution; when this does not
happen, one can resort either to gradient descent optimization or to Fixed-
Point Iteration (FPI) algorithms. As discussed in [48], the latter approach
overcomes the former when the barycenter problem is addressed, given that
gradient descent has to be constrained to preserve the admissible domain of
the parameters. For instance, the covariance matrix of a Gaussian density
has to belong to Sd

++, which is often not an easy constraint to satisfy. More-
over, one has to find a suitable gradient step size, which can be a rather
critical choice when computing barycenters; for a more detailed discussion,
see [48]. For the remainder of this work, when (3.72) does not admit a closed
form solution, FPI algorithms will be considered.

Definition 3.3.1. (Associativity of barycenters) For a given D-measure and
given class Q of distributions, the barycenters are said to be associative if for
any given weighted set {wiqi}ni=1 of distributions qi ∈ Q, and for any given
pair of disjoint subsets I1 and I2 of the interval [1 :n], the following identity

3Such a function can take either sets of weighted components, written either in the
form (w, q) or {wiqi}ni=1 (e.g. Φ̄D(w, q), Φ̄D({wiqi}ni=1)), or mixture/intensities, either in
normalized or unnormalized forms (e.g. Φ̄D(wTq), Φ̄D(w̃iqi + w̃jqj)).
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holds true:

Φ̄D

(
{wiqi}i∈I1∪I2

)
= Φ̄D

(
{w̄I1 q̂I1 , w̄I2 q̂I2}),

where q̂Ij = Φ̄D

(
{wiqi}i∈Ij

)
, w̄Ij =

∑
i∈Ij

wi, j ∈ {1, 2}. (3.73)

An equivalent form for the associativity property (3.73), that uses un-
normalized mixtures as argument of the function Φ̄D(·), instead of weighted
sets, is the following:

q̂I1∪I2 = Φ̄D

( ∑
i∈I1∪I2

wiqi

)
= Φ̄D

(
w̄I1 q̂I1 + w̄I2 q̂I2). (3.74)

Following is reported another fundamental property for the D-barycenter
of a set of weighted densities.

Definition 3.3.2. A family of distributions Q and a D-measure are said to
satisfy the Average Barycentral Triangular Identity (ABTI) property if for
any given weighted set {wiqi}ni=1 the following holds true

n∑
i=1

wiD(qi∥q) =
n∑

i=1

wiD(qi∥q̂) +
( n∑

i=1

wi

)
D(q̂∥q), ∀q ∈ Q, (3.75)

where q̂ = Φ̄D({wiqi}ni=1).

The identity (3.75) can be rewritten in the form

n∑
i=1

wiD(qi∥q) =
n∑

i=1

wi

(
D(qi∥q̂) +D(q̂∥q)

)
, ∀q ∈ Q, (3.76)

that justifies the name ABTI. Indeed, in general, given a triple (qi, q̂, q) (a
triangle in Q), where qi is any component of a weighted set {wiqi}ni=1, q̂ is its
barycenter, and q any distribution in Q, we have that D(qi∥q) can be larger,
equal, or smaller than the sum D(qi∥q̂) +D(q̂∥q), i.e.

D(qi∥q) ⪋ D(qi∥q̂) +D(q̂∥q). (3.77)

The family Q and the D-measure satisfy the ABTI property if, for any given
weighted set {wiqi}ni=1, averaging both the left and right hand sides of (3.77),
using the weight set w = {wi}ni=1, the identity (3.76) is obtained.
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Remark 1. D-measures that satisfy the triangular inequality

D(q1∥q3) ≤ D(q1∥q2) +D(q2∥q3), ∀q1, q2, q3 ∈ Q, (3.78)

are such that

n∑
i=1

wiD(qi∥q) ≤
n∑

i=1

wi

(
D(qi∥q̂) +D(q̂∥q)

)
, ∀q ∈ Q, (3.79)

and therefore they do not satisfy the ABTI property (3.76); none of the D-
measures listed in this work satisfy the triangular inequality property.

3.3.1 Discussion about the features of a D-measure

As mentioned, there exists a broad range of D-measures, and they all exhibit
different features4, both in terms of analytical properties and peculiarities.
In this regard, it is often not obvious which dissimilarity would be more
suitable for a problem of interest, since, as it will be discussed, the corre-
sponding choice should always take into account the problem structure and
related desired outcomes. A discussion regarding the features of D-measures
is not the main goal of this work, since it is not an easy task and there is
not much literature available. In any case, a preliminary discussion regard-
ing this topic is required to better understand some considerations which will
follow in the remainder of this dissertation. Together with some observations
derived from the experience of the author, terms like inclusive or exclusive
will be often used when referring to the features of a given D-measure. Such
terms have been coined in the work of Minka [49] to describe the peculiarities
of a D-measure; to the best of the author’s knowledge, not much of literature
has been produced regarding such a topic, probably due to the fact that it is
not easy to identify particular metrics to evaluate such a thing. Nonetheless,
after a broad campaign of tests, it has been noticed that investigating the
outcome of a barycenter (or BSDA) computation can provide some inter-
esting insights about a given D-measure. In this regard, following will be
reported a series of ”grid” tests, that is the function (3.70) will be evaluated
over a grid to be visualized as function of parameters. Moreover, potential

4With the word feature, the author is denoting the peculiarities of a dissimilarity mea-
sure, since, as it will be discussed more in detail in this dissertation, two D-measures can
exhibit very different behaviors when applied to the same problem.

102



closed form solutions, or FPI algorithms, will be reported for a broad range
of D-measures, by discussing the corresponding properties. Since in this
work the barycenter will be favored over the BSDA as merging method, the
analysis will be restricted to (3.70); nonetheless, some insights regarding the
BSDA will be provided for each D-measure.

Let us consider the set of 1-dimensional Gaussian densities parameterized
as follows:

d = 1, w = {0.2, 0.3, 0.5},
µ = {−1, 0, 3.5}, Σ = {0.05, 0.1, 0.15}.

(3.80)

3.3.2 Forward Kullback-Leibler Divergence Barycen-
ter

Only for the DFKL and the DRKL the barycenter computation will be ad-
dressed for the gammas and inverse-Wisharts in addition to the Gaussian
case. Given (3.80), the correspondingDFKL-bar surface is reported in Fig.3.1.
The DFKL admits a closed form for the barycenter computation which is
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Figure 3.1: DFKL-bar: µ̂ = 1.5500, Σ̂ = 4.0375.

known in the literature as moment-preserving merge [50], or moment match-
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ing, which formulae are the following:

µ̂ =
1

wT1n

n∑
i=1

wiµi ≜ µMP, (3.81a)

Σ̂ =
1

wT1n

n∑
i=1

wi

(
Σi + (µi − µ̂)(µi − µ̂)T ) ≜ ΨMP(µ̂). (3.81b)

The corresponding barycenter will then be ν̂ = ν(·|µ̂, Σ̂). Moreover, the
DFKL-barycenter and the DFKL-BSGA do coincide and the proof is reported
in Appendix B.1.1. Such a property results to be really interesting, since
it says that the DFKL-barycenter, which has a closed analytical form, is the
best approximation one can provide for both a set of weighted Gaussians and
the corresponding mixture built as their convex sum. Moreover, the DFKL is
a Bregman divergence, which, in the barycenter case, admits a unique min-
imizer [51]. For the Gaussian case, a closed form solution is given, but this
might not be true for other distributions in the exponential family; nonethe-
less, when this happens, the unique solution can be approximated by means
of numerical methods with arbitrary accuracy. In this regard, let us con-
sider now a set of weighted inverse-Wishart densities (w,φ) = {wiφi}ni=1; by
solving (3.72) in the DFKL case, one obtains the following system:

d∑
m=1

ψ0

(
v̂ − d−m

2

)
− d log

v̂ − d− 1

2
= h, (3.82a)

V̂ =
v̂ − d− 1

2
H−1, (3.82b)

where:

H =
1

wT1n

n∑
i=1

wi
vi − d− 1

2
V −1
i ,

h =
1

wT1n

n∑
i=1

wi

( d∑
m=1

ψ0

(
vi − d−m

2

)
− log |Vi|

)
− log |H|.

(3.83)

Although the system of equations (3.82) is formally a system whose unknown

is in a high dimensional space, since (V̂ , v̂) ∈ Sd
++ × R+, it turns out that

it can be solved by simply solving (3.82a), which is a scalar equation in the

scalar unknown v̂. Once v̂ is computed, the matrix unknown V̂ is obtained
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using (3.82b). In order to find the (unique) solution to (3.82a), one can resort
to the Newton-Rhapson (NR) algorithm. Let us consider:

f(v) =
d∑

m=1

ψ0

(
v − d−m

2

)
− d log

v − d− 1

2
− h,

f ′(v) =
1

2

d∑
m=1

ψ1

(
v − d−m

2

)
− d

v − d− 1
.

(3.84)

Then, the NR iteration is:

v(k+1) = v(k) − f(v(k))

f ′(v(k))
. (3.85)

Nonetheless, ψ0 assumes real values only for positive arguments, hence sit-
uations where v(k) < 2d are not admissible in the NR recursion. In this
regard, the starting point v(0) is fundamental either for convergence time, or
for numerical stability of the root-finding algorithm. In Fig. 3.2 is reported
a graphical intuition about the features of f(v). First of all, f(v) is a strictly
increasing concave function, hence f ′(v) is always positive in the interval
(2d,+∞). If 2d < v < v̂ is chosen, one gets f(v) < 0, and the NR algorithm
is expected to provide a uniform convergence towards v̂ from below. If in-
stead the recursion is initialized in a value v > v̂, f ′(v) → 0, while f(v) > 0,
hence providing significant updates towards values of v(k) which might be
smaller than 2d, which is the case reported in Fig. 3.2. In this regard, in
order to have a guaranteed convergence to v̂, a suitable initialization could be
v(0) = 2d+ ϵ, with ϵ small enough (e.g. ϵ = 10−3); such starting point might
be far from v̂, but it should be noted that the recursion on v is scalar, hence
computationally lightweight. Finally, by iterating the NR algorithm until a
given desired accuracy is reached, the DFKL-barycenter of the IW densities
is parameterized as φ̂ = φ(X|V̂ , v̂), where v̂ is the solution provided by the

root-finding algorithm, and V̂ is computed accordingly.
As for the Gaussian case, the DFKL-BSDA coincides with the DFKL-

barycenter, and this can be proven by doing the same considerations as
before.

Let us consider now a set of weighted gamma densities (w,γ) = {wiγi}ni=1;
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Figure 3.2: Graphical intuition of the f(v) initializations (1D).

by proceeding as before, one obtains the following system:

ψ0(κ̂)− log κ̂ = g2, (3.86a)

ω̂ =
g1
κ̂
, (3.86b)

where:

g1 =
1

wT1n

n∑
i=1

wiκiωi,

g2 =
1

wT1n

n∑
i=1

wi

(
ψ0(κi) + logωi

)
− log g1.

(3.87)

Even in this case, the system does not admit a closed form solution. Nonethe-
less, by comparing (3.86) to (3.82), one notices that the system associated
to the gamma DFKL-barycenter is a simpler case of the one discussed for
the inverse-Wisharts, hence only (3.86a) has to be solved for the scalar κ̂,
and then ω̂ is simply computed using (3.86b); the only main difference is
that κmin = 0. Regarding the initialization, if the digamma series expansion
truncated to the second order (see generalized Puiseux series) is considered
in (3.86), one obtains a second degree polynomial equation from which the
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accurate initialization κ(0) =
−(1+

√
1−4g2/3)

4g2
can be obtained. It can be shown

that the discriminant in such formula is always positive. A similar approach
can be considered for the inverse-Wishart, but, from numerical tests, it has
been observed that for high dimensional problems such a starting point can
be rather coarse, and often leads to negative arguments for the digamma func-
tion. Once solved the equations (3.86a) and (3.86b), the DFKL-barycenter of
the set of weighted gammas is parameterized as γ̂ = γ(χ|κ̂, ω̂). As for the
Gaussians and inverse-Wisharts, the DFKL-BSDA and DFKL-barycenter coin-
cide: this property is intrinsic of the D-measure itself, hence can be extended
to the whole exponential family.

Are there any similarities between the just discussed formulae and any of the
previous sections? By considering again Sec. 2.3, it is rather easy to notice
the strong similarity between the MLE of those three densities given a set
of samples and the barycenter computation for a set of densities. In fact, an
interesting property of the DFKL measure is that, as discussed in 3.5, it is
strictly linked to the ML principle. The only differences between the sample
data and set of densities cases are the values assumed by the constants and
the fact that the densities can have different weights, while the samples all
have weight 1

n
. This interesting fact will be exploited later by coupling the

EM algorithm together a mixture reduction approach based on the DFKL to
find mixture models with a likely number of components.

In general, the DFKL is regarded as an inclusive D-measure, in the sense
that it tries to preserve the most of the mixture density by spreading the
barycenter covariance when the weighted components are spread apart in
the space. As it will be discussed, such a property can be problematic in
some applications.

DFKL-barycenters in the exponential family and their properties

Let us recall the EF as defined in Sec. 2.2; some properties of DFKL-
barycenters of weighted sets of pdfs in an exponential family of distributions
Q with natural parameter η ∈ Λ ⊂ Rnη will be presented in the following.
q(η) will denotes a pdf in Q, as a shorthand for q(x|η). Moreover, when
considering a weighted set (w, q) of distributions in Q, the short notation
qi is used instead of q(x|ηi) to denote a distribution with natural parameter
ηi. With respect to the mixture case defined in 2.8, the given parameters are
now η (the natural parameters). This change will only affect this section,
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since it makes more elegant and compact the discussion which will follow.

Proposition 3.3.1. Let Q be an exponential family of distributions, with
natural parameter η ∈ Λ ⊂ Rnη . The DFKL-barycenter of a weighted set
(w, q) = {wiqi}ni=1 of distributions qi ∈ Q is unique, and its natural parame-
ter η̂ ∈ Λ is such that:

η̂ : b(η̂) =
1

w̄

n∑
i=1

wib(ηi). (3.88)

where w̄ = wT1n. Since the solution η̂ of (3.88) is unique, η̂ can be written
as

η̂ = b−1

(
1

w̄

n∑
i=1

wib(ηi)

)
. (3.89)

Proof of uniqueness is reported in Appendix B.2.1.

Remark 2. Taking into account (3.88), one can write:

mDFKL
(q(η)|w, q) =

n∑
i=1

wi

(
ηTi b(ηi)− a(ηi)

)
− w̄

(
ηT b(η̂)− a(η)

)
. (3.90)

Equation (3.88) implies the associativity property for theDFKL-barycenters
of weighted sets and mixtures of distributions in an exponential family Q, as
proved in the following theorem.

Theorem 3.3.2. The DFKL-barycenters of weighted sets of pdfs in a class Q
of distributions in the exponential family, are associative.

Proof of associativity for DFKL-barycenters is reported in Appendix B.2.2.
Another important property possessed by the DFKL-barycenters is the

Average Barycentral Triangular Identity (ABTI).

Proposition 3.3.3. Given q1, q2 ∈ Q, with Q an exponential family, and
two positive weights w1 and w2, the following is true

w1DFKL(q1∥q) + w2DFKL(q2∥q) =
= w1DFKL(q1∥q̂1,2) + w2DFKL(q2∥q̂1,2) + (w1 + w2)DFKL(q̂1,2∥q), ∀q ∈ Q.

(3.91)
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Figure 3.3: Pictorial representation of the property (3.91) of the DFKL-
barycenter of two weighted distributions.

The divergences appearing in (3.91) are pictorially represented in Fig. 3.3.
Alternative forms of the identity (3.91) are the following

2∑
i=1

wiDFKL(qi∥q) =
2∑

i=1

wi

(
DFKL(qi∥q̂1,2)+DFKL(q̂1,2∥q)

)
, ∀q ∈ Q, (3.92)

and

2∑
i=1

wi

(
DFKL(qi∥q)−

(
DFKL(qi∥q̂1,2)+DFKL(q̂1,2∥q)

))
= 0, ∀q ∈ Q, (3.93)

Consider now a weighted triple {wi, qi}3i=1 and the weighted pair {{(w1+
w2), q̂1,2}, {w3, q3}}, and recall that for distributions in the exponential family
the associativity of the DFKL-barycenters holds true, so that

q̂1,2,3 = Φ̄DFKL
({wiqi}3i=1) = Φ̄DFKL

({(w1 + w2)q̂1,2, w3q3}). (3.94)
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Then, the identity (3.91) can be extended to weighted triples {wiqi}3i=1:

w1DFKL(q1∥q) + w2DFKL(q2∥q) + w3DFKL(q3∥q) =
= w1DFKL(q1∥q̂1,2,3) + w2DFKL(q2∥q̂1,2,3) + w3DFKL(q3∥q̂1,2,3)+
+ (w1 + w2 + w3)DFKL(q̂1,2,3∥q),

(3.95)
which holds ∀q ∈ Q. More in general, one can state the following:

Proposition 3.3.4. Consider a family Q and a D-measure such that the
barycenters of weighted sets of distributions are associative. If, for any pair
{wiqi}2i=1 of weighted distributions in Q, the following property is satisfied,

w1D(q1∥q) + w2D(q2∥q)
= w1D(q1∥q̂1,2) + w2D(q2∥q̂1,2) + (w1 + w2)D(q̂1,2∥q), ∀q ∈ Q,

(3.96)
then, for any triple {wiqi}3i=1 of weighted distributions in Q, the following
holds true

w1D(q1∥q) + w2D(q2∥q) + w3D(q3∥q)
= w1D(q1∥q̂1,2,3) + w2D(q2∥q̂1,2,3)+
+ w3D(q3∥q̂1,2,3) + (w1 + w2 + w3)D(q̂1,2,3∥q).

(3.97)

∀q ∈ Q.

The corresponding proof is short and it is reported following.

Proof. Apply the identity (3.96) to the weighted pair {(w1 + w2)q̂1,2, w3q3},
to get, ∀q ∈ Q,

(w1 + w2)D(q̂1,2∥q) + w3D(q3∥q)
= (w1 + w2)D(q̂1,2∥q̂1,2,3) + w3D(q3∥q̂1,2,3) + (w1 + w2 + w3)D(q̂1,2,3∥q).

(3.98)
Replacing the identities

(w1 + w2)D(q̂1,2∥q) = w1D(q1∥q̂1,2) + w2D(q2∥q̂1,2)−
(
w1D(q1∥q) + w2D(q2∥q)

)
,

(3.99)
and

(w1 + w2)D(q̂1,2∥q̂1,2,3)
= w1D(q1∥q̂1,2) + w2D(q2∥q̂1,2)−

(
w1D(q1∥q̂1,2,3) + w2D(q2∥q̂1,2,3)

)
,

(3.100)
into (3.98), after straightforward simplifications one gets (3.97).
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Under the barycenter associativity property (3.73), the repeated applica-
tion of (3.96) allows to extend the properties (3.96) and (3.97) to weighted
sets of distributions of any size n. In the DFKL-barycenter case, such a prop-
erty will allow, in Chapter 4.4, to define all the adaptive reduction theory for
mixture models.

3.3.3 Reverse Kullback-Leibler Divergence Barycenter

As done for the DFKL, in Fig.3.4 is reported the DRKL-bar surface. In the
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Figure 3.4: DRKL-bar: µ̂ = 0.7419, Σ̂ = 0.0968.

Gaussian case, the DRKL also has a closed form for the barycenter computa-
tion, that is:

Σ̂ =

(
1

wT1n

n∑
i=1

wiΣ
−1
i

)−1

≜ ΨKLA, (3.101a)

µ̂ = Σ̂

(
1

wT1n

n∑
i=1

wiΣ
−1
i µi

)
≜ µKLA. (3.101b)

which in the literature is known as the Kullback-Leibler Average (KLA) [52]
of the Gaussian components. For future purposes, it is also useful to define
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the following:

µ̃KLA ≜
1

wT1n

n∑
i=1

wiΣ
−1
i µi, so that µKLA = ΨKLA µ̃KLA. (3.102)

TheDRKL is known to be an exclusive D-measure, in the sense that it neglects
low-density regions in favor of main peaks preservation. If compared to the
DFKL, one can notice how narrow the corresponding DRKL-bar covariance is
w.r.t. the DFKL-bar one. Moreover, as already mentioned the DRKL exists
unique. Regarding the Best Single Gaussian Approximation (BSGA), it does
not coincide with the DRKL-barycenter; moreover, the corresponding solution
is not unique, and it can incur in numerical issues.
Let us now consider a set of weighted inverse-Wisharts (w,φ) = {wiφi}ni=1;
the DRKL-barycenter is then given by:

v̂ =
1

wT1n

n∑
i=1

wivi, (3.103a)

V̂ =
1

wT1n

n∑
i=1

wiVi, (3.103b)

that is, in the DRKL case, the barycenter of a set of inverse-Wisharts is
provided by the weighted arithmetic mean of the parameters.
Given a set of gamma densities (w,γ) = {wiγi}ni=1, the DRKL-barycenter is
parameterized as:

κ̂ =
1

wT1n

n∑
i=1

wiκi, (3.104a)

ω̂ =

[
1

wT1n

n∑
i=1

wi
1

ωi

]−1

, (3.104b)

that is one obtains the weighted arithmetic mean for the shape parameter κ̂,
whereas the weighted geometric mean for the parameter ω̂.
Until now, for the Gaussian case, it has been possible to write all the barycen-
ters in a closed form; as discussed in [48], the DFKL and the DRKL are the only
two cases regarding the reported measures in Sec. 3.1 for which it is possible
to obtain analytic solutions. In this regard, all the dissimilarities following
in this section do not possess closed forms for the Gaussian case; nonethe-
less, as mentioned, one can resort to FPI algorithms to obtain an accurate
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estimate of the corresponding barycenter. As it will be shown, though, some
D-measures do not admit a unique minimizer for the barycenter problem.
The DRKL-barycenters are also associative, but such a property is not ex-
ploited in this dissertation, hence no further analysis will be provided in this
regard.
Note: among the listed D-measures, the DFKL and the DRKL are the only
two cases of barycenter associativity.

3.3.4 Skew Jeffreys’ Divergence Barycenter

Let us consider the skew Jeffreys’ divergence (3.15); if the set of weighted
Gaussians (3.80) is considered, one obtains the surface for (3.70) reported in
Fig.3.5.
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Figure 3.5: DSKL-bar: µ̂ = 0.8449, Σ̂ = 0.6624.

By following the usual approach (3.72), it is not possible to obtain either a
closed form solution or a FPI algorithm directly. Nonetheless, by exploiting
some algebraic properties, and after some manipulations, it is possible to
write the following system of coupled recursive equations:

µ̂(k+1) = (Γ
α,(k)
KLA)

−1
[
αµ̃KLA + (Σ̂(k))−1(1− α)µMP

]
,

Σ̂(k+1) = (Γ
α,(k)
KLA)

− 1
2

(
(Γ

α,(k)
KLA)

1
2Γ

α,(k)
MP (Γ

α,(k)
KLA)

1
2

) 1
2 (Γ

α,(k)
KLA)

− 1
2 ,

(3.105)
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where µMP and µ̃KLA are defined in (3.81a) and (3.102), and

Γ
α,(k)
KLA = αΨ−1

KLA + (1− α)(Σ̂(k))−1,

Γ
α,(k)
MP = (1− α)ΨMP(µ̂

(k)) + αΣ̂(k).
(3.106)

with ΨKLA defined in (3.101a) and ΨMP(µ̂) defined in (3.81b).
Note that, differently from ΨKLA, the matrix ΨMP depends on the current

mean µ̂(k), and therefore must be recomputed at each iteration. If α = 0.5,
the DSKL case (3.16), the equations (3.105) can be simplified:

µ̂(k+1) =
[
Ψ−1

KLA + (Σ̂(k))−1
]−1[

µ̃KLA + (Σ̂(k))−1µMP

]
,

Σ̂(k+1) = Ψ
1
2
KLA

(
Ψ

− 1
2

KLAΨMP(µ̂
(k))Ψ

− 1
2

KLA

) 1
2Ψ

1
2
KLA,

(3.107)

which can be efficiently implemented using the Cholesky factorizations of the
covariance matrices. Note that the above recursions preserve the symmetry
and the positive-definiteness of the covariance matrices. As done in [53], a
proof of convergence of the iterations (3.105) is not provided. However, an in-
tensive campaign of numerical tests has shown nice convergence properties of
the iterations. Indeed, theDSKL-barycenter of a given set is unique, as proved
in [51], and this justifies the nice behavior of the fixed-point recursion pro-

vided. A good choice for the initial point (µ̂(0), Σ̂(0)) is the DFKL-barycenter
for α < 0.5 and the DRKL-barycenter for α > 0.5. Indeed, from the definition
(3.15), by varying α ∈ [0, 1], one can slide between the DFKL and the DRKL

barycenters, passing at the DSKL-barycenter for α = 0.5.
With respect to theDFKL and theDRKL, theDSKL seems to fall in between

in terms of inclusiveness/exclusiveness.
Regarding the BSGA, it does not coincide with the DSKL-barycenter;

moreover, the surface corresponding to the DSKL-BSGA exhibits several local
minima, hence the corresponding minimizer is not unique.

3.3.5 Square 2-Wasserstein Distance Barycenter

When the W2 is considered as D-measure to evaluate the barycenter of the
set (3.80), one obtains the surface reported in Fig. 3.6.

For this D-measure, the barycenter computation for a set of Gaussian
densities is rather particular, since one obtains a closed form for the mean
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Figure 3.6: DW2-bar: µ̂ = 1.5500, Σ̂ = 0.1110.

and a recursive (FPI) form for the covariance, as:

µ̂ =
1

wT1n

n∑
i=1

wiµi, (3.108a)

Σ̂(k+1) =
1

wT1n

n∑
i=1

wi

((
Σ̂(k)

) 1
2Σi

(
Σ̂(k)

) 1
2

) 1
2

. (3.108b)

Note that the mean (3.108a) of the DW2-barycenter is the µMP (3.81a), while
(3.108b) does not allow a closed form solution for n > 2. In [53] the unique-

ness of the solution of Σ̂ of (3.108b) has been proved. Although no proof of
convergence has been provided for the reported form, the authors claim its
good convergence properties, which have been verified in an extensive cam-
paign of numerical tests. It is interesting to note that a closed form for the
DW2-barycenter covariance exists for n = 2 ([54]):

Σ̂ =
1

(wi + wj)2

(
w2

iΣi + w2
jΣj + wiwj

(
(ΣiΣj)

1
2 + (ΣjΣi)

1
2

))
. (3.109)

Regarding the DW2-BSGA, it is rather difficult to compute (3.69) (even nu-
merically). Nonetheless, an alternative formulation based on the quantile
functions5 allows to evaluate numerically the p-th Wasserstein distance; by

5Inverse cdfs.
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combining such formulation with sampling techniques, it has been found out
that the DW2-BSGA coincides with the DW2-barycenter only for the equation
relative to the mean, while differing significantly for the covariance solution.
The DW2-barycenter appears to be exclusive in terms of covariance, while
the DW2-BSGA is particularly inclusive.

All plots reported until now show that, for the D-measures considered so
far, suggest the presence of a unique global minimizer (the barycenter); in
the works [51,55] is proven the corresponding uniqueness for the general case
rather than for d = 1 only. It follows that all the proposed FP iterations
proposed are quite insensitive to the initialization. As it will be shown,
though, for other D-measures this might not be true anymore, and a careful
initialization of the FPIs is needed to obtain the convergence to the global
minimum of (3.70).

3.3.6 Likeness-based Family Barycenters

As discussed in Sec. 3.1.4, dissimilarity measures such as the Square L2
norm (aka Integral Squared Error (ISE)) and the Cauchy-Schwarz divergence
(CSD), belong to the Likeness-based family, which possess closed forms for
the dissimilarity between mixtures; jointly to the availability of closed form
partial derivatives (3.35), this allows to evaluate both the BSGA and the
barycenter quantities. Nonetheless, a main drawback of the LB family is that,
even by possessing closed forms for dissimilarities and partial derivatives,
the solutions for the problems (3.71) and (3.69) never admit a closed form.
For a detailed discussion about gradient-descent computed DLB-BSGAs and
DLB-barycenters see [35]. In this work, FPI algorithms ([48]) are instead
considered.

Let us define the following quantities:

w̃i,ν = wiJ
i,ν , w̃c1

i,ν = wiJ
i,νci,ν1 , w̃c2

i,ν = wiJ
ν,νci,ν2 ,

w̄ν =
n∑

i=1

w̃i,ν , w̄c1
ν =

n∑
i=1

w̃c1
i,ν , w̄c2

ν =
n∑

i=1

w̃c2
i,ν ,

(3.110)

where J ·,· are the likeness terms as defined in (3.20), and ci, i = {1, 2} are
the coefficient proper of each of the LB dissimilarities as discussed in Sec.
3.1.4. It is then possible to derive the following FPI algorithm to compute
the Gaussian barycenter ν(x|µ̂, Σ̂) parameters for a generic D-measure in the
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LB family:

µ̂(k+1) =
1

w̄c1
ν(k)

n∑
i=1

w̃c1
i,ν(k)

µ̄i,ν(k) , (3.111)

Σ̂(k+1) =
1

w̄c1
ν(k)

[ n∑
i=1

w̃c1
i,ν(k)

(
Σ̄i,ν(k) + (µ̄i,ν(k) − µ̂(k))(µ̄i,ν(k) − µ̂(k))T

)
− w̄c2

ν(k)
Σ̂(k)

]
.

(3.112)

where ν(k) denotes the Gaussian density with parameters θ(k) = {µ(k),Σ(k)},
and µ̄, Σ̄ are the quantities as defined in (3.26).

Let us now consider the DL2 measure when solving the barycenter prob-
lem for the set (3.80). The corresponding ADF surface is reported in Fig.
3.7. As anticipated, some D-measures do not admit a unique minimizer for
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Figure 3.7: DL2-bar: µ̂ = 1.6105, Σ̂ = 7.0782.

the barycenter problem: the DL2 is one of those. Moreover, those multiple
solutions could be even equivalent in terms of cost. The existence of several
minimizers can represent an issue when addressing the barycenter problem,
since the initialization can significantly influence the result. For the DL2, the
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general recursion (3.111) becomes:

µ̂(k+1) =
1

w̄ν(k)

n∑
i=1

w̃i,ν(k)µ̄i,ν(k) , (3.113)

Σ̂(k+1) =
1

w̄ν(k)

[ n∑
i=1

w̃i,ν(k)

(
Σ̄i,ν(k) + (µ̄i,ν(k) − µ̂(k))(µ̄i,ν(k) − µ̂(k))T

)
+ (3.114)

+
1

2
(wT1n)Jν(k),ν(k)Σ̂

(k)
]
. (3.115)

When several local minima are present, finding a suitable initialization for
such recursion is not an obvious task. The DL2 is a rather strange D-measure
in terms of features; some observations on its behavior has been discussed
even by Runnalls in the work [50]. Sometimes it exhibits particularly ex-
clusive behaviors, which result in pruning-like solutions for the barycenter
problem; some others, instead, it becomes a rather inclusive D-measure, as
happens in the case reported in Fig.3.7. In general, the lack of solution
uniqueness for the barycenter problem is a severe hindrance for a D-measure
when applied to the MRP; omitting the details, different mixtures can be
equivalent in terms of cost and, moreover, there are no guarantees to reach
the global optimum, hence finding often inferior solutions.

Regarding the DL2-BSGA, it coincides with the DL2-barycenter and the
corresponding proof is reported in Appendix B.1.2.

Another interesting D-measure in the LB family is the DCS for which one
obtains the ADF surface for the set (3.80) as reported in Fig. 3.8. As it will
be discussed when considering the Bhattacharyya distance, it is reasonable
to assume uniqueness of the solution for the barycenter problem when the
Cauchy-Schwarz Divergence is considered. Nonetheless, as for the DL2, the
DCS does not admit a closed form for the barycenter problem; nonetheless,
one can resort to the following FPI algorithm:

µ̂(k+1) =
1

wT1n

n∑
i=1

wiµ̄i,ν(k) , (3.116)

Σ̂(k+1) =
2

wT1n

n∑
i=1

wi

(
Σ̄i,ν(k) + (µ̄i,ν(k) − µ̂(k))(µ̄i,ν(k) − µ̂(k))T

)
. (3.117)

The DCS is a rather strange D-measure itself. If the barycenter is consid-
ered, it results to be probably the most inclusive dissimilarity among the
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ones reported in this work. If the corresponding BSGA, which does not co-
incide with the barycenter, is instead considered [35], it exhibits a rather
counter-intuitive behavior; nonetheless, the corresponding general trend is
exclusiveness.
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Figure 3.8: DCS-bar: µ̂ = 1.5407, Σ̂ = 7.8610.

3.3.7 I° kind Chernoff α-Divergence barycenter

As done for the LB family, in the following two sections will be discussed
the Chernoff α-divergences when applied to the barycenter problem. Let us
define the following quantities:

wcα
i,ν = wicα(νi, ν), w̄cα

ν =
n∑

i=1

wcα
i,ν . (3.118)

By employing this class of divergences in (3.72), it is possible to obtain the
following FPI algorithm:

µ̂(k+1) =
1

w̄cα
ν(k)

n∑
i=1

wcα
i,ν(k)

µ̄α
i,ν(k) , (3.119)

Σ̂(k+1) =
1

w̄cα
ν(k)

n∑
i=1

wcα
i,ν(k)

(
Σ̄α

i,ν(k) + (µ̄α
i,ν(k) − µ̂(k))(µ̄α

i,ν(k) − µ̂(k))T
)
, (3.120)
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where µ̄α
i,ν and Σ̄α

i,ν have been defined in (3.60). As discussed in Sec. 3.1.5, for
α → 1 one obtains the DFKL-barycenter, while for α → 0 one should theoreti-
cally get the DRKL barycenter in the limit, but the equations as reported here
may struggle to converge to such quantity if α is too small. Nonetheless, for
α = 0.5 one obtains the DH2-barycenter recursive equations. By considering
now the DH2 in (3.70) for the set (3.80), one obtains the surface reported
in Fig.3.9. The DH2, when employed in the barycenter computation, admits
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Figure 3.9: DH2-bar: µ̂ = 3.5000, Σ̂ = 0.1500.

several minimizers, and may results to be a particularly exclusive D-measure.
If two sharp and well definite peaks are present, the solution corresponding
to the barycenter problem is, in general, parameterized as of the two peaks;
this is what happens in Fig.3.9. As for the DL2 case, the outcome of the
barycenter problem is rather sensitive to the initialization. Regarding the
DH2-BSGA, it does not coincide with the DH2-barycenter.

3.3.8 II° kind Chernoff α-Divergence barycenter

For completeness, the Chernoff α-divergences of the second kind are analysed
as done for all the other D-measures. By employing (A.13) in (3.72), it is
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possible to obtain the following FPI algorithm:

µ̂(k+1) =
1

wT1n

n∑
i=1

wiµ̄
α
i,ν(k) ,

Σ̂(k+1) =
1

wT1n

n∑
i=1

wi

(
Σ̄α

i,ν(k) + (µ̄α
i,ν(k) − µ̂(k))(µ̄α

i,ν(k) − µ̂(k))T
)
.

(3.121)

By considering the case α = 0.5, one obtains the recursion for the Bhat-
tacharyya distance, which shows again the similarity it bears with the DCS

divergence. If theDB is considered in (3.70) for the set (3.80), one obtains the
surface reported in Fig.3.10. The Bhattacharyya distance admits a unique
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Figure 3.10: DB-bar: µ̂ = 1.5316, Σ̂ = 3.9398.

minimizer, hence whatever the initialization, the DB-barycenter is found by
exploiting the reported FPI algorithm. In terms of features, when applied to
the barycenter problem, the Bhattacharyya distance is slightly less inclusive
than the DFKL measure, favoring peaks more, but still prone to covariance
spreading if the components are spread apart in the space. To conclude this
section, the DB-BSGA does not coincide with the DB-barycenter.
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3.4 Refinement of reduced order mixture mod-

els

Let us assume that a reduced order mixture model is provided, for instance,
by means of a greedy reduction algorithm; such a model can serve for a
refinement phase where, by exploiting the original mixture information, the
corresponding dissimilarity can be further decreased. In the literature have
been proposed many algorithms to refine a reduced order model which, in
general, can be subdivided in two classes:

• Optimization-based refinement: when the D-measure chosen in (3.68)
admits a closed forms between mixtures, one can think to optimize
the reduced mixture parameters by means of gradient descent [37];
nonetheless, as discussed, such a property is not common and, among
the discussed D-measures in this work, only the LB family is suitable
in this regard.

• Clustering-based refinement: as it will be discussed in Chapter 4, when
closed forms are not available, it is possible to induce composite dissimi-
larities between mixtures. In general, when this approach is considered,
resulting refinement algorithms strongly resemble the K-means and EM
algorithms discussed in Chapter 2. Those algorithms will be the core
refinement approach in this work, since they can be applied for any
D-measure in (3.68).

In both cases, the common goal is to minimize a loss function which can be
either the originalD-measure or a tractable approximation of it, by exploiting
directly the component parameters. Nonetheless, it could often happen that
a given tractable approximation might deviate too much from the real D-
measure, hence it would be of interest to investigate the features of such
alternatives. In this regard, few insights about tractable upper-bounds on
the original D-measures will be provided in Chapter 4. For the goals of this
work, though, only clustering-based refinement will be reported in detail,
since it will serve as last block of a consistent reduction pipeline presented
in the next chapter.
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3.5 Review of the literature

Until now, many theoretical and fundamental concepts have been discussed
without providing any practical mixture reduction algorithm. Nonetheless,
all the previously provided blocks are sufficient to describe the majority of
the existing approaches; as it will be shown, the general trend when ap-
proaching the MRP is to perform a greedy reduction, where a sequence of
reduced mixtures decreasing in the size is obtained by either merging or prun-
ing components at each step, and then to pass the corresponding outcome
through a refinement phase. Since the most of the new results proposed in
this dissertation are concerned with greedy reduction of mixtures, the focus
of the literature review will be mainly on such algorithms. Nonetheless, a
brief, but rich, bibliography will be reported for the refinement algorithms as
well. A greedy reduction algorithm serves in general as a starting point for a
refinement phase; in this regard, the author thinks that providing a good ini-
tialization is particularly important, both to avoid particularly inferior local
minima and to speed up the refinement algorithm convergence.

3.5.1 Greedy reduction algorithms

In order to facilitate the discussion which will follow, it might be convenient
to define several terms to further characterize a mixture reduction algorithm.
A greedy reduction algorithm is said to be:

• Global, if the reduction steps to be performed are aimed at minimizing
the dissimilarity between the original mixture and the current reduced
order model by taking into account all the mixture parameters.

• Incrementally global, if the reduction steps to be performed are aimed at
minimizing the dissimilarity between the previous reduced model order
and the current one by taking into account all the mixture parameters.

• Hybrid, if the reduction performed at each step is aimed at minimizing
the dissimilarity between the current approximating mixture and the
one reduced by one component by employing only local information:
the reduction cost is evaluated only as a function of the parameters of
pairs of components, and not by considering all the mixture parameters,
as it happens for the previous two cases.
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• Local, if the reduction steps to be performed depend only on the small-
est cost of either merging two components, computed simply as the dis-
similarity between two components, or pruning one. Such algorithms
neglect the mixtures as a whole and focus on the single components.

From a computational perspective, the global algorithms are the most bur-
densome, while the local approaches are the lightest; nonetheless, the ad-
ditional cost provides in general a higher approximation accuracy. A fair
compromise between accuracy and efficiency is given by the hybrid algo-
rithms.

At the end of each greedy reduction algorithm motivations of consistency, or
inconsistency, will be listed.

1989: Kitagawa greedy reduction algorithm (local)

One of the first reduction algorithms for reducing mixture of components
has been proposed by Genshiro Kitagawa in the work Non-Gaussian sea-
sonal adjustment, where a non-Gaussian state space modeling of time series
with trend and seasonality is discussed. In such work, a Gaussian mixture ap-
proximation is used to approximate several densities of interest in a Bayesian
recursion; nonetheless, such approximations are subject to a rapidly grow-
ing number of components, hence making the representations intractable
quickly. In this regard, the author proposed a local mixture reduction algo-
rithm which, given a mixture of Gaussians p =

∑n
i=1wiνi, works as follows:

1. Evaluate the cost of merging two of the mixture components as:

DK(νi∥νj) = wiwjDSKL(νi∥νj), (3.122)

where DSKL(·∥·) has been defined in (3.16).

2. Find the indices (i∗, j∗) associated to the pair (νi, νj) introducing the
least value of (3.122):

(i∗, j∗) = argmin
i,j

DK(νi∥νj). (3.123)

3. Compute the DFKL-barycenter of the two components and go back to
step 1 until a desired number of reduced mixture components has been
reached.
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Such algorithm results to be really efficient, since local, in terms of compu-
tational burden; moreover, from several numerical tests, even the resulting
approximations are pretty good. As it will be further discussed, local algo-
rithms tend to introduce a higher degradation in the approximation when
many reduction steps are considered.

Inconsistent: merging costs evaluated by means of a heuristic modification
of the DSKL, barycenters computed according to the DFKL.

1990: Salmond Joining and Clustering algorithms (local-hybrid)

In the context of target tracking, the mixture reduction problem has been
addressed by Salmond [56] who proposed the so called Joining and Clustering
algorithms. In order to discuss such algorithms, let us recall the fact that
the DFKL-barycenter of a mixture of Gaussians (3.81) encodes the mean µ̂

and the covariance Σ̂ of such a mixture.
Given a Gaussian mixture p =

∑n
i=1wiνi(x|µi,Σi), the Joining algorithm

produces a sequence of reduced order mixtures obtained by greedily merging
at each step a pair of components as follows:

1. Evaluate the costs of merging each possible pair of components accord-
ing to the following dissimilarity measure:

DS(νi∥νj) =
wiwj

wi + wj

(µi − µj)
T Σ̂−1(µi − µj), i, j = 1, ..., n, (3.124)

where DS is a modified version of the Mahalanobis’ distance (2.67) and

Σ̂ is the overall mixture covariance obtained as the DFKL-barycenter of
the components.

2. Find the indices (i∗, j∗) associated to the pair (νi, νj) introducing the
least value of (3.124):

(i∗, j∗) = argmin
i,j

DS(νi∥νj). (3.125)

3. Compute the DFKL-barycenter of the two components and go back to
step 1.

In order to avoid excessive reductions, Salmond proposed an empirical thresh-
old T = 0.001d; if the cost associated to the pair of components to be merged
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falls below such threshold, which represents the maximum acceptable mod-
ification of the mixture, and no maximum number of reduced mixture com-
ponents has been provided, then the merging takes place. If, instead, a max-
imum number of reduced mixture components is given, and the threshold is
violated before reaching such a number, the reduction continues further. A
final note on this algorithm is that Σ̂ has to be computed just once, since the
merging actions are performed by DFKL-barycenter, hence the overall mix-
ture moments are preserved and do not change in the descent. The Joining
algorithm can be considered a hybrid algorithm, since the covariance of the
whole mixture is involved in the cost computations.

The Clustering algorithm combine components in groups rather than in
pairs, but this provides no control over the final reduced mixture number of
components. Another difference with the Joining algorithm is given by the
assumption that the component associated with the largest weight carries the
most of the information. The Clustering algorithm consists in the following
steps:

1. Find the component νc(x|µc,Σc) associated to the largest weight wc.

2. Given such component, the following cost is evaluated w.r.t. to all the
others:

D̃S(νc∥νi) =
wiwc

wi + wc

(µi − µc)
TΣ−1

c (µi − µc), (3.126)

where wc, µc and Σc are the parameters associated to the components
with the largest weigth.

3. Merge together all the components for which the cost (3.126) falls be-
low the statistical threshold T = 0.05T1, where T1 defines the hyper-
ellipsoid in the space which contains only 1% of the probability mass
of the principal component. Go back to step 1.

As discussed, this algorithm does not provide any control over the resulting
number of reduced mixture components, since a clustering step might involve
more components than the ones necessary to reach the desired mixture size.
Moreover, this can be regarded as a purely local algorithm, since it involves
only quantities corresponding to single components.

Inconsistent: both algorithms consider merging costs evaluated by means of
a heuristic modification of the Mahalanobis’ distance, barycenters computed
according to the DFKL.
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1993: West greedy reduction algorithm (local)

The West algorithm [57] is a local algorithm which, given a mixture p, works
as follows:

1. Find the mixture component ν̆ associated to the smallest weight w∗.

2. Evaluate the DL2 (ISE) cost from each of the remaining ones.

3. Find the index of the closest component in terms of DL2 such that:

i∗ = argmin
i

DL2(ν̆∥νi) < γw, (3.127)

where γw ∈ R+ is a threshold to prevent the merging of far components.
In general γw = ∞ is chosen, which allows the descent to reach a given
desired number of components for the reduced order mixture.

4. Merge the pair (ν̆, ν∗i ) by means of DFKL-barycenter.

5. Go back to step one until either the desired number of reduced mix-
ture components has been reached or there are no components with a
distance smaller than the threshold γw.

Similar to the Salmond’s Clustering algorithm, the West algorithm only ex-
ploits local information in order to reduce the number of mixture components.

Inconsistent: merging costs evaluated according to the DL2, barycenters
computed according to the DFKL.

2003: Williams greedy reduction algorithm (incrementally global)

One of the most influential greedy reduction algorithms, in the context of
target tracking, is probably that of Williams [37, 58]; such an algorithm is
incrementally global according to the DL2 (ISE) measure, that is, given a
Gaussian mixture p =

∑n
i=1wiνi, it works as follows:

1. Evaluate the costs of merging each possible pair of components by
means ofDFKL-barycenter according to theDL2 measure (3.42) between
mixtures; since the chosen D-measure is symmetric, one can evaluate
half of the merging costs Evaluate the costs of pruning, with subse-
quent weight renormalization, components of the mixture according to
the DL2 measure. Each reduction action (either pruning or merging)

127



generates a mixture which is one order smaller than the preceding one;
the corresponding cost is evaluated by computing the DL2 between the
previous mixture and the one obtained for a given action.

2. Accept as reduced-by-one mixture the one associated with the least
ISE w.r.t. the preceding model.

3. Go back to step 1 unless a desired number of components has been
reached.

The Williams greedy reduction algorithm results to be rather computation-
ally burdensome. Nonetheless, the author spent a lot of efforts to provide
improvements in the implementation.

Inconsistent: merging and pruning costs evaluated by means ofDL2, barycen-
ters computed according to the DFKL.

2005: Petrucci greedy reduction algorithm (incrementally global)

A really similar algorithm to the Williams’ one is that of Petrucci, where
the so called Correlation Measure (CM) is used to proceed in the same way
as the Williams reduction algorithm. As discussed in 3.1.4, the correlation
measure is equivalent to the DCS in the optimization problem. In this regard,
the Petrucci’s algorithm can be seen as the Williams’ algorithm where the
Cauchy-Schwarz Divergence is used instead of the ISE. Even this algorithm
is incrementally global, hence computationally burdensome.

Inconsistent: merging and pruning costs evaluated by means ofDCS, barycen-
ters computed according to the DFKL.

2007: Runnalls greedy reduction algorithm (hybrid)

The reduction algorithm which appears to be the most interesting one, due
to several properties discussed in Chapter 4 in this work, is the Runnalls
algorithm [50]. This is a hybrid reduction algorithm, where an upper bound
on the real, yet intractable, DFKL between mixtures is evaluated at each
reduction step. Given a mixture of Gaussians p =

∑n
i=1wiνi, the algorithm

works as follows:
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1. Evaluate the cost of merging two of the mixture components as:

BDFKL
(νi∥νj) =

1

2

(
(wi + wj) log |Σ̂i,j| − wi log |Σi| − wj log |Σj|

)
,

(3.128)

where Σ̂i,j is the covariance proper of the DFKL-barycenter (3.81) of the
components νi and νj.

2. Find the indices (i∗, j∗) associated to the pair (νi, νj) introducing the
least value of (3.122):

(i∗, j∗) = argmin
i,j

BDFKL
(νi∥νj). (3.129)

3. Compute the DFKL-barycenter of the two components and go back to
step 1 until a desired number of reduced mixture components has been
reached.

Aside the relations with the optimal transport framework which will be dis-
cussed in Chapter 4, the Runnalls’ algorithm is one of the very few algorithms
which is totally consistent with a singleD-measure, namely theDFKL. This in
general yields very good approximations in terms of the intractable DFKL be-
tween mixtures. Moreover, being a hybrid algorithm, makes it really efficient
in terms of computational resources, with an algorithmic cost comparable
with local algorithms previously reported. This is also due to the fact that
DFKL barycenters admit a closed form, becoming hence really appealing for
real-time applications.

Consistent: merging costs and barycenters computed according to the
DFKL.

2010: Enhanced West reduction algorithm (local)

A slight variation to the West algorithm 3.5.1 has been introduced in the work
[59], where the authors, given a Gaussian mixture p =

∑n
i=1wiνi, suggest the

following transformation for the weights:

w̃i =
wi

|Σi|
, i = 1, ..., n. (3.130)

The remainder of the algorithm is equivalent to the standard West algorithm
3.5.1. Although considering such transformed weights can introduce some
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improvements, the algorithm remains still local, hence not providing accurate
approximations.

Inconsistent: merging costs evaluated by means of DL2, barycenters com-
puted according to the DFKL.

2011: Crouse brute-force reduction algorithm (global)

A short survey about reduction algorithms in the context of target tracking
has been provided by Crouse [60], where several algorithms are reviewed and
a brute-force algorithm is proposed to find the reduced mixture associated
to the smallest ISE value. Nonetheless, being a global algorithm evaluat-
ing all the possible reduced order models, makes it unsuitable for real-time
applications.

Inconsistent: merging costs evaluated by means of DL2, barycenters com-
puted according to the DFKL.

2015: Ardeshiri greedy reduction algorithm (hybrid)

Until now, all the algorithms reported focused only on Gaussian mixtures;
nonetheless, as discussed by Ardeshiri in [18], many of the previously reported
greedy reduction algorithms can be extended to the exponential family of
distributions. During the same year, the author proposed another greedy
reduction algorithm [61] based on the DRKL minimization; the interesting
perspective there discussed is about the fact that the DFKL measure is a
really inclusive D-measure, hence might lead to approximations which assign
significant density to regions which, instead, should not contain any. In this
regard, considering pruning, given that the DRKL is a rather exclusive D-
measure, could avoid such cases to take place.

Inconsistent: merging and pruning costs evaluated by means of DRKL,
barycenters computed according to the DFKL.

2018: Square 2-Wasserstein-based greedy reduction algorithm (lo-
cal)

In the work [54], the authors consider instead the DW2 measure to perform
the greedy reduction of a Gaussian mixture. The criterion chosen is local
and selects for merging, at each reduction step, the two components which
are closer in terms of (3.19). Nonetheless, w.r.t. many of the previous
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algorithms, the merging is performed according to the DW2 as in (3.108),
hence this algorithm is totally consistent.

Consistent: merging costs and barycenters computed according to the DW2.

2021-2022: Consistent CTD-based greedy reduction (global-hybrid)

As it will be discussed further in the next chapter, in the work [62] has been
proposed a general framework for performing greedy reduction by minimizing
an induced D-measure between mixtures. Such framework is totally general
and can be applied to all the D-measures reported in this work in order
to produce consistent greedy reduction algorithms. Moreover, as it will be
shown, in some cases such framework allows even to perform a model selection
for the reduced mixture which can be embedded in the greedy descent, hence
providing a consistent adaptive greedy reduction algorithm.

Consistent: merging costs and barycenters computed according to the same
D-measure.

Additional greedy reduction algorithms

Until now, the reported reduction algorithms were mostly methodological
discussions to tackle the mixture reduction problem; nonetheless, in the lit-
erature some other approaches can be found which deviate substantially from
the line followed in this dissertation. In any case, those algorithms might still
be of interest in many practical applications. To name a few, one can find the
works of Scott [63,64], or the work of Pishdad [65], where a mixture reduction
approach is proposed for the target tracking problem which relies, though,
on an accurate representation of the process and measurement noises. In
the work of [47] another algorithm is proposed to reduce the complexity of a
mixture by considering even pruning in the corresponding pipeline.

3.5.2 Refinement algorithms

As discussed in section 3.4, the refinement algorithms rely in general on two
main approaches, that is by means of optimization through gradient descent
or by optimization by clustering. Since many of the existing approaches
exploit complex or sophisticated concepts which would require rather long
explanations to be properly discusses, the author of this work will restrict
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the review to the reporting of those algorithms by trying to enunciate the
main principles and potential links with the topics discussed until now.

In 1998, by considering the concept of virtual samples, Lippman and
Vasconcelos [66] proposed the so called Hierarchical Expectation Maximiza-
tion (HEM), which can be seen as a variational6 interpretation of the EM
algorithm. In 2003, together with the already mentioned greedy reduction al-
gorithm, Williams [37] proposed even a refinement algorithm which performs
a gradient descent optimization of the reduced mixture parameters accord-
ing to the DL2 measure. In 2004 and 2005 respectively, Goldberger [67] and
[68] addressed the refinement problem by considering a generalization to the
space of distributions of the K-means algorithm, hence by performing a hard-
clustering association between the original and reduced mixture components
and then by recomputing the reducing mixture components (representatives)
as the barycenter of the assigned original components. As done by Williams,
Petrucci [41] proposed even a refinement algorithm based on the gradient
descent optimization of the reduced mixture parameters according to the
CM, which is recalled to be equivalent to the Cauchy-Schwarz divergence. In
2006, Zhang [69] proposed a clustering algorithm based on the DL2 measure;
in 2009, Schieferdecker and Huber [70] proposed, after a Runnalls initializa-
tion, to perform at first a hard-clustering based on the DFKL, as done by
Goldberger and Banjeree, then to perform another clustering, slightly more
complex, based on the DNISE between mixtures, then to perform a gradient
descent optimization according to the ISE measure and, finally, to perform
a weight optimization according, again, to the DL2. The latter method has
been also discussed in [59], after performing an enhanced West algorithm
reduction. Nonetheless, in both cases, the weight optimization was not cor-
rectly constrained to provide non-negative results, as also pointed out in
[60]. However, by recasting such a problem into a quadratic programming
problem, it is possible to correctly find the optimized weights, according to
the DL2, for the reduced mixture model. In 2015 and 2016, two additional
variational refinement algorithms have been proposed respectively by [71],
where a variational upper bound on the Mutual Information (MI) between
mixtures is optimized, and by [72], where a particularly tight upper bound
on the DFKL between mixtures is minimized. Regarding the latter, a nice

6With the term variational are in general denoted approximations for several intractable
forms. A good explanation about variational methods in the inference problem can be
found in Chapter 10 of [3].
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work about DFKL approximations for the Gaussian mixture case has been
proposed by [73]. In 2018, an improved version of the HEM algorithm has
been proposed by [74], where a very tight bound on the DFKL is optimized
in a soft-clustering manner to improve the reduced mixture accuracy. As it
will be discussed in the next Chapter, many of the clustering algorithms here
reported can be described by the optimal transport theory in a neat way.
Nonetheless, as already mentioned, the main goal of this dissertation is to
investigate more in detail the greedy reduction, hence initialization, which
precedes such refinement algorithms.

3.5.3 Additional approaches

To conclude this section, it is worth to report two more algorithms which are
difficult to associate to the previously reported ones. The first one is the Pro-
gressive Gaussian Mixture Reduction (PGMR) algorithm, proposed by [75],
where a bottom-up approach is followed instead of the classical top-down one.
The peculiarity of such algorithm is given by the fact that, by starting from
a single component, one performs a split of such density which is optimal, in
terms of DL2, w.r.t. the original mixture approximation. Such an algorithm
stops when adding more components does not improve anymore significantly
the approximation accuracy. The main drawback, though, is given by the
fact that in high-dimensional problems it is not obvious nor easy to perform
a split of the components. In any case it represents an interesting solution to
the MRP. Another algorithm worth to mention is the one proposed by [76],
where a variational EM is used to both estimate the reduced mixture pa-
rameters, by exploiting directly the original mixture components, and which
provides in parallel a suitable number for the reduced mixture components.
Providing a suitable number of components is a really uncommon feature
for the existing reduction algorithms, yet it represents an impactful choice
on the resulting approximation. Of course, if the computational resources
force the adoption of a maximum number of components, no matter what
features the mixture to be reduced has, one can not do much. Nonetheless,
algorithms which provide also a suitable number of components could even
warn the user about the suitability of the chosen fixed number of compo-
nents. As it will be discussed in the remainder of this work, an information
about a suitable model order can be very useful in practical problems, even
if computational resources are limited.
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Chapter 4

Optimal Transport and
Consistent Mixture Reduction

4.1 Optimal Transport Theory

In this chapter, the problem of mixture reduction will be seen from another
perspective. By exploiting the optimal transport theory, it will be shown
how to link hybrid algorithms to a class of induced D-measures in order to
perform a consistent mixture reduction. Moreover, the OTT is a general
theory which is not restricted to the Gaussian case, hence, all the results
here presented can be applied easily to the whole exponential family. In
addition, the optimal transport framework works for any problem where the
involved mixtures have the same amount of mass, which is the case of the
problem addressed in this dissertation: this allows to apply the proposed
algorithms even to intensities, which represent the uncertainty description
in many target-tracking in clutter problems based on the random finite sets
(e.g., [24–27] and many more).

The Optimal Transport Problem (OTP) dates back to the year 1781,
when Gaspard Monge discussed in the work Mémoire sur la Théorie des
Déblais et des Remblais the problem of moving optimally a pile of ground
from a place to another. Such a problem was concerned with finding a push-
forward map able to associate uniquely, and with the minimum cost of trans-
portation, infinitesimal amounts of ground between the starting and ending
points. The total cost of transporting the whole pile of ground from a place to
another is also known in the literature as the Earth Mover’s Distance (EMD).
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The Monge’s formulation can be seen as a geometric perspective of the OTP.
Although such a formulation is elegant, it presents several limitations (the
problem could be ill-posed in some cases) and often results to be hard to
apply in practical problems. A century and a half later (in 1942), Leonid
Kantorovich proposed a relaxation of the OTP by working on the problem of
moving soldiers between different cities optimally. In this formulation, rather
than a transport map, a joint distribution referred to as coupling is sought.
Given two probability measures1 p(x) and q(y) in Rd, one seeks a joint dis-
tribution π(x, y) ∈ Π(p(x), q(y)) (x, y) ∈ Rd × Rd, namely the coupling of p
and q so that the marginal distributions along x and y coincide with p(x)
and q(y). In the Kantorovich problem one has to solve:

J = inf
π∈Π(p,q)

∫∫
Rd×Rd

∥x− y∥2π(dx, dy), (4.1)

hence, in this formulation, the OTP can be seen as a loss function which
has to be minimized; in this work, the Kantorovich formulation will be used
to solve the MRP. By recalling the DW2 equation (3.18), it is possible to
spot strong similarities; in fact the Wasserstein metric is strictly linked with
the OTP. The theoretical details are omitted since they would require a
lot of argumentation to be introduced; nonetheless, one can find good and
intuitive explanations in [77], or in many works of Marco Cuturi, which is
a reference figure in this field. For the goals of this work, only the required
tools, concepts and ideas will be reported.

4.1.1 Optimal Transport Theory for Mixture Models

As discussed, the OTP deals with the problem of transporting masses from
an initial point to a terminal one in a mass preserving manner (the mass is
neither lost nor gained during the transport) by employing the minimum
cost or effort. If one considers probability distributions in a probability
space, the OTP is concerned with finding the optimal way of ”mutating”
the probability density of one distribution into a target one. When consid-
ering mixture models, though, it might not be intuitive to approach such a

1In this context, the word measure takes its general mathematical meaning of gen-
eralization and formalization of geometrical measures (length, area, volume) and other
common notions, such as mass and probability of events. These seemingly distinct con-
cepts have many similarities and can often be treated together in a single mathematical
context.
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problem. Nonetheless, as discussed in [55], by looking at Gaussian mixtures
as discrete probability measures in the space of Gaussian distributions N d,
it is possible to solve the corresponding OTP in an elegant way. Such an
extension generalizes to mixtures of any family, and forms the basis for the
MRP solution proposed in this dissertation.

4.2 Composite Transportation Dissimilarities

As discussed in Sec. 3.1, in the case of mixtures very few D-measures admit
a closed form; this might be a severe limiting factor when addressing the
MRP. In this section the concept of induced D-measures between mixtures
will be defined and discussed regarding the corresponding properties.

4.2.1 Inducing Dissimilarities between Mixtures

Any given D-measure between distributions induces a Composite Transporta-
tion Dissimilarity (CTD) defined as described below. For any given pair of
mixtures p(·|Θa) and p(·|Θb), of sizes na and nb, respectively, let

V (W |Θa,Θb) =
na∑
i=1

nb∑
j=1

Wi,jD(qai ∥qbj), (4.2)

where W is a na × nb matrix in the set T (wa,wb) defined as

T (wa,wb) = {W ∈ Rna×nb

+ : W1nb = wa, W T1na = wb}. (4.3)

(the set of transportation plans, often called transportation polytope). Ob-
viously, since 1T

nawa = 1T
nbw

b = 1, it follows that 1T
naW1nb = 1. The

Composite Transportation Dissimilarity associated to the given D-measure
is defined as

CD(p
a∥pb) = min

W∈T (wa,wb)
V (W |Θa,Θb). (4.4)

The minimization problem (4.4) is an Optimal Transport Problem (OTP), a
classical Linear Programming (LP) problem, and the variableW ∈ T (wa,wb)
is a transportation plan (of the probability masses wa into wb). Thus, the

CTD is the solution of an optimal transport problem. The argument Ŵ that
minimizes the cost V (W |Θa,Θb) is the optimal transportation plan.
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The function to be minimized (the cost) can be rewritten in many ways,

by defining the cost matrix Da,b ∈ Rna×nb

+ , whose (nonnegative) components
are as follows

Da,b
i,j = D(qai ∥qbj), i = 1, . . . , na, j = 1, . . . , nb, (4.5)

one has
V (W |Θa,Θb) = ⟨Da,b,W ⟩F

= tr(W TDa,b) = vec(Da,b)Tvec(W ).
(4.6)

In the previous equation, the symbol ⟨·, ·⟩F denotes the Frobenius scalar
product between matrices, tr(·) is the trace of a matrix, while the vec(·)
operator stacks the columns of a matrix into a single column vector. For the
transportation problem the strong duality holds true. The equality constrains
of the optimal transport problem

W1nb = wa, 1T
naW = (wb)T , (4.7)

together with the cost function V (W |Θa,Θb) can be easily put in the standard
form. Rewriting the identities (4.7) as InaW1nb = wa and 1T

naWInb = (wb)T

and exploiting the identity vec(ABC) = (CT ⊗A)vec(B), and redefining the
optimization variable as x = vec(W ) ∈ Rna·nb

, one has

W1nb = wa =⇒ (1T
nb ⊗ Ina)x = wa,

1T
naW = (wb)T =⇒ (Inb ⊗ 1T

na)x = wb.
(4.8)

The primal LP problem (4.4) can therefore can be put in the standard form

min vec(Da,b)Tx[
1T
nb ⊗ Ina

Inb ⊗ 1T
na

]
x =

[
wa

wb

]
x ≥ 0.

(4.9)

Once such a problem is defined, there exist several solvers which provide a
really accurate solution efficiently.

The CTD can then be considered as an induced D-measure since, given
a base dissimilarity D between components, one can define a dissimilarity
between mixtures by solving the problem (4.4). The resulting CTD will
inherit the properties of the underlying D-measure (e.g., symmetry) and,
often, it results to be an upper bound on the potentially intractable original
D-measure between mixtures.
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4.2.2 A relaxation of the optimal transport problem

Consider a mixture pa = (wa)Tqa and let pb = (wb)Tqb be one reduced order
model of pa of size nb ≤ na; moreover, let us define the following problem:

W̆ = argmin
W∈T̆ (wa)

⟨W,Da,b⟩, (4.10)

where:
T̆ (wa) = {W ∈ Rna×nb

+ : W ≥ 0, W1nb = wa}, (4.11)

is the relaxed transportation polytope, for which it holds that T̆ (wa) ⊃
T (wa,wb), and where Da,b is the cost matrix obtained by evaluating the
pairwise dissimilarities between the original mixture components and the
reduced ones; for instance, if theDFKL is chosen, one hasDa,b

i,j = DFKL(q
a
i ∥qbj),

that is the pairwise dissimilarity between the i-th original component and the
j-th component of the reduced mixture.
The problem (4.10) admits the following closed form solution:

W̆i,j =

{
wa

i

|c(i)| if j ∈ c(i),

0 otherwise.
(4.12)

where c(i) = argminj D
a,b
i,j , and |c(i)| is the cardinality of c(i). Given the

solution W̆ to the relaxed OTP, then it is possible to define the following
quantity:

CR
D(p

a∥pb) = V (W̆ |Θa,Θb) = min
W∈T̆ (wa)

⟨W,Da,b⟩. (4.13)

Such a quantity can be considered as an index rather than a dissimilarity
between mixtures, since wb is not preserved, but it will serve as loss function
to minimize in a refinement phase.

4.2.3 Joint convexity of D-measures and CTD upper
bounds

Many of the reported D-measures in section 3.1 are jointly convex [78] in
the arguments, that is, given four distributions p1, p2, q1, q2 and a coefficient
α ∈ [0, 1], it holds that:

D(αp1 + (1−α)p2∥αq1 + (1−α)q2) ≤ αD(p1∥q1) + (1−α)D(p2∥q2). (4.14)
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In [55,78,79] is reported that the DKL, DL2, DW2, and the general Chernoff α-
divergence family are all jointly convex in the arguments; this is not true for
many of the DLB measures (aside the DL2). Joint convexity of the underlying
D-measure is sufficient to obtain that an induced CTD represents an upper
bound for the original D-measure between mixtures, that is given a jointly
convex D-measure and two mixture pa, pb, it holds that:

D(pa∥pb) ≤ CD(p
a∥pb), ∀pa, pb ∈ Qmix. (4.15)

The proof is reported in Appendix B.2.3.

Properties of CTD in mixture reduction

Why is it important for an induced CTD to be an upper bound for the orig-
inal D-measure? Often a D-measure between mixtures is intractable, hence
having a tractable upper bound allows to solve an approximated MRP in
order to find consistent solutions w.r.t. the original D-measure. As it will be
shown, the CTD between mixtures can be always computed efficiently if the
dissimilarity between single components is available in closed form, and it
can be used to formulate both greedy reduction and refinement algorithms.
Nonetheless, the CTD can be seen as a dissimilarity measure itself, since, even
if it represents a close approximation of the underlying D-measure between
mixtures, it may exhibit its own additional features; a nice property of such
induced measures is that the CTD-BSDA is equivalent to the D-barycenter,
and this can be trivially proven by replacing the CTD formulation in (3.69).
Hence, in the CTD framework, the optimal merging action is always the
barycenter, which can be efficiently computed if the underlying D-measure
admits a single minimizer for the ADF function (3.70) (e.g. by means of FPI
algorithms or in a closed form); moreover, in the CTD perspective, pruning
is never optimal. As discussed in Section 3.2.3, pruning-like behaviors are
strictly linked to the features of a D-measure, and as hinted in the discus-
sion about barycenters, in Section 3.3.1, and it should be something which
naturally arises from the properties of a given dissimilarity. From an optimal
transport point of view, pruning a component and then performing a weight
renormalization is equivalent to split the corresponding mass proportionally
to the weights of each of the remaining components, even if significantly dis-
similar; clearly, this kind of solution, in the general case, would never be the
one obtained by performing an optimal assignment as in the OTP. Alterna-
tively, one could move all the mass towards the most similar component, but
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that would yield, in general, a higher (or equal) cost if compared to merge
both the involved components into their barycenters. The only case where
the latter could occur is for measures like the DH2, where it may happen that
the barycenter coincides exactly with moving all the mass (weight) of a se-
lected component towards the most similar one, hence simulating a pruning
action.

In addition, it can be shown that given an original mixture pa, the optimal
reduced order model p∗ is obtained by clustering the original components and
by substituting each cluster with its D-barycenter; the CTD as defined in
(4.4) exhibits a hard-clustering nature, in the sense that, in any mixture
reduction algorithm aimed at minimizing the CTD, the optimally reduced
model can be obtained only by clustering together the original components.

Additional notes

In the Kantorovich formulation, the Wasserstein metric arises naturally;
nonetheless, the OTP in the case of mixture models can be generalized to
any D-measure well-defined for a given family of distributions. In this dis-
sertation, the core investigated D-measure is the DFKL, since, as it will be
shown, it possesses sound theoretical properties which make it arguably the
best candidate for the MRP as addressed in this work.

4.3 Greedy reduction in the optimal trans-

port framework

The common Mixture Reduction (MR) scheme, composed by a preliminary
greedy reduction phase followed by a refinement step, can be formulated us-
ing the CTD instead of a plain D-measure. To present the greedy reduction
scheme and its properties the following notation will be used: for a given
mixture pa = (wa)Tqa let q̂ai,j denote the D-barycenter of the (unnormalized)
submixture {wa

i q
a
i , w

a
j q

a
j }, and let p̃ai,j denote the reduced-by-one mixture ob-

tained from pa after the replacement of the submixture with the component
(wa

i + wa
j )q̂

a
i,j. In formulas:

p̃ai,j = pa −
(
wa

i q
a
i + wa

j q
a
j

)
+ (wa

i + wa
j )q̂

a
i,j. (4.16)

Note: For the sake of discussion, the superscript (m) over a generic mixture
p will denote that such mixture contains m ∈ N components, which, for
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simplicity, will also denote the order of the model2; in the case of components
or weights, the superscript (m) will denote that such quantities belong to the
said mixture of order m.

Hybrid CD-based greedy reduction

As discussed in [62], one can evaluate the cost of merging a pair of components
according to the following criterion:

BD(wiqi, wjqj) = wiD(qi∥q̂i,j) + wjD(qj∥q̂i,j), (4.17)

which can be used to design the reduction scheme reported in Algo. 4.

Algorithm 4: Hybrid CD-based Greedy reduction Algorithm

Data: Original mixture pa, of size na.
Result: Reduced mixture pb of size nb < na.

1 m := na, p(m) := pa ;
2 while m > nb do
3 find (i, j) ∈ [1 : m]:

BD(w
(m)
i q

(m)
i , w

(m)
j q

(m)
j ) ≤ BD(w

(m)
r q

(m)
r , w

(m)
s q

(m)
s ),

∀r > s ∈ [1 : m];

4 p(m−1) := p̃
(m)
i,j = p(m) − w

(m)
i q

(m)
i − w

(m)
j q

(m)
j + (w

(m)
i + w

(m)
j )q̂

(m)
i,j ;

5 m := m− 1;

6 end

7 pb := p(m);

In this regard, the following theorem represents a core contribution of this
dissertation:

Theorem 4.3.1 (BD and CD relations). Given a mixture pa = (wa)Tqa and
its reduced-by-one model p̃ai,j (4.16), it holds that:

CD(p
a∥p̃ai,j) ≤ BD(w

a
i q

a
i , w

a
j q

a
j ), ∀i, j ∈ [1 : na], i ̸= j. (4.18)

2In sec. 2.7 the model order was computed by counting all the free parameters; in the
mixture case, for the sake of discussion, the corresponding number of components will be
regarded as the model order.
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If the pair (i∗, j∗) associated to the least value of BD, namely B̆D, is selected
for merging, then

CD(p
a∥p̃ai∗,j∗) = BD(w

a
i∗q

a
i∗ , w

a
j∗q

a
j∗) = B̆a

D, (4.19)

that is the bound (4.17) coincides with the CD between the mixture before and
the one after merging the pair (i∗, j∗). Moreover, B̆D will then denote the
minimum increment in CTD.

All the proofs involved in the above theorem are many and rather lengthy;
in this regard, in Appendix B.2.4 is reported all the material. Note that the
bound (4.17) is always symmetric, even if the given D-measure is not; this
allows to evaluate half of the merging costs at each iteration (m(m− 1)/2 in
total). In [50], for the DFKL case of Gaussian mixtures, it has been proven
that (4.17) represents an upper bound on the quantity DFKL(p

a∥p̃ai,j), which
is the analytically intractable DFKL between the mixture before and the one
after merging the pair of components minimizing (4.17). In the optimal
transport framework, such a bound corresponds to the CDFKL

which, given
the joint convexity of the DFKL, represents an upper bound for the DFKL

between mixtures. In other words, for the DFKL case, the CD-based greedy
reduction algorithm coincides with the Runnalls algorithm 3.5.1. For any
other base3 D-measure, it is possible to obtain a new hybrid greedy reduction
algorithm by considering the general algorithmic scheme 4; the DW2 case has
been investigated in [62].

As it can be noticed, the algorithm provided by the CTD framework is
hybrid, since it involves only local component parameters in order to infer
the increase in dissimilarity between the mixture before and the one after the
merging. If the considered CD represents an upper bound for the original
D-measure between mixtures, then such a hybrid algorithm is indirectly op-
timizing the original, potentially intractable, D-measure. There are though
two open issues: the first one is given by the bottleneck of the D-barycenter
computation, since, as discussed in Sec. 3.3, only for very few cases one has
closed forms; moreover, there might even exist multiple global minima (see
DL2 or DH2) in the corresponding computation. The second issue is linked
with the fact that the resulting CD might represent a rather crude approx-
imation on the original D-measure; nonetheless, as discussed, the CTD can
be considered as a D-measure itself and, if the underlying dissimilarity is

3the component-pairwise original D-measure used to induce a CTD.
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intractable between mixtures, it still represents a way to approach the MRP
for a given D-measure, otherwise intractable. In any case, one should in-
vestigate the features of a resulting CTD in order to assess its effectiveness
in a greedy reduction scheme. A final note on the greedy reduction algo-
rithm 4 is that it is not restricted to the Gaussian case; if one can compute
the D-measure between two generic densities, and can evaluate the corre-
sponding D-barycenter, then Algorithm 4 can be applied to any family of
distributions. Moreover, it is not limited to mixture densities, since the
barycenter can be computed generically over sets of weighted densities, re-
gardless of their weights; this allows to apply the given algorithm even to
intensities (unnormalized mixtures) directly, without requiring a preliminary
weight renormalization. The only constraint in the formulation here provided
is that the involved mixtures, or intensities, have to share the same amount
of mass (sum of the weights). Nonetheless, when working with intensities
rather than mixtures, the concept of upper-bound on the original D-measure
is lost, since a D-measure as here reported is defined only for distributions.
In practice, though, one can still evaluate a dissimilarity between intensities
(sharing the same mass) by solving the OTP.

Global CD-based greedy reduction

Hybrid algorithms as the ones presented before can be suitable for real-time
applications if one can compute efficiently the barycenter of components.
Nonetheless, they rely on the increase in dissimilarity between contiguous
model orders (incrementally global), hence losing the scope over the original
mixture during the descent. Given that the CTD can be evaluated in a
closed form between mixtures, one could think to formulate global reduction
algorithms by computing, at each iteration, the increase in dissimilarity one
would introduce w.r.t. the original mixture (and not the previous model
order) by merging a couple of components. The corresponding algorithm is
reported in Algo. 5.
Basically, this algorithm considers the increase in the CD introduced w.r.t.
the original mixture pa, as the result of a merging action performed on the
current reduced order model. This requires to solve the OTP many times for
each model order, hence becoming computationally burdensome. It yields
superior approximations if compared to the hybrid algorithm 4, but the re-
sulting gain in the accuracy might not justify the significantly higher com-
putational cost. Nonetheless, if one has a large amount of computational
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Algorithm 5: Global CD-based Greedy reduction Algorithm

Data: Original mixture pa, of size na.
Result: Reduced mixture pb of size nb < na.

1 m := na, p(m) := pa ;
2 while m > nb do

3 find (i, j) ∈ [1 : m]: CD(p
a∥p̃(m)

i,j ) ≤ CD(p
a∥p̃(m)

r,s ), ∀r > s ∈ [1 : m] ;

4 p(m−1) := p̃
(m)
i,j = p(m) − (w

(m)
i q

(m)
i +w

(m)
j q

(m)
j ) + (w

(m)
i +w

(m)
j )q̂

(m)
i,j ;

5 m := m− 1;

6 end

7 pb := p(m);

resources available, and no time constraints are presents, using algorithm 5
is suggested if the goal is to achieve better approximations.

As discussed, the CTD framework solves the problem of computing the
dissimilarity between mixtures, even if the given D-measure is analytically
intractable, and jointly offers a greedy reduction algorithm which can be
suitable for real-time applications. As it will be reported in Sec. 4.5, it also
provides a general refinement algorithm which can be seen as a generaliza-
tion of the K-means to the space of distributions. Nonetheless, like most of
existing algorithms in the literature, it leaves open the problem of finding a
suitable model order for the reduced mixture. Interestingly, as reported in
[80], in the DKL case it is instead possible to address such a problem as well
with an elegant and efficient criterion. In the next section, a second core
contribution of this dissertation is reported; by exploiting the optimal costs
B̆DFKL

, it is possible to figure out when the greedy reduction is introducing
a significant dissimilarity w.r.t. the original mixture, hence suggesting which
mixture size to halt at the greedy descent.

4.4 Embedding adaptive model selection in

the greedy reduction

In the literature, very few mixture reduction algorithms consider the task of
finding a suitable number of components for the reduced order model (for
instance [75, 76]). Moreover, the existing solutions can be quite computa-
tionally burdensome and might not be suitable for real-time applications.
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Given a mixture with many components, a reduction algorithm should take
into account both the corresponding geometry and the features of the cho-
sen D-measure. Particularly exclusive D-measures would allow in general
a higher reduction ratio, since neglecting low density regions would not in-
troduce much of a dissimilarity w.r.t. the original model; in contrast, in-
clusive D-measures would try to preserve the most of the density, often by
assigning significant probability to regions which should not contain any. In
applications like target tracking in clutter, the DFKL is often used given its
good properties and interpretation (links with Shannon entropy/information
or with MLE, or closed form/easy computable barycenters); nonetheless, if
there is no active control over the complexity of the reduced order model, it
might happen that particularly aggressive reductions could lead to the spread
of the component covariances when the involved means are spread apart in
the space. This would imply that there is a high probability of finding the
state of a target in regions which the original model would totally exclude,
increasing the occurrence of filter divergence. Another application where the
model complexity plays a central role is unsupervised clustering; given a set
of observations, choosing a particularly complex model could lead to over-
fitting the data, hence reducing the overall generalization ability. In those
cases, performing a model simplification could both increase generalization
capabilities while providing a more computationally lightweight representa-
tion. In both the mentioned applications, it would be of great interest to
find a criterion for determining when a given model is suitable for a process
of interest, and even capable of deciding that a model is more complex than
required, and how much of a reduction one could do before modifying sig-
nificantly the uncertainty description. Often, in target tracking, the model
complexity (number of reduced mixture components) is decided a priori due
to computational constrains; nonetheless, it would still be of interest to fig-
ure out if such a number can accurately describe the uncertainty or if more
components are required. It turns out that, by exploiting again the OTT
[80], it is possible to design a lightweight criterion based on the DFKL, which
can be used both to characterize the suitability of a model and to provide
a potential range of reduction for which a small accuracy is lost in favor of
lower computational complexity.
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Normalizing the CTD

Let us consider a mixture pa = (wa)Tqa, and let q̂a be its DFKL-barycenter.
From aMR perspective, the barycenter represents the coarsest approximation
one can provide for a given mixture.
The cost associated to the DFKL-barycenter q̂

a of the mixture pa is defined
as:

c(q̂a|pa) = 1

(wa)T1na

na∑
i=1

wa
iDFKL(q

a
i ∥q̂a) = CDFKL

(pa∥q̂a). (4.20)

from which the next contribution follows: for the DFKL case, by merging
components corresponding to the minimum bounds (4.17) as in Algorithm
4, it is possible to obtain a monotonically increasing cost (as function of the
decreasing order) which is upper bounded by the mixture barycenter cost
c(q̂a|pa). This happens thanks to the DFKL-barycenter properties (see Sec.
3.3.2).
Consider a reduced order model p(m) of pa, m ≤ na, obtained by the CDFKL

-
based greedy reduction algorithm 4; then, by reducing pa down to its barycen-
ter, it holds that p(n

a) = pa and p(1) = q̂a. Accordingly, let us define the
Relative Transportation Loss (RTL), denoted as L, as:

L(m) =
CDFKL

(pa∥p(m))

c(q̂a|pa)
, (4.21)

that is the (global) CTD between the original mixture pa and its reduced
model of order m, divided by the cost of its coarsest possible approximation.
For m = na, one obtains CDFKL

(pa∥pa) = 0, hence L(na) = 0, while for m = 1,
one gets CDFKL

(pa∥q̂a) = c(q̂a|pa), thus L(1) = 1. The overall L curve will
start from zero and will monotonically increase up to one, while the model
order decreases from na to 1.

Nonetheless, computing CDFKL
(pa∥p(m)) for each m = na, ..., 1 might be

computationally burdensome, since the OTP has to be solved for each re-
duced order model. Luckily, the following property is true:

Proposition 4.4.1. Consider the sequence of reduced mixtures provided by
the hybrid CDFKL

-based greedy reduction algorithm 4, and consider an index
m < na (at least one reduction step has been performed). One can define the
following function:

L̃(m) =

∑m
l=na CDFKL

(p(l)∥p̃(l)i∗,j∗)
c(q̂a|pa)

=

∑m
l=na B̆

(l)
DFKL

c(q̂a|pa)
, 1 < m < na, (4.22)
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and L̃(na) = 0 and L̃(1) = 1. Then, the following holds true

L(m) ≤ L̃(m), m ∈ [1 :na]. (4.23)

All the discussion regarding summability to one of the RTL is reported
in Appendix B.2.5. Since the optimal bounds correspond to the incremental
CD between contiguous model orders (see B.2.4), then even the RTL curve
will sum up to one. Such an upper bound corresponds to the cumulative sum
of all the l optimal bounds B̆

(l)
DFKL

, obtained by merging, for each model order
in the descent, the pair of components minimizing the value BDFKL

. The last
equality follows directly from Thm. 4.3.1. Moreover, it holds the following
relation:

L̃(m) ≤ s
(m)
B ≜

∑m
l=na B

(l)
DFKL

(w
(l)

il
q
(l)

il
, w

(l)

jl
q
(l)

jl
)

c(q̂a|pa)
, ∀il, jl ∈ [1 : l], il ̸= jl (4.24)

where equality always holds for the sequence (i(l
∗), j(l

∗)) involving the pair of
components associated to the optimal merging.

Before proceeding further with the discussion about the adaptive reduc-
tion, it is necessary to remark some important concepts; as reported in
Theorem 4.3.1, the CD between two contiguous model orders obtained by
optimal merging of components according to (4.17), is equal to the opti-
mal bound B̆D, for any given D-measure. If, instead, a random pair of
components are selected for merging, then it holds that CD(p

(m)∥p(m−1)) ≤
BD(w

(m)
i q

(m)
i , w

(m)
j q

(m)
j ), ∀i, j ∈ [1 : m], i ̸= j as in (4.24), that is, in general

the bound BD is greater than the CTD value between a mixture and its
reduced-by-one model. In the DFKL case, if non-optimal merging actions are
considered, the cumulative sum sB still sums up to one, but the cumulative
sum of the incremental CDFKL

terms (the cumulative RTL) may not, since
the strict inequality between such quantities may hold. In other words, the
summation up to one for both the RTL and the cumulative sum of the CDFKL

values happens only if the reduced order models are obtained by means of
algorithm 4, that is by sequentially merging pairs of components associated
to the optimal bound B̆DFKL

.
Thus said, from a broad campaign of numerical tests, it resulted that

equality between L and L̃ is usually verified; the rare cases in which it does
not hold are encountered for reduced order models that introduce large L̃(m)

increments, which are unlikely to be explored by the model selection criterion
which will be presented further in this work. Identifying equality conditions
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would be an important result, since it allows to exactly know, at each re-
duction step, the total dissimilarity introduced in terms of CDFKL

w.r.t. the
original mixture. Despite that, the cost (4.22) has some nice features; first of
all, it can be computed efficiently as byproduct of the merging costs (4.17),
which are directly available in a greedy reduction like the one proposed in
Algorithm 4 (hence, the cumulative cost L̃ is available on the fly and does
not require to evaluate all the model orders). Moreover, such cost can be
seen as a cumulative loss function monotonically increasing as the model
order decreases, which can be interpreted as the accuracy percentage, with
respect to the original mixture model, one is losing, in terms of CDFKL

, if a
given mixture is approximated with a reduced order model. Given that the
CDFKL

represents an upper bound on the original DFKL between mixtures,
then the cost (4.22) can be seen as a conservative evaluation of the rela-
tive accuracy percentage one is losing in terms of the real Kullback-Leibler
divergence between mixture models. Note that a necessary condition for
the discussed results is that a given D-measure possesses the associativity
of barycenters and the ABTI properties. Among the D-measures reported
in this dissertation, only the DFKL and the DRKL possess such a feature; if
the associativity does not hold, neither the sB curve adds up to one, hence
making the corresponding D-measure unsuitable for the algorithm proposed
in the next section.

An adaptive greedy reduction algorithm

There are several ways to exploit the cost (4.22) for selecting the number of
reduced mixture components; one of those could be to provide a percentage
threshold denoting the maximum allowed accuracy loss; if during the descent
L̃(m) becomes larger than the desired threshold value, then the greedy reduc-
tion can be halted; another criterion could be to consider the point-wise slope
of the resulting cumulative RTL curve (which is exactly equal to the value of
each cost B̆DFKL

) and to halt the reduction if a prescribed value is exceeded.
In general, in extreme cases where the merging of two components would in-
troduce a significant error in the approximation, this criterion could prevent
such a merge to take place: as discussed, the DFKL is known to spread the
covariance of the resulting barycenter if the components to be merged are
far in the space (inclusiveness of the DFKL). Hence, such adaptive method
could represent an improvement for the resulting greedy reduction algorithm.
In algorithm 6 is reported the proposed adaptive greedy reduction algorithm

148



where the halting condition is provided as accuracy loss percentage threshold.

Algorithm 6: Adaptive CDFKL
-based Greedy reduction Algorithm

Data: Original mixture pa, of size na,
accuracy percentage threshold λL̃.
Result: Reduced mixture pb of size nb ≤ na.

1 m := na, p(m) := pa, L̃(m) := 0;
2 Compute c(q̂a|pa);
3 while L̃(m) ≤ λL̃ do
4 find (i, j) ∈ [1 : m]:

BDFKL
(w

(m)
i q

(m)
i , w

(m)
j q

(m)
j ) ≤ BDFKL

(w
(m)
r q

(m)
r , w

(m)
s q

(m)
s ),

∀r > s ∈ [1 : m] ;

5 L̃(m−1) := L̃(m) +
B̆

(m)
DFKL

c(q̂a|pa) ;

6 if L̃(m−1) ≤ λL̃ then

7 p(m−1) := p̃
(m)
i,j = p(m)−w(m)

i q
(m)
i −w(m)

j q
(m)
j +(w

(m)
i +w

(m)
j )q̂

(m)
i,j ;

8 end
9 m := m− 1;

10 end

11 pb := p(m);

In order to provide more insights on this approach, let us define the scaled
DFKL between two mixtures pa and p(m), denoted D̄FKL(p

a∥p(m)), as:

D̄FKL(p
a∥p(m)) =

DFKL(p
a∥p(m))

c(q̂a|pa)
(4.25)

that is the true DFKL between mixtures divided by the cost of the barycenter
q̂a of pa. This guarantees that D̄FKL ≤ L ≤ L̃, a condition useful to charac-
terize the CDFKL

measure when adopted in greedy reduction procedures.

Unconstrained order mixture reduction

Let us assume that in the greedy reduction phase no desired order nb has been
provided, and that one can let the adaptive algorithm halt the reduction when
the chosen condition has been verified. In Fig. 4.1 the result of an adaptive
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reduction by means of Algorithm 6 for the case of a Gaussian mixture is
reported, where the threshold value λL̃ = 15% has been considered. By

-80 -60 -40 -20 0 20 40 60 80
0

0.01

0.02

0.03

0.04

0.05

123456789
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

0

0.2

0.4

0.6

0.8

1

Figure 4.1: (a). Gaussian mixture of size na = 40 (solid black) is reduced
adaptively to nb = 10 components (dashed blue) corresponding to an RTL
of 15%. (b). RTL curves (dashed green/magenta), scaled DFKL (solid red).

looking at Fig.4.1, many useful insights can be observed; first of all, given
the original mixture geometry as the one reported, one could effectively see
that the mixture modality can be approximated well with fewer components
than na = 40. With a threshold of 15%, the adaptive algorithms halts the
reduction for a model order of nb = 10; the resulting approximation is visually
quite accurate. A second observation one can do is that, as mentioned, the
real RTL curve, and its cumulative approximation, are equal in this example;
although the two curves may not coincide, a broad campaign of numerical
experiments showed that in almost all tests the two curves coincide. A third
and last observation is that the CDFKL

detaches significantly from the real
DFKL at some point: from this and many other tests, it has been evinced that
the CDFKL

represents a tight upper bound for theDFKL between mixtures only
for small deviations. In this regard, selecting low values for the RTL threshold
could avoid to consider CDFKL

values which are considerably distant from the
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underlying DFKL; this could serve to obtain reduced order models which are
accurate even if the (intractable) DFKL between mixtures is considered.

The experiment has been repeated for the same number of original mix-
ture components, but by spreading the means further in order to obtain more
distinct peaks in the model; the resulting reduction is reported in Fig.4.2. As
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Figure 4.2: (a). Gaussian mixture of size na = 40 (solid black) is reduced
to nb = 17 components (dashed blue) corresponding to an RTL of 15%. (b).
RTL curves (dashed green/magenta), scaled DFKL (solid red).

mentioned, the reduced model order should take into account the geometry
of the mixture together with the features of the chosen D-measure; in this
regard, the proposed method appears to prevent the merging of far compo-
nents, hence halting the reduction earlier if compared to the case reported
in Fig. 4.1. Given the inclusiveness of the DFKL, further merging actions
would overstretch the covariances of the resulting barycenters, which can be
a potentially dangerous effect in contexts like target tracking. W.r.t. Fig.
4.1, in this case are required nb = 17 components rather than nb = 10 in
order to loose at most the 15% of the accuracy. Moreover, one can observe
that both the RTL curves tend to detach earlier from the horizontal axis if
compared to the previous case, hence denoting that the minimum number
of reduced mixture components is reached earlier if the same accuracy is
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wanted to be preserved. Such a feature can be also exploited to figure out
if, for a given process, the chosen number of components to represent the
uncertainty is adequate; if too small, one can expect the RTL curve to gain a
significant slope values already for very low reduction ratios. If too big, one
could expect to see the most of the accuracy loss for high reduction ratios.
In this regard, let us consider the example reported in Fig. 4.3. This time
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Figure 4.3: (a). Gaussian mixture of size na = 4 (solid black) is reduced
to nb = 3 components (dashed blue) corresponding to an RTL of 15%. (b).
RTL curves (dashed green/magenta), scaled DFKL (solid red). (c). Standard
greedy reduction down to nb = 2 components (dashed blue).

the original mixture contains na = 4 components of which two are clustered
really close around the value x = 3.5. By looking at the corresponding RTL,
one can observe that merging the said components introduces a very small
dissimilarity, hence it is safe to perform the reduction down to nb = 3 com-
ponents; nonetheless, if the reduction goes further, a situation like the one
reported in Fig. 4.3.(c) arises, that is the subsequent merging tends to assign
a significant probability in a region which should not contain any. Moreover,
one can see how the RTL curve increases for nb = 2, reaching an RTL value
close to 0.5. In contexts like target tracking this may lead to filter divergence.
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Relative Transportation Loss halting criteria

Although the proposed criterion seems quite intuitive to apply, there still
remains the problem of justifying how to use the RTL curve to halt the re-
duction. As shown, an approach could be to provide a percentage threshold
on the accuracy loss, which, for the sake of discussion, will be denoted Ac-
curacy Threshold Criterion (ATC); at this stage, such a choice can rely on
several factors, which might include:

• computational capabilities: if the computational resources are limited,
then it would be reasonable, in general, to select higher RTL threshold
values, allowing a larger accuracy loss, to provide reduced mixtures
with a smaller number of components,

• geometry of the mixture: the process of interest generates many compo-
nents spread apart in the space, hence selecting a too low RTL threshold
could quickly push the adaptive number of reduced mixture compo-
nents towards the maximum allowed amount, if present.

For the conducted experiments, the empirical range of 15%−25% represented
a good compromise between the accuracy of the resulting approximation
and the corresponding number of components. Nonetheless, for the reasons
above, the potential user should tune the RTL threshold according to the
specific problem of interest.

Another approach could be to consider the slope of the RTL curve, hence
to work directly with the normalized costs (4.17) rather than their normal-
ized cumulative sum; for the sake of discussion, such criterion will be denoted
Slope Magnitude Criterion (SMC). Given the structure of the reduction al-
gorithm 6, if a model can be reduced by several orders, one can expect to
find a sequence of costs which have a near-zero value, hence allowing for a
modality preserving reduction. In this regard, given a mixture pa of size na,
one could consider the criterion of halting the reduction if:

B̆
(m)
DFKL

> α · 2

m
CDFKL

(p(m)∥q̂a), α ∈ [0, 1]. (4.26)

Such an inequality is obtained by inverting B.2.8 in Appendix B.2.5 and by
adding a free parameter α; by selecting α = 1 one allows for the maximum
slope increment, hence the reduction never halts. By instead selecting α ∈
(0, 1), it is possible to provide an additional halting criterion. Of course, for
α = 0 no reduction takes place.
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Let us define the following quantity:

A(m) =
m

2

B̆
(m)
DFKL

CDFKL
(p(m)∥q̂a)

∈ [0, 1] (4.27)

obtained by inverting (4.26) and which allows to rewrite such criterion as:

A(m) > αA (4.28)

In section B.2.5 are reported all the proofs regarding such criterion.
The corresponding adaptive algorithm is reported in Algorithm 7.

Algorithm 7: Adaptive SMC CDFKL
-based Greedy reduction Algo-

rithm
Data: Original mixture pa, of size na,
slope magnitude threshold αA.
Result: Reduced mixture pb of size nb ≤ na.

1 m := na, p(m) := pa, A(m) := 0;

2 while A(m) ≤ αA do
3 find (i, j) ∈ [1 : m]:

BDFKL
(w

(m)
i q

(m)
i , w

(m)
j q

(m)
j ) ≤ BDFKL

(w
(m)
r q

(m)
r , w

(m)
s q

(m)
s ),

∀r > s ∈ [1 : m];

4 A(m−1) := m
2

B̆
(m)
DFKL

CDFKL
(p(m)∥q̂a) ;

5 if A(m−1) ≤ αA then

6 p(m−1) := p̃
(m)
i,j = p(m)−w(m)

i q
(m)
i −w(m)

j q
(m)
j +(w

(m)
i +w

(m)
j )q̂

(m)
i,j ;

7 end
8 m := m− 1;

9 end

10 pb := p(m);

As for the ATC, in order to apply such criterion one has to provide a
threshold value αA ∈ [0, 1]. Since the features of A are pretty different from
the ones of L̃, the choice of such a value is not as intuitive as the case of
λL̃. Nonetheless, from several experiments, the general trend of the SMC
is to concentrate the useful reduction range in a very small αA interval; a
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value of αA = 0.154 seems to provide a good compromise between reduction
and accuracy. Values of αA = 0.1 or αA = 0.05 provide really accurate ap-
proximations, at the expense of a higher number of components. Of course,
for αA = 0 one obtains no reduction, and for αA = 1 the reduction con-
tinues down to the barycenter. In this regard, αA can be used to control
the reduction ”aggressiveness”. In Fig. 4.4 is reported an SMC reduction
for values αA = {0.15, 0.1, 0.05} respectively. As it can be observed, by
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Figure 4.4: (a). Gaussian mixture of size na = 100 (solid black) is reduced
with different slope magnitudes. (a). αA = 0.15 → nb = 27. (b) αA = 0.1 →
nb = 43. (c) αA = 0.05 → nb = 59.

decreasing the slope magnitude threshold one obtains increasingly density-
preserving approximations. From now on, in figures, the global RTL curve
will be dropped in favor of the new curve A, hence, comparisons between the
ATC and the SMC will be provided in parallel to the corresponding curves.

To conclude this section, it might be interesting to remark that one could
also consider to combine both the discussed criteria together in order to have
a guard on the maximum accuracy one is willing to lose. Moreover, if a

4From a large campaign of experiments, such a value seems to always provide the best
compromise between accuracy and model order.
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desired number of reduced mixture components is given (constrained order
reduction, discussed in the next section), one should consider to combine all
the three halting criteria.

Constrained order mixture reduction

In scenarios where the reduced model order is fixed (say nb), the previously
proposed criteria do not guarantee that the reduced mixture will possess such
number of components; nonetheless, to address this constraint, one could
consider to let the reduction continue down to nb, meanwhile computing both
the discussed curves. If nb is reached, and either one of the two thresholds
has been exceeded significantly, the user may reconsider, if allowed, what
could be a suitable number of components for the process of interest. At
the opposite, if nb is reached, but neither the accuracy threshold or slope
magnitude have been violated, one could consider to continue the reduction
further, hence saving computational resources, since the desired nb might be
very conservative for the process of interest.

ATC limitations

One limitation of the ATC is represented by the possible reduction interval;
for particularly symmetric mixture geometries, or other pathological cases,
the RTL curve can tend to a straight line. In such scenarios, the ATC
provides deterministically the number of components which will be merged;
for instance, given a mixture of size na = 20, an RTL threshold of 15%
would cause the merge of around γL̃ · na = 3 components. Nevertheless,
such cases are very unlikely to happen in real world problems. Those cases
may be associated, in general, to models underfitting the underlying process
behavior, where no reduction should actually take place. In addition, given
that the RTL curve represents a normalized loss, in the general case, there will
always be a short sequence of increasing costs for model orders close to one
(to satisfy the summation to one constraint); beside the unlikely case where
all the mixture components are equal (singular mixture, for which c(q̂a|pa) =
0), even for very small deviations the corresponding ATC algorithms would
never provide models too low in the order. As it will be proven further
in the remainder of this work, such a criterion is in general conservative,
often favoring more complex than required models: the SMC criterion can
overcome some issues presented by the ATC.
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Adaptive reduction halting by accuracy threshold or slope magni-
tude?

In order to figure out additional features of the two discussed halting criteria,
few examples will be reported both to provide further insights on the SMC.
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Figure 4.5: (a). Original mixture of size na = 16. (b). ATC reduced mixture
of size nb = 7 for λL̃ = 20%. (c). SMC reduced mixture of size nb = 8 for
α = 0.15. (d). Halting criteria.

In Fig. 4.5 is reported a comparison between the two halting criteria for a
particularly symmetric mixture of na = 16 components; the red ellipsoids
are the probability curves enclosing 95% of the Gaussian components. As it
can be noticed, the original mixture modality could be accurately approxi-
mated with only nb = 8 components; in this regard, the SMC, for a value of
α = 0.15, catches exactly such desired number. Moreover, by looking at both
the curves, it is possible to notice a significant slope discontinuity between
nb = 8 and nb = 7; this is due to the fact that merging components beyond
nb = 8 introduces a high distortion in the mixture modality. If the ATC is
considered for λL̃ = 20%, the reduction halts at nb = 7. Such a behavior
often arises when particularly symmetric mixtures are reduced by means of
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the accuracy threshold criterion, since it does not provide strict guarantees
on the mixture modality preservation. An interesting fact about the A curve
is that, as it can be observed from the figure, if there are several merging
actions with the same cost, the corresponding curve tends to decrease over
the reduction interval involving those costs. The motivation can be under-
stood by looking at (4.26): the optimal bounds remains constant over several
model orders while the cost CDFKL

(p(m)∥q̂a), and the model order m, slowly
decrease; nonetheless, given the optimal choice, the model order decreases
faster than the current barycenter cost. From another perspective, once a
symmetry/modality is broken, it may have sense to reduce the order further
without altering such features significantly. In the above plot, the symmetry
can be broken significantly by reducing from nb = 8 to nb = 7 and from
nb = 4 to nb = 3.
Another example to be investigated is the benchmark mixture proposed by
Crouse [60], which parameters are reported below:

w =
[
0.03, 0.18, 0.12, 0.19, 0.02, 0.16, 0.06, 0.1, 0.08, 0.06

]T
,

µ =
[
1.45, 2.20, 0.67, 0.48, 1.49, 0.91, 1.01, 1.42, 2.77, 0.89

]T
,

Σ =
[
0.0487, 0.0305, 0.1171, 0.0174, 0.0295, 0.0102,

0.0323, 0.0380, 0.0115, 0.0679
]T
.

(4.29)

In Fig. 4.6 are reported the corresponding reduction outcomes: different
behaviors can be observed for the two criteria, and all the previous reasoning
can be extended to this case. It is worth to be noted that, by selecting
suitably the two thresholds λL̃ and αA, it may be possible to obtain the
same outcome; nonetheless, the two criteria are different in the features and
it may be difficult to match the results.

Clustered components case: retrieving the number of clusters

To provide more insights on the effectiveness of the proposed adaptive re-
duction, let us consider the mixtures generated as following:

1. Nc cluster representatives ri, i = 1, ..., Nc, are generated uniformly in
the d-dimensional hypercube of side 2β, β ∈ [0,∞), that is ri ∼ Ud

[−β,β];
moreover, the corresponding cluster covariances Si, i = 1, ..., Nc, are
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Figure 4.6: (a). Gaussian mixture of size na = 10 (solid black) is reduced
down to nb = 5 components according to the ATC, and to nb = 6 components
by means of the SMC. (b) Halting criteria.
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generated according to a d-dimensional Wishart distribution5 as Si ∼
W(·|δ1Id, 2d+ 1), δ1 ∈ [0,∞).

2. Given a number of desired mixture components, say n, a vector of
n weights is sampled uniformly in the interval [0.05, 0.95] and then
normalized (to obtain w); following, a cluster is selected with uniform
probability and a mean value is sampled from it as µi ∼ ν(·|ri, Si),
i = 1, ..., n (to obtain µ). Accordingly, n covariance matrices Σi, i =
1, ..., n, are sampled as Σi ∼ W(·|δ2Id, 2d + 1), δ2 ∈ [0,∞) (to obtain
Σ).

3. A Gaussian mixture p(x|Θ) = wTν(x) =
∑n

i=1wiν(x|µi,Σi), for which
Θ = {w,µ,Σ}, is generated.

Such a mixture generation method guarantees, for low values of δ1, and
sufficiently large values of β, to obtain n components grouped in separated
clusters. The intent of this experiment is to see how the adaptive algorithms
perform in terms of both reducing the model complexity and estimating the
number of clusters. In Fig. 4.7 is reported the reduction for an na = 50
components mixture with both ATC and SMC methods.

In the ATC case, a threshold of 20% amounts to a reduced model of
nb = 9 components, hence such criterion misses the underlying number of
clusters, but still preserves the modality pretty well. In contrast, the SMC
criterion catches exactly the desired number of components (nb = 6) which
also correspond to good estimates of the initial clusters. Moreover, in this
example something very curious happens; the SMC criterion halts for a value
of nb = 6, which amounts for an accuracy loss of around 25%, hence allowing
a higher apparent error in favor of lower model complexity. In this regard,
if compared to the ATC, the SMC seems to perform better in the problem
of finding a good trade-off between model complexity and accuracy. Let
us consider now a more complex experiment, reported in Fig. 4.8. The
reported experiment does not possess a precisely distinguishable modality:
by a visual inspection, the number of clusters could be something between 3
and 4. The ATC, for a value of λL̃ = 20%, yields a reduced mixture of nb = 10
components, which is considerably more than Nc = 6. In contrast, the SMC
hits again two birds with one bullet, in the sense that not only estimates

5The Wishart distribution is the distribution defined over the space of Symmetric
Positive-Definite (SPD) matrices and can be used to sample covariance matrices for the
Gaussian density.
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Figure 4.7: (a). Original mixture of size na = 50 generated out of Nc = 6
clusters for parameters β = 25, δ1 = 0.3, δ2 = 0.2; cluster representatives
plotted as yellow crosses. (b). ATC reduced mixture of size nb = 9 for
λL̃ = 20%. (c). SMC reduced mixture of size nb = 6 for α = 0.15. (d)
Halting criteria.
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Figure 4.8: (a). Original mixture of size na = 50 generated out of Nc = 6
clusters for parameters β = 25, δ1 = 0.3, δ2 = 0.2; cluster representatives
plotted as yellow crosses. (b). ATC reduced mixture of size nb = 10 for
λL̃ = 20%. (c). SMC reduced mixture of size nb = 6 for α = 0.15. (d)
Halting criteria.
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the number of clusters exactly, but it even preserves very well the modality,
hence finding a superior trade-off between accuracy and model complexity if
compared to the ATC. Even in this case, for a value of α = 0.15, the SMC
halts the reduction of an accuracy loss higher than the ATC case.

A final remark on the reported experiments is the following: the SMC
seems to outperform the ATC in the trade-off between accuracy and model
complexity. Nonetheless, it results to be a less intuitive criterion to apply.
From several conducted experiments, the best runs regarding SMC perfor-
mances are achieved for the clustered component cases as the ones reported
previously. Such a criterion might be valuable in applications like target
tracking in clutter, where object states may be potentially updated with
false alarms, hence yielding really similar mixtures as the ones reported in
Fig. 4.7 and Fig. 4.8.

For 1-D and 2-D problems it is still possible to visually check the correct-
ness of the model order. But what happens for higher dimensional problems?
Let us assume that n = 60 components are generated out of Nc = 10 clusters,
respectively for dimensions d = 6 and d = 12, and for parameters β = 30,
δ1 = 0.3 and δ2 = 0.2; in Fig. 4.9 are reported the corresponding adaptive
reductions. Again, the SMC criterion seems to be more versatile than the
ATC, even for considerably high dimensional problems.

Additional notes

The adaptive algorithms presented in this section are general and can be ap-
plied for any family of mixture distributions or intensities in the exponential
family. The curves L̃ and A, alternatively to undergoing a thresholding in
adaptive MR algorithms, can serve as a visual tool for the analysis of suit-
able model orders, especially in high dimensional problems where such a task
becomes non-trivial. As it will be discussed in the next chapter, by coupling
the presented adaptive algorithms with clustering solutions like the EM, it
is possible to find suitable model orders even for the case of sample data.

4.5 Refinement in the optimal transport frame-

work

To conclude the mixture reduction pipeline, the refinement phase will be
discussed. The author wants to remark that the focus of this work has been
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Figure 4.9: (a). n = 60 6-dimensional components are reduced according to
the ATC, providing nb = 15 components, and the SMC, yielding nb = 10
components. (b). n = 60 12-dimensional components are reduced according
to the ATC, obtaining nb = 18 components, and the SMC, yielding nb = 10
components.
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put mostly on the greedy reduction phase, since a superior initialization
should provide a faster convergence to better minima in a refinement phase.
In Sec. 3.4, a list of existing refinement algorithms has been reported and
briefly discussed. In the CTD context, the natural refinement algorithm
results to be a generalization of the K-means to the space of distributions;
this kind of refinement is something already known in the literature, for
instance in the works of [54,67,68,70] the said scheme is presented for several
D-measures. Nonetheless, following is reported the corresponding theory
visualized in the OTT framework. A discussion regarding the standard K-
means has been provided in 2.9, and it should help to understand better the
algorithm which will follow.

Assignment by means of relaxed optimal transport

Let us recall the relaxed optimal transport problem (4.13) for which only one
constraint is considered. The W̆ matrix (4.10) can be seen as a membership
matrix, which exclusively assigns each of the original components to the
reduced mixture representatives.

Update of the reduced mixture components

Recall that pa =
∑na

i=1w
a
i q

a
i , and let us consider the set SM = {Mj}n

b

j=1,
where:

Mj = {W̆i,jq
a
i }n

a

i=1. (4.30)

Each Mj represents a set of weighted densities obtained by (re-)assigning

new weights provided by each column of W̆ , denoted as W̆:,j, to the origi-
nal mixture components. By recalling (3.71), one can update the reduced
mixture components by computing the D-barycenter of the assigned original
components weighted by each column of the matrix W̆ as:

wb
j = 1T

naW̆:,j,

qbj = Φ̄D(Mj),
j = 1, ..., nb, (4.31)

that is the j-th reduced mixture component, will be recomputed as the D-
barycenter of the set Mj.

As for the K-means algorithm, or more generally according to the Majorization-
Minimization (MM) principle, one should iterate between the assignment and
update phases in order to minimize the index J = ⟨W̆ ,Da,b⟩. Let us denote
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with p(k) the current mixture model at the refinement iteration k, with Da,(k)

the cost matrix between pa and p(k) and with W̆ (k) the current relaxed opti-
mal transportation plan computed according to Da,(k); the general CD-based
refinement scheme is reported in algorithm 8. The mixture refinement algo-

Algorithm 8: CD-based Refinement Algorithm

Data: Original mixture pa of size na,
Reduced mixture pb of size nb,
Maximum number of allowed iterations maxIter,
Desired tolerance tol.
Result: Refined reduced mixture pb.

1 k := 0, p(k) := pb, J (k) := 0, J (k−1) := ∞;

2 while J (k−1) − J (k) > tol or k < maxIter do

3 compute Da,(k);

4 compute W̆ (k) as in (4.12);

5 J (k−1) := J (k);
6 k := k + 1;

7 J (k) := ⟨W̆ (k),Da,(k)⟩;
8 compute w(k) and p(k) as in (4.31);

9 end

10 pb := p(k);

rithm here reported results to be particularly efficient for D-measures which
possess closed forms both for the pairwise dissimilarity and D-barycenter
computation. In the DFKL case, the algorithm 8 coincides with the solu-
tions proposed by [67, 70]. In the DW2 case it coincides with the algorithm
proposed by [54].

This algorithm completes the consistent mixture reduction scheme ob-
tained by adopting the OTT perspective; from several tests, though, it seems
that for the DFKL case, which represents the core D-measure in this work, it
rarely introduces a noticeable improvement w.r.t. the greedy reduction re-
sult. For any other D-measure, it usually provides significant improvements
in terms of CTD.

166



Hence, which D-measure to use in a mixture reduction?

A final comment on the overall mixture reduction scheme here presented
is the following: for each D-measure, different features of the mixture will
be preserved in a reduction process. In addition, each D-measure possesses
different analytical properties. In this regard, the author wants to recall that
the DFKL is the only D-measure for which:

• barycenters are unique and they coincide with the BSDA,

• barycenters possess (semi-)closed forms for the whole exponential fam-
ily,

• barycenters are associative, hence the MRP solution is affected by less
local minima,

• one can perform a theoretically sound adaptive greedy reduction,

• an intuitive interpretation in terms of information can be given / there
are direct links with MLE,

• the corresponding CTD represents a good upper-bound on the original,
yet intractable, D-measure.

According to the above properties, it is reasonable to consider the DFKL as
a very good measure to employ in a mixture reduction problem.
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Chapter 5

Numerical Tests and
Applications

Most of the material presented in this chapter is rather new and will be
soon submitted for publication. All the material following in this chapter
represents, for a good part, unpublished contributions.

5.1 Consistency in Mixture Reduction prob-

lems

Another topic addressed in this dissertation is that of consistency (alter-
natively, coherency or congruency) of mixture/intensity reduction pipelines.
A preliminary discussion has been proposed in the work [46]; at that time,
though, many of the results here presented were not available yet, hence the
following discussion is more detailed. In this section, few experiments will be
reported to both discuss how consistent reduction pipelines affects the final
result in terms of approximation features, and why inconsistent alternatives
should be avoided, when possible.

Mixture reduction as optimization problem

In this work, the Mixture Reduction Problem (MRP) (see Chapter 3) has
been cast from the beginning as an optimization problem, since this allows
to address its solution in a rigorous manner where one aims to minimize a
given dissimilarity measure between an original uncertainty representation

168



and a corresponding simplified model. As discussed, though, there are very
few cases for which the solution of such a problem can be obtained in a
closed form; by exploiting the OTT framework presented in Chapter 4, it is
possible to provide many useful tools which allow to address the MRP in an
intuitive and efficient manner: if the pairwise dissimilarity D between com-
ponents can be computed, and the D-barycenter of a set of components can
be evaluated either in closed form or by means of FPI algorithms, then it is
possible to reduce and refine a mixture coherently with D. Nonetheless, in
the OTT framework, one is not optimizing directly the chosen dissimilarity,
but a corresponding surrogate1 function. If such an approximation is suf-
ficiently close to the original D-measure, then reductions done accordingly
yield good results even in term of the underlying, yet intractable, measure;
for instance, in Sec. 4.4, the CDFKL

has been identified as a good approxi-
mation of the true DFKL between mixtures. However, few remarks have to
be done; first of all, if the induced CD does not represent an upper bound
on the chosen D-measure (or any kind of other approximation), then the
corresponding MRP solution may be considerably different; this can happen
for measures which are not jointly convex in the arguments like, for instance,
the Cauchy-Schwarz Divergence (CSD). In [35], a preliminary investigation
in this regard has been done, showing that the optimization of the induced
CDCS

(in that work only the case nb = 1 has been addressed) yields in gen-
eral very inclusive solutions (even more than the DFKL), whereas optimizing
the real DCS between mixtures can yield extremely exclusive approximations
(see the discussion in Section (3.3.1)). In any case, MRPs where the real
D-measure is wanted to be optimized result, in general, to be intractable:
the OTT offers structured, intuitive and efficient algorithms; on the other
hand, the final outcome could be different in terms of preserved features.
From now on, the MRP will be addressed in the OTT perspective, where
the optimized D-measure is the induced CD rather than the original, usually
intractable, dissimilarity between mixtures.

1A surrogate is a function that approximates another function; in general, it is useful
because it takes little time to be evaluated. For instance, to search for a point that
minimizes a loss function, one could evaluate its surrogate on thousands of points, and
take the best value as an approximation to the minimizer of the objective function. In the
MR context, the OTT provides surrogate dissimilarity measures between mixtures which
can be always evaluated and which, often, represent good approximations on the original
dissimilarity.
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Why consistent reduction?

As mentioned in Sec. 3.2.1, each D-measure exhibits its own peculiarities;
however, there is not much of literature on the corresponding characteriza-
tion, and it is not clear what dissimilarity measure could be more suitable
for a given problem of interest. Performing a mixture reduction, though, can
provide some insights in that regard.

In section 3.5 a broad range of the existing algorithms have been reported;
a common trend shared by almost all of those is given by the fact that several
D-measures are employed in the same reduction pipeline, hence providing
incoherent solutions. Why does inconsistency represents a problem in an
MRP? As discussed, the problem of reducing the complexity of a mixture can
be cast as an optimization problem where a given D-measure is wanted to
be minimized; in this regard, considering different dissimilarities in the same
pipeline yields, by definition, inferior solutions w.r.t. the problem addressed
in a consistent manner. In addition, mixing several D-measures may yield
also resulting approximations where heterogeneous features are preserved,
even if conflicting each other.

Another common fact in the literature is that the accuracy of an ap-
proximation is often evaluated in terms of DL2 (DISE), mostly due to ease of
computation. Nonetheless, by considering again the optimization perspec-
tive of the MRP, such a fact is equivalent to evaluate how good a solution
is in terms of a loss function which may not be involved in the optimization
process.

For all the above reasons, the author thinks that preserving consistency
in a reduction problem is an important task.

Before proceeding further, let us consider two mixtures pa = (wa)Tqa and
pb = (wb)Tqb; a list of properties regarding the reported D-measures in Sec.
3.1 follows in Table 5.1.

2Closed form only for the case n = 2.
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D-measure properties
D-measure Closed form

D(pa∥pb)
Closed form
D-barycenter

D(pa∥pb) ≤
CD(p

a∥pb)
D-bar equal
to D-BSDA

DFKL ✗ ✓ ✓ ✓

DRKL ✗ ✓ ✓ ✗

DSKL ✗ ✗ ✓ ✗

DW2 ✗ ✗2 ✓ ✗

DL2 ✓ ✗ ✓ ✓

DCS ✓ ✗ ✗ ✗

DH2 ✗ ✗ ✓ ✗

DB ✗ ✗ ✓ ✗

Table 5.1: D-measure properties for each of the reported dissimilarities.

5.1.1 Mixture reduction as a tool of feature analysis
for D-measures

For the sake of discussion, the following analysis will be restricted to the
Gaussian case, but it remains general.

Let us consider the experiment where an na = 40 components mixture is
reduced according to the algorithm 4, for each D-measure listed in Sec. 3.1;
the desired number of components is chosen by at first evaluating an SMC
based reduction, which should provide a suitable number of components, and
then by diminishing such number by two. The motivation behind this choice
relies on the fact that the peculiarities of a D-measure in preserving the
mixture features (peaks, support...) become more explicit when a significant
information/shape loss is introduced (two less components than those strictly
needed). For instance, if the SMC suggests to use nb = 6 components, there
will be employed instead nb = 4 Gaussians. Moreover, in order to make the
notation lighter, it will be assumed that all the reductions, unless differently
stated, will be done according to the Algorithm 4 reported in Sec. 4.3. In
this regard, since the reduction algorithm is given, all the resulting plots will
be labelled only with the corresponding underlying D-measure. In addition,
the original mixture will be shared by each of the reduction algorithms, so
even the axis values are removed to save space. In Fig. 5.1 reductions of a
na = 40 GM down to nb = 6 components by employing several D-measures
in Algorithm 4 are reported.

The ordering of the plots has been chosen according to the author’s ex-
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Figure 5.1: GM of size na = 40 reduced to nb = 6 by consistent CD-based
reduction for several D-measures. (a). CDRKL

-based reduction. (b). CDW2
-

based reduction. (c). CDL2
-based reduction. (d). CDH2

-based reduction.
(e). CDSKL

-based reduction. (f). CDB
-based reduction. (g). CDFKL

-based
reduction. (h). CDCS

-based reduction.
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perience in order to associate similar D-measures in terms of features. By
looking at Fig. 5.1, it is possible to provide some preliminary observations.
In a CD-based mixture reduction:

• The DRKL appears to be the most exclusive measure since it preserves
only the 6 main peaks, neglecting significant non-zero density regions.

• The DW2 results to be comparable with the DRKL in terms of exclu-
siveness, but this seems to occur mostly for low dimensional problems;
from several tests, such a D-measure preserves in general the geometry
of the mixture (as also discussed in [54]), that is it aims to preserve the
modality of the principal modality of the distribution.

• The DL2 is, instead, a puzzling D-measure (as also suggested in [50]).
From several numerical tests, it can allow very inclusive approximations
(by spreading the covariance of the resulting barycenter) over low den-
sity regions, but also it can exhibit pruning-like behaviors (for instance,
when two ”distant” pronounced local minima exist and one is cho-
sen as final approximation), hence by yielding practically a deletion of
one component. By recalling Fig. 3.7, the latter argumentation should
be more clear. In that figure, the global minima is represented by a
very inclusive solution; nonetheless, two local minima, corresponding
to pruning one of the two involved components, are possible solutions
in some cases. It seems that for sharp peaks, the DL2 favors pruning
behaviors, while it favors merging with covariance spreading for low
importance regions.

• The DH2 is an intriguing D-measure to consider in a CD-based reduc-
tion, even if it lacks uniqueness of barycenters. It represents a good
trade-off between exclusiveness and inclusiveness, yielding visually in-
teresting approximations, at least in low dimensional problems. As for
the DL2, the DH2 can exhibit pruning-like behaviors (see Fig. 3.9) if the
FPI algorithm is initialized near the main peaks).

• The DSKL falls in between the DRKL and the DFKL; in fact, by looking
at Fig. 5.1, it is possible to spot how the main peaks are preserved in a
coarser if compared to the DRKL, in favor of assigning non-zero density
to less important components as happens for the DFKL.
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• The DB is also a really interesting D-measure; it leads to approxima-
tions which are similar to the DFKL ones, but it favors slightly more
the main peaks preservation rather than inclusiveness. In general, it
yields visually good approximations.

• The DFKL has been investigated extensively in Chapter 4 and in the
literature (see [19, 50, 51, 62, 73, 80]), since it represents a golden stan-
dard among the statistical divergences; in the context of Fig. 5.1 or,
more in general, in the MRP, it is possible to frame it between the
DB and the DCS in terms of inclusiveness: the general trend is a more
accentuated spreading of the covariances if compared to the DB, but
not as pronounced as for the DCS for low importance regions.

• The DCS is a rather puzzling D-measure also (as for the whole LB
family), since analytically it is very close to the Bhattacharyya distance,
hence trying to approximate the peaks, but, at the same time, it favors
a spreading of the covariances by around a factor two if compared to
the DFKL and the DB. A clear general trend for this D-measure has
not identified yet, similarly to the DL2 case, but it has been observed
that, in order to preserve the main peaks similarly to the DB, it favors
a very inclusive solution for low density regions.

In Fig. 5.2 is reported another reduction; this time nb = 4. By looking at
such figure, it is possible to find back the previously observed features: the
DRKL is very exclusive, the DW2 follows, the DL2 again shows coexistence of
opposite behaviors, that is it maps tightly the three main peaks, and then
spreads the covariance all over the mixture support in order to assign non-
zero density to the remaining components. Following, it is possible to observe
how theDH2 maps the modality of the mixture, but this time less aggressively
if compared to the DSKL. DB, DFKL and DCS again show an increasing factor
of inclusiveness.

As last experiment of this kind, the benchmark mixture proposed by
Crouse in [60], which parameters are reported in (4.29), is reduced from
na = 10 to nb = 4 components; the results are reported in Fig. 5.3.

By setting nb = 4, interesting choices are made by each of the algorithms,
exhibiting more explicitly the corresponding features. The DRKL again maps
the 4 main peaks, exhibiting a pruning like behavior for the density region
in the center. The DW2, as mentioned, tries again to preserve the geometry
of the mixture, this time, though, with a rather inclusive behavior. The DL2,
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Figure 5.2: GM of size na = 40 reduced to nb = 4 by consistent CD-based
reduction for several D-measures. (a). CDRKL

-based reduction. (b). CDW2
-

based reduction. (c). CDL2
-based reduction. (d). CDH2

-based reduction.
(e). CDSKL

-based reduction. (f). CDB
-based reduction. (g). CDFKL

-based
reduction. (h). CDCS

-based reduction.
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Figure 5.3: GM of size na = 10 reduced to nb = 4 by consistent CD-based
reduction for several D-measures. (a). CDRKL

-based reduction. (b). CDW2
-

based reduction. (c). CDL2
-based reduction. (d). CDH2

-based reduction.
(e). CDSKL

-based reduction. (f). CDB
-based reduction. (g). CDFKL

-based
reduction. (h). CDCS

-based reduction.
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DH2, DSKL, DB and DFKL are coherent with the previous experiments. As
announced, the DCS can be puzzling. In Fig. 5.3 it favors the preservation of
the main cluster of components, by instead spreading the covariance over the
two isolated components. Here it is possible to observe closer the similarity
with the DB where, though, the covariances take larger magnitudes.

5.1.2 Consistent vs inconsistent approximations: a Monte
Carlo study

To better figure out the numerical aspects of the consistency, in this section
some Monte Carlo (MC) tests will be reported. Let us consider N = 200
1-dimensional GMs, of size na = 30, generated out of Nc = 6 clusters as
in 10, for parameters β = 30, δ1 = 0.5, δ2 = 0.3, and reduced to nb = 5
components according to algorithm 4, for each D-measure listed in Table
5.1; in addition, a refinement is performed consistently for each algorithm as
in Algorithm 8. Each reduction algorithm outcome is evaluated according to
all of the corresponding induced CD, and execution times are also reported.
The average performances are evaluated over the N = 200 mixtures (Monte
Carlo runs) and reported in Table 5.2. For each induced CD (column), the
value corresponding to the best performing algorithm (row) is reported in
bold.

Monte Carlo average results for N = 200 1-dimensional GMs
Algo:
CD-red+
CD-ref

Avg
CDRKL

Avg
CDW2

Avg
CDL2

Avg
CDH2

Avg
CDSKL

Avg
CDB

Avg
CDFKL

Avg
CDCS

Avg
Time
(s)

DRKL 2.0233 2.5353 0.3555 0.2847 3.1307 0.5443 4.2360 1.0329 0.0683
DW2 3.5484 1.9587 0.2906 0.2369 2.5393 0.4068 1.5302 0.7704 0.0834
DL2 40.1494 55.9620 0.1756 0.2446 23.3020 1.0948 2.6907 1.9759 0.5480
DH2 8.1315 2.7304 0.2060 0.1870 4.4763 0.2725 0.7933 0.4499 0.4472
DSKL 2.5158 2.5430 0.2338 0.2185 1.7808 0.3132 1.0458 0.5680 0.1351
DB 5.1966 2.7973 0.2055 0.1916 2.9369 0.2413 0.6719 0.3669 0.2611
DFKL 7.9542 3.1132 0.2064 0.1964 4.3023 0.2478 0.6373 0.3546 0.0591
DCS 10.6955 4.1269 0.2050 0.2079 5.6889 0.2610 0.6688 0.3400 0.1434

Table 5.2: Consistent full reduction pipelines applied on N = 200 1-
dimensional mixtures of size na = 30, and evaluated according to each in-
duced average CD and time.
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By looking at Table 5.2, it is possible to observe how, according to each
induced CD measure, the corresponding algorithm achieves the best perfor-
mance. Moreover, the smallest average time is employed by theDFKL-induced
algorithm.

Note: when discussing computational times of MR algorithms, the average
time is not a reliable metric; since the employed time depends significantly
on the implementation, the computational complexity should be the real
metric considered in such kind of comparisons. For the above (and following)
experiments, the same coding scheme has been employed for each of the
algorithms.

The author wants to recall that many of the reported algorithms rely on
FPI methods in order to evaluate the barycenters. If D-measures like the
DL2 or the DH2 are considered, for which the D-barycenters may not exist
unique, the corresponding FPI algorithm convergence can take many itera-
tions to reach a sub-optimal solution. When the latter happens, there is no
guarantee that the resulting approximation will achieve the best performance
w.r.t. the relative induced CD, especially if compared to other D-measures
similar in the features, but more numerically robust. Another fact which
should be briefly discussed, but which would require a chapter on its own,
is how good of an approximation the induced CD is in terms of the under-
lying, potentially intractable, D-measure. As discussed in section 4.4, the
CDFKL

appears to be a good approximation for the DFKL between mixtures,
mostly for small deviations. This might not be true for other D-measures,
but the corresponding discussion is beyond the goals of this dissertation. In
any case, if an induced CD is a rather coarse approximation for the base D-
measure, there are no guarantees that the corresponding reduction algorithm
will achieve the best performances in terms of the underlying dissimilarity.
From this perspective, it may be reasonable to consider the surrogate dis-
similarities CD as measures on its own; of course, it would be desirable that
the CD represents a tight approximation for the base dissimilarity between
mixtures.

Let us now consider another MC experiment whereN = 100 6-dimensional
GMs of size na = 30, generated around Nc = 6 main clusters for parameters
β = 30, δ1 = 0.7 and δ2 = 0.5, are reduced to nb = 5 components as done in
the previous experiment. The results are reported in Table 5.3; in this case
though, since the magnitudes of each CD can be very different, a suitable
scaling factor will be used and reported in each column, when employed.
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Monte Carlo average results for N = 100 6-dimensional GMs
Algo:
CD-red+
CD-ref

Avg
CDRKL

(·10−2)

Avg
CDW2

(·10−2)

Avg
CDL2

(·105)

Avg
CDH2

Avg
CDSKL

(·10−2)

Avg
CDB

Avg
CDFKL

(·10−1)

Avg
CDCS

(·10−1)

Avg
Time
(s)

DRKL 0.2266 1.9985 1.8890 0.8959 0.2794 5.7026 3.3188 1.1131 0.1172
DW2 0.2850 1.6793 0.8656 0.8613 0.2273 4.4265 1.6880 0.8621 1.1835
DL2 3.9870 25.9594 0.3729 0.7802 2.0985 4.9016 1.1451 0.7750 0.7821
DH2 0.6130 3.9147 0.5933 0.6772 0.4576 6.1183 2.5844 1.1711 2.3946
DSKL 0.2609 1.9578 0.6504 0.8001 0.1639 2.2630 0.6695 0.4138 1.4502
DB 0.5372 2.9291 0.5623 0.7271 0.2898 1.4424 0.3795 0.2058 0.5152
DFKL 0.6430 3.5466 0.5591 0.7396 0.3446 1.4906 0.3681 0.2030 0.0940
DCS 0.8857 4.9151 0.5574 0.7554 0.4702 1.5476 0.3830 0.1918 0.8456

Table 5.3: Consistent full reduction pipelines applied on N = 100 6-
dimensional mixtures of size na = 30, and evaluated according to each in-
duced average CD and time.

Again, by employing a consistent full reduction pipeline, each of the algo-
rithms achieves the best performance according to the corresponding induced
CD. In terms of time, the CDFKL

-based alternative confirms to be the most
efficient one.

As last test, let us consider N = 100 2-dimensional mixtures of size na =
20, generated according to Nc = 6 clusters for parameters β = 15, δ1 = 0.4,
δ2 = 0.3, which are reduced to nb = 5 components by means of the CDFKL

-
based greedy reduction, the Williams’ algorithm (reported in section 3.5),
and the CDL2

-based greedy reduction algorithm. The refinements are omitted.
As performance metrics, the three algorithms will be evaluated in terms of
CDFKL

, numerical DFKL, DISE, which is recalled to possess a closed form in
the mixture case, and the CDL2

. Such an experiment involves two consistent
hybrid algorithms, respectively the CDFKL

and the CDL2
based ones, and an

inconsistent incrementally global algorithm, that is the Williams; the latter
reduces incrementally the mixture by evaluating the DL2, rather than the
CDL2

, between contiguous models, by either computing the DFKL-barycenter
between two components or by pruning the component introducing the least
DL2.

By looking at Table 5.4, it is possible to obtain several insights. First of
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Monte Carlo average results for N = 100 2-dimensional GMs

Algorithm Avg CDFKL
Avg DFKL Avg DISE

(·101)
Avg CDL2

(·101)
Avg Time
(s)

CDFKL
-red 1.1372 0.2871 0.2422 0.6129 0.0243

Williams 6.8898 3.4222 0.2089 0.5614 6.1245

CDL2
-red 5.2857 2.6808 0.2013 0.4488 0.6148

Table 5.4: Comparison between CDFKL
-based, Williams’ and CDL2

-based re-
duction algorithms evaluated over several metrics.

all, the CD-based reduction algorithms, as expected, achieve the best per-
formances in terms of the corresponding induced CD measures. In addition,
such algorithms yield also very good performance w.r.t. the underlying cor-
responding D-measures between mixtures. The Williams’ algorithm does not
perform as good, for a significantly higher computational time, due to the
following reasons:

• Inconsistency: such an algorithm optimizes the DISE in an incremen-
tally global manner, but the merging actions are evaluated in terms of
DFKL-barycenters, hence optimizing, at the same time, the DFKL.

• Pruning: allowing pruning may be a good alternative to merging if the
chosen D-measure has an exclusive behavior. Nonetheless, in terms
of DFKL, this may lead to approximations preserving little to none
density in regions where the original model has a non-zero mass: the
corresponding DFKL can even go to ∞. The DFKL is a very inclusive
D-measure, and does not evaluate well for approximations having a
non-overlapping support with the original model.

• Merging: since merging is performed according to DFKL, rather than
DL2, the overall approximation achieves, in general, inferior accuracy
w.r.t. theDISE if compared with an equivalent algorithm where merging
is done by means of DL2-barycenter. It is important to recall that
the DL2-barycenter and the DL2-BSDA do coincide, hence the DL2-
barycenter is the best merging action according to both the CDL2

and
the DISE between mixtures.

Although the CDL2
-based reduction optimizes an upper bound on the DISE

rather than the DISE itself, the merging action is done consistently, hence
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the algorithm is expected to recover, in part, the accuracy due to its hybrid
structure. In any case, the computational time is considerably inferior, even
if particularly efficient implementations are used for the Williams’ algorithm
(not in this example). In conclusion, if the goal is to optimize the DL2, while
consuming less resources, it may be reasonable to employ the reported hybrid
algorithm rather than the Williams’.

5.2 Extended Object Tracking: Adaptive Gamma

Gaussian Inverse-Wishart Mixture Reduc-

tion

In this section will be investigated the problem of reducing a specific Random
Finite Set (RFS)-based [8] uncertainty representation, often used in the con-
text of extended object tracking, which falls under the name of gamma Gaus-
sian inverse Wishart (GGIW) intensity. Extended Object Tracking (EOT)
is a broad field, and discussing it in detail would require the introduction
of several additional concepts; in this regard, the author decided to limit
the argumentation to the problem of reducing a GGIW intensity [19], which
represents another contribution provided by this dissertation. However, a
comprehensive discussion about EOT can be found in the work of Koch [81].

5.2.1 Hypothesis management in extended object track-
ing

Multiple target tracking lies at the core of many important engineering
achievements such as radar defence systems, air traffic surveillance systems
and autonomous cars. The task of a multiple target tracker involves deal-
ing with uncertainty in the number of targets, origin of the measurements,
imperfections of the sensor and the target motion [11,82]. As anticipated in
Sec. 2.10, the uncertainty under investigation can be handled by consider-
ing a finite number of possible alternative events at each time step, called
hypotheses. For example, in multiple target tracking, a single measurement
can result from either a target for which a track has already been initialized
or a new target or it can be a false alarm [13, 83]. In maneuvering target
tracking the target motion can obey a mathematical model which can switch
in a predefined set of stochastic difference/differential equations [4, Ch. 11].
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When the uncertainty represented by different hypotheses cannot be resolved
immediately, which is usually the case in a real life scenario, a Bayesian tar-
get tracker would yield probability density or intensity functions which are
in the form of normalized or unnormalized mixtures of component densities
defined over the state space. Every component of such a mixture/intensity
would then correspond to an alternative hypothesis sequence in time. Un-
fortunately, as the time progresses, the number of such possible hypothesis
sequences, hence the number of mixture components, would increase expo-
nentially, which would make processing and storing such mixtures impossible.
As a result one has to resort to MR algorithms, which have been deeply dis-
cussed in Chapters 3 and 4 of this dissertation.

In target tracking, the targets which can result in multiple measurements
in a single sensor report are called extended targets. The last one and a
half decades have seen a plethora of recent advances in both the theory and
practice of extended target tracking (ETT) [84]. A recent mixture/intensity
type that has gained popularity in extended target tracking literature is the
Gamma Gaussian inverse-Wishart (GGIW) mixture/intensity [19,20,24,26].
In a GGIW mixture/intensity used in an Extended Target Tracking (ETT)
context

• the components would represent the estimated statistics of the ex-
tended target(s);

• the weights would represent either the hypothesis probabilities or ex-
pected number of extended targets (belonging to a specific component)
depending on whether the corresponding mixture/intensity is normal-
ized (mixture case) or unnormalized (intensity case);

• the gamma part of the components would hold the statistics for the
number of measurements generated by the corresponding extended tar-
get(s);

• the Gaussian part of the components would hold the statistics for the
kinematics states of the extended target(s);

• the inverse Wishart part of the components would hold the extent
statistics of the corresponding extended target(s).

Greedy algorithms to reduce Gamma mixtures and Gaussian inverse Wishart
mixtures were given in [27] and [85], respectively, where symmetric Kullback
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Leibler divergence is used as the merging criterion and Kullback Leibler diver-
gence is minimized to find the merged component. In [19], DFKL-consistent
reduction and refinement algorithms have been provided for the GGIW case.

For the sake of discussion, the theory regarding GGIW reduction is re-
ported in the first part of this section; in addition, adaptive reduction algo-
rithms will be proposed in order to provide the automatic selection of the
number of GGIW hypotheses.

5.2.2 GGIW representations

Let us consider a weighted sum of n densities of the form:

p(ξ|Θ) ≜ w̃Tζ(χ, x,Y|θ) =
n∑

i=1

w̃iζi(ξ|θi)

=
n∑

i=1

w̃iγ(χ|κi, ωi)ν(x|µi,Σi)φ(Y|Vi, vi),
(5.1)

where ξ = (χ, x,Y) ∈ R+×Rd×Sd
++, γi is the i-th gamma density as defined

in (2.57), νi is the i-th Gaussian density as defined in (2.55) and φi is the i-th
inverse Wishart density as defined in (2.60). For a set of GGIW densities,
the corresponding parameter set will be θ = {κ,ω,µ,Σ,V ,v} ∈ Hθ

n =
Rn

+ × Rn
+ × (Rd)n × (Sd

++)
n × (Sd

++)
n × Rn

+. w̃ = [w̃1, ..., w̃n]
T ∈ Rn

+ will be
used for the intensity case, that is p(ξ|Θ) ∈ Qint, whereas w ∈ ∆n−1 will be
used for the mixture case, that is p(ξ|Θ) ∈ Qmix. ζi is the i-th GGIW density
and ζ(ξ|θ) = [ζ1(ξ|θ1), ..., ζn(ξ|θn)]T . Hypotheses as the GGIWs are called
product densities, since they are obtained as the product of several simpler
densities. For the sake of discussion, terms as joint or overall will be used
to refer to the product density as a whole, while terms like marginal will be
used to refer to the single densities involved in the product.

5.2.3 CDFKL
-based reduction

The CTD-based reduction framework represents a totally general approach
which can be used to deal both with mixtures and intensities; the only re-
quirements are that one can compute the pairwise dissimilarities between
hypotheses, and can evaluate the D-barycenter of a set of components. At
the end of the previous chapter, it has been discussed the fact that the DFKL
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possesses many useful properties which make it a core measure in the MRP
when addressed by means of OTT. In this regard, it is worth to list another
interesting property which simplifies considerably the GGIW reduction prob-
lem.

Separability property of the DFKL

In the case of product densities, the DFKL possesses a useful property, namely
the separability, also known as additivity for product distributions [79]; given
two GGIW densities ζi = γi(χ)νi(x)φi(Y) and ζj = γj(χ)νj(x)φj(Y), the
following relation holds:

DFKL(ζi∥ζj) = DFKL(γi∥γj) +DFKL(νi∥νj) +DFKL(φi∥φj). (5.2)

The proof is reported in Appendix B.2.6. The three terms in (5.2) have been
defined respectively in (3.13), (3.12) and (3.14).

DFKL-barycenter of GGIW densities

Let us consider a set of n GGIW densities (w̃, ζ) = {w̃i, ζi}ni=1; by exploiting
property (5.2), it is trivial to obtain that:

ζ̂(ξ) = γ̂(χ)ν̂(x)φ̂(Y), (5.3)

where γ̂ is the DFKL-barycenter of the gamma marginal as defined in (3.86),
ν̂ is the DFKL-barycenter of the Gaussian marginal as defined in (3.81) and φ̂
is the DFKL-barycenter of the inverse Wishart marginal as defined in (3.82);
in other words, the DFKL-barycenter of a set of GGIW densities can be
factorized as the product of the corresponding gamma, Gaussian and inverse
Wishart marginal barycenters of the given intensity.

GGIW reduction and refinement

The separability property allows to compute efficiently both the pairwise
DFKL between GGIW hypotheses and theDFKL-barycenters of a set of GGIW
components; thus said, one can resort to the theory presented in Chapter 4 in
order to reduce/refine a mixture/intensity of GGIW densities. Nonetheless,
when dealing with intensities, there are few facts which should be kept in
mind; first of all, it is important to remark that the DFKL is a statistical di-
vergence, that is a way to measure how distant two probability distributions
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are; this implies that such a measure should be considered, in its standard
definition, for mixture densities rather than intensities. If the latter are
considered, it would not be obvious how the corresponding DFKL should be
computed. For practical applications, though, the optimal transport frame-
work allows to perform reduction and refinement of intensities without the
need to normalize the corresponding weights, given that the cost matrix is
built with dissimilarities between pairs of densities (the weights plays no role
in the cost matrix computation).

If compared to the marginal case, the GGIW mixture/intensity reduction
problem is, in general, more difficult: performing a reduction step according
to a cost-based criterion, might lead to situations where the cost for one
of the marginal densities is optimal, whereas it results to be sub-optimal
for the other two. This yields in general overall good approximations, but
in the marginal perspective potentially inferior solutions often occur. In
this regard, the availability of accurate reduction algorithms is particularly
important when dealing with product hypotheses.

5.2.4 Adaptive reduction of GGIW hypotheses

A contribution of this dissertation has been the GGIW reduction for a fixed
number of reduced mixtures components, reported in the work [19]; nonethe-
less, given the availability of adaptive reduction theory 4.4, already discussed
broadly in Sec. 4.4, the author decided to report a discussion about adaptive
GGIW intensity reduction rather than the fixed number of hypotheses case.
In this regard, all the necessary fundamentals will be reported following.

Proposition 5.2.1 (Hybrid bound and CTD equality for GGIW intensities).
Let us consider a GGIW intensity pa = (w̃a)Tζa and its reduced-by-one model
p̃ai,j obtained as in (4.16). If p̃ai,j is obtained by merging the pairs of compo-
nents (i, j) of pa for which the bound BD(w̃

a
i ζ

a
i , w̃

a
j ζ

a
j ) (4.17) is minimum,

then theorem 4.3.1 holds, that is:

CD(p
a∥p̃ai,j) = BD(w̃

a
i ζ

a
i , w̃

a
j ζ

a
j ). (5.4)

Moreover, if D is a separable measure, it holds:

CD(p
a∥p̃ai,j) = BD(w̃

a
i ζ

a
i ∥w̃a

j ζ
a
j ) =

= BD(w̃
a
i γ

a
i ∥w̃a

j γ
a
j ) +BD(w̃

a
i ν

a
i ∥w̃a

j ν
a
j ) +BD(w̃

a
i φ

a
i ∥w̃a

jφ
a
j ),
(5.5)
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that is the bound BD is separable and the CD between the mixture before and
the one after a minimum cost merging action can be computed as the sum of
the three marginal bounds. In addition, as done for the Gaussian case, the
cumulative sum of the overall optimal bounds can be used as an estimate of
the CTD between the original mixture/intensity and a corresponding reduced
instance.

The proof of the bound separability for the GGIW case is reported in Ap-
pendix B.2.6.

Proposition 5.2.2 (Joint DFKL-barycenter cost). Let us consider a GGIW
intensity pa = (w̃a)Tζa and its DFKL-barycenter ζ̂

a computed as in (5.3). It
is trivial to prove that:

c(ζ̂a|pa) = CDFKL
(pa∥ζ̂a) = mDFKL

(ζ̂a|w̃a, ζa) =
na∑
i=1

w̃a
iDFKL(ζ

a
i ∥ζ̂a). (5.6)

By exploiting the separability property (5.2), one obtains the following rela-
tions:

c(ζ̂a|pa) = CDFKL
(pa∥ζ̂a) =

na∑
i=1

w̃a
iDFKL(ζ

a
i ∥ζ̂a) =

=
na∑
i=1

w̃a
iDFKL(γ

a
i ∥γ̂a) +

na∑
i=1

w̃a
iDFKL(ν

a
i ∥ν̂a) +

na∑
i=1

w̃a
iDFKL(φ

a
i ∥φ̂a) =

= CDFKL
((w̃a)Tγa∥γ̂a) + CDFKL

((w̃a)Tνa∥ν̂a) + CDFKL
((w̃a)Tφa∥φ̂a) =

= c(γ̂a|(w̃a)Tγa) + c(ν̂a|(w̃a)Tνa) + c(φ̂a|(w̃a)Tφa).
(5.7)

that is the overall DFKL-barycenter cost can be obtained as the sum of the
three marginal DFKL-barycenter costs.

The previous propositions can be exploited to apply the adaptive reduc-
tion theory, presented in Sec. 4.4, to the case of GGIW intensities. For
product densities, there are several ways to perform an adaptive reduction;
the first one is to consider the application of the two criteria (ATC and SMC)
presented in Sec. 4.4 directly on the corresponding joint curves. In alterna-
tive, one could consider different thresholds for each of the marginal curves.
Nonetheless, it is important to stress out the following fact: what represents
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an optimal choice from an overall perspective, may represent a sub-optimal
step for the marginal case.

For the first part of this section, the discussion will be focused on the ATC
case, since few results were already available when the SMC was formulated,
and to unclutter plots involving many quantities. Given the optimal joint
bound values, the cumulative cost built accordingly is a cumulative RTL
curve, since equation (4.22) holds. Nonetheless, the cumulative curves built
on the marginal bounds, corresponding to the optimal overall bound, do
not represent true cumulative RTL curves. This is due to the fact that,
marginally, the choice may not be optimal, hence the strict inequality holds
in equation (4.24). In any case, a normalization of the marginal curves can
still be obtained by considering the marginal DFKL-barycenter costs, that is
one can define the following marginal curves:

s
(m)
B,γ =

∑m
l=na B̆

(l)
DFKL,γ

c(γ̂a|(w̃a)Tγa)
, (5.8)

s
(m)
B,ν =

∑m
l=na B̆

(l)
DFKL,ν

c(ν̂a|(w̃a)Tνa)
, (5.9)

s
(m)
B,φ =

∑m
l=na B̆

(l)
DFKL,φ

c(φ̂a|(w̃a)Tφa)
. (5.10)

B̆
(l)
DFKL,γ

, B̆
(l)
DFKL,ν

and B̆
(l)
DFKL,φ

are respectively the bounds associated to the
gamma, Gaussian and inverse Wishart marginals, underlying the optimal
(overall) merging cost B̆DFKL

corresponding to the l-th reduced order model;
in other words, one can compute marginal cumulative curves as the sum
of the marginal bounds B̆DFKL,(·) and then by normalizing over the corre-
sponding (marginal) DFKL-barycenter cost. Such curves, though, will not
be as ”smooth” as the overall (optimal) case, since, as mentioned, the mini-
mum cost merging (done in a joint perspective) will not take into account the
marginal optimality, hence sequential reduction steps could yield significantly
inferior results for the single density. To better understand this fact, in Fig.
5.4 is reported a GGIW intensity reduction, where a threshold λL̃ = 15% has
been used on the overall cumulative RTL curve to halt the reduction.

The three (normalized) marginal cumulative curves have also been plotted
in order to show how sub-optimal merging affects the corresponding cumula-
tive costs. Since for sub-optimal choices the strict inequality of (4.24) holds,
adaptive reductions done according to marginal cumulative curves may re-

187



0 10 20 30
0

1

2

3

-50 0 50
0

0.5

1

0 2 4 6
0

10

20

30

123456789

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

0

0.5

1

Figure 5.4: GGIW intensity of size na = 40 reduced adaptively by means
of ATC for λL̃ = 15%, corresponding to a reduced model of size nb = 21.
(a). gamma intensity reduction. (b). Gaussian intensity reduction. (c).
inverse Wishart intensity reduction. (d). Joint RTL curves (dashed green
and magenta), marginal cumulative curves respectively in dashed red, dashed
light-blue, dashed purple.
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sult to be particularly conservative, since significant values can be reached
even for very low compression ratios. In this regard, let us assume that the
reduction is halted if either one of the three marginal curves exceeds the
accuracy threshold rather than the overall one. By looking at Fig. 5.4, it
is possible to observe that the gamma marginal curve (in red) exceeds the
accuracy threshold λL̃ at around nb = 26 components, instead of nb = 21
as in the overall case. The global joint RTL curve has been plotted again
since something mentioned happened; for the reduction step from nb = 3 to
nb = 2, the L̃ detached from L (meeting again in nb = 1). This phenomena
is rather rare in single marginal cases, but can occur more frequently when
product distributions are considered. In any case, as already discussed, such
detachment happens for very low model orders which, in general, are never
explored from the adaptive reduction algorithm.
Let us now consider another example where the ATC is considered for λL̃ =
20%, reported in Fig. 5.5.

As it can be observed, the Gaussian cumulative curve (dashed light blue)
majorizes slightly the overall RTL curve for low values of reduction ratios;
from around nb = 27, such a trend occurs in the inverse Wishart marginal.
Regarding the marginal case for the SMC, at this stage it has not beed
investigated yet, but the author believes that it might not be worth to be
used: since the SMC is more sensible to symmetry/modality modifications
(which now can happen over three marginals), it would be reasonable to
expect even more conservative reductions if compared to the marginal RTL
case.

For the remainder of this discussion, only the overall perspective will
be considered in the GGIW intensity reduction problem; nonetheless, if one
wants to perform a reduction where different thresholds on the marginals are
provided, it still can be done by considering the cumulative curves (5.8) (in
the ATC case, or the equivalents for the SMC case): such a choice specifically
depends on the application of interest.

GGIW intensity reduction by ATC and SMC

To further investigate the GGIW intensity reduction problem, let us now
consider both the presented halting criteria in 4.4; again, for the Gaussian
case, the components are generated according to Nc = 6 clusters rather than
with uniform probability over the space.

From several other experiments, and as briefly mentioned, it seems that
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Figure 5.5: GGIW intensity of size na = 50 reduced adaptively by means
of ATC for λL̃ = 20%, corresponding to a reduced model of size nb = 27.
(a). gamma intensity reduction. (b). Gaussian intensity reduction. (c).
inverse Wishart intensity reduction. (d). Joint RTL curves (dashed green
and magenta), marginal cumulative curves respectively in dashed red, dashed
light-blue, dashed purple.
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Figure 5.6: 40-component GGIW intensity reduced by means of ATC, for
λL̃ = 20%, yielding nb = 18, and by means of SMC, for αA = 0.15, yielding
nb = 25. (a)-(d). gamma intensity reduction. (b)-(e). Gaussian intensity
reduction. (c)-(f). inverse Wishart intensity reduction. (g). Halting criteria.
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the SMC criterion is rather sensible in the product densities case: marginal
merging actions may not be optimal, hence the quantity (4.28) can increase
rapidly. In this regard, it might be worth to consider a value of αA = 0.20.
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Figure 5.7: 40-component GGIW intensity reduced by means of ATC, for
λL̃ = 20%, yielding nb = 18, and by means of SMC, for αA = 0.2, yielding
nb = 22. (a)-(d). gamma intensity reduction. (b)-(e). Gaussian intensity
reduction. (c)-(f). inverse Wishart intensity reduction. (g). Halting criteria.

With the given thresholds, the two algorithms seem to perform compara-
bly; nonetheless, a key concept which is worth to be recalled, is the fact that
the performance of an algorithm should not be evaluated solely on the single
reduction realization, but it should be either considered a MonteCarlo test or
real world data on which a tuning phase has been done. In any case, single
synthetic realizations can help to figure out the general algorithm behavior.
Even in the GGIW case, though, the SMC seems to exhibit an overall better
performance w.r.t. the ATC.

Some notes on adaptive reduction and object tracking

In target tracking algorithms based on RFS, the sum of the intensity weights
serves as estimate of the expected number of objects present in the field
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of view; many tracking algorithms based on the concept of Probability Hy-
pothesis Density (PHD), resort often to threshold-based pruning in order
to remove the unlikely state hypotheses. Nonetheless, significantly probable
hypotheses could be redundant if originated by the same object, hence it
would be reasonable to consider merging to further simplify the uncertainty
description. In this regard, resorting to an adaptive reduction as discussed in
this section, might help to reduce the number of hypotheses (model complex-
ity) while preserving the expected number of objects. The author wants to
remark that pruning is a destructive practice, since information is lost when
hypotheses are removed. In contrast, merging-only reduction algorithms pre-
serve all the information, which, at a first glance, might seem to be dangerous
from a target tracking in presence of clutter perspective. Nonetheless, given
the DFKL features, the merging of very unlikely isolated hypotheses would
generate new components spread in the covariance, which leads to an even
lower corresponding importance in the next filter update (see Sec. 2.10). In
this regard may be reasonable to at first perform an adaptive merging-only
reduction, and then to perform a pruning where the weights are normalized
over the determinant of the covariance matrix (Gaussian case), that is to
consider:

w̄i =
w̃i√
|Σi|

, i = 1, ..., n. (5.11)

Such a normalization can help to remove both low weighted and covariance-
spread components (the latter can result from the merging-only reduction
algorithm). If, instead, the unlikely components appear near significant
clusters, merging those is expected to barely influence the overall cluster
modality. Given the features of the so far presented reduction algorithms,
the author is confident that adaptive reduction of PHDs could improve the
overall performance of tracking algorithms.

Preserving the inverse Wishart mixture mean

To conclude this section, it might be worth to address even the problem of
reducing a mixture/intensity of inverse Wishart densities according to the
DFKL measure. The DFKL-barycenter does not preserve mean value of an
inverse Wishart mixture, in contrast with the gamma and Gaussian cases.
Performing aggressive reductions may distort significantly the mean value of
an inverse Wishart mixture/intensity; a possible mitigation of this problem is
provided by the adaptive algorithms here presented since, by preserving the
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mixture/intensity modality, one could expect to preserve the corresponding
statistics. Several tests, not reported here since not a core argumentation of
this work, shown that both the ATC and SMC are capable of avoiding that
the mean value of an inverse Wishart mixture is distorted significantly in a
reduction problem.

5.3 Model Selection for Sample Data: Cou-

pling Data Clustering with Mixture Re-

duction

Another application of the discussed adaptive reduction algorithms is the one
of finding a suitable model order for sample data.

As discussed in Sec. 2.8, one can employ mixture models in order to
characterize a given dataset: clustering algorithms as the EM (see 2.8) rep-
resent a possible way to fit mixture models over the data. Nonetheless, it is
usually unclear how many components would be required to find a suitable
description, and the evaluation of several model orders may require a lot of
time; in addition, the EM algorithm is particularly sensible to the initial-
ization. In Sec. 2.7 the problem of model selection has been discussed, and
two information criteria have been reported, namely the AIC and the BIC.
Both those criteria though, require all the model orders to be evaluated in
order to find the best trade-off between model complexity and representation
accuracy (given in terms of the likelihood function). For these reasons, the
problem of fitting a mixture model to the data is not of easy solution.

In this section, the author proposes a very recent idea on the exploitation
of adaptive reduction to find a suitable model order efficiently.

5.3.1 Coupling EM and adaptive reduction theory

The proposed idea relies on the coupling of any sample data clustering al-
gorithm and an adaptive reduction. The EM is considered since it yields
directly a mixture model and approximately provides the MLE of the mix-
ture model over the data; in any case, any other algorithm can be considered,
with the only requirement of yielding a mixture model after its execution is
completed (e.g. K-means with cluster sample covariance computation). For
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the goals of this argumentation, only Gaussian mixtures will be considered,
but the approach remains general.

Overfitting the data on purpose: is it a good idea?

Let us consider the problem of finding a probabilistic model for an unknown
process of interest, from which observations can be obtained. Hence, given
a set of corresponding samples, one way to provide a mathematical descrip-
tion could be to consider the Kernel Density Estimation (KDE)3 approach
[86, 87]; nonetheless, such a method relies on the choice of the kernel band-
width, and the final outcome will be strongly influenced by such a choice. If
a Gaussian kernel is chosen, the bandwidth is represented by the covariance
matrix, and the overall distribution can be seen as a Gaussian mixture with
as many components as the number of observations. Nevertheless, unless
singular covariances are considered, it is not an easy task to find a suitable
kernel bandwidth to approximate the distribution of interest. Moreover, a re-
duction performed on such ”mixture” will also strongly depend on the chosen
bandwidth. An alternative, as discussed, is to consider the EM algorithm,
which is recalled to be a soft-clustering algorithm capable of fitting mixture
models over the observed data. In this case, though, the problem of finding
a suitable initialization, jointly with the number of components, can make
the problem of fitting a model over the data particularly difficult, especially
in high dimensions. Of course, if one has to find a model which best explains
the given data, it would make more sense to overfit the data rather than un-
derfitting it, but, from the bias-variance dilemma [3], one knows that a high
model variance causes in general a loss of generalization ability; on the other
hand, underfitting the data may lead to inferior prediction accuracy. Given
a set of d-dimensional observations x = {x1, ..., xN}, xi ∈ Rd, the adaptive
reduction theory presented in Sec. 4.4 could be exploited as follows:

1. Select a high number of components and initialize randomly the EM
algorithm (on-purpose overfitting).

2. Perform an adaptive reduction of the EM outcome as shown in Sec.
4.4.

3KDE is a non-parametric way to estimate the probability density function of a ran-
dom variable. Kernel density estimation is a fundamental data smoothing problem where
inferences about the real unknown distribution are made, based on a finite data sample.
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3. Refine the reduced order model by another instance of the EM algo-
rithm.

With this approach, though, there are few problems; first of all, if too many
initial components are provided, the EM could incur in singularities (e.g. a
given component collapses onto a single observation, yielding a singular Gaus-
sian density of zero covariance). Nonetheless, in the literature are present
many workarounds to overcome this kind of situations, like resetting the
singular component(s) somewhere else and keep iterating until convergence.
Another problem, of conceptual nature, arises from the fact that the EM
algorithm is a soft clustering approach, while the adaptive reduction theory
here presented relies on hard-clustering theory. This may represent a prob-
lem since, during the descent, the adaptive algorithm will ”detach from the
data” and the subsequent reduction steps will be done in a hard-clustering
perspective, hence deviating from what an equivalent soft-clustering algo-
rithm would yield. For this reason, a final instance of EM is mandatory
to both ”re-attach the model to the data” and to provide a corresponding
soft-clustering estimate.

In order to provide some insights on the performances of such an ap-
proach, let us consider a dataset containing N = 3000 observations gener-
ated according to Nc = 20 Gaussian components; the goal is to retrieve a
final model for the data with a suitable order. To further discuss the fea-
tures of this approach, the BIC will be evaluated for each of the reduced
order model provided by the adaptive reduction. In Fig. 5.8 are reported
the corresponding results.

As it can be observed, na = 50 components represent a significant un-
necessary number, hence causing an overfitting of the data; nonetheless, the
data modality seems to be preserved. By then using the SMC criterion with
αA = 0.15, the reduction stops for nb = 20, which represents the desired
number of components. On the other hand, the BIC curve suggests that the
optimal value may be nb = 23, a different value than the expected one: there
is a specific motivation for such a behavior. Once the initialization is pro-
vided, that is the data has been encoded with a model, the adaptive reduction
is performed until a halting occurs. Moreover, during the descent, the algo-
rithm is detaching from data and working in a sort of simplified domain made
of Gaussian components rather than samples. In such domain, though, the
choices are chosen according to a hard-clustering criterion, and subsequent
merging actions may yield solutions which differ significantly from a model
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Figure 5.8: (a). Set of N = 3000 samples fitted by means of EM algorithm
with na = 50 Gaussian components. (b). The na = 50 components are
reduced adaptively and another pass of the EM is performed. (c). Halting
criteria. (d). BIC values as function of model orders.
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provided by a soft-clustering equivalent; in fact, the adaptively reduced model
will not represent a good description of the data as the one would obtain by
fitting a same order model with a good run of the EM; luckily, the final in-
stance of EM usually fixes the introduced distortion, by yielding, in general,
really accurate models with suitable orders. Thus said, the BIC reported
in Fig. 5.8.(d) may be providing the wrong optimal order due to the fact
that the corresponding evaluation is done over models which do not really
explain well the data. A more rigorous usage of the BIC is by ”re-attaching
the model to the data” after each merging action; however, this would break
the adaptive reduction theory, since altering the mixture from one reduction
step to another would cause the ATC/SMC curves to miss the summation
to one, hence making pointless to consider thresholds in the interval [0, 1].
In this regard, though, let us consider the same problem as in Fig. 5.8, but
where the BIC is computed after performing an EM refinement ”external”
to the reduction, in the sense that the reduced order models involved in the
descent are not modified, but the corresponding BIC is computed after an
EM refinement of each model order. In Fig. 5.9 is reported the result.

As it can be observed, now the BIC correctly estimates the optimal num-
ber of components; in fact, the BIC should be evaluated for the likelihood-
maximized model over the data, and not for a model yielded by the adaptive
reduction. In addition, if one looks at both the corresponding BIC plots of
Figures 5.8 and 5.9, something more can be evinced: the DFKL-consistent
greedy reduction seems to cause a smooth decrease of the BIC down to
the optimal number. The logic behind this may rely on the following con-
siderations: first of all, hierarchical models like reduced mixtures are, by
construction, simpler models in terms of parameters which aim to preserve
the original accuracy; in this regard, merging very similar components does
not alter, in general, the mixture modality in a significant manner, hence
allowing for a reduction of the parameter number with a small loss of infor-
mation. If an overfitting process as the one proposed at the beginning of this
section takes place, then it is reasonable to find several components which,
in a greedy reduction, perspective, can be simplified without losing signifi-
cant representation capabilities. Given that the most similar components are
merged at each step according in a reduction like the one proposed in Sec.
6, one could expect a monotonically decreasing accuracy (smaller values of
the likelihood function over the data), which, in the BIC case, is balanced by
the number of parameters in the mixture, decreasing at each reduction step.

Nevertheless, the reported plots may be lucky realizations of random ex-
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Figure 5.9: (a). Set of N = 3000 samples fitted by means of EM algorithm
with na = 50 Gaussian components. (b). The na = 50 components are
reduced adaptively and another pass of the EM is performed. (c). Halting
criteria. (d). BIC values as function of model orders.
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periments, since there is another fact regarding the BIC which should be
remarked. Information criteria like the BIC tend to penalize the number
of parameters in order to achieve an Occam’s razor trade-off between accu-
racy and complexity. Nonetheless, by looking at the corresponding formula
(2.103), it can be noticed that the penalization term depends on the number
of observations (something that the AIC does not possess, hence providing
in general more complex models). In high dimensions it may happen that
the likelihood part totally obscures the penalization in terms of magnitude,
hence obtaining BIC always increasing as the model becomes simpler; when
this happens, even the BIC may favor very complex models. A possible mit-
igation might be provided by increasing the number of observations on the
process, but it is known that sampling in high dimensions is rather difficult
and computationally burdensome

In contrast, the adaptive reduction criteria here proposed appear to over-
come this kind of issues. To provide some additional insights, let us consider
the following problem: a 7-dimensional Gaussian mixture of size n = 60 is
generated according to the procedure reported in section 10, for parameters
Nc = 10, β = 30, δ1 = 0.6, δ2 = 0.2. From such a mixture, N = 200000
samples are drawn and a na = 40 components mixture is fitted by means
of EM algorithm. This back and forth procedure is made in order to lose
track of the original number of components, to add noise, and to provide
a set of data which should be approximated sufficiently well with nb = 10
components. A comparison between the adaptively chosen number and the
BIC is reported in Fig 5.10.

Let us now consider the case of underfitting the data, that is a mixture of
n = 60 7−dimensional components are generated out of Nc = 15 clusters for
parameters β = 0.6, δ1 = 0.6, δ2 = 0.2; consequently, N = 200000 samples
are drawn from such a mixture and na = 10 components are fitted by means
of the EM algorithm over the samples. The results are reported in Fig. 5.11.

As it can be observed, both the BIC (expected, given the dimensionality
of the problem) and the SMC suggest that no reduction should be made,
hence a suitable model order is at least nb = 10. As discussed, though,
this kind of SMC curves appear when there is an underfitting of the data,
and the model parameter number should be reconsidered to explore more
complex representations.

A last experiment to investigate the scalability of such algorithm in high
dimensional problems is reported. Let us consider N = 200000 samples
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Figure 5.10: Set of N = 200000 samples fitted by means of EM algorithm
with na = 40 Gaussian components. The adaptive reduction is employed to
find a suitable model order. (a). Adaptive criteria curves (b). BIC curve.
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Figure 5.11: Set of N = 200000 samples fitted by means of EM algorithm
with na = 10 Gaussian components. The adaptive reduction is employed to
find a suitable model order. (a). Adaptive criteria curves (b). BIC curve.
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generated from n = 100 32-dimensional Gaussian components, regrouped in
Nc = 10 clusters, with parameters β = 60 (to have a high probability of
non-overlapping clusters), δ1 = 0.4 and δ2 = 0.2. The results are reported in
Fig. 5.12.
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Figure 5.12: Set of N = 200000 samples fitted by means of EM algorithm
with na = 30 Gaussian components. The adaptive reduction is employed to
find a suitable model order. (a). Adaptive criteria curves (b). BIC curve.

Again, the SMC is able to correctly identify the number of clusters.
To conclude this section, there are few remarks which should be done.

First of all, the coupling of EM and adaptive reduction seems to work re-
ally well in practice, even if not theoretically sound (soft-clustering vs hard-
clustering). In any case, given its computational efficiency, it might represent
a suitable algorithm for applications where resources are limited. The core
idea, for which such an algorithm appears to perform well, relies on the fact
that the adaptive reduction as the one presented in Sec. 4.4 aims to pre-
serve the mixture modality; hence, even by detaching from the data, the
final result still represents a good initialization for a possible subsequent in-
stance of the EM algorithm. Moreover, as briefly mentioned, by looking at
the corresponding curves L̃ and A, it is possible to figure out, visually, if
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the initial number of provided components may be sufficient to describe the
data: significant increments for low compression ratios are in general symp-
tom of underfitting models. Alternatively to the discussed algorithm, one
could consider a modified version of the EM where, after each re-estimation
of the components over the data, a reduction based on the ATC/SMC is per-
formed. By recalling Fig. 4.3, if a merging does not have to take place, the
adaptive algorithms will prevent such an event to happen. In other words,
at each EM iteration, if there exist two (or more) components which do not
introduce a significant increment in the L̃ or A curves, then it is possible to
perform a corresponding merging to reduce the model order.
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Chapter 6

Conclusions and Future Work

In this dissertation, the topic of approximating mixture models to keep the
complexity contained has been addressed in a bottom up approach. In Chap-
ter 2, fundamentals have been reported in order to make the argumentation
self-contained, and to provide a big picture about where the MRP arises
and why it is important to address it rigorously. Many practical problems
require a powerful, yet efficient, uncertainty representation in order to be ap-
proached robustly: mixture models can be a good candidate in that matter.
Nonetheless, such representations are not issue-free, since in many applica-
tions the corresponding number of components can grow unbounded over
time. In addition, even if the number of components is fixed a priori, it is
non-trivial to select such a number in an Occam’s razor perspective; using
a considerably large number of components can lead to the phenomenon of
overfitting, which, aside employing a rather significant amount of compu-
tational resources, may reduce the generalization capabilities of the model.
In contrast, by selecting an insufficient number of components, the model
can become particularly biased, and it may lose the ability to correctly pre-
dict/describe the underlying process.

In this regard, the topic of reducing a mixture complexity while finding
a suitable number of components results to be an important, although non-
trivial, task.

In Chapter 3, the MRP has been defined in an optimization perspec-
tive, where the dissimilarity between an original model and a corresponding
simplified instance is wanted to be reduced while preserving representation
accuracy. Such a problem, though, rarely admits a closed form solution, and
it is often required to employ heuristics in order to address it. A common
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approach is to perform a greedy reduction of the components followed by a
refinement phase. In the former, the mixture components are either merged
together, by means of barycenter or BSDA, or pruned out, in an iterative
manner. In the latter, the greedy reduction outcome serves as a starting
point, and the corresponding parameters are refined by exploiting the orig-
inal mixture information. Merging components together, though, can be
done rarely in a closed form and often it is necessary to resort to numerical
solutions as, for instance, fixed-point iteration algorithms. Even worse, the
dissimilarity between mixtures can be computed in closed form for very few
cases. For the above reasons, the MRP can be considered to be often ana-
lytically intractable. In the literature, such a fact has led to the employment
of several dissimilarity measures in the same reduction pipeline, mostly for
ease of computation, but this led to a lack of consistency in the solution (see
3.2.1, 5.1); from an optimization point of view, that is equivalent to mini-
mize several different loss functions in the same problem, hence by yielding
sub-optimal solutions.

Many of the mentioned issues can be solved by considering optimal trans-
port theory. In Chapter 4, the problem is addressed by means of surrogate
dissimilarities between mixtures, namely Composite Transportation Dissim-
ilarities (CTDs), which are always available in closed form if the pairwise
dissimilarities between mixture components can be computed. A CTD is the
result of an optimal transport problem (OTP), which is a linear program-
ming optimization problem. In such framework, the optimal merging action
is the D-barycenter, which is rather easier to deal with if compared to the
D-BSDA (see sec. 3.3); pruning is never optimal. Moreover, it is possible
to obtain greedy reduction and refinement algorithms which are totally con-
sistent with a single D-measure, and which result to be efficient in terms of
computational resources; both the component reduction and subsequent re-
finement can be framed in a hard-clustering perspective, since all the actions
taken in the OTT framework tend to aggregate similar components together
and to recompute, eventually, the corresponding barycenters.

Furthermore, if the DFKL is considered in such framework, a whole theory
for adaptive reduction can be formulated, where the number of components
is selected by the algorithm during the greedy descent. Such a criterion finds
employment in several practical problems; for instance, in target tracking in
clutter it can help to figure out how many objects may be present in the field
of view, while filtering away the redundant components (see 5.2. In unsuper-
vised learning problems, it can help to identify the number of classes/clusters
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in high dimensional spaces (see 5.3. A very good feature of the mentioned
adaptive algorithm is that it results to be extremely efficient, hence suit-
able for real time applications which rely on very restricted computational
resources.

To further investigate and prove the effectiveness of the proposed frame-
work, in Chapter 5 are reported many numerical tests to investigate reliability
of the reported algorithms and possible improvements/drawbacks; perform-
ing consistent reductions yields in general superior approximations in terms
of the chosen D-measure, while maintaining a low computational burden if
the OTT-based framework is considered (see sec. 5.1). In addition, the prob-
lem of reducing GGIW intensities is addressed in section 5.2; that kind of
uncertainty representation is gaining a lot of attention in the context of ex-
tended target tracking, although it also suffers itself from the combinatorial
explosion in the number of components if a Bayesian filtering setting is con-
sidered. GGIW hypotheses are called product densities, since are obtained
as the product of simpler marginal distributions. When employed in target
tracking problems, the corresponding reduction results to be more difficult if
compared to the single marginal case, and having robust and accurate algo-
rithms gains even more importance. Since the proposed reduction framework
is general and can be applied both to mixtures and intensities, the GGIW in-
tensity reduction can be directly addressed by exploiting the greedy reduction
and refinement algorithms based on the OTT. As last analysis, in section 5.3
the adaptive reduction criteria are investigated in the model selection task
for sample data; by at first overfitting the data, and by adaptively reducing
the overly complex model, it is possible to provide a good trade-off between
model complexity and accuracy, even for high dimensional problems, where
other criteria like the AIC or BIC fail.
Overall, the main contributions of this dissertation are:

• to provide a general perspective on the whole mixture reduction pipeline
in terms of optimal transport theory, mostly for the greedy reduction
part, since the refinement scheme was already known in the literature;
the whole work has focused mostly on the greedy reduction since, in the
author’s opinion, providing accurate initializations can help the refine-
ment phase to achieve a fast convergence towards superior solutions,
hence resulting to be a crucial point. In this regard, the proposed ap-
proach offers efficient, hybrid, consistent, greedy reduction algorithms
for each given D-measure ([62], 4.3).
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• To provide a debate on consistency, which is often neglected in many
existing algorithms: numerical tests have proven why it is important to
consider consistent pipelines when addressing the MRP. The formula-
tion of the OTT-based reduction framework has been motivated mostly
by such core topic, even because a reference algorithm/framework was
missing in the literature to make fair1 comparisons between new pro-
posed solutions and existing approaches ([46], sec. 5.1).

• To embed an adaptive halting criterion in the greedy descent for the
DFKL case, hence to stop the reduction when a suitable number of com-
ponents has been found. Such a method appears to work surprisingly
well, in both the problems of target tracking and model selection for
sample data. At the current state, it relies on the thresholding of some
quantities, but the author is confident that such an operation can be
removed in a near future ([80], sec. 4.4).

• To provide a comprehensive theory for GGIW intensity (adaptive) ([19],
sec. 5.2), by showing how the problem can be addressed consistently
with the DFKL in an efficient, real-time suitable, manner.

• To investigate the employment of the adaptive reduction theory in the
model selection task. From several experiments, it seems that the pro-
posed criteria can outperform existing alternatives as the AIC and BIC,
since they scale up well with dimensions (sec. 5.3).

• To provide an ensemble of FPI algorithms for the barycenter computa-
tion for many D-measures: this improved the efficiency of the overall
OTT-based reduction framework, which hence does not have to rely on
gradient descent optimization ([48], 3.3).

• To investigate the Likeness-based (LB) family of D-measures in both
their analytical properties and peculiarities ([35], sec. 3.1.4, sec. 5.1).

Since the most encouraging result is the adaptive reduction criterion, as
near future works the author would investigate further the effectiveness of
such a method on real-world problems. Until now, all the data have been

1In the sense that many of the existing algorithms are either inconsistent or the corre-
sponding performances are evaluated by a different D-measure than the one employed in
the reduction. Given the proposed framework, the author hopes that future comparisons
between new approaches will take into account all the argumentation here reported.
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synthetically generated in order to have a ground truth for comparisons; since
very good results have been obtained, the author expects to successfully em-
ploy the adaptive reduction on real world problems. As last minute finding,
the author figured out that the SMC can be applied in practice to every D-
measure listed in this work; nonetheless, at this stage, there are no theoretical
guarantees as happens for the DFKL case. Despite of this, several preliminary
tests have shown that the SMC can be extended to any D-measure, even if
lacking associativity of barycenters, and the corresponding results seem to
stress out further how the features of a dissimilarity influence the MR out-
come, both in the preserved mixture characteristics and the corresponding
suitable number of components.

Although not reported in this work due to time and space constraints, the
author has also addressed the topic of alternative surrogate functions to the
CTDs (based on a regularization of the optimal transport problem), which
also seem to perform interestingly when employed in the MRP. Nonetheless,
the corresponding discussion would require a chapter on its own, hence it
will probably be matter for future works.
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Appendix A

Useful Formulas

A.1 List of D-measures

Here is reported a list of the main D-measures discussed in this work (all
ratios between pdfs are assumed well defined):

Kullback-Leibler DKL(p∥q) =
∫
p(x) log

p(x)

q(x)
dx, (A.1)

Jeffreys (symm-KL) DSKL(p∥q) =
1

2
(DKL(p∥q) +DKL(q∥p))

=
1

2

∫
(p(x)−q(x))log p(x)

q(x)
dx,

(A.2)

Skew Jeffreysα∈[0,1] Dα
J (p∥q) =(1− α)DKL(p∥q) + αDKL(q∥p), (A.3)

Square L2 norm
aka Integral Square Error (ISE)

DL2(p∥q) =
∫ (

p(x)− q(x)
)2
dx, (A.4)

Cauchy-Schwarz DCS(p∥q)=−log

 ∫
p(x)q(x)dx√(∫

p2(x)dx
)( ∫

q2(x)dx
)
 , (A.5)

Bhattacharyya distance DB(p∥q) = − log

∫ √
p(x)q(x)dx, (A.6)
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Square Hellinger DH2(p∥q) =
1

2

∫ (√
p(x)−

√
q(x)

)2
dx

= 1−
∫ √

p(x)q(x)dx,

(A.7)

Pearson χ2 DP (p∥q) =
1

2

( ∫ q(x)2

p(x)
dx− 1

)
, (A.8)

Neyman χ2 DN(p∥q) =
1

2

( ∫ p(x)2

q(x)
dx− 1

)
, (A.9)

Square

2-Wasserstein
DW2(p∥q) = inf

π∈Q2

∫ ∫
∥x− y∥2π(x, y)dxdy (A.10)

where Q2 is the set of all pdfs in Rd × Rd that have p(x) and q(y) as
marginals and finite second order moments.

α-divergences

The Chernoff α-coefficient cα(p, q), α ∈ (−∞,∞), defined as

cα(p, q) =

∫
pα(x)q1−α(x)dx (A.11)

allows to define two families of divergences: α-divergences of the I◦ and of
then II◦ kind:

I◦ kind α-div D′
α(p∥q) =

1

α(1− α)

(
1− cα(p, q)

)
, (A.12)

II◦ kind α-div D′′
α(p∥q) = − log cα(p, q). (A.13)

For some values of α, the α-divergences of the I◦ kind coincide with some
of the previously listed divergences:

D′
α(p∥q)

∣∣
α=−1

= DP (p∥q) Pearson χ2 (A.14)

lim
α→0

D′
α(p∥q) = DKL(q∥p) Reverse KL (A.15)

D′
α(p∥q)

∣∣
α=0.5

= 4DH2(p∥q) Square Hellinger (A.16)

lim
α→1

D′
α(p∥q) = DKL(p∥q) Forward KL (A.17)

D′
α(p∥q)

∣∣
α=2

= DN(p∥q) Neyman χ2 (A.18)
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For α = 0.5, cα(p, q) coincides with the Bhattacharayya coefficient [88]
and the corresponding α-divergence of the II◦ kind coincides with the Bhat-
tacharayya distance.

A.2 Some identities

The cross-likeness J i,j between two Gaussians νi = ν(x|µi,Σi) and νj =
ν(x|µj,Σj) is defined in [35] as

J i,j =

∫
νi(x) · νj(x)dx = ν(µi|µj,Σi + Σj). (A.19)

The self-likeness of a Gaussian νi is

J i,i =

∫
ν2(x)dx = ν(µi|µi, 2Σi) = |4πΣi|−

1
2 . (A.20)

If ν is without subscript, then the self-likeness is written Jν,ν , so that Jν,ν =
ν(µ|µ, 2Σ), and the cross-likeness between νi and ν is written as J i,ν . The
following hold true

νi(x) · ν(x) = J i,ν ν(x|µ̄i,ν , Σ̄i,ν) (A.21)

where
µ̄i,ν =

(
Σ−1

i + Σ−1
)−1(

Σ−1
i µi + Σ−1µ

)
Σ̄i,ν =

(
Σ−1

i + Σ−1
)−1

(A.22)

ν2(x) = Jν,ν ν
(
x
∣∣µ, 1

2
Σ
)
=

1√
|4πΣ|

ν
(
x
∣∣µ, 1

2
Σ
)
. (A.23)

The partial derivatives of a Gaussian density ν = ν(x|µ,Σ) with respect to
µ and Σ−1 are as follows:

∂ν

∂µ
= Σ−1(x− µ)·ν

∂ν

∂Σ−1
=

1

2

(
Σ− (x− µ)(x− µ)T

)
·ν.

(A.24)

For any α ∈ (0, 1) we have:

να =
(2π)

d
2
(1−α)|Σ| 1−α

2

α
d
2

ν
(
x|µ, 1

α
Σ
)
,

ν1−α =
(2π)

d
2
α|Σ|α2

(1− α)
d
2

ν
(
x
∣∣µ, 1

1−α
Σ
)
.

(A.25)
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The Chernoff α-coefficient (A.11) between νi and νj is

cα(νi, νj) =

( |Σ̄α
i,j|

|Σi|α|Σj|1−α

) 1
2

e−
1
2
(µi−µj)

T (Σ̃α
i,j)

−1(µi−µj) (A.26)

so that ναi · ν1−α
j = cα(νi, νj) · ν(x|µ̄α

i,j, Σ̄
α
i,j), (A.27)

where

Σ̄α
i,j =

(
αΣ−1

i + (1− α)Σ−1
j

)−1
,

Σ̃α
i,j =

1
α
Σi +

1
1−α

Σj,

µ̄α
i,j = Σ̄α

i,j

(
αΣ−1

i µi + (1− α)Σ−1
j µj

)
.

(A.28)

By exploiting (A.24), the derivatives of να and ν1−α w.r.t. the parameters
(µ,Σ−1) can be obtained in a straightforward manner.
Similarly, using (A.24) the derivatives of the cross-likeness J i,ν , between νi
and ν and of the self-likeness Jν,ν , with respect to the parameters (µ,Σ−1)
of ν can be obtained:

∂J i,ν

∂µ
= Σ−1(µ̄i,ν − µ)J i,ν ,

∂Jν,ν

∂µ
= 0

∂J i,ν

∂Σ−1
=

1

2

(
Σ− (Σ̄i,ν + (µ̄i,ν − µ)(µ̄i,ν − µ)T )

)
J i,ν

∂Jν,ν

∂Σ−1
=

1

2
Jν,νΣ

(A.29)

Analogous derivatives can be obtained for the Chernoff α-coefficient, omitted
due to their cumbersome forms.
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Appendix B

Proofs

All the following material represents, for the most part, unpublished contri-
butions.

B.1 Equivalence of BSDAs and barycenters

B.1.1 DFKL-BSDA and DFKL-barycenter equivalence

Proof. Let us consider a mixture of densities p = wTq =
∑n

i=1wiqi, p ∈ Qmix,
and a generic distribution q. It follows that:

q∗ =argmin
q∈Q

DFKL(w
Tq∥q) = argmin

q∈Q

∫ n∑
i=1

wiqi log

∑n
i=1wiqi
q

dx =

=argmin
q∈Q

[ ∫ n∑
i=1

wiqi log
n∑

i=1

wiqidx︸ ︷︷ ︸
⊥⊥q

−
∫ n∑

i=1

wiqi log qdx

]
=

=argmin
q∈Q

[ n∑
i=1

wi

∫
qi log qidx︸ ︷︷ ︸

⊥⊥q

−
n∑

i=1

wi

∫
qi log qdx

]
=

=argmin
q∈Q

n∑
i=1

wi

[ ∫
qi log qidx−

∫
qi log qdx

]
=

=argmin
q∈Q

n∑
i=1

wiDFKL(qi∥q) = argmin
q∈Q

mDFKL
(q|w, q) = q̂

(B.1)
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B.1.2 DL2-BSDA and DL2-barycenter equivalence

Proof. Let us consider a mixture of densities p = wTq =
∑n

i=1wiqi, p ∈ Qmix,
and a generic distribution q. It follows that:

q∗ =argmin
q∈Q

DL2(w
Tq∥q) = argmin

q∈Q

∫ (
wTq − q

)2
dx =

=argmin
q∈Q

[ ∫ ( n∑
i=1

wiqi
)2
dx︸ ︷︷ ︸

⊥⊥q

−2
n∑

i=1

wi

∫
qiqdx+

∫
q2dx

]
=

=argmin
q∈Q

[ n∑
i=1

wi

∫
q2i dx︸ ︷︷ ︸

⊥⊥q

−2
n∑

i=1

wi

∫
qiqdx+

n∑
i=1

wi︸ ︷︷ ︸
=1

∫
q2dx

]
=

=argmin
q∈Q

n∑
i=1

wi

[ ∫
q2i dx− 2

∫
qiqdx+

∫
q2dx

]
=

=argmin
q∈Q

n∑
i=1

wiDL2(qi∥q) = argmin
q∈Q

mDL2
(q|w, q) = q̂

(B.2)

B.2 DFKL-barycenter properties

B.2.1 Uniqueness of DFKL-barycenters for the expo-
nential family

DFKL-barycenter uniqueness for the exponential family. From the def-
inition of DFKL, exploiting the expression (2.45) of pdfs in the exponential
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family, the following formula is easily derived:

mDFKL
(q(η)|w, q) =

n∑
i=1

wi

(
ηTi b(ηi)− a(ηi)

)
−

n∑
i=1

wi

(
ηT b(ηi)− a(η)

)
=

n∑
i=1

wi

(
ηTi b(ηi)− a(ηi))− ηT

( n∑
i=1

wib(ηi)
)
+ w̄ a(η).

(B.3)
Defining the function f(η) = mDFKL

(q(η)|w, q), it is easy to see that its
Hessian is proportional to the Hessian of a(η) via the positive coefficient w̄,
i.e. d2f/dη2 = w̄(d2a/dη2), and therefore is positive definite, from (2.49).
It follows that f(η) has a unique minimum η̂ at which the gradient df/dη
vanishes

∃! η̂ ∈ Λ :
df(η)

dη

∣∣∣
η̂
= 0 ⇔ −

n∑
i=1

wib(ηi) + w̄

(
da(η)

dη

)T
η̂

= 0. (B.4)

Recalling that (da/dη)T = b(η) (the first of the two properties (2.49)), the
thesis, eq. (3.88), follows.

B.2.2 DFKL-barycenter associativity for the exponen-
tial family

Associativity of DFKL-barycenters for the exponential family. This
result is a direct consequence of equation (3.88), that characterizes the pa-
rameter η̂ of the barycenter of a weighted set (w, q) = {wiqi}ni=1 of distri-
butions qi ∈ Q. The proof is obtained considering a pair of disjoint subsets
I1 and I2 of the interval [1 :n]. Associativity is proved by showing that the
identity (3.73), which defines the associativity property, is true. Let η̂1 and
η̂2 denote the natural parameters of the barycenters of the weighted subsets
of (w, q) associated to the subsets of indices I1 and I2, and let η̂1,2 denote
the natural parameter of the barycenter of the weighted subset of (w, q) as-
sociated to the subsets of indices I1 ∪ I2. To prove associativity, one must
show that

q(η̂1,2) = Φ̄DFKL

(
{w̄I1q(η̂1), w̄I2q(η̂2)}

)
,

where w̄Ij =
∑
i∈Ij

wi, j ∈ {1, 2}. (B.5)
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According to equation (3.88), η̂1, η̂2, η̂1,2 are such that

η̂1 : w̄I1b(η̂1) =
∑
i∈I1

wi b(ηi),

η̂2 : w̄I2b(η̂2) =
∑
i∈I2

wi b(ηi),

η̂1,2 : w̄I1∪I2b(η̂1,2) =
∑

i∈I1∪I2

wi b(ηi).

(B.6)

The proof is easily obtained by considering that

w̄I1∪I2 =w̄I1 + w̄I2 ,∑
i∈I1∪I2

wi b(ηi) =
∑
i∈I1

wi b(ηi) +
∑
i∈I2

wi b(ηi),
(B.7)

so that the condition (B.6) on η̂1,2 can be rewritten as

η̂1,2 :
(
w̄I1 + w̄I2

)
b(η̂1,2) = w̄I1 b(η̂1) + w̄I2 b(η̂2), (B.8)

which is the condition on the barycenter of the weighted set {w̄Ijq(η̂j)}j∈{1,2},
and this concludes the proof.

B.2.3 D-measure joint convexity and CTD upper bounds

Joint convexity and upper bounds. Let us consider four distributions
p1, p2, q1, q2 ∈ Rd and a coefficient α ∈ [0, 1]; a D-measure is said to be
jointly convex (j.c.) in the arguments if it holds that:

D(αp1 + (1− α)p2∥αq1 + (1− α)q2) ≤ αD(p1∥q1) + (1− α)D(p2∥q2) (B.9)

Given a jointly convex D-measure and two mixture densities pa and pb, let
W be a transportation plan between pa and pb for which one can write pa =∑na

i=1w
a
i q

a
i =

∑na

i=1

∑nb

j=1Wi,jq
a
i and pb =

∑nb

j=1w
b
i q

b
i =

∑nb

j=1

∑na

i=1Wi,jq
b
j ;
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then it holds the following result:

D(pa∥pb) = D
( na∑

i=1

wa
i q

a
i ∥

nb∑
j=1

wb
jq

b
j

)
=

= D
( na∑

i=1

nb∑
j=1

Wi,jq
a
i ∥

nb∑
j=1

na∑
i=1

Wi,jq
b
j

)
≤

≤︸︷︷︸
j.c.

na∑
i=1

nb∑
j=1

Wi,jD(qai ∥qbj)

(B.10)

Of course, if W = Ŵ , that is the optimal transportation plan is considered,
it holds that:

D(pa∥pb) ≤ CD(p
a∥pb) (B.11)

B.2.4 BD, CD and CR
D properties

In this section, additional properties, propositions and theorems are reported
to prove the results presented in Sec. 4.3.

Proposition B.2.1. Consider nondegenerate mixtures pa, of size na, and
pb, of size nb < na, such that do not exists any component qai of pa with equal
divergence from any two components of pb, i.e.

∀i ∈ [1 :na], D(qai ∥qbh) ̸= D(qai ∥qbk), ∀h, k ∈ [1 :nb]. (B.12)

Then, the optimal relaxed transportation plan W̆ ∈ T̆ (wa), solution of (4.10),
is a sparse matrix, such that

∀i ∈ [1 :na],
W̆i,j∗ = wa

i , j∗ = argmin
j∈[1:nb]

(
D(qai ∥qbj)

)
W̆i,j = 0, j ̸= j∗.

(B.13)

Proof. Rewriting (4.13)

CR
D(p

a∥pb) = min
W∈T̆ (wa)

( na∑
i=1

nb∑
j=1

Wi,jD(qai ∥qbj)
)
, (B.14)
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the optimal relaxed transportation plan W̆ solves

min
W∈T̆ (wa)

( na∑
i=1

nb∑
j=1

Wi,jD(qai ∥qbj)
)
=

na∑
i=1

 min
Wi,:∈T̆i(wa)

nb∑
j=1

Wi,jD(qai ∥qbj)

 ,

(B.15)
where Wi,: denotes the i-th row of the matrix W , and T̆i(w

a) = {Wi,: ∈
R1×nb

+ : Wi,:1nb = wa
i }. It follows that the optimal relaxed transportation

plan W̆ can be independently computed row by row

i ∈ [1 :na], W̆i,: = arg

 min
Wi,:∈T̆i(wa)

nb∑
j=1

Wi,jD(qai ∥qbj)

 . (B.16)

The transportation plan W̆ defined in (B.13) is such that

nb∑
j=1

W̆i,jD(qai ∥qbj) = wa
iD(qai ∥qbj∗) ≤

nb∑
j=1

Wi,jD(qai ∥qbj), ∀Wi,: ∈ T̆i(w
a),

(B.17)
because by assumption (B.12)

D(qai ∥qbj∗) < D(qai ∥qbj), ∀j ̸= j∗. (B.18)

Equality in (B.17) happens only forWi,: = W̆i,:, This concludes the proof.

Lemma B.2.2. Consider a D-measure such that the D-barycenter of any
given mixture exists and is unique. Given a nondegenerate mixture p =
wTq ∈ Qmix with n components {wiqi}ni=1, with all weights wi strictly positive,
the following inequalities hold true

∀i, j ∈ [1 :n] > 0,
wiD(qi∥q̂i,j) + wjD(qj∥q̂i,j) < wiD(qi∥qj)
wiD(qi∥q̂i,j) + wjD(qj∥q̂i,j) < wjD(qj∥qi),

(B.19)

where q̂i,j = Φ̄D(wiqi + wjqj). Moreover

D(qi∥q̂i,j) < D(qi∥qj), D(qj∥q̂i,j) < D(qj∥qi). (B.20)
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Proof. The proof is obtained by exploiting the uniqueness of the barycenter

wiD(qi∥q̂i,j) + wjD(qj∥q̂i,j) < wiD(qi∥q) + wjD(qj∥q), ∀q ∈ Q \ {q̂i,j}
(B.21)

Replacing in (B.21) q = qi we get the first of (B.19), while the second is
obtained replacing q = qj. The inequalities (B.20) are a simple consequence
of (B.19).

Remark 3. If the D-barycenters are not unique, then inequalities (B.19)
and (B.20) of Lemma B.2.2 hold true if the strict inequality < is replaced by
the non-strict inequality ≤.

Proposition B.2.3. Given a mixture p = wTq ∈ Qmix with n components
{wiqi}ni=1, with all weights wi strictly positive, let i, j, h ∈ [1 : n] be three
indices such that

wiD(qi∥q̂i,j) + wjD(qj∥q̂i,j) < wiD(qi∥q̂i,h) + whD(qh∥q̂i,h)
wiD(qi∥q̂i,j) + wjD(qj∥q̂i,j) < wjD(qj∥q̂j,h) + whD(qh∥q̂j,h),

(B.22)

where q̂i,j = Φ̄D(wiqi + wjqj). Then

D(qi∥q̂i,j) < D(qi∥qh)
D(qj∥q̂i,j) < D(qj∥qh).

(B.23)

Proof. From Lemma B.2.2 and assumption (B.22) we get

wiD(qi∥q̂i,j) + wjD(qj∥q̂i,j) < wiD(qi∥qh)
wiD(qi∥q̂i,j) + wjD(qj∥q̂i,j) < wjD(qj∥qh).

(B.24)

Since wjD(qj∥q̂ij) > 0, from the first of (B.24) the first of (B.23) follows,
and since wiD(qi∥q̂ij) > 0, from the second of (B.24) the second of (B.23)
follows.

Theorem B.2.4 (Equality between BD, CD and CR
D). Given a mixture p =

wTq ∈ Qmix with n components, {wiqi}ni=1, n > 2, with all weights wi strictly
positive, let {i∗, j∗} ⊂ [1 :n], i∗ ̸= j∗, be a pair of indices such that ∀r ∈ [1 :
n] \ {i∗, j∗}, the following inequalities are true

wi∗D(qi∗∥q̂i∗,j∗) + wj∗D(qj∗∥q̂i∗,j∗) ≤ wi∗D(qi∗∥q̂i∗,r) + wrD(qr∥q̂i∗,r)
wi∗D(qi∗∥q̂i∗,j∗) + wj∗D(qj∗∥q̂i∗,j∗) ≤ wj∗D(qj∗∥q̂j∗,r) + wrD(qr∥q̂j∗,r),

(B.25)
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where, as usual, q̂i∗,j∗ = Φ̄D(wi∗qi∗ + wj∗qj∗). Let

p̃i∗,j∗ = p− (wi∗qi∗ + wj∗qj∗) + (wi∗ + wj∗)q̂i∗,j∗ . (B.26)

Then, CD(p∥p̃i∗,j∗) (see eq. (4.4)) and CR
D(p∥p̃i∗,j∗) (see eq. (4.13)) coincide

and are as follows:

CD(p∥p̃i∗,j∗) = CR
D(p∥p̃i∗,j∗) = wi∗D(qi∗∥q̂i∗,j∗) + wj∗D(qj∗∥q̂i∗,j∗). (B.27)

Proof. To make simpler the notation, without loss of generality, in the proof
we assume that i∗ = n − 1, and j∗ = n, so that assumptions (B.25) are
rewritten as:

wn−1D(qn−1∥q̂n−1,n) + wnD(qn∥q̂n−1,n) ≤ wn−1D(qn−1∥q̂n−1,r) + wrD(qr∥q̂n−1,r)

wn−1D(qn−1∥q̂n−1,n) + wnD(qn∥q̂n−1,n) ≤ wnD(qn∥q̂n,r) + wrD(qr∥q̂n,r),
(B.28)

for all r ∈ [0 :n− 2], (B.26) becomes

p̃n−1,n = p− (wn−1qn−1 + wnqn) + (wn−1 + wn)q̂n−1,n, (B.29)

and the thesis (B.27) becomes

CD(p∥p̃n−1,n) = CR
D(p∥p̃n−1,n) = wn−1D(qn−1∥q̂n−1,n) + wnD(qn∥q̂n−1,n).

(B.30)

Let D ∈ Rn×(n−1)
+ be the cost matrix, whose components are as follows

Di,j = D(qi∥qj), ∀i ∈ [1 : n], j ∈ [1 : n− 2],

Di,n−1 = D(qi∥q̂n−1,n), ∀i ∈ [1 : n].
(B.31)

The structure of a relaxed optimal transportation plan W̆ associated to the
CR

D(p∥p̃n−1,n) is investigated below (the general structure has been already
investigated in Proposition B.2.1).

The cost minimized by W̆ is

⟨W,D⟩ =
n∑

i=1

(
Wi,n−1D(qi∥q̂n−1,n) +

n−2∑
j=1

Wi,jD(qi∥qj)
)
. (B.32)

In the RCTD computation problem there are n independent constraints on
the rows of the relaxed feasible transportation matrices W ∈ Rn×(n−1)

+ : a
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feasible W ∈ T̆ (w) must be such that Wi,:1n−1 = wi, i = 1, . . . , n. Then,
the problem can be written as

CR
D(p|p̃n−1,n) = min

W∈T̆ (w)

n∑
i=1

(
Wi,n−1D(qi∥q̂n−1,n) +

n−2∑
j=1

Wi,jD(qi∥qj)

)

=
n∑

i=1

min
Wi,:1n−1=wi

(
Wi,n−1D(qi∥q̂n−1,n) +

n−2∑
j=1

Wi,jD(qi∥qj)
)
.

(B.33)
Note that D(qi∥qi) = 0, for i = 1, . . . , n− 2. Thus, the first n− 2 rows of the
optimal relaxed transportation plan W̆ are:

W̆i,j = 0, for i ̸= j, W̆i,i = wi, i = 1, . . . , n− 2, (B.34)

so that in (B.33) all terms with i = 1, . . . , n− 2 vanish, and we get

CR
D(p|p̃n−1,n) = min

Wn−1,:1n−1=wn−1

(
Wn−1,n−1D(qn−1∥q̂n−1,n) +

n−2∑
j=1

Wn−1,jD(qn−1∥qj)
)

+ min
Wn,:1n−1=wn

(
Wn,n−1D(qn∥q̂n−1,n) +

n−2∑
j=1

Wn,jD(qn∥qj)
)
.

(B.35)
Thanks to assumptions (B.25), rewritten as: (B.28), and to Proposition B.2.3
(actually, its version with non strict inequalities), we have

D(qn−1∥q̂n−1,n) ≤ D(qn−1∥qj)
D(qn∥q̂n−1,n) ≤ D(qn∥qj)

∀j ∈ [1 :n]. (B.36)

It follows that the last two rows of an optimal transportation plan W̆ ∈ T̆ (w)
can be chosen as follows:

W̆n−1,j = 0, for j ∈ [1 :n− 2], W̆n−1,n−1 = wn−1,

W̆n,j = 0, for j ∈ [1 :n− 2], W̆n,n−1 = wn,
(B.37)

(this choice for an optimal transportation plan W̆ is univocal if strict in-
equalities are assumed in (B.25), so that inequalities (B.36) are strict, too),
so that

CR
D(p∥p̃n−1,n) = wn−1D(qn−1∥q̂n−1,n) + wnD(qn∥q̂n−1,n), (B.38)
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which is identity of the two rightmost terms of the thesis (B.30). To prove the
identity of the first two terms (CD(p∥p̃n−1,n) = CR

D(p∥p̃n−1,n) it is sufficient to
see that the computed optimal relaxed transportation plan is feasible also for
the non-relaxed transportation problem, i.e. Ŵ ∈ T (w, w̃) ⊂ T̆ (w), where
w̃ ∈ ∆n−2 ⊂ Rn−1

+ is the set of weights associated to p̃n−1,n, i.e. , w̃i = wi,

i ∈ [1 :n− 2] and w̃n−1 = wn−1 + wn. Indeed, 1
T
nŴ = w̃.

At this point, it is left to prove that the merging choice associated to
the optimal bound B̆D is the one which introduces also the minimum CTD
between the mixture before and the one after merging. To ease the corre-
sponding discussion, few more definitions and remarks have to be reported.

Definition B.2.1. (Child and parent mixtures) At first, recall that the super-
script (·) represents the order of a given mixture or, alternatively, the number
of elements contained in a set; moreover, the quantities corresponding to such
mixture/set will possess such a superscript to be labelled as belonging the con-
sidered entity. Thus said, consider a mixture p(n) = (w(n))Tq(n) of size n,

with components q
(n)
i ∈ Q, and consider a partition I(m) of size m of the

interval [1 :n] (of course, m < n). The child mixture of p(n) induced by the
partition I(m) is the mixture p(m) = (w(m))Tq(m) of size m defined as follows:

w(m) ∈ ∆m−1 : w
(m)
j = w̄

(n)

I(m)
j

=
∑

i∈I(m)
j

w
(n)
i ,

q(m) ∈ (Q)(m) : q
(m)
j = q̂

(n)

I(m)
j

= Φ̄D({w(n)
i q

(n)
i }I(m)

j
),

j ∈ [1 :m]. (B.39)

where I(m)
j is a sub-partition of the partition I(m) (which one has to recall to

contain indices). The mixture p(n) is called parent mixture of p(m), according
to the partition I(m).

Note: p(1) = Φ̄D((w
(n), q(n))) is the child mixture of pn induced by the

trivial partition I(1) = {[1 : n]}. If the barycenter associativity holds, then
p(n) and p(m) have the same barycenter p(1).

Proposition B.2.5. Consider a D-measure and a family of distributions Q.
Then, given a mixture p(n) = (w(n))Tq(n) of size n, a partition I(m) of size
(m) of the interval [1 :n] and given p(m) = (w(m))Tq(m), the child mixture of
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p(n) induced by I(m), the following function

CU
D(p

(n)∥p(m)) =
m∑
j=1

∑
i∈I(m)

j

w
(n)
i D(q

(n)
i ∥q(m)

j ), (B.40)

is an upper bound of the CTD of p(m) from p(n), i.e.

CD(p
(n)∥p(m)) ≤ CU

D(p
(n)∥p(m)). (B.41)

If the D-measure and family Q satisfy the ABTI property (3.96), then the
following is also true

CD(p
(n)∥p(1)) = CU

D(p
(n)∥p(m)) + CD(p

(m)∥p(1)), (B.42)

where p(1) is the barycenter of both pn) and p(m) (remember that child mixtures
have the same barycenter of the parents if associativity holds).

Proof. Inequality (B.41) is readily proved because the function CU
D(p

(n)∥p(m))
coincides with the function V (W |Θ(n),Θ(m)) (4.2) evaluated at a feasible
matrix W , and by definition CD(p

(n)∥p(m)) ≤ V (W |Θ(n),Θ(m)). The feasible
matrix W ∈ T (wn,wm) is the following

Wi,j = wn
i , i ∈ Im

j , Wi,j = 0 i ̸∈ Im
j .

To prove (B.42), it is sufficient to rewrite the CTD of the barycenter p(1)

from p(n) considering that I(m) = {I(m)
j }(m)

j=1 is a partition of [1 :n]:

CD(p
(n)∥p(1)) =

n∑
i=1

w
(n)
i D(q

(n)
i ∥p(1)) =

m∑
j=1

∑
i∈I(m)

j

w
(n)
i D(q

(n)
i ∥p(1)). (B.43)

From the property (3.96) (ABTI)∑
i∈I(m)

j

w
(n)
i D(q

(n)
i ∥p(1)) =

∑
i∈I(m)

j

w
(n)
i D(q

(n)
i ∥q̂(n)

I(m)
j

)+
( ∑

i∈I(m)
j

w
(n)
i

)
D(q̂

(n)

I(m)
j

∥p(1)),

(B.44)

and considering that, by definition of child mixture, w
(m)
j =

∑
i∈I(m)

j
w

(n)
i and

q
(m)
j = q̂

(n)

I(m)
j

, we have

CD(p
(n)∥p(1)) =

m∑
j=1

∑
i∈I(m)

j

w
(n)
i D(q

(n)
i ∥q(m)

j ) +
m∑
j=1

w
(m)
j D(q

(m)
j ∥p(1)). (B.45)
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Note that the first term of the right hand side of (B.45) is the CU
D(p

(n)∥p(m)),
given by (B.40), while the second term is the CD(p

(m)∥p(1)). It follows that
(B.45) coincides with (B.42).

Remark 4. The inequality (B.41) and the identity (B.42) in the particular
case in which m = n− 1 take a simple form. In this case, p(n−1) is obtained
from p(n) by merging two (weighted) components, say w

(n)
i q

(n)
i and w

(n)
j q

(n)
j ,

to obtain:

CU
D(p

(n)∥p̃(n)i,j ) = w
(n)
i D(q

(n)
i ∥q̂(n)i,j ) + w

(n)
j D(q

(n)
j ∥q̂(n)i,j ), (B.46)

the inequality (B.41) takes the form

CD(p
(n)∥p̃(n)i,j ) ≤ w

(n)
i D(q

(n)
i ∥q̂(n)i,j ) + w

(n)
j D(q

(n)
j ∥q̂(n)i,j ), (B.47)

where p̃
(n)
i,j =p

(n) − (w
(n)
i q

(n)
i + w

(n)
j q

(n)
j ) + (w

(n)
i + w

(n)
j )q̂

(n)
i,j is the reduced-by-

one mixture obtained by merging the components i and j of p(n); the identity
(B.42) becomes

CD(p
(n)∥p(1)) = w

(n)
i D(q

(n)
i ∥q̂(n)i,j ) + w

(n)
j D(q

(n)
j ∥q̂(n)i,j ) + CD(p̃

(n)
i,j ∥p(1)), (B.48)

Theorem B.2.6 (Minimum CD increase merging choice). Given a mixture
p = wTq ∈ Qmix with n components, {wiqi}ni=1, n > 2, with all weights wi

strictly positive, let {i∗, j∗} ⊂ [1 :n], i∗ ̸= j∗, be a pair of indexes such that

wi∗D(qi∗∥q̂i∗,j∗) + wj∗D(qj∗∥q̂i∗,j∗) ≤ wiD(qi∥q̂i,j) + wjD(qj∥q̂i,j),
∀{i, j} ⊂ [1 :n], i ̸= j,

(B.49)

where, as usual, q̂i,j = Φ̄D(wiqi +wjqj). Then, CD(p∥p̃i∗,j∗) and CR
D(p∥p̃i∗,j∗)

coincide, and are as follows:

CD(p∥p̃i∗,j∗) = CR
D(p∥p̃i∗,j∗) = wi∗D(qi∗∥q̂i∗,j∗) + wj∗D(qj∗∥q̂i∗,j∗). (B.50)

Moreover, any pair {i∗, j∗} that satisfies (B.49) also provides the least CTD
increment, i.e.

CD(p∥p̃i∗,j∗) ≤ CD(p∥p̃i,j), ∀{i, j} ⊂ [1 :n]. (B.51)

Proof. Merging choice introducing the least CD between contiguous
model orders The identity (B.50) is a trivial consequence of Theorem B.2.4.
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It remains to prove the inequality (B.51), and this will be done by showing
that the existence of a pair {r, s} ≠ {i∗, j∗} such that

CD(p∥p̃rs) < CD(p∥p̃i∗,j∗) (B.52)

would lead to a contradiction.
Actually, it is sufficient to show that that the existence of a pair {r, s} ≠

{i∗, j∗} such that
CR

D(p∥p̃r,s) < CD(p∥p̃i∗,j∗) (B.53)

contradicts the hypotheses, thus proving (B.51).
The computation of CR

D(p∥p̃r,s) can be carried out using redundant matrix

representations of feasible transportation plans, i.e. matrices W ∈ Rn×(n+1)
+

whose columns W:,r and W:,s are set to zero. Formally, the set of redun-
dant matrices representing feasible relaxed transportation plans is defined as
follows

T r,s(w) = {W ∈ Rn×(n+1)
+ : W1n+1 = w, W:,r = W:,s = 0n×1}. (B.54)

With this formalism

CR
D(p∥p̃r,s) = min

W∈T r,s(w)

n∑
i=1

(
Wi,n+1D(qi∥q̂r,s) +

n∑
j=1

Wi,jD(qi∥qj)

)

=
n∑

i=1

min
Wi,:1n+1=wi

Wi,n+1D(qi∥q̂r,s) +
n∑

j=1
j ̸=r,s

Wi,jD(qi∥qj)


(B.55)

that we can rewrite as

CR
D(p∥p̃r,s) =

n∑
i=1

fr,s(W̆i,:) =
n∑

i=1

min
Wi,:1n+1=wi

fr,s(Wi,:), (B.56)

where

fr,s(Wi,:) = Wi,n+1D(qi∥q̂r,s) +
n∑

j=1
j ̸=r,s

Wi,jD(qi∥qj), i ∈ [1 :n]. (B.57)
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The expression (B.56) reveals that the n rows of the optimal relaxed trans-
portation plan W̆ can be computed independently, by solving n independent
optimization problems. It is easy to see that

for i ∈ [1 :n]

i ̸= r, s,
min

Wi,:1n+1=wi

fr,s(Wi,:) = 0, with

{
W̆i,i = wi, i ∈ [1 :n],

W̆i,j = 0, j ∈ [1 :n+ 1], j ̸= i.

(B.58)
Thus, the only positive contributions in the summation (B.56) that gives
CR

D(p∥p̃r,s) are for i = r and i = s:

CR
D(p∥p̃r,s) = min

Wr,:1n+1=wr

fr,s(Wr,:) + min
Ws,:1n+1=wr

fr,s(Ws,:). (B.59)

Recalling that CR
D(p∥p̃r,s) ≤ CD(p∥p̃r,s), and exploiting the upper bound on

CD(p∥p̃r,s) discussed in Remark 4, we get

CR
D(p∥p̃r,s) ≤ wrD(qr∥q̂r,s) + wsD(qs∥q̂r,s) = BD(wr qr, ws qs). (B.60)

Equation (B.50) tells us that for the pair {i∗, j∗} that minimizes the bound
BD(wi qi, wj qj), the bound itself coincides with CR

D(p∥p̃i∗,j∗), i.e.

CR
D(p∥p̃i∗,j∗) = wi∗D(qi∗∥q̂i∗,j∗) + wj∗D(qj∗∥q̂i∗,j∗) = BD(wi∗ qi∗ , wj∗ qj∗).

(B.61)
We will show that if the pair {r, s} is not the minimizer of the bound (B.60),
i.e. if {r, s} ≠ {i∗, j∗} and

wi∗D(qi∗∥q̂i∗,j∗) + wj∗D(qj∗∥q̂i∗,j∗) < wrD(qr∥q̂r,s) + wsD(qs∥q̂r,s), (B.62)

then necessarily the following is true

CR
D(p∥p̃i∗,j∗) ≤ CR

D(p∥p̃r,s), (B.63)

which, recalling (B.50), implies

CD(p∥p̃i∗,j∗) ≤ CD(p∥p̃r,s). (B.64)

The proof proceeds by showing that the inequality

CR
D(p∥p̃r,s) < CR

D(p∥p̃i∗,j∗) (B.65)

cannot be satisfied, because it would lead to a contradiction with the as-
sumption (B.62), and therefore necessarily (B.63) must be true.
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Indeed, looking at the expressions of (B.59) and (B.57), we see that the
upper bound (B.60) corresponds to the following feasible transportation plan

W̃ :

W̃r,n+1 = wr, W̃s,n+1 = ws, and
W̃i,: = Ŵi,:, i ∈ [1 :n], i ̸= r, s,

W̃r,j = W̃s,j = 0, j ∈ [1 :n].
(B.66)

Indeed, there are few ways that CR
D(p∥p̃r,s) can be less than its bound

(B.60): there may exists h ̸= s, r, such that D(qr∥qh) < D(qr∥q̂s,r), or there
may exist a pair of indexes {h, t} ≠ {r, s} such that D(qr∥qh) < D(qr∥q̂s,r)
and D(qs∥qt) < D(qs∥q̂s,r), in the two cases h = t and h ̸= t. We consider
only one of the previous cases, because all others can be dealt with in the
same way. Thus, let us consider the case where (B.65) is true because

∃h ∈ argmin
j∈[1:n]\{r,s}

(
D(qr∥qj)

)
: D(qr∥qh) < D(qr∥q̂s,r),

while D(qs∥q̂s,r) ≤ D(qr∥qj), ∀j ∈ [1 : n].
(B.67)

Then, we have

CR
D(p∥p̃r,s) = wrD(qr∥qh) + wsD(qs∥q̂r,s). (B.68)

Note that, since the pair {i∗, j∗} is a minimizer of the bound BD(wi qi, wj qj),
considering the pair {h, s} we have

wi∗D(qi∗∥q̂i∗,j∗) + wj∗D(qj∗∥q̂i∗,j∗) ≤ whD(qh∥q̂h,s) + wsD(qs∥q̂h,s). (B.69)

On the other hand, if the inequality (B.65) were true, we would have

CR
D(p∥p̃i∗,j∗) =wrD(qr∥qh) + wsD(qs∥q̂r,s) <

<wi∗D(qi∗∥q̂i∗,j∗) + wj∗D(qj∗∥q̂i∗,j∗) < wrD(qr∥q̂r,s) + wsD(qs∥q̂r,s).
(B.70)

However, by (B.19) of Lemma B.2.2 we have

wrD(qr∥q̂r,h) + whD(qh∥q̂r,h) < wrD(qr∥qh) (B.71)

Clearly, inequalities (B.70) and (B.71) are in contradiction, because put to-
gether they give

wrD(qr∥qh) + wsD(qs∥q̂r,s) < wrD(qr∥qh), (B.72)

which is impossible because wsD(qs∥q̂r,s) ≥ 0. Thus, (B.64) is impossible,
and (B.51) is proved.
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B.2.5 Adaptive reduction theory and relative trans-
portation loss properties

Consider sequential merging algorithms in which at each step two compo-
nents are merged into one (i.e., a submixture made of two components is
replaced by its barycenter). Thus, at each step of the algorithm the number
of components decreases exactly by one. The sequence starts with m = n,
at the given mixture p(n), and produces a sequence of nested1 mixtures
p(m), each one made of m (descending index) weighted components, denoted

{w(m)
i q

(m)
i }mi=1. At each step a submixture of two components, say {w(m)

r q
(m)
r }

and {w(m)
s q

(m)
s }, is suitably selected and replaced with its barycenter q̂

(m)
r,s ,

with weight w
(m)
r +w

(m)
s , so that at a given step the mixture p(m−1) is obtained

as

p(m−1) = p̃
(m)
{r,s} = (w(m))Tq(m) −

(
w(m)

r q(m)
r + w(m)

s q(m)
s

)
+ (w(m)

r + w(m)
s )q̂(m)

r,s

=
∑
i=1
i ̸=r,s

w
(m)
i q

(m)
i + (w(m)

r + w(m)
s )q̂(m)

r,s .

(B.73)
Thus, a sequential merging algorithm produces a sequence of nested mixtures
p(m) ∈ Qmix, with m = n, . . . , 1 starting from p(n) and arriving at p(1), which
is a mixture of only one component, and therefore p(1) ∈ Q. Note that if
the associativity property (3.73) holds true, then for any choice {r, s} of
the pairs to be merged at each step, the last single component mixture p(1)

coincides with the barycenter of the original mixture: p(1) = Φ̄D(p
(n)) = p̂(n).

Actually there is more: it is true that at each step Φ̄D(p
(m)) = Φ̄D(p

(n)),
m = n, . . . , 1. If we are given the mixture p(m), and must choose the two
components to merge, a straightforward choice is the greedy one: select the
two components whose merging produces the mixture with the lowest CD.
Taking into account the notation in (B.73), the optimal local (greedy) choice
of components to merge is as follows:

i∗, j∗ ∈ [1 :m], i∗ ̸= j∗ : CD(p
(m)∥p̃(m)

i∗,j∗) ≤ CD(p
(m)∥p̃(m)

i,j ), ∀i, j ∈ [1 :m],

i ̸= j,
(B.74)

and setting p(m−1) = p̃
(m)
i∗,j∗ (recall that p̃

(m)
i∗,j∗ is derived from p(m) by replacing

the submixture {w(m)
h q

(m)
h }h∈{i∗,j∗} with the component {(w(m)

i∗ +w
(m)
j∗ )q̂

(m)
i∗,j∗}.

1Obtained by only merging subsets of the original mixture model p(n).
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Note that the choice of the pair (i∗, j∗) may not be unique.
This reducing strategy provides the sequence {p(m)} with the minimum

increment of the CTD, i.e., at each step CD(p
(m)∥p(m−1)) is the lowest possi-

ble. For this reason, we will refer to this reduction approach as the minimal
incremental CTD strategy, discussed in Theorem B.2.6.

Performing this iterative merging, at the m-th step each component q
(m)
j ,

for j ∈ [1 :m], of the mixture p(m) is the barycenter of a submixture of the

original mixture p(n) defined by a set of indexes I(m)
j ⊂ [1 :n], where the m

sets I(m)
j , define a partition I(m) of the interval [1 :n]:

I(m) = {I(m)
j }mj=1 :

m⋃
j=1

I(m)
j = [1:n], and I(m)

i ∩I(m)
j = ∅, ∀i ̸= j ∈ [1 :m].

(B.75)

Proposition B.2.7. For the greedy CD binary sequential merging algorithm
above presented the following holds true

CD(p
(n)∥p(1)) =

n∑
j=m+1

CD(p
(j)∥p(j−1)) + CD(p

(m)∥p(1)). (B.76)

Proof. Easy consequence of Proposition B.2.5 and Remark 4

In what follows it is useful to define the cumulative CD increments down
to the model order m:

s
(m)
CD

=
n∑

j=m+1

CD(p
(j)∥p(j−1)), s

(n)
CD

= 0, (B.77)

so that (B.76) can be rewritten as

CD(p
(n)∥p(1)) = s

(m)
CD

+ CD(p
(m)∥p(1)). (B.78)

Note that for the reduction according to the minimal incremental CD criterion

s
(1)
CD

= CD(p
(n)∥p(1)). (B.79)

Proposition B.2.8. Given a non degenerate mixture p(n) with n ≥ 3 com-
ponents, the minimal CD increment sequence {p(m)}1m=n is such that

CD(p
(m)∥p(m−1)) ≤ 2

m
CD(p

(m)∥p(1)), m ∈ [n :2]. (B.80)

where the inequality is strict for m ∈ [n :3].
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Proof. In the following p(1) and q̂(m) equivalently denote the barycenter of
the mixture p(m). Recall that the CD of the mixture p(m) from p(1) is

CD(p
(m)∥p(1)) =

m∑
i=1

w
(m)
i D(q

(m)
i ∥p(1)) (B.81)

For a given j ∈ [1 :m] this can be rewritten as

CD(p
(m)∥p(1)) = w

(m)
j D(q

(m)
j ∥p(1))+

+
m∑
i=1
i ̸=j

(
w

(m)
i D(q

(m)
i ∥p(1)) + w

(m)
j D(q

(m)
j ∥p(1))− w

(m)
j D(q

(m)
j ∥p(1))

)

= −(m− 2)w
(m)
j D(q

(m)
j ∥p(1)) +

m∑
i=1
i ̸=j

(
w

(m)
i D(q

(m)
i ∥p(1)) + w

(m)
j D(q

(m)
j ∥p(1))

)
(B.82)

Summing for j = 1, . . . ,m

mCD(p
(m)∥p(1)) = −(m− 2)

m∑
j=1

w
(m)
j D(q

(m)
j ∥p(1))+

+
m∑
j=1

 m∑
i=1
i ̸=j

(
w

(m)
i D(q

(m)
i ∥p(1)) + w

(m)
j D(q

(m)
j ∥p(1))

) .

(B.83)
From the ABTI property (3.3.2), it follows:

w
(m)
i D(q

(m)
i ∥p(1)) + w

(m)
j D(q

(m)
j ∥p(1)) =

= w
(m)
i D(q

(m)
i ∥q̂(m)

i,j ) + w
(m)
j D(q

(m)
j ∥q̂(m)

i,j ) + (w
(m)
i + w

(m)
j )D(q̂

(m)
i,j ∥p(1)),

(B.84)
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hence, equation (B.83) can be written

mCD(p
(m)∥p(1)) =− (m− 2)CD(p

(m)∥p(1))

+
m∑
j=1

m∑
i=1
i ̸=j

(
w

(m)
i D(q

(m)
i ∥q̂(m)

i,j ) + w
(m)
j D(q

(m)
j ∥q̂(m)

i,j )
)

+
m∑
j=1

m∑
i=1
i ̸=j

(w
(m)
i + w

(m)
j )D(q̂

(m)
i,j ∥p(1)).

(B.85)
Let (r, s) denote the integer pairs that satisfy the minimum CD increment
criterion, i.e.

w(m)
r D(q(m)

r ∥q̂(m)
r,s ) + w(m)

s D(q(m)
s ∥q̂(m)

r,s ) ≤w(m)
i D(q

(m)
i ∥q̂(m)

i,j ) + w
(m)
j D(q

(m)
j ∥q̂(m)

i,j ),

∀{i, j} ⊂ [1 :m], i ̸= j.
(B.86)

Replacing (B.86) in (B.85) and rearranging

2(m− 1)CD(p
(m)∥p(1)) ≥

m∑
j=1

m∑
i=1
i ̸=j

(
w(m)

r D(q(m)
r ∥q̂(m)

r,s ) + w(m)
s D(q(m)

s ∥q̂(m)
r,s )

)

+
m∑
j=1

m∑
i=1
i ̸=j

(w
(m)
i + w

(m)
j )D(q̂

(m)
i,j ∥p(1)).

(B.87)

Recalling that p(m−1) is obtained from p(m) after merging the pair {w(m)
r q

(m)
r }

and {w(m)
s q

(m)
s }, and that

CD(p
(m)∥p(m−1)) = w(m)

r D(q(m)
r ∥q̂(m)

r,s ) + w(m)
s D(q(m)

s ∥q̂(m)
r,s ) (B.88)

we get

2(m− 1)CD(p
(m)∥p(1)) ≥ m(m− 1)CD(p

(m)∥p(m−1))+

+
m∑
j=1

m∑
i=1
i ̸=j

(w
(m)
i + w

(m)
j )D(q̂

(m)
i,j ∥p(1)), (B.89)
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and then

2

m
CD(p

(m)∥p(1)) ≥ CD(p
(m)∥p(m−1)) +

1

m(m− 1)

m∑
j=1

m∑
i=1
i ̸=j

(w
(m)
i + w

(m)
j )D(q̂

(m)
i,j ∥p(1)).

(B.90)
Since all terms in the double summations are nonnegative, and the total
is strictly positive in the nonsingular case (the total is zero if and only if

all components q
(m)
i coincide), the thesis (B.80) directly follows, and the

inequality is strict for m ∈ [3 :n].

Remark 5. Note that the inequality (B.80) is rather conservative whenever
the mixtures p(m) are far to be singular, because the double summation in
(B.90) in this case may be large and non negligible. Indeed, all numerical
computations have shown that the increments are typically well below the
upper bound (B.80).

Proposition B.2.9. Given a non degenerate mixture p(n) with n ≥ 3 com-
ponents, the cumulative CD increment s

(m)
CD

defined in (B.77), associated to

the minimal CTD increment sequence {p(m)}1m=n is such that

s
(m)
CD

≤ ρ(m,n)CD(p
(n)∥p(1)), m ∈ [1 :n], (B.91)

with

ρ(m,n) = 1− m(m− 1)

n(n− 1)
, m ∈ [1 :n]. (B.92)

The inequality (B.91) is strict for m ∈ [2 :n− 1].

Proof. Consider the inequality (B.80) for m = n

CD(p
(n)∥p(n−1)) <

2

n
CD(p

(n)∥p(1)). (B.93)

Recalling that, by definition, s
(n−1)
CD

= CD(p
(n)∥p(n−1)) and checking, from

definition (B.92), that ρ(n− 1, n) = 2/n, we have

s
(n−1)
CD

< ρ(n− 1, n)CD(p
(n)∥p(1)), (B.94)

which is (B.91) for m = n− 1. By induction, we can prove that (B.91) holds
true for all m ∈ [1 :n− 1], by showing that if it holds for some m ∈ [3 :n− 1],
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then it holds true for m−1. From inequality (B.80) and the definition (B.77)

of the cumulative CTD increment s
(m)
CD

we get

CD(p
(m)∥p(m−1)) <

2

m

(
CD(p

(n)∥p(1))− s
(m)
CD

)
, m ∈ [3 :n− 1]. (B.95)

Rearranging

2

m
s
(m)
CD

+ CD(p
(m)∥p(m−1)) <

2

m
CD(p

(n)∥p(1)), m ∈ [3 :n− 1]. (B.96)

Add the term (1− 2/m)s
(m)
CD

to both sides to get

s
(m)
CD

+ CD(p
(m)∥p(m−1)) <

(
1− 2

m

)
s
(m)
CD

+
2

m
CD(p

(n)∥p(1)), m ∈ [3 :n− 1],

(B.97)

where we recognize that s
(m−1)
CD

= s
(m)
CD

+ CD(p
(m)∥p(m−1)). Assuming that at

step m the inequality (B.91) holds true, let us replace the term s
(m)
CD

in the
right-hand-side of (B.97), so that

s
(m−1)
CD

<
(
1− 2

m

)
ρ(m,n)CD(p

(n)∥p(1)) + 2

m
CD(p

(n)∥p(1))

=

((
1− 2

m

)
ρ(m,n) +

2

m

)
CD(p

(n)∥p(1)), m ∈ [3 :n− 1]
(B.98)

To prove the theorem we only need to show that

ρ(m− 1, n) =
(
1− 2

m

)
ρ(m,n) +

2

m
, m ∈ [3 :n− 1]. (B.99)

Doing the math(
1− 2

m

)
ρ(m,n) +

2

m
=
(
1− 2

m

)(
1− m(m− 1)

n(n− 1)

)
+

2

m

= 1− 2

m
− m(m− 1)

n(n− 1)
+

2

m

m(m− 1)

n(n− 1)

= 1− (m− 1)(m− 2)

n(n− 1)
= ρ(m− 1, n),

(B.100)

so that the induction is completed and the theorem is proved.

Remark 6. The inequality (B.91) has been derived on the basis of the in-
equality (B.80), which is rather conservative, as discussed in the Remark 5.

Indeed, all numerical computations have shown that the s
(m)
CD

typically stays
well below the upper bound (B.91).
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B.2.6 DFKL separability

DFKL separability in the GGIW case

DFKL separability in the GGIW case. Let use consider two GGIW hy-
potheses ζi = γiνiφi and ζj = γjνjφj. TheDFKL between the two components
is then:

DFKL(ζi∥ζj) = DFKL(γiνiφi∥γjνjφj) =

=

∫
γiνiφi log γiνiφidχdxdY −

∫
γiνiφi log γjνjφjdχdxdY =

=

∫
γiνiφi(log γi + log νi + logφi)dχdxdY+

−
∫
γiνiφi(log γj + log νj + logφj)dχdxdY =

=

∫
γi log γidχ︸ ︷︷ ︸
−H[γi]

∫
νidx

∫
φidY︸ ︷︷ ︸

=1

+

∫
νi log νidx︸ ︷︷ ︸
−H[νi]

∫
γidχ

∫
φidY︸ ︷︷ ︸

=1

+

+

∫
φi logφidY︸ ︷︷ ︸
−H[φi]

∫
νidx

∫
γidχ︸ ︷︷ ︸

=1

−
∫
γi log γjdχ︸ ︷︷ ︸

H×[γi,γj ]

∫
νidx

∫
φidY︸ ︷︷ ︸

=1

+

−
∫
νi log νjdx︸ ︷︷ ︸

H×[νi,νj ]

∫
γidχ

∫
φidY︸ ︷︷ ︸

=1

−
∫
φi logφjdY︸ ︷︷ ︸
H×[φi,φj ]

∫
νidx

∫
γidχ︸ ︷︷ ︸

=1

=

= −H[γi] +H×[γi, γj]︸ ︷︷ ︸
DFKL(γi∥γj)

−H[νi] +H×[νi, νj]︸ ︷︷ ︸
DFKL(νi∥νj)

−H[φi] +H×[φi, φj]︸ ︷︷ ︸
DFKL(φi∥φj)

=

= DFKL(γi∥γj) +DFKL(νi∥νj) +DFKL(φi∥φj)
(B.101)

BDFKL
separability in the GGIW case. Let us consider a GGIW inten-

sity pa = (w̃a)Tζa =
∑na

i=1 w̃
a
i ζ

a
i ; the cost of merging two components of pa

can then be evaluated as:

BDFKL
(w̃a

i ζ
a
i , w̃

a
j ζ

a
j ) = w̃a

iDFKL(ζ
a
i ∥ζ̂ai,j) + w̃a

jDFKL(ζj∥ζ̂ai,j), ∀i, j ∈ [1 : na],
(B.102)
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where ζ̂ai,j = γ̂ai,j ν̂
a
i,jφ̂

a
i,j is the DFKL-barycenter of the pairs of components

(i, j). By recalling the separability property (5.2), it follows:

DFKL(ζ
a
i ∥ζ̂ai,j) = DFKL(γ

a
i ∥γ̂ai,j)+DFKL(ν

a
i ∥ν̂ai,j)+DFKL(φ

a
i ∥φ̂a

i,j), ∀i, j ∈ [1 : na].
(B.103)

By plugging now the last equation in (B.102), one obtains:

BDFKL
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a
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a
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DFKL(γ

a
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a
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a
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)
+

+ w̃a
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